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We construct symmetric pairs for Drinfeld doubles of pre-
Nichols algebras of diagonal type and determine when they 
possess an Iwasawa decomposition. This extends G. Letzter’s 
theory of quantum symmetric pairs. Our results can be uni-
formly applied to Kac–Moody quantum groups for a generic 
quantum parameter, for roots of unity in respect to both big 
and small quantum groups, to quantum supergroups and to 
exotic quantum groups of ufo type. We give a second construc-
tion of symmetric pairs for Heisenberg doubles in the above 
generality and prove that they always admit an Iwasawa de-
composition.
For symmetric pair coideal subalgebras with Iwasawa decom-
position in the above generality we then address two problems 
which are fundamental already in the setting of quantum 
groups. Firstly, we show that the symmetric pair coideal sub-
algebras are isomorphic to intrinsically defined deformations 
of partial bosonizations of the corresponding pre-Nichols alge-
bras. To this end we develop a general notion of star products 
on N-graded connected algebras which provides an efficient 
tool to prove that two deformations of the partial bosoniza-
tion are isomorphic. The new perspective also provides an 
effective algorithm for determining the defining relations of 
the coideal subalgebras.
Secondly, for Nichols algebras of diagonal type, we use the 
linear isomorphism between the coideal subalgebra and the 
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partial bosonization to give an explicit construction of quasi 
K-matrices as sums over dual bases. We show that the result-
ing quasi K-matrices give rise to weakly universal K-matrices 
in the above generality.

© 2020 Elsevier Inc. All rights reserved.

1. Introduction

1.1. (Pre-)Nichols algebras of diagonal type

Since their inception in the 1980s quantum groups have become an integral part 

of representation theory with many deep applications. Quantum groups in particular 

reinvigorated the general investigation of Hopf algebras as they provided many new 

noncommutative, noncocommutative examples. In the late 1990s N. Andruskiewitsch and 

H.-J. Schneider proposed an approach to the classification of finite dimensional, pointed 

Hopf algebras [3]. In this approach a central role is played by Nichols algebras which are 

Hopf algebras in a braided category of Yetter-Drinfeld modules. Important examples of 

Nichols algebras include the positive part U+ of quantized enveloping algebras Uq(g) for 

q not a root of unity, and the positive part of the small quantum group uq(g) if q is a 

root of unity. Other examples come from quantum Lie superalgebras, but there are also 

large example classes which had not been studied previously.

The starting point for the construction of a Nichols algebra B(V ) is a Hopf algebra 

H and a Yetter-Drinfeld module V over H. If H is the group algebra of an abelian group 

and V is a direct sum of one dimensional modules, then B(V ) is called a Nichols algebra 

of diagonal type. Nichols algebras of diagonal type are determined by a bicharacter 

χ : Z
n ×Z

n → K into the base field K. The finite dimensional such Nichols algebras were 

classified by I. Heckenberger in [20]. The Nichols algebra B(V ) is a quotient of the tensor 

algebra T (V ) by the uniquely determined maximal proper biideal Imax ⊂ ⊕∞
m=2V ⊗m. If 

instead one considers any H-stable biideal I with {0} ⊆ I ⊆ Imax then T (V )/I is a pre-

Nichols algebra as introduced by Masuoka in [36]. Prominent examples of pre-Nichols 

algebras which are not Nichols algebras are the positive parts of quantized enveloping 

(super) algebras at roots of unity.

1.2. Quantum symmetric pairs

Let g be a semisimple complex Lie algebra and let θ : g → g be an involutive Lie 

algebra automorphism with pointwise fixed Lie subalgebra k = {x ∈ g | θ(x) = x}. The 

theory of quantum symmetric pairs provides quantum group analogs Bc = U ′
q(k) ⊂ Uq(g)

of the universal enveloping algebra U(k). Crucially, Bc ⊂ Uq(g) is not a Hopf subalgebra 

but satisfies the weaker coideal property

Δ(Bc) ⊂ Bc ⊗ Uq(g)
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for the coproduct Δ of Uq(g). Quantum symmetric pairs for classical g were originally in-

troduced by M. Noumi, M. Dijkhuizen and T. Sugitani, case by case, to perform harmonic 

analysis on quantum group analogs of symmetric spaces, see [37], [13], [38]. Indepen-

dently, G. Letzter developed a comprehensive theory of quantum symmetric pairs based 

on the classification of involutive automorphisms of g in terms of Satake diagrams [29], 

[30]. A Satake diagram (X, τ) consists of a subset X of the nodes of the Dynkin diagram 

for g and a diagram automorphism τ satisfying certain compatibility conditions, see [6]. 

Letzter’s construction was extended to the Kac-Moody case in [26].

Much is known about the structure of the algebras Bc. Generators and relations for 

Bc were determined in [31, Section 7], see also [26, Section 7]. Let pX be the standard 

parabolic subalgebra corresponding the X. The algebra Bc has a natural filtration such 

that the associated graded algebra is isomorphic to a subalgebra U ′
q(pX) of the quan-

tized enveloping algebra Uq(pX). This suggests that it is possible to interpret Bc as a 

deformation of U ′
q(pX).

Problem I. Explicitly define an associative product ⋆ on U ′
q(pX) such that the algebra 

(U ′
q(pX), ⋆) is canonically isomorphic to Bc.

In the quasi-split case X = ∅, the algebras Bc were already introduced in [28]. In this 

case the involution θ can be given in terms of the Chevalley generators {ei, fi, hi | i ∈ I}
of g by

θ(ei) = −fτ(i), θ(fi) = −eτ(i), θ(hi) = −hτ(i).

Let Ei, Fi, K
±1
i for i ∈ I denote the standard generators of Uq(g). Then the quantum 

symmetric pair coideal subalgebra Bc corresponding to (∅, τ) is generated by the elements

Bi = Fi + ciEτ(i)K
−1
i , KiK

−1
τ(i) for all i ∈ I (1.1)

where c = (ci)i∈I ∈ K
I are fixed parameters. The parameters ci need to satisfy certain 

compatibility conditions which assure that gr(Bc) is canonically isomorphic to the sub-

algebra U ′
q(b) = K〈Fi, KiK

−1
τ(i) | i ∈ I〉 of Uq(g). This condition is equivalent to the fact 

that the pair (Uq(g), Bc) satisfies a quantum Iwasawa decomposition. In the quasi-split 

case this means that the multiplication map

U+ ⊗ U ′
0 ⊗ Bc → Uq(g) (1.2)

is a linear isomorphism. Here U ′
0 is the subalgebra of Uq(g) generated by {K±1

i | i ∈
Iτ } where Iτ ⊆ I is a set of representatives of the τ -orbits in I, and U+ ⊂ Uq(g)

is the subalgebra generated by {Ei | i ∈ I}. The central role of the quantum Iwasawa 

decomposition was first highlighted in [28]. More general versions appeared in [29], [32], 

[26]. In the general case [30], [26], the generators Bi may come with a second parameter 
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si. Here we suppress this parameter for simplicity, but we note that the theory can be 

extended by twisting by a character, see for example [14, Section 3.5].

The theory of quantum symmetric pairs received a big push in 2013 when the preprint 

versions of [9] and [16] introduced the notion of a bar involution for quantum symmetric 

pairs. H. Bao and W. Wang showed that much of G. Lusztig’s theory of canonical bases 

allows analogs for quantum symmetric pairs [9], [10]. Of pivotal importance in Lusztig’s 

theory is the quasi R-matrix Θ which lives in a completion of U− ⊗ U+ and intertwines 

two bar involution on Δ(Uq(g)), see [34, Theorem 4.1.2]. For the symmetric pair of type 

AIII with X = ∅, Bao and Wang showed in particular that there exists an intertwiner 

Θθ in a completion of Bc ⊗ U+ which plays a similar role as the quasi R-matrix Θ. 

The existence of the intertwiner Θθ was established in full generality in [27]. Following 

the program outlined in [9], the intertwiner Θθ was used in [8], [27] to construct a 

universal K-matrix for quantum symmetric pairs. The universal K-matrix is an analog 

of the universal R-matrix for Uq(g). For this reason we call the intertwiner Θθ the quasi 

K-matrix for Bc.

The construction of the quasi K-matrix in [9], [8] is recursive and based on the inter-

twiner property for the bar involutions on Uq(g) and Bc. This differs from the situation 

with (quasi) R-matrices. Drinfeld constructed universal R-matrices for the doubles of all 

Hopf algebras as sums of dual bases [15]. In this direction, the quasi R-matrix Θ has a 

second description in terms of dual bases of U− and U+ with respect to a non-degenerate 

pairing, see [34, Theorem 4.1.2]. It is an open question to give a similar description of 

the quasi K-matrix Θθ.

Problem II. Give a conceptual, non-recursive description of the quasi K-matrix Θθ for 

quantum symmetric pairs in terms of dual bases of U− and U+. This description should 

be parallel to the Drinfeld–Lusztig construction of the quasi R-matrices Θ as sums of 

dual bases, and should not involve the bar-involutions which are not applicable in closely 

related situations, such as roots of unity.

For large classes of examples there exist explicit formulas for the quasi K-matrix, see 

[14]. However, these formulas do not come from dual bases on U− and U+.

1.3. Goal of this paper

In the present paper we propose a construction of symmetric pairs for pre-Nichols 

algebras which extends Letzter’s construction of quantum symmetric pairs. To keep 

things manageable, we restrict to pre-Nichols algebras of diagonal type. For quantum 

symmetric pairs this means that we restrict to the case X = ∅. The theory developed 

in the present paper includes examples of symmetric pairs for quantized enveloping 

algebras at roots of unity, quantum Lie superalgebras, and the more exotic examples 

which arose from Heckenberger’s classification [20] of Nichols algebras of diagonal type. 

We do not place any restrictions on the Gelfand-Kirillov dimension of the pre-Nichols 
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algebra. The case of general X will involve Nichols algebras for Yetter-Drinfeld modules 

over more general Hopf algebras. We intend to address this more general case in the 

future. One of the upshots of this is an intrinsic construction of quantum symmetric 

pairs in terms of a base Hopf algebra H, an involutive Hopf algebra automorphism of 

H, and an isomorphism between two Yetter-Drinfeld modules for H.

For pre-Nichols algebras of diagonal type we develop a general theory in full analogy 

to Letzter’s theory [29], [30], [26]. For a symmetric bicharacter χ : Z
n × Z

n → K, we 

consider a Hopf algebra U(χ) with triangular decomposition U(χ) ∼= U+⋊H⋉U− where 

H = K[Zn] is the group algebra of Zn and U+, U− are pre-Nichols algebras associated 

to χ. We call U(χ) the Drinfeld double of U+, see Remark 2.2. We define a coideal 

subalgebra Bc ⊂ U(χ) which depends on parameters c = (ci) ∈ K
n and is generated 

by elements analogous to those given in (1.1). The coideal subalgebra Bc has a natural 

filtration and we determine the set of parameters c for which gr(Bc) is isomorphic to 

a partial bosonization Hθ ⋉ U−, which will play a key role in the paper. Here Hθ is a 

Hopf subalgebra of H and Hθ ⋉U− is the corresponding subalgebra of the bosonization 

H ⋉ U−, see Section 1.4 for more details.

In this setting we answer Problems I and II from Section 1.2. Lusztig’s quasi R-

matrix Θ also exists in the general setting of the present paper. To answer Problem I, 

we define two associative products on Hθ ⋉ U−. First, by a twisting construction, we 

define a product ⋆ by a closed formula which only involves the quasi R-matrix Θ and 

an explicitly given algebra homomorphism σ : U− →֒ U+ ⋊H. Secondly, we use a linear 

isomorphism

ψ : Bc → Hθ ⋉ U−,

coming from a triangular decomposition of U(χ), to push forward the algebra structure 

on Bc. We develop a general theory of star products on N-graded algebras generated in 

degree 0 and 1 to show that the two algebra structures on Hθ ⋉U− coincide. Hence the 

map ψ : Bc → (Hθ ⋉ U−, ⋆) is an algebra isomorphism.

To resolve Problem II we need to restrict to the case where U+, U− are Nichols 

algebras. We show that the element

Θθ = (ψ−1 ⊗ id)(Θ) (1.3)

which lives in a completion of Bc⊗U+, has all the desired properties of a quasi K-matrix, 

and indeed coincides with the quasi K-matrix in the case of quantum symmetric pairs. We 

then use Θθ to essentially construct a universal K-matrix for Bc in the setting of Nichols 

algebras of diagonal type. We do not discuss the representation theory of U(χ), but 

follow an approach proposed by N. Reshetikhin and T. Tanisaki for universal R-matrices 

in [41], [40]. We obtain a weak notion of a universal K-matrix, which consists of an 

automorphism of a completion of Bc ⊗U(χ) which satisfies the properties of conjugation 

by a universal K-matrix. In the following we discuss the results of the present paper in 
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more detail. All through this paper the symbol N denotes the natural numbers including 

0, that is N = {0, 1, 2, . . . }.

1.4. Symmetric pairs for pre-Nichols algebras

For the construction of the Hopf algebra U(χ) we mostly follow [21], which extended 

Lusztig’s braid group action to Nichols algebras of diagonal type, but we allow pre-

Nichols algebras as introduced in [36]. Associated to the bicharacter χ is a Yetter-Drinfeld 

module V +(χ) with basis {E1, . . . , En}. We consider the corresponding pre-Nichols alge-

bra U+ = T (V +(χ))/I where I is a Zn-graded biideal of the tensor algebra T (V +(χ)). 

We then form the bosonization U+ ⋊ H and consider a quotient U(χ) of the quantum 

double of U+⋊H obtained by identifying the two copies of H. The Hopf algebra U(χ) is 

a natural generalisation of Uq(g). In particular, it is generated by elements Ei, Fi, K
±1
i

for i ∈ I = {1, . . . , n}, has a triangular decomposition U(χ) = U+⋊H⋉U−, and satisfies 

relations similar to those for Uq(g), see Section 2.1. Let {αi | i ∈ I} be the standard basis 

of Zn, and let τ : I → I be an involutive bijection such that χ(ατ(i), ατ(j)) = χ(αi, αj)

for all i, j ∈ I. We define Bc to be the subalgebra of U(χ) generated by the elements 

given in (1.1) where c = (c1, . . . , cn) ∈ K
n are fixed parameters. Moreover, we let Hθ

denote the subalgebra of H generated by the elements KiK
−1
τ(i) for all i ∈ I. The algebra 

Bc has a natural filtration given by the degree function deg(Bi) = 1, deg(KiK
−1
τ(i)) = 0. 

There is always a surjective algebra homomorphism

ϕ : gr(Bc) → Hθ ⋉ U−. (1.4)

We use linear projection maps π0,0 : U(χ) → H and Pμ : U(χ) → U(χ) for μ ∈ Z
n, 

which were first defined in [30], to show the following result.

Theorem A. (Theorem 2.14) For any pre-Nichols algebra U+ of diagonal type and any 

c ∈ K
n, the map ϕ is an algebra isomorphism if and only if the following condition holds:

(c) The ideal I ⊂ T (V +(χ)) is generated by homogeneous, noncommutative polynomials 

pj(E1, . . . , En) for j = 1, . . . , k of degree λj ∈ N
n, respectively, for which π0,0 ◦

P−λj
(pj(B1, . . . , Bn)) = 0.

As in the quantum case, the map ϕ is an isomorphism if and only if the pair (U(χ), Bc)

admits an Iwasawa decomposition analogous to (1.2), see Remark 2.16.

Let U(χ)poly be the subalgebra of U(χ) generated by the elements EiK
−1
i , Fi, K

−1
i , 

KiK
−1
τ(i) for all i ∈ I. The algebra U(χ)poly contains Bc and has a natural surjection 

κ : U(χ)poly → Heis(χ) onto a Heisenberg double Heis(χ) associated to the bicharacter 

χ. By construction, the kernel of κ is the ideal generated by K−1
i for all i ∈ I. We can 

consider the image Bc = κ(Bc) inside Heis(χ). Again we have a natural filtration given 

by a degree function and a surjection
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ϕ : gr(Bc) → Hθ ⋉ U−.

It turns out that map ϕ is an algebra isomorphism irrespective of the choice of parameters 

c. Let G
+

be the subalgebra of Heis(χ) generated by the elements κ(EiK
−1
i ) for all i ∈ I.

Theorem B. (Theorem 2.10) For any pre-Nichols algebra U+ of diagonal type and any 

c ∈ K
n, the map ϕ is an isomorphism, that is, the pair (Heis(χ), Bc) admits an Iwasawa 

decomposition Heis(χ) ∼= G
+ ⊗ Bc.

The algebra U(χ)poly has an N-filtration given by the degree function defined by

deg(EiK
−1
i ) = deg(Fi) = deg(K−1

i ) = 1, deg(KiK
−1
τ(i)) = 0

for all i ∈ I. We call the associated graded algebra Heis(χ)∨ = gr(U(χ)poly) the negative 

Heisenberg double associated to U+. We observe that condition (c) in Theorem A can 

be verified in the negative Heisenberg double. Indeed, the projection map π0,0 has an 

analog π∨
0,0 : Heis(χ)∨ → H. For all i ∈ I set B∨

i = Fi + ciEτ(i)K
−1
i ∈ Heis(χ)∨.

Theorem C. (Theorem 2.18) In the setting of Theorem A, for any homogeneous, non-

commutative polynomial p(x1, . . . , xn) of degree λ ∈ N
n we have

π0,0 ◦ Pλ(p(B1, . . . , Bn)) = π∨
0,0(p(B∨

1 , . . . , B∨
n )).

The point of Theorem C is that calculations in Heis(χ)∨ are easier than calculations 

in U(χ) and that condition (c) in Theorem A is equivalent to a condition in Heis(χ)∨

which is easier to verify. We can summarize the situation in the following diagram:

Bc
Heis(χ) Heis(χ)∨

Bc U(χ)poly U(χ)

B̃c
Ũ(χ)poly Ũ(χ)

κ

η

gr

Here the tildes ∼ denote the versions of U(χ), Bc, U(χ)poly in the case where the biideal 

I is trivial, that is I = {0}. In this case Ũ(χ) = T (V +(χ)) is just the tensor algebra. 

The map η denotes the canonical projection.

In Section 3 we apply Theorems A and C to various classes of examples. For each 

example class we determine the parameters c ∈ K
n for which the maps ϕ in (1.4) is 

an algebra isomorphism. In each case the calculation simplifies significantly because 

Theorem C allows us to calculate in the negative Heisenberg double. We first consider 
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quantized enveloping algebras in Section 3.1 extending known results from [30], [26] to the 

root of unity case. In Section 3.2 we consider the small quantum groups uζ(sl3) where ζ is 

an arbitrary root of unity. The calculations for this example naturally lead us to consider 

the Al-Salam-Carlitz I discrete orthogonal polynomials U
(a)
n (x; q) originally defined in 

[1], see also [25]. As further examples we consider quantized enveloping algebras of Lie 

superalgebras of type sl(m|k) and the distinguished pre-Nichols algebra of type ufo(8)

in Sections 3.3 and 3.4, respectively.

1.5. Star products on partial bosonizations

In Section 5 we introduce star products and apply them to solve Problem I from 

Section 1.2. We define a star product on an N-graded K-algebra A =
⊕

j∈N
Aj to be an 

associative bilinear operation

∗ : A × A → A, (a, b) �→ a ∗ b

such that

a ∗ b − ab ∈ A<m+n for all a ∈ Am, b ∈ An.

A star product will be called 0-equivariant if

a ∗ h = ah and h ∗ a = ha for all h ∈ A0, a ∈ A.

Star products provide us with an efficient way to prove that two filtered deformations of 

A are isomorphic. Namely, if A is generated in degrees 0 and 1, and A1 =
∑

i A0FiA0 for 

a subset {Fi} ⊂ A1, then every 0-equivariant star product on A is uniquely determined 

by the collection of K-linear maps

u ∈ A �→ Fi ∗ u − Fiu ∈ A, (1.5)

see Lemma 5.2. The above conditions are satisfied for the algebra A = Hθ ⋉ U− which 

is graded with A0 = Hθ and A1 = Hθ spanK{Fi | i ∈ I}.

We have the decomposition U(χ)poly ∼= (Hθ⋉U−) ⊗K〈K−1
i , EiK

−1
i | i ∈ I〉. Consider 

the K-linear map ψ : U(χ)poly
։ Hθ ⋉ U− which is the identity map on (Hθ ⋉ U−) ⊗ 1

and the zero map on the left ideal generated by K−1
i and EiK

−1
i for all i ∈ I. By 

restriction to Bc we obtain the following commutative diagram:

Bc (Hθ ⋉ U−) ⊗ K〈K−1
i , EiK

−1
i | i ∈ I〉 U(χ)poly

Hθ ⋉ U−

∼=

ψ
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In the setting of quantized enveloping algebras the map ψ recently appeared in [33, 

Corollary 4.4]. It turns out that the restriction of ψ to Bc is a linear isomorphism if and 

only if the map ϕ given by (1.4) is an algebra isomorphism, see Remark 5.4. We may 

hence use the map ψ to push forward the algebra structure from Bc to Hθ ⋉ U−.

Theorem D. (Theorem 5.5) In the setting of Theorem A, if the map ϕ is an algebra 

isomorphism (i.e. if (U(χ), Bc) admits an Iwasawa decomposition), then the restriction 

ψ : Bc → Hθ ⋉ U− is an algebra isomorphism to the uniquely determined 0-equivariant 

star product on Hθ ⋉ U− such that

Fi ∗ u = Fiu + ciqiτ(i)(Kτ(i)K
−1
i )∂L

τ(i)(u) for all i ∈ I, u ∈ U−

where ∂L
i are the frequently used skew derivations of U− given by (4.11)–(4.12).

