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We construct symmetric pairs for Drinfeld doubles of pre-
Nichols algebras of diagonal type and determine when they
possess an Iwasawa decomposition. This extends G. Letzter’s
theory of quantum symmetric pairs. Our results can be uni-
formly applied to Kac—-Moody quantum groups for a generic
quantum parameter, for roots of unity in respect to both big
and small quantum groups, to quantum supergroups and to
exotic quantum groups of ufo type. We give a second construc-
tion of symmetric pairs for Heisenberg doubles in the above
generality and prove that they always admit an Iwasawa de-
composition.

For symmetric pair coideal subalgebras with Iwasawa decom-
position in the above generality we then address two problems
which are fundamental already in the setting of quantum
groups. Firstly, we show that the symmetric pair coideal sub-
algebras are isomorphic to intrinsically defined deformations
of partial bosonizations of the corresponding pre-Nichols alge-
bras. To this end we develop a general notion of star products
on N-graded connected algebras which provides an efficient
tool to prove that two deformations of the partial bosoniza-
tion are isomorphic. The new perspective also provides an
effective algorithm for determining the defining relations of
the coideal subalgebras.

Secondly, for Nichols algebras of diagonal type, we use the
linear isomorphism between the coideal subalgebra and the
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partial bosonization to give an explicit construction of quasi
K-matrices as sums over dual bases. We show that the result-
ing quasi K-matrices give rise to weakly universal K-matrices
in the above generality.

© 2020 Elsevier Inc. All rights reserved.

1. Introduction
1.1. (Pre-)Nichols algebras of diagonal type

Since their inception in the 1980s quantum groups have become an integral part
of representation theory with many deep applications. Quantum groups in particular
reinvigorated the general investigation of Hopf algebras as they provided many new
noncommutative, noncocommutative examples. In the late 1990s N. Andruskiewitsch and
H.-J. Schneider proposed an approach to the classification of finite dimensional, pointed
Hopf algebras [3]. In this approach a central role is played by Nichols algebras which are
Hopf algebras in a braided category of Yetter-Drinfeld modules. Important examples of
Nichols algebras include the positive part Ut of quantized enveloping algebras U,(g) for
¢ not a root of unity, and the positive part of the small quantum group u,(g) if ¢ is a
root of unity. Other examples come from quantum Lie superalgebras, but there are also
large example classes which had not been studied previously.

The starting point for the construction of a Nichols algebra B (V) is a Hopf algebra
H and a Yetter-Drinfeld module V over H. If H is the group algebra of an abelian group
and V is a direct sum of one dimensional modules, then B(V) is called a Nichols algebra
of diagonal type. Nichols algebras of diagonal type are determined by a bicharacter
X : Z" x Z" — K into the base field K. The finite dimensional such Nichols algebras were
classified by I. Heckenberger in [20]. The Nichols algebra B(V) is a quotient of the tensor
algebra T'(V') by the uniquely determined maximal proper biideal Z,ay C ®S_, VO™, If
instead one considers any H-stable biideal Z with {0} C Z C Z,ax then T(V)/Z is a pre-
Nichols algebra as introduced by Masuoka in [36]. Prominent examples of pre-Nichols
algebras which are not Nichols algebras are the positive parts of quantized enveloping
(super) algebras at roots of unity.

1.2. Quantum symmetric pairs

Let g be a semisimple complex Lie algebra and let § : ¢ — g be an involutive Lie
algebra automorphism with pointwise fixed Lie subalgebra ¢ = {z € g|6(z) = z}. The
theory of quantum symmetric pairs provides quantum group analogs B. = U, () C U,(g)
of the universal enveloping algebra U (£). Crucially, B. C U,(g) is not a Hopf subalgebra
but satisfies the weaker coideal property

A(Be) C Be @ Uy(g)
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for the coproduct A of Uy(g). Quantum symmetric pairs for classical g were originally in-
troduced by M. Noumi, M. Dijkhuizen and T. Sugitani, case by case, to perform harmonic
analysis on quantum group analogs of symmetric spaces, see [37], [13], [38]. Indepen-
dently, G. Letzter developed a comprehensive theory of quantum symmetric pairs based
on the classification of involutive automorphisms of g in terms of Satake diagrams [29],
[30]. A Satake diagram (X, 7) consists of a subset X of the nodes of the Dynkin diagram
for g and a diagram automorphism 7 satisfying certain compatibility conditions, see [6].
Letzter’s construction was extended to the Kac-Moody case in [26].

Much is known about the structure of the algebras B.. Generators and relations for
B. were determined in [31, Section 7], see also [26, Section 7]. Let px be the standard
parabolic subalgebra corresponding the X. The algebra B; has a natural filtration such
that the associated graded algebra is isomorphic to a subalgebra Ué(p x) of the quan-
tized enveloping algebra U, (px). This suggests that it is possible to interpret B. as a
deformation of U;(px).

Problem I. Explicitly define an associative product x on U;(p x) such that the algebra
(Uy(px),*) is canonically isomorphic to Be.

In the quasi-split case X = (), the algebras B, were already introduced in [28]. In this
case the involution # can be given in terms of the Chevalley generators {e;, f;, h;|i € I'}
of g by

0(ei) = = fr@) 0(fi) = —eri), O(hi) = —hr()-

Let E;, F;, KijEl for ¢ € I denote the standard generators of U,(g). Then the quantum
symmetric pair coideal subalgebra B, corresponding to ((}, 7) is generated by the elements

B, =Fi+cE.pK ', KK foralliel (1.1)
where ¢ = (¢;)ier € K! are fixed parameters. The parameters ¢; need to satisfy certain
compatibility conditions which assure that gr(B.) is canonically isomorphic to the sub-
algebra U, (b) = K(Fi,Kl-KT_é) |i € I) of Uy(g). This condition is equivalent to the fact
that the pair (U,(g), Bc) satisfies a quantum Iwasawa decomposition. In the quasi-split
case this means that the multiplication map

Ut @ U ® Be — Uy(g) (1.2)

is a linear isomorphism. Here U} is the subalgebra of U,(g) generated by {KF'|i €
I} where I, C I is a set of representatives of the 7-orbits in I, and Ut C U,(g)
is the subalgebra generated by {E;|i € I}. The central role of the quantum Iwasawa
decomposition was first highlighted in [28]. More general versions appeared in [29], [32],
[26]. In the general case [30], [26], the generators B; may come with a second parameter
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s;. Here we suppress this parameter for simplicity, but we note that the theory can be
extended by twisting by a character, see for example [14, Section 3.5].

The theory of quantum symmetric pairs received a big push in 2013 when the preprint
versions of [9] and [16] introduced the notion of a bar involution for quantum symmetric
pairs. H. Bao and W. Wang showed that much of G. Lusztig’s theory of canonical bases
allows analogs for quantum symmetric pairs [9], [10]. Of pivotal importance in Lusztig’s
theory is the quasi R-matrix © which lives in a completion of U~ ® U and intertwines
two bar involution on A(Uy(g)), see [34, Theorem 4.1.2]. For the symmetric pair of type
AIIT with X = @, Bao and Wang showed in particular that there exists an intertwiner
©% in a completion of Be ® Ut which plays a similar role as the quasi R-matrix ©.
The existence of the intertwiner ©Y was established in full generality in [27]. Following
the program outlined in [9], the intertwiner ©% was used in [8], [27] to construct a
universal K-matrix for quantum symmetric pairs. The universal K-matrix is an analog
of the universal R-matrix for U,(g). For this reason we call the intertwiner ©% the quasi
K-matriz for Be.

The construction of the quasi K-matrix in [9], [8] is recursive and based on the inter-
twiner property for the bar involutions on U,(g) and B.. This differs from the situation
with (quasi) R-matrices. Drinfeld constructed universal R-matrices for the doubles of all
Hopf algebras as sums of dual bases [15]. In this direction, the quasi R-matrix © has a
second description in terms of dual bases of U~ and U™ with respect to a non-degenerate
pairing, see [34, Theorem 4.1.2]. It is an open question to give a similar description of
the quasi K-matrix ©°%.

Problem II. Give a conceptual, non-recursive description of the quasi K-matrix ©¢ for
quantum symmetric pairs in terms of dual bases of U~ and U™. This description should
be parallel to the Drinfeld-Lusztig construction of the quasi R-matrices © as sums of
dual bases, and should not involve the bar-involutions which are not applicable in closely
related situations, such as roots of unity.

For large classes of examples there exist explicit formulas for the quasi K-matrix, see
[14]. However, these formulas do not come from dual bases on U~ and U™.

1.3. Goal of this paper

In the present paper we propose a construction of symmetric pairs for pre-Nichols
algebras which extends Letzter’s construction of quantum symmetric pairs. To keep
things manageable, we restrict to pre-Nichols algebras of diagonal type. For quantum
symmetric pairs this means that we restrict to the case X = (). The theory developed
in the present paper includes examples of symmetric pairs for quantized enveloping
algebras at roots of unity, quantum Lie superalgebras, and the more exotic examples
which arose from Heckenberger’s classification [20] of Nichols algebras of diagonal type.
We do not place any restrictions on the Gelfand-Kirillov dimension of the pre-Nichols
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algebra. The case of general X will involve Nichols algebras for Yetter-Drinfeld modules
over more general Hopf algebras. We intend to address this more general case in the
future. One of the upshots of this is an intrinsic construction of quantum symmetric
pairs in terms of a base Hopf algebra H, an involutive Hopf algebra automorphism of
H, and an isomorphism between two Yetter-Drinfeld modules for H.

For pre-Nichols algebras of diagonal type we develop a general theory in full analogy
to Letzter’s theory [29], [30], [26]. For a symmetric bicharacter x : Z" x Z™ — K, we
consider a Hopf algebra U () with triangular decomposition U(x) = Ut x H x U~ where
H = K[Z"] is the group algebra of Z™ and U*,U~ are pre-Nichols algebras associated
to x. We call U(x) the Drinfeld double of UT, see Remark 2.2. We define a coideal
subalgebra B. C U(x) which depends on parameters ¢ = (¢;) € K" and is generated
by elements analogous to those given in (1.1). The coideal subalgebra B, has a natural
filtration and we determine the set of parameters ¢ for which gr(B.) is isomorphic to
a partial bosonization Hy x U™, which will play a key role in the paper. Here Hy is a
Hopf subalgebra of H and Hy X U~ is the corresponding subalgebra of the bosonization
H x U™, see Section 1.4 for more details.

In this setting we answer Problems I and II from Section 1.2. Lusztig’s quasi R-
matrix © also exists in the general setting of the present paper. To answer Problem I,
we define two associative products on Hy x U~. First, by a twisting construction, we
define a product x by a closed formula which only involves the quasi R-matrix © and
an explicitly given algebra homomorphism & : U~ <+ U™ x H. Secondly, we use a linear
isomorphism

V:B.— Hyx U™,

coming from a triangular decomposition of U (), to push forward the algebra structure
on B.. We develop a general theory of star products on N-graded algebras generated in
degree 0 and 1 to show that the two algebra structures on Hy x U~ coincide. Hence the
map ¥ : Be — (Hg x U™, %) is an algebra isomorphism.

To resolve Problem II we need to restrict to the case where UV, U~ are Nichols
algebras. We show that the element

0% = (vt ®id)(©) (1.3)

which lives in a completion of B.®@U ™, has all the desired properties of a quasi K-matrix,
and indeed coincides with the quasi K-matrix in the case of quantum symmetric pairs. We
then use ©Y to essentially construct a universal K-matrix for B in the setting of Nichols
algebras of diagonal type. We do not discuss the representation theory of U(x), but
follow an approach proposed by N. Reshetikhin and T. Tanisaki for universal R-matrices
in [41], [40]. We obtain a weak notion of a universal K-matrix, which consists of an
automorphism of a completion of Be ® U(x) which satisfies the properties of conjugation
by a universal K-matrix. In the following we discuss the results of the present paper in
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more detail. All through this paper the symbol N denotes the natural numbers including
0, that is N = {0,1,2,...}.

1.4. Symmetric pairs for pre-Nichols algebras

For the construction of the Hopf algebra U(x) we mostly follow [21], which extended
Lusztig’s braid group action to Nichols algebras of diagonal type, but we allow pre-
Nichols algebras as introduced in [36]. Associated to the bicharacter y is a Yetter-Drinfeld
module VT () with basis {E1, ..., F,}. We consider the corresponding pre-Nichols alge-
bra Ut = T(V*(x))/Z where 7 is a Z"-graded biideal of the tensor algebra T'(V*(x)).
We then form the bosonization U x H and consider a quotient U(x) of the quantum
double of UT x H obtained by identifying the two copies of H. The Hopf algebra U(y) is
a natural generalisation of U,(g). In particular, it is generated by elements Ei,Fi,Kiil
fori € I ={1,...,n}, has a triangular decomposition U(y) = UT x H x U, and satisfies
relations similar to those for U,(g), see Section 2.1. Let {«; | ¢ € I'} be the standard basis
of Z", and let 7 : I — I be an involutive bijection such that x(a,(), a-(;)) = x(, a;)
for all 4,5 € I. We define B, to be the subalgebra of U(x) generated by the elements
given in (1.1) where ¢ = (c1,...,¢,) € K™ are fixed parameters. Moreover, we let Hy
denote the subalgebra of H generated by the elements KlK;é) for all 4 € I. The algebra
B. has a natural filtration given by the degree function deg(B;) = 1, deg(K; K~} ) = 0.

()
There is always a surjective algebra homomorphism

p:gr(Be) > Hyx U™. (1.4)

We use linear projection maps moo : U(x) = H and P, : U(x) = U(x) for p € Z",
which were first defined in [30], to show the following result.

Theorem A. (Theorem 2.14) For any pre-Nichols algebra U™ of diagonal type and any
c € K™, the map ¢ is an algebra isomorphism if and only if the following condition holds:

(¢) Theideal T C T(VT(x)) is generated by homogeneous, noncommutative polynomials
pi(E1,...,Eyn) for j = 1,...,k of degree \; € N, respectively, for which mg ¢ o
P—)\j (pj(Bla SRR Bn)) = 0.

As in the quantum case, the map ¢ is an isomorphism if and only if the pair (U(x), Bc)
admits an Iwasawa decomposition analogous to (1.2), see Remark 2.16.

Let U(x)P°Y be the subalgebra of U(x) generated by the elements E;K; ', F;, K; !,
KiKT_é) for all i € I. The algebra U(x)P°Y contains B, and has a natural surjection
K : U(x)P°Y — Heis(x) onto a Heisenberg double Heis() associated to the bicharacter
X. By construction, the kernel of  is the ideal generated by K, Y for all i € I. We can
consider the image B = r(B,.) inside Heis(). Again we have a natural filtration given
by a degree function and a surjection
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P:gr(Be) — Ho x U™.

It turns out that map @ is an algebra isomorphism irrespective of the choice of parameters
c.Let G be the subalgebra of Heis(x) generated by the elements x(E;K; ') for alli € I.

Theorem B. (Theorem 2.10) For any pre-Nichols algebra Ut of diagonal type and any
c € K", the map P is an isomorphism, that is, the pair (Heis(x), Be) admits an Twasawa
decomposition Heis(x) = G ® B..

The algebra U(x)P°Y has an N-filtration given by the degree function defined by
deg(BiK; ) = deg(Fy) = deg(K; ) = 1, deg(K,K () =0

for all i € I. We call the associated graded algebra Heis(y)¥ = gr(U(x)P°Y) the negative
Heisenberg double associated to UT. We observe that condition (c¢) in Theorem A can
be verified in the negative Heisenberg double. Indeed, the projection map mg ¢ has an
analog 7y : Heis(x)" — H. For all i € I set B = F; + ¢iE-;)K; " € Heis(x)".

Theorem C. (Theorem 2.18) In the setting of Theorem A, for any homogeneous, non-
commutative polynomial p(x1,...,xz,) of degree A € N™ we have

70,0 © Pa(p(B1, ..., Bn)) = ’/T(\)/,O(p(Bi/a ..., BY)).

The point of Theorem C is that calculations in Heis()" are easier than calculations
in U(x) and that condition (¢) in Theorem A is equivalent to a condition in Heis(x)"
which is easier to verify. We can summarize the situation in the following diagram:

Bc « 5 ﬁ(X)poly « 3 ﬁ'(X)

/ e

Be ———— U(x)P°Y ——— U(x)
AP AR

Here the tildes ~ denote the versions of U(x), Be, U(x)P°"Y in the case where the biideal
7 is trivial, that is Z = {0}. In this case U(x) = T(V*(x)) is just the tensor algebra.
The map n denotes the canonical projection.

In Section 3 we apply Theorems A and C to various classes of examples. For each
example class we determine the parameters ¢ € K™ for which the maps ¢ in (1.4) is
an algebra isomorphism. In each case the calculation simplifies significantly because
Theorem C allows us to calculate in the negative Heisenberg double. We first consider
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quantized enveloping algebras in Section 3.1 extending known results from [30], [26] to the
root of unity case. In Section 3.2 we consider the small quantum groups u¢(sls) where ¢ is
an arbitrary root of unity. The calculations for this example naturally lead us to consider
the Al-Salam-Carlitz I discrete orthogonal polynomials U,(La)(x; q) originally defined in
[1], see also [25]. As further examples we consider quantized enveloping algebras of Lie
superalgebras of type sl(m|k) and the distinguished pre-Nichols algebra of type ufo(8)
in Sections 3.3 and 3.4, respectively.

