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Integral operators, bispectrality and growth of
Fourier algebras

By W. Riley Casper at Baton Rouge and Milen T. Yakimov at Baton Rouge

Abstract. In the mid 1980s it was conjectured that every bispectral meromorphic func-
tion ¥ (x, y) gives rise to an integral operator Ky (x, y) which possesses a commuting differ-
ential operator. This has been verified by a direct computation for several families of functions
¥ (x, y) where the commuting differential operator is of order < 6. We prove a general version
of this conjecture for all self-adjoint bispectral functions of rank 1 and all self-adjoint bispec-
tral Darboux transformations of the rank 2 Bessel and Airy functions. The method is based
on a theorem giving an exact estimate of the second- and first-order terms of the growth of
the Fourier algebra of each such bispectral function. From it we obtain a sharp upper bound
on the order of the commuting differential operator for the integral kernel Ky (x, y) leading
to a fast algorithmic procedure for constructing the differential operator; unlike the previous
examples its order is arbitrarily high. We prove that the above classes of bispectral functions
are parametrized by infinite-dimensional Grassmannians which are the Lagrangian loci of the
Wilson adelic Grassmannian and its analogs in rank 2.

1. Introduction

1.1. Main result on bispectrality and integral operators. A meromorphic function
¥ (x, y) on an open subset of C? is called bispectral if it is an eigenfunction of a nonzero dif-
ferential operator in each of the two variables. This notion was introduced by Duistermaat and
Griinbaum in [14] in relation to computer tomography and signal processing and since then has
found relations to many other areas: soliton equations [5,27,41], Calogero—-Moser spaces and
systems [9, 10,42], orthogonal polynomials [18,25,26], W -algebras and Kac—Moody algebras
[6, 8], automorphisms and ideal structure of rings of differential operators [9]. To ¥ (x, y) one
associates the integral operator

Twzf(x)n—>/F Ky (x,y)f(y)dy withkernel Kw(x,y)zfF Y(x,z2)¥(y,z)dy.
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2 Casper and Yakimov, Integral operators, bispectrality and Fourier algebras

Here I'; and I, represent paths in C, chosen such that ¥ (x, y) € L?(I'; x I';), along with
other analytic convergence conditions. The following property was conjectured in the mid
1980s and was in the heart of the formalization of the notion of bispectrality in [14].

Conjecture. Under mild conditions on the bispectral function ¥ (x, y) and the paths
I'1, I'2, the integral operator 77, posses a commuting differential operator.

The commutativity of integral and differential operators is formalized in Section 3.4. The
commutativity property in the conjecture has substantial applications to the analytic properties
of the integral operator Ty, and to the numerical computation of its spectrum and eigenvalues.

The conjecture was proved in the following special cases:

(1) For the sine and Bessel bispectral functions ¥/ (x, y) = ¢*¥ and /xy K, +1(xy), Landau,
Pollak, Slepian [29, 36, 37] constructed a second-order differential operator commuting
with Ty, and used it in time-band limiting in signal processing. Mehta proved the fact for
¥(x,y) = e* independently and applied it to random matrices [30].

(2) Tracy and Widom [38,39] proved that for the Airy function ¥ (x,y) = Ai(x + y), Ty
posses a commuting second-order differential operator and applied the facts for the Bessel
and Airy functions to asymptotics of Fredholm determinants and scaling limits of random
matrix models.

(3) For two one-parameter, one-step Darboux transformations from the Bessel functions
VXY Ky41(xy) withv = 1 and v = 2, Griinbaum constructed a fourth- and sixth-order
commuting differential operators [17].

(4) Second-order commuting differential and difference operators were constructed in
several discrete-continuous and discrete-discrete situations starting with the Hermite,
Laguerre and Jacobi polynomials [16] and expanding to several other situations [34,35].

(5) Commuting differential and difference operators were also constructed for matrix-valued
generalizations of the examples in (4), culminating in the work of Griinbaum, Pacharoni,
and Zurrian [19] which constructs second-order commuting differential/difference opera-
tors for matrix orthogonal polynomials whose weights satisfy a functional equation.

We obtain the following general solution of the conjecture:

Theorem A. (i) For all self-adjoint bispectral Darboux transformations J(x, y) of the
exponential function e*Y and self-adjoint bispectral Darboux transformations of the rank 2 Airy
Ai(x + y) and Bessel \/xy Ky 1 (xy) functions, the integral operator with kernel K 7 (x,y)
posses a commuting differential operator which is formally symmetric (i.e., equals its formal
adjoint).

(i1) The class of bispectral functions in part (i) of rank 1 are parametrized by the points
of the infinite-dimensional Grassmannian which is the Lagrangian locus of the Wilson’s adelic
Grassmannian [41]. The class of bispectral functions in part (i) of rank 2 are parametrized by
the points of the Lagrangian loci of the infinite-dimensional Grassmannians of rank 2 bispec-
tral functions from [5].

Additionally we obtain effective upper bounds on minimum order of a nonconstant com-
muting differential operator in Theorems 5.3, 5.6, 5.9. The arXiv version of the present paper
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(arXiv:1807.09314) contains an additional section where we describe an algorithm for fast
computation of the operators relying only on the calculation of products of differential opera-
tors and the solution of a finite-dimensional system of linear equations. The arXiv version also
features a variety of examples illustrating this algorithm, including examples of differential
operators of order 6,8 and 22. The construction of differential operators of such high-order
commuting with integral operators was not previously feasible.

The first part of the theorem is proved in Section 5. The second part is proved in Section 6.
Section 3 contains background on the notion of self-adjoint bispectral Darboux transformations
and its role in previous works on the classification of bispectral functions.

Theorem A has the following important special cases:

(1) By the main result of [14], all bispectral meromorphic functions J(x, y) that are
eigenfunctions of a second-order differential operator are obtained as iterated self-adjoint
bispectral Darboux transformations from the Bessel functions /xyK,+1(xy) and are
covered as special cases by Theorem A. Even in this special situation the theorem is new
and few cases of it were previously known, cf. Section 1.1 (3).

(2) By the main result of [41] (and its interpretation in [5]), all rank 1 bispectral functions
17 (x, y) are bispectral Darboux transformations from the exponential function e*¥. Such
a function is called self-adjoint if it is an eigenfunction of a formally symmetric differ-
ential operator in x and y. All rank 1 self-adjoint bispectral functions %(x, y) are also
covered by Theorem A.

1.2. Main result on growth of Fourier algebras. Our proof of Theorem A is based
on the construction of Fourier algebras associated to bispectral functions and a sharp estimate
on their growth. For a bispectral meromorphic function 1 (x, y) defined on a connected open
subset U x V of C?2, define the left and right Fourier algebras of differential operators for
by

Fx() = {dbx € D(U) : there exists a differential operator b, € D(V)
satisfying by - ¥ (x, y) = by - ¥ (x, y)}

and

Fy(y) = {by € D(V) : there exists a differential operator by € D(U)
satisfying by - ¥ (x,y) = by - ¥ (x, y)}.

Here and below D (U) denotes the algebra of differential operators with meromorphic coeffi-
cients on U. The algebras Fx () and () are anti-isomorphic, via the map

by : Fx(¥) — F (V)

defined by
by - Y (x,y) = by (bx) - ¥(x. ),

see Proposition 2.4. This map will be called the generalized Fourier map of . The terminology
is motivated from the fact that for ¥ (x, y) = e* one recovers the usual Fourier transformation
of differential operators. The key idea is that each operator b, € Fy (1) has well-defined order
ord by € N and co-order ord by, (bx) € N. They give rise to an N x N filtration of Fx(yr)
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4 Casper and Yakimov, Integral operators, bispectrality and Fourier algebras

formed by the subspaces
?f’m(w) ={b € Fx(¥) :ord(d) <€, ord(by (b)) <m} for {£,m e N.

The spaces .'Ff ™ (y) are finite-dimensional and one can study the growth of their dimensions
as £,m — oo. We will denote by 37,5 sr;m(w) the symmetric subspaces of 37)5 ™ () consisting
of operators by € %f () such that b and by (dy) are formally symmetric.

After the breakthrough work of Wilson [41] bispectral functions are classified by rank
(see Definition 3.7) via a realization as bispectral Darboux transformations in the terminology
of [5]. This means that new bispectral functions E(x, y) are constructed from old ones ¥/ (x, y)

via a representation of the form

~ 1
W(x»y)—mu“ﬁ(xaﬁ and Y(x,y)=1u 70 ) P(x )W( . Y)

for some differential operators u, 0 € Fx () and polynomials p(x), p(x) and g(y), ¢(y) as
in Definition 3.1. We call the pair (ord u, ord) € N x N the bidegree of the transformation.
We refer the reader to Section 3 for details on the relation of this construction to the classical
Darboux process in terms of factorizations of differential operators.

For a fixed bispectral function ¥ (x, y), all bispectral Darboux transformations of ¥ (x, y)
are classified by the points of infinite-dimensional Grassmannians generalizing Wilson’s adelic
Grassmannian [5,41]. All rank 1 bispectral functions (classified by the points of the original
adelic Grassmannian) are bispectral Darboux transformations from the function e*”.

Theorem B. () If %(x, y) is a bispectral Darboux transformation from the bispectral
meromorphic function ¥ (x, y) satisfying natural mild assumptions, then for all £, m € C,

|dim fF)fm(J) — dim ?f’m(W)| < const

for a constant that is independent on £ and m.

(i) If J(x, v) is a self-adjoint bispectral Darboux transformation of bidegree (d1, d2)
from the exponential function e”*, the Airy function Ai(x + y), or the Bessel functions
VXY Ky4 5 (xy) withv € C\ N, then

|dim F252M(§) — (Um + € +m + 2)| < d1d>

sym

forallt,m € N.

The precise form of the first part of the theorem is given in Theorem 4.1 (see also Corol-
lary 4.2 and Remark 4.4). The second part of the theorem is a combination of Theorem 4.1 and
Lemmas 5.2, 5.5, and 5.8.

Remark. (i) Theorem B establishes the fact that the growth of both dim 37)5 o (%) and
dim 37x2 fyfnm (J) as functions of £ and m is quadratic for huge classes of bispectral functions.
The theorem gives exactly the quadratic and the two linear terms of the dimension functions
and a sharp upper bound on their constant terms.

(ii) In a typical situation we start with a simple bispectral function ¥ (x, y) which is an
eigenfunction of low degree differential operators (e.g. e¥™, Ai(x + y), or (/xyKy+1(xy))
and we built a very complicated bispectral function 1/f(x y) which is an eigenfunction of dif-
ferential operators of very high degrees. The remarkable feature of the theorem is that it proves
that the Fourier algebras ¥ (J) and ¥ () have the exactly same growth up to a linear term.
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Theorem A is proved using the growth rates from Theorem B in conjunction with dimen-
sion estimates for the rank of the linear map taking formally symmetric differential operators
to their bilinear concomitant (see Definition 6.5). By comparing these growth rates, we prove
for large £ the algebra .'Ff,’sl;,m(W) contains an operator whose concomitant is trivial and thus
commutes with 7. Thus growth of Fourier algebras is used as a bridge from bispectrality to
commutativity of integral and differential operators.

This paper is a continuation of our collaboration with F. Alberto Griinbaum [20], which
aimed at constructing a bridge between bispectrality and commuting integral and differen-
tial operators by controlling the sizes of Fourier algebras under Darboux transformation. This
strategy was announced in [20]. Among other things, the results in this paper fully justify the
statements in [20] which contained no proofs.

When bispectral functions J(x, y) are converted to wave functions a(x, y) for the KP
hierarchy via asymptotic expansions at oo, the elements of the right Fourier algebra %, (J)
correspond to the W -constraints for the wave function Cﬁ(x, v). The latter generalize the string
equation for the Airy wave function [28, 31, 43] which played a key role in quantum grav-
ity and intersection theory on moduli spaces of curves. Consequently, in algebraic geom-
etry the W-constraints of Gromov—Witten invariants and the total descendant potential of
a simple singularity were extensively studied by Okounkov and Pandharipande [32], Bakalov
and Milanov [7] and in many other works.

The W -constraints for wave functions of the Toda and multi-component KP hierarchies
have played an important role in many situations. In the theory of random matrices, Adler and
van Moerbeke [1-3] used Virasoro constraints to derive a system of partial differential equa-
tions for the distributions of the spectra of coupled random matrices. Bakalov, Horozov, and
Yakimov [6] used W -constraints to prove that all tau-functions in the quasifinite representa-
tions of the W14 oo-algebra (in the sense of Frenkel, Kac, Radul, and Wang [15]) with highest
weight vectors given by Bessel tau-functions are bispectral tau-functions. Our growth estimate
theorem for the right Fourier algebra %, (J) translates directly to a growth estimate theorem
for the algebra of W-constraints of a wave function. In this way Theorem B has potential
applications to the above topics in random matrices and representations of the W; 4 o-algebra.

