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ABSTRACT

To assess deep convective parameterizations in a variety of GCMs and examine the fast-time-scale con-
vective transition, a set of statistics characterizing the pickup of precipitation as a function of column water
vapor (CWV), PDFs and joint PDFs of CWV and precipitation, and the dependence of the moisture—
precipitation relation on tropospheric temperature is evaluated using the hourly output of two versions of the
GFDL Atmospheric Model, version 4 (AM4), NCAR CAMS and superparameterized CAM (SPCAM). The
6-hourly output from the MJO Task Force (MJOTF)/GEWEX Atmospheric System Study (GASS) project
is also analyzed. Contrasting statistics produced from individual models that primarily differ in representa-
tions of moist convection suggest that convective transition statistics can substantially distinguish differences
in convective representation and its interaction with the large-scale flow, while models that differ only in
spatial-temporal resolution, microphysics, or ocean—atmosphere coupling result in similar statistics. Most of
the models simulate some version of the observed sharp increase in precipitation as CWV exceeds a critical
value, as well as that convective onset occurs at higher CWV but at lower column RH as temperature in-
creases. While some models quantitatively capture these observed features and associated probability dis-
tributions, considerable intermodel spread and departures from observations in various aspects of the
precipitation-CWYV relationship are noted. For instance, in many of the models, the transition from the low-
CWYV, nonprecipitating regime to the moist regime for CWV around and above critical is less abrupt
than in observations. Additionally, some models overproduce drizzle at low CWV, and some require CWV
higher than observed for strong precipitation. For many of the models, it is particularly challenging to sim-
ulate the probability distributions of CWV at high temperature.

1. Introduction

' Denotes content that is immediately available upon publica- Simulating deep convection in GCMs has been a
tion as open access. longstanding challenge despite progress in computer
power and model complexity. The tropical precipita-

Z Supplemental information related to this paper is available at  tion simulated by GCMs is often at odds with the ob-
the Journals Online website: https://doi.org/10.1175/JAS-D-19-  gerved and targeted studies have identified limitations
013251 of simulated convection as a likely contributor to major
biases in climatology and large-scale modes of tropical

¢ Current affiliation: Jet Propulsion Laboratory, California In-  variability—for example, the MJO (Del Genio et al. 2012;
stitute of Technology, Pasadena, California. Zhu and Hendon 2015; Jiang 2017), the diurnal cycle of
precipitation (Del Genio and Wu 2010; Rio et al. 2009;
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ITCZ (Mapes and Neale 2011; Hwang and Frierson 2013;
Oueslati and Bellon 2013; Hirota et al. 2014). Tropical
precipitation also exhibits great intermodel spread in the
context of future change projection (Biasutti and Sobel
2009; Biasutti 2013; Voigt et al. 2016; Su et al. 2017;
Maloney et al. 2019a). As a result, model diagnostic ef-
forts targeting deep convection are central to several
model improvement efforts across scales. Recent ap-
proaches seek process-oriented diagnostics that target
improvements to physical parameterizations by inves-
tigating coordinated statistics for relationships among
variables aimed at giving insight into underlying pro-
cesses (Eyring et al. 2019; Maloney et al. 2019b). Such
efforts include, for example, diagnostics for moist static
energy (MSE) variance budget analysis (Wing and Emanuel
2014), MJO propagation (Kim et al. 2014; Gonzalez and
Jiang 2017), MJO midlatitude teleconnection (Henderson
et al. 2017), ENSO-related SST anomalies for seasonal
to interannual predictability (Annamalai et al. 2014),
warm rain processes (Suzuki et al. 2015), and tropical
cyclone simulations (Kim et al. 2018).

Here we focus on convective transition statistics that
serve as model diagnostics for the parameterization of
deep convection (Peters and Neelin 2006; Neelin et al.
2009; Kuo et al. 2018, hereafter KSN18). These statistics
characterize the PDFs of column water vapor (CWV)
for precipitating points, the pickup of precipitation as a
function of CWV, and the dependence of the moisture—
precipitation relation on tropospheric temperature. The
moisture—precipitation relation is representative of
the relation between observed deep convection and
the buoyancy available for deep convection (Holloway
and Neelin 2009; Schiro et al. 2016; Ahmed and Neelin
2018), applying to both mesoscale-organized and smaller-
scale convection (Schiro et al. 2018; Schiro and Neelin
2019). The relationship to convective instability has been
examined in a single GCM (Sahany et al. 2012, 2014;
Kuo et al. 2017). Here we systematically evaluate the
performance of multiple GCMs in simulating key fea-
tures of tropical precipitation and deep convection with
such diagnostics.

KSN18 has detailed observational aspects of the con-
vective transition statistics over tropical oceans using
satellite retrievals and ground-based measurements,
providing a baseline. Here, the same set of statistics
are compiled for three sets of high-frequency (hourly
and 6 hourly) GCM output and compared to obser-
vations to address a fundamental question: whether
these statistics can target specific processes and differ-
entiate the relevant parameterization schemes adopted
by each GCM, namely, deep convective parameteriza-
tions. The first set consists of hourly output from a pair of
uncoupled GFDL Atmospheric Model, version 4 (AM4)
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and AM4 modified to include multiple deep plumes.
The second set, also hourly output, is from the un-
coupled NCAR CAMS.3 and the superparameterized
CAM (SPCAM), which share the same dynamic core
but differ in representations of moist convection. These
two pairs of model comparison demonstrate that the
convective transition statistics can reveal model char-
acteristics directly relevant to the moist convective
representations in contrast to the conventional diag-
nostic metrics based on long-term climatology and
variability. The third set consists of 6-hourly output
from a subset of models participating in the MJO
Task Force (MJOTF)/GEWEX Atmospheric Sys-
tem Study (GASS) multimodel comparison project
on the Madden-Julian oscillation (Petch et al. 2011,
Jiang et al. 2015; hereafter MJOTF/GASS), which
further enables us to perform similar assessment but
for a selection (16 models/configurations) of main-
stream GCMs.

This manuscript is organized as follows. Section 2 de-
scribes the observational and model data. Section 3 briefly
summarizes the observational aspects of the basic
convective transition statistics, with the corresponding
model comparisons in section 4. The joint PDFs of
CWYV and precipitation, and the derived statistics, are
presented in section 5. Summary and conclusions are
given in section 6.

2. Data and model descriptions
a. Observational datasets

Compiling the desired statistics requires the CWV,
precipitation rate P, and 1000-200-hPa column-integrated
saturation humidity Ge {Gs = [qsa[T(p), pldp/g, where
gsat[T(p),p] is the saturation specific humidity with
respect to liquid water. Here, g is used as the bulk
measure of tropospheric temperature (see KSN18
for comparison to vertically averaged tropospheric
temperature).

To be consistent with previous studies, the 6-hourly
2.5° NCEP-DOE Reanalysis-2 temperature (Kanamitsu
et al. 2002) is adopted for calculating gg with interpo-
lation as needed. Newer reanalysis products (e.g., ERA-
Interim) give similar results (not shown). Our primary
source of CWV and P is the TRMM Microwave Imager
(TMI) retrievals processed by Remote Sensing Systems
(version 7.1; TMIv7.1 hereafter; Wentz et al. 2015) for
the period from 1 June 2002 through 31 May 2014. The
TMIv7.1 data contain gridded (0.25°) snapshots of CWV
and P (at 0.3-mm and 0.1mmh~! increments, respec-
tively) over ocean. The CWYV is capped at 75 mm and
often records missing values in the presence of heavy
precipitation (with increasing probability of missing
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values starting around P = 2mmh ™! and recording
almost nothing above 9mmh~'). We gap fill the missing
values using the available values at the nearest pixel to
restore substantial coverage, but one should not over-
look the uncertainty associated with the CWV counts at
high P (see KSN18 for sensitivity to gap filling). The
TMIv7.1 P exhibits a spurious cutoff around 10mmh .
Thus, for studying the PDFs of P, the TRMM Precipi-
tation Radar (PR) 2A25 (v7; TRMM 2011) rainfall rate
containing snapshots of P at ~5-km resolution is uti-
lized. At its native resolution, the lowest value the PR
can distinguish is ~0.11mmh ™",

b. Model descriptions

Part of the model data analyzed here are from the
time-slice experiments performed by the NOAA Mod-
eling, Analysis, Predictions and Projections (MAPP)
Model Diagnostic Task Force (Maloney et al. 2019b),
which include 2-yr-long high-frequency output under
the AMIP settings. The relevant data consist of hourly
snapshots of temperature and humidity, for calculating
Gsae and CWV, and hourly average precipitation. The
available models include uncoupled ~1° GFDL AM4
(Zhao et al. 2018a,b; AM4G9 hereafter), and AM4
modified to include multiple deep plumes and convec-
tive mesoscale circulations (Donner et al. 2011; AM4B6),
and the uncoupled ~1° NCAR CAMS.3 (Neale et al.
2012). The two AM4 configurations, running through 2009—
10, primarily differ in the convective parameterizations—
double-plume convective scheme (Zhao et al. 2009) for
AMA4GY versus Donner convective scheme (Donner
1993) for AM4B6—with associated tuning differences,
but otherwise share most model components.