In addition to determining the algebraic structure of Bc, Theorem D also gives an 

effective way for the explicit description of the relations among the generators of Bc. In 

Proposition 5.9 we prove that the relations among the generators Fi and KiK
−1
τ(i) of the 

star product algebra (Hθ ⋉U−, ∗) are the relations with respect to the usual product on 

Hθ ⋉ U− but re-expressed in terms of the star product, see Section 5.4 for details and 

examples.

In Section 4.4 we define a second associative binary operation ⋆ on Hθ ⋉ U−. Denote 

by U±
max the Nichols algebras that are factors of U± and by U(χ)max the corresponding 

Drinfeld double. By [21, Theorem 5.8] there exists a pairing of Hopf algebras

〈 , 〉max : (H ⋉ U−
max) ⊗ (U+

max ⋊ H) → K (1.6)

which is nondegenerate when restricted to U−
max ⊗U+

max. The pairing induces a left action 

⊲ and a right action ⊳ of U+
max ⋊H on H ⋉U−, see Section 4.1. The pairing (1.6) allows 

us to define the quasi R-matrix for U(χ)max as a sum of tensor products of dual bases 

of U−
max and U+

max. We write formally

Θ =
∑

μ

(−1)|μ|Fμ ⊗ Eμ. (1.7)

In Sections 4.1 and 4.2 we show that this quasi R-matrix retains essential properties of 

the quasi R-matrix for quantum groups in [34]. There exists an algebra homomorphism 

σ : U−
max →֒ U+

max ⋊ H such that σ(Fi) = cτ(i)KiEτ(i) for all i ∈ I, see Section 4.3. 

The associative binary operation ⋆ on Hθ ⋉ U− is defined solely in terms of the quasi 

R-matrix Θ and the algebra homomorphism σ and exists irrespective of the choice of 

parameters c. Let S denote the antipode of U(χ)max.

Theorem E. (Theorem 4.8, Proposition 5.6 and Corollary 5.7) For any pre-Nichols alge-

bra U+ of diagonal type and any c ∈ K
n, the operation
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f ⋆ g =
∑

ρ

(−1)|ρ|(σ(Fρ)⊲f)Kρ[g ⊳ (S−1(Eρ)Kρ)] for all f, g ∈ U− (1.8)

defines a 0-equivariant star product ⋆ on Hθ ⋉U−. The star product ⋆ coincides with the 

star product ∗ from Theorem D when the latter is defined.

Theorem E provides the desired explicit formula for the star product on Hθ ⋉U− and 

hence solves Problem I. The main step in the proof of the first part of Theorem E is to 

show that the bilinear operation ⋆ defined by (1.8) is associative. The second statement 

then follows by comparison of the linear maps (1.5) for the two star products ⋆ and ∗.

In the situation of Theorem D, the algebra isomorphism ψ turns the algebra (Hθ ⋉

U−, ⋆) into a U(χ)max-comodule algebra. In Section 4.5 we give an explicit formula for 

the corresponding coaction Δ⋆. This formula again only involves the quasi R-matrix Θ

and the homomorphism σ. The U(χ)max-comodule algebra structure on (Hθ ⋉ U−, ⋆)

again exists irrespective of the choice of parameters c ∈ K
n.

1.6. Quasi K-matrices versus quasi R-matrices

In Section 6 we address Problem II from Section 1.2. We need to restrict to the case 

that U± = U±
max are Nichols algebras and we assume that the conditions of Theorem D

are satisfied. Under these assumptions the map ψ is an isomorphism and we may define 

an element Θθ in a completion of Bc ⊗ U+ by (1.3). In Proposition 6.1 we give explicit 

formulas for (Δ ⊗ id)(Θθ) and (id ⊗ Δ)(Θθ) which are analogs of the formulas for (Δ ⊗
id)(Θ) and (id ⊗ Δ)(Θ) in [34, 4.2]. We then show in Proposition 6.2 that Θθ satisfies 

an intertwiner property which reproduces the intertwiner property for bar involutions of 

Bc and Uq(g) from [9, Proposition 3.2] in the case of quantized enveloping algebras. For 

this reason we call Θθ the quasi K-matrix for the pair (U(χ)max, Bc).

The following diagram illustrates our double construction for quasi K-matrices versus 

the Drinfeld–Lusztig construction for quasi R-matrices:

(Hθ ⋉ U−
max, ∗)

Bc

ψ

U+
max ⋊ H ′

R

K
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The two axes represent the decomposition U(χ)max
∼= (U+

max ⋊ H ′) ⊗ (Hθ ⋉ U−
max) for a 

Hopf subalgebra H ′ of H, and the corresponding quasi R-matrix is a sum of dual bases of 

U−
max and U+

max. The diagonal represents the coideal subalgebra Bc which is isomorphic 

via the projection ψ to a star product on the horizontal axes, and the corresponding 

quasi K-matrix is the pull back under ψ−1 ⊗ id of the quasi R-matrix.

In Section 6.3 we review the theory of weakly quasitriangular Hopf algebras from 

[41], [40], see also [17]. This theory is extended to comodule algebras in Section 6.5. The 

notion of a weakly quasitriangular comodule algebra captures the existence of a universal 

K-matrix. Using the coproduct identities and the intertwiner property for Θθ we show 

the following result.

Theorem F. (Theorem 6.15) Let U+ = U+
max be a Nichols algebra of diagonal type and 

assume that (U(χ)max, Bc) admits an Iwasawa decomposition (i.e. satisfies the condition 

in Theorem A). Then the coideal subalgebra Bc of U(χ)max is weakly quasitriangular up 

to completion.
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2. The size of coideal subalgebras of Heisenberg doubles and Drinfeld doubles

In this first section we describe the general setting and introduce the coideal subalge-

bras Bc which are the main objects of investigation in the present paper. The algebras 

Bc have a natural filtration. We determine the parameters c for which gr(Bc) is of the 

right size. To this end we use methods first employed for quantized universal enveloping 

algebras by G. Letzter in [30, Section 7].

2.1. The setting

We review the Drinfeld double Ũ(χ) of the tensor algebra of a braided vector space 

of diagonal type, following [21, Section 4]. We will need in particular the description of 

ideals of Ũ(χ) which preserve the triangular decomposition from [21, Proposition 4.17]. 

This allows us to consider quotients of Ũ(χ) which are generalizations of Drinfeld-Jimbo 

quantized enveloping algebras for deformation parameters including roots of unity.
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Let K be a field and set K× = K \ {0}. Let I = {1, . . . , n} and let {αi | i ∈ I} denote 

the standard basis of Zn. Let H = K[Ki, K
−1
i | i ∈ I] denote the group algebra of Zn. Let 

χ : Z
n × Z

n → K
× be a bicharacter and set qij = χ(αi, αj) for all i, j ∈ I. In this paper 

we always assume that the matrix (qij) is symmetric, that is qij = qji for all i, j ∈ I. 

Recall that every bicharacter is twist-equivalent to a symmetric bicharacter, and that 

the corresponding Nichols algebras are linearly isomorphic, see [3, Proposition 3.9]. Let

V +(χ) ∈ H
HYD, V −(χ) ∈ H

HYD

be the Yetter-Drinfeld modules with linear bases {Ei | i ∈ I} and {Fi | i ∈ I}, respectively, 

such that the left action · and the left coaction δ of H on V +(χ) and on V −(χ) are given 

by

Ki · Ej = qijEj , δ(Ei) = Ki ⊗ Ei,

Ki · Fj = q−1
ji Fj ,δ(Fi) = K−1

i ⊗ Fi,
(2.1)

respectively. Let T (V +(χ)) and T (V −(χ)) denote the tensor algebras of V +(χ) and 

V −(χ), respectively. Recall that T (V +(χ)) and T (V −(χ)) are braided Hopf algebras in 

the category H
HYD. Let T (V +(χ)) ⋊ H and T (V −(χ)) ⋊ H denote the bosonizations of 

T (V +(χ)) and T (V −(χ)), respectively, which are Hopf algebras, see [39], [35], [21, (4.5)]. 

We write (T (V −(χ)) ⋊ H)cop to denote the Hopf algebra structure on T (V −(χ)) ⋊ H

with the opposite coproduct. There exists a skew Hopf-pairing between T (V +(χ)) ⋊

H and (T (V −(χ)) ⋊ H)cop, see [21, Proposition 4.3]. We consider the quotient of the 

corresponding Drinfeld double by the ideal identifying the two copies of H

Ũ(χ) =
((

T (V +(χ)) ⋊ H
)

⊗
(
T (V −(χ)) ⋊ H

)cop
)

/(KiLi − 1 | i ∈ I)

where Li denotes the inverse of Ki in the second copy of H, see [21, Definition 4.5, Remark 

5.7]. More explicitly, Ũ(χ) is a Hopf algebra generated by the elements Ei, Fi, Ki, K
−1
i

with coproducts

Δ(Ei) = Ei ⊗ 1 + Ki ⊗ Ei,

Δ(Fi) = Fi ⊗ K−1
i + 1 ⊗ Fi, (2.2)

Δ(Ki) = Ki ⊗ Ki

for all i ∈ I. Defining algebra relations for Ũ(χ) are given by

KiK
−1
i = 1,

KiEj = qijEjKi, KiFj = q−1
ij FjKi, (2.3)

EiFj − FjEi = δi,j(Ki − K−1
i ),

for all i, j ∈ I, see [21, Proposition 4.6].
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Remark 2.1. In the quantum double 
(
T (V +(χ)) ⋊H

)
⊗

(
T (V −(χ)) ⋊H

)cop
the relations 

KiEjK−1
i = qijEj and LiEjL−1

i = q−1
ji Ej hold for all i, j ∈ I, see [21, Proposition 4.6]. 

In Ũ(χ) we identify Ki and L−1
i . By the above relations, the resulting quotient contains 

T (V +(χ)) and T (V −(χ)) as subalgebras if and only if qij = qji for all i, j ∈ I, that is, 

the braiding matrix is symmetric.

In view of the defining relations (2.3) of Ũ(χ) there exists an isomorphism of Hopf 

algebras ω : Ũ(χ) → Ũ(χ)cop such that

ω(Ki) = K−1
i , ω(Ei) = Fi, ω(Fi) = Ei,

for all i ∈ I. The isomorphism ω is denoted by φ3 in [21, Proposition 4.9.(6)].

The algebra Ũ(χ) has a triangular decomposition in the sense that the multiplication 

map

T (V +(χ)) ⊗ H ⊗ T (V −(χ)) → Ũ(χ) (2.4)

is a linear isomorphism, see [21, Proposition 4.14]. We write this as

Ũ(χ) ∼= T (V +(χ)) ⋊ H ⋉ T (V −(χ))

to indicate that the bosonizations T (V +(χ)) ⋊H and H⋉T (V −(χ)) = (T (V −(χ) ⋊H)cop

are subalgebras of U(χ). We will use similar notation for other triangular decompositions 

later in the paper. We are interested in ideals of Ũ(χ) which are compatible with the 

triangular decomposition. Let

I ⊆
∞⊕

m=2

T (V +(χ))m

be a Zn-graded biideal of T (V +(χ)). By [21, Corollary 4.21] the subspace IHT (V −(χ))

is a Hopf ideal of Ũ(χ). Similarly one shows that the subspace T (V +(χ))Hω(I) is a 

Hopf ideal of Ũ(χ). Let (I, ω(I)) denote the ideal of Ũ(χ) generated by I and ω(I). We 

define

U(χ) = Ũ(χ)/(I, ω(I)), U+ = T (V +(χ))/I, U− = T (V −(χ))/ω(I).

By [21, Proposition 4.17] the Hopf algebra U(χ) has a triangular decomposition

U(χ) ∼= U+
⋊ H ⋉ U−. (2.5)

The subalgebras U+ and U− are pre-Nichols algebras as defined in [36]. Recall from [36, 

Section 2] that a pre-Nichols algebra of a braided vector space V is any graded braided 

Hopf algebra of the form T (V )/I where I is a graded biideal which trivially intersects 
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V . In particular, if we choose I = Imax(χ) ⊆ T (V +(χ)) to be the maximal Zn-graded 

biideal in 
⊕∞

m=2 T (V +(χ))m, then U+ is the Nichols algebra of V +(χ). We allow more 

general graded biideals I to cover non-restricted specializations of quantized universal 

enveloping algebras at roots of unity [12].

Remark 2.2. The algebra U(χ) is a factor of the Drinfeld double of the bosonization of 

U+. For the sake of brevity, we will refer to U(χ) as the Drinfeld double of the pre-Nichols 

algebra U+.

We end this introductory section by recalling two projection maps which play an 

important role in Letzter’s theory of quantum symmetric pairs, see [30, Section 4, Lemma 

7.3]. Let G− be the subalgebra of U(χ) generated by the elements FiKi for all i ∈ I. We 

can rewrite the triangular decomposition (2.5) as

U(χ) ∼= U+
⋊ H ⋉ G−.

As a vector space U(χ) has a direct sum decomposition

U(χ) =
⊕

λ∈Zn

U+KλG−. (2.6)

Here we write Kλ = Kλ1
1 · · · · · Kλn

n for any λ = (λ1, . . . , λn) ∈ Z
n. For λ ∈ Z

n let

Pλ : U(χ) → U+KλG− (2.7)

be the canonical projection with respect to the direct sum decomposition (2.6). It follows 

from the definition of the coproduct (2.2) that Pλ is a homomorphism of left U(χ)-

comodules, that is

Δ(Pλ(x)) = (id ⊗ Pλ)(Δ(x)) (2.8)

for all x ∈ U(χ). The algebras U+ and U− are Z
n-graded with deg(Ei) = αi and 

deg(Fi) = −αi for all i ∈ I. Degrees of homogeneous elements in U+ and U− lie in Nn

and −N
n, respectively. Hence we obtain a second direct sum decomposition

U(χ) =
⊕

α,β∈Nn

U+
α HU−

−β . (2.9)

For α, β ∈ N
n let

πα,β : U(χ) → U+
α HU−

−β (2.10)

denote the canonical projection with respect to the direct sum decomposition (2.9).



S. Kolb, M. Yakimov / Advances in Mathematics 365 (2020) 107042 15

2.2. The partial bosonization Hθ ⋉ U− and the coideal subalgebra Bc

Let τ : I → I be a bijection such that τ2 = id and qij = qτ(i)τ(j) for all i, j ∈ I. 

We may consider τ as an automorphism of the braided bialgebra T (V +(χ)). We always 

assume that the ideal I used to define U(χ) satisfies the relation τ(I) = I. We also 

consider τ as a group automorphism of Z
n given by τ(αi) = ατ(i) for all i ∈ I. Let 

θ : Z
n → Z

n be the involutive group automorphism given by

θ(λ) = −τ(λ) for all λ ∈ Z
n

and set

Z
n
θ = {λ ∈ Z

n | θ(λ) = λ}. (2.11)

Define Hθ to be the subalgebra of H generated by the elements KiK
−1
τ(i) for all i ∈ I. By 

construction, Hθ is the group algebra of Zn
θ . We call the subalgebra Hθ ⋉ U− of U(χ)

generated by Hθ and U− the partial bosonization of U−. As a vector space we have 

Hθ ⋉ U− = Hθ ⊗ U−.

For c = (c1, . . . , cn) ∈ K
n we define Bc to be the subalgebra of U(χ) generated by Hθ

and the elements

Bi = Fi + ciEτ(i)K
−1
i for all i ∈ I.

The definition of the coproduct Δ on U(χ) implies that

Δ(Bi) = Bi ⊗ K−1
i + 1 ⊗ Fi + ciKτ(i)K

−1
i ⊗ Eτ(i)K

−1
i for all i ∈ I (2.12)

and hence Bc ⊂ U(χ) is a right coideal subalgebra, that is

Δ(Bc) ⊂ Bc ⊗ U(χ).

The algebra Bc has a filtration F defined by the degree function given by

deg(Bi) = 1 for all i ∈ I,

deg(h) = 0 for all h ∈ Hθ.
(2.13)

In the following we want to compare the associated graded algebra gr(Bc) with the 

algebra Hθ⋉U−. To this end, we first introduce some more notation. For any multi-index 

J = (j1, . . . , jm) ∈ Im we write |J | = m, and we write FJ = Fj1
· · · · ·Fjm

and BJ = Bj1
·

· · · · Bjm
. The commutation relations (2.3) imply that KiK

−1
τ(i)Bj = q−1

ij qτ(i)jBjKiK
−1
τ(i)

for all i, j ∈ I and hence Bc =
∑

J HθBJ . Let p = p(x1, . . . , xn) be a noncommutative 

polynomial in variables xi for i ∈ I. To shorten notation we write p(F ) = p(F1, . . . , Fn), 

p(E) = p(E1, . . . , En), p(B) = p(B1, . . . , Bn), p(Eτ K−1) = p(Eτ(1)K
−1
1 , . . . , Eτ(n)K

−1
n ), 
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p(KEτ ) = p(K1Eτ(1), . . . , KnEτ(n)) and p(Fτ K−1) = p(Fτ(1)K
−1
1 , . . . , Fτ(n)K

−1
n ). For 

any m ∈ N define

U−
≤m = spanK{Fi1

. . . Fij
| j ≤ m}.

By definition of the generators Bi and the defining relations (2.3) of U(χ) we have

Fm−1(Bc) ⊂ U+HU−
≤m−1 for any m ∈ N. (2.14)

Hence, if p be a non-commutative, homogeneous polynomial of degree m then

p(B) ∈ Fm−1(Bc) =⇒ p(F ) = 0.

Hence we obtain a surjective homomorphism of graded algebras

ϕ : gr(Bc) → Hθ ⋉ U− (2.15)

such that ϕ(Bi) = Fi and ϕ(h) = h for all i ∈ I, h ∈ Hθ. We want to know un-

der which conditions the map ϕ is an isomorphism. To this end, for any homogeneous 

noncommutative polynomial p of degree m we consider the following property

p(F ) = 0 =⇒ p(B) ∈ Fm−1(Bc). (Bc-rel)

We consider the set Nrel of all degrees for which homogeneous relations in U− lead to 

relations in Bc, that is

Nrel = {k ∈ N | any polynomial p of degree m ≤ k satisfies (Bc-rel) }. (2.16)

By definition of Nrel the map ϕ is injective if and only if Nrel = N.

Proposition 2.3. The map ϕ is an isomorphism of graded algebras if and only if Nrel = N.

In Section 2.5 we will formulate necessary and sufficient conditions on the parameters 

c which imply that Nrel = N. First, however, we show in Section 2.4 that a quotient of Bc

inside a Heisenberg double satisfies the relation Nrel = N irrespective of the parameters 

c. For later reference we note the following technical lemma.

Lemma 2.4. Let p be a homogeneous polynomial. The following are equivalent:

(1) p(F ) = 0,

(2) p(E) = 0,

(3) p(Eτ K−1) = 0,

(4) p(KEτ ) = 0.

(5) p(Fτ K−1) = 0.
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Proof. The equivalence between (1) and (2) follows from p(E) = ω(p(F )). As τ(I) = I, 

the latter is equivalent to p(Eτ(1), . . . , Eτ(n)) = 0. By the triangular decomposition (2.5), 

this is equivalent to the relation p(Eτ(1)K
−1
1 , . . . , Eτ(n)K

−1
n ) = 0 in U(χ). Indeed, the 

factor which is obtained by commuting all negative Ki-powers to the very right of any 

monomial of weight λ ∈ Z
n depends only on λ and not on the monomial because (qij)

is symmetric. This shows that (2) and (3) are equivalent. The equivalence between (2) 

and (4) is verified analogously, and so is the equivalence between (1) and (5). �

2.3. The Heisenberg double

Let U(χ)poly be the subalgebra of U(χ) generated by the elements Fi, EiK
−1
i , K−1

i , 

KiK
−1
τ(i) for all i ∈ I. Let G+ denote the subalgebra of U(χ) generated by the elements 

Ẽi = EiK
−1
i for all i ∈ I. The following description of U(χ)poly in terms of generators 

and relations follows from the corresponding description of U(χ).

Lemma 2.5. The algebra U(χ)poly is the factor of the free product of the algebras

G+, U−, K[Kλ | λ ∈ −N
n + Z

n
θ ]

by the relations

KλẼi = χ(λ, αi)ẼiKλ, KλFi = χ(λ, αi)
−1FiKλ (2.17)

for i ∈ I, λ ∈ −N
n + Z

n
θ and the cross relations

q−1
ij ẼiFj − FjẼi = δij(1 − K−2

i ) (2.18)

for i, j ∈ I.

It follows from the above Lemma and from the triangular decomposition (2.5) of U(χ)

that U(χ)poly has a triangular decomposition

U(χ)poly ∼= G+ ⊗ K[Kλ | λ ∈ −N
n + Z

n
θ ] ⊗ U−. (2.19)

Observe that U(χ)poly is a sub-bialgebra of U(χ) but not a sub-Hopf algebra. By con-

struction we have Bc ⊂ U(χ)poly. By definition of the coproduct (2.2) the two sided ideal 

I− = 〈K−1
i | i ∈ I〉 in U(χ)poly is a right coideal, that is

Δ(I−) ⊆ I− ⊗ U(χ)poly.

Hence the quotient Heis(χ) = U(χ)poly/I− is a right U(χ)poly-comodule algebra with 

generators Ẽi = EiK
−1
i , Fi, KiK

−1
τ(i) for i ∈ I. We call Heis(χ) the Heisenberg double

associated to bicharacter χ and the pre-Nichols algebra U+. We write
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Δ : Heis(χ) → Heis(χ) ⊗ U(χ)poly

to denote the coaction. Let κ : U(χ)poly → Heis(χ) be the projection map and observe 

that

Δ(κ(x)) = (κ ⊗ id)Δ(x) for all x ∈ U(χ)poly. (2.20)

Lemma 2.5 implies that Heis(χ) is the factor of the free product of G+, U− and K[Kλ | λ ∈
Zn

θ ] by the relations (2.17) for i ∈ I, λ ∈ Z
n
θ and the cross relations

q−1
ij ẼiFj − FjẼi = δij

for i, j ∈ I. This implies that Heis(χ) has a triangular decomposition

Heis(χ) ∼= G+
⋊ Hθ ⋉ U− (2.21)

where G+ = K〈Ẽi | i ∈ I〉.