More generally, Virasoro constraints are linked to the isomonodromic deformations
approach to random matrices from the works of Palmer [33], Harnad, Tracy, and Widom [22],
Its and Harnad [21], and Borodin and Deift [11]. Of particular interest is the relation to the
series of results in the literature on random matrices showing that the Fredholm determinants
of various kernels are solutions of Painlevé equation. The latter naturally appear in other prob-
lems, e.g. representations of U(oo), see Borodin and Olshanski [12, 13]. We expect that the
growth estimates from Theorem B on the algebra of W -constraints will also have applications
in these respects. The main idea here is to apply the full algebra of W -constraints vs concrete
Virasoro constraints.

We will use the following conventions for the notation in the paper. Differential operators
will always appear in the Gothic font, e.g., b = 02 — x% When needed, we will write Dy
in place of b to emphasize the action of the operator in the variable x. In this case b, will
represent the same operator, but acting in the variable y. We will denote by ©(C[x]) and
D(C(x)) the algebras of differential operators in x with polynomial and rational coefficients.
For a noncommutative algebra R and r, s € R, we set

ad,(s) = [r,s] =rs —sr.
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2. Bispectrality and double filtrations of Fourier algebras

In this section we collect background material on bispectral functions and Fourier alge-
bras associated to them. We introduce one of the key players in the paper — a double filtration
on each such algebra.

2.1. Bispectral meromorphic functions and associated Fourier algebras. We first
review the definition of a bispectral meromorphic function. For an open subset U of C, denote
by ©(U) the algebra of differential operators on U with meromorphic coefficients.

Definition 2.1. A nonconstant meromorphic function ¥ (x, y) defined on a connected
open subset U x V of C?Z is said to be bispectral if there exist differential operators b € D(U)
and b € ®(V) such that

Oy - Y(x,y) =gV¥(x,y) and by -¥(x,y)= f(X)¥(x,y)

for some nonconstant functions f(x) and g(y) meromorphic on U and V/, respectively.

There are three examples of bispectral meromorphic functions that will play a funda-
mental role in this paper: the exponential, Airy and Bessel functions. We will refer to them as
the elementary bispectral functions. Due to their central role, we will introduce a notation for
each that will be used throughout the paper. The notation and values of the elementary bispec-
tral functions is given in Table 1, where for v € C the expression K, (¢) denotes the Bessel
function of the second kind and Ai(¢) denotes Airy function of the first kind.

name function operator

bispectral exponential ~ Vexp(x, y) = e*” Oy

bispectral Airy Yailx, y) = Ai(x + y) baj =02 —x
bispectral Bessel VBe() (X, V) = XY Kv41(xy)  Dpew) = 5)26 — %

Table 1. The elementary bispectral functions.

The bispectral Bessel functions Yge(y)(x, y) are in particular a one parameter family
of functions indexed by v. For integer values of v the Bessel functions simplify to rational
functions multiplied by exponential functions. For example /g () (x, y) is proportional to e*”
and Ype(1)(x, y) is proportional to e*” (1 — (xy)™h.

Each of the elementary bispectral functions are, as the name suggests, bispectral and thus
are families of eigenfunctions in both variables x and y. For example the bispectral exponential
function satisfies

Ox - lﬁexp(xay) = yl,”exp(X,)’) and 0y - Wexp(x»)’) = xwexp(x’y)-
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The Bessel and Airy bispectral functions are eigenfunctions of the Bessel and Airy operators
Dpe(v) and Da; from the last column of Table 1. The associated differential equations are

(2.1 DBe(v).x * VBe(w) (X. ¥) = Y VBe(w) (X, ).
DBe(v).y * ¥Be(w) (X, ¥) = X Ype() (X, ¥).
(2.2) Daix - Vai(x,y) = y¥ai(x, y),

bAi,y : WAi(x’ J’) = XWAi(x’ y)

Bispectral meromorphic functions in general satisfy a wide collection of differential
equations and the associated operators form algebras.

Definition 2.2. Let ¥(x, y) be a bispectral meromorphic function defined on the con-
nected open subset U x V of C2. We define the left and right Fourier algebras of differential
operators for iy by

Fx() = {b € D(U) : there exists a differential operator b € D(V)
satisfying b - ¥ (x,y) = b - ¥ (x, y)}
and
Fy () = {b € D(V) : there exists a differential operator b € D(U)
satisfying b - ¥ (x,y) = b - ¥ (x, y)}.
The algebras Fx () and ¥y () come with distinguished subalgebras

Bx () = {b € Fx(¥) : there exists a meromorphic function g(y)

satisfying b - ¥ (x, y) = g(»)¥ (x. y)},
By (¥) = {b € F,(¥) : there exists a meromorphic function f(x)

satisfying b - ¥ (x, y) = f(x)¥ (x, y)}.

The algebras 8x () and B, () are called the algebras of left and right bispectral differential
operators for ¥ (x, y).

The function ¥ (x, y) is an eigenfunction of all operators in these two algebras. In a neigh-
borhood of a sufficiently nice point (xg, yo) of the domain of ¥ (x, y), the coefficients of the
operators in By () and By () will be analytic. Then by an appropriate change of variables,
we may assume that B (1) and 8y (1) both contain a nonconstant differential operator whose
leading coefficient is constant. Consequently, by [14, equation (1.20)], all functions f(x) and
g () that appear in the definition of B () and 8, () are polynomial. Furthermore, the alge-
bras Bx(¥) and By () are necessarily commutative, so every element in each algebra will
have constant leading coefficient. Throughout the rest of the paper, we adopt local coordinates
giving us constant leading coefficients.

Remark 2.3. The name Fourier algebras is inspired by the case where ¥ is the sim-
plest bispectral function Yexp(x, y) = e*”. In this case Fx (Vexp) = D(C[x]), the algebra of
differential operators with polynomial coefficients. Similarly, ¥y (¥exp) = D(C[y]) and

D¢ =0b-e¢" ford = Zajkxkajc. and b = Zajkyjaly‘.

The operator b is the Fourier transform of d.
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8 Casper and Yakimov, Integral operators, bispectrality and Fourier algebras

Proposition 2.4. Let ¥ (x, y) be a bispectral meromorphic function defined on U X V.
The algebras (V) and ¥y, () are anti-isomorphic via the map by, : ¥x () — F, () defined
by sending d € Fx () to b € Fy, (), where d - Y (x,y) = b - ¥ (x, ).

Proof. Suppose b € Fx () with b - (x,y) = g(y)¥(x, y) for some g(y) € F,(¥)
nonconstant. If there exists a nonzero b € ,, () satisfying b - ¢/ (x, y) = 0, then

ady ) (0) - Y (x.y) =0

for all k. However, for k equal to the order of b, the operator adg(y)(f)) will be equal to
a nonzero function A(y). This would imply A(y)¥ (x, y) = 0, and that ¥ (x, y) is therefore 0,
a contradiction. Thus if b € ¥, () satisfies b- ¥ (x, y) =0, then b = 0. Similarly, if a € Fx (V)
satisfies a - ¥ (x,y) = 0, thena = 0.

Using this, we see that for every a € (1) there exists a unique b € F5 () such that
a-y(x,y) =b-y¥(x,y). This shows that the map by, is well defined and bijective. A simple
argument shows that by, is an anti-isomorphism. This completes the proof. O

Definition 2.5. We call the map by, : Fx(¥) — ¥, (¥) from the previous proposition
the generalized Fourier map or the bispectral anti-isomorphism of .

Example 2.6. (1) By Remark 2.3, for the exponential bispectral function ¥eyp, the
Fourier algebras are the algebras of differential operators with polynomial coefficients

fpx(l/’exp) = O(C[x)), ‘(Fy(Wexp) =9O(ClyD

and the anti-isomorphism
by, : D(Clx]) = D(Cly])

is the Fourier transform given by 0x + y and x + dy,. The algebras of bispectral operators
Bx (Vexp) and By (Yexp) are the algebras of differential operators with constant coefficients
in x and y, respectively.

(2) The Bessel bispectral functions ¥ge(,,)(x, y) satisfy

X0y * YBe(n) (X, ¥) = Y0y - Uen) (X, ¥)

in addition to equations (2.1). The left and right Fourier algebras are given by

}Vx(l/fBe(v)) = (bBe(v),x’xax»x2> and ?'y(wBe(v)) = (bBe(v),y»yay’ yz)

forv € C \ Z. (In the case v € Z the Fourier algebras are bigger, but this will not a play a role
in the paper.) Here (by, ..., bi) denotes the algebra of differential operators with generators
Dy, ..., Dg. The generalized Fourier map by, ., : Fx(¥pe(v)) — Fx(¥Be(v)) is given by

Dpe(v),x M y2, X0x > VO, x? > DBe(v),y-

The algebras of bispectral operators By (¥pe(v)) and By (Vpe(y)) are the polynomial algebras
in the Bessel operators Dpe(y),x and Dpe(y), y, respectively.
(3) The Airy bispectral function ¥a;(x, y) satisfies

Ox * Yai(x,y) = 0y - Yai(x, y)
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in addition to the equations (2.2). The left and right Fourier algebras associated to it are the
algebras of differential operators with polynomial coefficients

Fx(Wai) = D(Clx]) and  Fy(Yai) = D(C[y)).
The generalized Fourier map by, : Fx(¥ai) = Fx(¥ai) is given by
Ox > 0y, X > Dajy.

It satisfies Daj x > y. The algebras of bispectral operators By (¥ai) and Bx (i) are the poly-
nomial algebras in the Airy operators Da; x and Da;,y, respectively.

2.2. Double filtrations of Fourier algebras. Using the generalized Fourier map of
a bispectral function ¥ (x, z), we define natural filtrations of the left and right Fourier alge-
bras Fx () and ¥y, () as follows.

Definition 2.7. We define the co-order of an operator b € ¥, (), denoted cord(d), to
be the order of by (b). Similarly, we define the co-order of b € ¥, (), again denoted cord(b),
to be the order of bd_jl(B). We define N x N-filtrations of the Fourier algebras ¥, () and
Fy(¥) by

?f’m(W) ={b € Fx(¥) : ord(d) < £ and cord(d) < m},

?ym’z(w) = {b € F(¢¥) : ord(b) < m and cord(b) < {}.

Remark 2.8. By Proposition 2.4, the generalized Fourier map by, restricts to an iso-
morphism F™ (y) — ?ym’e (¥). Moreover, under the above filtration

By(y) =span | J FE0(w) and By (y) = span | ] FO" ().
m=0

£=0

We pause now to consider the filtrations of the Fourier algebras associated to the bispec-
tral functions Yexp, ¥pe(v) and ¥ai, continuing Example 2.6.

Example 2.9. (1) For the bispectral exponential function ey, we have

FEM (Vo) = span{xk0f 10 < j < £ 0 <k =},
Ty o) = span{y 0y 10 <L 0=k < m).

(2) The filtrations of the Fourier algebras associated to the bispectral Bessel functions
VBe(v) for v € C \ Z are given by

}‘xZZ,Zm 2k b]

Be(v),x:()fjfe» 0<k <m}

(VBe(v)) = span{x
&) span{kaxax bée(v) .

T2 (Wpeqw)) = span{y® 0, , 10 < j <L 0 <k <m}

0<j <l 0<k<mj,

P span{yzf'yaybge(v),y 0<j<{, 0<k<m

for even indices. Similar formulas hold for odd indices, we leave the details to the reader.
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10 Casper and Yakimov, Integral operators, bispectrality and Fourier algebras

(3) For the bispectral Airy function v 4; the filtrations of the left and right Fourier algebras
are .
(Vi) = span{x“dy;

& span{xkaxbﬁi,x :0<j <l 0<k<m},

}vx2€,2m 0<j <l 0<k<m)

F2m 2 (Ya)) = span{y’ bk, , 0 <j <€, 0<k <m}
® span{y/9,dk; , 10 < j <€, 0<k <m)
for even indices. Similar formulas hold for odd indices.

All three facts are easily deduced from the facts for the left and right Fourier algebras and
generalized Fourier maps in Example 2.6. O

3. Self-adjoint bispectral Darboux transformations

This section contains background material on bispectral Darboux transformations and
the classification of bispectral functions. We introduce the second main player in the paper —
self-adjoint Darboux transformations and prove that they correspond bijectively to self-adjoint
bispectral functions.