The CAMS.3, running through 1990-91, uses the Zhang—
McFarlane deep convective parameterization (Zhang
and McFarlane 1995) as updated by Neale et al. (2008)
and Richter and Rasch (2008). For comparison, our
analysis also includes another set of 10-yr-long hourly
output from the uncoupled ~2° SPCAM [the atmo-
spheric component of the superparameterized CESM
(SP-CESM), version 1.1.1; prescribed monthly mean
SST over 1982-2001], in which the moist convective
processes are explicitly simulated by a 2D cloud-resolving
model (Khairoutdinov and Randall 2003) instead of be-
ing parameterized. The SPCAM is run with the CAM4
physics. CAMS (and CAMS.3) differs from CAM4 pri-
marily in updated parameterization schemes and incor-
porating aerosol-cloud interactions, leaving most of
the dynamic components unchanged. Thus, one ma-
jor difference between the SPCAM and CAMS.3 lies
in the representations of moist convection, which is
expected to be the key difference for the statistics
analyzed here.
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To survey the convective transition in a variety of
models, we also analyze the 6-hourly output of 16
models/configurations participating in the MJOTF/GASS
Global Model Comparison Project, the 20-yr climate
simulation component. Here, the precipitation is 6-hourly
average, and all the data have been regridded to 2.5° X
2.5° resolution prior to our analysis (Jiang et al. 2015).
This MJOTF/GASS ensemble further provides an op-
portunity for two case studies of the sensitivity of the
convective transition statistics on (i) time-averaging
and convective-cloud microphysics through two additional
CAMS instances [referred to as CAMS5 and CAMS-ZM,;
see Section 4b(2) for more information on these instances],
and on (ii) coupling/forcing configurations through
three CNRM instances [CNRM-AM, CNRM-CM, and
CNRM-ACM,; Section 4b(3)].

See Table 1 and references therein for details re-
garding the examined models.

3. A summary of the observational aspects of
convective transition statistics over
tropical oceans

In this section, we briefly summarize the observed
characteristics of convective transition over tropical
oceans synthesized by KSN18.

Figures 1a—d show the basic statistics compiled using
the TMIv7.1 data and Reanalysis-2 temperature at 1°
resolution, including the conditionally averaged pre-
cipitation rate (conditional precipitation hereafter; cal-
culated by including all events; Fig. 1a), conditional
probability of precipitation (P > 0.25mmh™'; Fig. 1b),
PDFs of CWYV for all events (Fig. 1c) and for precipi-
tating events (Fig. 1d), all as a function of CWV and Ggy
for the tropical western Pacific (WPac; 20°S-20°N, west
of 180°). Here, G is used as a proxy for the bulk tro-
pospheric temperature. The PDFs in Fig. 1c together
represent the normalized joint distribution of CWV
and Gy, reflecting the CWV—gg,, climatology in this
basin. Multiplying these PDFs by the corresponding
conditional probabilities in Fig. 1b leads to the PDFs
for precipitating events in Fig. 1d.

The conditional precipitation and probability (Figs. 1a,b)
sharply increase as CWV exceeds a certain threshold
known as the critical CWV w,. (defined through Fig. 1e
later); w, increases with gg. For low g bins, the
PDFs of CWV in Fig. 1c exhibit a characteristic shape,
that is, a peak at low CWYV below which the PDF drops
sharply, and above which the PDF decreases slowly
until reaching a cutoff around critical. As g increases,
another peak develops at high CWV around critical with
the low-CWYV peak diminishing. Neelin et al. (2009) has
noted that low-CWYV (high-CWV) events tend to occur
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TABLE 1. Analyzed models with resolutions and references. Simulations 1-3 are provided by the NOAA MAPP MDTF time-slice
experiments. Simulations 1-4 output hourly data. Simulations 5-20 are provided by the 20-yr climate simulation component of
the MJOTF/GASS Global Model Comparison Project, with 6-hourly data regridded to 2.5° X 2.5° resolution. The descriptions of the
MIJOTF/GASS models follow Jiang et al. (2015, their Table 1).

Resolution (lon X lat),

Model name

Institute

vertical levels

References

1 AMA4GY

AM4B6
3 CAMS.3
4 SPCAM
5 CAMS

6 CAMS-ZM

CNRM-AM
CNRM-CM
CNRM-ACM
EC-EARTH3

—_
S O

11 BCC-AGCM2.1

12 CanCM4

13 NavGEM1
14 MRI-AGCM3

15 MIROC5
16 GISS-E2
17 GEOS-5

18 CWB-GFS
19 FGOALS-s2

20 ISUGCM

Geophysical Fluid Dynamics
Laboratory, NOAA

National Center for Atmospheric
Research

Colorado State University

National Center for Atmospheric
Research

Lawrence Livermore National
Laboratory

Centre National de la Recherche
Scientifique/Météo-France

Rossby Center, Swedish Meteorological
and Hydrological Institute
Beijing Climate Center, China
Meteorological Administration
Canadian Centre for Climate
Modeling and Analysis
U.S. Naval Research Laboratory
Meteorological Research Institute, Japan
AORI/NIES/JAMSREC, Japan
Goddard Institute for Space
Studies, NASA
Global Modeling and Assimilation
Office, NASA
Central Weather Bureau, Taiwan
Institute of Atmospheric Physics, Chinese
Academy of Sciences
Towa State University

1.25° x 1°,L32
1.25° x 1°,L48
1.25° X 0.9°, L30

GCM: 2.5° X 1.9°, .26
CRM: 4km X 32 columns, .24

1.25° X 0.9°, L30
1.25° X 0.9°, L30

T127 (1.4°), L31

T255 (80 km), L91
T42 (2.8°), 126
2.8°,135
T359 (37 km), L42
T159, L48
T85 (1.5°), L40
2.5° X 2.0°, L40
0.625° X 0.5°, L72

T119 (1°), L40

R42 (2.8° X1.6°), L26

T42 (2.8°), L18

Zhao et al. (2018a,b)
Zhao et al. (2018a,b)
Neale et al. (2012)

See note?

Neale et al. (2012)
Song and Zhang (2011)

Voldoire et al. (2013)

See note”

Wau et al. (2010)
Merryfield et al. (2013)
See note®

Yukimoto et al. (2012)
Watanabe et al. (2010)
Schmidt et al. (2014)
Molod et al. (2012)

Liou et al. (1997)
Bao et al. (2013)

Wu and Deng (2013)

#Here the SPCAM is the atmospheric component of the SP-CESM, version 1.1.1, in which the embedded CRM is the System for
Atmospheric Modeling (SAM; Khairoutdinov and Randall 2003). For more regarding the SPCAM configuration for the examined
simulation, see Kuo et al. (2019).

" Hazeleger et al. (2012) describes an earlier version of the EC-EARTH model, while here we have used a newer version based on
ECMWF’s IFS model cy36r4. The main differences between these model versions are an improved radiation scheme (Morcrette et al.
2008) and a new cloud microphysics (Forbes et al. 2012).

°The NAVGEM, version 1.0, model used here, for which there is no published reference, differs from NAVGEM 1.1 (Hogan et al. 2014)

in that it lacks prognostic cloud water and that it uses the radiation scheme of Harshvardhan et al. (1987).

over ocean with colder (warmer SST), which is closely
related to the locations of the descending (ascending)
branches of the general circulation. Stechmann and
Neelin (2011, 2014) have also demonstrated through a
stochastic framework that the CWV PDFs are sensitive
to processes like surface evaporation, precipitation, and
moisture convergence. These observations suggest that
the CWV PDFs are determined by the large-scale flow
interacting with convective physics.

KSN18 noted that, because of the large spatial auto-
correlation scales of temperature and CWV compared
with that of precipitation, the conditional precipitation
(Fig. 1a) and CWYV PDF (Fig. 1c) are insensitive to the

spatial resolution at which the statistics are compiled,
while the conditional probability (Fig. 1b) and PDF
of precipitating events (Fig. 1d) are more sensitive.
It thus makes sense to define w, through conditional
precipitation alone so that it provides a resolution-
independent metric. Following KSN18, we define w,
as the CWV value at which a linear fit for conditional
precipitation (in the range 3-5mmh ') intersects with
the CWV axis. This is depicted in Fig. 1le, which shows
the conditional precipitation as in Fig. 1a, but for 0.25°
resolution and is collapsed by shifting CWV by w, for
each §g. Here, the resolution 0.25° is chosen instead of
1° to include more events, making the fitting numerically
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FIG. 1. (a) Conditionally averaged precipitation rate, (b) conditional probability of precipitation, (c) PDFs of all events, and (d) PDFs
for precipitating events as a function of CWV and g (colors; mm) for the tropical western Pacific (20°S—20°N, west of 180°). In (a)—(d),
results are using TMIv7.1 precipitation rate and CWV and Reanalysis-2 temperature compiled at 1° (colored markers). Triangles rep-
resent corresponding gy values, which indicate where the column is approximately saturated, and underpopulated bins (PDF < 10~°) are
omitted. (e)—(h) As in (a)-(d), but at 0.25° to include more events, and with the statistics collapsed by shifting CWV for each g by the
corresponding critical CWV w,. from (k), and with the PDFs scaled by values at w.. (i) Collapsed conditionally averaged precipitation rate
at 0.25° as in (e), but with data from three additional tropical (20°S-20°N) ocean basins (colored dots) and with TMIv7.1 precipitation rate
replaced by PR 2A25 precipitation rate (gray dots). (j) As in (i), but for conditional probability of precipitation [P > 1.05mmh!;
different from the 0.25 mm h™! threshold for (b) and (f)]. (k) Critical CWV w, as a function of G for the four tropical ocean basins, with
the gray line indicating the gs, value where the column is approximately saturated. (1) Critical column RH defined as w./gs. In (k) and (1),
the values of w, are calculated by fitting the conditionally averaged precipitation rate in the range 3-5mm h ™! using TMIv7.1 data and

Reanalysis-2 temperature compiled at 0.25°.

stable. The collapsed conditional probability and re-
scaled CWV PDFs corresponding to those in Figs. 1b—d
are shown in Figs. 1f-h, and the values of w. and critical
column RH w,/gg in Figs. 1k and 11.

