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Abstract: Despite the advantages of membrane processes, their high energy requirement remains a
major challenge. Fabrication of nanocomposite membranes by incorporating various nanomaterials
in the polymer matrix has shown promise for enhancing membrane flux. In this study, we embed
functionalized cellulose nanofibers (CNFs) with high aspect ratios in the polymer matrix to create
hydrophilic nanochannels that reduce membrane resistance and facilitate the facile transport of water
molecules through the membrane. The results showed that the incorporation of 0.1 wt % CNF into
the polymer matrix did not change the membrane flux (~15 L-m~2h™!) and Bovine Serum Albumin
(BSA) Fraction V rejection, while increasing the CNF content to 0.3 wt % significantly enhanced the
flux by seven times to ~100 L-m~2-h™!, but the rejection was decreased to 60-70%. Such a change in
membrane performance was due to the formation of hydrophilic nanochannels by the incorporation
of CNF (corroborated by the SEM images), decreasing the membrane resistance, and thus enhancing
the flux. When the concentration of the CNF in the membrane matrix was further increased to
0.6 wt %, no further increase in the membrane flux was observed, however, the BSA rejection was
found to increase to 85%. Such an increase in the rejection was related to the electrostatic repulsion
between the negatively-charged CNF-loaded nanochannels and the BSA, as demonstrated by zeta
potential measurements. SEM images showed the bridging effect of the CNF in the nanochannels
with high CNF contents.

Keywords: membrane flux; nanocomposite; nanocellulose; mixed matrix membranes; hydrophilic
surface; electrostatic repulsion; protein rejection

1. Introduction

Despite the unique advantages of membranes for water purification, the high energy demand
of the separation process remains a challenge. Relatively high pressures are required to generate
sufficient flux through conventional polymeric membranes which are hydrophobic in nature and
have low affinity for water molecules [1]. Many attempts have been made to render membranes
hydrophilic [2,3]. For example, Zhang et al. blended hydrophilic polyvinyl alcohol (PVA) polymer with
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hydrophobic polyvinylidene fluoride (PVDEF) to increase the hydrophilicity of a casted membrane [4].
Zeng et al. added dopamine-modified halloysite nanotubes into the polymer matrix for enhanced
hydrophilicity [5]. Polymer grafting and copolymerization to induce hydrophilicity to polymers are
also well-investigated approaches [6—10]. In addition to challenges related to the hydrophobicity of
the membranes, their porosity, mostly prepared by nonsolvent-induced phase separation, is relatively
low due to the instantaneous solvent-nonsolvent exchange and fast polymer precipitation. These two
intrinsic membrane characteristics — comparatively low hydrophilicity and low porosity —lead to low
water flux at a given applied pressure.

Extensive past attempts to enhance the water flux of membranes by incorporating
nanoparticles [11-14], nanotubes [15-19], or nanosheets [20-22] in the membrane polymer matrix have
been successful only to a limited extent. Carbon nanotubes (CNTs) belong to a prototypical class
of nanomaterials that have attracted particular attention due to their high surface area and aspect
ratio [19]. CNTs create a graphitic nanochannel structure that transports water molecules through
aligned CNT membranes in an impermeable matrix [23,24]. The approaches for the fabrication of these
highly aligned CNT-polymer nanocomposites are sophisticated and tedious, and hence, impractical
for water purification purposes [25]. To overcome this challenge, some researchers have attempted
to integrate CNTs as “additives” into the permeable membrane matrix, but CNT incorporation as
a filler results in random CNT orientation, losing its nanochannel alignment [26]. In addition, the
hydrophobic nature of the CNTs necessitates its functionalization in order to enhance the interfacial
adhesion between the two phases (i.e., CNT and polymer) [27-29].