3.1. Bispectral Darboux transformations and classification results.

Definition 3.1. Let ¥ (x, y) be a bispectral meromorphic function on U x V. A bispec-
tral Darboux transformation ¥ (x, y) of ¥ (x, y) is a function satisfying

1 1
— s u =~
q(y)p(x) q(y)p(x)
for some pairs of polynomials p(x), p(x) and ¢(y), g(y), and some differential operators
uyfﬁ/ € ?x (W)'
We call the pair (d,d2) the order of the bispectral Darboux transformation, where

dy = ord(u) and dp = cord(u) are the order and co-order of u (with the latter defined as
in Definition 2.7 above).

V(x,y) = Y(x,y) and Y(x,y) =7 v (x, )

It follows from the definition that

T w-y(x.y) = T0)OY (x. ).
p(x)p(x)
Therefore
~ 1 — 1 -
L et € &) and bw(”m“)“(”q(”

Similar statements hold when the roles of ¥ (x, y) and J(x, y) are interchanged.

Remark 3.2. 1If i/ (x, y) is a bispectral function on U x V, then f(x)g(y)v¥ (x,y) is
also a bispectral function on U x V for all meromorphic functions f(x) and g(y) on U and V.
Because of this, the choice of p(x) and g(y) in Definition 3.1 is merely a choice of normaliza-
tion. The next paragraph describes the standard normalization.
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Casper and Yakimov, Integral operators, bispectrality and Fourier algebras 11

The new bispectral function {; (x, y) can be represented in two dual ways as a transfor-
mation of ¥ (x, y) in the x- and y-variables:

~ 1 1
(3.2) Y(x,y) = ————u-Y(x,y) = ————by(u) - ¥(x,y).
4" p() p(a() "
The polynomials p(x) and ¢g(y) are uniquely determined from the normalization that
1 1
(3.3) the differential operators u and by, (1) are monic.
p(x) q(y)

Remark 3.3. In Theorem 3.6 we prove that if %(x, y) is a bispectral Darboux trans-
formation of ¥ (x, y) and u, 1, p(x), p(x),q(y), 'cf(y) are as in the definition of a bispectral
Darboux transformation, then necessarily P =L+ 7o € N (W) In fact, the definition of a bis-
pectral Darboux transformation can be replaced with the equivalent condition that there exist
differential operators 1 € Fx (), v € Fx(¥) and polynomials p(x), P(x),q(»).F(y) such
that

Vi(x,y) = mu “Y(x,y) and Y(x,y) = fmv'w(?ﬁy}

In particular, this latter definition is manifestly symmetric.

The following result of [4] establishes general bispectrality properties of the transforma-
tions in Definition 3.1.

Theorem 3.4 (Bakalov, Horozov, Yakimov [4, Theorem 4.2]). Let ¥ (x, y) be a bispec-
tral function on U X V and let J(x, v) be a bispectral Darboux transformation from ¥ (x, y)
with the notation in Definition 3.1. Then J(x, V) is also a bispectral function which satisfies
the spectral equations

1 -1 ~ .
(x)uu% Y (x,y) =qg) Y (x, ),
( yow (b wm~( ) Y (x,y) = p() POV (x. ).
Dually to (3.1), we have
(3.4) bwm~( ) o )bw(u)EBy(W), by (Pp(x)p(x)) = bwm~( ) o) by (1).

Remark 3.5. (1) It follows from (3.1) and (3.4) that

) o= by ( i

—1
N(y)q o (u)) € b3 (B, (1)),

q(y):=»b H) € by (Bx(V))

v (“ P00 p(x)
and

p()px) =p(x).  q)q(y) =q().
When p(x) € bv_jl (By(~1//)), q(y) € by (Bx(¥)), and u, 0 € Fx () are fixed, there is a freedom

in the construction of ¥ (x, y) in that the polynomials p(x) and ¢g(x) can be chosen to be arbi-
trary divisors of the polynomials p(x) and g(x). As noted in Remark 3.2, f(x)g(y)¥ (x,y) is
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12 Casper and Yakimov, Integral operators, bispectrality and Fourier algebras

also a bispectral function on U x V for all meromorphic functions f(x) and g(y) on U and V.
Among these, the above bispectral Darboux transformations from v (x, y) come from the ratio-
nal functions f(x), g(x) with denominators p(x), g(x) and numerators given by polynomials
that are divisors of p(x) and g (x).

(2) The normalization (3.3) simply means that p(x) and ¢(y) are chosen to be the leading
terms of 1 and by, (11). Such a normalization is always possible for the following reasons. Recall
from Section 2.1 that we work in local coordinates in which all operators in B8, (¥) and B, (V)
have scalar leading term. The ad-condition then implies that all operators in Fx () and %y ()
have polynomial leading terms.

Start with a bispectral Darboux transformation 1? (x, y) of ¥(x, ). Equations (3.1) and
(3.4) imply that p(x) p(x) and g(y)g(y) are scalar multiples of the leading terms of the differ-
ential operators mu and by, (1T1) = by, (11)by, (1). Since W and by, (1) have polynomial leading
terms, one can use a transformation of the type described in the first part of the remark to
change p(x) and ¢(y) so they equal the leading terms of 1t and by, ().

(3) In [4] is was assumed that p(x), p(x) € b, 1(:6‘ (¥)) and ¢(¥).G(y) € by (Bx(¥)).
The difference here is that we only assume that thelr products are in the spaces b_, 1(£y ¥))
and by (Bx(¥)). One passes from one setting to the other by the transformatlons in the first
part of the remark.

The next theorem shows that being a bispectral Darboux transformation is a symmetric
condition.

Theorem 3.6. Let ¥ (x, y) be a bispectral function and suppose that i; (x,y) is a bis-
pectral Darboux transformation of ¥ (x, y). Then V¥ (x, y) is also a bispectral Darboux trans-

formation of Y (x, y) and ﬁ(x)ﬁ’ﬁ, ﬁup(x) € F(¥) with

1
(p(X)u )Zq(y)bw(mq— and (p( ) up(x )) 0 )bw( w)q(y).

p(x) )

Proof. Letu, 1, p(x), p(x),q(y), and ¢(y) be as in the definition of bispectral Darboux
transformations for the bispectral Darboux transformation from v (x, y) to ¥ (x, y). Then

1
PO —— () Y (x,y) = PO)T m u-y(x,y)
= p(x)q(y) - ¥ (x, ).

Therefore by Theorem 3.4 we find

pX)p)a—— : V(x,y) = p(x)P)G)Y(x. y)

)
=q(y)bx/f(~)~( ) o )bw( u) -y,
so that .
P(x)u% Y(x,y) = Q(y)bw(ﬁ)mbw(u) Y

— 1 ~
= q(y)bw@% “Y(x, ).
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Casper and Yakimov, Integral operators, bispectrality and Fourier algebras 13

Thus p(x)u~ € fx(W) Moreover,
1

1 B 2
LR y)——p(x)q(y)u Yy
_ 2
= —b b
q( ) w(u)q(y)p( ) ) y() - ¥(x,y)
70 )bw( wWq(y) - ¥ (x,y)
o) that up(x) € ?x(W) Then since
1 ~
m(l’( )i P )) Y(x,y) =v(x.y)
and
(5527 ® ) oy 0 =T
p) T ) pg(y T T
we see that i is a bispectral Darboux transformation of J |

Definition 3.7. We define the rank of a bispectral function ¥ (x, y) to be the greatest
common divisor of the orders of the operators in the left bispectral algebra 8B ().

In the cases when classification results are available, one can show that the rank of a bis-
pectral function ¥ (x, y) also equals the greatest common divisor of the orders of the operators
in the right bispectral algebra 8, (), but there is currently no direct proof of this fact.

In [41] Wilson introduced the powerful idea that the classification of bispectral functions
should be performed on a per-rank basis in which case one sees a deep geometric picture of the
moduli spaces of such functions. Bispectral Darboux transformations preserve the rank and are
especially suited for these purposes.

Theorem 3.8 (Wilson [41]). The rank 1 bispectral functions are precisely the bispectral
Darboux transformations of the exponential function Yexp(x, y).

Wilson’s result as stated in [41] is a classification in the case that B, () is rank 1 and
maximally commutative in the sense that B (¥) is not contained in any larger commutative
subalgebra of the algebra of differential operators. However, in the rank 1 case the common
eigenspaces of B, (1) must be one-dimensional, so v is (up to normalization) equal to a wave
function of the KP hierarchy [31]. From this, one may show that B, () is necessarily maxi-
mally commutative, so the maximality assumption is not explicitly required. For higher rank, it
is not known whether maximality follows immediately, so this assumption will required below
when necessary.

Bispectral functions v for which the bispectral algebra 8 (y) contains an operator of
prime order p were classified by Duistermaat and Griinbaum [14] in the case p = 2 and by
Horozov [23] in the case p > 2. These results and the methods of [5, 24, 27] prompted the
following conjecture which was has been widely circulated since the mid 1990s.

Brought to you by | De Gruyter / TCS
Authenticated
Download Date | 10/4/19 3:58 PM



14 Casper and Yakimov, Integral operators, bispectrality and Fourier algebras

Conjecture 3.9. The maximally commutative rank 2 bispectral meromorphic algebras
are precisely the algebras By () corresponding to all bispectral Darboux transformations
¥ (x,y) of the Bessel functions ¥ge(,)(x, y) for v € C \ Z and the Airy function ¥a;i(x, y)
see Section 2.1.

Example 3.10. Continuing Examples 2.6 and 2.9, we describe more explicitly the func-
tions in Theorem 3.8 and Conjecture 3.9.

(1) The bispectral Darboux transformations of the exponential function V/ex, are precisely
the functions in the (infinite-dimensional) Wilson adelic Grassmannian Gr, [41]. They are the
functions of the form

W(xv y) = LU : 1/fexp(x» y)v
q(y)
where v € D(C(x)) is a monic differential operator with rational coefficients satisfying

oo = f(0x)

for a monic polynomial f(¢) and some v € D(C(x)). The differential operators v that appear
in this way are classified in terms of their kernels consisting of quasi-exponential functions (i.e.,
solutions of homogeneous linear ordinary differential equations with constant coefficients).
This classification is recalled in Section 6 below. The polynomial g(y) is uniquely determined
from v as the polynomial whose roots are the support of the quasi-exponential functions in the
kernel of v.

(2) The bispectral Darboux transformations of the Bessel functions ¥g(,) (forv € C \ Z)
are the functions of the form

~ 1
Y(x,y) = mf’ : lﬁBe(v)(X, »).

where v € ©(C(x)) is a monic differential operator with rational coefficients such that

o = f(bBe(v),x)

for a monic polynomial f(¢) and some v € ©(C(x)). All differential operators v satisfying
these properties, and as a result, the rank 2 bispectral functions in the Bessel class, form
an infinite-dimensional manifold. They are classified by an explicit description of the possi-
ble forms of their kernels in terms of Bessel functions and their derivatives, see Section 6
for details.

(3) The bispectral Darboux transformations of the Airy function ¥4; are the functions of
the form

T ) = ——v-Yai(x.y).
q(y)

where v € D(C(x)) is a monic differential operator with rational coefficients satisfying

oo = f(Daix)

for a monic polynomial f(¢) and some v € D(C(x)). The differential operators v satisfying
these properties and thus, the rank 2 bispectral functions in the Airy class, also form an infinite-
dimensional manifold. They are classified by an explicit description of the possible forms of
their kernels in terms of derivatives of the Airy functions, see Section 6.
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Casper and Yakimov, Integral operators, bispectrality and Fourier algebras 15

3.2. Self-adjoint bispectral Darboux transformations and self-adjoint bispectral
functions. We start with a series of definitions.

Definition 3.11. Letd = Z}l:o aj (x)aj . We define the formal adjoint of b to be

=Y (-1)/0]aj(x) = ZZ( 1)/( ) O ()9 k.
Jj=0

Jj=0k=0
An operator d is called formally symmetric if D* = b.

Definition 3.12. Let I' € C be a smooth path in C. Then we say d is adjointable with
respect to I if for every f(x), g(x) € C2°(I") the following integral identity holds:

/ (b f()g(x) dx = / FEOO* - g(x)) dx.
T r

If b is formally symmetric and adjointable, then we call b symmetric.

Definition 3.13. Let ¥ (x, y) be a bispectral meromorphic function. We call an opera-
tor b € Fx () formally bisymmetric if both d and by, (b) are formally symmetric. Fix smooth
paths 'y, I, € C. We call d bisymmetric with respect to (I'1, [2) if D is symmetric with
respect to I'y and by, (D) is symmetric with respect to I';.

Definition 3.14. Let v/ (x, y) be a bispectral meromorphic function. We call a bispectral
Darboux transformation ¥ (x, y) with the notation of Definition 3.1 a self-adjoint bispectral
Darboux transformation of ¥ (x, y) if

P(x) = p(x). 7)) = q(y) and W= (—DH%u*, by@) = (~1)%by(w)*.
for di = ord(u) and d, = cord(u).