From Figs. 1k and 11, the slopes of w,. and w./qsa
exhibit a clear transition around gg, = 61 mm separating
tropical convection from events originating from extra-
tropics (indicated by the geographical distribution of
(sar; low-Gga Occurrence mostly along the edge of tropics,
sometimes reaching the equator in the central-eastern
Pacific; see KSN18, Fig. S13). As g exceeds around
61 mm, w,. increases but w./qs decreases; that is, con-
vective onset occurs at higher CWYV but at lower column
RH. This w.~qs relation completely characterizes the

dependence of precipitation pickup on tropospheric
temperature in the sense that the conditional precipi-
tation and probability (Figs. 1e,f) collapse well without
exhibiting additional temperature dependence. For Gg
bins = 70mm, the PDFs for precipitating events
(Fig. 1h) peak right below critical with a common near-
Gaussian core; that is, precipitation mostly occurs
within a characteristic (and relatively narrow) CWYV range
around critical. Also, there are more precipitating events
below critical for lower gg (=65.5mm), consistent with
the slightly higher probability in Fig. 1f.

The conditional precipitation and probability in Figs. 1e
and 1f are reproduced in Figs. 1i and 1j together with the
results from the other tropical ocean basins (20°S—-20°N;
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colored markers). Here, the statistics from all 4 basins
collapse, and are thus indistinguishable. The correspond-
ing values calculated using the PR (2A25) precipitation are
also shown (gray dots). Note that Fig. 1jusesa 1.0Smmh ™"
threshold. The PR and TMI precipitation yield consistent
statistics despite that the two instruments slightly differ
in sensitivity to low precipitation < 1.05mmh™'. For
Gsa above the transition (~61 mm), the pickup of con-
ditional precipitation and probability shows little vari-
ation across the gy range and ocean basins (Figs. 1i,j),
and so do the critical values (Figs. 1k,l). For ¢ below
the transition, on the other hand, precipitation exhibits
a gentler pickup, and the critical values scatter over a
wider range. Although not shown here, the qualitative
features of the CWV PDFs (for all events and precipi-
tating events) for WPac noted above also apply to other
ocean basins.

It is worth noting that the CWV PDFs vary consid-
erably across basins and seasons (not shown), reflecting
differences in the CWV-qg climatology. However,
there is not a clear interannual variability (e.g., ENSO vs
non-ENSO years). The conditional precipitation, prob-
ability, and the critical values, on the other hand, are
robust and exhibit little variation.

We caution the readers to interpret Fig. 1 carefully,
especially for results at the highest CWV. The TMIv7.1
CWYV retrievals are capped at 75 mm and often contain
missing values in the presence of heavy precipitation
(P >2mmh'). Here, we adopt the gap-filling method
tested in KSN18 prior to compiling the statistics. The
gap filling partially restores the missing information but
inevitably leads to uncertainty, for example, in the dis-
tribution of CWV above critical for highest-gg bins.

The tropical ARM site data had also been examined
to quantify the dependence of convective transition on
temporal averaging (not shown). Based on the anal-
ysis of satellite retrievals and ground-based mea-
surements in KSN18, the conditional probability of
precipitation defined through a reasonable threshold
(e.g., P > 0.25mmh ') would shift toward lower
CWYV for 1) lower spatial resolution, 2) longer tem-
poral averaging, or 3) lower precipitation threshold,
with the shift being less than 10 mm for spatial reso-
lution changing from 0.25° to 2° and/or temporal
resolution from snapshot to 6-hourly averaging. This
dependence on resolution would not hold for an ex-
treme precipitation threshold (e.g., P > 10mmh™').
In contrast, the conditional precipitation and CWV
PDF are insensitive to spatial averaging and less sensi-
tive to temporal averaging.

For more information regarding observed convec-
tive transition, see KSN18. Below we summarize key
aspects of the basic statistics. In the next section, we
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will examine the performance of the chosen models with
these in mind:

1) The conditional precipitation and probability sharply
increase as CWYV exceeds the critical CWV w.,.

2) As the bulk tropospheric temperature g, increases,
w, increases, but the critical column RH w./qs
decreases.

3) The critical values exhibit little variation across
ocean basins.

4) The conditional precipitation and probability can be
collapsed by shifting the CWV by w,.

5) The collapsed conditional precipitation and proba-
bility exhibit little variation across the g range and
ocean basins.

6) The CWV PDF exhibits a characteristic shape (the
low- vs high-CWYV peak) that depends on Ggy.

7) For CWV above the critical value, the CWV PDF
drops rapidly for all gg,;. This part of the PDF can
be collapsed by shifting the CWV and rescaling
the PDF.

8) The PDF of CWYV for precipitating events, for the
most common ¢ bins over tropical oceans, can be
collapsed and shares a common near-Gaussian core.

4. Simulated convective transition statistics in
GCMs

a. Convective transition statistics distinguishing
convective parameterizations

To assess whether the convective transition statistics
can apply as a diagnostic tool targeting convective pro-
cesses and distinguish the realism of convective parame-
terizations adopted by models, in this subsection, we
examine the basic statistics compiled using the hourly
data from two pairs of GCMs. The configurations/models
within each pair differ primarily in their representations
of moist convection, which is expected to be the key
difference for the examined statistics analyzed here.

The first pair of GCMs consists of two ~1° configu-
rations of the latest global model AM4 (Zhao et al.
2018a,b) developed by the GFDL that are equipped
with different convective schemes, namely, the AM4G9
with the double-plume convective scheme (Zhao et al.
2009), and the AM4B6 with the Donner convective
scheme (Donner 1993).

The second pair is based on the CAM developed by
the NCAR, namely, the CAMS5.3 (~1° Neale et al.
2012) with the default Zhang—McFarlane convective
parameterization (Zhang and McFarlane 1995), and
the SPCAM (~2°) with a 2D CRM for simulating
moist convection (Khairoutdinov and Randall 2003).
Both models share the same dynamic core.
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FIG. 2. As in Fig. 1, but compiled using the AM4G9 output (~1°, hourly). Statistics in Figs. 1a—d are reproduced as smaller markers in
(a)-(d) here for visual reference, and critical values in Figs. 1k and 11 are reproduced in (k) and (1) as gray makers. In (i) and (j), statistics
from the four tropical ocean basins are shifted with 10-mm increments for ease in viewing.

Like the observed statistics in Fig. 1, Figs. 2-5 show
the same sets simulated in the models listed above.
The observed statistics in Figs. 1a—d are reproduced
as small markers for visual reference in Figs. 2a—d; the
simulated statistics in Figs. 2i and 2j are shifted for ease
in viewing [with 10-mm increments; from left to right:
tropical WPac and eastern Pacific (EPac), Atlantic (Atl)
and Indian Ocean (Ind)]; the observed critical values in
Figs. 1k and 11 are reproduced in gray in Figs. 2k and 21
and the same for the corresponding panels in Figs. 3-5.
We note in Fig. 5 (SPCAM), because of lower precipi-
tation rates, the range of the linear fit in Figs. 5e and 5i
had to be reduced to 1.5-2.5mmh™! (as opposed to
3-5mmh ™! for observations and other models).

All four models capture the observed pickup of
precipitation and probability; they also capture the
observed dependence of the critical CWV and critical
column RH as a function of gg (Figs. 2-5k,1). How-
ever, the simulated conditional probability (Figs. 2—
5b.t,j) shows departures from observations to varying
extents, reflecting the disagreement in the joint

distribution of CWV and precipitation rate P (discussed
later in section 5). The collapsed version of the simu-
lated statistics in Figs. 2e—j, 3e—j, 4e—j, and Se—j also
demonstrate that the w,gg; relation does not com-
pletely characterize the temperature dependence in
these models, for example, the slope of the best fit to
the conditional precipitation and the conditional prob-
ability show sensitivity to gg (Figs. 2-5e,fi,j); Addi-
tionally, the CWV PDFs for high Gy do not drop rapidly
around critical (Figs. 2-5g,h), that is, more above-critical
events than observed, indicating a tendency of excessive
moisture convergence or surface evaporation during
precipitation in models. The following sections examine
each model in greater detail.

1) AM4GY9 (DOUBLE-PLUME CONVECTIVE
SCHEME)

According to Fig. 2, the simulated conditional pre-
cipitation by AM4G9 quantitatively agrees with obser-
vations (Fig. 2a), with the slope of the best fit being
slightly higher than observed (Fig. 2e vs Fig. 1e) but still
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FIG. 3. As in Fig. 2, but compiled using the AM4B6 output (~1°, hourly).

within the range of observational uncertainty (e.g.,
caused by CWYV gap filling). The slope also modestly
varies with gg (Fig. 2e) and across ocean basins
(Fig. 2i). The simulated conditional probability has a
steeper pickup occurring at slightly lower CWV
(Fig. 2b). The simulated CWV PDF (Fig. 2c), that is,
the joint PDF of CWV and ¢gy, matches observations
but also exhibits modestly more above-critical events
for highest g bins (Fig. 2g). However, given the un-
certainty in the CWV retrievals at high values, it is in-
conclusive at this time whether this mismatch in the PDF
implies the model misbehaving. The simulated PDF for
precipitating events shows that there are more below-
critical precipitating events for low gy, resembling
observations (Figs. 2h and 1h). The simulated critical
values (Figs. 2k,1) exhibit a clear transition around
{sa. = 61 mm and are consistent with observations, with
slightly higher values for WPac.