1.5. Star products on partial bosonizations

In Section 5 we introduce star products and apply them to solve Problem I from
Section 1.2. We define a star product on an N-graded K-algebra A = €D,y A; to be an
associative bilinear operation

x: AxA— A (a,b)—axb
such that
axb—ab€ Acpin foralla € A,,, b€ A,.
A star product will be called 0-equivariant if
axh=ah and hxa=ha forall he€ Ap,ac A.

Star products provide us with an efficient way to prove that two filtered deformations of
A are isomorphic. Namely, if A is generated in degrees 0 and 1, and A, =), AgF; A for
a subset {F;} C A;, then every 0-equivariant star product on A is uniquely determined
by the collection of K-linear maps

u€A— Fyxu— Fu€ A, (1.5)

see Lemma 5.2. The above conditions are satisfied for the algebra A = Hy x U~ which
is graded with Ay = Hy and Ay = Hpspang{F;|i € I}.

We have the decomposition U(x)P°Y = (Hy x U~ )@K(K; *, E;K; " | i € I). Consider
the K-linear map 1 : U(x)P°Y — Hy x U~ which is the identity map on (Hy x U™) ® 1
and the zero map on the left ideal generated by K;l and Einl for all ¢ € I. By
restriction to B, we obtain the following commutative diagram:

Be — (Hp x U7)®K<K:1,E1K;1 |iel) ; U(X)Poly

\lw

Hyx U™
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In the setting of quantized enveloping algebras the map 1 recently appeared in [33,
Corollary 4.4]. It turns out that the restriction of ¢ to B is a linear isomorphism if and
only if the map ¢ given by (1.4) is an algebra isomorphism, see Remark 5.4. We may
hence use the map 1 to push forward the algebra structure from B; to Hg x U~.

Theorem D. (Theorem 5.5) In the setting of Theorem A, if the map ¢ is an algebra
isomorphism (i.e. if (U(x),Be) admits an Iwasawa decomposition), then the restriction
Y Be — Hp x U™ is an algebra isomorphism to the uniquely determined 0-equivariant
star product on Hy x U™ such that

F;vu=Fu+ ciqiT(i)(KT(i)Ki_l)aTL(i) (u) forall i€l,bueU™
where OF are the frequently used skew derivations of U~ given by (4.11)—(4.12).

In addition to determining the algebraic structure of Be, Theorem D also gives an
effective way for the explicit description of the relations among the generators of Bc. In
Proposition 5.9 we prove that the relations among the generators F; and KiK;é) of the
star product algebra (Hy X U™, *) are the relations with respect to the usual product on
Hy x U™ but re-expressed in terms of the star product, see Section 5.4 for details and
examples.

In Section 4.4 we define a second associative binary operation x on Hy x U~. Denote
by UZ

ax

the Nichols algebras that are factors of U* and by U(x)max the corresponding
Drinfeld double. By [21, Theorem 5.8] there exists a pairing of Hopf algebras
() Ymax : (Hx U,

max

)@ (Ut x H) =K (1.6)

max

which is nondegenerate when restricted to U, @ U, The pairing induces a left action

> and a right action < of Ul x H on H x U™, see Section 4.1. The pairing (1.6) allows
us to define the quasi R-matrix for U(x)max as a sum of tensor products of dual bases

of U=, and Ul

max max*

We write formally

e = Z(,l)‘MEL@E”. (17)

In Sections 4.1 and 4.2 we show that this quasi R-matrix retains essential properties of
the quasi R-matrix for quantum groups in [34]. There exists an algebra homomorphism
T Upax = Uiy @ H such that 5(F;) = c;;)KiE;) for all i € I, see Section 4.3.
The associative binary operation x on Hy x U~ is defined solely in terms of the quasi
R-matrix © and the algebra homomorphism & and exists irrespective of the choice of
parameters c. Let S denote the antipode of U(X)max-

Theorem E. (Theorem 4.8, Proposition 5.6 and Corollary 5.7) For any pre-Nichols alge-
bra UT of diagonal type and any c € K™, the operation
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Frg =Y (—DI@E(F)eNE,lga (ST E)K,)] forall flgeU™  (18)

p

defines a 0-equivariant star product x on Hg x U~ . The star product x coincides with the
star product * from Theorem D when the latter is defined.

Theorem E provides the desired explicit formula for the star product on Hy x U~ and
hence solves Problem I. The main step in the proof of the first part of Theorem E is to
show that the bilinear operation * defined by (1.8) is associative. The second statement
then follows by comparison of the linear maps (1.5) for the two star products x and .

In the situation of Theorem D, the algebra isomorphism 1 turns the algebra (Hy X
U™, %) into a U(x)max-comodule algebra. In Section 4.5 we give an explicit formula for
the corresponding coaction A,. This formula again only involves the quasi R-matrix ©
and the homomorphism &. The U(X)max-comodule algebra structure on (Hg x U™, *)
again exists irrespective of the choice of parameters c € K”.

1.6. Quasi K-matrices versus quasi R-matrices

In Section 6 we address Problem II from Section 1.2. We need to restrict to the case
that U+ = UE

ax are Nichols algebras and we assume that the conditions of Theorem D
are satisfied. Under these assumptions the map v is an isomorphism and we may define
an element ©7 in a completion of B, ® U by (1.3). In Proposition 6.1 we give explicit
formulas for (A ®1id)(0?) and (id ® A)(©?) which are analogs of the formulas for (A ®
id)(0) and (id ® A)(©) in [34, 4.2]. We then show in Proposition 6.2 that ©7 satisfies
an intertwiner property which reproduces the intertwiner property for bar involutions of
B. and U,(g) from [9, Proposition 3.2] in the case of quantized enveloping algebras. For
this reason we call ©? the quasi K-matrix for the pair (U(X)max, Be)-

The following diagram illustrates our double construction for quasi K-matrices versus

the Drinfeld-Lusztig construction for quasi R-matrices:

Ut xH

max

4 (HG X UI;aX7 *)
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The two axes represent the decomposition U(X)max = (Ut X H') @ (Hp X U,,,) for a
Hopf subalgebra H' of H, and the corresponding quasi R-matrix is a sum of dual bases of
Upax and UL

max"*

The diagonal represents the coideal subalgebra Be which is isomorphic
via the projection 1 to a star product on the horizontal axes, and the corresponding
quasi K-matrix is the pull back under ¢! ® id of the quasi R-matrix.

In Section 6.3 we review the theory of weakly quasitriangular Hopf algebras from
[41], [40], see also [17]. This theory is extended to comodule algebras in Section 6.5. The
notion of a weakly quasitriangular comodule algebra captures the existence of a universal
K-matrix. Using the coproduct identities and the intertwiner property for ©? we show
the following result.

Theorem F. (Theorem 6.15) Let Ut = U}

max

be a Nichols algebra of diagonal type and
assume that (U(X)max, Be) admits an Twasawa decomposition (i.e. satisfies the condition
in Theorem A). Then the coideal subalgebra B of U (X )max is weakly quasitriangular up
to completion.
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2. The size of coideal subalgebras of Heisenberg doubles and Drinfeld doubles

In this first section we describe the general setting and introduce the coideal subalge-
bras B, which are the main objects of investigation in the present paper. The algebras
B. have a natural filtration. We determine the parameters c¢ for which gr(B.) is of the
right size. To this end we use methods first employed for quantized universal enveloping
algebras by G. Letzter in [30, Section 7].

2.1. The setting

We review the Drinfeld double U (x) of the tensor algebra of a braided vector space
of diagonal type, following [21, Section 4]. We will need in particular the description of
ideals of U (x) which preserve the triangular decomposition from [21, Proposition 4.17].
This allows us to consider quotients of U (x) which are generalizations of Drinfeld-Jimbo
quantized enveloping algebras for deformation parameters including roots of unity.
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Let K be a field and set K* =K\ {0}. Let I = {1,...,n} and let {a; |¢ € I} denote
the standard basis of Z". Let H = K[K;, K; ' |i € I] denote the group algebra of Z". Let
X :Z™ x Z™ — K* be a bicharacter and set ¢;; = x(a, ;) for all 4,5 € I. In this paper
we always assume that the matrix (g;;) is symmetric, that is ¢;; = g;; for all ¢,j € I.
Recall that every bicharacter is twist-equivalent to a symmetric bicharacter, and that
the corresponding Nichols algebras are linearly isomorphic, see [3, Proposition 3.9]. Let

Vt(x) e fYD,  V (x) € §¥D

be the Yetter-Drinfeld modules with linear bases {E; |i € I} and {F} |i € I}, respectively,
such that the left action - and the left coaction 6 of H on V' (x) and on V= (x) are given
by

K; - Ej =qi;E;, §(E;) = K; ® E,

1 1 2.1)
K- Fj=q; F;,6(F;) =K, ®F,

respectively. Let T(V*(x)) and T(V~(x)) denote the tensor algebras of V' (x) and
V= (x), respectively. Recall that T (V*(x)) and T(V~(x)) are braided Hopf algebras in
the category 2YD. Let T(V*(x)) x H and T(V~(x)) x H denote the bosonizations of
T(V*(x)) and T(V~(x)), respectively, which are Hopf algebras, see [39], [35], [21, (4.5)].
We write (T'(V~(x)) x H)®P to denote the Hopf algebra structure on T(V~(x)) x H
with the opposite coproduct. There exists a skew Hopf-pairing between T'(V*(x)) x
H and (T'(V~—(x)) x H)°P, see [21, Proposition 4.3]. We consider the quotient of the
corresponding Drinfeld double by the ideal identifying the two copies of H

U0 = (T 00) % H) @ (T(V=(x)) % H)™) J(KiLi = 1]i € I)

where L; denotes the inverse of K; in the second copy of H, see [21, Definition 4.5, Remark
5.7]. More explicitly, U(x) is a Hopf algebra generated by the elements F;, F;, K;, K;l
with coproducts

A(E)=E; 1+ K;®F;,
AF)=F,oK '+1® F;, (2.2)
for all i € I. Defining algebra relations for U (x) are given by
K,K;'=1,

E,F; — F;E; = 6; ;(K; — K; 1),

for all 4,5 € I, see [21, Proposition 4.6].
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Remark 2.1. In the quantum double (T'(V*(x)) x H) @ (T(V~(x)) x H) “P the relations
K,E;K;' = q;;E; and L,E;L;' = q;ilEj hold for all 4,5 € I, see [21, Proposition 4.6].
InU (x) we identify K; and L; ! By the above relations, the resulting quotient contains
T(V*(x)) and T(V~(x)) as subalgebras if and only if ¢;; = gj; for all 4,j € I, that is,
the braiding matrix is symmetric.

In view of the defining relations (2.3) of U(x) there exists an isomorphism of Hopf
algebras w : U(x) — U(x)°P such that

wK) =K', w(BE)=F, wkF)=E,

for all ¢ € I. The isomorphism w is denoted by ¢3 in [21, Proposition 4.9.(6)].
The algebra U(x) has a triangular decomposition in the sense that the multiplication
map

TVHx) @ HoT(V™(x) = U(x) (2.4)
is a linear isomorphism, see [21, Proposition 4.14]. We write this as
U(x) = T(VF(x) x Hx T(V"(x))

to indicate that the bosonizations T(V*(x))x H and HxT(V~(x)) = (T(V~(x) x H)<°P
are subalgebras of U(x). We will use similar notation for other triangular decompositions
later in the paper. We are interested in ideals of U (x) which are compatible with the
triangular decomposition. Let

ICPHTVH)m
m=2

be a Z"-graded biideal of T(V*(x)). By [21, Corollary 4.21] the subspace ZHT (V™ (x))
is a Hopf ideal of U(x). Similarly one shows that the subspace T(V T (x))Hw(Z) is a
Hopf ideal of U(x). Let (Z,w(Z)) denote the ideal of U(x) generated by Z and w(Z). We
define

U =U0)/(Z.w(@).  Ut=T(V (x)/I, U =TV (x)/wI)
By [21, Proposition 4.17] the Hopf algebra U(x) has a triangular decomposition
Ux)2Ut"xHxU". (2.5)
The subalgebras Ut and U~ are pre-Nichols algebras as defined in [36]. Recall from [36,

Section 2] that a pre-Nichols algebra of a braided vector space V' is any graded braided
Hopf algebra of the form T(V)/Z where Z is a graded biideal which trivially intersects
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V. In particular, if we choose Z = Zpax(x) € T(VT(x)) to be the maximal Z"-graded
biideal in @, _, T(VF(x))m, then UT is the Nichols algebra of V*(x). We allow more
general graded biideals Z to cover non-restricted specializations of quantized universal
enveloping algebras at roots of unity [12].

Remark 2.2. The algebra U(x) is a factor of the Drinfeld double of the bosonization of
U™. For the sake of brevity, we will refer to U(x) as the Drinfeld double of the pre-Nichols
algebra U™,

We end this introductory section by recalling two projection maps which play an
important role in Letzter’s theory of quantum symmetric pairs, see [30, Section 4, Lemma
7.3]. Let G~ be the subalgebra of U(x) generated by the elements F;K; for all i € I. We
can rewrite the triangular decomposition (2.5) as

Ux)2UtxHxG .

As a vector space U(x) has a direct sum decomposition

Ux)= P UTK\G™. (2.6)
AezZm
Here we write Ky = Kf‘l ~~~~~ K} for any A = (\1,...,\,) € Z™. For A € Z" let
Py : U(X) — U+K,\G7 (27)

be the canonical projection with respect to the direct sum decomposition (2.6). It follows
from the definition of the coproduct (2.2) that Py is a homomorphism of left U(x)-
comodules, that is

A(Pr(2)) = (Id @ Py)(A(x)) (2.8)

for all x € U(y). The algebras UT and U~ are Z"-graded with deg(F;) = «; and
deg(F;) = —a; for all i € I. Degrees of homogeneous elements in U and U~ lie in N
and —N", respectively. Hence we obtain a second direct sum decomposition

Ux)= € UTHUZ,. (2.9)
o,feEN™
For a, 8 € N™ let
Tap : U(x) = U;HU:B (2.10)

denote the canonical projection with respect to the direct sum decomposition (2.9).
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2.2. The partial bosonization Hy x U™ and the coideal subalgebra B,

Let 7 : I — I be a bijection such that 72 = id and ¢;; = qr(iyr(j) for all 4,5 € I.
We may consider 7 as an automorphism of the braided bialgebra T'(V*(y)). We always
assume that the ideal Z used to define U(x) satisfies the relation 7(Z) = Z. We also
consider 7 as a group automorphism of Z" given by 7(a;) = o, for all i € I. Let
0 : Z™ — Z™ be the involutive group automorphism given by

O(N) = —7(N) for all A € Z™
and set
g ={AeZ™ |0\ = A} (2.11)

Define Hy to be the subalgebra of H generated by the elements KiKT_é) foralli € I. By
construction, Hy is the group algebra of Zj. We call the subalgebra Hy x U~ of U(x)
generated by Hy and U~ the partial bosonization of U~. As a vector space we have
Hyx U~ =HyU~™.

For ¢ = (cq,...,c,) € K™ we define B, to be the subalgebra of U(x) generated by Hp
and the elements

B = F;+ ¢;E;(zK; ' foralliel.
The definition of the coproduct A on U(x) implies that
AB) =B K" +1® Fi + ;K. () K; ' @ B, ;) K;' foralliel (2.12)
and hence B, C U(x) is a right coideal subalgebra, that is
A(Be) € Be @ U(x).
The algebra B¢ has a filtration F defined by the degree function given by

deg(B;) =1 foralliel,

(2.13)
deg(h) =0 for all h € Hy.

In the following we want to compare the associated graded algebra gr(B.) with the
algebra Hy x U~ . To this end, we first introduce some more notation. For any multi-index
J=(j1,--,Jm) € I"™ we write |J| = m, and we write Fy = Fj, ----- F; and By = B, -

-+ B, . The commutation relations (2.3) imply that KiKT_é)Bj = qiglqr(i)ijKiKT_é)
for all 4,j € I and hence B = ) ; HyB;. Let p = p(x1,...,2,) be a noncommutative
polynomial in variables x; for i € I. To shorten notation we write p(F) = p(Fi, ..., Fy),

p(ﬁ) = p(Ela s aEn)7 p(ﬁ) = p(317 EERE} Bn)7 p(ETK_l) = p(ET(l)Kl_17 SRR E‘r(n)K’rjl)a
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p(KE;) = p(Kr1E (1, ..., KnEr(n)) and p(Fy K1) = p(F, () K; ', ..., Frny K1) For
any m € N define

UZ,, = spang{F;, ... I, [ j <m}.
By definition of the generators B; and the defining relations (2.3) of U(x) we have
Fm—1(Be) C U+HU;m71 for any m € N. (2.14)
Hence, if p be a non-commutative, homogeneous polynomial of degree m then
p(B) € Fmn-a1(Be) = p(E) =0.
Hence we obtain a surjective homomorphism of graded algebras
p:gr(Be) = Hy x U™ (2.15)

such that ¢(B;) = F; and ¢(h) = h for all i € I, h € Hyp. We want to know un-
der which conditions the map ¢ is an isomorphism. To this end, for any homogeneous
noncommutative polynomial p of degree m we consider the following property

p(F)=0 = p(B)e Fm-1(Be). (Be-rel)

We consider the set Ny of all degrees for which homogeneous relations in U~ lead to
relations in B, that is

N;e1 = {k € N |any polynomial p of degree m < k satisfies (B.-rel) }.  (2.16)

By definition of Ny, the map ¢ is injective if and only if N, = N.
Proposition 2.3. The map ¢ is an isomorphism of graded algebras if and only if Npog = N.
In Section 2.5 we will formulate necessary and sufficient conditions on the parameters
c which imply that N,,) = N. First, however, we show in Section 2.4 that a quotient of B¢
inside a Heisenberg double satisfies the relation N, = N irrespective of the parameters

c. For later reference we note the following technical lemma.