Remark 3.15. In all of the situations that we consider in this paper the essential condi-
tions are

(3.5) T= (=DM, by @ = (—1)%by (W)*
and the conditions p(x) = p(x), ¢(y) = ¢g(y) follow from them after a normalization. More
precisely, if ¥ is any of the exponential Yexp, Bessel ¥ge(y) or the Airy 4; bispectral functions,
then the left and right bispectral algebras Bx (), B, () consist of differential operators with
constant leading terms. The normalization (3.3) implies that p(x) and g(y) equal the leading
terms of the differential operators u and by, (11). Therefore, by (3.4), p(x) and g(y) are scalar
multiples of the leading terms of the differential operators 1t and by, (11)

If (3.5) is satisfied, one can rescale p(x) and g(y) so that p(x) = p(x), ¢(y) = q(»).
This rescaling does not change the function J(x, V).

Theorem 3.4 implies that every self-adjoint bispectral Darboux transformation J(x, y)
of a bispectral function ¥ (x, y) with the above data satisfies

1

(3.6) m ﬁ W( .¥) _CI(J’) W(x »)s

(3.7) ( ) by (W)by ()™ ﬁ V(x,y) = p(x)*P(x, y).
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16 Casper and Yakimov, Integral operators, bispectrality and Fourier algebras

Moreover, (3.1) and (3.4) imply that the original wave function V¥ (x, z) satisfies

(3.8) Ty y) = g0)2Y . ).
p(X)
(3.9) by () by () - ¥ (x. y) = p() P (x. ).

()2

Definition 3.16. We call a bispectral meromorphic function ¥ (x, y) self-adjoint if it is
an eigenfunction of nonconstant, formally symmetric differential operators in x and y.

Remark 3.17. A rank 1 bispectral function v (x, y) is self-adjoint if and only if By (V)
and By, (¥) are preserved by taking formal adjoints *. This is because in the rank 1 case B (V)
and B, () are maximally commutative and therefore equal to the centralizer of any of its non-
constant elements. The centralizer of the centralizer of a formally symmetric differential opera-
tor is closed under taking formal adjoints, so the self-adjointness of ¥ follows immediately.

Equations (3.6)—(3.9) imply the following:

Proposition 3.18. Suppose that V(x, y) is a bispectral meromorphic function and that
¥ (x, y) is a self-adjoint bispectral Darboux transformation of ¥ (x, y). Then both ¥ (x, y) and
Y (x, y) are self-adjoint bispectral meromorphic functions.

Lemma 3.19. Ler ¥ (x, y) and J(x, V) be bispectral meromorphic functions and that
VY (x,y) is a bispectral Darboux transformation of ¥ (x, y). If Bx (V) (resp. By (Y¥)) is maxi-

mally commutative, then so too is By (J) (resp. By (V)).

Proof. To be explicit, suppose

~ 1 1 ~
, = N U ) d ’ =" )
Plr.y) = oo Yley) and Yl y) = Tsroes - Tx.y)
for some operators u, 0 € %y (¥) and polynomials p(x), p(x),q(y).q(y). Set
1 ~ 1 1
Porm s P p)

Centralizers of nonconstant differential operators are maximally commutative, so to prove that
By (W) is maximal, it suffices to show that 8 (lﬁ) is the centralizer of D. Suppose thatbisa dlf—
ferential operator which commutes with . Then the Darboux conjugate U =-— i Bb Pl tis

a differential operator which commutes with b. By the max1ma11ty assumptlon on By (V¥), we
know that 8, (1) is equal to the centralizer of b and thus U= )Bbp(x)u isin By (¢¥). Con-
sequently, the Darboux conjugate bb isin By (l/f) Since b € Bx (), it follows that b € B (1/f)

Note that b was an arbitrary element in the centralizer of D, so this completes the proof. m]

A maximally commutative bispectral algebra By () almost determines the function
¥(x,y), i.e., the family of joint eigenfunctions of a fixed bispectral algebra is almost unique.
However, different bispectral meromorphic functions do exist for the same bispectral algebra,
such as exp(—xy) and exp(xy) for the bispectral algebra C[dy]. Even so, it is not possible to
jump between different families via bispectral Darboux transformations, as the next proposi-
tion shows.
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Proposition 3.20. Suppose that ¥ and J are bispectral meromorphic functions with

B (V) and Bx () = Bx (V). If there exists w € F (V) satisfying ¥ (x. y)q(y) = u- ¥ (x, y)
for some q(y), thenu € By (¥) and J(x, V) is a constant multiple of ¥ (x, y).

Proof. Forall b € By (V) = By (%) we have that

- Y(x,y) = 0P (x, )g(0) = ¥(x,»)q(1)by () = uby (by(b)).

Hence
bu = ubll_,l(ba(b)) foralld € B, (V).

and in particular b; Lo ba preserves the order and leading coefficient of operators. Choose
a monic differential operator b € B, (1) with order £ taken to be positive but as small as
possible. Then we see that for some constant ¢ € C

bu = ubv_f1 o ba(b) =u(d +c).

In particular, ady (1) = cu. However, since D is in the bispectral algebra and u is in the Fourier
algebra, the ad-condition implies that for some integer m > 0 we have 0 = ady (1) = ¢™u.
Hence ¢ = 0 and d and u commute. Since By (1) is maximally commutative, this implies
u € By(Y)andu - Y(x,y) = g(y)¥(x,y) for some g(y) € C[y]. This implies that

~ v(x.»)gl)
Y(x,y)=———"
q(y)
and since both bispectral functions are normalized, the ratio % must be a constant. |

The next theorem shows that when we restrict our attention to a self-adjoint bispec-
tral meromorphic functions ¥ (x, y), the self-adjoint bispectral meromorphic functions aris-
ing from bispectral Darboux transformations of ¥ (x, y) are precisely those which arise from
self-adjoint bispectral Darboux transformations. This statement, which is converse to that in
Proposition 3.18, is harder and some easily verifiable conditions on the initial function ¥ (x, y)
are imposed.

Theorem 3.21. Let vy (x, y) and 17 (x, y) be a self-adjoint bispectral meromorphic func-
tions and suppose that ¥ (x, y) is a bispectral Darboux transformation of ¥ (x, y) with

1 1 ~
TN S 9T 5 d ) :~T' )
Pl V) and Ve SRRy )

for some operators u, 0 € F (V) and polynomials p(x), p(x),q(y),q(y) such that the bis-
pectral operators

V(x,y) =

1 1
N———u e Byx(Y) and by(M)———=—by () € B, (¥)
PP Vpop Y ’
are formally symmetric. Assume that Bx(Y) and By () are maximally commutative, that
p(x) = p(x) and q(y) = q(y), and that w*,0* € Fx (V). Then ¥ (x, y) is a self-adjoint bis-
pectral Darboux transformation of V¥ (x, y), and in fact the above bispectral Darboux trans-
formation is self-adjoint.
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18 Casper and Yakimov, Integral operators, bispectrality and Fourier algebras

Remark 3.22. (i) In the case that ¥ (x, y) = ¥ai(x, y), the assumptions follow trivially
since bvjl(SBy(W)) = C[x], by (Bx(¥)) = C[y], and by (w*) = by (w)* for all w € Fx(¥).
For ¥ (x, y) = ¥pe(v)(x, y) (with v ¢ Z) the conditions follow from the explicit characteriza-
tion of the bispectral Darboux transformations by Bakalov, Horozov, and Yakimov [5, Theo-
rem 2.7].

(ii) If ¥ (x, y) is self-adjoint and rank 2 with maximally commutative 8 (¥) and 8B, (),
then all the operators in 8By () and 8, () are formally symmetric.

(iii) The condition p(x) = p(x) and ¢(y) =¢(y) in the theorem is equivalent to the
seemingly weaker condition that

p(x) _ p1(x) and 19 _ a1(y)
P(x)  pi1(x) ) a1(y)

for some polynomials pq(x), p1(x) € Fx(¥) and q1(y),q1(y) € F, (). This is the condition
that is directly verified by [5, Theorem 2.7]. If the second condition holds, then by setting

b1 = by (q1(»)) and b1 = b ' (@1(»)), and by changing

p(x) = p1(x)p(x), ur pr(x)udy, q(y) = q1(y)q(y),
P0) > ()px), T pr()id, 7))~ 710)7(),

we get a new bispectral Darboux transformation from ¥ (x, y) to J(x, y) which satisfies the
condition (a) of the theorem.

Proof. Since u* and * belong to ¥ (), the expressions by, (u*) and by (") make
sense. Let r(y) and 7(y) denote the leading coefficients of these two expressions, respectively.
Define

1 ~ 1 1
) =" s V), d db=——uu=——).
o) i= ST .t B (i)
Note that ™ 7163 )p(x)u Y (x,y) = q(y)g(y)¥(x, y). Furthermore, by assumption
1 e —
WY (x,y) = q()q(y) - Y (x, ).
p(x)p(x)
This expression immediately implies
by (u*) ————by (@) - Y (x,y) = p(x)p(X)Y(x, ).

q()()

In particular, by (™) by (™) is in the bispectral algebra and therefore

q (y)i(y)

q(»)q(y) = r(y)r(y)
up to a scalar multiple. This multiple equals 1 by the normalization in (3.3). Thus we have

1 1
e p(x, ) = T ——— - Y (X, y) = Y(x. y)
r(y)p(x) r(y)r(y)  p(x)plx)
and thus ¢(x, y) is a bispectral Darboux transformation of ¥ (x, y).
We also calculate

*

- 1 1 ~
b Y(x.y) = = Y(x.y) =Y, g
V(x,y) p(x)q(y)u(up(x)p(x)u) V(x,y) =¥, »)g(y)q(y)
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and

D g(x,y) = v(x,y) = o(x, y)g(»)q(y).

1 — ( " 1 )
= = u|\un ———
p(x)q(y) P)P)
The functions E(x, v) and ¢(x, y) are both bispectral Darboux transformations of ¥ (x, y), so
the algebras Bx(y) and Bx(¢) are maximally commutative. Since ¥ (x, y) was self-adjoint
and maximally commutative, By () is closed under *. Thus d* is contained in both bispectral
algebras and by maximal commutativity we must have B (1) = By (¢). Furthermore, the two
bispectral Darboux transformations ¢(x, y) and ¥ (x, y) are related by the identity

1
o(x,y) = =—=—a-J(x,y) fora=—— e Fr (V).

1 T
gy)r(y) ZGN ( )
Then by the previous proposition a € 8By (J) and J(x, y) = c@(x, y) for some constant c. In
particular,

—u gy - = h(y)—u V.

p(x) p(x)
This means
;u-w(x y) = ;ﬁ/*%(x y)
p(x)q(y) ’ px)r(y) e
so that |
Gr(ye (x.y) = Emﬁ* “Y(x,y).
Consequently,
bx/f(~)~( ) o )bw(u*) Y (x,y) = p(xX)p(X)Y(x. p).
Since p(x) = p(x) this implies
1
b by (@*) = by (0*)———by (W"),
w(~)~( ) ) y(@) = by (u )r(y)7(y) y ()
which simplifies to
b =
y()=— () =by(")=—— ()

The left side is monic, so the right side must be also and hence ¢7(y) = r(y). Thus since
q(y) =q(y), we find

r(»?=q()*c
so that 7 (y) = £4/cq(y). Inserting this above yields

~

u=-=+

Rl

Since 1 and u have the same leading coefficient, this simply says that
T =(-)%u*
for d; = ord(u). By the same argument applied on the opposite side, we also obtain
by (@) = (=) %by (w)*

for dy = cord(n). |
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20 Casper and Yakimov, Integral operators, bispectrality and Fourier algebras

Corollary 3.23. The self-adjoint bispectral Darboux transformations of the exponen-
tial, Airy and Bessel functions are precisely those functions 1; (x, y) that may be obtained by
a bispectral Darboux transformations of Yexp, Wi 0r Ype(v) and are self-adjoint as bispectral
functions in the sense of Definition 3.16.

3.3. Interplay between adjoints and the generalized Fourier map. In this subsection
we discuss the interaction between the formal adjoint * and the generalized Fourier map by,.
Specifically, we consider in this subsection the value of by (b*), assuming that both b and d*
are in F (). It turns out that in the cases we consider, the value of by, (d*) is related to by, (0)*
by a certain automorphism of the Weyl algebra. As a consequence of this, the elements of
Fx,sym(¥) are invariant under this automorphism. This invariance property of Fx sym(¥) will
play an important role of our proof of Theorem A from the introduction.