2) AM4B6 (DONNER CONVECTIVE SCHEME)

In Fig. 3, the simulated conditional precipitation
by AM4B6 roughly matches observations for gsa;

bins =70 mm (Fig. 3a), with the best-fit slope slightly
increasing with g (Fig. 3¢). The simulated critical
values (Figs. 3k,l) agree with observations and display
a transition around gg =61 mm. However, discrep-
ancies exist in the simulated conditional probability
and CWV PDFs. The collapsed conditional precipita-
tion shows little variation across basins (Fig. 31), but its
pickup is gentler than observed (Fig. 3b) and exhibits
dependence on ¢g, for CWV below critical (Fig. 3f);
that is, there are more below-critical precipitating
events for high gg, compared to observations (Fig. 3h
vs Fig. 1h). While the characteristic shape of the sim-
ulated PDFs of CWV (Fig. 3c) for low-gg bins is
consistent with observations, the high-CWV peak
around critical fails to develop as g increases. Fur-
thermore, the simulated CWV PDF extends into the
above-critical range for highest-gg bins (Fig. 3g), im-
plying the moisture convergence in warm, moist envi-
ronments is stronger than suggested by observations.
An additional set of output from the 0.5° version
of AM4B6 has also been analyzed, and the resulting
statistics closely resemble those for 1° shown in Fig. 3,
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FIG. 4. As in Fig. 2, but compiled using the CAMS.3 output (~1°, hourly).

with minor quantitative differences (not shown). This
is indicative that comparing models of different reso-
lution may still be relevant for diagnosis of convective
transition.

3) CAMS.3 (ZHANG-MCFARLANE CONVECTIVE
SCHEME)

In Fig. 4, the simulated conditional precipitation by
this version of CAMS.3 picks up at higher CWV than
observed (Fig. 4a), resulting in higher critical values
(especially for lower-gg bins; Figs. 4k and 41). The
best-fit slope is slightly lower than observed (but still
within the observational uncertainty) and exhibits
weak dependence on g, (Fig. 4¢) with modest varia-
tion across basins (Fig. 4i). On the other hand, the
simulated conditional probability picks up at lower
CWYV (Fig. 4b; P > 0.25mmh™!). The collapsed con-
ditional probability also exhibits dependence on G
with slightly steeper pickup for higher g (Fig. 4f),
and exhibits noticeable irregularities, that is, non-
monotonic in CWV for g =47.5mm in EPac and
for g = 56.5mm in Atl (Fig. 4j). The simulated CWV

PDFs (Fig. 4c) reveal a cold bias in the model with
70 mm instead of 74.5 mm being the most probable g
for WPac, and this cold bias also appears in other
tropical ocean basins. The characteristic shape of the
PDFs generally agrees with observations (Fig. 4c), but
also exhibits more above-critical events for highest-Gg
bins, subject to the uncertainty of the CWV retrievals
at high values (Fig. 4g; like Fig. 2g for AM4G9). In
Fig. 4c, the CWV PDF for gg, = 61 mm has two peaks,
implying a bimodal distribution of SST (Neelin et al.
2009) instead of a smoother transition from cold to warm
SST (or low-level divergence to convergence) suggested
by observations.

4) SPCAM (SUPERPARAMETERIZATION USING A
2D CLOUD-RESOLVING MODEL)

In Fig. 5, the simulated precipitation-CWYV rela-
tionship by SPCAM is decent despite the lower reso-
lution (~2°) for the host GCM grid [note the grid
spacing of the 2D cloud-resolving model (CRM) is
4km]. The pickup of the simulated conditional pre-
cipitation and probability is less steep compared with
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FIG. 5. As in Fig. 2, but compiled using the SPCAM output (~2°, hourly). In (k) and (1), the values of w, are calculated by fitting the
conditionally averaged precipitation rate in the range 1.5-2.5mmh !,

observations (Figs. 5a,b) and exhibits a g, depen-
dence with gentler pickup for higher g (Figs. 5e,f).
Note that in Fig. Sb, as CWV increases from below
critical, the simulated conditional probability for g
bins = 74.5mm increases roughly linearly until
reaching a probability of ~0.15, and then sharply in-
creases with further CWV increment, exhibiting a
two-step pickup. The pickup also displays a great vari-
ation across basins (Figs. 5i,j), and irregular behavior
of the simulated conditional probability can be noted for
Gsat = 79 mm in EPac. On the other hand, the simulated
critical values generally agree with observations, with
lower values for EPac (Figs. 5k,1). For low-gg bins
(=61mm), the simulated CWV PDFs are consistent
with observations (Fig. 5c), with a bimodal PDF for
(st = 65.5mm (like Fig. 4c, 61-mm bin). For even
higher-gg bins, the high-CWV peak around critical is
less distinctive compared to observations, and the PDF
also extends into the above-critical regime (like Fig. 3g
for AM4B6).

The statistics presented in Fig. 5 are from an SPCAM
simulation with prescribed SST. Another SPCAM run

coupled with a slab ocean model (SOM; Bitz et al. 2012)
leads to similar statistics with a slightly shifted joint
PDF of CWV and ¢y, reflecting changes in the mean
climate state (not shown). This is indicative that cou-
pling with different model components (e.g., ocean
model) does not alter the simulated convective tran-
sition, which primarily depends on the representation
of convective physics. This is also supported by a set
of CNRM simulations discussed later in section 4b(3).
Also note that the statistics exhibit little sensitivity to
doubling the CRM domain size (4 km X 64 columns vs
32 columns) to permit more organized convective events
(not shown).

b. Convective transition in MJIOTF/GASS models

The last subsection has demonstrated that hourly
model data is suitable for the diagnosis of fast-time-
scale convective transition. However, most high-frequency
output from the recent CMIPS5 are daily or 6 hourly,
and higher frequencies are uncommon. To establish
that 6-hourly data can also be useful for diagnosing
convective transition, and to survey the performance
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resolution prior to our analysis. See Fig. S1 for MTOTF/GASS ensemble statistics for other g bins.

of current mainstream GCMs, in this subsection we
sample the basic statistics for particular g, bins using
the 6-hourly output (snapshot for CWV and G, av-
erage for precipitation; regridded to 2.5° X 2.5° reso-
lution) from a subset of models (simulations 5-20 in
Table 1) from the MJOTF/GASS project.

Figure 6 shows the conditional precipitation and
probability of precipitation (P > 025mmh ') for the
70-mm ¢y bin for WPac sampled from the MJIOTF/GASS
models, together with observations (TRMM OBS; as
in Fig. 1) and hourly 1°CAMS.3 (as in Fig. 4). The cor-
responding CWV PDFs are presented in Figs. 7a—c for
different g bins from low to high relative to the most
probable gg in each case (bins chosen to contrast
differences). A single gy is sufficient to demonstrate
the typical behavior for the precipitation pickup,
while three gg, values illustrate the typical behavior
of the PDFs. For the complete set of statistics for
the MJOTF/GASS models, see Fig. S1 in the online
supplemental material.

1) GENERAL OVERVIEW

Figure 6a displays considerable variation across models.
Most models produce a qualitatively reasonable pickup
of precipitation above some threshold in CWV, but the
exact value varies considerably. Qualitative departures
from the observed behavior can be noted for some
models. For instance, CWB-GFS and FGOALS-s2
exhibit a two-step pickup, and precipitation in the
ISUGCM is relatively insensitive to CWV. The pickup

of precipitation in many models occurs at higher CWV
compared to observations. In contrast, the simulated
conditional probability (Fig. 6b) in most models
sharply increases at CWV much lower than observed,
and this departure from observations is too large to be
explained by the dependence of conditional probabil-
ity on spatial and time averaging (1° snapshot for ob-
servations vs 2.5° 6-hourly average for MJOTF/GASS
models). Following section 3, the estimated shift
caused by averaging is on the order of 5-10mm or
smaller compared to the shifts of up to 20mm ex-
hibited here. The low conditional precipitation and
high conditional probability (for P > 0.25mmh™';
well above detection limit of the TMI and PR; TRMM
2011; Wentz et al. 2015) at CWV below critical in these
models imply a widespread problem with excessive oc-
currence of low rain rates—which for brevity we refer to
as a drizzle problem at subdaily time scales (not to be
confused with the conventional drizzle problem for daily
mean; e.g., Dai 2006).

Turning to the CWV PDF, as noted in section 3
(Fig. 1c), at low g, the PDF peaks at low CWV below
which the PDF drops sharply, and above which the PDF
decreases slowly. As g increases, another peak de-
velops at high CWYV around critical with the low-CWV
peak diminishing. In Fig. 7a, the simulated PDFs for low
Gsa by all models qualitatively resemble the observed
low-CWYV peak. But the transition to high-CWYV peak as
Gsa increases (Figs. 7b,c) is correctly captured only by
some of the models (e.g., CAMS5 cases, MRI-AGCM3,
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and GEOS-5). In the other models, the high-CWV peak
has a wider spread (CanCM4, NavGEM1, and CNRM
cases) or fails to develop (CWB-GFS). Note that
whether a model can capture this transition of PDF at
high @ is in part related to its ability to simulate
precipitation pickup, with models that have a less
sharp pickup tending to have PDFs that have in-
sufficiently sharp peaks for the most common gg.
However, this relationship is not perfect; for instance,
ISUGCM has a very slow pickup, but while the pickup
peak occurs at too-low CWV, the excessive breadth of
its PDF is not as bad as might be anticipated from its
simulation of the pickup.