Cellulose nanofiber (CNF) is another class of nanofibrous material that is gaining increasing
attention. They have a high aspect ratio and surface area and also remarkable mechanical strength,
similar to CNTs [30]. CNF can be chemically obtained by surface modification of cellulose fibrils
typically by TEMPO-mediated oxidation [31,32], that introduces abundant carboxylate and aldehyde
functional groups to the fiber surface, imparting a highly negative surface charge to the fibers and
hence, facilitating the homogeneous distribution of the produced nanofibers in suspension form [33].
On the basis of this oxidation mechanism, CNFs — in addition to their high aspect ratio and high
surface area — possess unique intrinsic properties, such as abundant functional moieties and uniform
dispersibility [34], that are absent in the unmodified CNTs. The functional groups of the CNFs confer
hydrophilicity and strong compatibility with the polymer when it is incorporated in the polymer
matrix. In addition, as opposed to CNTs, the functional moieties on the CNFs enhance the affinity of the
water molecules to the nanochannels created by the nanofibers, potentially further increasing the water
flux through the membrane. Also, the charged nanofibers can exert electrostatic repulsion between
the contaminant particles/colloids and the membrane pore surfaces. Therefore, compared with other
well-investigated nanomaterials, CNFs possess many promising attributes (i.e., high surface area and
aspect ratio, abundant functional groups, good dispersibility, strong adhesion with the polymer matrix,
and excellent hydrophilicity) that make them well suited for nanocomposite membrane fabrication.

In addition to the structural advantages of the CNFs compared with other advanced nanomaterials,
such as CNTs and graphene oxides (GOs), the former nanomaterial can be fabricated from any
natural sustainable biomass source using a facile TEMPO-mediated oxidation [32] or nitro-oxidation
method [35]. In contrast, the fabrication of the latter nanomaterials requires sophisticated engineering
tools with intensive pre- and post-treatment steps.

Despite the promising properties of CNF compared with other nanomaterials, the existing studies
on development of CNF-polymer hybrid membranes are still very limited. This may be due to the
fact that nanocellulose is typically dispersed in an aqueous phase, whereas water is a non-solvent for
typical membrane polymers. In this sense, CNF must be uniformly dispersed in an organic solvent
prior to its incorporation within the polymer matrix. On the other hand, the high viscosity of the
CNF suspension [36], owing to the long partially-interconnected nanofibers, is a bottleneck for the
incorporation of high CNF content.
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In this study, we developed a facile method for the preparation of a CNF-embedded nanocomposite
membrane, which consisted of cellulose acetate as the polymer matrix and the CNF as the filler to create
nanochannels for preferential water flow. The hybrid membrane fabrication process was designed
to be readily scalable for economic and practical applications. Cellulose acetate was chosen as the
membrane matrix because of its potential van der Waals interaction with the CNF and hence better
adhesion between the two phases. We believe that the similarity between the building blocks of the
cellulose acetate and the CNF assists in bridging the filler-induced voids, hence increasing the water
permeability without significantly sacrificing the rejection value. The impact of CNF loading was also
found to be a key factor in determining the membrane performance.

2. Materials and Methods

2.1. Materials

Cellulose acetate (M.W. 100,000) supplied by Acros Organics (Somerville, NJ, USA) was used as
matrix polymer in the preparation of the nanocomposite membranes. N,N-dimethylformamide (DME,
>99.8%) purchased from Alfa Aesar (Haverhill, MA, USA) was used as the polymer solvent without
further purification. Polyvinylpyrrolidone (PVP) with an average molecular weight of 1,300,000 was
supplied by Sigma Aldrich (St. Louis, MO, USA) and was used as a pore forming agent. Bovine
serum albumins (BSA, fraction V, 97%) with an average molecular weight of 67 kDa and dextran with
different molecular weights ranging from 4 to 5000 kDa were purchased from the Fisher Scientific and
were used as received. Softwood pulp, made predominately from Loblolly Pine, was supplied by the
International Paper Company (Clifton, NJ, USA) and was used for CNF production. Other chemicals
used were 2,2,6,6-Tetramethyl-1-piperidinyloxy (TEMPO, 98%), sodium bromide (NaBr), and sodium
hypochlorite (NaOCl, 14.5% available chlorine) and were purchased from Fisher Scientific (Hampton,
NH, USA).