Remark 2.6. In the special case of the quantized universal enveloping algebra Uq(g) of 

a symmetrizable Kac–Moody algebra at a non-root of unity q and τ = id, the algebra 

Heis(χ) is isomorphic to Kashiwara’s bosonic algebra Bq(g) [24, Section 3.3]. When g

is finite dimensional, in [18, Theorem 6.2] it was proved that it has the structure of a 

quantum cluster algebra; the algebra was denoted by U−
op ⊲⊳ U+ in [18, Theorem 4.7, 

Remark 4.8].

The projection maps Pλ for λ ∈ Z
n and πα,β for α, β ∈ N

n from the end of Section 2.1

have analogs for the Heisenberg double. For α ∈ N
n we write G+

α = U+
α H ∩ G+. In view 

of the triangular decomposition (2.21) of the Heisenberg double we get a direct sum 

decomposition

Heis(χ) =
⊕

α,β∈Nn,μ∈Zn
θ

G+
α KμU−

−β . (2.22)

Now the projection Pλ from (2.7) induces a projection

P λ : Heis(χ) →
⊕

μ−α−β=λ

G+
α KμU−

−β . (2.23)

By (2.8) we obtain

Δ ◦ P λ(x) = (id ⊗ Pλ)Δ(x) for all x ∈ Heis(χ). (2.24)

Moreover, for α, β ∈ N
n let
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πα,β : Heis(χ) → G+
α HθU−

−β (2.25)

be the projection with respect to the decomposition (2.22). We consider the partial order 

on Zn given by

(j1, . . . , jn) ≤ (j′
1, . . . , j′

n) ⇐⇒ ji ≤ j′
i for i = 1, . . . , n.

For later use we note the following property of the projection map (2.25).

Lemma 2.7. Let u ∈ Heis(χ) and let α ∈ N
n be maximal with respect to the partial order 

such that πα,β(u) �= 0 for some β ∈ N
n. Then

0 �= (id ⊗ πα,0)Δ(u).

Proof. Using the direct sum decomposition (2.22) we write

u =
∑

γ,β∈Nn,i

xγ,iu
0
γ,β,iy−β,i

where xγ,i ∈ G+
γ are linearly independent, and u0

γ,β,i ∈ Hθ and y−β,i ∈ U−
−β . Let now α

be as in the assumption and set

uα =
∑

β∈Nn,i

xα,iu
0
α,β,iy−β,i

and u 	=α = u − uα. By the maximality of α we have

(id ⊗ πα,0)Δ(u 	=α) = 0.

Hence, using Sweedler notation for the coaction Δ in the form Δ(u) = u(0) ⊗ u(1) we 

obtain

(id ⊗ πα,0)Δ(u) = (id ⊗ πα,0)Δ(uα)

=
∑

β∈Nn,i

u0
α,β,i(1)y−β,i ⊗ xα,iu

0
α,β,i(2)K−β

and the latter expression is non-zero by the linear independence of the xα,i. �

2.4. Relations in Bc

Recall the projection map κ : U(χ)poly → Heis(χ) and define Bc = κ(Bc). We also 

use the notation x = κ(x) for x ∈ U(χ)poly and write in particular Bi = κ(Bi) for all 

i ∈ I. We proceed as in Section 2.2. The algebra Bc is filtered by a degree function with 
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deg(Bi) = 1 for all i ∈ I and deg(h) = 0 for all h ∈ Hθ. Let gr(Bc) denote the associated 

graded algebra. We obtain a surjective homomorphism of graded algebras

ϕ : gr(Bc) → Hθ ⋉ U−

such that ϕ(Bi) = F i and ϕ(h) = h for all i ∈ I, h ∈ Hθ. For any non-commutative 

polynomial p in variables x1, . . . , xn we write p(B) = p(B1, . . . , Bn). Assume that the 

noncommutative polynomial p has degree m. In analogy to property (Bc-rel) we are 

interested in the following property

p(F ) = 0 =⇒ p(B) ∈ Fm−1(Bc). (Bc-rel)

We consider the set Nrel of all degrees for which homogeneous relations in U− lead to 

relations in Bc, that is

Nrel = {k ∈ N | any polynomial p of degree l ≤ k satisfies (Bc-rel) }. (2.26)

We know that 1 ∈ Nrel. The following lemma provides a main step in the proof that 

N = Nrel below.

Lemma 2.8. Let β ∈ Z
n with β > 0 and m ∈ Nrel. Then

κ(G−K−β ∩ U(χ)poly) ∩
∑

|J|≤m

HθBJ = {0}.

Proof. Let a ∈ κ(G−K−β ∩ U(χ)poly) ∩ ∑
|J|≤m HθBJ . Choose k ∈ N0 minimal such 

that a ∈ κ(G−K−β ∩ U(χ)poly) ∩ ∑
|J|≤k HθBJ . We want to show that k = 0. Assume 

on the contrary that k ≥ 1 and write a = a0 + ak with a0 ∈ ∑
|J|≤k−1 HθBJ and 

ak ∈ ∑
|J|=k HθBJ . By the minimality of k we have ak �= 0. Write ak =

∑
i hipi(B) where 

hi ∈ Hθ are linearly independent and pi = pi(x1, . . . , xn) are homogeneous polynomials 

of degree k. The relation a ∈ κ(G−K−β ∩ U(χ)poly) together with the definition of the 

generators Bi of Bc (and the linear independence of the hi) imply that pi(Eτ K−1) = 0. 

Hence we have pi(F ) = 0 by Lemma 2.4. As k ∈ Nrel we obtain pi(B) ∈ ∑
|J|≤k−1 HθBJ . 

But then a = a0 + ak ∈ ∑
|J|≤k−1 HθBJ in contradiction to the minimality of k. Hence 

the assumption k ≥ 1 was incorrect and we obtain k = 0. Hence a ∈ κ(G−K−β ∩
U(χ)poly) ∩ Hθ = {0} which concludes the proof of the lemma. �

With these preparations we can show that Bc is not too big.

Proposition 2.9. Nrel = N.

Proof. We proceed by induction. Let k ∈ N and assume that {1, . . . , k − 1} ⊆ Nrel. Let 

p be a polynomial of degree k such that p(F ) = 0. Without loss of generality we may 
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assume that p is homogeneous of degree λ ∈ Z
n with |λ| = k. Write Y = p(B) and 

Z = P −λ(Y ) where P −λ is the projection operator from (2.23). Note that Z ∈ Bc by 

(2.24). Relations (2.12) and (2.20) imply that

Δ(Y ) ∈ Y ⊗ K−λ +
∑

|J|≤k−1

HθBJ ⊗ U(χ)poly.

Hence (2.24) implies that the element Z satisfies the relation

Δ(Z) ∈ Y ⊗ K−λ +
∑

|J|≤k−1

HθBJ ⊗ P−λ(U(χ)poly). (2.27)

We now prove Z = 0 as in [26, Proposition 5.16]. Assume that Z �= 0. Let α ∈ N
n be 

maximal with respect to the partial order such that πα,β(Z) �= 0 for some β ∈ N
n. By 

Lemma 2.4 we know that α < λ. Moreover, by Lemma 2.7 we have

0 �= (id ⊗ πα,0)Δ(Z) ∈ κ(G−K−λ+α ∩ U(χ)poly) ⊗ U+K−λ. (2.28)

If α �= 0 then (2.27) implies that

(id ⊗ πα,0)Δ(Z) ∈
(

κ(G−K−λ+α ∩ U(χ)poly) ∩
∑

|J|≤k−1

HθBJ

)
⊗ U+K−λ.

However, the left hand tensor factor of the above space is {0} by Lemma 2.8 in contra-

diction to (2.28). Hence α = 0 and Z ∈ κ(G−K−λ ∩ U(χ)poly). But then the relation 

p(F ) = 0 implies that Z ∈ ⊕
β<λ κ(G−

−βK−λ ∩ U(χ)poly) = {0}. Hence Z = 0.

Now we apply the counit ε to the second tensor factor in (2.27) to obtain

Y ∈
∑

|J|≤k−1

HθBJ .

Hence the polynomial p satisfies property (Bc-rel). This proves that k ∈ Nrel. �

We can now repeat the argument which led to Proposition 2.3 to obtain the following 

result.

Theorem 2.10. For all pre-Nichols algebras U+ of diagonal type and c ∈ K
n, the map 

ϕ : gr(Bc) → Hθ ⋉ U− is an isomorphism of graded algebras.

2.5. Relations in Bc

We now want to see how much of the argument in the previous section translates from 

Bc to the algebra Bc. Recall the definition of the subset Nrel ⊂ N from (2.16). A word 

by word translation of the proof of Lemma 2.8 gives the following result.
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Lemma 2.11. Let β ∈ Z
n with β > 0 and m ∈ Nrel. Then

G−K−β ∩
∑

|J|≤m

HθBJ = {0}.

Translating the initial steps of the proof of Proposition 2.9 into the setting of Bc we 

obtain the following result.

Proposition 2.12. Let p be a homogeneous polynomial of degree λ ∈ N
n with |λ| minimal 

such that p(F ) = 0 but

p(B) /∈
∑

|J|<|λ|
HθBJ .

Then P−λ(p(B)) = π0,0(P−λ(p(B))) = apK−λ for some ap ∈ K
× and hence K−λ ∈ Bc.

Proof. Write Y = p(B) and Z = P−λ(Y ). Equation (2.12) for the coproducts of the 

generators Bi implies that

Δ(Y ) ∈ Y ⊗ K−λ +
∑

|J|≤|λ|−1

HθBJ ⊗ U(χ)poly.

Hence (2.8) implies that the element Z satisfies the relation

Δ(Z) ∈ Y ⊗ K−λ +
∑

|J|≤|λ|−1

HθBJ ⊗ P−λ(U(χ)poly). (2.29)

If Z = 0 then we can apply the counit ε to the second tensor leg of the above expression 

and obtain Y ∈ ∑
|J|≤|λ|−1 HθBJ in contradiction to the assumption. Hence Z �= 0.

Let α ∈ N
n be maximal such that πα,β(Z) �= 0 for some β ∈ N

n. By Lemma 2.4 we 

know that α < λ. Moreover, in complete analogy to Lemma 2.7, we obtain

0 �= (id ⊗ πα,0)Δ(Z) ∈ G−K−λ+α ⊗ U+K−λ. (2.30)

If α �= 0 then (2.29) implies that

(id ⊗ πα,0)Δ(Z) ∈
(

G−K−λ+α ∩
∑

|J|≤|λ|−1

HθBJ

)
⊗ U+K−λ.

However, the left hand tensor factor of the above space is {0} by Lemma 2.11 in contra-

diction to (2.30). Hence α = 0 and Z ∈ G−K−λ.

Now choose β ∈ N
n maximal such that π0,β(Z) �= 0. As p(F ) = 0 we have β < λ. In 

analogy to Lemma 2.7 we have

0 �= (id ⊗ π0,β)Δ(Z) ∈ K−λ+β ⊗ G−
β K−λ (2.31)
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Comparison with (2.29) and application of Lemma 2.11 implies (as before for α) that 

β = 0. Hence Z = π0,0(Z) = apK−λ for some ap ∈ K and the claim follows from the 

relation Z ∈ Bc \ {0}. �

Recall that I ⊂ T (V +(χ)) denotes the ideal in the tensor algebra such that

U+ = T (V +(χ))/I.

The above proposition provides us with a method to check that condition (Bc-rel) holds 

for all polynomials.

Corollary 2.13. Let pj for j = 1, . . . , k be homogeneous, non-commutative polynomials of 

degree λj ∈ N
n, respectively, such that the set {pj(E) | j = 1, . . . , k} generates the ideal 

I. Assume that

π0,0 ◦ P−λj
(pj(B)) = 0 for j = 1, . . . , k. (2.32)

Then Nrel = N.

Proof. We prove this indirectly. Let p be a homogeneous polynomial of minimal degree 

λ ∈ N
n such that p(E) ∈ I but

p(B) /∈
∑

|J|<|λ|
HθBJ .

We can write

p =

k∑

j=1

∑

ℓ

qj,ℓ pj rj,ℓ

where qj,ℓ, rr,ℓ ∈ T (V +(χ)) are homogeneous polynomials and

deg(qj,ℓ) + λj + deg(rj,ℓ) = λ for all j, ℓ.

By the minimality assumption, any summand s = qj,ℓpjrj,ℓ with deg(s) > deg(pj)

satisfies s(B) ∈ ∑
|J|<|λj | HθBJ and hence may be omitted. Thus we may assume that

p =
k∑

j=1

ajpj for some aj ∈ K.

However, by Proposition 2.12 this is impossible, because of the assumption (2.32). �
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Corollary 2.13 suggests the following assumption about the parameters c in the defi-

nition of the coideal subalgebra Bc:

The ideal I ⊂ T (V +(χ)) is generated by homogeneous, non-commutative 

polynomials pj(E) for j = 1, . . . , k of degree λj ∈ N
n, respectively, for 

which π0,0 ◦ P−λj
(pj(B)) = 0.

(c)

The expressions π0,0◦P−λj
(pj(B)) in condition (c) are multiples of K−λj

with coefficients 

depending on the parameters c = (ci)i∈I in the definition of the generators Bi. Condition 

(c) requires these coefficients to vanish, and hence provides a condition on the parameters 

c. In Section 3 we make condition (c) explicit for various classes of examples.

Condition (c) provides a reformulation of the condition Nrel = N.

Theorem 2.14. For all pre-Nichols algebras U+ of diagonal type the following statements 

are equivalent:

(1) The map ϕ : gr(Bc) → Hθ ⋉ U− is an isomorphism.

(2) Nrel = N.

(3) Condition (c) holds.

Moreover, if Nrel �= N then there exists λ ∈ N
n \ {0} such that K−λ ∈ Bc.

Proof. The equivalence between (1) and (2) is the statement of Proposition 2.3. By 

Corollary 2.13 we have that (3) implies (2). Conversely, if condition (c) does not hold, 

then Proposition 2.12 implies that P−λ(p(B)) = apK−λ with ap ∈ K
× for some homo-

geneous polynomial p of degree λ for which p(F ) = 0. As

P−λ

⎛
⎝ ∑

|J|<|λ|
HθBJ

⎞
⎠ = 0,

we see that the polynomial p violates condition (Bc-rel). This proves that (2) implies (3) 

and the final statement of the theorem. �

If condition (c) holds then the above theorem allows us to write down a basis of Bc

as a left Hθ-module. Let J ⊂
∞⋃

k=0

Ik be a subset of multi-idices such that {FJ | J ∈ J }

is a linear basis of U−. The following corollary is a version of [26, Proposition 6.2] in our 

setting. It is a consequence of the implication (3) ⇒ (1) in the theorem.

Corollary 2.15. Let U+ be a pre-Nichols algebra of diagonal type and assume that condi-

tion (c) holds. Then Bc is a free left Hθ-module with basis {BJ | J ∈ J }.
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Proof. Recall the filtration F of Bc defined by (2.13) and let m ∈ N. By property (1) in 

Theorem 2.14 and by the definition of J , the set {BJ | J ∈ J , |J | = m} forms a Hθ-basis 

of Fm(Bc)/Fm−1(Bc). Hence {BJ | J ∈ J , |J | ≤ m} is a Hθ-basis of Fm(Bc). �

Remark 2.16. One of the reasons for which the equivalent properties in Theorem 2.14 are 

so important is their relation to Iwasawa decompositions. The definition of the filtration 

F in (2.13) implies at once that for all Bc the following statements are equivalent:

(1) The map ϕ : gr(Bc) → Hθ ⋉ U− is an isomorphism.

(2) The algebra U(χ)poly admits the Iwasawa decomposition

U(χ)poly ∼= G+ ⊗ K[K−1
i | i ∈ I] ⊗ Bc.

(3) The algebra U(χ) admits the Iwasawa decomposition

U(χ) ∼= U+ ⊗ K[K±1
i | i ∈ Iτ ] ⊗ Bc,

where Iτ ⊂ I is a set of representatives of the τ -orbits in I.

2.6. The negative Heisenberg double

Recall the algebra U(χ)poly defined at the beginning of Section 2.3. In this section we 

show that condition (c) for Bc to be of the right size can be verified in a simpler algebra 

which is closely related to quantum Weyl algebras. This fact will be applied extensively 

in Section 3.

The algebra U(χ)poly has an N-filtration F defined by the following degree function 

on the generators

deg(Ẽi) = deg(Fi) = deg(K−1
i ) = 1, deg(KiK

−1
τ(i)) = 0 (2.33)

for all i ∈ I. It follows from the triangular decomposition (2.19) that the multiplication 

map

⊕

α,β,γ∈Nn

|α+β+γ|≤m

Hθ ⊗ G+
α ⊗ KK−β ⊗ U−

−γ → Fm(U(χ)poly) (2.34)

is a linear isomorphism for any m ∈ N. With the notation

(G+ ⊗ K[K−1
i | i ∈ I] ⊗ U−)m =

⊕

α,β,γ∈Nn

|α+β+γ|=m

G+
α ⊗ KK−β ⊗ U−

−γ ,

the linear isomorphism (2.34) provides a direct sum decomposition
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Fm(U(χ)poly) = Fm−1(U(χ)poly) ⊕
(
Hθ ⊗ (G+ ⊗ K[K−1

i | i ∈ I] ⊗ U−)m

)
. (2.35)

We call the graded algebra

Heis(χ)∨ = grF (U(χ)poly)

associated to the filtration F of U(χ)poly the negative Heisenberg double associated to 

the pre-Nichols algebra U+. By (2.35) for any m ∈ N the graded component Heis(χ)∨
m

is a free Hθ-module

Heis(χ)∨
m

∼= Hθ ⊗ (G+ ⊗ K[K−1
i | i ∈ I] ⊗ U−)m.

In particular Heis(χ)∨
0

∼= Hθ. The above also implies that G+, K[Kλ | λ ∈ −N
n + Z

n
θ ]

and U− are graded subalgebras of Heis(χ)∨ and that the multiplication map

G+ ⊗ K[Kλ | λ ∈ −N
n + Z

n
θ ] ⊗ U− → Heis(χ)∨ (2.36)

is a linear isomorphism. The presentation of U(χ)poly in Lemma 2.5 and the triangular 

decomposition (2.36) allow us to describe the negative Heisenberg double Heis(χ)∨ in 

terms of generators and relations.

Lemma 2.17. The negative Heisenberg double Heis(χ)∨ is canonically isomorphic to the 

quotient of the free product of the algebras G+, K[Kλ | λ ∈ N
n + Z

n
θ ] and U− by the 

relations (2.17) and the cross relations

q−1
ij ẼiFj − FjẼi = −δijK−2

i for all i, j ∈ I. (2.37)

Proof. Let Heis(χ)∨′
be the algebra described in the lemma. The algebra Heis(χ)∨′

is 

graded by the degree function (2.33) because the defining relations for Heis(χ)∨′
are 

homogeneous. It follows from Lemma 2.5 that there is a surjective homomorphism of 

graded algebras

ϕ : Heis(χ)∨′ → Heis(χ)∨

which maps Ẽi, K−λ, Fi ∈ Heis(χ)∨′
to Ẽi, K−λ, Fi ∈ Heis(χ)∨, respectively, for all 

i ∈ I, λ ∈ −N
n + Z

n
θ . The defining relations for Heis(χ)∨′

imply that the multiplication 

map

μ′ : Heis(χ)∨ ∼= G+ ⊗ K[Kλ | λ ∈ N
n + Z

n
θ ] ⊗ U− → Heis(χ)∨′

is surjective where we use the triangular decomposition (2.36). With this identification 

the composition ϕ ◦ μ′ : Heis(χ)∨ → Heis(χ)∨ is the identity map which implies that ϕ

is also injective. �
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We now show that condition (c) can be verified in the negative Heisenberg double. Let 

G+
+ and U−

+ denote the augmentation ideals of G+ and U−, respectively. The triangular 

decomposition (2.36) of Heis(χ)∨ implies that

Heis(χ)∨ = K[Kλ | λ ∈ −N
n + Z

n
θ ] ⊕

(
G+

+Heis(χ)∨ + Heis(χ)∨U−
+

)
. (2.38)

Let π∨
0,0 : Heis(χ)∨ → K[Kλ | λ ∈ −N

n + Z
n
θ ] denote the projection onto the first term 

in (2.38). For any i ∈ I we define B∨
i = Fi + ciẼτ(i)(Kτ (i)K−1

i ) ∈ Heis(χ)∨, and for any 

non-commutative polynomial p(x1, . . . , xn) we write p(B∨) = p(B∨
1 , . . . , B∨

n ).

Theorem 2.18. Let U+ be a pre-Nichols algebra of diagonal type corresponding to a 

bicharacter χ. Let p(x1, . . . , xn) be a homogeneous, non-commutative polynomial of de-

gree λ ∈ N
n. Then

π0,0 ◦ P−λ(p(B)) = π∨
0,0(p(B∨)). (2.39)

Furthermore, if

λ /∈ ⊕i∈IN(αi + ατ(i)), (2.40)

then P−λ ◦ π0,0(p(B)) = 0 in U(χ)poly.

Proof. By Lemma 2.17 the negative Heisenberg double is −N +Z
n
θ graded by the degree 

function given by

deg(Ẽi) = deg(Fi) = deg(K−1
i ) = −αi, deg(KiK

−1
τ(i)) = αi − ατ(i)

for all i ∈ I. For any μ ∈ N
n + Z

n
θ let P ∨

−μ : Heis(χ)∨ → Heis(χ)∨
−μ be the projection 

onto the graded component Heis(χ)∨
−μ.