Next, we concentrate on two subsets of models
for which we have multiple instances: the CAMS
and CNRM.

2) CAMS COMPARISONS

There are three CAMS instances (represented by
crosses in Figs. 6 and 7): CAMS.3, CAMS5, and CAMS5-
ZM. CAMS5.3 and CAMS primarily differ in spatial (1°
vs 2.5°% originally simulated at the same resolution)
and temporal resolution (hourly vs 6-hourly average),
which presumably lead to the minor differences in
Fig. 6 (a small shift in CWV) and PDFs in Fig. 7.
However, the precipitation pickup in CAMS5.3 and
CAMS closely resemble each other (see also Fig. S1),
which is consistent with the insensitivity to spatial
and time averaging noted in observations (section 3;
KSN18). This demonstrates that conventional 6-hourly
model data are useful for fast-time-scale convective
transition diagnosis, thus extending the applicability of
such metrics.

For CAMS versus CAMS-ZM, the latter configuration
adopted a modified Zhang-McFarlane deep convective
parameterization with a new microphysics scheme for
convective clouds (Song and Zhang 2011). Nevertheless,
the resulting statistics in Figs. 6 and 7 are very similar,
suggesting that the formulation of entraining plume and
mass flux closure are more important than microphysics
to the convective transition (see Fig. S1; small differences
between the two most probable Gy bins in the CAMS5 and
CAMS-ZM lead to apparent differences in the magnitude
of the peak in Fig. 7, while the shapes are similar).
Whether this will hold for other models requires further
investigation.

3) CNRM COMPARISONS

There are three CNRM instances (thick solid lines in
Figs. 6 and 7): CNRM-AM, CNRM-CM, and CNRM-
ACM. Here the suffixes AM and CM stand for
atmosphere-only and coupled simulations, and ACM
for atmosphere-only run forced by the monthly mean
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SST and sea ice output from the coupled simulation
(Jiang et al. 2015). That is, they differ in coupling or
forcing through lower boundary.

CNRM-CM and CNRM-ACM produce almost iden-
tical statistics in Figs. 6 and 7. The uncoupled version,
CNRM-AM, quantitatively differ in CWV PDF from
the other two, tending to be shifted toward higher values
in Fig. 7. However, the pickup of precipitation (Fig. 6)
and qualitative features of the CWV PDF (Fig. 7 and
Fig. S1) are alike for all 3 cases, and the most com-
mon g, value, 65.5 versus 70 mm, indicates that the
coupled/forced versions are residing overall at lower
temperatures. These differences are consistent with the
fast-time-scale convective transition operating simi-
larly among these versions, as in the SPCAM com-
parisons [section 4a(4)], while the overall effects of
the coupling and forcing through lower boundary affect
the probability distribution of temperature and water
vapor, associated with differences in climatology.

c¢. Summary of model behavior

Sections 4a and 4b are suggestive that the basic sta-
tistics can distinguish convective parameterizations and
are less sensitive to other model components, for ex-
ample, cloud microphysics, coupling, and forcing con-
figurations. Furthermore, the qualitative features of the
basic statistics are reasonably robust to spatial and time
averaging, making it possible to leverage the existing
CMIP effort for such fast-time-scale diagnosis. Across
the tested models there is great variation in various
aspects, which must be examined separately to com-
prehensively assess parameterization schemes.

The observed precipitation-CWV relationship has
been attributed to the impact of tropospheric moisture
on conditional instability through entrainment (Holloway
and Neelin 2009; Schiro et al. 2016; Kuo et al. 2017).
The exact functional forms of simulated conditional
precipitation and probability vary considerably, but all
models capable of simulating precipitation pickup can
reproduce the dependence of critical CWV w, and critical
column RH w./gg on gg (including those from the
MJOTF/GASS project; not shown), although quantita-
tive differences are noted in the values of w.. This could
be consistent with the observed w.—qq relation arising
from entrainment, as demonstrated by offline entraining
plume calculations (Sahany et al. 2012) and perturbed
physics experiments (Kuo et al. 2017), since the models
differ in their entrainment representations. However, we
cannot exclude other intermodel differences as poten-
tially contributing to this spread.

The conditional probability in most models picks up at
below-critical CWV lower than observed, which cannot
be fully explained by the difference in spatial and time
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averaging of the data, revealing a widespread drizzle
problem at subdaily/hourly time scales. The tradi-
tional use of the term ‘‘drizzle problem’ concerns
excessive occurrence of low daily mean intensities
(Dai 2006) without specifying the underlying ther-
modynamic environment. Here, conditioned on the
bulk parameters (CWV, gs.) that tend to vary slowly
compared with subdaily/hourly time scales, the sta-
tistics indicate misrepresented precipitation pro-
cesses in many of the models.

In the model for which we have a direct comparison
of different microphysics schemes (CAMS.3 vs CAMS5-
ZM), only very small impact on the drizzle problem was
noted. On the other hand, perturbed physics experiments
(Kuo et al. 2017) indicate that the entrainment value
can strongly affect this issue, since low entrainment yields
insufficient dependence on free-tropospheric moisture
and thus overly frequent occurrence of rainfall. Analysis
of such perturbed physics experiments across a wide
set of convective parameters, combined with conceptual
modeling, would be useful to further understand such
intermodel differences.

Some of the models qualitatively capture the form of
the PDFs of CWV and the dependence of these on
temperature seen in observations, but many do poorly in
this comparison. The PDF in the dry (nonprecipitating)
regime is expected to be influenced by dynamics other
than the convective physics alone. The PDFs at colder
temperatures, which reflect more of the dry regime, tend
to be better simulated than the high-temperature, high-
CWYV range that has stronger dependence on the con-
vective physics. Comparison of models with coupled
versus uncoupled versions and different coupling/forcing
settings through lower boundary (SPCAM and CNRM
cases) indicates that the shapes of the PDFs tend to
be similar, but shifts in climatology are reflected in
the probability distribution of temperatures and water
vapor.

Note that small errors in the onset of precipitation
could have significant implications. For instance, the
values of critical CWV determine the CWV PDF peak
locations in observations and some of the models.
Thus, a bias of a few millimeters in the critical values,
compared with the observed climatological mean of
~41mm over tropical oceans, and more generally,
biases in the CWV PDFs, could substantially alter the
longwave radiation budget.

Opverall the spread among the models and departures
from observations in these fast-process diagnostics to
which they have not previously been compared is of
considerable concern for model development. But the
existence of some models that do well at these diag-
nostics is encouraging.



392

5. Joint probability distributions of precipitation
and CWV

In this section, we further examine the joint PDF of
precipitation rate P and CWV (relative to critical,
CWV — w,) compiled from observations and hourly
data of the AM4GY9, AM4B6, CAMS5.3, and SPCAM.
Recall that the former two AM4 instances adopt dif-
ferent convective parameterizations, and the latter two
are CAM cases sharing the same dynamic components
but differing in moist convective representations (pa-
rameterizations vs 2D CRM).

To help interpret the joint PDF, consider the
decomposition:

Prob(P,CWV —w_) = Prob(P|CWV —w )
XProb(CWV —w ),

where the three Prob terms from left to right represent,
respectively, the joint PDF of P and CWV — w,, the
conditional probability distribution of P given CWV —
w,, and the PDF of CWV — w,.. Each of these quantities
potentially depends also on bulk tropospheric tem-
perature g and ocean basin, but these are omitted
from the notation for simplicity. Prob(P|CWV — w,)
characterizes the probability distribution of precipita-
tion for a given large-scale temperature-moisture
environment (with temperature entering via w.).
Prob(CWV — w,) reflects the interaction of the large-
scale environment with convective physics (to the extent
this environment is captured by CWV and ¢g,). Note
that even if a model permits an accurate estimate of
precipitation given a large-scale temperature—moisture
environment [e.g., with a correct Prob(P|CWV — w,)],
the joint PDF would still be affected by Prob(CWV — w,),
which is expected to be more vulnerable to large-scale
flow interacting with convective physics and subsequent
feedbacks.

Below, we first examine the joint PDFs in Fig. 8, and
then Figs. 9 and 10 for a quantitative breakdown of these
distributions.

a. Joint PDF of precipitation and CWYV relative to
critical

Figure 8a (color shading) shows the joint PDF of P and
CWYV — w, for the most probable g bin (74.5 mm) in the
tropical WPac compiled at 1° using the PR precipitation,
TMIv7.1 CWV and Reanalysis-2 temperature. Here,
the color increments correspond to a doubling of the
PDF value. The ‘“nonprecipitating’”” bins (0 = P =
0.05mmh ') are enlarged in the vertical along the
bottom for visual clarity, and the orange dotted lines
represent the conditional probability of P> 0.05Smmh ™",
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providing an alternate display of the ratio of the non-
precipitating bins. The gray shading indicates CWV >
75mm at which the TMIv7.1 CWV is capped. The
corresponding conditional mean (blue solid), variance
(blue dashed), and median (magenta solid) of precip-
itation are also shown for reference. The same set of
statistics compiled using the TMIv7.1 precipitation is
displayed in Fig. 8b, and those simulated by models in
Figs. 8c—f. Compared to PR, the TMIv7.1 precipitation
has a spurious cutoff around P ~ 10mmh ™' (presum-
ably retrieval dependent; see Fig. 9b vs Fig. 9a) but
contains more events than the PR when coarse grained
to 1°. Hence both are included in Fig. 8.