2.2. Preparation of Cellulose Nanofiber in Organic Solvent

10.0 g delignified wood pulp was dispersed in 500.0 g of deionized water. Subsequently, TEMPO
oxidizing agent (0.2 g) and sodium bromide (1.0 g) were introduced into the dispersion and stirred
vigorously to disperse the fibers. The pH level of the suspension was adjusted to and maintained at a
value of 10.0 + 0.2 throughout the reaction process by addition of 1 M NaOH solution. 112.0 g NaOCl
was gradually added into the suspension to start the oxidation process under continuous stirring for
24 h. It was critical to maintain the pH level at ~10 to provide optimum oxidation conditions. 50 mL
ethanol solution was added to quench the reaction and stirring was continued for another 30 min.
The final product was separated by centrifugation at ~6000 rpm. Then, the resultant product was
washed and centrifuged again. Finally, the product was placed in a dialysis bag until the conductivity
of the medium was <5 puS/cm. The concentration of the bulk cellulose nanofiber (CNF) suspension was
measured to be 0.3 wt %.

A predetermined amount of CNF at a specified concentration was mixed with a known quantity of
DMEF overnight to ensure an even distribution of CNF in a binary mixture of water/DMFE. Subsequently,
the water was removed from the suspension using a six-inch vacuum-assisted fractional distillation
apparatus at 100 °C under vacuum. The CNF dispersed in the organic phase was then recovered and
used as a stock CNF suspension for nanocomposite membrane fabrication.

2.3. Preparation of Nanocomposite Membranes

A predetermined amount of CNF suspension (in DMF) was obtained from the prepared stock
CNF suspension and additional DMF was added into the suspension to provide the desired final CNF
concentration. Three CNF concentrations in the polymer solution, 0.05, 0.1, and 0.2 wt %, were employed
to make the nanocomposite membranes. Afterwards, a certain amount of polyvinylpyrrolidone (PVP),
as a pore forming agent, was added to the suspension to give a final concentration of 0.5 wt % and
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stirred for 1 h. Then, a predetermined amount of cellulose acetate was added at several intervals over
4 h to provide a fixed cellulose acetate final concentration of 15 wt %. The gradual introduction of the
cellulose acetate was essential to avoid the sudden increase in the solution viscosity and to facilitate
the homogeneity of the solution. The resultant CA/CNF/PVP solution was mixed at room temperature
overnight. Before its application for membrane casting, the CA/CNF/PVP solution was degassed
using a hand-held vacuum pump to remove the bubbles trapped in the viscous polymer solution.
Subsequently, a Gardco casting knife film applicator was used to cast the polymer solution, followed
by a phase inversion process in a water bath under controlled conditions. After the nanocomposite
membrane was fabricated, it was washed several times with distilled water for a few hours to ensure
the removal of all the organic phase. The membrane was kept in a fresh water bath for 2 days to ensure
the diffusion of the pore forming PVP to the aqueous medium. The CNF contents in the fabricated
nanocomposite membranes were calculated as 0.1, 0.3, and 0.6 wt %. CA — CNF0.1, CA — CNF0.3, and
CA — CNFO0.6 were used to represent the membranes with different CNF contents in the nanocomposite
membranes. The final thickness of the membranes was fixed at ~ 200 pm.

2.4. Cellulose Nanofibers (CNF) Characterization

A FEI BioTwinG2 transmission electron microscope (TEM) equipped with an AMT XR-60 CCD
digital camera system (Hillsboro, OR, USA) was used to acquire images of the individual CNF. An
accelerating voltage of 120 kV was applied for the TEM measurements. In the sample preparation for
TEM, a 10 uL droplet of cellulose nanofiber suspension (0.01 wt %) was deposited on a carbon-coated
TEM grid (Ted Pella Inc., Redding, CA, USA) and the excess liquid was absorbed by a piece of clean
filter paper. Then, a small drop of 2.0% uranyl acetate negative stain was added. The uranyl acetate
excess solution was subsequently removed, allowing the blotted piece to dry on the grid. 300 mL
of 0.196 wt % nanocellulose water suspension was prepared and its zeta potential value at different
pH (3-10) was measured at 25 °C using the ZetaProbe Analyzer (Colloidal Dynamics Inc., Ponte
Vedra Beach, FL, USA). 0.1 M NaOH and HClI solutions were used for pH adjustment. The degree
of oxidation (amount of carboxylate group per unit gram) of TEMPO-oxidized cellulose nanofibers
was determined through the conductometric titration method. Specifically, 0.1 M hydrochloric acid
solution was added to 198.5 g of 0.1 wt % CNF suspension to adjust its starting pH value to around 2.5.
Under stirring, the suspension was titrated with 0.05 M standardized NaOH (Sigma-Aldrich, St. Louis,
MO, USA) solution until the pH level reached 10.5 with 0.2 mL addition interval. During the titration,
the conductivity was monitored after complete stabilization.