For many self-adjoint bispectral meromorphic functions i the associated algebras ¥ (1)
and ¥y, () are closed under the formal adjoint operation *. This is true in particular of the ele-
mentary bispectral meromorphic functions: by Example 2.6, the Fourier algebras for ¥exp, ¥ai
and Yge(y) are all closed under the operation of taking formal adjoints. The same property turns
out to hold for the Fourier algebras of all functions obtained by self-adjoint bispectral Darboux
transformations from them.

Proposition 3.24. Let J be a self-adjoint bispectral Darboux transformation of . Sup-
pose that Fx (V) is closed under the formal adjoint operation *. Then Fx () is also closed
under the x-operation. The same statement holds with ¥ replaced with ¥.

Proof. Letu,u = u*, p(x) = p(x) and ¢(x) = ¢g(x) be as in the definition of a self-
adjoint bispectral Darboux transformation with

V(x,y) = (X, y).

1
PX)q(y)

ﬁuu*ﬁ € ?x,sym(@/) with
TP (x,y) =g (x, ).

Next note that for any differential operator g with meromorphic coefficients,

Also define’a =

(3.10) 4T € Fx(¥) = q € Fx()).
This follows from the identity
G-V (x, 1)) = qq- Y (x,y) = bz @DV (x, ),
which implies that
¢V (x, ) =q(») byp[ad) - ¥(x, ).
For any D € ¥4 (1), one easily checks that
1

bi=u ——d——u e F (V).
P p " <Y
In fact, by, (D) = q(y)b$(3)q(y). Since % (v) is closed under *, it follows that
1 -, 1
M =u*—>o* ue Fr(y).
p(x)  p(x) ¥
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Consequently,
a0* Y (x,y) = 40 )bw(b ) gV (x. ),

so that in particular Ad* € N (w) for all D € N (W) In the remainder of the proof we show
that this implies that d* € F (1//)
Let £ be the co-order of d. Then adJ"1 (b) is sent under b to

(=D adlt, (by (8)) = 0.

Since the generalized Fourier map is an anti-isomorphism, this implies that ad§+1(3) = 0.
Using the fact that @ is formally symmetric, we obtain that

{+1
o1 me - Nk [CE T s ke
0 =ads (b)—E(l) " a p¥a”.
k=0

This identity and the fact that @0*, @ € Fx(¥) give that d*at! € F(¥). By repeatedly
applying (3.10), we obtain that * € Fy (¥). This proves that F (w) is closed under *. In
a similar way, one proves that %, (W) is closed under . O

Assuming that both ¥ (1) and () are closed under the *-operation, we can define
automorphisms ty, x and ty,., of Fx () and Fy () by setting

(3.11) Ly (D) = by (by (D*)*)  and 1y (b) = by (by,' (D*)).

These automorphisms encode the interaction between the generalized Fourier map by, and the
formal adjoint. Clearly, 1y x and ty,, restrict to the identity on Fx sym(¥) and Fy, sym(¥).

In the case ¥ = Yexp OF ¥ = Ype(y) the automorphisms iy, x and iy, are exactly
obtained by restricting the automorphism of the algebra of differential operators with rational
coefficients induced by the affine transformation x + —x and y + —y. In the case ¥ = /a;
the automorphisms are just the identity. Moreover, as a consequence of the previous proposi-
tion, for any self-adjoint bispectral Darboux transformation J of ¥ = Yexp, Yai O Ype(y) the
involutive automorphisms ¢ » and ¢y, are well defined. The next proposition shows that (3 x
and (7 ), behave identically to ty, x and ty .

Proposition 3.25. Let  be a self-adjoint bispectral meromorphic function and let J
be a self-adjoint bispectral Darboux transformation of \. Suppose that ¥ (V) and ¥, () are
closed under the formal adjoint operation . Assume moreover that there are involutive auto-
morphisms ox and oy of the algebras of differential operators with meromorphic coefficients
in x and Yy, respectively, restricting to Ly, x and Ly, y. Then ox and oy also restrict to Ly x
and 1y y, rgpectively. In particular, the elements of ?x,sym(a) are fixed by oy and similarly

Jor Fy sym(¥r).

Proof of Proposition 3.25. Let u,u = u*, p(x) = p(x), and ¢(x) = ¢(x) be as in the
definition of a self-adjoint bispectral Darboux transformation with

~ 1
V(x,y) = mu “Y(x, p).

For sake of brevity set 1 = ﬁu. First note that if p(x) is constant, then 17 (x,y) is a con-
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22 Casper and Yakimov, Integral operators, bispectrality and Fourier algebras

stant multiple of 1//(x y) and the proposition is trivial. Therefore we assume otherwise. Sup-
pose that b e F(¥). Then n*dn € Fy(¥) with bw(n*bn) =q(n)by (0)¢(y). In particular,
ifd e Fx Sym(lﬁ) then n*bu € Fx,sym(¥). Since 1 x acts as the 1dent1ty on Fx sym(¥), for all
D € Fx sym(¥) we have

n*on = Lyx (@*dn) = oy (1*)0x (D)0x ().
Applying this to the case when D = 1, we see that as pseudo-differential operators
ox () n* = o (m)n~!

Since ¥ (x, y) is self-adjoint and 17 (x, y) is a self-adjoint bispectral Darboux transformation

of ¥(x,y), we know that p(x)2 € Fy qym(¥) N Frym(¥). Letting d = p(x)? € Fx sym(V),
we calculate

ox (@ p(x)* = p(x)’ox(@u!

Since p(x) is nonconstant, this implies that o (m)n~! = g(x) for some rational function g(x).
Thus for all d € N gym(l/f) we see

g(x)dg(x)! = 0x (D).

Since 0 was assumed to be an involution, this implies that g(x)? is in the center if Fxsym(¥),
and must therefore be constant. Hence g(x) is constant, i.e., g(x) = ¢ for some constant ¢ € C.
In particular, ox(1n1) = cn and since oy is an involution, ¢2 = 1 so that ¢ = 1. This also
implies that o (n*) = cu.

Suppose that be Fx (W) From the proof of the previous proposition, we know that

by (@*dn) = ¢(»)bg(®)q(y).

From this, we see
by (17 x(0) = by (0*)*

1 ~, 1
_ b *5*n)*
q(y) vl n) y)

1
= by oty (™D
T o “)(>
=0 )bw(n ox (D)) —— ( ) = by (0x(D)).
It follows that (7 (3) = 0y (3) forall D € Fx (). A similar proof holds for %, (). m]

The following corollary follows immediately.

Corollary 3.26. If y(x, y) is a self-adjoint bispectral Darboux transformation of Yexp
or YUpe(v), then the elements of Fx syu(¥) and Fy sy (¥) are invariant under the affine trans-
Sformations x — —x and y — —Yy, respectively.

3.4. Formalization of commutativity of integral and differential operators. In the
final part of this section we formalize commutativity of integral and differential operators.
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Let I be a smooth curve in C and let D(I") be the space of differential operators on
I' with smooth coefficients. Let C°°(I") denote the space of smooth functions on I' and let
C2°(T") be the subspace of C°°(I") consisting of functions with compact support. Consider
an integral operator 7 : f(x) — [ K(x,y)f(y)dy with kernel K(x, y) smooth on T' x I’
and satisfying the property that the functions [ |K(x,y)|dx and [, |K(x,y)|dy both lie
in L°°(T). Then for any f(x) € C2°(T) the integral [ K(x, y) f(y) dy converges uniformly
to a smooth function 7'( f(x)) € C°°(T"). Furthermore, an operator d € D(I") restricts to an
endomorphism of C*°(I") and C2°(I"). Thus for any f(x) € CZ°(I"), the expressions 7'(d - f)
and b - (T (f)) are both elements of C°°(T").

We say that the integral operator T and the differential operators d commute it

T(d-f)=0b-(T(f)) forall f € CP(T).

4. Darboux transformations and growth of Fourier algebras

In this section we carry out two key steps of our strategy for going from bispectral mero-
morphic functions to integral operators possessing a commuting differential operator.

Firstly, we prove a theorem that gives a lower bound of the growth of the double filtration
of the Fourier algebra ¥ (J) of a bispectral Darboux transformation J of Y. Modulo technical
details we show that

|dim(F5™ (V) — dim(FL™ ()| < const
for a constant that is independent on £ and m. We also prove that a similar inequality holds for
37)5 ™ replaced with ?)fs'?m

Secondly, we prove that if the dimension of the space foe o (J) satisfies a natural lower

bound, then it contains a bisymmetric operator with respect to a pair of contours.

4.1. Control of the growth of Fourier algebras under Darboux transformations.

Theorem 4.1. Suppose that ¥ (x,y) is a bispectral meromorphic function and that
¥ (x,y) is a self-adjoint bispectral Darboux transformation of ¥ (x, y) of order (dy, d»). Then
the following is true for all £ > dp and m > d:

dim(F7" (1)) = dim(F77 724 (1)) + dim(F202ET () + 1,
dim(F¢30,(V) = dim(F 522 () + dim(F 52T ) + 1.

X ,sym X,sym X ,sym

Proof. By the definition of a self-adjoint bispectral Darboux transformation, there exists

a differential operator u € ¥ () and polynomials p(x) € C[x] and g(y) € C[y] such that
~ 1
V= uy,
p()q(y)

and such that for w = by (1),

£ 1
bx/f(P(X)z) =w Wm

and

1
by (q(»)?) = u*p(x)zu
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24 Casper and Yakimov, Integral operators, bispectrality and Fourier algebras

Let d; be the order of 1 and let d5 be the order of w. If b € %f’m (¥), then we have

P T y) = 2 by, y)
q(ly)
- mwbw(b) PP (x, y)
_ ﬁwbw(b) : p(x)zﬁl/f(x,)’)
_ ﬁmbw(b)m*ﬁm : ﬁw(x,y)
_ ﬁmbw(b)m*$ P (x, ).

This shows that p(x)dp(x) € ?f’m+2d2 () with

1 1
b D = ——wby (D) w* —.
7(p(X)dp(x)) " y(D)w 70)

In particular, we have an inclusion
PFLT (W) p(x) € FEMHE),
Similarly, we can show that if b € 37ym’£ (), then ¢(y)bgq(y) € 37ym’e () with
b= (g()bq(y)) = ——uby By
v px) Y p(x)

Thus we also have an inclusion

pO)FE () p(x) € FmEr2di (),

Therefore we have two inclusions
px)FER2Am () p(x) € FL2dm 2 ()
and
b7 (g T2 W)q(y) € F{TAmTREa),
Furthermore,

PEOFL 2N W) p(x) N 07 G FFETH W) =0,

because the nonzero elements in p(x)?,f +2dym

order at least 2d>. Thus we can write

C & p)F (W) px) @ bT (g FFETH W)q () € T2 TRE ),

(¥) p(x) are mapped under b g o elements of

which in particular gives us the dimension estimate
dim(F, 22 () = dim (520 () + dim(FPETH () + 1.

The above inclusion also sends formally symmetric operators to formally symmetric operators,
and therefore

C @ p)F " W) () @ b3 (TG g () € T 22 ),
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so that
dim(F S22 () 2 dim(F L () + dim(FRE) + 1
This completes the proof of the theorem. ]

Corollary 4.2. Let Y (x,y) be a bispectral meromorphic function and let 17 (x,y) be
a self-adjoint bispectral Darboux transformation of W (x, y) of order (d1, d2). Assume that for
some r > 0 there exist constants a1, a1, do1, doo Such that for all £,m > 0 we have

4.1 dim(FTET™ (W) = ayibm + arol + agym + ago.

Then the growth of the Fourier algebra ?x(@/) is controlled by the inequality

4.2) dim(F 5™ (W) > ayilm + (2ar0 — ain)l + aprm + ago — G,
where
_ 2d 2d, — 1 2d 2d 2d, — 1
o[ TP e T e ([ T[] e
r r r r r
The statement also holds if we replace ¥, Lrm s ith &‘;ﬁy;’” in (4.1) and (4.2).

Remark 4.3. The precise form of ¢ in the above inequalities plays an especially impor-
tant role in practical implementations of the search for differential operators commuting with
integral operators, as we shall see below. This is because it provides an explicit bound for orders
and co-orders of the operators which we must search through to find an operator commuting
with our integral operator, and restricting our search to a finite-dimensional vector space.