In Fig. 8a, an abrupt transition from the dry to moist
regime occurs around CWV — w, ~ —10mm below
which only weak precipitation is permitted, and above
which strong precipitation becomes frequent. However,
this transition occurs considerably lower than critical,
implying that the rapid increase of the conditional pre-
cipitation (blue solid) near critical is partly contributed
by the decreasing ratio of nonprecipitating versus pre-
cipitating events as CWYV increases and exceeds critical.
This is also reflected by the pickup of conditional
probability (orange dotted) and median (magenta solid)
around the same location. One can contrast the condi-
tional precipitation that sharply increases with the more
detailed behavior of the joint PDF. From slightly below
critical to slightly above critical, a roughly exponential
tail toward high precipitation values may be seen, and
the properties of this tail do not change dramatically
as a function of CWYV in this range (see also Fig. 9a).
The joint PDF exhibits the highest probability of high
precipitation near critical, partly because the CWV PDF
peaks around critical. The statistics in Fig. 8b generally
agree with those in Fig. 8a (differences may be noted
later in Fig. 9b vs Fib. 9a).

The model-simulated joint PDFs in Figs. 8c—f quali-
tatively capture many features of the observations, but
the dry-to-moist transition is less drastic than observed.
Another notable difference seen to some extent in all
models is in the behavior of the tail of the PDF ex-
tending to high precipitation as a function of CWV. The
tail tends to extend further toward strong precipitation as
CWV increases above critical (CWV — w, > Smm), indi-
cating departures from observations in Prob(P|CWV — w,)
and/or Prob(CWV — w,.). One can also see the condi-
tional precipitation tending to coincide more closely
with the conditional median in the models, implying a
relatively symmetric P distribution at odds with the
observed asymmetry. Variations among the models in
these differences relative to observations may be noted:
AM4G9 and SPCAM can produce strong precipitation
for CWV around or right below critical, while AM4B6
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FIG. 8. (a) Joint PDF (color shading; mm 2 h), on a log; scale, of CWV relative to critical and precipitation rate P
for the 74.5-mm @ bin in the tropical western Pacific compiled at 1° using the PR 2A25 precipitation rate, TMIv7.1
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clarity. The conditional mean (solid blue), median (solid magenta), variance (dashed blue), and probability of pre-
cipitation (P > 0.05mm h™'; orange dots), all as a function of CWV, are also displayed for reference (note separate y
axes for precipitation and probability; variance is on the same axis as precipitation, but in different units). (b) Asin (a),
but with the PR 2A25 precipitation rate replaced by TMIv7.1 precipitation rate. (c)—(f) As in (a), but compiled using
the hourly output from AM4GY9, AM4B6, CAMS.3, and SPCAM, respectively. In (a) and (b), the gray shading
represent where the TMIv7.1 CWYV value is capped at 75 mm and is hence unavailable.
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and CAMS.3 cannot. All 4 models underestimate
the conditional P variance, but CAMS5.3 is the most
serious one.

KSN18 has noted that the observed joint PDF shows
little variation across the ¢ range and ocean basins
(except the ratio of precipitating vs nonprecipitating
events for below-critical CWV may vary significantly).
That is, the value of CWV — w, alone characterizes the
probability distribution of precipitation in the moist
regime, and this precipitation-CWYV relation does not
exhibit additional dependence on @sy. As such, only
the results for the most probable g are displayed in
Figs. 8a and 8b (and the qualitative characteristics
noted in Figs. 8c—f are generally valid). However, the
model-simulated distributions exhibit spurious de-
pendence on g, as shown in Fig. 9.

b. Precipitation contributions

Figures 9a and 9b show the amount of total rainfall
accumulation contributed by each P intensity, or pre-
cipitation contribution (i.e., P-weighted joint PDF), for
various values of CWV — w, (colors) calculated using
the same joint PDFs in Figs. 8a and 8b, with differ-
ent bin width. The gray lines represent the overall (i.e.,
including all CWYV and qg) precipitation contribution
for WPac (dimensionless; shifted downward by a factor
of 6 for visual reference). The corresponding results
simulated by models are in Figs. 9c—j, with panels on
the left displaying a low-gs, bin (the most probable
Gsai — 4.5mm), and panels on the right displaying a
high-gg, bin (the most probable g + 4.5 mm).

The individual colored lines in Fig. 9a from PR
precipitation represent P X Prob(P|[CWV — w.) X
Prob(CWV — w,) for different values of CWV — w._.
The shape of the curve at moderate to high P is primarily
determined by Prob(P|CWV — w,). These precipitation
contributions vanish at zero because of P, which does not
otherwise greatly alter the profiles of Prob(P|CWV — w,) for
P > 3mmh ™" The lowest CWV — w, values only permit
low P (< 2mmh ™). Around critical (yellow line), an
approximately exponential tail may be noted above
P ~ 2mmh ! extending to the highest precipitation
values for which sufficient data are available. The slope
of this tail is insensitive to CWV — w. over a wide range
(—9.6 to 4.8mm). As CWV exceeds critical, the pre-
cipitation contribution develops a maximum at a posi-
tive P, which shifts slightly toward higher P with further

«—

compiled using the hourly AM4G9 model output. (e)—(j) As in
(c) and (d), but using the hourly output from the AM4B6, CAMS5.3,
and SPCAM, respectively.
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F1G. 10. (a) The precipitation contribution (i.e., precipitation-rate-weighted CWV PDF), on a linear scale, as a function of CWYV relative to
critical and g (colors) in the tropical WPac compiled at 0.25° using the PR 2A25 precipitation rate, TMIv7.1 CWV, and Reanalysis-2 tem-
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(b) As in (a), but on a log;g scale. (c)-(j) As in (a) and (b), but using the hourly output from the AM4G9, AM4B6, CAMS5.3, and SPCAM.

increase in CWYV [this evolution of maximum can also be
seen in Prob(P|CWV — w,) and is more pronounced for
higher spatial resolution; see KSN18]. At the highest
CWV — w, (9.6 mm; red), the precipitation contribution
exhibits a broad spread in P, indicating that strong
precipitation is more frequent given very high CWV
values. However, the contribution from the highest
CWYV — w, is only a small fraction of the overall con-
tribution (gray), which roughly matches that at critical
(yellow) because of the modulation by Prob(CWV —
w,). The corresponding statistics in Fig. 9b are con-
sistent with those in Fig. 9a but display a faster decay at
high P caused by the (retrieval dependent) cutoff
~10mmh ™! in the TMIv7.1 precipitation.

We evaluate the model-simulated precipitation
contributions in Figs. 9c—j. For low gg (Figs. 9¢,e,g.1),
the models capture some aspects of the observed de-
pendence of precipitation on CWYV to an extent that
varies among models. For instance, the precipitation
contribution drops rapidly for CWV below critical,
and the contribution from high precipitation values
increases with CWV. Around critical (yellow line), a

local maximum of the precipitation contribution can
be seen at a positive P. This local maximum occurs at
higher P with its magnitude decreasing as CWV further
increases because of Prob(CWV — w,). The contribu-
tions tend to be less asymmetric in P around the local
maximum compared to observations (especially for
AM4B6, CAMS.3, and SPCAM). These less asym-
metric contributions explain why the conditional av-
erage of precipitation tends to coincide with the median
noted in Fig. 8.

Other departures from observations can also be noted.
Each model exhibits some range that appears qualita-
tively consistent with an exponential tail toward high
precipitation. However, the tail slope (in log Y coordi-
nates), where it exists, varies substantially among models
and does not quantitatively match observations. The tail
slope ends to be shallower for higher CWV — w, values;
that is, strong precipitation is more frequent given higher
CWV. Comparing the low-gg contributions to their high-
@sa: counterparts (Figs. 9d,£,h,j), high-(CWV — w,) events
(red and brown) are more frequent for high g, re-
flecting that there are more above critical evens as noted
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in section 4a. Using the overall precipitation contribu-
tion (gray) as a reference, the high-gg, contributions
tend to decay slower than the low-gg ones. These indicate
that both Prob(P|[CWV — w,.) and Prob(CWV — w,)
exhibit spurious dependence on G, inconsistent with
observations.

Figure 10 shows the precipitation contribution from
a different angle, that is, as a function of CWV — w,. for
different gg bins, indicated by colors, for WPac, with
the top row (bottom row) in a linear (log) Y scale. Here
the area under each curve represents the precipitation
contributed by each Ggy.

The observed contributions (Fig. 10a) for the most
common ¢ values peak around critical with a common
near-Gaussian core (Fig. 10b). Variations can be noted
for CWV below critical (<—15mm), which clearly de-
viates from Gaussian, presumably affected by dry-
regime dynamics and nonconvective rain. For low-gg
bins (=56.5mm), the contributions peak slightly below
critical with a wider spread in CWV, contrasting tropical
versus extratropical precipitation.

The precipitation contributions simulated by the
AMA4G9 (Figs. 10c,d) and SPCAM (Figs. 10i,j) also
peak around critical but tend to shift and spread to-
ward higher CWV relative to critical as g, increases.
For CAMS5.3 (Figs. 10g,h), the contributions peak around
critical but do not exhibit consistent dependence on Gy,
and the contribution for the highest ¢g (70mm) is bi-
modal, consistent with the CWV PDF in Fig. 4g. The
greatest departure from observations are noted for the
AMA4B6 (Figs. 10e,f), with the contributions spreading
across a wide range of CWV, and the peak clearly
shifting with gsy. These features display the depen-
dence of precipitation on g, that generally agree with
Fig. 9. We note that the differences from observations
are exhibited even around critical, near the peak of the
distribution, and are thus likely to be robust to any
retrieval issues at high precipitation.