Lemma 2.4. Let p be a homogeneous polynomial. The following are equivalent:

(1) p(F) =0,
(2) p(E) =0,
(3) p(E.K') =0,
(5) p(FTK_l =0
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Proof. The equivalence between (1) and (2) follows from p(E) = w(p(F)). As 7(Z) = Z,
the latter is equivalent to p(E-(1), ..., E;(n)) = 0. By the triangular decomposition (2.5),
this is equivalent to the relation p(ET(l)Kfl, oy EryK 1Y) = 0 in U(x). Indeed, the
factor which is obtained by commuting all negative K;-powers to the very right of any
monomial of weight A € Z™ depends only on A and not on the monomial because (g;;)
is symmetric. This shows that (2) and (3) are equivalent. The equivalence between (2)
and (4) is verified analogously, and so is the equivalence between (1) and (5). O

2.3. The Heisenberg double

Let U(x)P°Y be the subalgebra of U(x) generated by the elements F, Einl, K;l,
KZ-KT_(% for all i € I. Let Gt denote the subalgebra of U(x) generated by the elements

E; = E;K; " for all i € I. The following description of U(x)P°" in terms of generators
and relations follows from the corresponding description of U(x).

Lemma 2.5. The algebra U(x)P°Y is the factor of the free product of the algebras
G, U™, K[Ki|Ae-N"+7Zj]
by the relations
K\E; = x(\ i) EiKy,  K\F; = x(\, o) "1 F K (2.17)
foriel, A€ =N" 4+ Zy and the cross relations
a5 EiF; — FjE; = 6;5(1 — K72 (2.18)

fori,jel.

It follows from the above Lemma and from the triangular decomposition (2.5) of U(x)
that U(x)P°Y has a triangular decomposition

U)PY 2 GToK[Kx| A€ - N"+ZI @ U~. (2.19)

Observe that U(x)P°Y is a sub-bialgebra of U() but not a sub-Hopf algebra. By con-
struction we have B, C U(x)P°Y. By definition of the coproduct (2.2) the two sided ideal
37 =(K;'|ieI)in U(x)P°Y is a right coideal, that is

A(37) C I @U(x)PV.

Hence the quotient Heis(x) = U(x)P°Y /I~ is a right U(x)P°Y-comodule algebra with

generators E; = EiKi_l,Fi,KiKT_é) for i € 1. We call Heis() the Heisenberg double

associated to bicharacter x and the pre-Nichols algebra Ut. We write
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A : Heis(x) — Heis(x) ® U(x)P°Y

to denote the coaction. Let  : U(x)P°Y — Heis(x) be the projection map and observe
that

A(k(z)) = (k ®id) A(x) for all 2 € U(x)P°V. (2.20)

Lemma 2.5 implies that Heis() is the factor of the free product of G, U~ and K[K |\ €
Z}| by the relations (2.17) for i € I, A € Z}} and the cross relations

q; EiF; — FjE; = b
for 4,4 € I. This implies that Heis(x) has a triangular decomposition
Heis(x) & G x Hy x U™ (2.21)
where Gt = K(E; |i € I).

Remark 2.6. In the special case of the quantized universal enveloping algebra U,(g) of
a symmetrizable Kac—-Moody algebra at a non-root of unity ¢ and 7 = id, the algebra
Heis(x) is isomorphic to Kashiwara’s bosonic algebra %, (g) [24, Section 3.3]. When g
is finite dimensional, in [18, Theorem 6.2] it was proved that it has the structure of a
quantum cluster algebra; the algebra was denoted by U, > UT in [18, Theorem 4.7,
Remark 4.8].

The projection maps Py for A € Z™ and 7, g for o, 5 € N™ from the end of Section 2.1
have analogs for the Heisenberg double. For o € N™ we write GI = UFHNG™. In view
of the triangular decomposition (2.21) of the Heisenberg double we get a direct sum
decomposition

Heis(x) = €  GIK.UZ,. (2.22)
o, BENT €L}

Now the projection Py from (2.7) induces a projection

Py:Heis(x) » @ GiK.UZ,. (2.23)
p—a—pB=X
By (2.8) we obtain
Ao Py(x) = (id ® Py)A(x) for all = € Heis(x). (2.24)

Moreover, for a, 5 € N” let
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To,p - Heis(x) — GL HoU (2.25)

be the projection with respect to the decomposition (2.22). We consider the partial order
on Z™ given by

(Gtoeosdn) < Ghondh) = i<l fori=1,...,m.
For later use we note the following property of the projection map (2.25).

Lemma 2.7. Let u € Heis(x) and let o« € N™ be mazimal with respect to the partial order
such that T g(u) # 0 for some B € N™. Then

0 % (id @ 7o) A(w).

Proof. Using the direct sum decomposition (2.22) we write

_ E 20 )
U= Lry,illey B,iY—B,i
v,BEN™ i

where ., ; € G are linearly independent, and uf)yﬁﬂ- € Hp and y_p,; € UZ5. Let now «
be as in the assumption and set

0
U = E La,ila,g,iY—B,i
BEN™ 4

and Uz, = U — Uq. By the maximality of o we have
(id ® 7a,0)A(urza) = 0.

Hence, using Sweedler notation for the coaction A in the form A(u) = ) @ Uy we
obtain

(1d ® Ta,0)A(w) = (1d ® Ta.0) A(Ua)

0 0
Z Ug 3.i(1)Y—Bri @ Ta,ill g.i(2) K-8
BEN™ ;

and the latter expression is non-zero by the linear independence of the z, ;. O
2.4. Relations in Be
Recall the projection map & : U(x)P°Y — Heis(x) and define B, = x(B.). We also

use the notation 7 = r(z) for x € U(x)P°Y and write in particular B; = x(B;) for all
i € I. We proceed as in Section 2.2. The algebra B, is filtered by a degree function with
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deg(B;) =1 for all i € I and deg(h) = 0 for all h € Hy. Let gr(B.) denote the associated
graded algebra. We obtain a surjective homomorphism of graded algebras

%:gr(Be) = Hyx U™

such that ®(B;) = F; and ®(h) = h for all i € I, h € Hy. For any non-commutative
polynomial p in variables x1,...,z, we write p(B) = p(By,...,B,). Assume that the
noncommutative polynomial p has degree m. In analogy to property (B.-rel) we are
interested in the following property

p(F)=0 = p(B) € Fm1(Bc). (Be-rel)

We consider the set N, of all degrees for which homogeneous relations in U~ lead to
relations in B, that is

N,e1 = {k € N |any polynomial p of degree | < k satisfies (B.-rel) }.  (2.26)

We know that 1 € N,¢. The following lemma provides a main step in the proof that
N = N, below.

Lemma 2.8. Let B € Z™ with 3 > 0 and m € N,o. Then

KGTK_snU(X)PY)N Y HeBj = {0}.
|J|<m

Proof. Let a € k(G"K_gNU(x)P°Y) N 2o71<m HyB;. Choose k € Ny minimal such
that a € k(G=K_gNU(x)P°Y) N 2o1<k HyB ;. We want to show that k = 0. Assume
on the contrary that ¥ > 1 and write a = ag + a, with a9 € Z\Jlgk—l HyB; and
ai € E\J\:k HyB ;. By the minimality of k& we have a;, # 0. Write ay, = >_, hip;(B) where
h; € Hy are linearly independent and p; = p;(z1,...,2,) are homogeneous polynomials
of degree k. The relation a € kK(G~K_g N U(x)P°Y) together with the definition of the
generators B; of Be (and the linear independence of the h;) imply that p;(E,K ') = 0.
Hence we have p;(F) = 0 by Lemma 2.4. As k € N, we obtain p;(B) € Z|J|<k L HyB.
But then a = ag + a; € ZlJlék—l Hy B in contradiction to the minimality of k. Hence
the assumption & > 1 was incorrect and we obtain k& = 0. Hence a € R(G_K,B N
U(x)P°Y) N Hy = {0} which concludes the proof of the lemma. O

With these preparations we can show that B, is not too big.
Proposition 2.9. Nyl = N.

Proof. We proceed by induction. Let k € N and assume that {1,. —1} € Nyq. Let
p be a polynomial of degree k such that p(F) = 0. Without loss of generahty we may
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assume that p is homogeneous of degree A € Z" with |A\| = k. Write Y = p(B) and
Z = P_,(Y) where P_, is the projection operator from (2.23). Note that Z € B, by
(2.24). Relations (2.12) and (2.20) imply that

AYV)eY®K y+ Y. HyB;@U()™Y.
|J]<k—1

Hence (2.24) implies that the element Z satisfies the relation

AZ)eY®K x+ Y. HyB;® P \UMX™Y). (2.27)
|J|<k—1

We now prove Z = 0 as in [26, Proposition 5.16]. Assume that Z # 0. Let a € N™ be
maximal with respect to the partial order such that 7, g(Z) # 0 for some § € N™. By
Lemma 2.4 we know that a < A. Moreover, by Lemma 2.7 we have

0# (id ® m00)A(Z) € K(GTK_x1a NUX)PY) @ UTK_y. (2.28)

If « # 0 then (2.27) implies that

(id ® 7a,0)A(Z) € (K(G*K_M NUPM)N Y HQEJ) QUK.
|J|<k—1

However, the left hand tensor factor of the above space is {0} by Lemma 2.8 in contra-
diction to (2.28). Hence a = 0 and Z € x(G~K_, N U(x)P°Y). But then the relation
p(F) = 0 implies that Z € @z, K(G_zK_» N U(x)P°Y) = {0}. Hence Z = 0.

Now we apply the counit € to the second tensor factor in (2.27) to obtain

Y € Z HQEJ.
[J]<k—1

Hence the polynomial p satisfies property (B.-rel). This proves that k € Ny, O

We can now repeat the argument which led to Proposition 2.3 to obtain the following
result.

Theorem 2.10. For all pre-Nichols algebras U' of diagonal type and ¢ € K™, the map

@ :gr(Be) = Hy x U™ is an isomorphism of graded algebras.
2.5. Relations in B
We now want to see how much of the argument in the previous section translates from

B. to the algebra Be. Recall the definition of the subset N, C N from (2.16). A word
by word translation of the proof of Lemma 2.8 gives the following result.
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Lemma 2.11. Let 8 € Z™ with 8 > 0 and m € Nye. Then

G K_sn > HeBy={0}.
J|<m

Translating the initial steps of the proof of Proposition 2.9 into the setting of B, we
obtain the following result.

Proposition 2.12. Let p be a homogeneous polynomial of degree A € N™ with |A| minimal
such that p(F) = 0 but

p(B)¢ Y HoBy.

[JI<|Al
Then P_x(p(B)) = m0,0(P-x(p(B))) = apK_» for some a, € K* and hence K_, € Be.

Proof. Write Y = p(B) and Z = P_,(Y). Equation (2.12) for the coproducts of the
generators B; implies that

AY)eY®K x+ Y, HyB;oU()".
7I<IA]-1

Hence (2.8) implies that the element Z satisfies the relation

AZ)eY®K x+ Y. HyBy®P\(UXY). (2:29)
[J|<[Al-1

If Z = 0 then we can apply the counit ¢ to the second tensor leg of the above expression
and obtain Y € ZIJISIM—l HyBj in contradiction to the assumption. Hence Z # 0.

Let o € N™ be maximal such that 7, g(Z) # 0 for some § € N". By Lemma 2.4 we
know that a < A. Moreover, in complete analogy to Lemma 2.7, we obtain

0# ({d®7Ta0)AZ2) € GTK_y1a @UTK_,. (2.30)

If oo # 0 then (2.29) implies that

(id ® 7a,0)A(Z) € (G*K_Ha n Yy HQBJ) QUK.
|7I1ZA -1

However, the left hand tensor factor of the above space is {0} by Lemma 2.11 in contra-
diction to (2.30). Hence a« =0 and Z € G~ K_,.

Now choose f € N™ maximal such that mp g(Z) # 0. As p(F) = 0 we have § < A. In
analogy to Lemma 2.7 we have

0 # (id ® m0,6)A(Z) € K_xip® G5 K_, (2.31)
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Comparison with (2.29) and application of Lemma 2.11 implies (as before for a) that
B = 0. Hence Z = my0(Z) = a,K_» for some a, € K and the claim follows from the
relation Z € B. \ {0}. O

Recall that Z C T'(V ™ (x)) denotes the ideal in the tensor algebra such that

Ut =T(V*(x)/L.

The above proposition provides us with a method to check that condition (5.-rel) holds
for all polynomials.

Corollary 2.13. Let p; for j =1,...,k be homogeneous, non-commutative polynomials of

degree \j € N™, respectively, such that the set {p;(E)|j = 1,...,k} generates the ideal
Z. Assume that

WO,OO-Pf)\j(pj(E)) =0 fOT’j: ].,...,k. (232)
Then N,q = N.

Proof. We prove this indirectly. Let p be a homogeneous polynomial of minimal degree
A € N” such that p(E) € Z but

p(B)¢ Y HoBy.

[TI<|Al

We can write

p= Z Z qj,ePjT5.e
1

j=1

where g; ¢, 70 € T(V'(x)) are homogeneous polynomials and

deg(gj,e) + Aj + deg(rje) = A for all 7, £.

By the minimality assumption, any summand s = g;¢p,;r;¢ with deg(s) > deg(p,)
satisfies s(B) € Z|J|<|)\j| HyBj; and hence may be omitted. Thus we may assume that

k
p= Zajpj for some a; € K.
j=1

However, by Proposition 2.12 this is impossible, because of the assumption (2.32). O
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Corollary 2.13 suggests the following assumption about the parameters c¢ in the defi-
nition of the coideal subalgebra Be:

The ideal Z C T(V*(x)) is generated by homogeneous, non-commutative  (c)
polynomials p;(E) for j = ,k of degree \; € N", respectively, for
which 70 0 P_y, (pj(B)) =

The expressions g oo P—y, (p;(B)) in condition (c) are multiples of K_; with coefficients

depending on the parameters ¢ = (¢;);¢cr in the definition of the generators B;. Condition

(c) requires these coefficients to vanish, and hence provides a condition on the parameters

c. In Section 3 we make condition (c) explicit for various classes of examples.
Condition (c) provides a reformulation of the condition N,q = N.

Theorem 2.14. For all pre-Nichols algebras UT of diagonal type the following statements
are equivalent:

(1) The map ¢ : gr(Be) — Hp x U~ is an isomorphism.
(2) Ny = N.
(3) Condition (c) holds.

Moreover, if Nyei # N then there exists A € N™ \ {0} such that K_» € Be.

Proof. The equivalence between (1) and (2) is the statement of Proposition 2.3. By
Corollary 2.13 we have that (3) implies (2). Conversely, if condition (c) does not hold,
then Proposition 2.12 implies that P_»(p(B)) = a,K_» with a, € K* for some homo-
geneous polynomial p of degree A for which p(F) = 0. As

P, Z HyB; | =0,
| 71<IA]

we see that the polynomial p violates condition (B.-rel). This proves that (2) implies (3)
and the final statement of the theorem. O

If condition (c) holds then the above theorem allows us to write down a basis of B
o0

as a left Hg-module. Let J C U I* be a subset of multi-idices such that {F;|J € J}
k=0
is a linear basis of U~. The following corollary is a version of [26, Proposition 6.2] in our

setting. It is a consequence of the implication (3) = (1) in the theorem.

Corollary 2.15. Let UT be a pre-Nichols algebra of diagonal type and assume that condi-
tion (c) holds. Then B. is a free left Hg-module with basis {By|J € J}.
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Proof. Recall the filtration F of B, defined by (2.13) and let m € N. By property (1) in
Theorem 2.14 and by the definition of 7, the set {B;|J € J,|J| = m} forms a Hp-basis
of Frn(Be)/Fm-1(Be). Hence {By|J € J,|J| < m} is a Hp-basis of F,,(B:). O

Remark 2.16. One of the reasons for which the equivalent properties in Theorem 2.14 are
so important is their relation to Iwasawa decompositions. The definition of the filtration
F in (2.13) implies at once that for all B, the following statements are equivalent:

(1) The map ¢ : gr(Be) — Hp x U~ is an isomorphism.
(2) The algebra U(x)P°Y admits the Iwasawa decomposition

U)PY 2GToKIK; ' |icl]®Be.
(3) The algebra U(y) admits the Iwasawa decomposition
Ux)=2UT KK |ie I B.,
where I, C I is a set of representatives of the T-orbits in I.
2.6. The negative Heisenberg double

Recall the algebra U(x)P°Y defined at the beginning of Section 2.3. In this section we
show that condition (c) for B to be of the right size can be verified in a simpler algebra
which is closely related to quantum Weyl algebras. This fact will be applied extensively
in Section 3.