Let λ =
∑

i∈I miαi ∈ N
n and set m = |λ| =

∑
i∈I mi. As Fm−1(U(χ)poly) ⊆

Ker(P−λ) we obtain a commutative diagram

Fm−1(U(χ)poly) Fm(U(χ)poly)

π0,0◦P−λ

Heis(χ)∨
m

π∨
0,0◦P ∨

−λ

KK−λ

(2.41)

Let now p(x1, . . . , xn) be a homogeneous non-commutative polynomial of degree λ. As 

B∨
i ∈ Heis(χ)∨

−αi
the element p(B∨) ∈ Heis(χ)∨

m is homogeneous of degree −λ and hence 

π∨
0,0◦P ∨

−λ(p(B∨)) = π∨
0,0(p(B∨)). The relation (2.39) now follows from the commutativity 

of the diagram (2.41).

To prove the second statement in the theorem write p(B) as a linear combination 

of noncommutative monomials in Fi and Ẽi(KiK
−1
τ(i)) for i ∈ I. Here we distribute 
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parenthesis, but do not commute the Ẽ and F generators. If (2.40) holds, then there is 

no monomial of this kind that contains equal number of terms Fi and Ẽi(KiK
−1
τ(i)) for 

all i ∈ I. It follows from the cross relations (2.37) that in this case

π∨
0,0(p(B∨)) = 0.

Now the second statement of the theorem follows from the relation (2.39). �

3. Examples of coideal subalgebras

We now consider various classes of pre-Nichols algebras U+ which fall into the setting 

of Section 2. In each case, using Theorems 2.14 and 2.18, we determine all parameters 

c for which the map ϕ : gr(Bc) → Hθ ⋉ U− given by (2.15) is an isomorphism. It 

is convenient to work with non-symmetric quantum integers. Given ξ ∈ K, set [n]ξ =

1 + ξ + · · · + ξn−1 and

[n]q! = [n]ξ . . . [1]ξ, [2n − 1]ξ!! = [2n − 1]ξ[2n − 3]ξ . . . [1]ξ

for n ∈ N, and

(
n
k

)

ξ

=
[n]ξ!

[k]ξ![n − k]ξ!

for 0 ≤ k ≤ n. Note that the ξ-binomial coefficient is a polynomial in Z[ξ] and therefore 

defined even for roots of unity.

3.1. Quantized universal enveloping algebras and nonrestricted specializations

Let g be a symmetrizable Kac–Moody algebra with (generalized) Cartan matrix 

(aij)i,j∈I where I = {1, . . . , n}. Denote by {di | i ∈ I} a set of relatively prime pos-

itive integers such that the matrix (diaij) is symmetric. Let g′ := [g, g] be the derived 

subalgebra of g. Fix ζ ∈ K
×, ζ �= ±1. Denote by Uζ(g′) the K-algebra with generators 

Ei, Fi, K
±1
i , i ∈ I and the following relations for i, j ∈ I:

KiKj = KjKi, KiEj = ζdiaij EjKi, KiFj = ζ−diaij FjKi,

EiFj − FjEi = δij(Ki − K−1
i ), (3.1)

pij(Ei, Ej) = pij(Fi, Fj) = 0, i �= j,

where pij(x, y) are the noncommutative polynomials in two variables given by

pij(x, y) =

1−aij∑

k=0

(−1)kζ−dik(1−aij−k)

(
1 − aij

k

)

ζ2di

x1−aij−kyxk.
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In the case when ζ is not a root of unity, Uζ(g′) is the quantized universal enveloping 

algebra of g′ for the deformation parameter ζ. If ζ is a root of unity with ζ2di �= 1 for 

all i ∈ I, then Uζ(g′) is the big quantum group of g′ at ζ, defined and studied by De 

Concini, Kac and Procesi [12]. In either case Uζ(g′) is a Hopf algebra with coproduct 

given by

Δ(Ki) = Ki ⊗ Ki, Δ(Ei) = Ei ⊗ 1 + Ki ⊗ Ei, Δ(Fi) = Fi ⊗ K−1
i + 1 ⊗ Fi

for i ∈ I. Denote by U± the unital K-subalgebras of Uζ(g′) generated by {Ei | i ∈ I} and 

{Fi | i ∈ I}, respectively. Set H = K[K±1
i | i ∈ I]. Consider the symmetric bicharacter

χ : Z
n × Z

n → K
× defined by χ(αi, αj) = ζdiaij .

If ζ ∈ K
× is not a root of unity, then U+ is isomorphic to the Nichols algebra of the 

Yetter–Drinfeld module V (χ). If ζ ∈ K
× is a root of unity and g is finite dimensional (and 

ζ3 �= 1 if g is of type G2), then U+ is isomorphic to the distinguished pre-Nichols algebra 

of V (χ) defined by Angiono [4, Definition 1]. For all ζ ∈ K
× \ {±1} and symmetrizable 

Kac–Moody algebras g, the algebra U+ is a pre-Nichols algebra of V (χ) and Uζ(g′) ∼=
U(χ) is the Drinfeld double of U+ in the sense of Remark 2.2. Thus the constructions 

from the previous section are applicable to Uζ(g′).

Let τ : I → I be a diagram automorphism, that is, it satisfies aτ(i)τ(j) = aij for 

all i, j ∈ I. Given c = (c1, . . . cn) ∈ K
n, consider the coideal subalgebra Bc of Uζ(g′)

generated by the elements

Bi = Fi + ciEτ(i)K
−1
i = Fi + ciẼτ(i)(Kτ(i)K

−1
i ), KiK

−1
τ(i) for all i ∈ I.

In the case when ζ is not a root of unity, the following result is contained in [26, Lemma 

5.4, Proposition 5.16 and Theorem 7.3], see also [30, Section 7] for a similar discussion 

for g of finite type.

Proposition 3.1. Let g be a symmetrizable Kac–Moody algebra, ζ ∈ K
× \ {±1}, and let 

τ : I → I be a diagram automorphism.

(i) If aij �= 0 or τ(i) �= j, then π0,0 ◦ P−λ(pij(Bi, Bj)) = 0 for λ = (1 − aij)αi + αj. If 

aij = 0 and τ(i) = j, then

P−αi−αj
◦ π0,0(pij(Bi, Bj)) = (cj − ci)K

−1
i K−1

j . (3.2)

(ii) For the coideal subalgebra Bc of Uζ(g′) the map ϕ : gr(Bc) → Hθ ⋉U− is an algebra 

isomorphism if and only if ci = cτ(i) for all i ∈ I with aiτ(i) = 0.

Proof. (i) We work in the corresponding negative Heisenberg double, which we denote 

by Heisζ(g′)∨, and apply Theorem 2.18 to get the statement in Uζ(g′).
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Let i �= j ∈ I. If aij �= 0 or τ(i) �= j, then λ = (1 − aij)αi + αj satisfies (2.40), and by 

the second part of Theorem 2.18 we have

π0,0 ◦ P−λ(pij(Bi, Bj)) = 0

in this case.

Now assume that aij = 0 and τ(i) = j. Then in the notation of Section 2.6 we have

π∨
0,0(pij(B∨

i , B∨
j )) = π∨

0,0

(
(Fi + ciẼj(KiK

−1
j )−1)(Fj + cjẼi(KjK−1

i )−1)

− (Fj + cjẼi(KjK−1
i )−1)(Fi + ciẼj(KiK

−1
j )−1)

)
= (cj − ci)K

−1
i K−1

j

in Heisζ(g′)∨. Hence Theorem 2.18 implies (3.2). Part (ii) follows from the first part and 

Theorem 2.14. �

3.2. The small quantum group uζ(sl3)

Consider the Nichols algebra of type A2 at a root of unity. For this we fix an integer 

N > 2 and set

M :=
N

gcd(N, 2)
· (3.3)

Let ζ be a primitive N -th root of unity and χ : Z
2 × Z

2 → K
× be the symmetric 

bicharacter defined by

q11 = q22 = ζ2, q12 = q21 = ζ−1.

The Nichols algebra B(V +(χ)) is an algebra in HHYD with braiding c, and it is generated 

by elements x1, x2. Recall that the braided commutator is defined by [x, y]c = μ ◦ (id −
c)(x ⊗ y) for all x, y ∈ B(V +(χ)) where μ denotes multiplication. Set x12 = [x1, x2]c =

x1x2 − ζ−1x2x1. With this notation defining relations for B(V +(χ)) are given by [2, 

Equation (4.5)]

xM
1 = xM

2 = xM
12 = 0, [x1, [x1, x2]c]c = 0 = [x2, [x2, x1]c]c.

Denote by uζ(sl3) the Drinfeld double of B(V +(χ)). Its factor by the ideal generated by 

KN
i − 1 for i = 1, 2 is isomorphic to the small quantum group uζ(sl3) of type A2.

Consider the diagram automorphism τ given by τ(1) = 2, τ(2) = 1. It follows from 

Theorem 2.18 that the only relation which gives a condition on the parameters c1, c2

of the coideal subalgebra is the relation xM
12 = 0 because the other four relations are 

homogeneous of a degree λ which satisfies (2.40). This relation gives a condition for any 

integer N (even or odd!). Recall that
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B1 = F1 + c1E2K−1
1 = F1 + c1Ẽ2(K1K−1

2 )−1,

B2 = F2 + c2E1K−1
2 = F2 + c2Ẽ1(K2K−1

1 )−1.
(3.4)

We define a non-commutative polynomial p(x1, x2) by

p(x1, x2) = (x1x2 − ζ−1x2x1)M .

Note that p(x1, x2) is homogeneous of degree λ = (M, M) ∈ Z
2.

Proposition 3.2. Let N ∈ N with N ≥ 2 and let ζ ∈ K be a primitive N -th root of unity. 

Let M be given by (3.3).

(i) In the quantum double uζ(sl3) of the Nichols algebra of type A2 corresponding to the 

root of unity ζ, we have

[
π0,0 ◦ P−λ(p(B1, B2))

]
Kλ =

{
cM

2 + cM
1 , if N ≡ 2 mod 4

cM
2 − cM

1 , otherwise.

(ii) For the coideal subalgebra Bc of uζ(sl3) the map ϕ : gr(Bc) → Hθ ⋉U− is an algebra 

isomorphism if and only if

c1 = υc2

where υ ∈ K is such that υM = −1 if N ≡ 2 mod 4, and υM = 1, otherwise.

For example, when N = 4 we have ζ =
√

−1. Then

π0,0 ◦ P−λ(p(B1, B2)) = (c2
2 − c2

1)Kλ

and Bc ⊂ u√
−1(sl3) is of the right size if and only if c2 = ±c1.

In the proof of the proposition we will use the Al-Salam-Carlitz I discrete orthogonal 

polynomials U
(a)
n (x; q), see [1] and [25, pp. 534-537]. They have been used in the related 

setting of the q-harmonic oscillator in [7]. From an algebraic point of view U
(a)
n (x; q) ∈

Z[a, q, x] is given by

U (a)
n (x; q) =

n∑

k=0

(
n
k

)

q

(−a)kqk(k−1)/2(x − 1) . . . (x − qn−k−1).

The Al-Salam-Carlitz I polynomials satisfy the backward shift recursion

−q−n+1xU (a)
n (x; q) = aU

(a)
n−1(x; q) − (x − 1)(x − a)U

(a)
n−1(q−1x; q) (3.5)
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for all n > 0, see [25, Eq. (14.24.8)]. Consider the q-derivative Dqf(x) = (f(qx) −
f(x))/((q − 1)x) for f(x) ∈ K[x]. The recursion (3.5) implies the following lemma. The 

proof is left to the reader.

Lemma 3.3. Consider the polynomials pn(x; t, q) ∈ Z[t, q±1, x] defined recursively by

p0(x; t, q) = 1, pn(x; t, q) = (x + tq−2n
Dq + q−n)pn−1(x; t, q), ∀n > 0. (3.6)

Consider Z[t, q±1, x] as a subring of Z[t±1
1 , q±1, x] via the map t �→ (q − 1)t1(t1 + 1). 

Then in Z[t±1
1 , q±1, x] we have

pn(x; t, q) = tn
1 q−n2

U (−t−1
1 −1)

n (qnt−1
1 x; q)

for all n ∈ N.

Define the quantum Weyl algebra Aq
1 as the K[q±1]-algebra with generators X, Y, Z1, Z2

and relations

Y X − q−1XY = Z2, ZiY = qiY Zi, ZiX = q−iXZi, Z1Z2 = Z2Z1.

Inside the localization Aq
1[Z−1

1 ] we have a copy of the first quantized Weyl algebra A1
q, 

which is the K[q±1]-algebra with generators y = Y Z−1
1 , x = XZ−1

1 , z = qZ2Z−2
1 and 

relations

yx − qxy = z, zx = xz, zy = yz.

The algebra A1
q acts on K[q±1, t, x] by x �→ (x·), y �→ tDq, z �→ (t·). Iterating the 

recursion (3.6) gives that the polynomials pn(x; z, q) ∈ Z[q±1, t, x] satisfy

(x + q−2ny + q−n) . . . (x + q−2y + q−1) · 1 = pn(x; z, q).

Since K[q±1, t, x] ∼= A1
q/(A1

qy) as left A1
q-modules, we have

(X + Y + Z1)n = qn(n+1)/2Zn
1 (x + q−2ny + q−n) . . . (x + q−2y + q−1) (3.7)

≡ qn(n+1)/2Zn
1 pn(x; z, q) mod Aq

1Y.

For ξ ∈ K
×, let Aξ

1 = Aq
1/(q − ξ)Aq

1 denote the specialization of Aq
1 at ξ.

Proof of Proposition 3.2. (i) We work in the negative Heisenberg double Heisζ(sl3)∨

corresponding to uζ(sl3) and apply Theorem 2.18 to get the statement in uζ(sl3). Set

E1 := Ẽ1(K1K−1
2 ) = E1K−1

2 , E2 := Ẽ2(K2K−1
1 ) = E2K−1

1 , K12 = K1K2,

so B∨
1 = F1 + c1E2 and B∨

2 = F2 + c2E1. Denote also
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F12 = F1F2 − ζ−1F2F1, E21 = E2E1 − ζ−1E1E2.

One verifies that

F12Ej = ζ−1EjF12 + δj2F1K−1
12 for j = 1, 2

from which it follows that

F12E21 = ζ−2E21F12 + (1 − ζ−2)2E1F1K−1
12 + ζ−1(1 − ζ−2)K−2

12 .

In a similar fashion one shows that

F12(E1F1) = ζ−2(E1F1)F12, E21(E1F1) = ζ2(E1F1)E21.

From the last three identities one derives that we have a homomorphism ρ : Aζ2

1 →
Heisζ(sl3)∨ given by

ρ(X) = c1c2E21, ρ(Y ) = F12,

ρ(Z1) = (ζ − ζ−1)c2E1F1 + (c2 − ζ−1c1)K−1
12 ,

ρ(Z2) = (1 − ζ−2)2c1c2E1F1K−1
12 + ζ−1(1 − ζ−2)c1c2K−2

12 .

Equation (3.7) implies that

p(B∨
1 , B∨

2 ) = ρ(X + Y + Z1)M (3.8)

≡ ζM(M+1)ρ(Z1)M pM (ρ(XZ−1
1 ); ζ2ρ(Z2Z−1

1 ), ζ2) mod Heisζ(sl3)∨F12.

There are no terms with Z1-denominators in the right hand side of the congruence since 

deg(pn(x; t, q)) = n when pn(x; t, q) is considered as a polynomial in x, t and the degree 

is computed with respect to the grading deg(x) = 1, deg(t) = 2. This follows from the 

recursion (3.6) and the fact that the operator Dζ2 lowers the degree by 1.

Every pair of the six terms of ρ(X), ρ(Z1) and ρ(Z2) quasi-commute. Therefore

π∨
0,0(ρ(XiZj

1Zk
2 )) = δi,0

(
(c2 − ζ−1c1)K−1

12

)j(
ζ−1(1 − ζ−2)c1c2K−2

12

)k

for all i, j, k ∈ N. Combining this with (3.8) gives that

π∨
0,0(p(B∨

1 , B∨
2 )) = ζM(M+1)(c2 − ζ−1c1)M pM (0; t, ζ2)K−M

12 (3.9)

where

t =
(ζ − ζ−1)c1c2

(c2 − ζ−1c1)2
·
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As t = (ζ2 − 1)t1(t1 + 1) for t1 = −c2/(c2 − ζ−1c1) we can apply Lemma 3.3 and obtain

pM (0; t, ζ2) = tM
1 ζ−2M2

U
(−ζ−1c1/c2)
M (0; ζ2). (3.10)

Since ζ2 is a primitive M -th root of unity, 
(

M
k

)
ζ2

= 0 for all 0 < k < M . For the 

corresponding Al-Salam-Carlitz I polynomials we hence have

U
(a)
M (0; ζ2) = (−1)M ζM(M−1)(1 + aM ). (3.11)

Inserting (3.10) and (3.11) into (3.9) we obtain

π∨
0,0(p(B∨

1 , B∨
2 ))KM

12 = ζM(M+1)(c2 − ζ−1c1)M tM
1 ζ−2M2

U
(−ζ−1c1/c2)
M (0; ζ2)

= cM
2 + (−1)M ζM cM

1 ,

which proves part (i). Part (ii) follows directly from the first part. �

3.3. The quantum supergroups of type sl(m|k)

Let m, k be positive integers such that (m, k) �= (1, 1). Denote n = m + k − 1. The 

(super) Dynkin diagrams of the Lie superalgebra sl(m|k) associated to different choices 

of Borel subalgebras are the Dynkin diagrams of type An where each vertex is denoted 

in two different ways: by 
⊗

if the vertex is odd and by © if it is even, cf. [23, Sections 

2.5.5-2.5.6]. (There is a dependence between the number of odd vertices, m and k which 

will not play a role below.) All odd simple roots are necessarily isotropic. We label the 

vertices in an increasing way from left to right by the elements of I = {1, . . . , n}. Define 

the parity function p : I → {0, 1} by letting p(i) = 0 for even vertices and p(i) = 1 for 

odd vertices.

Fix ζ ∈ K
×, ζ �= ±1 and consider the bicharacter χ : Z

n ×Z
n → K

× such that qij = 1

for |i − j| > 1,

qi,i−1 = qi−1,i = ζ(−1)p(i)+...+p(n)+1

and qii =

{
−1, p(i) = 1

ζ2(−1)p(i)+...+p(n)

, p(i) = 0.

It is easy to verify that this bicharacter satisfies the conditions (1)–(3) on p. 411 in [2], 

and clearly it is symmetric. Denote by U+ the K-algebra with generators xi, i ∈ I and 

relations

[xi, [xi, xi±1]c]c = 0, p(i) = 0, [xi, xj ]c = 0, i < j − 1,

[[xi−1, [xi, xi+1]c]c, xi]c = 0, p(i) = 1, x2
i = 0, p(i) = 1.
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If ζ is not a root of unity, then U+ is isomorphic to the Nichols algebra of V +(χ), see [2, 

Eq. (5.10)]. If ζ is a root of unity, then U+ is isomorphic to the distinguished pre-Nichols 

algebra of V +(χ), see [4, Definition 1] and [2, Eq. (5.10)].

Denote the set of odd vertices J = {i ∈ I | p(i) = 1}. Denote the Drinfeld double of 

U+ by U(χ) and form the smash product

Uζ(sl(m|k))J = U(χ) ⋊ KZ2

where the generator σ of Z2 acts on U(χ) by

σ(Ei) = (−1)p(i)Ei, σ(Fi) = (−1)p(i)Fi, σ(K±1
i ) = K±1

i

for all i ∈ I. Our generators differ from those in [42,11]. In terms of the generators 

ei, fi, ti of [11], our generators are given by

Ei = σp(i)ei, Fi = fi, K±1
i = σp(i)t±1

i

for all i ∈ I. The coproduct convention of [11] is also slightly different from ours. By 

[21, Theorem 6.11], for different choices of J , the Hopf algebras Uζ(sl(m|k))J are iso-

morphic to each other as algebras with isomorphisms provided by generalized Lusztig 

isomorphisms (these isomorphisms descend from the actual Drinfeld double to its quo-

tient U(χ)). However, the Lusztig isomorphisms are not Hopf algebra isomorphisms, and 

as a consequence, Uζ(sl(m|k))J are not isomorphic to each other as Hopf algebras for 

different choices of J . The Hopf algebra Uζ(gl(m|k)) in [11] is our Uζ(sl(m|k)){m} up to 

a slightly different convention for the coproduct.

If ζ ∈ K
× is not a root of unity, then Uζ(sl(m|k))J exhaust all different quantum 

supergroups of type sl(m|k). If ζ ∈ K
× is a root of unity, then Uζ(sl(m|k))J are the 

corresponding nonrestricted specializations at roots of unity.

Let τ : I → I be the identity or the involution τ(i) = n − i + 1 (for i ∈ I) in the case 

when the vertices i and n − i + 1 have the same parity for all i ∈ I and the number of 

odd vertices is even. These conditions are equivalent to qτ(i)τ(j) = qij for all 1 ≤ i, j ≤ n. 

For c = (c1, . . . , cn) ∈ K
n, let Bc be the coideal subalgebra of Uζ(sl(m|k))J generated 

by Hθ and the elements

Bi = Fi + ciEτ(i)K
−1
i for all i ∈ I.

Proposition 3.4. For all choices of odd roots J ⊆ I and ζ ∈ K
×, ζ �= ±1, for the coideal 

subalgebra Bc of the quantum linear supergroup Uζ(sl(m|k))J , the map ϕ : gr(Bc) →
Hθ ⋉ U− is an algebra isomorphism if and only if

cτ(i) = ci for i ∈ I such that |τ(i) − i| > 1 (3.12)
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and

ci = 0 for all odd vertices i fixed by τ . (3.13)

More precisely, the conditions on c in the proposition are as follows:

(1) If τ = id, then ci = 0 for all odd vertices i ∈ J (there is only one such vertex for the 

standard choice of simple roots corresponding to J = {m});

(2) If τ is the flip τ(i) = n − i + 1, then ci = cn−i+1 for i ∈ {1, . . . , ⌈n/2⌉ − 1} and 

c(n+1)/2 = 0 if n is odd and (n + 1)/2 is an odd vertex.