Opverall, the precipitation contributions in Figs. 9 and
10 show that the models exhibit many qualitative fea-
tures of the observations, but also exhibit substantial
quantitative deviations. These combine with biases in the
PDF of CWV — w,, in which the models overproduce
above-critical events (especially at high temperature) to
yield the errors in the joint PDF seen in Fig. 8.

6. Summary and discussion

Most of the models examined simulate some version
of the observed precipitation pickup with CWV. How-
ever, significant intermodel spread and departures from
observations in multiple aspects of the convective
transition statistics suggest these provide a challenging
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observational constraint. Examining these aspects sep-
arately using the 6-hourly and higher-frequency model
output provides a comprehensive assessment for deep
convective parameterizations with clues for improve-
ments. Below we briefly summarize the comparisons of
these aspects.

a. Precipitation pickup and CWYV relative to critical

In observations, the conditionally averaged precipi-
tation, as a function of CWYV for a given bulk tropo-
spheric temperature ¢y, sharply increase as CWV
exceeds the critical threshold w, (Fig. 1a). The value of
w, increases with gy, but the corresponding critical
column RH w,/qg decreases (Figs. 1k,1). Offline cal-
culations have suggested that the dependence of w,
and w /s ON Gsa is a generic consequence of including
entrainment in the estimation of buoyancy in convec-
tive updraft (Sahany et al. 2012). The conditionally
averaged precipitation exhibits little variation across
ocean basin (Fig. 1i) and is insensitive to spatial av-
eraging (KSN18). Furthermore, when viewed as a
function of CWV — w,, its functional form shows little
dependence on g (Figs. le,i). This reaffirms the in-
terpretation that CWV — w, combines the impacts of
tropospheric moisture and temperature on conditional
instability, through entrainment, into a single measure
(Holloway and Neelin 2009; Schiro et al. 2016; KSN18).

Among the examined models, AM4B6 (Fig. 3a) sat-
isfactorily simulates the conditionally averaged precip-
itation that exhibits modest sensitivity to g (Fig. 3€)
and little variation across ocean basin (Fig. 3i). The cor-
responding critical values match observations (Figs. 3k,1).
However, the conditionally averaged precipitation sim-
ulated by the other models (Figs. 2, 4, 5, and 6a), tends to
exhibit sensitivity to gsy (Fig. 5¢) and basins (Fig. 5i), or
results in different critical values (Figs. 4k,l). Figure 6a
further demonstrates a significant intermodel spread
in the critical values (where the precipitation picks up)
or in the functional form of precipitation. For instance,
the precipitation in the ISUGCM fails to pick up, likely
because of the lack of entrainment in its convective
scheme. The precipitation in CWB-GFS shows a two-step
pickup, likely results from a built-in precipitation trigger
that explicitly depends on environment humidity.

Most models that can simulate a decent precipitation
pickup also capture the observed qualitative depen-
dence of critical values on g (w. increases and w./qg
decreases; not shown), indicating that entrainment is the
essential mechanism.

b. Probability of precipitation and drizzle problem

The observed conditional probability of precipita-
tion (defined relative to a threshold of precipitation
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rate P) also exhibits a sharp pickup for CWV around
critical (Figs. 1b,f). Its functional form can be approx-
imated using an error function with standard devia-
tion ~4 (units: mm; not shown). Lower ¢, lower P
threshold, and lower spatial resolution (at which the
statistics are computed) all lead to higher values of
conditional probability without altering its functional
form; that is, the conditional probability curve would
shift slightly toward lower CWV (KSN18). Like the
conditional average, the conditional probability can
also be expressed as a function of CWV — w,, which
exhibits little variation across the g range and ba-
sins (Figs. 1f,j).

As an example, we consider two GFDL AM4 cases
with different convective parameterizations, one
among the best and one among the poorest simula-
tions in this measure. In the AM4G9, the conditional
probability of precipitation closely resembles the ob-
served values with a slightly steeper pickup (Fig. 2b),
which starts at lower CWV relative to critical (Fig. 2f vs
Fig. 1f). It also exhibits modest variation across basins
(Fig. 2j). The simulated conditional probability picking
up at lower CWYV relative to critical may result from
and is consistent with the difference in the temporal
resolution of P (hourly average for AM4G9 vs snapshot
for satellite retrievals). Despite the superior perfor-
mance of AM4B6 in simulating conditionally averaged
precipitation, the conditional probability in AM4B6
deviates considerably from observations (Fig. 3b). The
pickup of conditional probability is gentler and shows a
clear dependence on ¢ (Fig. 3f), that is, higher
probability of precipitation at low CWV relative to
critical especially at high g, indicating a drizzle prob-
lem in a warm environment (see also the CNRM in-
stances in Fig. 6). This contrast in AM4B6’s ability to
simulate conditional average and probability of pre-
cipitation serves as a reminder that different aspects
of the convective transition statistics must be exam-
ined separately. Regarding the other models, the simu-
lated conditional probability exhibits sensitivity to G
(Figs. 4f and 5f) and variation across basins (Figs. 4j
and 5j), and even nonmonotonic behavior. Figure 6b
shows a substantial intermodel spread and that the
conditional probability in most models picks up at
CWY values lower than observed, many of which cannot
be explained by the difference in the temporal resolu-
tion of P alone.

c¢. PDF of CWV

The observed CWV PDFs have ¢g-dependent
characteristic shapes with two peaks/cutoffs at low and
high CWYV values (Fig. 1¢), and are relatively insensi-
tive to resolution. For low g, the PDF peaks at a low
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CWYV value above which the PDF decreases gradually
until reaching a high-CWV cutoff right below critical
(Fig. 1g). As G increases, the high-CWV cutoff de-
velops into a peak. The pickup of precipitation sug-
gests that the behavior for CWV above critical is
governed by the moist-regime dynamics, that is, condi-
tional instability. Consequently, the (properly normal-
ized) CWV PDF exhibits little variation across the g
range (Fig. 1g) and ocean basins (KSN18). Stochastic
models suggested that the functional form of the CWV
PDF in this regime is primarily controlled by pre-
cipitation removal balancing low-level convergence of
moisture (Stechmann and Neelin 2011, 2014). In contrast,
at low CWYV, the PDF and fraction of nonprecipitating
events vary considerably (Fig. 1g), suggesting other fac-
tors influencing the dry regime, for example, prevailing
subsidence and extratropical events intruding into the
tropics (KSN18).

For low g, the CWV PDFs are primarily determined
by the dry-regime dynamics, and all the models simulate
this aspect in reasonable agreement with observations
(Figs. 2-5¢,g and 7a). But when moist-regime dynamics
becomes dominant as ¢y increases, the simulated CWV
PDFs by many of the models depart from the observed
(Figs. 7b,c); for example, the PDF has a broad spread
around intermediate CWYV values (CNRM cases). Some
of the models overproduce very high-CWYV events es-
pecially at high g values (Figs. 3g and 5g), which may
result from small gross moist stability during precipita-
tion. Note that the CWV PDFs for highest gg values in
the AM4G9 (Fig. 2g) and CAMS5.3 (Fig. 4g) seemingly
indicate more above-critical events, but still fall within
the observational uncertainty.

d. PDF of CWYV for precipitating events

The CWYV PDF for precipitating events here is de-
fined as the product of the CWV PDF and conditional
probability. Consequently, it modestly depends on the
P threshold and resolution. In observations, the CWV
PDFs for precipitating events for g, = 70 mm display a
common near-Gaussian core (Fig. 1h), indicating con-
vection favors specific thermodynamic conditions with a
narrow water vapor range. For lower gg values, the
corresponding PDFs coincide with the high-gs; PDFs
for CWYV around and above critical, but also indicate
greater probability of precipitation given CWV below
critical. The geographical distribution of g suggests
these low-gg below-critical precipitation occurrences
are in part associated with extratropical events resulting
from other mechanisms, for example, large-scale satu-
ration (KSN18).

Among the examined models, the AM4G9 and CAMS.3
can reproduce the common near-Gaussian core to some
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extent (Figs. 2h and 4h), but the contrast in below-critical
precipitation for high versus low g is less pronounced
as observed. The SPCAM, on the other hand, seems
more capable of simulating this contrast but the PDF
spreads over a broader range of CWV (Fig. 5h). The
AM4B6 performs poorly in this regard (Fig. 3h) as a
result of the biased CWV PDF and conditional proba-
bility (Figs. 3f,g). See also Fig. S1 for CWV PDFs in the
MJOTF/GASS models.

e. Joint PDF of precipitation and CWYV relative to
critical

In observations, the joint PDF of P and CWV — w,
exhibits an abrupt transition from the dry, nonprecipitating
regime into the moist regime as CWV increases from be-
low critical (Fig. 8a). In the moist regime, a robust ex-
ponential tail toward high precipitation can be noted
in the PDF of P for CWV around critical (Fig. 9a), and
the accumulated precipitation is mostly contributed
by events in this regime (Figs. 10a,b). The slope of the
exponential tail, and more generally, the PDF of P,
depend on spatial averaging (KSN18). The joint PDF
shows little variation across the g, range = 61 mm and
ocean basins (KSN18).