The algebra U(x)P°Y has an N-filtration F defined by the following degree function
on the generators

deg(E;) = deg(F;) = deg(K; ") =1, deg(KiK })) =0 (2.33)
for all ¢ € I. Tt follows from the triangular decomposition (2.19) that the multiplication
map

P HeGI KK _soU-, - Fu(UX)™Y) (2.34)

a,B,yeEN™
|a+B+vI<m

is a linear isomorphism for any m € N. With the notation

(GTRKIK ' ie U )m= @ GCIoKK j0U-,

2

a,B,yENT
[a+B+y|=m

the linear isomorphism (2.34) provides a direct sum decomposition
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FnUQOPY) = Frnoa(UG)PY) @ (Hp © (GT @ KK i € [[@U™)m). (2:35)
We call the graded algebra

Heis(x)" = gr (U (x)PY)

associated to the filtration F of U(x)P°Y the negative Heisenberg double associated to
the pre-Nichols algebra UT. By (2.35) for any m € N the graded component Heis(x),,
is a free Hyp-module

Heis(x)Y, 2 Hy @ (Gt @K[K; ' i € QU ).

In particular Heis(x)y = Hyg. The above also implies that G, K[K) |\ € —N" 4 Z}]
and U~ are graded subalgebras of Heis(x)" and that the multiplication map

Gt oK[Ky|A€ —N"+Zy]® U~ — Heis(x)" (2.36)

is a linear isomorphism. The presentation of U(x)P°Y in Lemma 2.5 and the triangular
decomposition (2.36) allow us to describe the negative Heisenberg double Heis(x)Y in

terms of generators and relations.

Lemma 2.17. The negative Heisenberg double Heis(x)" is canonically isomorphic to the
quotient of the free product of the algebras G*, K[Ky\ |\ € N"™ + Z3] and U~ by the
relations (2.17) and the cross relations

;' EiF; — FjE; = —6,;K;2  foralli,j €l (2.37)

Proof. Let Heis(x)"' be the algebra described in the lemma. The algebra Heis(y)"' is
graded by the degree function (2.33) because the defining relations for Heis(x)Y' are
homogeneous. It follows from Lemma 2.5 that there is a surjective homomorphism of
graded algebras

¢ : Heis(y)"' — Heis(x)"

which maps E;, K_\,F; € Heis(x)"' to Ei,K_\,F, € Heis(x)V, respectively, for all
i€ I,\€ —N"+Z7. The defining relations for Heis(x)"" imply that the multiplication
map

i Heis(x)Y = GT @ K[Ky |\ € N" + Z8] @ U~ — Heis(x)"’
is surjective where we use the triangular decomposition (2.36). With this identification

the composition ¢ o p’ : Heis(x)" — Heis(x)" is the identity map which implies that ¢
is also injective. 0O
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We now show that condition (c) can be verified in the negative Heisenberg double. Let
Gi and U denote the augmentation ideals of G and U™, respectively. The triangular
decomposition (2.36) of Heis(x)" implies that

Heis(x)" = K[Kx | A € —=N" + Z§] & (G Heis(x)" + Heis(x)"U).  (2.38)

Let 7y @ Heis(x)Y — K[Kx | A € =N" 4 Z§] denote the projection onto the first term
in (2.38). For any i € I we define B = F; +ciET(i)(KT(i)K;1) € Heis()", and for any
non-commutative polynomial p(z1,...,z,) we write p(B") = p(BY, ..., BY).

Theorem 2.18. Let UT be a pre-Nichols algebra of diagonal type corresponding to a
bicharacter x. Let p(x1,...,x,) be a homogeneous, non-commutative polynomial of de-

gree A € N™. Then

70,0 0 P_x(p(B)) = 7g,0(p(B”)). (2.39)
Furthermore, if
A ¢ @ierN(ai + ar(s), (2.40)
then P_y o moo(p(B)) = 0 in U(x)P°Y.

Proof. By Lemma 2.17 the negative Heisenberg double is —N +Zj graded by the degree
function given by

deg(E;) = deg(F;) = deg(K; ') = —ay, deg(KiK;é)) = — Q)

for all i € I. For any p € N™ + Zy let P, : Heis(x)" — Heis(x)", be the projection

onto the graded component Heis(x)" ,.

Let A = >, c;mia; € N™ and set m = |A| = > ,c;mi. As Fp1 (U(X)PY) C

Ker(P_)) we obtain a commutative diagram

Fn-1(U(x)PY) = Fn(U(x)P°Y) — Heis(x), (2.41)
T0.00P—x \L /
71'(\{’00Pl/A
KK_)

Let now p(z1,...,%,) be a homogeneous non-commutative polynomial of degree A. As
B} € Heis(x)Y,, the element p(B") € Heis(x)y, is homogeneous of degree —\ and hence
T30 PY,(p(BY)) = 7 o(p(B")). The relation (2.39) now follows from the commutativity
of the diagram (2.41).

To prove the second statement in the theorem write p(B) as a linear combination

of noncommutative monomials in F; and E,(KlKT_(i)) for i € I. Here we distribute
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parenthesis, but do not commute the E and F generators. If (2.40) holds, then there is
no monomial of this kind that contains equal number of terms F; and El-(KiK;é)) for
all ¢ € I. It follows from the cross relations (2.37) that in this case

mo0(P(B”)) =0.
Now the second statement of the theorem follows from the relation (2.39). O

3. Examples of coideal subalgebras

We now consider various classes of pre-Nichols algebras U™ which fall into the setting
of Section 2. In each case, using Theorems 2.14 and 2.18, we determine all parameters
c for which the map ¢ : gr(B.) — Hy x U~ given by (2.15) is an isomorphism. It
is convenient to work with non-symmetric quantum integers. Given ¢ € K, set [n]e =
1+&+---+&v 1 and

! = [nle... [e,  [2n— 1)l = [2n — 1e[2n — 3]c ... [1e

for n € N, and

for 0 < k < n. Note that the &-binomial coefficient is a polynomial in Z[¢] and therefore
defined even for roots of unity.

3.1. Quantized universal enveloping algebras and monrestricted specializations

Let g be a symmetrizable Kac-Moody algebra with (generalized) Cartan matrix
(@ij)ijer where I = {1,...,n}. Denote by {d; | i € I} a set of relatively prime pos-
itive integers such that the matrix (d;a;;) is symmetric. Let g’ := [g, g] be the derived
subalgebra of g. Fix ( € K*, { # £1. Denote by U¢(g') the K-algebra with generators
E;, F;, Kijﬂ7 1 € I and the following relations for ¢, j € I:

K,K; = K;K;, K;F;=(%""FEK; KFj=(%9FK,
E;Fj — F;E; = 6;;(K; — K; '), (3.1)
pij(Ei, Ej) = pij(Fi, Fy) =0, i # j,

where p;;(x,y) are the noncommutative polynomials in two variables given by

l—aij

—dik(l—an s — 1—a;; —ai—
i) = 3 (ORIt (1500)  gloehyg,
¢e%

k=0
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In the case when ( is not a root of unity, Us(g’) is the quantized universal enveloping
algebra of g’ for the deformation parameter ¢. If ¢ is a root of unity with ¢2% # 1 for
all i € I, then U¢(g’) is the big quantum group of g’ at ¢, defined and studied by De
Concini, Kac and Procesi [12]. In either case Us(g') is a Hopf algebra with coproduct
given by

AK) =K ®K;, AFE)=FEc1+K®E, AF)=FK '+10F

for i € I. Denote by U* the unital K-subalgebras of U (g’) generated by {E; | i € I} and
{F; |i € I}, respectively. Set H = K[K! | i € I]. Consider the symmetric bicharacter

X:Z" x Z" — K*  defined by x(ay, ;) = ¢4,

If ¢ € KX is not a root of unity, then U™ is isomorphic to the Nichols algebra of the
Yetter—Drinfeld module V(). If € K* is a root of unity and g is finite dimensional (and
¢3 # 1if g is of type G2), then U™ is isomorphic to the distinguished pre-Nichols algebra
of V(x) defined by Angiono [4, Definition 1]. For all { € K* \ {£1} and symmetrizable
Kac-Moody algebras g, the algebra U™ is a pre-Nichols algebra of V(x) and U¢(g’) =
U(x) is the Drinfeld double of U™ in the sense of Remark 2.2. Thus the constructions
from the previous section are applicable to Ue(g’).

Let 7 : I — I be a diagram automorphism, that is, it satisfies a,;)-(;) = as; for
all 7,j € I. Given ¢ = (c1,...¢,) € K", consider the coideal subalgebra B of Uc(g’)
generated by the elements

B;=F; + CiET(i)Kfl =F+ CiET(Z‘)(KT(i)Kfl), KlK;(i) foralli € 1.
In the case when ( is not a root of unity, the following result is contained in [26, Lemma
5.4, Proposition 5.16 and Theorem 7.3], see also [30, Section 7] for a similar discussion
for g of finite type.

Proposition 3.1. Let g be a symmetrizable Kac—Moody algebra, ¢ € K> \ {£1}, and let
7:1 — 1 be a diagram automorphism.

(i) If ai; # 0 or 7(i) # j, then mo,0 0 P_x(pij(Bi, B;)) =0 for A = (1 — a;j)oy + ;. If
a;; =0 and 7(i) = j, then

P—ai—aj e} WO,O(pij(Biij)) = (Cj — Ci)K»_lKj_l. (32)

7

(ii) For the coideal subalgebra Be of Uc(g’) the map ¢ : gr(Be) — Hg x U~ is an algebra
isomorphism if and only if ¢; = c;(;) for all i € I with a;r;) = 0.

Proof. (i) We work in the corresponding negative Heisenberg double, which we denote
by Heis¢(g')", and apply Theorem 2.18 to get the statement in U¢(g').
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Let i #j € 1. If a;; # 0 or 7(i) # j, then A = (1 — a;;)c; + «; satisfies (2.40), and by
the second part of Theorem 2.18 we have

70,0 © P_x(pi;(Bi, Bj)) =0

in this case.
Now assume that a,; = 0 and 7(i) = j. Then in the notation of Section 2.6 we have

70.0(pij(Bi, BY ) = W&o((Fi + B (KK T (Fy + ¢ By (KK )™

— (Fj + ¢ B (I K ) ™ (F +CiEj(Kin_1)71)> = (¢j — ) KK
in Heis¢(g")". Hence Theorem 2.18 implies (3.2). Part (ii) follows from the first part and
Theorem 2.14. O

3.2. The small quantum group uc(sls)

Consider the Nichols algebra of type As at a root of unity. For this we fix an integer
N > 2 and set

N

M= AN (3.3)

Let ¢ be a primitive N-th root of unity and x : Z2? x Z? — K* be the symmetric
bicharacter defined by

qi1 = qa2 = 2, qi2=¢qo1 =C "

The Nichols algebra B(V T (x)) is an algebra in £ D with braiding ¢, and it is generated
by elements x1, 5. Recall that the braided commutator is defined by [z, y]. = p o (id —
¢)(z ®y) for all z,y € B(V*(x)) where u denotes multiplication. Set z12 = [z1, 23], =
T122 — (" lxoz;. With this notation defining relations for B(V T (x)) are given by [2,
Equation (4.5)]

x{w = Z’é\/[ = x% = 07 [1'1, [xth]c]c =0= [an [ZQ,xl]c}o

Denote by u¢(sl3) the Drinfeld double of B(V ™ (x)). Its factor by the ideal generated by
KN —1 for i = 1,2 is isomorphic to the small quantum group uc(sl3) of type As.
Consider the diagram automorphism 7 given by 7(1) = 2, 7(2) = 1. It follows from
Theorem 2.18 that the only relation which gives a condition on the parameters ¢y, co
of the coideal subalgebra is the relation 24 = 0 because the other four relations are
homogeneous of a degree A which satisfies (2.40). This relation gives a condition for any

integer N (even or odd!). Recall that
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—1 7 —1\—1
B1 :F1+01E2K1 :Fl +01E2(K1K2 ) 5

By = Fo+ eoE1 Ky ' = Fo + 0251(K2K1_1)71'

We define a non-commutative polynomial p(z,x2) by

p(a1,x9) = (w129 — ¢ tagwn)M
Note that p(z1,x2) is homogeneous of degree A = (M, M) € Z>.

Proposition 3.2. Let N € N with N > 2 and let ( € K be a primitive N-th root of unity.
Let M be given by (3.3).

(i) In the quantum double uc(sl3) of the Nichols algebra of type As corresponding to the
root of unity ¢, we have

M4 eM if N=2 mod4

M

mo,0 © P_x(p(B1, B2)) | K\ =
(70,0 (p(B1, B2))] {C2 — M otherwise.

(ii) For the coideal subalgebra Be of uc(sls) the map ¢ : gr(Be) — Hox U™ is an algebra
tsomorphism if and only if

C1 = UC2
where v € K is such that v™ = —1 if N =2 mod 4, and v™ = 1, otherwise.

For example, when N = 4 we have ( = +/—1. Then

70,0 © P_x(p(B1, B2)) = (¢5 — ) K

and B. C u\/_—l(ﬁ[g) is of the right size if and only if co = +¢y.

In the proof of the proposition we will use the Al-Salam-Carlitz I discrete orthogonal
polynomials Uy(La)(m; q), see [1] and [25, pp. 534-537]. They have been used in the related
setting of the g-harmonic oscillator in [7]. From an algebraic point of view U,(La)(x; q) €

Zla,q,x] is given by
0w =3 (}) ot a1 e,
q

k=0

The Al-Salam-Carlitz I polynomials satisfy the backward shift recursion

—q "M 2U@ (w;q) = aULY, (w9) — (x — D)(& — a)U, (¢ a3 q) (3.5)
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for all n > 0, see [25, Eq. (14.24.8)]. Consider the g-derivative Z,f(x) = (f(qz) —
f(x))/((g — 1)x) for f(z) € K[z]. The recursion (3.5) implies the following lemma. The
proof is left to the reader.

Lemma 3.3. Consider the polynomials p,(x;t,q) € Z[t, ¢, z] defined recursively by
po(zit,q) =1, pol(ait,q) = (¢ +t¢ "Dy + ¢ ")pa-1(z;t,9), Yn>0. (3.6)

Consider Z[t,q*", x] as a subring of Z[tE*, ¢+, x] via the map t — (g — 1)t1(t1 + 1).
Then in Z[tlﬂ, g™, 2] we have

2 —1
pulait,q) =thg ™ U D (g™t w3 q)
for alln € N.

Define the quantum Weyl algebra A{ as the K[¢g*!]-algebra with generators X, Y, Z1, Zo
and relations

YX —q XY =2, Z,)Y =¢'YZ;, Z;X =q 'XZ;, Z1Zs=Z271.
Inside the localization A{[Z] 1] we have a copy of the first quantized Weyl algebra A;
which is the K[g*']-algebra with generators y = YZ; ', = XZ ', 2 = ¢Z2Z; % and
relations

YT — qrYy = 2, 2T =TZ, 2Y = YZ.

The algebra “4111 acts on K[gT!,t,2] by @ — (2°), y = t%,, z + (t). Tterating the
recursion (3.6) gives that the polynomials p,,(7; 2, q) € Z[qg*!,t, x] satisfy

(@+ay+q7") .. (@ +ay+¢7") 1 =palz;2,0).
Since K[¢*!, ¢, 2] = A} /(ALy) as left Al-modules, we have

MR Z gy g (g g (3)
n(n+1)/2Z{lpn(x; z, q) mod Atlly

(X+Y+21)"=¢
=4q
For £ e KX, let A} = A?/(q — €)A? denote the specialization of A? at £.

Proof of Proposition 3.2. (i) We work in the negative Heisenberg double Heis¢(sl3)Y
corresponding to uc(sl3) and apply Theorem 2.18 to get the statement in uc(sl3). Set

El = El(KlKgl) = E1K2_1, EQ = EQ(KQK{I) = EgKl_l, K12 = KlKQ,

so BY = F} +c¢1FE- and BY = F> + ¢oF1. Denote also
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Fiy=FF,— ('R, Ey =EE, —('ELEs.
One verifies that
FioEj =('EjFia+ 00K forj=1,2
from which it follows that
FiaFy = (2 EnFia+ (1 - ()’ EVRIKR + 1= (2K
In a similar fashion one shows that
Fio(E1Fy) = (*(E1F)Fra, Eoi(EvFy) = CP(ELF1)Es.

From the last three identities one derives that we have a homomorphism p : A§2 —
Heis¢(sl3)" given by

p(X) = 0102E217 p(Y) = Fig,

p(Z1) = (¢ — C_1)02F1F1 + (e2 — (_101)Kf21,

p(Z2) = (1= ¢ ) eieaB LK + ¢ — ¢ 2)erea Ky

Equation (3.7) implies that

P(BY, BY) = p(X +Y + Z)M (3.8)
= (MM p(Z)Mpar (p(X Z7 1) CPp(Z2257),¢?) mod Heise (sl3) Y Fia.
There are no terms with Z;-denominators in the right hand side of the congruence since
deg(pn(z;t,q)) = n when p,(z;t,q) is considered as a polynomial in z, ¢ and the degree
is computed with respect to the grading deg(xz) = 1, deg(¢t) = 2. This follows from the

recursion (3.6) and the fact that the operator Z.2 lowers the degree by 1.
Every pair of the six terms of p(X), p(Z1) and p(Z3) quasi-commute. Therefore

ir7d - —1\J (— - —2\F
T o(p(X 2] Z5)) = 6io((c2 — ¢ len) K ) (¢ = ¢ ereaK1yY)
for all ¢, 5,k € N. Combining this with (3.8) gives that
moo(p(BY, By)) = ¢MMH (cy — o) Mpar (08, ) KM (3.9)

where

(€—=¢ Heiea

= (c2 — (¢ tep)?
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Ast=(C?—1ty(t1 +1) for t; = —ca/(c2 — ("ter) we can apply Lemma 3.3 and obtain
-1
pM(O, t, C2> _ tiWC—QMZ U](\/;C 61/02)(0; C2> (310)

Since ¢? is a primitive M-th root of unity, (A,f)cz = 0 for all 0 < k£ < M. For the

corresponding Al-Salam-Carlitz I polynomials we hence have
Uy (0:¢%) = (=M MM (14 aM). (3.11)
Inserting (3.10) and (3.11) into (3.9) we obtain

7o (p(BY, BY ) KM = (MM (o) — ¢~y MM =M (¢ er/e2) (g ¢2)

=o'+ (=D)M¢Mel,
which proves part (i). Part (ii) follows directly from the first part. O
3.8. The quantum supergroups of type sl(m|k)

Let m, k be positive integers such that (m, k) # (1,1). Denote n = m + k — 1. The
(super) Dynkin diagrams of the Lie superalgebra sl(m|k) associated to different choices
of Borel subalgebras are the Dynkin diagrams of type A,, where each vertex is denoted
in two different ways: by &) if the vertex is odd and by Q) if it is even, cf. [23, Sections
2.5.5-2.5.6]. (There is a dependence between the number of odd vertices, m and k which
will not play a role below.) All odd simple roots are necessarily isotropic. We label the
vertices in an increasing way from left to right by the elements of I = {1,...,n}. Define
the parity function p : I — {0,1} by letting p(i) = 0 for even vertices and p(i) = 1 for
odd vertices.