For the proof of Proposition 3.4 we will need the following lemma.

Lemma 3.5. Let p(x1, . . . , xn) be a homogeneous noncommutative polynomial in x1, . . . , xn

of degree 
∑

j mjαj, and i ∈ I be such that mi > 0. For all bicharacters χ : Z
n×Z

n → K
×, 

τ : I → I and c = (c1, . . . , cn) ∈ K
n such that τ(i) = i and ci = 0, we have

π0,0(p(B1, . . . , Bn)) = 0

in U(χ).

Proof. We use the defining relations of U(χ) to rewrite p(B1, . . . , Bn) with respect to 

the triangular decomposition (2.5). The assumptions τ(i) = i, ci = 0 and mi > 0 imply 

that

p(B1, . . . , Bn) ∈ U+H〈Fi〉

where 〈Fi〉 ⊂ U− denotes the ideal generated by the element Fi. This implies the relation 

π0,0(p(B1, . . . , Bn)) = 0. �

Proof of Proposition 3.4. We apply Theorem 2.14 and explicitly compute condition (c)

in Section 2.5. As in the proof of Proposition 3.1(i), the first set of relations of U+ and 

the extra relations in the case ζ =
√

−1 give no condition of c, while the second set of 

relations of U+ gives condition (3.12). If τ(i) = i for some i ∈ I, then in the negative 

Heisenberg double Heis(χ)∨ we have

π∨
0,0

(
(B∨

i )2
)

= π∨
0,0

(
(Fi + ciẼi)

2
)

= ciK
−2
i .

It follows from Theorem 2.18(ii) that the fourth set of relations of U+ gives condition 

(3.13) on c. Finally, we consider the third set of relations of U+. If the third relation of 

U+ for a given odd vertex i gives a condition on c, then by Theorem 2.18(ii),

τ(αi−1 + 2αi + αi+1) = −(αi−1 + 2αi + αi+1).
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This implies that τ(i) = i. If (3.13) is satisfied, then we also have ci = 0. Now it follows 

that in the presence of condition (3.13), the third set of relations of U+ do not give any 

new condition on c because of Lemma 3.5. �

The techniques of this proof can be used to classify the coideal subalgebras Bc of 

the quantized enveloping algebras of all finite dimensional and affine contragredient Lie 

superalgebras g with the property that ϕ : gr(Bc) → Hθ⋉U− is an algebra isomorphism. 

This is more technical and will appear in a subsequent publication.

3.4. The Drinfeld double of the distinguished pre-Nichols algebra of type ufo(8)

Let ζ be a primitive 12-th root of unity and ζ1/2 be a primitive 24-th root of unity 

that squares to ζ. Consider the symmetric bicharachter χ given by

q11 = q22 = −ζ2, q12 = q21 = ζ1/2.

It is associated to the first of the three generalized Dynkin diagrams on row 8 of Table 

1 in [20]. The corresponding Nichols algebra is one of three such algebras of type ufo(8). 

It is one of the non-Cartan type examples that appeared in Heckenberger’s classification 

of arithmetic root systems [20].

The generalized Cartan matrix of the bicharacter χ is

Cχ =

(
2 −2

−2 2

)
·

The generalized root system of χ is finite and has three Cartan matrices corresponding 

to the generalized Dynkin diagrams on row 8 of Table 1 in [20]. We refer the reader to 

[19, Sections 3 and 5], [2, Section 2.7] and [22, Section 4] for details on this topic and 

Weyl groupoids.

The relations of the Nichols algebra of χ are given in [2, Section 10.8.6]. Let U+ denote 

the distinguished pre-Nichols algebra of χ defined by Angiono in [4, Definition 1] as the 

factor of T (V +(χ)) by removing from the Nichols ideal the power relations for Cartan 

roots and adding certain quantum Serre relations. There are none of the latter in this 

case and the algebra U+ has two generators x1, x2 with relations

x3
1 = x3

2 = 0 and [x1, xα1+2α2
]c = −(1 + ζ−1 + ζ−2)ζ1/2x2

12,

the third of which is the last relation in [2, Eq. (10.55)]. Here

x12 = [x1, x2]c and xα1+2α2
= [x12, x2]c

in the free algebra in x1, x2.

Consider the diagram automorphism τ(1) = 2, τ(2) = 1 and the coideal subalgebra 

generators B1, B2 given by (3.4).
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Proposition 3.6. The following hold for the quantum double U(χ) of the distinguished 

pre-Nichols algebra of type ufo(8):

(i) For p(x1, x2) = [x1, xα1+2α2
]c + (1 + ζ−1 + ζ−2)ζ1/2x2

12 and λ = 2α1 + 2α2,

P−λ ◦ π0,0(p(B1, B2)) = (1 + ζ)ζ1/2
(
c2

1 − 2ζ−1/2c1c2 + c2
2

)
K−λ.

(ii) For the coideal subalgebra Bc of U(χ) the map ϕ : gr(Bc) → Hθ ⋉ U− is an algebra 

isomorphism if and only if

c1 = (1 ±
√

1 − ζ)ζ−1/2c2.

Proof. (i) We have

p(x1, x2) = (x2
1x2

2 + x2
2x2

1) + a(x1x2x1x2 + x2x1x2x1) + b(x1x2
2x1 + x2x2

1x2) (3.14)

in the free algebra in x1, x2, where

a = (1 + ζ−1)ζ1/2, b = −(1 + ζ−1 + ζ−2)ζ.

From this one directly computes π∨
0,0(p(B∨

1 , B∨
2 )) in the negative Heisenberg double 

Heisζ(χ)∨ corresponding to U(χ). Now part (i) follows from Theorem 2.18.

(ii) It follows from the second statement in Theorem 2.18 that π∨
0,0((B∨

1 )3) =

π0,0((B∨
2 )3) = 0 in Heisζ(χ)∨. Theorem 2.14 implies the validity of part (ii). �

4. A twist product on partial bosonizations

Assume that condition (c) from Section 2.5 holds. By Theorem 2.14 the algebra Bc

has a filtration such that the associated graded algebra is isomorphic to the partial 

bosonization Hθ⋉U−. In the present section we use the quasi R-matrix for U(χ) to define 

a twisted algebra structure ⋆ on Hθ ⋉ U−. We will see in Section 5 that (Hθ ⋉ U−, ⋆) is 

canonically isomorphic to Bc.

4.1. The quasi R-matrix for U(χ)max

Recall that Imax(χ) ⊂ T (V +(χ)) denotes the maximal Z
n-graded biideal in the 

braided Hopf algebra T (V +(χ)). In the following we use the subscript max to indi-

cate constructions involving Imax. In particular, we use the notation U+
max, U−

max for 

the Nichols algebras corresponding to Imax and we write U(χ)max for the corresponding 

Drinfeld double as defined in Section 2.1. By [21, Theorem 5.8] there exists a uniquely 

determined skew-Hopf pairing

〈 , 〉max : (U−
max ⋊ H)cop ⊗ (U+

max ⋊ H) → K (4.1)
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such that

〈Fi, Ej〉max = δij ,〈Ki, Kj〉max = q−1
ij ,

〈Fi, Kj〉max = 0, 〈Ki, Ej〉max = 0
(4.2)

for all i, j ∈ I. Recall that by definition of a skew-Hopf pairing we have

〈y, xx′〉max = 〈y(1), x′〉max〈y(2), x〉max,

〈yy′, x〉max = 〈y, x(1)〉max〈y′, x(2)〉max

(4.3)

for all y, y′ ∈ (U−
max ⋊ H)cop and x, x′ ∈ U+

max ⋊ H. Let

πmax : U−
⋊ H → U−

max ⋊ H

denote the canonical projection. By construction πmax is a surjective Hopf algebra ho-

momorphism. The pairing (4.1) allows us to define a right and a left U+
max ⋊ H module 

structure on H ⋉ U− = (U− ⋊ H)cop by

e⊲f = 〈πmax(f(1)), e〉maxf(2), f ⊳ e = 〈πmax(f(2)), e〉maxf(1) (4.4)

for all e ∈ U+
max ⋊ H, f ∈ (U− ⋊ H)cop. The properties in (4.3) imply that (U− ⋊ H)cop

is a right and a left U+
max ⋊ H-module algebra.

The pairing 〈 , 〉max respects the Zn-grading of U−
max ⋊ H and U+

max ⋊ H. Moreover, 

by [21, Theorem 5.8] the restriction of 〈 , 〉max to U−
max ⊗ U+

max is nondegenerate. This 

allows us to formulate the notion of a quasi R-matrix for U(χ)max in complete analogy 

to [34, Chapter 4]. Let U(χ)max⊗̂U(χ)max denote the completion of U(χ)max ⊗ U(χ)max

with respect to the descending sequence of subspaces

HN =
(
U+

maxH
∑

|ν|≥N

(U−
max)−μ

)
⊗ U(χ)max + U(χ)max ⊗

(
U−

maxH
∑

|ν|≥N

(U+
max)μ

)
.

The K-algebra structure on U(χ)max ⊗ U(χ)max extends to a K-algebra structure on 

U(χ)max⊗̂U(χ)max.

For any μ ∈ N
n let {Fμ,j} ⊂ (U−

max)−μ and {Eμ,j} ⊂ (U+
max)μ be dual bases with 

respect to the nondegenerate pairing 〈 , 〉max and define Θμ =
∑

j(−1)|μ|Fμ,j ⊗ Eμ,j . For 

simplicity we usually suppress the summation and write formally

Θμ = (−1)|μ|Fμ ⊗ Eμ.

Define an element Θ ∈ U(χ)max⊗̂U(χ)max by

Θ =
∑

μ∈Nn

Θμ =
∑

μ∈Nn

(−1)|μ|Fμ ⊗ Eμ. (4.5)
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For quantized enveloping algebras the element Θ coincides with the quasi R-matrix con-

structed in [34, Chapter 4]. Analogously to [34, Proposition 4.2.2] we have the following 

result.

Lemma 4.1. The following relations hold

(Δ ⊗ id)(Θμ) = (−1)|μ|
∑

λ+ν=μ

Fλ ⊗ FνK−1
λ ⊗ EνEλ, (4.6)

(id ⊗ Δ)(Θμ) = (−1)|μ|
∑

λ+ν=μ

FλFν ⊗ EλKν ⊗ Eν . (4.7)

Proof. By definition of the coproduct of U(χ)max in (2.2) we have

(Δ ⊗ id)(Θμ) ∈
∑

λ+ν=μ

(U−
max)−λ ⊗ (U−

max)−νK−1
λ ⊗ (U+

max)μ.

For e, e′ ∈ U+ the definition of Θ and the properties of a skew pairing (4.3) imply that

ee′ =
∑

μ

〈Fμ, ee′〉maxEμ =
∑

μ

〈Fμ(1), e′〉max〈Fμ(2), e〉maxEμ. (4.8)

On the other hand

ee′ =
∑

λ,ν

〈Fν , e〉maxEν〈Fλ, e′〉maxEλ =
∑

λ,ν

〈Fλ, e′〉max〈FνK−1
λ , e〉maxEνEλ. (4.9)

Comparison of (4.8) and (4.9) implies (4.6), as the componentwise pairing between ⊕
λ(U−

max)−λ ⊗ U−
maxK−1

λ and U+
max ⊗ U+

max is nondegenerate. Equation (4.7) is veri-

fied analogously. �

Remark 4.2. In [5, Section 3] a quasi R-matrix for general Nichols algebras of diagonal 

type is considered in a completion of (U+ ⋊H) ⊗ (U− ⋊H)cop. A version of Lemma 4.1

is given as [5, Lemma 3.5].

4.2. The skew derivations ∂L
i and ∂R

i on U−

For quantized universal enveloping algebras Kashiwara [24, 3.4] and Lusztig [34, 

1.2.13, 3.1.6] consider skew-derivations on U+ and U−. As observed in [21, Section 

5], these skew derivations allow a straightforward generalisation to the setting of 

(pre-)Nichols algebras of diagonal type. In the case of U−, for any i ∈ I, the skew 

derivations are the uniquely determined linear maps ∂R
i , ∂L

i : U− → U− such that

[Ei, f ] = Ki∂
L
i (f) − ∂R

i (f)K−1
i for all f ∈ U−. (4.10)
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For later reference we collect the main properties of the skew derivations ∂L
i and ∂R

i on 

U−. It follows from the last relation in (2.3) that

∂L
i (Fj) = δij = ∂R

i (Fj) for all j ∈ I. (4.11)

Moreover, Equation (4.10) implies that

∂L
i (fμfν) = ∂L

i (fμ)fν + χ(μ, αi)fμ∂L
i (fν),

∂R
i (fμfν) = χ(ν, αi)∂

R
i (fμ)fν + fμ∂R

i (fν)
(4.12)

for all fμ ∈ U−
−μ, fν ∈ U−

−ν . In other words, ∂L
i is a left skew derivation on U− while ∂R

i

is a right skew derivation. The skew derivations ∂L
i and ∂R

i are uniquely determined by 

the properties (4.11) and (4.12). They can also be read off from the coproduct on U−. 

Indeed, for any fμ ∈ U−
−μ one has

Δ(fμ) = fμ ⊗ K−1
μ +

∑

i

∂L
i (fμ) ⊗ FiK

−1
μ−αi

+ (rest)1,

Δ(fμ) = 1 ⊗ fμ +
∑

i

Fi ⊗ ∂R
i (fμ)K−1

i + (rest)2

(4.13)

where (rest)1 ∈ ∑
|α|≥2 U−

α−μ ⊗ U−
−αK−1

μ−α and (rest)2 ∈ ∑
|α|≥2 U−

−α ⊗ U−
α−μK−1

α . The 

properties (4.13) of the coproduct and the definition (4.4) of the left and the right action 

of U+ on H ⋉ U− imply that

Ei⊲f = ∂R
i (f)K−1

i , f ⊳ Ei = ∂L
i (f) for all f ∈ U−, i ∈ I. (4.14)

Let 〈 , 〉 : U− ⊗ U+ → K denote the pairing defined by

〈f, e〉 = 〈πmax(f), πmax(e)〉max for all f ∈ U−, e ∈ U+

where we use πmax to denote both canonical projections U+ → U+
max and U− → U−

max. 

The relations (4.13) and (4.3) imply that

〈f, Eie〉 = 〈∂L
i (f), e〉, 〈f, eEi〉 = 〈∂R

i (f), e〉 (4.15)

for all f ∈ U−, e ∈ U+ and i ∈ I. This tells us how the quasi R-matrix Θ behaves under 

the skew derivations.

Lemma 4.3. For any i ∈ I the following relations hold:

(∂L
i ⊗ id)(Θ) = −(1 ⊗ Ei)Θ, (∂R

i ⊗ id)(Θ) = −Θ(1 ⊗ Ei). (4.16)
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Proof. For any f ∈ U−
max the first relation in (4.15) implies that

∂L
i (f) =

∑

μ

〈∂L
i (f), Eμ〉Fμ =

∑

μ

〈f, EiEμ〉Fμ

and hence

∑

μ

(−1)|ν|∂L
i (Fν) ⊗ Eν =

∑

μ,ν

(−1)|ν|〈Fν , EiEμ〉Fμ ⊗ Eν

=
∑

μ

(−1)|μ|+1Fμ ⊗ EiEμ

which proves the first relation in (4.16). The second relation is verified similarly. �

Corollary 4.4. (see [34, Theorem 4.1.2], [5, Lemma 3.3]) The element Θ satisfies the 

relations

(Ej ⊗ 1 + Kj ⊗ Ej)Θ = Θ(Ej ⊗ 1 + K−1
j ⊗ Ej), (4.17)

(Fj ⊗ K−1
j + 1 ⊗ Fj)Θ = Θ(Fj ⊗ Kj + 1 ⊗ Fj) (4.18)

for all j ∈ I.

Proof. In view of (4.16), relation (4.17) follows from Lemma 4.3 and the defining relation 

(4.10) of the skew derivations ∂L
i and ∂R

i . The second relation is verified analogously using 

skew derivations on U+. �

Remark 4.5. Just as in [34, Theorem 4.1.2] one can show that the element Θ ∈ is the 

unique element of the form Θ =
∑

μ∈Nn Θμ with Θμ ∈ (U−
max)−μ ⊗ (U+

max)μ for which 

Θ0 = 1 ⊗ 1 and the relations in Corollary 4.4 hold.

4.3. The algebra homomorphism σ : U−
max → U+

max ⋊ H

For any n-tuple c = (c1, . . . , cn) ∈ K
n let Λc : U+

max ⋊ H → U+
max ⋊ H be the 

algebra homomorphism defined by and Λc|H = id|H and Λc(Ei) = ciEi for all i ∈ I. 

By Lemma 2.4 there exists a well-defined algebra homomorphism Ω : U+
max → U+

max ⋊H

defined by Ω(Ei) = Kτ(i)Ei for all i ∈ I. For any μ ∈ N
n and any e ∈ (U+

max)μ one 

has Ω(e) = bμKμe for some bμ ∈ K which only depends on μ ∈ N
n and not on the 

specific element e ∈ (U+
max)μ. Indeed, this follows from the symmetry and τ -invariance 

of the bicharacter χ and the fact that τ2 = id. We now define an algebra homomorphism 

σ : U−
max → U+

max ⋊ H by σ = Λc ◦ Ω ◦ ω ◦ τ and note that

σ(Fi) = cτ(i)KiEτ(i) for all i ∈ I. (4.19)
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For any fμ ∈ (U−
max)−μ we can write

σ(fμ) = aμKμ ω ◦ τ(fμ) (4.20)

for some aμ ∈ K which only depends on μ ∈ N
n and not on the specific element 

fμ ∈ (U−
max)−μ.

Lemma 4.6. The coefficients aμ for μ ∈ N
n are uniquely determined by aαi

= cτ(i) for 

all i ∈ I and by the recursion

aμ+ν = χ(−ν, τ(μ))aμaν for all μ, ν ∈ N
n. (4.21)

Proof. By (4.19) we have aαi
= cτ(i) for all i ∈ I. Let f ∈ (U−

max)−μ and g ∈ (U−
max)−ν . 

Then (4.20) implies that

aμ+νKμ+νω ◦ τ(fg) = σ(fg) = σ(f)σ(g)

= aμKμω ◦ τ(f)aνKνω ◦ τ(g)

= χ(−ν, τ(μ))aμaνKμ+νω ◦ τ(fg).

Hence we get the recursive formula (4.21) which determines the coefficients aμ

uniquely. �

We want to apply the algebra homomorphism Δ ◦ σ to the first tensor factor of the 

quasi R-matrix Θ =
∑

μ Fμ ⊗ Eμ. As ω ◦ τ is a coalgebra antiaumorphism, Lemma 4.1

implies that

∑

μ

Δ ◦ σ(Fμ) ⊗ Eμ =
∑

μ

aμKμω ◦ τ(Fμ(2)) ⊗ Kμω ◦ τ(Fμ(1)) ⊗ Eμ

=
∑

λ,ν

aλ+νKλ+νω ◦ τ(FνK−1
λ ) ⊗ Kλ+νω ◦ τ(Fλ) ⊗ EνEλ.

Hence using the recursion (4.21) we obtain

∑

μ

Δ ◦ σ(Fμ) ⊗ Eμ =
∑

λ,ν

σ(Fν)KλKτ(λ) ⊗ Kνσ(Fλ) ⊗ EνEλ. (4.22)

On the other hand, Equation (4.7) implies that

∑

μ

σ(Fμ) ⊗ Δ(S−1(Eμ)Kμ) (4.23)

=
∑

ν,ρ

χ(−ν, ρ)σ(FνFρ) ⊗ S−1(Eρ)Kν+ρ ⊗ S−1(Eν)Kν .

Formulas (4.22) and (4.23) will be used to verify the associativity of the twist product 

in the next section.
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4.4. Definition and associativity of the twist product

We now use the quasi R-matrix Θ and the algebra homomorphism σ to define a 

twisted product on the partial bosonization Hθ ⋉ U−. Recall that we write formally 

Θ =
∑

ρ(−1)|ρ|Fρ ⊗ Eρ and that we write S to denote the antipode of U(χ). For any 

f, g ∈ U− we define

f ⋆ g =
∑

ρ

(−1)|ρ|(σ(Fρ)⊲f)Kρ[g ⊳ (S−1(Eρ)Kρ)]. (4.24)

Observe that σ(Fρ)⊲f ∈ U−K−1
τ(ρ) and that g ⊳ (S−1(Eρ)Kρ) ∈ U− and hence f ⋆ g ∈

Hθ ⋉ U− ⊂ U(χ). For later reference it is convenient to spell out the formula for the 

twist product (4.24) explicitly in the case where one of the factors equals a generator Fi.

Lemma 4.7. For any f, g ∈ U− and any i ∈ I the relations

Fi ⋆ g = Fig + ciqiτ(i)Kτ(i)K
−1
i ∂L

τ(i)(g), (4.25)

f ⋆ Fi = fFi + cτ(i)qiτ(i)∂
R
τ(i)(f)KiK

−1
τ(i) (4.26)

hold in Hθ ⋉ U−.

Proof. By (4.24) we have

Fi ⋆ g = Fig − (σ(Fτ(i))⊲Fi)Kτ(i)[g ⊳ (S−1(Eτ(i))Kτ(i))]

= Fig + ci

(
(Kτ(i)Ei)⊲Fi

)
Kτ(i)[g ⊳ Eτ(i)]

(4.14)
= Fig + ciqiτ(i)K

−1
i Kτ(i)∂

L
i (g).