The four models for which we examined joint PDFs
with hourly data, AM4G9, AM4B6, CAMS5.3 and SPCAM,
can simulate the transition from the dry to moist regime
to some extent (Figs. 8c—f). However, the simulated
transitions are less abrupt than observed. High pre-
cipitation tends to occur at above-critical CWV values
but is less likely for around- and below-critical CWV
than in the observed. The CAMS.3 especially underes-
timates the variability of precipitation (Fig. 8¢). At rel-
atively low g, the simulated PDFs of P seem to exhibit
some version of the asymptotic tail into high precipita-
tion (Figs. 9¢c,e,g,i). The tails at critical CWV drop more
rapidly than observed. Moreover, the simulated tails
display dependence on CWV and indicate that strong
precipitation favors high gy, that is, a warm tropo-
sphere (Figs. 9d,f,h,j). These spurious dependencies on
CWYV and ¢, lead to biased precipitation contribution.
For instance, the above-critical contribution of pre-
cipitation at high g values is slightly exaggerated
in the AM4G9 (Figs. 10c,d), and the AM4B6 pre-
cipitation is contributed over a broader range and
mostly from above-critical CWV (Figs. 10e,f). This
identifies the high-precipitation, high-CWYV range as
aregime demanding greater scrutiny as further discussed
below.

f- Additional inferences based on the ensemble

Several comparisons are available in individual models
with multiple instances differing in some specific
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components, permitting additional inferences regarding
using the convective transition statistics as diagnostic
tools:

1) Where the model (AM4 and CAMS5.3 vs SPCAM)
is available with alternative representations of
moist convection, the statistics distinguish different
instances in multiple aspects, despite all the model
instances having been calibrated against typical
diagnostic metrics.

2) Different cloud microphysics in the convective pa-
rameterizations in the same model (CAMS5) only
cause minor variations in the joint distribution of
CWYV and g, but otherwise do not notably alter the
statistics examined here.

3) Where the same model (CAMS) is examined at
hourly and 6-hourly time averaging (of precipita-
tion), the results are comparable. Although output at
model time step or hourly time scale are preferable,
the analysis can apply with more conventional sub-
daily output.

4) Where the model (CNRM and SPCAM) is available
in uncoupled versus coupled versions, or with dif-
ferent forcing settings through the lower boundary,
the major difference appears in the probability dis-
tribution of (CWV, gg) associated with climate drift
caused by coupling/forcing configuration. Other
aspects of the statistics, for example, the precipita-
tion pickup and CWYV PDF, are less sensitive.

These cases in this ensemble of opportunity further
indicate that the convective transition statistics sub-
stantially discriminate between convective parame-
terizations and are reasonably robust to subdaily time
averaging, that is, can be used with conventional
model data.

g. Possible action items for model revision and
diagnostic development

While these diagnostics help identify the relationship
between tropical precipitation and its thermodynamic
environment in considerable detail, the diagnostics
presented here can lead to suggestions for specific revisions
of a given convective parameterization. The link is not
direct, however. Analysis and improvement necessarily
involve specifics of each model’s set of parameteriza-
tions and can involve interaction of these parameteri-
zations with emergent behavior of the dynamics. While
it is not possible to cover detailed analysis for each
model in the ensemble, here we discuss process hy-
potheses and suggestions for further diagnostic devel-
opment, broken out by type of error. These are all
offered with the caveat that changes to improve model
performance under one set of diagnostics can often
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erode the performance under other measures (Kim
et al. 2011; Langenbrunner and Neelin 2017).

1) ERRORS IN POSITION/SHAPE OF ONSET

For models exhibiting errors in the functional form
of conditional precipitation, the leading candidate for
adjustment can be the entrainment assumptions in
the convective scheme, since these are known to im-
pact the critical values simulated by models (Sahany
et al. 2012) or even the existence of a sharp pickup in
precipitation (Kuo et al. 2017). Plume calculations
with higher entrainment are more sensitive to the free-
tropospheric environmental humidity, resulting in pre-
cipitation tending to pick up at higher CWV. Changes
in a vertically constant entrainment rate can impact
circulation or vertical distribution of cloud (Mapes and
Neale 2011; Qian et al. 2018; Schiro et al. 2019). Recent
analysis of observations and reanalysis (Schiro et al.
2018; Ahmed and Neelin 2018) point to a large influ-
ence of the environment on convective plume through a
deep lower-tropospheric layer contributing relatively
uniformly to the updraft mass flux from all levels. This
may be consistent with certain representations of en-
trainment (e.g., Siebesma et al. 2007), although if it
occurs substantially through dynamical entrainment
(Suselj et al. 2019) the strong effects may be confined
to the lower troposphere.

This suggests that models that fail to simulate a strong
precipitation pickup (e.g., ISUGCM) may benefit from
increased lower-tropospheric entrainment. Some models
in the ensemble exhibit a multistep pickup (CWB-GFS)
because precipitation is triggered with respect to a certain
humidity threshold. Apparently, this kind of trigger
must be designed with caution to match the observed
precipitation—moisture relationship and may not be
necessary if entrainment is reasonably represented.

2) ERRORS IN WATER VAPOR/PRECIPITATION
PDFs

(i) Errors in shape of water vapor PDF

The shape of the CWV PDF is largely controlled
by the dominant moisture budget balance. Statistics
from observations clearly distinguish between the wet,
precipitating regime and the dry, nonprecipitating re-
gime. The overprediction of drizzle frequency in some of
the models can be thought of as a spurious sink term of
moisture at low CWV, contributing to biases in CWV
PDF. In the wet regime, a longer convective adjustment
time scale can be a factor tending to limit the rate at
which the convective scheme removes moisture. In re-
sponse, the environment reaches saturation more often
and results in a higher fraction of precipitation occurring
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by gridscale condensation associated with convection
(e.g., Jiang et al. 2016).

(i) Too much precipitation below main onset (drizzle
problem) and precipitating PDF too wide

Increasing entrainment can alleviate the drizzle prob-
lem over tropical oceans (but not over land, in CESM1;
Kuo et al. 2017). Models produce precipitation through
contributions by various parameterizations (e.g., cloud
microphysics, shallow and deep convective) under different
circumstances. Identifying precipitation types in varying
thermodynamic conditions using radar rainfall products
may help modelers coordinate parameterization schemes
and quantify conditional instability given the tropospheric
temperature-moisture state, for example, in terms of
entraining CAPE or general cloud work functions.

(iii) Joint PDF follows conditionally averaged
precipitation too closely and precipitation
PD F/contribution tail errors at high precipitation

Several features of the joint PDF described in section
6e can be summarized as the model joint PDF tending to
follow the pickup of the conditionally average precipi-
tation, with smaller spread about this than in observa-
tions. This suggests that for a given thermodynamic
environment, the precipitation is too deterministic. This
is consistent with simulated extreme precipitation being
improved by explicitly incorporating a stochastic com-
ponent (Plant and Craig 2008; Wang et al. 2017). It could
also be consistent with representation of additional
sources of variability including effects of subgrid-scale
moisture variability, gustiness, downdrafts, cold pools,
or organized systems (e.g., Hourdin et al. 2013; Harrop
et al. 2018; Mapes and Neale 2011).

The longer-than-Gaussian tail of the observed precip-
itation distribution/contribution at high P is insensitive to
the bulk measures of water vapor and temperature in
the retrieval datasets used here. Given the importance
of model projections of changes in extreme precipita-
tion under global warming, the departures of the model
precipitation PDFs from the observed in the high-
precipitation, high-CWV regime as a function of tem-
perature is of concern. Independent observational
datasets, for instance from radio occultation (Padullés
et al. 2018), could be used to further constrain the be-
havior in this regime; process modeling could be used
to better identify sources of differences among models;
and this regime can be an important target for cloud-
resolving models.

h. Concluding remarks

The statistics presented here are available as the con-
vective transition diagnostic module associated with the
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Model Diagnostics Task Force (MDTF) diagnostics
package (Maloney et al. 2019b; available at http://
www.cesm.ucar.edu/working_groups/Atmosphere/mdtf-
diagnostics-package/index.html). As applied to the set of
models analyzed here, the convective transition statistics
summarized above reveal substantial departures from
observations and intermodel spread, especially for
CWYV within the moist regime, reflecting the current
status of model representations of moist convection
and its interaction with the large-scale flow. Although
several models performed poorly with respect to the
measures introduced here, it is encouraging that for
the basic statistics (i.e., pickup of precipitation and
probability, CWV PDF and CWV PDF for precipi-
tating points) a few cases—including AM4G9Y9, EC-
EARTH3, GEOS-5, and CAMS—performed well.
This is particularly noteworthy as in almost all cases
the models had not previously been assessed with re-
spect to these measures so have clearly not been in any
way tuned to achieve these results. For a model to do
well, the parameterization must reasonably capture
multiple aspects of the triggering of deep convection
associated with conditional instability. From related
work, there is evidence that this requires a reasonable
representation of the dependence on lower free-
tropospheric humidity by entrainment into the deep
convective plumes. It also implies that the parame-
terization of convective heating as a function of buoy-
ancy is operating well, and that the overall effects in the
model yielding large-scale variations with which the
convection interacts are of a suitable magnitude—on
the one hand driving the system into the high-moisture,
high-precipitation regime, and on the other causing
event (i.e., precipitation) termination—with each oc-
curring at a reasonable frequency. However, even in
models that perform well, the high-temperature, high-
CWYV, high-precipitation regime is flagged as challenging
to simulate in detailed comparison to the observations at
these fast time scales.
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