Remark 4.4. We note that for all the cases of bispectral meromorphic functions ¥
which we have computed, the values of a1, @10, and ag; are the same for suitably chosen r.
Simply put, for all rank 1 or rank 2 bispectral functions v (x, y), along with all other cases we
have considered, when {; is a self-adjoint bispectral Darboux transformation of ¥, then

|dim(F7 5™ (9) — dim(FTE™ (Y)] < T

for ¢ defined as in Corollary 4.2. A similar statement holds for %, trm replaced with &‘;‘;yﬁnm

Proof of Corollary 4.2. Plugging in the lower bound into the dimension estimate from
the previous theorem, we see

dim(F“"" (¥)) = dim(F{O 22 (Y) + dim(F] 2247

re,r(m—|2%2 ) =124 ) 1 L 2dy—1))

> dim(F, W) + dim(F,

2d 2d
> allﬁ(m — \‘TZJ) +a10€ “+ ao1 (m — \‘TZJ) “+ apo
2d 2d, — 1 2d
ean(e= |5 )25 (e 5 )
r r r
2d, — 1
+ ao1 p + apo + 1

> aydm + 2ayo —ar)l + apym + ago —c. o

()
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In the cases considered in this paper, we will find

F2E2m () = tm + £ 4+ m + ago,

X,sym

so that
2.2 _
FiomW) =3+ aoo.

In this case ¢ = dydy — ago, so that if J is a self-adjoint bispectral Darboux transformation of
Y of order (1, 1), then
dim(F 22, (%)) = 2(1 + aoo).

This means that as long as ago > 0, any self-adjoint bispectral Darboux transformation J of
order (1, 1) will necessarily have a four-dimensional space of formally bisymmetric bispectral
differential operators. This will be shown by Proposition 4.7 below to in turn guarantee the
existence of a differential operator of order two commuting with an integral operator whose
kernel is defined using 17

4.2. Existence of bisymmetric operators. We next use the growth rate estimates
established above to prove that # (1) must contain bisymmetric operators.

Lemma 4.5. A differential operator d € D(C(x)) is formally symmetric if and only if
it has the form

(4.3) b= 0/a;(x)0]
j=0
for some functions ap(x), ... ,a;(x) € D(C(x)).

Proof. Clearly every differential operator of the form (4.3) is formally symmetric. In
the opposite direction, if b is formally symmetric, then necessarily D must have even order 2n.
If n = 0, then the statement of the lemma is true immediately. As an inductive assumption, sup-
pose that the statement of the lemma is true for formally symmetric operators of order < 2m.
Let D be an operator of order 2n for n = m + 1, and let a, (x) € C(x) be the leading coeffi-
cient of d. Then d — 0%a, (x)0% is a formally symmetric operator of order < 2m. Therefore by
the inductive assumption

{
b—dan(x)0} = Y 0)a;(x)d]
j=0

for some functions ag(x), ..., a,(x) € C(x). The lemma now follows by induction. O

Lemma 4.6. Suppose that b € D(C(x)) is formally symmetric with

n
b= 08/a;(x)0].
Jj=0
and let T be a smooth path in C with endpoints po, p1. Assume moreover that the poles of
aj(x) are not on I'. Ifaj(.k)(p,-) =0forall0 <k < j and for all i with p; # oo, then D is
symmetric with respect to T.
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Proof. By linearity, it suffices to show that if a®(p;) =0 for all 0 <k < n then
b = 0%a(x)0% is symmetric with respect to I'. For f, g € C2°(I), integration by parts gives

/ (@) f() P g(x) dx = (~1)" / F(0a(x)g™ (x) dx
r r
n—1

+ > (=1 () f) gD () o
j=0

— -1y / F(0)a(0)g® (x) dx + 0.
T
Replacing f(x) with £ (x) yields

/F @) f D ()P g(x) dx = (~1)" /F FO @)a(x)g™ (x) dx.

Swapping f and g in the last identity leads to

(—l)n/Ff(")(X)a(x)g(”)(x) dx =/Ff(x)(a(x)g(")(x))(”) dx.

Combining the two identities, we obtain
[ (b F()g(x) dx = / (@(0) £ ()P g (x) dx
T r
- /F F)@()g™ ()™ dx
= [ 1@ g ax.

This shows that b is symmetric with respect to I", completing the proof. |

Proposition 4.7. Suppose that ¥ (x, y) is a bispectral meromorphic function. Let T'1, '
be two smooth curves in C with the endpoints of U; equal to pjo and p;1 (one of which is
allowed to be o for each i ). Assume that the coefficients of the bispectral operators of ¥ (x, y)
are holomorphic in a neighborhood of I'y and T'». Assume moreover that for each i = 0, 1
either one of the following two conditions holds:

(i) pio = —pi1 and every operator of Fx sm (V) and Fy s (V) is invariant under the trans-
formations x — —x and y +— —Yy, respectively, or
(ii) one of the points p;o or pi1 is 0.

If for some values of £, m we have

1 1
dim(F242m (y)) > SUE+ D+ omm +1) +1,

then Fx(¥) must contain an operator of positive order which is bisymmetric with respect
to (I'y, ).

Proof.  Without loss of generality, assume that p;o is a finite point of I';. Suppose

b € F2L2™(Y) with by (d) = b. By Lemma 4.5,

4 m
b= 0faj(x)3} and b= Y 0/b;(»)?]
Jj=0 Jj=0
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for some functions a; (x), b; (y) which are hollomorphic in lneighborhoods of pjo, fori =1,2,
respectively. The linear map ff‘”,f’;?m(w) — C 2D g 2+ defined by

D (a]('r)(plo)05r<j§€,b]ES)(p20)0§s<k§m)

has a kernel of dimension at least

N (l+1) m@m+1)
dim(F (1)) — - :
2 2
Moreover, if condition (i) or condition (ii) is satisfied, then the elements in the kernel are
bisymmetric with respect to (I'1, ['2) by Lemma 4.6. m)

5. Differential operators commuting with integral operators

In this section, we prove the main theorems in the paper that self-adjoint bispectral mero-
morphic functions on ranks 1 and 2 give rise to integral operators possessing a commuting
differential operator. The kernel of the integral operator corresponding to such a bispectral
function J(x, y) is given by

5.1) Rixoy) = [F T T2 dz

for an appropriate smooth curve I’y € C. The commuting differential operator will come from
\(Fx,sym(a). In order for the value of K (x,y) to exist and to define a kernel for an inte-
gral operator with the desired domain, we have to make certain assumptions about 1’; (x, ).
We specifically assume that J(x, y) is holomorphic in a neighborhood of I'; x I'; and for
all j,k,m,n >0,

52) [ 1xmyagdl - Fexpldx € L),
1

/F ™ y"a5ok - (. y) dy € LTy,
2

Note that the inclusion of the x™ y” multiplier is vacuous unless I'y or I'; has an endpoint at
infinity, in which case the condition imposes a lower bound on the rate of decay of the partial
derivatives of J(x, ¥). Under the above assumptions, the integral formula for K (x, y) exists
and satisfies the assumptions required for differentiation under the integral for operators of
arbitrary order. Therefore K (x, y) is holomorphic in a neighborhood of I'y x I'y and

ek - Koy = [ @1 T 200 - 702 dz.
2
Furthermore, we have the norm estimate

Ix™y"9J9k - K(x,)l1,r, <

[ ol Ty H

/ |a,’§-$<x,y)|dy“ ,

00,I'y 00,I'

where the L!-norm on the left is taken with respect to either x or y. In particular, (5.2) also
holds with ¥ (x, y) replaced with K(x, y) and I'» replaced with I'j, and so differentiation
under the integral may also be applied to the integral operator defined with kernel K (x, y).
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5.1. Relationship to bisymmetric operators. The next theorem establishes that every
bisymmetric differential operator in the Fourier algebra of a bispectral function v (x, y) auto-
matically commutes with the integral operator with kernel (5.1).

Theorem 5.1. Suppose that J(x, y) is a bispectral meromorphic function and that
I'1, Ty € C are two smooth curves such that J is holomorphic in a neighborhood of 'y x '
and satisfies (5.2). If b € fo,sym(J) is a bisymmetric differential operator with respect to
(I'1, I'z) whose coefficients are holomorphic in a neighborhood of T'1, then it commutes with
the integral operator

T:f(x)l—)/F E(x,y)f(y)dy with kernel E(x,y)z/r J(x,z)fﬂ/(y,z)dz.

Proof. Denote b = b;/; (D). Differentiation under the integral along with the fact that b
is symmetric with respect to I'; implies

by K(x.y) = /F (by - T (x.2)T (7. 2) dz
- fr (b; - T (. 2)T (v 2) dz
- /F T )b - (v, 2)) dz

- /F T D)0y - F(r.2)) dz = by - K(x. ).

Moreover, for any f € C°(C), Fubini’s theorem, differentiation under the integral and the
fact that D is symmetric with respect to I'; imply

5. T(f) = /F (b - K(x.y)) f() dy
- /F (by - R(x. ) f(y) dy
_ /F R y)((dy - f() dy = T(d- ).

It follows that D and T commute. O

5.2. The rank 1 case.

Lemma 5.2. The exponential bispectral function Yexp(x,y) = e*7 satisfies

{
FEEI (Yrexp) = { > 0ja;(x*)0] : dega;(x*) < 2m }
j=0
In particular,
dim F2527" (Yexp) = m + £+ m + 1.
Proof. From Example 2.6 (1) we have Fx (Yexp) = D(C[x]) and 75, (Vexp) = D(Cly]),
so that both ¥ (Yexp) and Fy (Yexp) are closed under *. Recall that Fx (Vexp) is closed under
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the adjoint * so that the automorphism ¢ = iy, x defined by (3.11) is well defined. One may
readily check that the automorphism ¢ agrees with the endomorphism o of the Weyl algebra
induced by the affine transformation x — —x, i.e.,

{ L
o Zaj(x)a){ — Zaj(—x)(—l)ja){.
j=0 =0
Therefore the formally bisymmetric operators in Fx sym(Vexp) are exactly those fixed by o,
which are those operators of the form

12
b= 0laj(x*)d]
j=0
for some integer £ > 0 and some functions a;(x?) € C[x]. The corresponding element of
Fy,sym (Pexp) 18 '
by (0) = Y ¥7a; @)y’
j=0
From this the statement of the lemma follows immediately. m]

Theorem 5.3. Let J(x y) be a self-adjoint bispectral meromorphic function of rank 1,
and let Ty and T’y be two finite, smooth curves in C whose endpoints are +p1 and =+ p»,
respectively. Assume moreover that the coefficients of the operators in fx (W) and ¥ (w) are
holomorphic in a neighborhood of T'1 and T3, respectively, and that w(x, y) is holomorphic
in a neighborhood of T'1 x ' and satisfies (5.2). Then there exists a differential operator d of
positive order commuting with the integral operator

T:f(x)l—>/r K(x.y)f(y)dy with kernel E(x,y)zf V(x, )V (v, z)dy.

Moreover, the operator d may be taken to be in fngy‘,fliz 2didz (O (), for (d1. d>) the bidegree of
the self-adjoint bispectral Darboux transformation from Ve, (x, y) = e to W(x V).

Remark 5.4. The rank one bispectral functions 17 (x, y) are all of the form

o5y x.y)
p(xX)q(y)
for some polynomials p(x),q(y),h(x,y). The poles of the coefficients of operators in Fy (J)
and ¥y, (E) occur at the zeros of p(x) and ¢(y), respectively. In particular, as long as 'y avoids
the zeros of p(x) and I'; avoids the zeros of ¢()), and the endpoints of I'; and I'; satisfy the
desired symmetry, the assumptions of the above theorem will be satisfied.

Proof.  Suppose that 1; (x, y) is a self-adjoint bispectral meromorphic function of rank 1.
Then by Lemma 5.2 and Corollary 4.2, we have

dim F252 (W) > tm + £+ m + 2 — dyd>.

X,sym

Thus for £ = m, we have

dim F2™2M () > m? + 2m + 2 —didy > m> +m + 1

X,sym
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.. . . . . 2d1d>,2dd> /T

for m > dyd>. Proposition 4.7 combined with Corollary 3.26 implies that Fy sym (¥)
contains a differential operator bisymmetric with respect to (I'y, I'2). This differential operator
commutes with the integral operator 7" by Theorem 5.1. m|

5.3. The rank 2 Airy case. We next deal with the bispectral Darboux transformations
in the rank 2 Airy case. The relevant integral operator differs in this case from the integral
operators in the rank 1 case and in the rank 2 Bessel case (discussed below) in that the kernel is
not compactly supported. For the resultant kernel to satisfy (5.2), the support must be contained
in a certain subdomain of the complex plane. For this reason, for all € > 0 we consider the
domain

e = {reie eC:r>0,|0| <%—e}.
The Airy function is holomorphic on this domain and has the asymptotic expansion
2 & J
Yai(x + ) = e 3EDZ N e (x )7
j=1
for some real constants ¢; € R where (x + y)% is interpreted as the principal fourth root of
(x + y). Furthermore, any bispectral Darboux transformation of ¥a;(x + y) will be equal to
~ 1
Y(x,y) = —— —
p(xX)q(y)

for some rational functions p(x),¢(y) and some differential operator 1 with rational coeffi-
cients. Thus for any bispectral Darboux transformation of ¥a;(x 4+ y) we have the asymptotic
estimate

- Yai(x +y)

. 5 3 )
||a)]Ca§ “Yailx + )| = e_§(x+y)2 O((x| + |y|)%(]+k)+m)

for some integer m.