This proves (4.25). Equation (4.26) is verified by a similar calculation. �

We now want to extend the definition of the twist product to all of Hθ ⋉ U−. For 

simplicity we suppress tensor symbols and write elements h ⊗ f ∈ Hθ ⋉ U− as hf . We 

define a bilinear binary operation ⋆ on Hθ ⋉ U− by

(Kλf) ⋆ (Kμg) = χ(α, μ)Kλ+μ(f ⋆ g) (4.27)

for all λ, μ ∈ Z
n
θ , f ∈ U−

−α, g ∈ U− and where f ⋆ g ∈ Hθ ⋉ U− is defined by (4.24).

Theorem 4.8. For all pre-Nichols algebras of diagonal type U+, the bilinear binary oper-

ation on Hθ ⋉ U− defined by (4.27) is associative.

Proof. Let λ, μ, ν ∈ Z
n
θ and f ∈ U−

−α, g ∈ U−
−β , h ∈ U−

−γ . By the discussion following 

(4.24) we can write
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f ⋆ g =
∑

ρ

Kρ−τ(ρ)u
−
ρ (f, g) (4.28)

where u−
ρ (f, g) ∈ U−

−(α+β−ρ−τ(ρ)). With this notation we calculate

(
(Kλf) ⋆ (Kμg)

)
⋆ (Kνh) = χ(α, μ)

∑

ρ

(
Kλ+μ+ρ−τ(ρ)u

−
ρ (f, g)

)
⋆ (Kνh)

= χ(α, μ)χ(α + β, ν)Kλ+μ+ν

(
(f ⋆ g) ⋆ h

)

where we used the fact that χ(ρ + τ(ρ), ν) = 1 as τ(ν) = −ν. Similarly one calculates

(Kλf) ⋆
(
(Kμg) ⋆ (Kνh)

)
= χ(β, ν)χ(α, μ + ν)Kλ+μ+ν

(
f ⋆ (g ⋆ h)

)
.

Hence it suffices to show that (f ⋆ g) ⋆ h = f ⋆ (g ⋆ h). Using (4.28) we obtain

(f ⋆ g) ⋆ h =
∑

ρ,σ

Kρ−τ(ρ)Kσ−τ(σ)u
−
σ (u−

ρ (f, g), h). (4.29)

By definition of u−
ρ (f, g) in (4.28) we have

u−
ρ (f, g) = (−1)|ρ|χ(α−τ(ρ), ρ−τ(ρ))

[
(σ(Fρ)⊲f)Kτ(ρ)

][
g ⊳ (S−1(Eρ)Kρ)

]
. (4.30)

Inserting the above formula into (4.29) twice, we obtain

(f ⋆ g) ⋆ h =
∑

ρ,σ

Kρ+σ−τ(ρ+σ)(−1)|ρ|+|σ|χ(α−τ(ρ), ρ−τ(ρ))χ(α+β−τ(σ), σ−τ(σ))·

·
[
σ(Fσ)⊲

([
(σ(Fρ)⊲f)Kτ(ρ)

][
g ⊳ (S−1(Eρ)Kρ)

])
Kτ(σ)

] [
h ⊳ (S−1(Eσ)Kσ)

]
.

Using the fact that U− ⋊H is a left module algebra over U+ ⋊H and formula (4.22) we 

obtain

(f ⋆ g) ⋆ h =
∑

ρ,λ,ν

Kθ
ρ,λ,νaα,β,ρ,λ,ν

(
σ(Fν)Kλ+τ(λ)

)
⊲
[
(σ(Fρ)⊲f)Kτ(ρ)

]
· (4.31)

·
(
Kνσ(Fλ)

)
⊲
[
g ⊳ (S−1(Eρ)Kρ)

]
Kτ(λ+ν)

[
h ⊳ (S−1(EνEλ)Kν+λ)

]

where we use the abbreviations Kθ
ρ,λ,ν = Kρ+λ+ν−τ(ρ+λ+ν) and

aα,β,ρ,λ,ν = (−1)|ρ|+|λ|+|ν|χ(α−τ(ρ), ρ−τ(ρ))· (4.32)

· χ(α+β−τ(λ+ν), λ+ν−τ(λ+ν)).

Formula (4.31) can be rewritten as
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(f ⋆ g) ⋆ h =
∑

ρ,λ,ν

Kθ
ρ,λ,νaα,β,ρ,λ,νχ(−ν, τ(ρ))2 χ(ν, τ(λ)) χ(β−τ(λ), τ(ν))· (4.33)

·
[
(σ(FνFρ)⊲f)Kτ(ρ+ν)

]
·
[(

σ(Fλ)⊲g ⊳ (S−1(Eρ)Kρ)
)
Kτ(λ)

]
·

·
[
h ⊳ (S−1(EνEλ)Kν+λ)

]
.

Similarly, to obtain an explicit expression for f ⋆ (g ⋆ h), we use (4.28) to write

f ⋆ (g ⋆ h) =
∑

σ,λ

Kσ−τ(σ)Kλ−τ(λ)χ(α, λ−τ(λ))u−
σ (f, u−

λ (g, h)).

Using again (4.30) we obtain

f ⋆ (g ⋆ h)=
∑

σ,λ

Kσ+λ−τ(σ+λ)(−1)|σ|+|λ|χ(α−τ(σ), σ−τ(σ))χ(α+β−τ(λ), λ−τ(λ))·

·
[
(σ(Fσ)⊲f)Kτ(σ)

][([
(σ(Fλ)⊲g)Kτ(λ)

] [
h ⊳ (S−1(Eλ)Kλ)

])
⊳ (S−1(Eσ)Kσ)

]
.

Using Equation (4.23) and the fact that U− ⋊H is a right module algebra over U+ ⋊H, 

we obtain

f ⋆ (g ⋆ h) =
∑

ν,ρ,λ

Kθ
ρ,λ,νbα,β,ρ,λ,ν

[
(σ(FνFρ)⊲f)Kτ(ν+ρ)

]
· (4.34)

·
[
(σ(Fλ)⊲g)Kτ(λ)

]
⊳ (S−1(Eρ)Kν+ρ)

[
h ⊳ (S−1(Eλ)Kλ)

]
⊳ (S−1(Eν)Kν)

where as before Kθ
ρ,λ,ν = Kρ+λ+ν−τ(ρ+λ+ν) and

bα,β,ρ,λ,ν = (−1)|ρ|+|λ|+|ν|χ(α−τ(ν+ρ), ν+ρ−τ(ν+ρ))· (4.35)

· χ(α+β−τ(λ), λ−τ(λ)) χ(−ν, ρ).

Formula (4.34) can be rewritten as

f ⋆ (g ⋆ h) =
∑

ν,ρ,λ

Kθ
ρ,λ,νbα,β,ρ,λ,νχ(ν, β + λ − τ(λ) − ρ)· (4.36)

·
[
(σ(FνFρ)⊲f)Kτ(ρ+ν)

]
·
[(

σ(Fλ)⊲g ⊳ (S−1(Eρ)Kρ)
)
Kτ(λ)

]
·

·
[
h ⊳ (S−1(EνEλ)Kν+λ)

]
.

Now the relation f ⋆ (g ⋆ h) = (f ⋆ g) ⋆ h follows from comparison of the Equations (4.33)

and (4.36) and the fact that

aα,β,ρ,λ,νχ(−ν, τ(ρ))2 χ(ν, τ(λ)) χ(β−τ(λ), τ(ν)) = bα,β,ρ,λ,νχ(ν, β+λ−τ(λ)−ρ)

which in turn follows from (4.32) and (4.35) by direct calculation. �
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It is convenient to invert the formula (4.24). In the following lemma we express the 

usual multiplication in U− in terms of the twist product ⋆ on Hθ ⋉ U−.

Lemma 4.9. For any f, g ∈ U− the relation

fg =
∑

μ∈Nn

(−1)|μ|
((

σ(Fμ)⊲f
)
Kμ

)
⋆ [g ⊳ Eμ]

holds in (Hθ ⋉ U−, ⋆).

Proof. Note first that (4.7) implies that

∑

ν+μ=γ

σ(FνFμ) ⊗ EμS−1(EνKμ) = (id ⊗ ε)(Θγ) = δγ,0 1 ⊗ 1

and hence

∑

ν,μ∈Nn

(−1)|μ|+|ν|σ(FνFμ) ⊗ KνKμ ⊗ EμK−1
μ S−1(Eν)KνKμ = 1 ⊗ 1 ⊗ 1. (4.37)

By bilinearity we may assume that f ∈ U−
−α for some α ∈ N

n. We obtain

∑

μ

(−1)|μ|
((

σ(Fμ)⊲f
)
Kμ

)
⋆ [g ⊳ Eμ]

(4.27)
=

∑

μ

(−1)|μ|χ(α−τ(μ), μ−τ(μ)) Kμ−τ(μ)

[(
σ(Fμ)⊲f

)
Kτ(μ)

]
⋆ [g ⊳ Eμ]

(4.24)
=

∑

μ,ν

(−1)|μ|+|ν|χ(α−τ(μ), μ−τ(μ)) Kμ−τ(μ)

(
σ(Fν)⊲

[(
σ(Fμ)⊲f

)
Kτ(μ)

])
Kν ·

· [g ⊳ Eμ] ⊳ (S−1(Eν)Kν)

=
∑

μ,ν

(−1)|μ|+|ν|
(

σ(Fν)⊲
(
σ(Fμ)⊲f

))
Kμ+ν

[
g ⊳ (EμK−1

μ S−1(Eν)Kν+μ)
]

(4.37)
= fg

which proves the lemma. �

4.5. A twisted coaction

Define a linear map Δ⋆ : Hθ ⋉ U− → (Hθ ⋉ U−) ⊗ U(χ)max by

Δ⋆(Kνfα) =
∑

λ,μ

Kν

(
σ(Fλ)⊲fα ⊳ Eμ

)
Kλ ⊗ KνFμKμ−αEλ (4.38)
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for all ν ∈ Hθ and fα ∈ U−
−α. For any f ∈ Hθ ⊗ U− and any ν ∈ Hθ we have

Δ⋆(Kνf) = (Kν ⊗ Kν)(⋆ ⊗ ·)Δ⋆(f), (4.39)

Δ⋆(fKν) = Δ⋆(f)(⋆ ⊗ ·)(Kν ⊗ Kν) (4.40)

as χ(ν, λ + τ(λ)) = 1 for all λ ∈ N
n. Moreover,

Δ⋆(Fi) = Fi ⊗ K−1
i + ciK

−1
i Kτ(i) ⊗ Eτ(i)K

−1
i + 1 ⊗ Fi (4.41)

for all i ∈ I.

Proposition 4.10. The map Δ⋆ endows (Hθ⋉U−, ⋆) with the structure of a right U(χ)max-

comodule algebra.

Proof. Let f ∈ U−
−α. It follows from Lemma 4.1 that

(id ⊗ Δ) ◦ Δ⋆(f) =
∑

λ,μ

(
σ(Fλ)⊲f ⊳ Eμ

)
Kλ ⊗ Δ(FμKμ−αEλ)

=
∑

ν,ρ,λ,μ

(
σ(FλFμ)⊲f ⊳ (EνEρ)

)
Kλ+μ ⊗ FρKρ+ν−αEλKμ ⊗ FνKν−αEμ

=
∑

ν,ρ,λ,μ

(
σ(Fλ)⊲

(
(σ(Fμ)⊲f ⊳ Eν)Kτ(μ)

)
⊳ Eρ

)
Kλ+μ−τ(μ)

⊗ FρKρ+ν+τ(μ)−αEλKμ−τ(μ) ⊗ FνKν−αEμ

(4.40)
=

∑

μ,ν

Δ⋆

(
(σ(Fμ)⊲f ⊳ Eν)

)
Kμ

)
⊗ FνKν−αEμ

= (Δ⋆ ⊗ id) ◦ Δ⋆(f).

Hence, in view of (4.39), the map Δ⋆ is coassociative and (Hθ ⋉ U−, ε, Δ⋆) is a right 

U(χ)max-comodule. It remains to check that Δ⋆ is an algebra homomorphism. In view 

of (4.39) and (4.40) it suffices to show that

Δ⋆(f ⋆ g) = Δ⋆(f)(⋆ ⊗ ·)Δ⋆(g) (4.42)

for all f, g ∈ U−. Moreover, by the associativity of the twisted product ⋆ it suffices to 

verify relation (4.42) for f = Fi for all i ∈ I.

Assume that f ∈ U−
−α and g ∈ U+

−β . From the definition of ⋆ and Δ⋆, using the fact 

that (H ⋉U−)cop is a left and right (H ⋉U+)-module algebra via the actions (4.4), one 

obtains
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Δ⋆(f ⋆ g) =
∑

κ,λ,μ,ν,ρ

(−1)|ρ|χ(κ, α − μ − ρ) χ(ν, β − 2ρ − κ) (4.43)

(
σ(FνFρ)⊲f ⊳ Eμ

)
Kν+ρ

(
σ(Fλ)⊲g ⊳ (S−1(Eρ)KρEκ)

)
Kλ

⊗ FμFκKμ+κ+2ρ−α−βEνEλ,

Δ⋆(f)(⋆ ⊗ ·)Δ⋆(g) =
∑

κ,λ,μ,ν,ρ

(−1)|ρ|χ(−ρ, ν) (4.44)

(
σ(FρFν)⊲f ⊳ Eμ

)
Kν+ρ

(
σ(Fλ)⊲g ⊳ (EκS−1(Eρ)Kρ)

)
Kλ

⊗ FμKμ−αEνFκKκ−λEλ.

For f = Fi the first factors in the second line of (4.43) and (4.44) are non-zero if 

and only if ν = ρ = μ = 0 or two of ν, ρ, μ vanish while the remaining one is one of 

ν = ατ(i), ρ = ατ(i) or μ = αi. Hence we get

Δ⋆(Fi ⋆ g) =
∑

κ,λ

χ(κ, αi)Fi(σ(Fλ)⊲g ⊳ Eκ) ⊗ FκKκ−αi−βEλ (4.45)

+ (σ(Fτ(i))⊲Fi)Kτ(i)

(
σ(Fλ)⊲g ⊳ Eκ

)
Kλ ⊗ K−1

i FκEτ(i)Kκ−βEλ

+ χ(κ, −ατ(i))(σ(Fτ(i))⊲Fi)Kτ(i)

(
σ(Fλ)⊲g ⊳ (Eτ(i)Eκ)

)
Kλ

⊗ K−1
i FκKκ+2ατ(i)−βEλ

+ (Fi ⊳ Ei)
(
σ(Fλ)⊲g ⊳ Eκ

)
Kλ ⊗ FiFκKκ−βEλ.

Multiplying each summand in U(χ)max ⊗ (U+
max)κ in Equation (4.17) for j = τ(i) from 

the right by (−1)|κ|Kκ ⊗ 1, we obtain the relation

∑

κ

Eτ(i)FκKκ ⊗ Eκ−χ(κ, −ατ(i))FκKκ+2ατ(i)
⊗ Eτ(i)Eκ

=
∑

κ

FκEτ(i)Kκ ⊗ Eκ − FκKκ ⊗ EκEτ(i).

This relation can be applied to the second and third summand in (4.45) to give

Δ⋆(Fi ⋆ g) =
∑

κ,λ

χ(κ, αi)Fi(σ(Fλ)⊲g ⊳ Eκ) ⊗ FκKκ−αi−βEλ

+ (σ(Fτ(i))⊲Fi)Kτ(i)

(
σ(Fλ)⊲g ⊳ Eκ

)
Kλ ⊗ K−1

i Eτ(i)FκKκ−βEλ

+ (σ(Fτ(i))⊲Fi)Kτ(i)

(
σ(Fλ)⊲g ⊳ (EκEτ(i))

)
Kλ ⊗ K−1

i FκKκ−βEλ

+ (Fi ⊳ Ei)
(
σ(Fλ)⊲g ⊳ Eκ

)
Kλ ⊗ FiFκKκ−βEλ

= Δ⋆(Fi)(⋆ ⊗ ·)Δ⋆(g)

where the last equality follows from (4.44) for f = Fi. �
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5. Star products on partial bosonizations

In this section we introduce the notion of a star product on a graded algebra. We 

show that the twist product ⋆ on the partial bosonization Hθ ⋉ U− from Section 4.4 is 

a star product which gives rise to an algebra isomorphic to the coideal subalgebra Bc. 

In Section 5.4 we employ the star product on Hθ ⋉ U− to find a novel way to obtain 

defining relations for the algebra Bc.

5.1. General star products on N-graded algebras

For any N-graded K-algebra A =
⊕

j∈N
Aj and any m ∈ N we write A<m =

⊕m−1
j=0 Aj

and A≤m =
⊕m

j=0 Aj .

Definition 5.1. Let A =
⊕

j∈N
Aj be a N-graded K-algebra. A star product on A is an 

associative bilinear operation ∗ : A × A → A, (a, b) �→ a ∗ b such that

a ∗ b − ab ∈ A<m+n for all a ∈ Am, b ∈ An. (5.1)

The star product ∗ on A is called 0-equivariant if

a ∗ h = ah and h ∗ a = ha for all h ∈ A0, a ∈ A.

If ∗ is a star product on an N-graded algebra A then (A, ∗) is a filtered algebra with 

Fm(A) := A≤m. By condition (5.1) the associated graded algebra satisfies

gr(A, ∗) ∼= A.

If the graded algebra A is generated in degrees 0 and 1, then every star product algebra 

structure (A, ∗) is also generated in degrees 0 and 1.

Lemma 5.2. Let A be an N-graded K-algebra generated in degrees 0 and 1.

(i) Any 0-equivariant star product on A is uniquely determined by the K-linear map 

μL : A1 → EndK(A), f �→ μL
f defined by

μL
f (a) = f ∗ a − fa for all f ∈ A1, a ∈ A.

(ii) If U is a graded subalgebra of A such that A0U = UA0 = A, then every 0-

equivariant star product on A is uniquely determined by the K-linear map μL : U1 →
HomK(U, A), f �→ μL

f defined by

μL
f (b) = f ∗ b − fb for all f ∈ U1, b ∈ U .
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Proof. Let ∗ be a 0-equivariant star product on A.

(i) Define a K-linear map ML : A≤1 → EndK(A) by

ML
f (a) := f ∗ a =

{
μL

f (a) + fa, if f ∈ A1

fa, if f ∈ A0

where in the second case we use the assumption that ∗ is 0-equivariant. The map ML is 

uniquely determined by the linear map μL : A1 → EndK(A). Since the algebra (A, ∗) is 

generated in degrees 0 and 1, the vector space A is the K-span of elements of the form 

a1 ∗ · · · ∗ aj for a1, . . . , aj ∈ A≤1. Since

(a1 ∗ · · · ∗ aj) ∗ a = ML
a1

. . . ML
aj

(a)

for all a ∈ A, a1, . . . aj ∈ A≤1, the bilinear operation ∗ : A × A → A is uniquely 

determined by the linear map μL : A1 → EndK(A).

(ii) Similarly to the first part, the assumption that A0U = UA0 = A and the 0-

equivariance of ∗ imply that the bilinear operation ∗ : A ×A → A is uniquely determined 

by its restriction to U1 × U . This restriction is

f ∗ b = fb + μL
f (b)

for f ∈ U1 and b ∈ U , which completes the proof of the lemma. �

5.2. The first star product on the partial bosonization Hθ ⋉ U−

We work in the setting of Section 2. Throughout Sections 5.2, 5.3 and 5.4 we assume 

that c ∈ K
n satisfies condition (c) in Section 2.5.

Recall from Section 2.3 that U(χ)poly denotes the subalgebra of U(χ) generated by 

Fi, Ẽi = EiK
−1
i , K−1

i , KiK
−1
τ(i) for all i ∈ I. Consider the triangular decomposition (2.5)

of U(χ) written in reverse order

U(χ) ∼= U−
⋊ H ⋉ G+

where G+ denotes the subalgebra of U(χ) generated by {Ẽi | i ∈ I}. The restriction of 

this triangular decomposition to the subalgebra U(χ)poly give rise to a linear isomorphism

U(χ)poly ∼=
(
Hθ ⋉ U−)

⊕
(
U(χ)polyspanK{Ẽi, K−1

i | i ∈ I}
)

(5.2)

where as before spanK denotes the K-linear span. Let

ψ : U(χ)poly
։ Hθ ⋉ U− (5.3)
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denote the K-linear projection with respect to the direct sum decomposition (5.2). Since 

the kernel of ψ is a left ideal we have that

ψ(ab) = ψ(aψ(b)) for all a, b ∈ U(χ)poly. (5.4)

Recall that Bc is a subalgebra of U(χ)poly. For quantized enveloping algebras the follow-

ing Lemma recently appeared in [33, Corollary 4.4].

Lemma 5.3. The restriction of the map (5.3) to Bc is a K-linear isomorphism

ψ : Bc → Hθ ⋉ U−. (5.5)

Proof. For any multi-index J and any a ∈ Hθ we have the relation

ψ(aBJ) − aFJ ∈ HθU−
≤|J|−1. (5.6)

This shows that the restriction (5.5) is surjective. On the other hand Corollary 2.15 of 

Theorem 2.14 implies that the restriction (5.5) is also injective. �

Remark 5.4. The statement that the map ψ in (5.5) is a linear isomorphism is equivalent 

to any of the statements in Theorem 2.14 or Remark 2.16. Indeed, if say condition (c)

in Section 2.5 does not hold, then the second part of Theorem 2.14 implies that Bc

intersects nontrivially with the second summand of the decomposition (5.2).