Fix ¢ € K*, ¢ # %1 and consider the bicharacter x : Z" x Z™ — K* such that ¢;; =1
for [i — j| > 1,

e e Bt OF S I COR S L -1, p(i) =1
Qii—1 = (i—1,i = ¢ and g = N
[ i % i CQ(_l)p( )+ +p( )7 p(z) —0.

It is easy to verify that this bicharacter satisfies the conditions (1)—(3) on p. 411 in [2],
and clearly it is symmetric. Denote by U™ the K-algebra with generators z;, i € I and
relations

(@i, [, Tit1]e]e = 0, p(i) =0, [T, 25]c =0, i<j—1,

[zie1, (@i, Tit1]ele, wile = 0, p(i) =1, z? =0, p(i)=1.
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If ¢ is not a root of unity, then U™ is isomorphic to the Nichols algebra of V*(x), see [2,
Eq. (5.10)]. If ¢ is a root of unity, then U is isomorphic to the distinguished pre-Nichols
algebra of V' (x), see [4, Definition 1] and [2, Eq. (5.10)].

Denote the set of odd vertices J = {i € I | p(i) = 1}. Denote the Drinfeld double of
U+ by U(x) and form the smash product

Ue(st(mik)s = U(x) % KZs
where the generator o of Zs acts on U(x) by
o(E)) = (-1)PVE;, o(F)=(-1)PYF, oK) =K

for all ¢ € I. Our generators differ from those in [42,11]. In terms of the generators
ei, fi,t; of [11], our generators are given by

Bi=0"We;, F=fi, K =0V

for all ¢ € I. The coproduct convention of [11] is also slightly different from ours. By
[21, Theorem 6.11], for different choices of J, the Hopf algebras U, (sl(m|k)); are iso-
morphic to each other as algebras with isomorphisms provided by generalized Lusztig
isomorphisms (these isomorphisms descend from the actual Drinfeld double to its quo-
tient U(x)). However, the Lusztig isomorphisms are not Hopf algebra isomorphisms, and
as a consequence, U¢(sl(m|k)); are not isomorphic to each other as Hopf algebras for
different choices of J. The Hopf algebra Uc(gl(m|k)) in [11] is our U¢(sl(m|k)) ) up to
a slightly different convention for the coproduct.

If ¢ € K* is not a root of unity, then Uc(sl(m|k)); exhaust all different quantum
supergroups of type sl(m|k). If ( € K* is a root of unity, then U¢(sl(m|k)); are the
corresponding nonrestricted specializations at roots of unity.

Let 7 : I — I be the identity or the involution 7(i) =n — i+ 1 (for ¢ € I) in the case
when the vertices ¢ and n — i 4+ 1 have the same parity for all i € I and the number of
odd vertices is even. These conditions are equivalent to g;(;)-(;) = ¢i; for all 1 <4, 5 < n.
For ¢ = (c1,...,¢n) € K", let B be the coideal subalgebra of Ue(sl(m|k)).; generated
by Hy and the elements

B; = Fj+¢E,yK;'  foralliel
Proposition 3.4. For all choices of odd roots J C I and ( € K*, ( # £1, for the coideal
subalgebra Be of the quantum linear supergroup U (sl(m|k))s, the map ¢ : gr(Be) —

Hy x U™ is an algebra isomorphism if and only if

Cri) = ¢i fori € I such that |T(i) —i| > 1 (3.12)
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and
c; =0 for all odd vertices i fized by T. (3.13)
More precisely, the conditions on c in the proposition are as follows:
(1) If 7 =id, then ¢; = 0 for all odd vertices ¢ € J (there is only one such vertex for the
standard choice of simple roots corresponding to J = {m});
(2) If 7 is the flip 7(:) = n — i+ 1, then ¢; = ¢—i41 for i € {1,...,[n/2] — 1} and

Cnt1)/2 = 0 if n is odd and (n + 1)/2 is an odd vertex.

For the proof of Proposition 3.4 we will need the following lemma.

Lemma 3.5. Letp(x1,...,2,) be a homogeneous noncommutative polynomial in x4, ..., xy
of degree Zj mja;, andi € I be such that m; > 0. For all bicharacters x : Z"xZ™ — K*,
7:I—=1Tandc=(c1,...,cn) € K" such that 7(i) =i and ¢; = 0, we have

770,0(]7(317 .. ,Bn)) =0
in U(x).

Proof. We use the defining relations of U(x) to rewrite p(Bi,..., B,) with respect to
the triangular decomposition (2.5). The assumptions 7(i) = 4, ¢; = 0 and m; > 0 imply
that

p(Bi,...,B,) € UTH(F,)

where (F;) C U~ denotes the ideal generated by the element F;. This implies the relation
Wo’o(p(Bh...,Bn)) =0. O

Proof of Proposition 3.4. We apply Theorem 2.14 and explicitly compute condition (c)
in Section 2.5. As in the proof of Proposition 3.1(i), the first set of relations of U+ and
the extra relations in the case ( = /—1 give no condition of ¢, while the second set of
relations of U™ gives condition (3.12). If 7(i) = i for some i € I, then in the negative
Heisenberg double Heis(yx)Y we have

W&O((Biv)Q) = mg0((Fi +C¢Ei)2) = K2

It follows from Theorem 2.18(ii) that the fourth set of relations of U™ gives condition
(3.13) on c. Finally, we consider the third set of relations of U™. If the third relation of
U™ for a given odd vertex i gives a condition on ¢, then by Theorem 2.18(ii),

T(i—1 + 205 + 1) = —(vi—1 + 204 + iq1).
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This implies that 7(¢) = ¢. If (3.13) is satisfied, then we also have ¢; = 0. Now it follows
that in the presence of condition (3.13), the third set of relations of Ut do not give any
new condition on ¢ because of Lemma 3.5. O

The techniques of this proof can be used to classify the coideal subalgebras B, of
the quantized enveloping algebras of all finite dimensional and affine contragredient Lie
superalgebras g with the property that ¢ : gr(B.) — Hp x U~ is an algebra isomorphism.
This is more technical and will appear in a subsequent publication.

3.4. The Drinfeld double of the distinguished pre-Nichols algebra of type ufo(8)

Let ¢ be a primitive 12-th root of unity and (/2 be a primitive 24-th root of unity
that squares to ¢. Consider the symmetric bicharachter x given by

q11 = q22 = *Cza q12 = 421 = 41/2-

It is associated to the first of the three generalized Dynkin diagrams on row 8 of Table
1 in [20]. The corresponding Nichols algebra is one of three such algebras of type ufo(8).
It is one of the non-Cartan type examples that appeared in Heckenberger’s classification
of arithmetic root systems [20].

The generalized Cartan matrix of the bicharacter x is

2 -2
CX:(—Q 2)'

The generalized root system of x is finite and has three Cartan matrices corresponding
to the generalized Dynkin diagrams on row 8 of Table 1 in [20]. We refer the reader to
[19, Sections 3 and 5], [2, Section 2.7] and [22, Section 4] for details on this topic and
Weyl groupoids.

The relations of the Nichols algebra of x are given in [2, Section 10.8.6]. Let U™ denote
the distinguished pre-Nichols algebra of x defined by Angiono in [4, Definition 1] as the
factor of T(V*(x)) by removing from the Nichols ideal the power relations for Cartan
roots and adding certain quantum Serre relations. There are none of the latter in this
case and the algebra U™ has two generators x1, x5 with relations

ef =23 =0 and [21,%a 420,)c = —(1+ ¢+ ¢ 2y,
the third of which is the last relation in [2, Eq. (10.55)]. Here
T12 = [71,72]c and  Ta,y 420, = [T12, T2le

in the free algebra in x1, zs.
Consider the diagram automorphism 7(1) = 2, 7(2) = 1 and the coideal subalgebra
generators By, Bs given by (3.4).



38 S. Kolb, M. Yakimov / Advances in Mathematics 365 (2020) 107042

Proposition 3.6. The following hold for the quantum double U(x) of the distinguished
pre-Nichols algebra of type ufo(8):

(i) For p(x1,72) = [T1, Tay+2as)e + (1 + 71+ C‘2)C1/2m%2 and X = 2a + 2a9,
P,)\ o ﬂo)o(p(Bl, BQ)) = (1 =+ C)Cl/z (C? - 2c_1/20102 + C%)K,A.

(ii) For the coideal subalgebra Be of U(x) the map ¢ : gr(Be) — Hg X U™ is an algebra
isomorphism if and only if

e =1+/1-0C Y.
Proof. (i) We have
p(r1,m2) = (2323 + 2327) + a(v1227172 + Toz1T071) + b(T12571 + 227372)  (3.14)
in the free algebra in x1, x2, where
a=(1+¢N b=—1++ (A

From this one directly computes 7y o(p(By, By)) in the negative Heisenberg double
Heis¢(x)" corresponding to U(x). Now part (i) follows from Theorem 2.18.

(ii) It follows from the second statement in Theorem 2.18 that 7yo((BY)?) =
m0,0((By)?) = 0 in Heis¢(x). Theorem 2.14 implies the validity of part (ii). O

4. A twist product on partial bosonizations

Assume that condition (c¢) from Section 2.5 holds. By Theorem 2.14 the algebra Be
has a filtration such that the associated graded algebra is isomorphic to the partial
bosonization Hgx U~ . In the present section we use the quasi R-matrix for U(x) to define
a twisted algebra structure x on Hyg X U~. We will see in Section 5 that (Hg x U™, %) is
canonically isomorphic to Be.

4.1. The quasi R-matriz for U(X)max

Recall that Znax(x) € T(V*(x)) denotes the maximal Z"-graded biideal in the
braided Hopf algebra T'(V*(x)). In the following we use the subscript max to indi-
cate constructions involving Zy,.x. In particular, we use the notation U}  , U~

max? max

for
the Nichols algebras corresponding to Z,ax and we write U (X )max for the corresponding
Drinfeld double as defined in Section 2.1. By [21, Theorem 5.8] there exists a uniquely
determined skew-Hopf pairing

{ VYmax : (Upax X H)®P @ (UL, x H) = K (4.1)

max
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such that
(Fi, Bj)max = 0i,(Ki, Kj)max = q;; (4.2)
<E7Kj>max = 0, <K17 Ej>max =0
for all 4, j € I. Recall that by definition of a skew-Hopf pairing we have
<y7 xxl>max = <y(1)7 $/>max<y(2)7 $>max7
) ) (4.3)
Yy T)max = <yal'(1)>maX<y 750(2)>max
for all y,y’ € (Upax X H)P and x, 2’ € U, % H. Let
Tmax : U~ X H = U xXH

denote the canonical projection. By construction my.x is a surjective Hopf algebra ho-
momorphism. The pairing (4.1) allows us to define a right and a left U, x H module

structure on H x U~ = (U~ x H)°P by

6[>f = <7Tmax(f(1))7 e>maxf(2)7 f de = <7Tmax(f(2))7 e>maxf(1) (44)

foralle e Ul . x H, f € (U™ x H)P. The properties in (4.3) imply that (U~ x H)P
is a right and a left U

max

The pairing (, )max respects the Z™-grading of U,

max

by [21, Theorem 5.8] the restriction of (, )max t0 Uy ® U is nondegenerate. This

x H-module algebra.
x H and U}

ax X H. Moreover,

allows us to formulate the notion of a quasi R-matrix for U(x)max in complete analogy
to [34, Chapter 4]. Let U(X)maX®U(X)max denote the completion of U(X)max @ U(X)max
with respect to the descending sequence of subspaces

Hy = UIJS»LX Z max ® U( )max + U(X)max ® Urnax Z max

lv|=N lv|>N

The K-algebra structure on U(X)max ® U(X)max extends to a K-algebra structure on
U( )max®U( )max

For any p € N™ let {F), ;} C (Unpax)—p and {E, ;} C (Uf,.), be dual bases with
respect to the nondegenerate pairing (, )max and define ©,, =37 (— DIHE, ;®E, ;. For

simplicity we usually suppress the summation and write formally
0,=)"F,oE,.
Define an element © € U(X)max®U (X )max by

0= > 0,=> (-)F,E,. (4.5)

peEN” pneEN™
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For quantized enveloping algebras the element © coincides with the quasi R-matrix con-
structed in [34, Chapter 4]. Analogously to [34, Proposition 4.2.2] we have the following
result.

Lemma 4.1. The following relations hold

(A®id)(©,) = ()M Y FAeFK;'®E,E), (4.6)
Av=p

(id® A)(0,) = (- Y F\F, @ E\K, ® E,. (4.7)
Av=p

Proof. By definition of the coproduct of U(x)max in (2.2) we have

(A ® ld)(gﬂ) € Z (UI;ax)*A ® (U;ax)*VK)Tl ® (Ur—rtax)lt'
Arv=p

For e,e¢’ € U™ the definition of © and the properties of a skew pairing (4.3) imply that

e’ = S {Ep eV max B = 3 (Fut)s @) mas (Fe max B (4.8)
Iz Iz

On the other hand

eel = Z<Fua e>maxEl/ <F)\a e/>maxE>\ = Z<F)\7 el>maX<Fl’K;17 6>maxE,,E)\. (49)
A\v A,v

Comparison of (4.8) and (4.9) implies (4.6), as the componentwise pairing between
D\ Unax)-» @ Ui K51 and U @ U

max max

is nondegenerate. Equation (4.7) is veri-
fied analogously. 0O

Remark 4.2. In [5, Section 3] a quasi R-matrix for general Nichols algebras of diagonal
type is considered in a completion of (U x H) @ (U~ x H)P. A version of Lemma 4.1
is given as [5, Lemma 3.5].

4.2. The skew derivations 8 and 0ff on U~

For quantized universal enveloping algebras Kashiwara [24, 3.4] and Lusztig [34,
1.2.13, 3.1.6] consider skew-derivations on UT and U~. As observed in [21, Section
5], these skew derivations allow a straightforward generalisation to the setting of
(pre-)Nichols algebras of diagonal type. In the case of U™, for any i € I, the skew
derivations are the uniquely determined linear maps 97,9 : U~ — U~ such that

17

[Ei, f] = KiOF (f) —0F(f)K; ' forall feU™. (4.10)
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For later reference we collect the main properties of the skew derivations 97 and 9} on
U~. It follows from the last relation in (2.3) that

OF (Fj) = 0;j = Of(F;)  forall jel. (4.11)

(2 7

Moreover, Equation (4.10) implies that

OF (futs) = OF (fu)fo + x (1, ) fu0F (f.),

R R . (4.12)
0; (f#fu) = X(I/, ai)ai (f#)fu + fuai (fu)

forall f, € UZ,, f, € UZ,. In other words, 0L is a left skew derivation on U~ while 97
is a right skew derivation. The skew derivations 9F and 97 are uniquely determined by
the properties (4.11) and (4.12). They can also be read off from the coproduct on U~.
Indeed, for any f, € UZ, one has

A(fu) = fu ®K;1 + Z@L(fu) ®FiK;_1ai + (rest)1,

(4.13)
Af) =1® fu+ Y Fi@0F(f,)K; ' + (rest)s

where (rest)1 € 3,52 Ua—p ® U:aKl;la and (rest)s € 3,5, UZ, ® U,  K;' The

properties (4.13) of the coproduct and the definition (4.4) of the left and the right action
of UT on H x U~ imply that

Epnf=0FNfK ",  faE; =0F(f) forallfeU ,icl. (4.14)
Let (,): U~ @ UT — K denote the pairing defined by

<f’ €> = <7rmax(f)77rmax(e)>max forall feU™,e€ U+

where we use .y to denote both canonical projections Ut — Ul and U™ — U,
The relations (4.13) and (4.3) imply that
(f, Bie) = (0F(f).e),  (f.eEq) = (0](f),e) (4.15)

forall f € U™, e € U and i € I. This tells us how the quasi R-matrix © behaves under
the skew derivations.