Note that z — %Z% sends I into the sector {re'® e C:r >0, |0 < T- %e}. There-
fore if 'y, ', € 3¢ are smooth, semi-infinite curves inside this domain with parametrizations
yi(t) : [0,00) — C, then the real part of —%()/1 () + yz(s))% must go to —oo as ¢ — 00 or
s — o00. Therefore the above asymptotic estimate shows that a(x, y) will satisfy (5.2) for any

pair of curves I'1, I', C Xe.

Lemma 5.5. The Airy bispectral function ¥ai(x, y) = Ai(x + y) satisfies
dim F252M (ya) = tm + € +m + 1.

X,sym

Proof. Recall from Example 2.6 (3) that
Fx(Wai) = D(Cx]) and Fy(¥ai) = D(C[y)).

In particular, ¥y (¥a;) is closed under *. From the description of by, in Example 2.6 (3) one
easily sees that by, and * commute. Therefore d € Fx(4i) is formally bisymmetric if and
only if d* = b.

Recall that the space 8By (/i) contains all polynomials in x as well as the Airy operator
Daix = 02 — x. Moreover, for b € 37)5 " (Ya;i) the Ad-condition ad’g’Atl () = 0 implies that
the leading coefficient of D must be a polynomial. For each j,k > 0 consider the formally
symmetric differential operator in ¥, (14;) defined by

kb]

) _ o) k
Qjkx = Dpj X" + X7 Dy 4o
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which in particular has order 2 and leading coefficient 2x*. The anti-isomorphism by, sends
Qjkx 10 Qjky, SO Qjkx € Fx sym(Vai)-

If b is self-adjoint, it must have even order with polynomial leading coefficient. Thus
by comparing leading coefficients, we see that F sym(¥ai) has basis {a;x : j.k > 0}. There-

fore comparing orders we see that ?ﬁfﬁnm (Vai) has basis {a;ix :0<j <[,0<k <mj}. In
particular, it has dimension (£ + 1)(m + 1). m]

Theorem 5.6. Let J(x, y) be a self-adjoint bispectral Darboux transformation of the
Airy bispectral function Wai(x, y) = Ai(x+ ), and let I'y and T'» be two semi-infinite, smooth
curves in ¢ for some € > 0 whose finite endpoints are p1 and py, respectively. Assume more-
over that %(x, v) is holomorphic in a neighborhood of 'y x 'y and satisfies (5.2) and that the
operators Fx (J) and ¥ (a) have holomorphic coefficients in a neighborhood of I'1 and T3,
respectively. Then there exists a differential operator d of positive order commuting with the
integral operator

T:j’(x)l—)/F kv(x,y)f(y)dy with kernel E(x,y)=/;‘ ;E(x,z)a(y,z)dy.

Moreover, the operator  may be taken to be in foz Sd;,f,l 2.2d1d> (W), for (d1, d») the bidegree the
self-adjoint bispectral Darboux transformation from Yai(x, y) to ¥ (x, y).

Remark 5.7. The bispectral Darboux transformations of the Airy bispectral function
will be holomorphic away from the roots of a polynomial p(x) and a polynomial g(y), which
are the polynomials entering in the definition of the concrete bispectral Darboux transformation
as in (3.2). Furthermore, the poles of the coefficients of the operators in Fy (J) and £, (%)
occur at the roots of these polynomials also. Therefore the assumptions of the theorem will be
automatically satisfied as long as I'y and I'; are both semi-infinite paths in ¥, which avoid the
zero sets of p(x) and g(y).

Proof. By Lemma 5.5 and Corollary 4.2, we have

dim 22" () > tm + €+ m + 2 — d1d»

X,sym

for some constant ¢. Thus for £ = m, we have

dim?zm’zm(a) >m?2+2m+2—did, >m*+m+1

X,sym

for m > dyd,. By Proposition 4.7, ?xz,fy‘nﬂiz’”‘dz () contains a differential operator which is
bisymmetric with respect to (I'y, I'2). It follows from Theorem 5.1 that this differential operator
commutes with the integral operator 7. O

5.4. The rank 2 Bessel case.

Lemma 5.8. Letv € R\ Z. The Bessel bispectral function

l»Z’Be(v)(x’ y) = «/ﬁKv-i-%(xy)

satisfies
dim?ze’zm(wBe(v)) =fm+L+m+1.

X,sym
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Proof. It follows from Example 2.6 (2) that the algebra #% (¥/pe(v)) is generated over
C by the Bessel operator Dpe(y)x = a§ ”(v+1) the operator s, = x0y and x2. In particu-
lar, all of the elements of F (V¥pe(y)) are 1nvar1ant under the change of coordinates x — —x.
Furthermore, for all j,k > 0,

k k k_ 2j k
Qg = xb]]ge(v)x(s;) and b =six™ (s})

are formally symmetric differential operators with
ord(a;r) = 2j + 2k, ord(b;x) =2k, cord(a;x) =2k, cord(b;x) =2j + 2k.

In particular, ord(a;;) > cord(a;x) and ord(b ;) < cord(bx) with equality if and only if ; is
zero. Thus the set

{ajp:j+k <lk=mpUlbjr:j+k=mk=<{l j#0}

is a linearly 1ndependent collection of (£ 4+ 1)(m + 1) elements of ¥ fyrznm (VBe())-
Ifb e % sym(wBe(v) ) is an arbitrary operator, then the Ad-condition

2m+1 _
bBe(v) x( ) O

implies that the leading coefficient of D must be a polynomial. Furthermore, since d is formally
symmetric it must have even order. Finally, since d must be invariant under the transforma-
tion x — —x, the leading coefficient of d must be a polynomial in x2. Therefore by compar-
ing leading coefficients, we see that d must lie in the span of the a;; and b;;. Thus the set
{ajk. bk : j.k > 0} forms a basis for Fx sym(¥ge(v)) and by noting the orders and co-orders,
we see that the linearly independent collection noted in the previous paragraph is actually
a basis for ?xz,fy’fnm (VBe(v))- O

Theorem 5.9. Let 17 (x,y) be a self-adjoint bispectral Darboux transformation of the
bispectral Bessel function Yrge(y), and let I'y and I'> be two finite, smooth curves in C whose
endpoints are = p1 and =+ p,, respectively. Assume moreover that the coefficients of the opera-
tors in Fy (17) and ¥, (17) are holomorphic in a neighborhood of 'y and ', respectively, and
that J(x, y) is holomorphic in a neighborhood of 'y x 'y and satisfies (5.2). Then there exists
a differential operator d of positive order commuting with the integral operator

T:f(x)HL K(x,y)f(y)dy with kernel E(x,y):/r V(x,2) U (y.2) dy.

Moreover, the operator d may be taken to be in ¥ xzfylnf 2.2d1d> (), for (d1, d») the bidegree the
self-adjoint bispectral Darboux transformation from Yrge(y) to ¥ (x, y).

Remark 5.10. As in the rank 1 and the Airy case, the assumptions of Theorem 5.9 will
be automatically satisfied as long as the end points of 'y and I'; satisfy the symmetry condition
stated above and the curves avoid the branching point 0 of the Bessel functions and the roots of
the polynomials p(x) and ¢(y), entering in the definition of the concrete bispectral Darboux
transformation as in (3.2).

Proof. By Lemma 5.8 and Corollary 4.2, we have
dim F2E2M (Y) = tm + L +m + 2 — dyd,

X,sym
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for some constant ¢. Thus for £ = m, we have

dim F2™2M () > m? + 2m + 2 —didy > m> +m + 1

X,sym
for m > dyd». Proposition 4.7 and Corollary 3.26 imply that ff‘}z fy'n‘fz’Zd' 2 () contains a dif-

ferential operator bisymmetric with respect to (I'y, I'z). This differential operator commutes
with the integral operator specified in the statement of the proposition by Theorem 5.1. O

6. Classification of self-adjoint bispectral meromorphic functions

In this section we describe a classification of the self-adjoint bispectral meromorphic
functions that appear in Theorems 5.3, 5.6, and 5.9. This classification is given in terms of
(infinite-dimensional) lagrangian versions of Wilson’s adelic Grassmannian [41]. We use the
construction of the latter in terms of bispectral Darboux transformations as in [5].

6.1. The adelic Grassmannian. By Theorem 3.8, the class of rank 1 bispectral mero-
morphic functions is precisely the class of bispectral Darboux transformations of the exponen-
tial function Vexp(x, y) = e*”, normalized as in Remark 3.2. A function fﬁ (x, y) in this class
has the form

h(X.y) xy

p(x)q(y)
for some polynomials p(x) € C[x], ¢g(y) € C[y] and a polynomial i(x, y) € C[x, y]. (Note
however that not all functions of the form (6.1) are bispectral Darboux transformations of

Vexp(x,y) = e*7; the polynomials p(x),q(y),h(x,y) need to satisfy some conditions.) We
can recover the bispectral transformation data from this form. Writing

m n ) )
h(x,y) =) Y aix'y,

(6.1) V(x,y) =

i=0;=0
we define the operators
m n m n
inj - g i g
VL = Z Zaijx 0y € Fxsym(Vexp) and vg = Z Zaijy]a; € Fy sym(Vexp)-
1=0/=0 i=0,=0

Then vp is the Fourier transform by, of vz, and by virtue of their definition,

%(x,y): nL'Wexp(x’y) and J(X’y): UR'wexp(x’y)~

1 1
p()q(y) p()q(y)
Let % be the span of all linear functionals of the form §%)(y —a) fork € N anda € C,
defined on smooth functions by

(f).8P 0 —) = P
Note that 4" comes with a natural left action of C[y], defined by
k

50y _a) = K sy —ay &
f0)-800 a)—jgo(k_j)!j!ww a)f @),
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For a given ¥/ (x, y), we define the set of linear functionals

CLWY) = {1 €€ (e h(x,y), x(y)) = 0}.

The vector space 67, (J) is finite-dimensional and naturally isomorphic to the kernel of the
differential operator vy,. Specifically, for any y € 67 (y) we have

0= (eh(x,y), x(»)) = (or - ™, x(»)) = v - (™, x()).

so that y > (e*”, y(y)) defines a linear map of %7, (%) into ker(vy,). With a reverse argument

one shows that this is an isomorphism.

Conjugation by ﬁn 1 sends By (J) into C[0y]. In fact,

vr, f(9x) 07" p(x)
p(x)
From the study of kernels of differential operators, we know that vy f (ax)nzl is a differential

operator if and only if f(dy) - ker(vz) C ker(vz ). Each element of the kernel of vy, is of the
form (e*”, y(y)) for some y € 67 (). Therefore

Jf@x) - (€™ x () = (7. () - x ()
Thus, if f(0x) preserves the kernel, then

(@ )y = Y (e.ca),

rECL ()

i)’x(@/) = { . f(0x) € C[0y], and vy, f(ax)nz1 is a differential operator}.

which in turn implies that
M= > ek
A€ ()
Thus,

B.(F) = { oL F@)ur p(x) : @) € Cul, £ - L@ < ﬁ(%}.

p(x)

For a finite-dimensional subspace C of €, define

Ve ={/f(y) € Cly]: (f(»), x(»)) =0, Vy € C}.

By a direct argument, one shows that f(y)-C C C if and only if f(y)Vc C V. This gives
the following characterization of 8 (V/):

By(Y) = { v f(@x)o; ' p(x) : f(Ox) € Clox]. TV, gy € V%JL(%}'

p(x)

It motivates the following definition of the rational Grassmannian Gr'" of Wilson [41].

Definition 6.1. We define the rational Grassmannian Gr'" to be the set of all sub-
spaces W of C(y) of the form
1
W=—"c
q(y)
for some C € ¢ and ¢(y) € C[y] with dim(C) = deg(q(y)). The subspace C C ¥ is called
the space of conditions of W.
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36 Casper and Yakimov, Integral operators, bispectrality and Fourier algebras

To each point W € Gr'™, we can associate an algebra

Aw ={f(y) e Cly]: fF(NOW < W}

The pair (W, Aw) is called a Schur pair. From the construction above, we have shown that
every bispectral meromorphic function J(x, y) of rank 1 corresponds to a point W in Gr'
whose associated algebra A is isomorphic to B (%).

Not every point of Gr'" corresponds to a bispectral meromorphic function. In order for
this to be true, the space of conditions C of W must be homogeneous.