We use the isomorphism (5.5) to define an algebra structure ∗ on Hθ ⋉ U− by

a ∗ b = ψ(ψ−1(a)ψ−1(b)) for all a, b ∈ Hθ ⋉ U−. (5.7)

Relation (5.6) and Corollary 2.15 imply that ∗ is a star product on the partial bosoniza-

tion Hθ ⋉ U− with the N-grading defined by setting deg(h) = 0 and deg(Fi) = 1 for all 

h ∈ Hθ, i ∈ I. Moreover, this star product is 0-equivariant because ψ is a left and right 

Hθ-module homomorphism. The subalgebra U− ⊂ Hθ ⋉ U− satisfies the assumption of 

Lemma 5.2(ii). Hence, in view of U−
1 = V −(χ), the 0-equivariant star product is uniquely 

determined by a K-linear map μL : V −(χ) → HomK(U−, Hθ ⋉ U−). We summarize the 

situation in the following theorem.

Theorem 5.5. Let U+ be a pre-Nichols algebra of diagonal type and assume that the 

parameters c ∈ K
n satisfy condition (c) in Section 2.5. Then the algebra structure ∗ on 

Hθ ⋉U− defined by (5.7) is a 0-equivariant star product and the associated K-linear map

μL : V −(χ) → HomK(U−, Hθ ⋉ U−), f �→ μL
f

from Lemma 5.2(ii) is given by



S. Kolb, M. Yakimov / Advances in Mathematics 365 (2020) 107042 53

μL
Fi

(u) = ciqiτ(i)(Kτ(i)K
−1
i )∂L

τ(i)(u) (5.8)

for all i ∈ I, u ∈ U−.

Proof. It remains to compute the map μL. For any b ∈ Bc and any i ∈ I relation (5.4)

implies that

Fi ∗ ψ(b) = ψ(Bib)

= ψ((Fi + ciEτ(i)K
−1
i )ψ(b))

= Fiψ(b) + ciqiτ(i)ψ(K−1
i Eτ(i)ψ(b))

= Fiψ(b) + ciqiτ(i)ψ(K−1
i [Eτ(i), ψ(b)]).

Hence we get for any u ∈ U− the relation

Fi ∗ u = Fiu + ciqiτ(i)ψ(K−1
i [Eτ(i), u])

which by Equation (4.10) and the definition of ψ implies that

Fi ∗ u = Fiu + ciqiτ(i)K
−1
i Kτ(i)∂

L
τ(i)(u). (5.9)

Hence μL
i is given by (5.8). �

5.3. The second star product on the partial bosonization Hθ ⋉ U−

Next we interpret the associative product ⋆ from Section 4 in terms of star products 

on partial bosonizations. It follows from (4.24) and (4.27) that ⋆ is a 0-equivariant star 

product on Hθ ⋉ U−. By Lemma 4.7 the corresponding K-linear map μL is also given 

by (5.8). We summarize these observations in the following proposition.

Proposition 5.6. For all pre-Nichols algebras of diagonal type U+, the binary operation 

⋆ on Hθ ⋉ U− given by (4.27) is a 0-equivariant star product for which the map μL :

U− → HomK(U−, Hθ ⋉ U−) from Lemma 5.2(ii) is given by

μL
Fi

(u) = ciqiτ(i)(Kτ(i)K
−1
i )∂L

τ(i)(u)

for all i ∈ I, u ∈ U−.

Combining the above proposition with Theorem 5.5 and using Lemma 5.2(ii) we obtain 

the following corollary.

Corollary 5.7. For all pre-Nichols algebras of diagonal type U+, the associative products 

∗ and ⋆ on Hθ ⋉ U− coincide.
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Recall from Proposition 4.10 that (Hθ ⋉ U−, ⋆) is a right U(χ)max-comodule algebra 

with coaction Δ⋆. Composing the coproduct Δ : Bc → Bc ⊗ U(χ) on Bc with the 

projection U(χ) → U(χ)max on the second tensor factor, one also obtains a U(χ)max-

comodule algebra structure on Bc.

Corollary 5.8. For all pre-Nichols algebras of diagonal type U+, the map

ψ : Bc → (Hθ ⋉ U−, ⋆) (5.10)

is an isomorphism of right U(χ)max-comodule algebras.

Proof. It follows from Lemma 5.3 and the definition of the star product ∗ that ψ :

Bc → (Hθ ⋉ U−, ∗) is an isomorphism of algebras. By Corollary 5.7 the map (5.10) is 

also an isomorphism of algebras. Moreover, by (4.41) the map (5.10) respects the right 

U(χ)max-coaction. �

5.4. Generators and relations for Bc, revisited

We can apply the constructions of Sections 5.2 and 5.3 in particular in the case 

where the biideal I which defines U+, U− and U(χ) is trivial, that is I = {0}. In this 

case we have Hθ ⋉ U− = Hθ ⋉ T (V −(χ)). We write ⊛ to denote the star product ∗
on Hθ ⋉ T (V −(χ)), and we write B̃c, Ũ(χ)poly, and ψ̃ to denote Bc, U(χ)poly and ψ, 

respectively, in the case I = {0}. For a general biideal I ⊂ T (V +(χ)) and parameters 

c ∈ K
n satisfying condition (c) in Section 2.5 we hence obtain a commutative diagram

B̃c
Ũ(χ)poly (Hθ ⋉ T (V −(χ)),⊛)

Bc U(χ)poly (Hθ ⋉ U−, ∗)

ψ̃

ψ

η η η

b̃

b

where b = ψ|Bc
and b̃ = ψ̃|B̃c

. In the above diagram the vertical arrows are surjective 

algebra homomorphisms. The rightmost vertical arrow is a homomorphism both of the 

undeformed partial bosonizations Hθ ⋉ T (V −(χ)) → Hθ ⋉ U− and of the transferred 

algebra structures (Hθ ⋉T (V −(χ)), ⊛) → (Hθ ⋉U−, ∗). The maps ψ and ψ̃ are K-linear 

maps, while the other two horizontal maps are algebra embeddings. The maps b and b̃

are algebra isomorphisms.

The following proposition provides a procedure to determine the defining relations of 

(Hθ ⋉ U−, ∗) from the defining relations of U−.
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Proposition 5.9. Let U+ be a pre-Nichols algebras of diagonal type and assume that the 

parameters c ∈ K
n satisfy condition (c) in Section 2.5. If S is a generating set for the 

kernel of the homomorphism η : T (V −(χ)) → U− for the undeformed algebra structures, 

then it is a generating set also for the kernel of the homomorphism

η : (Hθ ⋉ T (V −(χ)),⊛) → (Hθ ⋉ U−, ∗)

with respect to the transferred algebra structures.

Proof. Consider the projection η : Hθ ⋉ T (V −(χ)) → Hθ ⋉ U−. By the definition of S

we have

ker(η) = (Hθ ⋉ T (V −(χ))) · S · (Hθ ⋉ T (V −(χ))).

We need to prove that

ker(η) = (Hθ ⋉ T (V −(χ))) ⊛ S ⊛ (Hθ ⋉ T (V −(χ))). (5.11)

As η : (Hθ ⋉ T (V −(χ), ⊛) → (Hθ ⋉U−, ∗) is an algebra homomorphism, the right hand 

side of (5.11) is contained in ker(η). The map η is graded with respect to the natural 

gradings of Hθ ⋉ T (V −(χ)) and Hθ ⋉ U−, and we show by induction on j ∈ N that

ker(η)j ⊆ (Hθ ⋉ T (V −(χ))) ⊛ S ⊛ (Hθ ⋉ T (V −(χ))).

Indeed, for a ∈ ker(η)j+1 there exist homogeneous elements b′
l, b

′′
l ∈ Hθ ⋉ T (V −(χ)), 

sl ∈ S such that a =
∑

l a′
lslb

′′
l . Property (5.1) of the star product implies that

a −
∑

l

a′
l ⊛ sl ⊛ b′′

l ∈ ker(η)≤j ,

and by induction hypothesis we have

ker(η)≤j ⊆ (Hθ ⋉ T (V −(χ))) ⊛ S ⊛ (Hθ ⋉ T (V −(χ))).

This shows that ker(η)j+1 ⊆ (Hθ⋉T (V −(χ))) ⊛S⊛(Hθ⋉T (V −(χ))) and hence completes 

the proof of (5.11). �

For any noncommutative polynomial r(x1, . . . , xn) =
∑

J aJxj1
. . . xjl

in n variables 

with coefficients aJ ∈ Hθ and any elements u1, . . . , un in Hθ ⋉ T (V −(χ)) we write

r(u1
⊛, . . . ⊛, un) =

∑

J

aJuj1
⊛ · · · ⊛ ujl

.

Proposition 5.9 has the following immediate corollary giving an effective way to determine 

the relations of the coideal subalgebra Bc of U(χ).
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Procedure for determining the relations of Bc:

(1) Let S = {pm(x1, . . . , xm) | m ∈ S} be a set of homogeneous noncommutative 

polynomials such that {pm(E) | m ∈ S} generates the kernel of the projection 

η : T (V +(χ)) → U+. In other words, S provides the defining relations of U+. Let 

dm denote the degree of the polynomial pm for all m ∈ S.

(2) Let

rm(x1, . . . , xn) =
∑

J

aJxj1
. . . xjl

be the noncommutative polynomials with coefficients in aJ ∈ Hθ such that

pm(F1, . . . , Fn) = r(F1
⊛, . . . ⊛, Fn)

where the left hand side uses the undeformed product in T (V −(χ)). It follows from 

(5.1) that rm has degree dm and leading term pm.

(3) The algebra Bc is generated by Hθ and Bi for i ∈ I subject to the relations

KλBi = χ(λ, αi)
−1BiKλ for all λ ∈ Z

n
θ , i ∈ I, (5.12)

rm(B) = 0 for all m ∈ S.

Example 5.10. Consider the quantized universal enveloping algebra Uζ(sl3) for ζ ∈ K
×

as described in Section 3.1. It has generators Ei, Fi, K
±1
i for i ∈ I = {1, 2} and relations 

given by (3.1). We apply the above procedure to the coideal subalgebra Bc of Uζ(sl3)

corresponding to the bijection τ : I → I given by τ(1) = 2, τ(2) = 1. The quantum Serre 

relations are given by p12(F1, F2) = p21(F1, F2) = 0 where

p12(x, y) = x2y − (ζ + ζ−1)xyx + yx2, p21(x, y) = p12(y, x).

Using relation (5.9) one obtains

F1 ⊛ F2 = F1F2 + c1ζ−1K2K−1
1 , F1 ⊛ (F1F2) = F 2

1 F2 + c1ζF1K2K−1
1

and hence

F 2
1 F2 = F1 ⊛ F1 ⊛ F2 − c1(ζ + ζ−1)F1K2K−1

1 . (5.13)

Similarly one calculates

F1F2F1 = F1 ⊛ F2 ⊛ F1 − c1ζ2F1K2K−1
1 − c2ζ−1F1K1K−1

2 (5.14)

F2F 2
1 = F2 ⊛ F1 ⊛ F1 − c2(ζ + ζ−1)ζ−3F1K1K−1

2 . (5.15)
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Combining (5.13), (5.14) and (5.15) one obtains

p12(F1, F2) = p12(F1
⊛, F2) + (ζ2 − ζ−2)F1[c1ζK2K−1

1 + c2ζ−2K1K−1
2 ].

Hence the noncommutative polynomial r12(x, y) describing the corresponding defining 

relation of the coideal subalgebra Bc is given by

r12(x, y) = p12(x, y) + (ζ2 − ζ−2)[c1ζ−2K2K−1
1 + c2ζK1K−1

2 ]x.

Similarly one obtains

r21(x, y) = p21(x, y) + (ζ2 − ζ−2)[c2ζ−2K1K−1
2 + c1ζK2K−1

1 ]y.

By the above procedure the algebra Bc is generated by B1, B2 and Hθ subject to the 

relations (5.12) and r12(B1, B2) = r21(B1, B2) = 0. The latter two relations coincide 

with the relations given in [31, Theorem 7.1 (iv)].

Remark 5.11. For quantum symmetric pair coideal subalgebras a different method to 

determine defining relations was devised by G. Letzter in [31, Theorem 7.1], see also [26, 

Section 7]. This method also works in the general setting of the present paper. Letzter’s 

method relies on relation (2.29) which holds with Z = 0 by choice of parameters. With 

Letzter’s method individual monomials in the quantum Serre relations lead to completely 

different lower order terms in the relations for Bc than with the procedure described 

above. This shows that the procedure described above is not a mere reformulation of 

Letzter’s method.

Example 5.12. As a second example we consider the coideal subalgebra Bc of the Drinfeld 

double of the distinguished pre-Nichols algebra of type ufo(8) from Section 3.4. The 

algebra Bc has generators K±1, B1, B2 where

K = K1K−1
2 , B1 = F1 + c1E2K−1

1 , B2 = F2 + c2E1K−1
2 .

Calculating recursively as in Example 5.10 on obtains that

F m
i = F⊛m

i for all i = 1, 2 and m ∈ N,

and that for the polynomial p(x1, x2) from (3.14) one has p(F1, F2) = r(F1
⊛, F2) where

r(x1, x2) =p(x1, x2) − (3ζ + 2)(c1K−1x1x2 + c2Kx2x1)

+ ζ−1/2(2ζ + 3)(c1K−1x2x1 + c2Kx1x2)

+ ζ−1/2(ζ2 + ζ + 1)(c2
1K−2 + c2

2K2) − 2(ζ + 1)c1c2.
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Assume that the parameters c1, c2 ∈ K satisfy the relation in Proposition 3.6(ii). By the 

above procedure, the algebra Bc has generators K±1, B1, B2 and relations

KK−1 = 1,

KB1 = −ζ−3/2B1K, KB2 = −ζ3/2B2K,

B3
1 = B3

2 = 0, r(B1, B2) = 0.

We have checked the above relations also with Letzter’s method referred to in Re-

mark 5.11, and this produces the same relation r(B1, B2) = 0.

6. The quasi K-matrix for Bc

From now on we restrict to the case where the graded biideal is maximal I = Imax

and hence U± = U±
max are Nichols algebras. We also retain the assumption that c ∈

K
n satisfies condition (c) in Section 2.5. Recall the isomorphism of U(χ)max-comodule 

algebras ψ : Bc → (Hθ ⋉ U−
max, ⋆, Δ⋆) from Corollary 5.8 and the quasi R-matrix Θ =∑

μ(−1)|μ|Fμ ⊗ Eμ from Section 4.1. We call the formal sum

Θθ = (ψ−1 ⊗ id)(Θ) =
∑

μ

(−1)|μ|ψ−1(Fμ) ⊗ Eμ ∈
∏

μ

Bc ⊗ (U+
max)μ (6.1)

the quasi K-matrix for Bc. Here we consider the infinite product 
∏

μ Bc ⊗ (U+
max)μ as a 

subalgebra of the completion U(χ)max⊗̂U(χ)max from Section 4.1. We multiply elements 

in 
∏

μ Bc ⊗ (U+
max)μ as infinite sums.

6.1. The coproducts of the quasi K-matrix

Similarly to Lemma 4.1 we are interested in the behavior of Θθ under the coproduct 

of U(χ)max in each tensor factor. To this end we introduce elements

Θθ
12 = Θθ ⊗ 1, Θ23 = 1 ⊗ Θ,

Θθ
1K3 =

∑

μ

(−1)|μ|ψ−1(Fμ) ⊗ Kμ ⊗ Eμ,

Θθ−
1K3 =

∑

μ

(−1)|μ|ψ−1(Fμ) ⊗ K−1
μ ⊗ Eμ,

Θσ
K23 =

∑

μ

(−1)|μ|Kμ−τ(μ) ⊗ σ(Fμ) ⊗ Eμ,

ΘσK
K32 =

∑

μ

(−1)|μ|Kμ−τ(μ) ⊗ EμK−1
τ(μ) ⊗ K−1

μ σ(Fμ)

in 
∏

μ,ν Bc ⊗ H(U+
max)μ ⊗ (U+

max)ν . As before, we multiply elements in 
∏

μ,ν Bc ⊗
H(U+

max)μ ⊗ (U+
max)ν as infinite sums. A formal completion of Bc ⊗ U(χ)max ⊗ U(χ)max
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containing the above product will be given in Section 6.3. With the above notation we 

can express the desired analog of Lemma 4.1.

Proposition 6.1. The quasi K-matrix Θθ satisfies the relation

(id ⊗ Δ)(Θθ) = Θθ
12 · Θσ

K23 · Θθ
1K3 (6.2)

in 
∏

μ,ν Bc ⊗ H(U+
max)μ ⊗ (U+

max)ν , and the relation

(Δ ⊗ id)(Θθ) = Θ23 · Θθ−
1K3 · ΘσK

K32 (6.3)

in 
∏

μ Bc ⊗ U(χ)max ⊗ (U+
max)μ.

Proof. To prove Equation (6.2) first observe that (4.4) and (4.6) imply that

∑

μ,ν

(−1)|ν|Fμ ⊗ (Fν ⊳ Eμ) ⊗ Kν ⊗ Eν (6.4)

=
∑

μ,λ

(−1)|μ|+|λ|Fμ ⊗ Fλ ⊗ Kλ+μ ⊗ EμEλ.

Similarly, also taking into account (4.20), one obtains

∑

μ,λ

(−1)|μ|+|λ|(σ(Fμ)⊲Fλ)Kμ ⊗ Eμ ⊗ Eλ (6.5)

=
∑

μ,κ

(−1)|κ|FκKμ−τ(μ) ⊗ Eμ ⊗ Eκσ(Fμ)K−1
μ .

With this preparation we use Equation (4.7), Lemma 4.9, and the fact that ψ is an 

isomorphism of algebras, to calculate

(id ⊗ Δ)(Θθ) =
∑

λ,ν

(−1)|λ|+|ν|ψ−1(FλFν) ⊗ EλKν ⊗ Eν

=
∑

λ,μ,ν

(−1)|λ|+|μ|+|ν|ψ−1
(
(σ(Fμ)⊲Fλ)Kμ

)
ψ−1

(
Fν ⊳ Eμ

)
⊗ EλKν ⊗ Eν

(6.5)
=

∑

μ,ν,κ

(−1)|ν|+|κ|ψ−1
(
FκKμ−τ(μ)

)
ψ−1

(
Fν ⊳ Eμ

)
⊗ Eκσ(Fμ)K−1

μ Kν ⊗ Eν

(6.4)
=

∑

μ,κ,λ

(−1)|λ|+|μ|+|κ|ψ−1(Fκ)Kμ−τ(μ)ψ
−1(Fλ) ⊗ Eκσ(Fμ)Kλ ⊗ EνEλ

= Θθ
12 · Θσ

K23 · Θθ
1K3
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which proves Equation (6.2). Equations (2.12) and (4.41), the fact that Bc is a coideal 

subalgebra of U(χ)max and Proposition 4.10 imply that ψ is an isomorphism of U(χ)max-

comodules. Therefore

(Δ ⊗ id)(Θθ) =
∑

ν

(−1)|ν|(ψ−1 ⊗ id ⊗ id)(Δ⋆(Fν) ⊗ Eν)

(4.38)
=

∑

λ,μ,ν

(−1)|ν|ψ−1
(
(σ(Fλ)⊲Fν ⊳ Eμ)Kλ

)
⊗ FμKμ−νEλ ⊗ Eν

(6.4)
=

∑

λ,ρ,μ

(−1)|μ|+|ρ|ψ−1
(
(σ(Fλ)⊲Fρ)Kλ) ⊗ FμKρEλ ⊗ EμEρ

(6.5)
=

∑

λ,κ,μ

(−1)|μ|+|κ|+|λ|ψ−1
(
Fκ)Kλ−τ(λ) ⊗ FμK−κ−τ(λ)Eλ ⊗ EμEκσ(Fλ)K−1

λ

= Θ23 · Θθ−
1K3 · ΘσK

K32

which proves Equation (6.3). �

6.2. The intertwiner property of the quasi K-matrix

The quasi K-matrix Θθ also satisfies an analog of Corollary 4.4.

Proposition 6.2. The element Θθ satisfies the relations

Δ(Bi) · Θθ = Θθ ·
(
Bi ⊗ Ki + cτ(i)qiτ(i)K

−1
τ(i)Ki ⊗ Eτ(i)Ki + 1 ⊗ Fi

)
, (6.6)

Δ(Kλ) · Θθ = Θθ · Δ(Kλ) (6.7)

for all i ∈ I, λ ∈ Z
n
θ .

Proof. We rewrite (Fi ⊗ K−1
i ) · Θ in terms of the twisted product

(Fi ⊗ K−1
i ) · Θ

(4.25)
=

∑

μ

(−1|μ|)(Fi ⋆ Fμ) ⊗ K−1
i Eμ − ciqiτ(i)

∑

μ

(−1)|μ|Kτ(i)K
−1
i ∂L

τ(i)(Fμ) ⊗ K−1
i Eμ

(4.16)
=

∑

μ

(−1)|μ|(Fi ⋆ Fμ) ⊗ K−1
i Eμ + ci(Kτ(i)K

−1
i ⊗ Eτ(i)K

−1
i ) · Θ.

Similarly we rewrite Θ · (Fi ⊗ Ki) in terms of the twisted product

Θ · (Fi ⊗ Ki)

(4.26)
=

∑

μ

(−1|μ|)(Fμ ⋆ Fi) ⊗ EμKi − cτ(i)qiτ(i)

∑

μ

(−1)|μ|∂R
τ(i)(Fμ)KiK

−1
τ(i) ⊗ EμKi)
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(4.16)
=

∑

μ

(−1)|μ|(Fμ ⋆ Fi) ⊗ EμKi + cτ(i)qiτ(i)Θ · (KiK
−1
τ(i) ⊗ Eτ(i)Ki).