Lemma 4.3. For any i € I the following relations hold:

(OF ®id)(0) = -(1® E;)O,  (0F®id)(0)=-0(1® E;). (4.16)
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Proof. For any f € U, the first relation in (4.15) implies that

OF(f) = (0L (f), Eu)Fu =Y _(f, E:EL)Fy

I3 7

and hence

S (-0)okF,) @ E, =Y (-1)"|(F,, BE,)F, ® B,
w w,v
= (-1 E, @ BiE,
%

which proves the first relation in (4.16). The second relation is verified similarly. O

Corollary 4.4. (see [34, Theorem 4.1.2], [5, Lemma 3.3]) The element O satisfies the
relations

(B; 1+ K;® E;)0 =0(E; @ 1+ K;' © E)), (4.17)
(F; @K' +19 F;))0 =0(F; @ K; +1® F)) (4.18)

foralljel.

Proof. In view of (4.16), relation (4.17) follows from Lemma 4.3 and the defining relation
(4.10) of the skew derivations 97 and 9. The second relation is verified analogously using
skew derivations on UT. O

Remark 4.5. Just as in [34, Theorem 4.1.2] one can show that the element O € is the
unique element of the form © = 7 n. ©, With O, € (Upax)—p @ (Ugax)p for which
©p =1® 1 and the relations in Corollary 4.4 hold.

4.8. The algebra homomorphism o : U, — U+t x H

max max
For any n-tuple ¢ = (c1,...,¢,) € K" let Ae : Uf,, x H — U}, x H be the
algebra homomorphism defined by and A¢|y = id|g and Ac(E;) = ¢;F; for all i € 1.
By Lemma 2.4 there exists a well-defined algebra homomorphism Q : U}, — Ul x H

max max

defined by Q(E;) = K, ;E; for all i € I. For any y € N™ and any e € (Uf

max)M one

has Q(e) = b,K e for some b, € K which only depends on ¢ € N™ and not on the

specific element e € (U}

o). Indeed, this follows from the symmetry and 7-invariance

of the bicharacter y and the fact that 72 = id. We now define an algebra homomorphism
c:U ., — Ul xHbyc=A.0Qowor and note that

max max

E(Fi) = C‘r(i)KiE‘r(i) for all i € 1. (419)
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For any f, € (Upa.c)—p We can write

(fu) = apywor(fu) (4.20)

for some a, € K which only depends on u € N™ and not on the specific element
fll € (Ur;ax)—#‘

Lemma 4.6. The coefficients a,, for p € N" are uniquely determined by an, = c;(;) for
all i € I and by the recursion

apyv = X(—v, 7(1))aya, for all p,v e N™. (4.21)

Proof. By (4.19) we have an, = ¢, for all i € I. Let f € (Up,,)—n and g € (Up.y)—v-
Then (4.20) implies that

a(fg) =o(f)a(9)
=a,K,wo 7(fa, Kyw o 7(g)

aquuKquVW o T(fg)

= X(iV, T(p’))auavKu—i-vw o T(fg)'

Hence we get the recursive formula (4.21) which determines the coefficients a,
uniquely. O

We want to apply the algebra homomorphism A o7 to the first tensor factor of the
quasi R-matrix © = Eu F,®E,. As wor is a coalgebra antiaumorphism, Lemma 4.1
implies that

Z Aod(F,)QFE, = ZauKuw oT(Fyu2) @ Kywot(F,n)) ® E,
Iz I
= arpKypwor(F,Ky ") @ Kxjywot(F)) ® E,Ey.
A\v

Hence using the recursion (4.21) we obtain

> AoT(F,)® E, =Y o(F,)K\K,(\) ® K,7(F)) ® E,Ej. (4.22)
" AV
On the other hand, Equation (4.7) implies that

S o(F) @ ASTH(E,)K,) (4.23)

=3 X(~v,p)5(F,F,) ® STHEp) K, 4, ® S~ (E,)K,.
v,p

Formulas (4.22) and (4.23) will be used to verify the associativity of the twist product
in the next section.
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4.4. Definition and associativity of the twist product

We now use the quasi R-matrix © and the algebra homomorphism & to define a
twisted product on the partial bosonization Hy x U~. Recall that we write formally
0= Zp(—l)V"Fp ® E, and that we write S to denote the antipode of U(x). For any
f,9 € U™ we define

fxg =Y (-D)I@(F)ef)K,lga (ST} (E,)K,)] (424)

p

Observe that a(F,)>f € U*KT_(;) and that g < (S™!(E,)K,) € U~ and hence f g €

Hy x U~ C U(x). For later reference it is convenient to spell out the formula for the
twist product (4.24) explicitly in the case where one of the factors equals a generator Fj.

Lemma 4.7. For any f,g € U~ and any i € I the relations

Fixg = Fig + ciqir(y Ky K105 (9), (4.25)

f*xF;=fF+ Cr(i)qif(i)aqj-%(i)(f)KiK;é) (4.26)
hold in Hy x U™ .
Proof. By (4.24) we have

Fixg = Fig— @(Fm)PE) K i)l < (87 (EBri) Kri)]
= Fg+c¢i(KyiyE)PF) Kr)lg <9 Eq)]
CLY Fg+ Ciir(i Ki K71y (9).

This proves (4.25). Equation (4.26) is verified by a similar calculation. O

We now want to extend the definition of the twist product to all of Hy x U~. For
simplicity we suppress tensor symbols and write elements h @ f € Hg x U™ as hf. We
define a bilinear binary operation x on Hy X U~ by

(KX f) * (Kpg) = x(a, p) Kngu(f * 9) (4.27)
forall \,pe Zy, f eUZ,, g € U™ and where fxg € Hy x U™ is defined by (4.24).

Theorem 4.8. For all pre-Nichols algebras of diagonal type U, the bilinear binary oper-
ation on Hy x U~ defined by (4.27) is associative.

Proof. Let A\, pu,v € Zy and f € UZ,, g € U_4, h € UZ,. By the discussion following
(4.24) we can write
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fxg= ZKp_T(p)u;(f,g) (4.28)
P

where u, (f,g) € UZ )- With this notation we calculate

—(a4B8—p—7(p)

(K f) * (K,u9)) * (Kuh) = x(a,1) Y (Kxsptpript, (f+9)) * (K, D)

= x(a, p)x (e + B, V) Kxiprw ((f x g) * h)

where we used the fact that x(p + 7(p),v) = 1 as 7(v) = —v. Similarly one calculates
(EAf) * ((Kug) * (K,h)) = x(B8, v)x(a, i+ V) K o (f % (g% ).

Hence it suffices to show that (f x g) xh = f x (g x h). Using (4.28) we obtain

(f * g) *xh = Z Kpfr(p)Ko—fT(o)u; (U; (f7 g)7 h) (429)

By definition of u, (f,g) in (4.28) we have

u, (f.9) = (=D)P!x(a—=7(p), p—7(p)) [(F(Fp)>f) Kr(py) [99 (STHEL)K,)]. (4.30)

Inserting the above formula into (4.29) twice, we obtain

59 xh =3 Eproripro) (D (a=7(0), p—r(p) X(a+B~7(0),0-7(0))-

P,

[rEe ([ E 1) ][99 (5 ENE)] ) K] 19 (57 (Bo) o).

Using the fact that U~ x H is a left module algebra over Ut x H and formula (4.22) we
obtain

(f*g) *h = Z Ke,)\,l/aoé,ﬁ,,o),l/ (E(F )K)\Jr'r()\)) [( ( )Df) 'r(p)] (431)
PNV

(Ko (F2))>[g 29 (STHEL)Kp) | Kraw) [P (STHEVEN) Kug)]

where we use the abbreviations Kg v = Epiatv—r(prrtr) and
tapp 20 = (=D (a—7(p), p—7(p))- (4.32)

X(a+B8—7(A+v), \Mv—1(A+v)).

Formula (4.31) can be rewritten as
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(fxg)xh=">" K} ,0a8muX(=0.7(0)* x(r, T(N) X (B-7(N), 7(v))-  (4.33)
PNV

[@(FF)o ) Kr (o)) - [([@(FA)pg < (STHEL)Kp)) Krn)]-
[h<a(STHELENK, 2]

Similarly, to obtain an explicit expression for f x (g x h), we use (4.28) to write

f * (g * h) = Z KG—T(U)K)\—T()\)X(CY7 )‘_T()‘))u; (f7 u; (97 h))
o,

Using again (4.30) we obtain

Frlgxh)=> " Koirriorrn (=D x(a=7(0),0-7(0))x(a+B-7(A), A\=T(N)):
o,

(@ (Fo ) f) Ko (o)) K[(E(FA)DQ)KT(,\)] [h< (Sil(EA)KA)]) 4 (Sil(Ea)Ka)]

Using Equation (4.23) and the fact that U~ x H is a right module algebra over Ut x H,
we obtain

fx(gxh)= Z Kg,A,uba,B,pA,v [(E(FVFP)DJC)KT(V-&-M]' (4.34)
v,p,A

@) Krn)] < (STHE) Kusy) [ha(STHENKN)] < (STHE)Ky)
where as before Kz,,\,u = Kpiav—r(p+a+v) and

bagpaw = ()P (a1 (14p), v4p—T(v+p))- (4.35)
“X(a+B=T(A), A\=T(N)) x(—V, p).

Formula (4.34) can be rewritten as

Frlgxh) =" K5, bapsorwx:B+XA=7(\) = p)- (4.36)
v,p,A

: [(E(FVFP)DJ()KT(/WV)] : [(E(FA)DQ 4 (Sil(Ep)Kp))Kr(A)]'
: [h < (S_l(EVE)\)KVJr)\)] .

Now the relation fx(gxh) = (f *g)xh follows from comparison of the Equations (4.33)
and (4.36) and the fact that

ta.5,0 00X (=1, 7(p))* (v, T(N)) X (B=T(N), T(1)) = ba,g.pr X (¥, B+A=T(N)=p)

which in turn follows from (4.32) and (4.35) by direct calculation. O
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It is convenient to invert the formula (4.24). In the following lemma we express the
usual multiplication in U~ in terms of the twist product x on Hy x U~.

Lemma 4.9. For any f,g € U™ the relation

fo="3 (OM(@F1)E,L) * 99

neEN™
holds in (Hg x U™, %).
Proof. Note first that (4.7) implies that

S F(FF)®E.S T (BK,) = (d®:)(0,) =510l

v+p=y

and hence

Z (=1)H+E(F, F )®K,,KM®EMK;15_1(EV)KUKM =1®1®1. (4.37)
V,MGN"'

By bilinearity we may assume that f € U, for some oo € N™. We obtain

S (DM ((@(FIF)E) * g 2Bl

(45)%:(—1)'“'x(a—7(u),/~b—7(u))Ku—m)[( T(F)f) Kr )] % [9< B,]
S o () () K (T [ @ (E )T K] ) Ko
" lg<E.<(SHE,K,)
= S (G (@ (F)p ) ) Ko [99 Bk ST B Ko

which proves the lemma. O
4.5. A twisted coaction
Define a linear map A, : Hg x U™ — (Hg x U™) Q@ U(X)max by

KL S ZK G(F\)>fo 9E,) Ky © K, F,K,,_oE\ (4.38)

A
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for all v € Hg and f, € UZ,,. For any f € Hyp ® U~ and any v € Hy we have

AdKLf) = (K, @ K,)(x @ ) A f), (4.39)
A*(fKu) = A*(f)(*(g))(Ku@Ku) (440)

as x(r, A+ 7(\)) =1 for all A € N™. Moreover,
AFR)=FeK '+ 6K 'K,y ® B, () K; ' +1® F; (4.41)
forall ¢ € I.

Proposition 4.10. The map A, endows (HoxU ™, %) with the structure of a right U (X)max-
comodule algebra.

Proof. Let f € UZ,. It follows from Lemma 4.1 that

(id®A)o A (f) = (FFAf 1E) Kx © A(FuKy—oE))
A

> (F(FAF)>f <(ByE,y)) Kngp ® FyKpy oK, ® F,K,_oE,
V0,

- ¥ (E(F,\)D((E(FM)DJ‘QEV)KT(H)) <EP)KA+;L_T(“)
UV, 0\

@ FpKpsvpr(y—a EAK y—7(u) @ FL Ky o Ey,

S A(@(Ff 4B K, © FL Ky oE,

v

= (A, ®1id) o A(f).

Hence, in view of (4.39), the map A, is coassociative and (Hy x U™, e, A,) is a right
U (X)max-comodule. It remains to check that A, is an algebra homomorphism. In view
of (4.39) and (4.40) it suffices to show that

Au(fx9) = A(f)(x @) Aulg) (4.42)

for all f,g € U~. Moreover, by the associativity of the twisted product x it suffices to
verify relation (4.42) for f = F; for all ¢ € I.

Assume that f € UZ, and g € Uj‘ﬁ. From the definition of x and A,, using the fact
that (H x U~)P is a left and right (H x U™ )-module algebra via the actions (4.4), one

obtains



S. Kolb, M. Yakimov / Advances in Mathematics 365 (2020) 107042 49

Adfxg)= D (=DVPIx(r,a—p—p)x(v,8—2p - &) (4.43)

Ky A\ VP
(@(FFy)pf QEL) Koy (a(FA)>g < (ST HEy) K, Ey)) K
& FMFKKAL-"-K-"-Qp—(X—ﬁEUE)\?
AHE@)ALg) = > (=1)Fx(=p,v) (4.44)

Ky, b,V P
(G(FyF ) f 9EL) Kyt (G(Fr)>g < (E.S™HE,)K,)) Ka
@ FuK,—oE, F K, »\E\.
For f = F; the first factors in the second line of (4.43) and (4.44) are non-zero if

and only if v = p = = 0 or two of v, p, u vanish while the remaining one is one of
V= Qr(3), P = Qr(;) O it = o;. Hence we get

(Fixg) ZX K, 0 )Fy(G(FA)>g < Ey) @ F Ky, g Ex (4.45)

+ (T(Fy (1) )0 F) Ky (G(Fa)pg QB ) K @ K ' FrEp () K- g B
+ X (K, =07 ) @ (Fr (i) o F) K (1) (T (F2)>g < (Ery Ex) ) K

® K, 'FrKpy2a,,-pEx
+ (F; < E;) (0(FA)pg < Eq) Ky @ FiF. K, _gE.

Multiplying each summand in U(X)max ® (U ,x)x in Equation (4.17) for j = 7(4) from
the right by (—1)I*IK, ® 1, we obtain the relation

> Bro)FuKy @ Bua—x(K, —0r(i)) FuK 20, ) © Bri) B

_ Z F.E.(i)K. ® E,, — F. K, ® E.E, ;.

This relation can be applied to the second and third summand in (4.45) to give
(Fixg) ZX ko, ) Fy(G(FA)>g 9 Eg) © FuKya,_pEn

+ (@(Fr ()P F) K i) (F(FA)pg 9 Ep) Ky @ K Er ) FrK - Ex
+ (G(Fr ()0 F3) Ky (G(FA)pg < (ExEr () ) KA @ K ' F Ko gE
+ (5 <9 E) (0(Fa)g < Eq) Ky @ FF K, gEy

= A (F)(x @) Aulg)

where the last equality follows from (4.44) for f = F;. O
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5. Star products on partial bosonizations

In this section we introduce the notion of a star product on a graded algebra. We
show that the twist product * on the partial bosonization Hy x U~ from Section 4.4 is
a star product which gives rise to an algebra isomorphic to the coideal subalgebra Bc.
In Section 5.4 we employ the star product on Hy x U~ to find a novel way to obtain
defining relations for the algebra Bc.

5.1. General star products on N-graded algebras

For any N-graded K-algebra A = @
and A<y, = @)L, A

jen 4j and any m € N we write A<, = @;”:—01 A;

Definition 5.1. Let A = ®jeN Aj be a N-graded K-algebra. A star product on A is an
associative bilinear operation *: A x A — A, (a,b) — a * b such that
axb—ab€ Acmin foralla € A,,, be A,. (5.1)
The star product * on A is called 0-equivariant if
axh=ah and hxa=ha forall he Ag,ac A

If * is a star product on an N-graded algebra A then (A, x) is a filtered algebra with
Fm(A) := A<,,. By condition (5.1) the associated graded algebra satisfies

gr(A, ) = A.

If the graded algebra A is generated in degrees 0 and 1, then every star product algebra
structure (A, ) is also generated in degrees 0 and 1.

Lemma 5.2. Let A be an N-graded K-algebra generated in degrees 0 and 1.

(i) Any 0-equivariant star product on A is uniquely determined by the K-linear map
uk Ay — Endg (A), f— ,uJLc defined by

,u]Lc(a):f*a—fa forall f € Ay,a € A.
(ii) If U is a graded subalgebra of A such that AgU = UAy = A, then every 0-
equivariant star product on A is uniquely determined by the K-linear map p* : U; —

Homg (U, A), [ — uJLc defined by

pi(b)=fxb—fb  forall f€U,beU.
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Proof. Let % be a 0-equivariant star product on A.
(i) Define a K-linear map M : A<y — Endg(A) by

pk(a) + fa, if f €A

Mf(a)::f*a:{fa it fe A

where in the second case we use the assumption that * is O-equivariant. The map MT is
uniquely determined by the linear map pl : A; — Endg (A). Since the algebra (4, *) is
generated in degrees 0 and 1, the vector space A is the K-span of elements of the form
ap x---xaj for ar,...,a; € A<;. Since

(al*"'*(lj)*a:M(fl"-MaLj(a)

for all a € A, a1,...a; € A<, the bilinear operation * : A x A — A is uniquely
determined by the linear map p” : A; — Endg (A).