2.5. Membrane Characterization

The surface and cross-sectional morphologies of the nanocomposite membranes were examined
by a Schottky field emission scanning electron microscope (FE-SEM) (LEO Gemini 1550, Zeiss,
Oberkochen, Germany). Before SEM characterization, all the specimens were dried in a vacuum oven
at 40 °C for 2 days. The membranes were cryogenically fractured in liquid nitrogen for cross-sectional
imaging. All specimens were mounted on aluminum holders using a double-sided conductive tape
and then sputter-coated with gold. The SEM micrographs were obtained at an accelerating voltage of
2.5 kV. The thermal behavior of the nanocomposite membranes was studied using a simultaneous
thermogravimetric and differential thermal analyzer (TGA-DTA, TA Instruments Q50, New Castle,
DE, USA) under a nitrogen atmosphere at a heating rate of 5 °C from 30 to 700 °C. A Perkin Elmer
Spectrum One Fourier transform infrared spectrophotometer (FTIR, Waltham, MA, USA) equipped
with attenuated total reflection (ATR) configuration was used to record the change in the surface
functional groups of the nanocomposite membranes before and after the model protein filtration.
The spectra were recorded at a resolution of 4 cm™~! and 64 scans per spectrum between the wavenumber
range of 4000-400 cm~!. The surface wetting properties of the fabricated membranes were determined
using a Dataphysics (OCA 15EC, Hamden, CT, USA) contact angle analyzer. Distilled water was used
as the probe liquid in all the measurements. 2.5 uL. water droplet was dropped on the membrane
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surface and the contact angle of the droplet with the membrane surface was determined using a
sessile drop technique. The contact angle was measured at a minimum of 8 different locations on the
membranes and the average value was reported. A zeta potential analyzer (Anton Paar, SurPASS 3,
Graz, Austria) was used to study the surface charge of the membrane. The membranes with dimensions
of 20 mm x 10 mm were glued onto adjustable gap cells with a gap distance of around 110-130 pm.
The streaming potential measurements were carried out at a pH range of 3.5-8.5. The molecular
weight cutoff (MWCO) measurements were carried out by evaluating the rejection of dextran solutes
of varying molecular weights in a dead-end stirred cell (Amicon Stirred Cell, 50 mL). A Shimadzu total
organic analyzer (TOC-VCPN, Kyoto, Japan) was used to measure the concentration of the dextran in
the permeate.

2.6. Evaluation of the Nanocomposite Membrane Performance

The performance of the nanocomposite membranes was evaluated using a cross-flow system using
a clear-cast acrylic Sterlitech cell with an active membrane area of 42 cm~2. The feed water was pumped
across a given membrane specimen at a transmembrane pressure of 10 psi. Both feed and permeate
water were recycled back into the reservoir. First, the pure water flux test of a given membrane was
carried out for 24 h. The fluxes at different time intervals were recorded to ensure that a steady state
flux was attained (Jo). Then, for fouling studies, BSA solution was added into the reservoir to provide
a final BSA concentration of 100 mg/L and the filtration continued for another 4 h. The flux decline
with time indicating the fouling intensity and the BSA rejection at regular interval was recorded. The
BSA concentration was determined using an ultraviolet/visible spectrophotometer (UV/Vis, Thermo
Scientific Genesys™ 10S, Waltham, MA, USA) with a high intensity xenon lamp at a wavelength of
278 nm. The membrane permeation flux (J) was measured according to the following equation:

J="V/(axt) 1)

where V is the volume of the permeate flowing through the membrane at a certain amount of time (¢),
and A is the effective membrane area. The rejection of the BSA by the membranes (R;) was determined
by measuring the BSA concentration in the bulk solution (Cp) and in the permeate (C;) as follows:

R = (1 - 2) x 100 )
Co

3. Results and Discussion

3.1. Properties of Cellulose Nanofibers

Figure 1a shows TEM images of the individual CNF after the TEMPO oxidation reaction. The width
of the CNF was shown to be in the range of 5 to 15 nm. Previous studies reported that the defibrillation
efficiency strongly depended on the biomass source. For example, Saito et al. measured the CNF width
using the TEM and atomic force microscope (AFM) and demonstrated that wood cellulose had a width
of 3.6 = 0.3 nm by TEM and 2.6 + 0.3 nm by AFM, whereas tunicate cellulose showed a width of 13.5 +
4.9 nm, measured by TEM [37]. Mao et al. analyzed the dimensions of the wood pulp-extracted CNF
using small angle neutron scattering (SANS) and small angle X-ray scattering (SAXS) and found that
the width and cross-section of the CNF were ~8 and ~2 nm, respectively [38]. Our findings are in close
agreement with these measurements.

The functional groups on the CNF, specifically carboxylate groups, are essential to impart
electrostatic repulsion between the cellulose nanofibers, providing a stable dispersion without
aggregation. Figure 1b shows the FTIR spectrum of a dried thin film CNF. The intense and weak peaks
at 3352 and 1640 cm™! were attributed to the stretching and bending vibrations of the O-H groups,
respectively. The peak at 1160 cm™!
of the B-glucosidic linkages in the cellulose backbone. The band at 1730 cm~! corresponded to the

was assigned to the C—O-C asymmetric stretching vibrations
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investigated. In particular, the zeta potential value of the CNF at a neutral pH value (pH = 7.0) was ~
—82 mV, indicating that the CNF had a remarkably-high negative surface charge. The negative charge
of the CNF is desirable for water purification applications whereby the electrostatic repulsion between
the negatively-charged CNF and same-charge contaminants may increase the contaminant rejection.
It is noteworthy that most of the contaminants in water bodies, such as colloids, proteins, viruses, and
bacteria possess partially anionic surfaces [40-42]. The drastic increase in zeta potential at very low
pH values may result from the micro-agglomeration of the cellulose nanofibers.
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3.2. Ultrafiltration Cellulose Acetate-Cellulose Nanofiber (CA-CNF) Nanocomposite Membranes

The cross-sectional SEM images of the pristine cellulose acetate (CA) and a typical CNF-embedded
CA nanocomposite membrane are illustrated in Figure 2a,b, respectively. The pristine CA membrane
exhibited a very dense barrier layer structure with a barrier layer thickness of ~100-200 nm, where the
major fraction of the contaminant rejection occurred. Below the barrier layer, the pristine membrane
showed a maze-like porous structure. The water permeate needed to penetrate through these pores
until it reached the “finger-like” macrovoids. However, it can be clearly observed in Figure 2a that
some of the pores were completely clogged by two distinct phenomena. Firstly, the pores were
formed in a regular pattern, but they were not interconnected to the other pores, and thus, the
transport phenomenon through the membrane was not efficiently accomplished. Secondly, some of
the pore forming agent (PVP) remained in the polymer matrix as globules and could not be removed
probably due to the very small pore sizes, which hindered the diffusion of the water into the pores and
macrovoids during the washing process. In addition, the macrovoids were interconnected through
the walls which obviously had small pores, analogous to the other parts of the membrane, creating
another barrier to transport. In other words, the diffusion of the water molecules from one macrovoid
to another was hindered by the less-porous walls between these macrovoids.