Now Equation (6.6) follows from the above two relations, and the fact that ψ−1 : (Hθ ⋉

U−, ⋆) → Bc is an algebra isomorphism, by application of ψ−1 to the first tensor factor of 

Equation (4.18). Similarly, Equation (6.7) follows from the relation Δ(Kλ) ·Θ = Θ ·Δ(Kλ)

by application of ψ−1 to the first tensor factor. �

Remark 6.3. The statement of Proposition 6.2 is known in the theory of quantum sym-

metric pairs as the intertwiner property for the quasi K-matrix (called quasi R-matrix 

in [9, Section 3]). In [9, Proposition 3.2] and [27, Proposition 3.5] this property is formu-

lated in terms of the bar-involution for quantum symmetric pair coideal subalgebras. For 

general Nichols algebras and their coideal subalgebras there is no bar-involution. Propo-

sition 6.2 achieves a bar-involution free formulation of the intertwiner property in the 

same way as Corollary 4.4 provides a bar-involution free formulation of the intertwiner 

property for the quasi R-matrix.

6.3. Weakly quasitriangular Hopf algebras

We now want to show that the quasi K-matrix (6.1) gives rise to a universal K-

matrix for the coideal subalgebra Bc of U(χ)max. In [8] and [27] universal K-matrices 

are constructed on suitable categories of representations. Due to the generality of our 

setting we do not know much about the representation theory of U(χ)max. Instead we 

follow an approach used in [41], [40], [17] and consider a weak notion of quasitriangu-

larity. In the present section we recall this approach. In Section 6.5 we introduce the 

corresponding notion of weakly quasitriangular coideal subagebras and show that Bc is 

weakly quasitriangular up to completion.

Definition 6.4. ([40, Definition 3], [17, Definition 1.2]) A weakly quasitriangular Hopf 

algebra is a pair (U, R) consisting of a Hopf algebra U and an algebra automorphism 

R ∈ Aut(U⊗2) satisfying the relations

R ◦ Δ = Δop on U, (6.8)

(Δ ⊗ id) ◦ R = R13 ◦ R23 ◦ (Δ ⊗ id) on U⊗2, (6.9)

(id ⊗ Δ) ◦ R = R13 ◦ R12 ◦ (id ⊗ Δ) on U⊗2. (6.10)

Here we use the usual leg notation where Rij denotes the operation of R on the i-th and 

j-th tensor factor.

For any invertible element u of a unital algebra A let Ad(u) denote the inner auto-

morphism of A defined by

Ad(u)(a) = uau−1 for all a ∈ A.
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Remark 6.5. Recall the notion of a quasitriangular Hopf algebra from [15]. If U is a 

quasitriangular Hopf algebra with universal R-matrix R, then U is weakly quasitriangular 

with the automorphism R defined by conjugation R = Ad(R).

Remark 6.6. By [40, (7)] the automorphism R of a weakly quasitriangular Hopf algebra 

satisfies the quantum Yang-Baxter equation

R12 ◦ R13 ◦ R23 = R23 ◦ R13 ◦ R12. (6.11)

Indeed, (6.8) and (6.9) imply that both sides of (6.11) coincide on the image of Δ ⊗ id, 

while (6.8) and (6.10) imply that both sides of (6.11) coincide on the image of id ⊗ Δ. 

Now the quantum Yang-Baxter equation (6.11) follows from the fact that if U is a Hopf 

algebra then Im(Δ ⊗ id) + Im(id ⊗ Δ) generates U⊗3 as an algebra.

Remark 6.7. In [40] a weakly quasitriangular Hopf algebra is called a braided Hopf alge-

bra, see also [17, Definition 1.2]. We avoid this terminology because it is often used for 

Hopf algebras in a braided category. In [41, 4.3] weakly quasitriangular Hopf algebras 

are realized under the name pre-triangular Hopf algebras via a construction similar to 

the following lemma.

Lemma 6.8. ([40, Definition 3], [17, Definition 1.3]) Let U be a Hopf algebra, R(0) ∈
Aut(U ⊗ U) an algebra automorphism, and R(1) ∈ U ⊗ U an invertible element such that 

the following relations hold

(
Ad(R(1)) ◦ R(0)

)
◦ Δ = Δop, (6.12)

(Δ ⊗ id) ◦ R(0) = R(0)
13 ◦ R(0)

23 ◦ (Δ ⊗ id), (6.13)

(id ⊗ Δ) ◦ R(0) = R(0)
13 ◦ R(0)

12 ◦ (Δ ⊗ id), (6.14)

(Δ ⊗ id)(R(1)) = R
(1)
13 · R(0)

13 (R
(1)
23 ), (6.15)

(id ⊗ Δ)(R(1)) = R
(1)
13 · R(0)

13 (R
(1)
12 ). (6.16)

Then (U, Ad(R(1)) ◦ R(0)) is a weakly quasitriangular Hopf algebra.

Proof. Define R ∈ Aut(U⊗2) by R = Ad(R(1)) ◦ R(0). Then (6.8) is identical to (6.12). 

To verify (6.9) let u, v ∈ U and calculate

(Δ ⊗ id) ◦ R(u ⊗ v) = (Δ ⊗ id)
(
R(1) · R(0)(u ⊗ v) · (R(1))−1

)

= R
(1)
13 R(0)

13 (R
(1)
23 ) · R(0)

13 ◦ R(0)
23 (Δ(u) ⊗ v)·
R(0)

13 ((R
(1)
23 )−1)(R

(1)
13 )−1

=
(
Ad(R

(1)
13 ) ◦ R(0)

13

)
◦

(
Ad(R

(1)
23 ) ◦ R(0)

23

)
◦ (Δ ⊗ id)(u ⊗ v).

This proves (6.9), and (6.10) is obtained analogously. �
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The construction of weakly quasitriangular Hopf algebras in the theory of quantum 

groups involve completions, see [41, 4.3], [40, 1.3]. We set up these completions in a 

way which also works for the weakly quasitriangular coideal subalgebras in Section 6.5. 

Recall that U(χ) = U(χ)max is the Drinfeld double of a Nichols algebra of diagonal 

type U+ = U+
max. Let B be an arbitrary algebra and consider a finite sequence of signs 

s1, . . . , sm ∈ {+, −} for some m ∈ N. For any j ∈ N define

(
B ⊗ U(χ)Us1 ⊗ · · · ⊗ U(χ)Usm

)
j

=
⊕

β1,...,βm∈Nn,∑m
i=1 |βi|≥j

B ⊗ U(χ)Us1

s1β1
⊗ · · · ⊗ U(χ)Usm

smβm
.

Then the inverse limit

̂(B ⊗ U(χ)⊗m)s1...sm
:= lim←−−

j∈N

((
B ⊗ U(χ)⊗m

)
/
(
B ⊗ U(χ)Us1 ⊗ · · · ⊗ U(χ)Usm

)
j

)

is an algebra which contains B⊗U(χ)⊗m as a subalgebra. If the algebra B coincides with 

the field K then we write ̂(U(χ)⊗m)s1...sm
instead of ̂(K ⊗ U(χ)⊗m)s1...sm

. The coproduct 

Δ extends to the inverse limits. For example, we have algebra homomorphisms

(Δ ⊗ id) : ̂(U(χ)⊗2)s1s2
→ ̂(U(χ)⊗3)s1s1s2

,

(id ⊗ Δ) : ̂(U(χ)⊗2)s1s2
→ ̂(U(χ)⊗3)s1s2s2

which canonically extend Δ ⊗ id, id ⊗ Δ : U(χ)⊗2 → U(χ)⊗3. Recall that Θ denotes 

the quasi R-matrix defined by (4.5). For s1s2 ∈ {++, +−, −−} we may consider Θ21 =∑
μ(−1)|μ|Eμ ⊗ Fμ as an invertible element of ̂(U(χ)⊗2)s1s2

. Moreover, there is a well 

defined algebra automorphism R(0) ∈ Aut(U(χ)⊗2) such that

R(0)|U(χ)β⊗U(χ)γ
= χ(β, γ)(K−γ ·) ⊗ (K−β ·) (6.17)

for all β, γ ∈ Z
n. Here K−γ · and K−β· denote the operators of left multiplication by 

K−γ and K−β , respectively. In terms of generators of the algebra U(χ)⊗2 the algebra 

automorphism R(0) is given by R(0)|H⊗H = idH⊗H and

R(0)(Ei ⊗ 1) = Ei ⊗ K−1
i , R(0)(1 ⊗ Ei) = K−1

i ⊗ Ei,

R(0)(Fi ⊗ 1) = Fi ⊗ Ki, R(0)(1 ⊗ Fi) = Ki ⊗ Fi

for all i ∈ I. The automorphism R(0) extends canonically to an automorphism of the 

completion ̂(U(χ)⊗2)s1s2
. We can also make use of the leg notation to obtain algebra 

automorphism R(0)
ij of ̂(U(χ)⊗m)s1...sm

.

The following theorem states that the Drinfeld double U(χ)max is weakly quasitrian-

gular up to completion. The theorem hence extends [40, Proposition 1.3.1], [17, Theorem 

3.1] from the setting of quantum groups to Drinfeld doubles of general Nichols algebras 

of diagonal type. To simplify notation, we mostly drop the subscript max.
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Theorem 6.9. Let s1s2 ∈ {++, +−, −−} and let U+ be a Nichols algebra of diagonal type 

with Drinfeld double U(χ).

(1 The element R(1) = Θ21 and the automorphism R(0) ∈ Aut( ̂(U(χ)⊗2)s1s2
) defined 

by (6.17) satisfy the relations (6.12) – (6.16).

(2) Define an algebra automorphism Rs1s2 ∈ Aut( ̂(U(χ)⊗2)s1s2
) by Rs1s2 = Ad(Θ21) ◦

R(0). Then Rs1s2 satisfies relations (6.8) – (6.10).

Proof. (1) It suffices to check (6.12) on the generators Ei, Fi, Ki. Hence property (6.12)

follows from Corollary 4.4. Properties (6.13) and (6.14) hold because the coproduct 

preserves weights. Finally, properties (6.15) and (6.16) hold by Lemma 4.1.

(2) This follows from (1) analogously to the proof of Lemma 6.8. �

Analogously to Remark 6.6, the second part of Theorem 6.9 implies that for s1s2s3 ∈
{+ + +, + + −, + − −, − − −} the quantum Yang-Baxter equation

Rs1s2
12 ◦ Rs1s3

13 ◦ Rs2s3
23 = Rs2s3

23 ◦ Rs1s3
13 ◦ Rs1s2

12

holds on ̂(U(χ)⊗3)s1s2s3
.

6.4. Extending σ to an algebra automorphism

From now on we assume that the parameters satisfy ci �= 0 for all i ∈ I. Under 

this assumption the algebra homomorphism σ : U− → U+ ⋊ H from Section 4.3 can 

be extended to an algebra automorphism of U(χ). Indeed, it follows from the defining 

relations (2.3) and from Lemma 2.4 that there is a well-defined algebra automorphism 

σ : U(χ) → U(χ) such that

σ(Ei) = c−1
τ(i)Fτ(i)K

−1
i , σ(Fi) = cτ(i)KiEτ(i), σ(Ki) = K−1

τ(i) (6.18)

for all i ∈ I. We are interested in the compatibility between σ and the coproduct. In the 

following lemma R(0) denotes the algebra automorphism of U(χ)⊗2 given by (6.17) and 

Θ denotes the quasi R-matrix for U(χ).

Lemma 6.10. Let U+ be a Nichols algebra of diagonal type with Drinfeld double U(χ). 

Assume that c ∈ (K×)n. The algebra automorphism σ satisfies the relation

Δ ◦ σ = (σ ⊗ id) ◦ R(0)
21 ◦ (id ⊗ σ) ◦ Ad(Θ21) ◦ R(0) ◦ Δ. (6.19)

Proof. It suffices to show that both sides of (6.19) coincide when evaluated on Ki, Ei

and Fi. Evaluated on Ki both sides give K−1
τ(i) ⊗ K−1

τ(i). By Equation (4.17) we have
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(σ ⊗ id) ◦ R(0)
21 ◦ (id ⊗ σ) ◦ Ad(Θ21) ◦ R(0) ◦ Δ(Ei)

= (σ ⊗ id) ◦ R(0)
21 ◦ (id ⊗ σ)

(
Ei ⊗ Ki + 1 ⊗ Ei

)

= σ(Ei) ⊗ KiK
−1
τ(i) + K−1

i ⊗ σ(Ei)

= Δ ◦ σ(Ei).

The calculation for Fi is similar. �

6.5. Weakly quasitriangular comodule algebras

We now introduce a weak version of quasitriangularity for comodule algebras over 

weakly quasitriangular Hopf algebras.

Definition 6.11. Let (U, R) be a weakly quasitriangular Hopf algebra. A weakly quasi-

triangular right comodule algebra over (U, R) is a triple (B, ΔB, K) where B is a right 

U -comodule algebra with coaction ΔB : B → B ⊗ U and K is an algebra automorphism 

of B ⊗ U which satisfies the following properties

K ◦ ΔB = ΔB on B, (6.20)

(ΔB ⊗ id) ◦ K = R32 ◦ K13 ◦ R23 ◦ (ΔB ⊗ id) on B ⊗ U , (6.21)

(id ⊗ Δ) ◦ K = R32 ◦ K13 ◦ R23 ◦ K12 ◦ (id ⊗ Δ) on B ⊗ U . (6.22)

We say that the comodule algebra B is weakly quasitriangular if the coaction ΔB and 

the automorphism K are understood.

Remarks 6.5 and 6.6 have analogs for comodule algebras over a Hopf algebra.

Remark 6.12. Let U be a quasitriangular Hopf algebra with universal R-matrix R. By 

Remark 6.5 the pair (U, Ad(R)) is a weakly quasitriangular Hopf algebra. Recall the 

definition of a quasitriangular comodule algebra B over U with universal K-matrix K ∈
B ⊗ U from [27, Definition 2.7]. If the U -comodule algebra B is quasitriangular then B

is weakly quasitriangular with the automorphism K = Ad(K) of B ⊗ U .

Remark 6.13. If (B, K) is a weakly quasitriangular comodule algebra over a weakly qua-

sitriangular Hopf algebra (U, R) then the automorphisms K and R satisfy the reflection 

equation

K12 ◦ R32 ◦ K13 ◦ R23 = R32 ◦ K13 ◦ R23 ◦ K12 (6.23)

on B ⊗ U ⊗ U . Indeed, (6.20) and (6.21) imply that

K12 ◦ R32 ◦ K13 ◦ R23 ◦ (ΔB ⊗ id) = R32 ◦ K13 ◦ R23 ◦ K12 ◦ (ΔB ⊗ id)
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on B ⊗ U while (6.20) and (6.22) imply that

K12 ◦ R32 ◦ K13 ◦ R23 ◦ (id ⊗ Δ) = R32 ◦ K13 ◦ R23 ◦ K12 ◦ (id ⊗ Δ)

on B ⊗ U . Now the reflection equation (6.23) follows from the fact that if U is a Hopf 

algebra then Im(ΔB ⊗ id) + Im(id ⊗ Δ) generates B ⊗ U⊗2 as an algebra.

We have the following analog of Lemma 6.8 for comodule algebras.

Lemma 6.14. Let (U, R(0), R(1)) be as in Lemma 6.8 and let B be a right U -comodule 

algebra with coaction ΔB : B → B ⊗ U . Let K(0) be an algebra automorphism of B ⊗ U

and let K(1) ∈ B ⊗ U be an invertible element satisfying the following relations

Ad(K(1)) ◦ K(0) ◦ ΔB = ΔB , (6.24)

(ΔB ⊗ id) ◦ K(0) = R(0)
32 ◦ K(0)

13 ◦ R(0)
23 ◦ (ΔB ⊗ id), (6.25)

(id ⊗ Δ) ◦ K(0) = K(0)
12 ◦ R(0)

32 ◦ K(0)
13 ◦ Ad(R

(1)
23 ) ◦ R(0)

23 ◦ (id ⊗ Δ), (6.26)

(ΔB ⊗ id)(K(1)) = R
(1)
32 · R(0)

32 (K
(1)
13 ) · R(0)

32 K(0)
13 (R

(1)
23 ), (6.27)

(id ⊗ Δ)(K(1)) = K
(1)
12 · K(0)

12 (R
(1)
32 ) · K(0)

12 R(0)
32 (K

(1)
13 ). (6.28)

Then (B, ΔB , Ad(K(1)) ◦ K(0)) is a weakly quasitriangular right comodule algebra over 

the weakly quasitriangular Hopf algebra (U, Ad(R(1)) ◦ R(0)).

Proof. Set K = Ad(K(1)) ◦K(0) ∈ Aut(B⊗U) and R = Ad(R(1)) ◦R(0) ∈ Aut(U⊗2). Then 

Equation (6.20) follows from Equation (6.24). Equation (6.21) follows from Equations 

(6.25) and (6.27), and Equation (6.22) follows from Equations (6.26) and (6.28). �

We return to the concrete example of the coideal subalgebra Bc of the Drinfeld double 

U(χ) = U(χ)max of a Nichols algebra U+ = U+
max of diagonal type. There is a well defined 

algebra automorphism K(0),τ ∈ Aut(U(χ) ⊗ U(χ)) such that

K(0),τ |U(χ)β⊗U(χ)γ
= χ(β, γ−τ(γ)) (K−γ+τ(γ)·) ⊗ (K−β+τ(β)·) (6.29)

for all β, γ ∈ Z
n. More explicitly, the algebra automorphism K(0),τ is defined by 

K(0),τ |H⊗H = idH⊗H and

K(0),τ (1 ⊗ Ei) = K−1
i Kτ(i) ⊗ Ei, K(0),τ (1 ⊗ Fi) = KiK

−1
τ(i) ⊗ Fi,

K(0),τ (Ei ⊗ 1) = Ei ⊗ K−1
i Kτ(i), K(0),τ (Fi ⊗ 1) = Fi ⊗ KiK

−1
τ(i)

for all i ∈ I. Similarly to the proof of Equations (6.13), (6.14) for the automorphism 

R(0) given by (6.17), one sees that
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(Δ ⊗ id) ◦ K(0),τ = K(0),τ
23 ◦ K(0),τ

13 ◦ (Δ ⊗ id), (6.30)

(id ⊗ Δ) ◦ K(0),τ = K(0),τ
12 ◦ K(0),τ

13 ◦ (id ⊗ Δ). (6.31)

The algebra automorphism K(0),τ restricts to an automorphism of the subalgebra Bc ⊗
U(χ) such that

K(0),τ (Bi ⊗ 1) = Bi ⊗ KiK
−1
τ(i)

for all i ∈ I. Recall the algebra automorphism σ from Section 6.4. Define an algebra 

automorphism K(0) of B ⊗ U(χ) by

K(0) = K(0),τ ◦ (id ⊗ σ).

By construction K(0) extends to algebra isomorphisms

K(0)
− : ̂(B ⊗ U(χ))− → ̂(B ⊗ U(χ))+, K(0)

+ : ̂(B ⊗ U(χ))+ → ̂(B ⊗ U(χ))−.

The isomorphism K(0)
− will provide us with the desired completed version of the auto-

morphism K(0) in Lemma 6.14. To obtain a completed version of K(1), we may consider 

the element Θθ =
∑

μ(−1)|μ|ψ−1(Fμ) ⊗ Eμ from (6.1) as an invertible element in 

̂(B ⊗ U(χ))+. By the following theorem the coideal subalgebra Bc of U(χ) is weakly 

quasitriangular up to completion.

Theorem 6.15. Let U+ be a Nichols algebra of diagonal type with Drinfeld double U(χ). 

Let Bc be the coideal subalgebra defined in Section 2.2 and assume that the parameters 

c ∈ (K×)n satisfy condition (c) in Section 2.5. Then the following hold:

(1) The element K(1) = Θθ ∈ ̂(B ⊗ U(χ))+ and the isomorphism K(0) = K(0)
− = K(0),τ ◦

(id ⊗ σ) : ̂(B ⊗ U(χ))− → ̂(B ⊗ U(χ))+ defined by (6.29) and (6.18) satisfy relations 

(6.24) – (6.28).

(2) Define an isomorphism of algebras K− : ̂(B ⊗ U(χ))− → ̂(B ⊗ U(χ))+ by K− =

Ad(Θθ) ◦ K(0)
− . Then K− satisfies relations (6.20) – (6.22) with the operators Rs1s2

from Theorem 6.9.

Proof. (1) We first verify (6.24). It suffices to check (6.24) on the generators Bi for i ∈ I

and Kλ for λ ∈ Z
n
θ . We calculate

Ad(Θθ) ◦ K(0),τ ◦ (id ⊗ σ) ◦ Δ(Bi)

= Ad(Θθ) ◦ K(0),τ
(
Bi ⊗ Kτ(i) + Kτ(i)K

−1
i ⊗ Fi + 1 ⊗ cτ(i)KiEτ(i)

)

= Ad(Θθ)
(
Bi ⊗ Ki + 1 ⊗ Fi + cτ(i)qiτ(i)K

−1
τ(i)Ki ⊗ Eτ(i)Ki

)

= Δ(Bi)
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where the last equality follows from the intertwiner property (6.6). The relation

Ad(Θθ) ◦ K(0),τ ◦ (id ⊗ σ) ◦ Δ(Kλ) = Δ(Kλ) for λ ∈ Z
n
θ

holds as σ(Kλ) = Kλ for all λ ∈ Z
n
θ . This completes the proof of (6.24).

Property (6.25) follows from the fact that

K(0),τ ◦ (id ⊗ σ) = R(0)
32 ◦ (id ⊗ σ) ◦ R(0)

23

and from Equation (6.30). Property (6.26) follows from Equation (6.31) and from 

Lemma 6.10. Finally, Equations (6.27) and (6.28) hold by Proposition 6.1.

(2) This follows from (1) analogously to the proof of Lemma 6.14. �

Analogously to Remark 6.13, the second part of Theorem 6.15 implies that K− satisfies 

the reflection equation

K−
12 ◦ R+−

32 ◦ K−
13 ◦ R−−

23 = R++
32 ◦ K−

13 ◦ R+−
23 ◦ K−

12

as an equality of algebra isomorphisms ̂(B ⊗ U(χ)⊗2)−− → ̂(B ⊗ U(χ)⊗2)++.
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