(ii) Similarly to the first part, the assumption that AgU = UAy = A and the 0-
equivariance of * imply that the bilinear operation % : A x A — A is uniquely determined
by its restriction to Uy x U. This restriction is

frb=fb+ k()

for f € Uy and b € U, which completes the proof of the lemma. 0O
5.2. The first star product on the partial bosonization Hg x U~

We work in the setting of Section 2. Throughout Sections 5.2, 5.3 and 5.4 we assume
that ¢ € K™ satisfies condition (c) in Section 2.5.

Recall from Section 2.3 that U(x)P°Y denotes the subalgebra of U(x) generated by
F;, E; = EZ-Kfl, K;l, KiK;é) for all i € I. Consider the triangular decomposition (2.5)
of U(x) written in reverse order

Ux)2U™ xHxG"

where GT denotes the subalgebra of U(x) generated by {Ez |i € I'}. The restriction of
this triangular decomposition to the subalgebra U (x)P°Y give rise to a linear isomorphism

U(x)PY = (Hg x U™) @ (U(x)**Vspang {E;, K ' | i € I}) (5.2)
where as before spang denotes the K-linear span. Let

P U(X)p()ly — Hgx U™ (53)
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denote the K-linear projection with respect to the direct sum decomposition (5.2). Since
the kernel of ¢ is a left ideal we have that

Y(ab) = Y (arp(b)) for all a,b € U(x)P°Y. (5.4)

Recall that B, is a subalgebra of U(x)P°Y. For quantized enveloping algebras the follow-
ing Lemma recently appeared in [33, Corollary 4.4].

Lemma 5.3. The restriction of the map (5.3) to B is a K-linear isomorphism
Y:Be— Hyx U™ (5.5)
Proof. For any multi-index J and any a € Hy we have the relation
Y(aBy) —aF; € HoUZ| 51 (5.6)

This shows that the restriction (5.5) is surjective. On the other hand Corollary 2.15 of
Theorem 2.14 implies that the restriction (5.5) is also injective. O

Remark 5.4. The statement that the map # in (5.5) is a linear isomorphism is equivalent
to any of the statements in Theorem 2.14 or Remark 2.16. Indeed, if say condition (c)
in Section 2.5 does not hold, then the second part of Theorem 2.14 implies that B¢
intersects nontrivially with the second summand of the decomposition (5.2).

We use the isomorphism (5.5) to define an algebra structure *x on Hy x U~ by
axb=vy  (a)y (b))  foralla,b€ Hyx U™. (5.7)

Relation (5.6) and Corollary 2.15 imply that * is a star product on the partial bosoniza-
tion Hy x U~ with the N-grading defined by setting deg(h) = 0 and deg(F;) = 1 for all
h € Hy, i € I. Moreover, this star product is 0-equivariant because v is a left and right
Hy-module homomorphism. The subalgebra U~ C Hy x U~ satisfies the assumption of
Lemma 5.2(ii). Hence, in view of U; = V'~ (x), the 0-equivariant star product is uniquely
determined by a K-linear map u” : V= (x) — Homg (U~, Hg x U~ ). We summarize the
situation in the following theorem.

Theorem 5.5. Let UT be a pre-Nichols algebra of diagonal type and assume that the
parameters ¢ € K™ satisfy condition (c) in Section 2.5. Then the algebra structure * on
Hyx U~ defined by (5.7) is a 0-equivariant star product and the associated K-linear map

pr Vo (x) = Homg (U™, Hy x U™),  f = pf

from Lemma 5.2(i) is given by
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pi, (u) = Ciqir(z‘)(Kr(i)Kfl)arL(i)(U) (5.8)
foralliel,ueU™.

Proof. It remains to compute the map p*. For any b € B, and any i € I relation (5.4)
implies that

Fy#p(b) = 1 (Bib)
= Y((Fi + i By Kb (0)
= Fyb(b) + ¢iqir (i) (K; " E-1y¥ (b))
= F(b) + CiQiT(i)¢(Ki_1[ET(i)v'(/)(b)D'

Hence we get for any w € U~ the relation
Fy s u = Fiu+ ¢;qir iy (K, [Er iy, u])
which by Equation (4.10) and the definition of ¢ implies that
Fy*xu= Fu+ Ciqir(i)Ki_lKT(i)arL(i)(U)- (5.9)
Hence pf is given by (5.8). O
5.3. The second star product on the partial bosonization Hy x U~

Next we interpret the associative product x from Section 4 in terms of star products
on partial bosonizations. It follows from (4.24) and (4.27) that % is a O0-equivariant star
product on Hy x U~. By Lemma 4.7 the corresponding K-linear map p” is also given
by (5.8). We summarize these observations in the following proposition.

Proposition 5.6. For all pre-Nichols algebras of diagonal type UT, the binary operation
*x on Hy x U™ given by (4.27) is a 0-equivariant star product for which the map u* :
U~ — Homg (U™, Hg x U™) from Lemma 5.2(ii) is given by

H%‘i (u) = Cz‘%r(i)(Kr(i)Ki_l)arL(i)(U)

forallielI, uelU™.

Combining the above proposition with Theorem 5.5 and using Lemma 5.2(ii) we obtain
the following corollary.

Corollary 5.7. For all pre-Nichols algebras of diagonal type U™, the associative products
x and x on Hg x U™ coincide.
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Recall from Proposition 4.10 that (Hg x U™, %) is a right U(X)max-comodule algebra
with coaction A,. Composing the coproduct A : B, — B. ® U(x) on B, with the
projection U(x) — U(X)max on the second tensor factor, one also obtains a U(X)max-
comodule algebra structure on B,.

Corollary 5.8. For all pre-Nichols algebras of diagonal type U™, the map
Y:Be — (Hg x U™, %) (5.10)
is an isomorphism of right U(X)max-comodule algebras.

Proof. It follows from Lemma 5.3 and the definition of the star product * that ¢ :
Be — (Hg x U™, %) is an isomorphism of algebras. By Corollary 5.7 the map (5.10) is
also an isomorphism of algebras. Moreover, by (4.41) the map (5.10) respects the right
U (X)max-coaction. 0O

5.4. Generators and relations for B, revisited

We can apply the constructions of Sections 5.2 and 5.3 in particular in the case
where the biideal Z which defines UT, U~ and U(x) is trivial, that is Z = {0}. In this
case we have Hg x U~ = Hy x T(V~(x)). We write ® to denote the star product x*
on Hy x T(V~(x)), and we write Be, U(x)P°¥, and ¥ to denote Be, U(x)P°Y and 1,
respectively, in the case Z = {0}. For a general biideal Z C T'(V ™ (x)) and parameters
c € K™ satisfying condition (c) in Section 2.5 we hence obtain a commutative diagram

where b = 1|5, and b= {/;| B.- In the above diagram the vertical arrows are surjective
algebra homomorphisms. The rightmost vertical arrow is a homomorphism both of the
undeformed partial bosonizations Hyg x T(V~(x)) — Hp x U~ and of the transferred
algebra structures (Hg x T(V (X)), ®) — (Hg x U™, %). The maps ¢ and ¢ are K-linear
maps, while the other two horizontal maps are algebra embeddings. The maps b and b
are algebra isomorphisms.

The following proposition provides a procedure to determine the defining relations of
(Hyg x U™, *) from the defining relations of U~.
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Proposition 5.9. Let U™ be a pre-Nichols algebras of diagonal type and assume that the
parameters ¢ € K™ satisfy condition (c) in Section 2.5. If S is a generating set for the
kernel of the homomorphism n : T(V~(x)) — U~ for the undeformed algebra structures,
then it is a generating set also for the kernel of the homomorphism

n:(Hox T(V™(x)),®) = (Hg x U™, %)
with respect to the transferred algebra structures.

Proof. Counsider the projection 1 : Hg x T(V~(x)) — Hp x U~. By the definition of S

we have
ker(n) = (Hp x T(V"(x))) - S - (Ho x T(V"(x)))-
We need to prove that
ker(n) = (Hy x T(V™(x))) ® S ® (Hp x T(V"(x)))- (5.11)
Asn: (Hyx T(V~(x),®) = (Hp x U™, %) is an algebra homomorphism, the right hand
side of (5.11) is contained in ker(n). The map n is graded with respect to the natural
gradings of Hy x T(V~(x)) and Hy x U™, and we show by induction on j € N that

ker(n); € (Ho x T(V"(x))) ® S @ (Hg x T(V"(x)))-

Indeed, for a € ker(n);+1 there exist homogeneous elements b}, b € Hyg x T(V~(x)),
51 € S such that a = ), a;s;b). Property (5.1) of the star product implies that

a—Y aj®s @b €ker(n)<;,
l

and by induction hypothesis we have
ker(n)<; € (Ho x T(V™(x))) ® S @ (Hg x T(V™(x)))-

This shows that ker(n) ;41 € (HgxT (V™ (x)))®S®(HgxT (V™ (x))) and hence completes
the proof of (5.11). O

For any noncommutative polynomial (x1,...,2,) = > ;as;, ... x; in n variables
with coefficients a; € Hy and any elements u1, ..., u, in Hg x T(V~(x)) we write

r(ul@'“@un)zza'luh®"'®ujl'
J

Proposition 5.9 has the following immediate corollary giving an effective way to determine
the relations of the coideal subalgebra B. of U(x).
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Procedure for determining the relations of B.:

(1) Let S = {pm(z1,...,zm) | m € S} be a set of homogeneous noncommutative
polynomials such that {p.,(E) | m € S} generates the kernel of the projection
n:T(V*t(x)) — U". In other words, S provides the defining relations of UT. Let
d., denote the degree of the polynomial p,, for all m € S.

(2) Let

Ton(T1, -, Tp) :Zajle STy,
J

be the noncommutative polynomials with coefficients in a; € Hy such that

Pm(F1,..., Fp)=r(F1®...®F,)

)

where the left hand side uses the undeformed product in T(V = (x)). It follows from
(5.1) that r,, has degree d,, and leading term p,,.
(3) The algebra B, is generated by Hy and B; for i € I subject to the relations

K\B; = x(\, ) ' B; K forall A\ € Z3,i €1, (5.12)
rm(B) =0 for all m € S.

Example 5.10. Consider the quantized universal enveloping algebra U¢(sl3) for ( € K*
as described in Section 3.1. It has generators F;, Fj, KijEl for i € I = {1,2} and relations
given by (3.1). We apply the above procedure to the coideal subalgebra B of U:(sl3)
corresponding to the bijection 7 : I — I given by 7(1) = 2, 7(2) = 1. The quantum Serre
relations are given by pi2(Fy, Fo) = po1(F, F») = 0 where

pia(z,y) = 2y — (C+ ¢ Nrye +y2®,  palz,y) = poay,z).
Using relation (5.9) one obtains
Fi®F=FF+ o KKt Fy® (F1Fy) = FiF 4+ i (Fi Ko K
and hence
FiIF,=FL®F®F —c¢((+ ¢ YRKK (5.13)
Similarly one calculates

FRF =FehLeF —aCRKK ' — ol RK K, (5.14)
BFE=FReF ®F —c(+¢ 3R K (5.15)
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Combining (5.13), (5.14) and (5.15) one obtains
p12(F1, Fo) = pra(F1 § Fo) + (¢2 = ¢ Fi[eiC Ko K + oo 2K K .

Hence the noncommutative polynomial r15(x,y) describing the corresponding defining
relation of the coideal subalgebra B, is given by

r12(z,y) = pra(z,y) + (= )1 2 KK + oK1 Ky a.

Similarly one obtains

ro1(2,y) = par(z,y) + (¢* — [P K1Ky ' + 1 (Ko K .

By the above procedure the algebra B. is generated by B, Bo and Hy subject to the
relations (5.12) and r12(B1, Ba) = r21(B1, B2) = 0. The latter two relations coincide
with the relations given in [31, Theorem 7.1 (iv)].

Remark 5.11. For quantum symmetric pair coideal subalgebras a different method to
determine defining relations was devised by G. Letzter in [31, Theorem 7.1], see also [26,
Section 7]. This method also works in the general setting of the present paper. Letzter’s
method relies on relation (2.29) which holds with Z = 0 by choice of parameters. With
Letzter’s method individual monomials in the quantum Serre relations lead to completely
different lower order terms in the relations for B, than with the procedure described
above. This shows that the procedure described above is not a mere reformulation of
Letzter’s method.

Example 5.12. As a second example we consider the coideal subalgebra B, of the Drinfeld
double of the distinguished pre-Nichols algebra of type ufo(8) from Section 3.4. The
algebra B, has generators K+, By, By where
K=K K;', Bi=F +cEK;', By=F+cFE Ky
Calculating recursively as in Example 5.10 on obtains that
F"=F®" forall i=12andméeN,

and that for the polynomial p(z1,x2) from (3.14) one has p(Fy, Fy) = r(Fy @ F,) where

r(z1,2) =p(w1,02) — (3¢ + 2) (1 K~ w1za + oK)
+ V226 + 3) (K anmn + oK)
+ VR4 CHD)(EK 24+ EK?) —2(C+ Deyes.
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Assume that the parameters ¢y, co € K satisfy the relation in Proposition 3.6(ii). By the
above procedure, the algebra B, has generators K*!, By, By and relations

KK !'=
KBy = —("%?B|K, KBy=-(?BK
B} =B3=0, r(B,By)=0.

We have checked the above relations also with Letzter’s method referred to in Re-
mark 5.11, and this produces the same relation (B, B2) = 0.

6. The quasi K-matrix for B,

From now on we restrict to the case where the graded biideal is maximal Z = Z,.x
and hence U* = UZ,  are Nichols algebras. We also retain the assumption that ¢ €
K™ satisfies condition (c) in Section 2.5. Recall the isomorphism of U(x)max-comodule
algebras 1 : Be — (Hp X Uy, *, Ay) from Corollary 5.8 and the quasi R-matrix © =

max’ 7

Z“(—l)“"FM ® E,, from Section 4.1. We call the formal sum
0= eid)(©) =) () NF)OE e[ Be® (Ui (6.1)
1 2

the quasi K-matrix for Bc. Here we consider the infinite product [, Be @ ( as a

max)#

subalgebra of the completion U (x )mdx®U( Jmax from Section 4.1. We multiply elements
in [, Be ® ( Ui ax)p as infinite sums.

6.1. The coproducts of the quasi K-matriz

Similarly to Lemma 4.1 we are interested in the behavior of ©? under the coproduct
of U(X)max in each tensor factor. To this end we introduce elements

@?m:Z( Dy~ (F,) ® K, ® By,

n

Ofs =Y ()Y (F) @ K, ' ® E,,
m

?(23 = Z(_l)wKu—T(u) ®o(F.) ® Ey,

n

Ok = Z(_l)m‘KM*T(M) ®E KT(L) ® K, '5(F,)
m

in [[,,Be ® HUS ) ® (Unax)v- As before, we multiply elements in [], , Be ®

H(Uf ) u @ (U)o as infinite sums. A formal completion of Be @ U(X)max @ U(X)max
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containing the above product will be given in Section 6.3. With the above notation we
can express the desired analog of Lemma 4.1.

Proposition 6.1. The quasi K -matriz ©7 satisfies the relation

(id® A)(@e) = @g’z ) ?{23 ) 9?1(3 (6.2)
in 1., Be ® H(Ug o) @ (Ufax)vs and the relation

(A®id)(0%) = O3 - O, - OF, (6.3)
mn HH BC & U(X)max ® (UrJrqax)lL

Proof. To prove Equation (6.2) first observe that (4.4) and (4.6) imply that

Y (-)VF, ©(F,9E,)® K, ® B, (6.4)

J78%

_ Z IMI+WF @ I\ ® Kyt ® EL E).

Similarly, also taking into account (4.20), one obtains

> ()G (F, ) Fy) K, © E, @ By (6.5)
TN

= Z W F.K, ;) ®E,® Eg(F,)K,;".

With this preparation we use Equation (4.7), Lemma 4.9, and the fact that v is an
isomorphism of algebras, to calculate

(id®2)(©°) = Y (-)Hy~H(FF) e E\K, @ E,
Av

= > (~y)AHEMy (G (F,)eF) K )Y (F, < By) © EAK, ® B,
A,V

S )T (B )0 (B 9 B) © B (FOK, K, © B,

IR

(6.4) D ()RS EOK, 0t (F)) ® Exo(F,)K) @ E,Ey
Loy A

_ 0 o 0
- @12 : ®K23 : 61K3
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which proves Equation (6.2). Equations (2.12) and (4.41), the fact that B. is a coideal
subalgebra of U(x)max and Proposition 4.10 imply that ¢ is an isomorphism of U (X)max-
comodules. Therefore

(Aid)(©’) = Y ()M @id®id)(A(F,) ® E,)

v

(1.38) Z DIy =L (G (Fy)>F, < E)K)) ® F,K,_,E\® E,
A v

(C;l) Z (_1)|,u|+\p|¢—1 ((E(F/\)DF/J)KA) ® FMK/JEA ® EHEP
A1

(6.5) . _ _ _
= Z (=)l =Y (FOK o) © FuK_._;(nE\® E Eo(Fy) K
A K, 1

= @23'@1K3 9K32
which proves Equation (6.3). O

6.2. The intertwiner property of the quasi K-matriz

The quasi K-matrix 7 also satisfies an analog of Corollary 4.4.
Proposition 6.2. The element O satisfies the relations
A(B;)-0° =0 (Bi @ Ki + ¢r(yir(n K1 3y Ki © By Ki + 1@ Fy),  (6.6)
A(Ky)-0% =07 A(K)) (6.7)
foralliel, A€ Zg.
Proof. We rewrite (F; ® K; ') - © in terms of the twisted product
(FioK;')-©

(4.25) _
=N (1) (F o« F) @ KB, czqan D K0k (F) © KB,
1

CLS O (E « F) @ KB+ cf( K K7t @ Ery K70 - ©.
M

Similarly we rewrite O - (F; ® K;) in terms of the twisted product
0 (F® K;)

-126)
D (1N (Fyx F) ® By Ki = crgiyairiy D (~DMO%) (FO KK © ELK;)
Iz ©
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(4.16) _
= Z(_]_)W‘ (Fﬂ * Fl) & EHKl + cT(i)qiT(i)@ . (KZKT(i) X ET(Z)KZ)
7

Now Equation (6.6) follows from the above two relations, and the fact that ¢p=1 : (Hg x
U~,%) — B is an algebra isomorphism, by application of 1)~! to the first tensor factor of
Equation (4.18). Similarly, Equation (6.7) follows from the relation A(Ky)-© = 0-A(K})
by application of ¢! to the first tensor factor. O

Remark 6.3. The statement of Proposition 6.2 is known in the theory of quantum sym-
metric pairs as the intertwiner property for the quasi K-matrix (called quasi R-matrix
in [9, Section 3]). In [9, Proposition 3.2] and [27, Proposition 3.5] this property is formu-
lated in terms of the bar-involution for quantum symmetric pair coideal subalgebras. For
general Nichols algebras and their coideal subalgebras there is no bar-involution. Propo-
sition 6.2 achieves a bar-involution free formulation of the intertwiner property in the
same way as Corollary 4.4 provides a bar-involution free formulation of the intertwiner
property for the quasi R-matrix.