The porous structure of the CNF-embedded nanocomposite membrane, on the other hand, was
remarkably different from the pristine membrane. It was found that the nanocomposite membrane was
comprised of two distinct phases. One phase was noticeably denser than the other phase. We postulate
that these phases were CNF-rich and CNF-poor domains and thus, possessed different shrinkage
behavior, leading to the formation of two distinct regions. The CNF-induced macrovoids, however,
were bridged by CNEF, interconnecting these water transport channels to each other, thereby maintaining
the structural integrity of the membrane. Furthermore, the two CNF-rich and CNF-poor domains
exhibited different solvent-nonsolvent exchange rates, probably due to the difference in the composition,
hydrophilicity, surface tension, and viscosity of the solutions, resulting in distinct differences in the
pore density in the two domains. In addition, the globules of the PVP were not noticeable in the
nanocomposite membranes, indicating that the water diffused well into the pores and macrovoids
during the washing process, removed the PVP, and opened up the pores. This was due to the fact that
water could easily diffuse into and leave the polymer matrix without significant membrane resistance.
In other words, these channels reduced the intrinsic membrane resistance for water transport, and thus,
could potentially enhance the water permeance. In contrast to high pressure reverse osmosis processes,
where the presence of macrovoids is unsatisfactory and results in membrane collapse, the presence of
macrovoids is desirable in ultrafiltration membranes in order to increase their flux by reducing the
membrane resistance [43,44].

It is known that the relative rate of the solvent-nonsolvent medium interchange during the
gelation process is a key factor in determining the properties of the membrane [44,45]. In the pristine
cellulose acetate membrane, the instantaneous aqueous—organic medium interchange resulted in the
formation of a thin but dense barrier layer, separating the nonsolvent bath from the non-gelled polymer
beneath the barrier layer. Further gelation of the polymer was accomplished by the bilateral diffusion of
the solvent-nonsolvent media through the barrier layer. However, since the barrier layer was too dense,
the gelation of the polymer beneath the barrier layer was a very slow process, leading to the formation
of a finger-like structure. The incorporation of the CNF into the polymer solution resulted in the
formation of CNF-rich and CNF-poor nuclei that could have different solvent-nonsolvent interchange
rates and shrinkage intensities. When the aqueous phase was exchanged with the organic phase in the
CNF-embedded casting solution, the polymer shrank during the membrane gelation [44]; however, the
CNFs, in suspension form, maintained their robust structures and no shrinkage occurred. This led to
the formation of two distinct domains separated with cavities, but well-interconnected with robust
cellulose nanofibers (CNFs). It is postulated that the similarity between the building blocks of the
matrix polymer and the CNF induced the bridging effect between the two domains (the polymer matrix
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and the filler). The schematic modelling of the water-directing nanochannel formation is presented

in Figure 2c.
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Figure 2. Cross section scanning electron microscopy (SEM) images of the (a) pristine cellulose
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Schematic representation of water directing channels in nanocomposite membranes.
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The rejection of BSA by the pristine CA membrane was shown to be 84-90%, as depicted in
Figure 6c. The protein rejection of the CA — CNF0.1 nanocomposite membrane was comparable to
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4. Conclusions

In this study, we investigated the change in the permeability and selectivity of a cellulose acetate
membrane by incorporating cellulose nanofiber (CNF) into its matrix. The results demonstrated that
the incorporation of low amounts of CNF (0.1 wt %) did not significantly change the permeability or
selectivity of the membranes. Incorporation of very small amounts of CNF (e.g., 0.1 wt %) resulted in
an irregular sporadic arrangement of the CNF, which created isolated and patchy nanochannels in the
polymer matrix. Thus, no interconnection between these nanochannels existed, which accounted for
the similar membrane performance between the pristine membrane and the CA membrane embedded
with very low amount of the CNF. However, significant changes in permeability were noticed when
further CNF (0.3 wt %) was added to the polymer matrix, whereby the permeability of the membrane
was increased several times to ~102 LMH, though the BSA selectivity of the membrane decreased
slightly from 90% to 73%. This was due to the interconnection of the nanochannels and easier transport
of the water molecules through the membrane. Also, some of the BSA molecules could escape through
these nanochannels, resulting in a lower membrane selectivity. Interestingly, when the CNF content was
increased to 0.6 wt %, the flux did not further increase, but the selectivity was significantly increased to
85%. This was related to the electrostatic repulsion between the membrane overloaded with CNF and
the BSA, resulting in higher BSA rejection. Overall, incorporation of CNF in the membrane matrix
significantly enhanced the membrane permeability without sacrificing the selectivity and therefore,
CNF can be a potential candidate as a commercial additive in nanocomposite membrane fabrication.
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