6.3. Weakly quasitriangular Hopf algebras

We now want to show that the quasi K-matrix (6.1) gives rise to a universal K-
matrix for the coideal subalgebra Be of U(X)max- In [8] and [27] universal K-matrices
are constructed on suitable categories of representations. Due to the generality of our
setting we do not know much about the representation theory of U(X)max. Instead we
follow an approach used in [41], [40], [17] and consider a weak notion of quasitriangu-
larity. In the present section we recall this approach. In Section 6.5 we introduce the
corresponding notion of weakly quasitriangular coideal subagebras and show that B is
weakly quasitriangular up to completion.

Definition 6.4. ([40, Definition 3], [17, Definition 1.2]) A weakly quasitriangular Hopf
algebra is a pair (U, R) consisting of a Hopf algebra U and an algebra automorphism
R € Aut(U%?) satisfying the relations

RoA=A® on U, (6.8)
(A ® ld) (@] R = ng [¢] R23 [¢] (A ® ld) on U®2, (69)
(ld ® A) oR = ng @) R12 o (1d ® A) on U®2. (610)

Here we use the usual leg notation where R;; denotes the operation of R on the i-th and
j-th tensor factor.

For any invertible element u of a unital algebra A let Ad(u) denote the inner auto-
morphism of A defined by

Ad(u)(a) = uau™" for all a € A.
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Remark 6.5. Recall the notion of a quasitriangular Hopf algebra from [15]. If U is a
quasitriangular Hopf algebra with universal R-matrix R, then U is weakly quasitriangular
with the automorphism R defined by conjugation R = Ad(R).

Remark 6.6. By [40, (7)] the automorphism R of a weakly quasitriangular Hopf algebra
satisfies the quantum Yang-Baxter equation

ng e} ng e} R23 = Rgg e} ng e} ng. (611)

Indeed, (6.8) and (6.9) imply that both sides of (6.11) coincide on the image of A ® id,
while (6.8) and (6.10) imply that both sides of (6.11) coincide on the image of id ® A.
Now the quantum Yang-Baxter equation (6.11) follows from the fact that if U is a Hopf
algebra then Im(A ® id) + Im(id ® A) generates U®3 as an algebra.

Remark 6.7. In [40] a weakly quasitriangular Hopf algebra is called a braided Hopf alge-
bra, see also [17, Definition 1.2]. We avoid this terminology because it is often used for
Hopf algebras in a braided category. In [41, 4.3] weakly quasitriangular Hopf algebras
are realized under the name pre-triangular Hopf algebras via a construction similar to
the following lemma.

Lemma 6.8. ([40, Definition 3], [17, Definition 1.3]) Let U be a Hopf algebra, R(®) €
Awt(U®U) an algebra automorphism, and RV € U®U an invertible element such that
the following relations hold

(Ad(RM) o R@) 0 A = A°P, (6.12)
(A®id) o R =R{Y o RY 0 (A®id), (6.13)
(id®A) o RO =RY o RY o (Awid), (6.14)

(A®id)(RY) = RY - RE (R, (6.15)
(id® 4)(RD) = R - R (RY). (6.16)

Then (U, Ad(RM) 0 R©) is a weakly quasitriangular Hopf algebra.

Proof. Define R € Aut(U®?) by R = Ad(R™) o R(Y). Then (6.8) is identical to (6.12).
To verify (6.9) let u,v € U and calculate

(A®id) o R(u®v) = (A®id) (R - RO (u @ v) - (RM)™!)
= RYRY(RY) R o RY (A(w) @ v)-
R (RS ™R
= (Ad(R(Y) o RY) o (Ad(R) 0 RE)) o (A ®id)(u®v).

This proves (6.9), and (6.10) is obtained analogously. O
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The construction of weakly quasitriangular Hopf algebras in the theory of quantum
groups involve completions, see [41, 4.3], [40, 1.3]. We set up these completions in a
way which also works for the weakly quasitriangular coideal subalgebras in Section 6.5.
Recall that U(x) = U(X)max is the Drinfeld double of a Nichols algebra of diagonal
type UT = UT

max*

Let B be an arbitrary algebra and consider a finite sequence of signs
S1y.-+,8m € {+,—} for some m € N. For any j € N define

(BoUMU™ @ aUMU™), = P  BUNWUI, @ UXUM, .
i=1 1Pil=J

Then the inverse limit

—

(BaU(x)®™) =1

S1.-8m
€

=)

((B ® U(X)®m)/(B QU Q- ® U(X)Usm)j)

|

<
Z

is an algebra which contains B@U (x)®™ as a subalgebra. If the algebra B coincides with
the field K then we write (U (x)®™), . instead of (K @ U(x)®™),,
A extends to the inverse limits. For example, we have algebra homomorphisms

. The coproduct

1...8

(A®id): (UX)2),,,, = U()3)

(id®A): (U)#?),,., = (U00)*?)

5182 518182

8182 518282

which canonically extend A ® id,id ® A : U(x)®? — U(x)®3. Recall that © denotes
the quasi R-matrix defined by (4.5). For s1s5 € {++,+—, ——} we may consider O =
Zu(—l)“"Eﬂ ® F,, as an invertible element of (UW2)5152~ Moreover, there is a well
defined algebra automorphism R(®) € Aut(U(x)®?) such that

RONu0s0000, = X(BN(E—1) ® (K_g°) (6.17)

for all 3,y € Z™. Here K_,- and K_g- denote the operators of left multiplication by
K_., and K_g, respectively. In terms of generators of the algebra U(y)®? the algebra
automorphism RO g given by R(O)|H®H =idygy and

ROE,®1)=E oK, RO1®E)=K'®E,
RO(F, 1) =F ® K;, RO1®F)=K,®F

for all 7 € I. Ehe\automorphism R extends canonically to an automorphism of the
completion (U(x)®?), .,

automorphism RE?) of (UW’")
The following theorem states that the Drinfeld double U(x)max is weakly quasitrian-

. We can also make use of the leg notation to obtain algebra

S1...8m "

gular up to completion. The theorem hence extends [40, Proposition 1.3.1], [17, Theorem
3.1] from the setting of quantum groups to Drinfeld doubles of general Nichols algebras
of diagonal type. To simplify notation, we mostly drop the subscript pax.
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Theorem 6.9. Let s155 € {++,+—,——} and let U™ be a Nichols algebra of diagonal type
with Drinfeld double U(x).

(1 The element R = Oy and the automorphism R\ € Aut((UWz)
by (6.17) satisfy the relations (6.12) — (6.16).

(2) Define an algebra automorphism R®1%2 € Aut((UWz)
RO). Then R*1%2 satisfies relations (6.8) — (6.10).

) defined

§182

) by ReE1%2 = Ad(®21) o

$182

Proof. (1) It suffices to check (6.12) on the generators FE;, F;, K;. Hence property (6.12)
follows from Corollary 4.4. Properties (6.13) and (6.14) hold because the coproduct
preserves weights. Finally, properties (6.15) and (6.16) hold by Lemma 4.1.

(2) This follows from (1) analogously to the proof of Lemma 6.8. O

Analogously to Remark 6.6, the second part of Theorem 6.9 implies that for s1s9s3 €
{+++,++—,+ — —,— — —} the quantum Yang-Baxter equation

8182 5183 $283 __ 5283 5183 8182
R1370Ri57 o Ry5™? =Ry o Rz o Ryp

holds on (UE)\®3)

818283 "

6.4. Extending & to an algebra automorphism

From now on we assume that the parameters satisfy ¢; # 0 for all ¢ € I. Under
this assumption the algebra homomorphism & : U~ — Ut x H from Section 4.3 can
be extended to an algebra automorphism of U(x). Indeed, it follows from the defining
relations (2.3) and from Lemma 2.4 that there is a well-defined algebra automorphism
7 : U(x) — U(x) such that

a(E) =c oK o(F) = cmKiBw, oK) =K (6.18)

for all 4 € I. We are interested in the compatibility between @ and the coproduct. In the
following lemma R(®) denotes the algebra automorphism of U(x)®? given by (6.17) and
O denotes the quasi R-matrix for U(x).

Lemma 6.10. Let UV be a Nichols algebra of diagonal type with Drinfeld double U(x).
Assume that ¢ € (K*)™. The algebra automorphism & satisfies the relation

Aoz = (7 ®id) o R o (id ©7) 0 Ad(Os1) o R 0 A. (6.19)

Proof. It suffices to show that both sides of (6.19) coincide when evaluated on K;, E;
and F;. Evaluated on K; both sides give K_i) ® Kr_é). By Equation (4.17) we have

(
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T ®id) o RYY o (id ® 7) 0 Ad(Oa1) 0o R o A(E;)
= ([Feid)oRY o ((dwo)(E @ K, +1© E;)
=7(E)® KiKT_é) + K ' oa(E)
=Ao E(El)

The calculation for F; is similar. O
6.5. Weakly quasitriangular comodule algebras

We now introduce a weak version of quasitriangularity for comodule algebras over
weakly quasitriangular Hopf algebras.

Definition 6.11. Let (U,R) be a weakly quasitriangular Hopf algebra. A weakly quasi-
triangular right comodule algebra over (U,R) is a triple (B, Ap, K) where B is a right
U-comodule algebra with coaction A : B — B® U and K is an algebra automorphism
of B ® U which satisfies the following properties

KoAp=Ap on B, (6.20)
(AB X ld) oK = Rgg o ’Clg o Rgg o (AB X ld) on B X U, (621)
(id®A)O’C:R320K13OR23OK120(id®A) on BU. (622)

We say that the comodule algebra B is weakly quasitriangular if the coaction Ag and
the automorphism K are understood.

Remarks 6.5 and 6.6 have analogs for comodule algebras over a Hopf algebra.

Remark 6.12. Let U be a quasitriangular Hopf algebra with universal R-matrix R. By
Remark 6.5 the pair (U, Ad(R)) is a weakly quasitriangular Hopf algebra. Recall the
definition of a quasitriangular comodule algebra B over U with universal K-matrix K €
B ®U from [27, Definition 2.7]. If the U-comodule algebra B is quasitriangular then B
is weakly quasitriangular with the automorphism X = Ad(K) of B® U.

Remark 6.13. If (B, K) is a weakly quasitriangular comodule algebra over a weakly qua-
sitriangular Hopf algebra (U, R) then the automorphisms K and R satisfy the reflection
equation

K12 0 R32 0 K130 Raz = Raz 0 K13 0 Ragz 0 K12 (6.23)

on B U ® U. Indeed, (6.20) and (6.21) imply that

’C12 o Rgg o IC13 (] Rgg [¢] (AB ® 1d> = R32 o K:13 OR23 o) ’CIQ [e] (AB ® ld)
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on B ® U while (6.20) and (6.22) imply that
Ki20R32 0130 Ra30 (ld ® A) =R330K130Ra30K150 (ld & A)

on B ® U. Now the reflection equation (6.23) follows from the fact that if U is a Hopf
algebra then Im(Ap ® id) + Im(id ® A) generates B ® U®? as an algebra.

We have the following analog of Lemma 6.8 for comodule algebras.

Lemma 6.14. Let (U, R(Y, RV) be as in Lemma 6.8 and let B be a right U-comodule
algebra with coaction Ag : B — B U. Let KO be an algebra automorphism of B ® U
and let KN € B U be an invertible element satisfying the following relations

Ad(KM) o K© o Ap = Ap, (6.24)

(Ap2id) o KO =RY 0 KD 0 RY o (A ®id), (6.25)
(id®A) o KO =KD o RY 0 1V 0 Ad(RLY) 0 RY o (id ® A), (6.26)
(Ap @id)(KW) = RY - RY (kL) . ROk (R, (6.27)
(id® A)KD) = KO . KO (RDY . cORD (K D). (6.28)

Then (B, Ap, Ad(K™M) o K(©)) is a weakly quasitriangular right comodule algebra over
the weakly quasitriangular Hopf algebra (U, Ad(RM)) o R(9),

Proof. Set K = Ad(K™M)oK(© € Aut(BoU) and R = Ad(RM)oR(® € Aut(U®?). Then
Equation (6.20) follows from Equation (6.24). Equation (6.21) follows from Equations
(6.25) and (6.27), and Equation (6.22) follows from Equations (6.26) and (6.28). O

We return to the concrete example of the coideal subalgebra B, of the Drinfeld double
U(x) = U(X)max of a Nichols algebra U™ = U of diagonal type. There is a well defined
algebra automorphism ()7 € Aut(U(x) ® U(x)) such that

KO u0se000, = X8 7=T(N)) (K ir()7) ® (K_g1+(5)°) (6.29)

for all B,y € Z™. More explicitly, the algebra automorphism K(7 is defined by
)C(0),7

H®QH = idH®H and

KOT1eE) =K 'K,n©E, KO (1eF)=KK/j®k,

KOT(E®l)=EoK 'K, KO9T(Fel)=FoKK|

for all ¢ € I. Similarly to the proof of Equations (6.13), (6.14) for the automorphism
R given by (6.17), one sees that
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(A®id) o KO = k07 o K197 6 (A®id), (6.30)
(id®A) o KO =KD" 0 k97 o (id® A). (6.31)

The algebra automorphism (07

U(x) such that

restricts to an automorphism of the subalgebra Be ®

KO7(B;®1) = B; ® KiKT_é)

for all ¢ € I. Recall the algebra automorphism & from Section 6.4. Define an algebra
automorphism K© of B ® U(x) by

KO =076 (id 7).

By construction K(© extends to algebra isomorphisms

— —_—

KO (BRUN). — (BaUN),, K (BRUN), > (BoUNX)

The isomorphism IC@) will provide us with the desired completed version of the auto-
morphism K in Lemma 6.14. To obtain a completed version of K (1), we may consider
the element ©Y = Z“(—l)‘“‘d)_l(lfu) ® E, from (6.1) as an invertible element in

—

(B®U(x)),. By the following theorem the coideal subalgebra B. of U(x) is weakly
quasitriangular up to completion.

Theorem 6.15. Let Ut be a Nichols algebra of diagonal type with Drinfeld double U(x).
Let B¢ be the coideal subalgebra defined in Section 2.2 and assume that the parameters
c € (K*)™ satisfy condition (c) in Section 2.5. Then the following hold:

(1) The element K = @? ¢ (Bgl]§(x))_|r and the isomorphism K(©) = KO = gO7,
(id®7o): (BgU\(X)L — (Bg-U\(x))+ defined by (6.29) and (6.18) satisfy relations
(6.24) - (6.28).

(2) Define an isomorphism of algebras K~ : (Bgl]\(x))_ — (BgU\()OL_ by K- =
Ad(©%) o K. Then K= satisfies relations (6.20) — (6.22) with the operators R552
from Theorem 6.9.

Proof. (1) We first verify (6.24). It suffices to check (6.24) on the generators B; for i € T
and K for A € Zg. We calculate

Ad(0) o K7 o (id © 7) 0 A(B;)
= Ad(©%) o KO (B; ® K5y + Ky iy K7 @ Fi + 1@ ¢ () KiEr )
= Ad(0")(B; @ K + 1® Fy + ¢ ir (i Ky K © Er () K
= A(B))
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where the last equality follows from the intertwiner property (6.6). The relation
Ad(©%) o K7 o (id®7) 0 A(Ky) = A(Ky)  for A€ Z3

holds as (K ) = K for all A € Z}. This completes the proof of (6.24).
Property (6.25) follows from the fact that

KO7o(ld®7) =R o (id®7) o RLY

and from Equation (6.30). Property (6.26) follows from Equation (6.31) and from
Lemma 6.10. Finally, Equations (6.27) and (6.28) hold by Proposition 6.1.
(2) This follows from (1) analogously to the proof of Lemma 6.14. O

Analogously to Remark 6.13, the second part of Theorem 6.15 implies that K~ satisfies
the reflection equation

— 4— - — _ o+ — 4— -
KiaoRzy oKizoRoy =Ry 0 KizoRyy oKy,

—

as an equality of algebra isomorphisms (B ®/UE)®2)__ = (BoU(X)®%) -
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