Definition 6.2. For any point ¢ € C, let %, denote the subspace of 4 spanned by linear
functionals of the form §®) (x — ¢) for k > 0 an integer. Put another way, €, is the subspace
of linear functionals of ¢ supported at the point c. A linear functional y € % is called ho-
mogeneous if y € 6, for some value ¢ € C. A finite-dimensional subspace C of % is called
homogeneous if it is spanned by homogeneous elements. Equivalently, C is homogeneous if

c=pcns.
ceC

Wilson showed that bispectral meromorphic functions give rise to points W € Gr™" with
%1 () homogeneous. He also proved that the converse is true: a point

in Gr'™" with C homogeneous gives rise to a bispectral meromorphic function J(x, y) with

CLY) =

Definition 6.3. We define the adelic Grassmannian Gr*® to be the subset of Gr® con-
sisting of the subspaces W of C(y) of the form

1
W - _VCa
q(y)
where C C % is homogeneous and
62) ¢ = [0 =", n(e) =dim(C Ne).
ceC

The above correspondence between the points of Gr*d and the normalized (as in
Remark 3.2) bispectral Darboux transformations ¥ (x, y) of ¥exp(x, y) is a bijection.

6.2. A classification in rank 1 in terms of fixed points of involutions. In [41] Wilson
defined two involutions of the adelic Grassmannian Gr*®: the adjoint and sign involutions.
The adjoint involution on Gr*® sends a point W € Gr*® to the point aW € Gr*, given by

={rorechli g b rmsendz = omrang <)
-

see [41, Section 7] for details. Letting w(x y) and al//(x y) be the associated bispectral mero-
morphic functions, the bispectral algebras of w and aw are related by the formal adjoint

(6.3) Bx(ay) = {d* : b € Bx(V)}, By(ay) = {d*: b € By(¥)),
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see [41, Corollary 7.7]. If W(x, ) is given as a bispectral Darboux transformation of Yexp(x, y)
as

(6.4) V(x,y) = ﬁu Verp(X, ¥),
Ve (. 3) =T = ()w( ),
then a (x, y) is given by
(6.5) ay(x,y) = m * Yexp(X, ¥),
Vopl,3) = " s (),

see [5, Proposition 1.7 (i)].
The sign involution s of Gr*Y, defined in [41, Section 8], is given by
Wi sW = {f(=y): f(y) e W}.

On the level of bispectral functions, the sign involution is given by

(6.6) SY(x,y) 1= Y (—x,—).

The associated bispectral algebras are related by

(6.7) B (s9) = 0 Bx (V).
where o is the automorphism of the algebra of differential operators with rational coefficients

(6.8) o(x) =—x, 0(0x) = —0x

Theorem 6.4. Let J(x, V) be a bispectral meromorphic function of rank 1. Then the
following are equivalent:

(1) 17()6, y) is self-adjoint.
(2) The algebra By (%) is closed under the formal adjoint x and the transformation o.

(3) The plane W € Gr* corresponding to 17 (x, y) is invariant under the adjoint a and sign s
involutions of Gr*.

Proof. (1)= (3) Let %(x, y) be a self-adjoint bispectral Darboux transformation of
Vexp(x, y) with the notation of Definition 3.1 and the normalization of Remark 3.2. By (6.5),

5. _ _7
ay(x,y) = m V(x,y) q(y)ﬁ(x)u V(x,y) =v¥(x, ).

Since
Wepx = 0| F(Yrey)
(see Section 3.3), it follows from (6.6) that

~ 1
sY(x,y) = m(a(u))-w(x,y) 70 )p( )11 Y(x,y) = ¥(x,y).

Here the equalities g(—y) = ¢(y) and p(—x) = p(x) follow from the facts that ¢(y) and p(x)
are the leading coefficients of the differential operators u and by, (1) (see Remark 3.2) and
the facts that these operators are fixed under ty, . x and ty,,,y, respectively.
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(3) = (1) If the plane W € Gr*¢ corresponding to J(x, y) is invariant under the adjoint
and sign involutions of Gr*, then it follows from (6.2) that ¢(—y) = ¢(y). Applying Wilson’s
bispectral involution b of Gr* (cf. [41, Section 8]) to ¥, and using that bs = sb and ab = bsa
(cf. [41, Section 8]), gives that p(—x) = p(x). The rest of this implication is proved with a
reverse argument to the one used for the previous implication.

The equivalence (1) < (3) follows from (6.3) and (6.7). ]

6.3. The Lagrangian adelic Grassmannian. In this subsection we provide a geomet-
ric classification of the self-adjoint bispectralfunctions of rank 1. Specifically, we relate the
points of Gr*® fixed by the adjoint ¢ and sign s involutions to certain Lagrangian subspaces of
kernels of formally symmetric differential operators with constant coefficients.

Definition 6.5. Let D be a differential operator

m
b= dj(x)d].
j=0
The bilinear concomitant of b is the bilinear form € (-, -; p) defined on pairs of sufficiently
smooth functions f(x), g(x) by

m j—1
E(fgp) =Y 3 (DU (0)g(x)® o=
Jj=1k=0
m j—1 k k .
= Z Z Z (E)(_l)kf(J—l—k)(x)dj (x)(k—ﬁ)g(x)(€)|x=p‘
Jj=1k=0£{=0

Equivalently, for Cp(x) the m x m matrix whose n, £-th entry is given by

(6.9) Cb(x)n’e = Z (] _n) (_l)j—ndj(x)(j-i-l—n—()

j=n+t—1 t-1

the bilinear concomitant may be expressed as
€ (figip) = [/() f1() oo FOTP@IC @) ') ... g™V =

Note also that via integration by parts, we find that

6.10) / 0 F()g() — F)O* - g()]dx = €s(f. g5 x1) — (£, g5 x0).

0
In this way the bilinear concomitant may be seen to act as a means of comparison between
the formal adjoint * of a differential operator d and the adjoint of d as an unbounded linear
operator on a sufficiently nice space of functions on a path connecting x¢ to x7.

First we prove a general classification result for the factorizations of a formally sym-
metric differential operator d (i.e., D = d*) with analytic coefficients into a product u*u for
differential operators u with analytic coefficients.

Start with a (not necessarily formally symmetric) differential operator D with analytic
coefficients on an open subset of C. Choose a sufficiently small connected open subset @ of C
such that the kernels ker b and ker d* in the space of holomorphic functions on @ have dimen-
sion equal to the order of d. Note from (6.10) that if f(x) € ker(d) and g(x) € ker(d*), then
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for all pairs of points xg, x1 we have €y (f, g;:x1) = €5(f, g; X0). Thus the bilinear concomi-
tant Cp (-, -; p) restricts to a pairing

Cy(-,-) : ker(d) x ker(d*) — C

which is independent of the value of p, where m = ord d. Let f1(x),..., fm(x) be a basis for
the kernel of D and let g1(x), ..., gm(z) be a basis for the kernel of 5*. Consider the matrix

My := Wr[f1(x), ... fn()]T Cp(x) Wrlg1(x), . ... gm(x)]

where Wr[-] denotes the Wronskian matrix and Cp(x) is the matrix defined in (6.9). Then
M3 is a constant matrix representing the pairing with respect to the chosen bases. If My is
singular, then there exists a constant vector ¢ with ¢ My = 0. Note that since the Wronskian
is nonsingular, the matrix My is singular if and only if there exists an element f(x) € ker(d)
with €y ( f, g) = 0 for all g. Using the integral formula in (6.10), this would in fact imply
f;ol f(x)(d* - g(x))dx forall g(x). That is, f(x) would have to lie orthogonal to the closure
of the image of * on the Hilbert space of square integrable function of a suitably chosen path
from x¢ to x1. However, the image of D* will be dense, so this in turn implies that f(x) is zero.
Hence €y (-, -) is nonsingular and defines a non-degenerate pairing.
The bilinear concomitant of d* is related to that of d by

Co«(f.g:p) = —Co(g. f: D).

This in particular, when D is formally symmetric the bilinear concomitant defines a symplectic
form on ker d.

Now suppose that D = d*. Recall that factorizations of d correspond to choices of sub-
spaces of ker D. Specifically given a subspace V' C ker b, there exists a differential operator b
(unique up to multiplication by a function on the left) with kerb = V and b = ab for some
differential operator a. Since b = d*, this also implies that b = b*a™* so that a* also corre-
sponds to a certain subspace of ker d, which turns out to be exactly the orthogonal subspace
VL of V under the symplectic form defined by the bilinear concomitant. In particular, in the
special case of a factorization of the form b = b*b, the subspace V of b satisfies V+ =V,
i.e., is a Lagrangian subspace of ker(d). This is the content of the next theorem.

Theorem 6.6. Let d be a monic formally symmetric operator on an open subset © of C.
Choose O sufficiently small so that the kernel ker d in the space of holomorphic functions on O
has dimension equal to the order of d. Let a,b € O with a # b.

If b has a factorization d = ab into differential operators a, b with analytic coefficients
on O, then kerb and ker a* are complementary subspaces of Ker d relative to the symplectic
form €y. Furthermore, given a subspace V C ker D there exist monic differential operators
a, b satisfying kera* = V1> and kerb = V.

In particular, factorizations of the form d = b*b for monic differential operators b with
analytic coefficients on O are in bijective correspondence with Lagrangian subspaces of ker .

Proof. Suppose that D is an operator of order m and has a factorization of the form
D =ab. If ordb = r, then orda =m —r. Since b = d*, we have d* = b*a™. Therefore
kera® and kerb are subspaces of ker d of dimension m — r and r, respectively. Following
Wilson in [40], for all f, g we have that

Cy(f.g:p) =Ca(b- f.g:p) + Cp(f.a™ - gip).
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This implies that for all f € ker b and g € ker a® we must have €y ( 1, g: p) = 0. Hence
kera* C (kerb)=.

Since the dimension of (ker b)T must be m — r, this implies that kera* = (ker b)L. This
proves the first claim of the theorem.

To prove the second claim, we start with an arbitrary subspace V' C ker d. Then the usual
construction may be used to produce a differential operator b whose kernel is V. Then since the
kernel of b is contained in the kernel of b, there must exist a differential operator a with b = ab.
By the previous argument then ker a* = V. This proves the second claim of the theorem.

In the special case that d = b*b, we must have that ker b = (ker b)L. Thus in this case,
the kernel of b defines a Lagrangian subspace of ker b. Conversely, a lagrangian subspace
V' C ker(D) defines a factorization D = ab, where ker a* = ker b. This implies that a* = h(x)b
for some function 4 (x), and therefore that d = b*h(x)b. Setting ¢ = +/h(x)b, this gives us
a factorization b = c*¢ for a monic differential operator c. O

By the discussion in Section 6.1, the bispectral functions in the adelic Grassmannian are
obtained as follows. Start with a differential operator with constant coefficients

b=]]@x—c)™.

J

Its kernel in the space of entire functions consists of the quasipolynomials

kerd = {ij(x)ec./x cdegpj(x) <n; — 1}.
J
Let V be a subspace of ker d having a basis consisting of quasiexponential functions each of
which contains a single exponent ¢/ *; this is the adelic condition. Let #xu be the unique
monic differential operator such that keru = V and 1 € Fx(Yexp) (i.e., 1 has polynomial
coefficients). Let
g =[] —-c)™.

where n; equals the number of basis elements of V' whose exponent is e“/*. The bispectral
functions in the adelic Grassmannian are the functions of the form

V(x,y) =

1 X
—u . e y
q(y)p(x)
The corresponding W € Gr*® (recall Definition 6.3) is obtained as follows: it corresponds to
the unique space of conditions C C % such that
V = C(e),

keeping in mind that the delta function in C act in the variable y.
With this in mind, we define the Lagrangian adelic Grassmannian.

Definition 6.7. The Lagrangian adelic Grassmannian is the sub-Grassmannian Gr]ajlgr
of Gr* consisting of those points for which ©* = b and the corresponding subspaces V as
above are

(1) Lagrangian subspaces of ker d with respect to the symplectic form €y (-, -) and

(2) are preserved under the transformations x — —x.

Brought to you by | De Gruyter / TCS
Authenticated
Download Date | 10/4/19 3:58 PM



Casper and Yakimov, Integral operators, bispectrality and Fourier algebras 41

Combining Theorems 6.4 and 6.6, we obtain the following:

Theorem 6.8. The self-adjoint bispectral functions of rank 1 are in bijective correspon-
dence with the points of the Lagrangian adelic Grassmannian Grﬂgr.

This theorem gives an explicit algorithmic way to construct all self-adjoint bispectral
functions of rank 1.

6.4. Classification of the self-adjoint transformations in the Airy and Bessel cases.
In this subsection we describe extensions of the results in Sections 6.2—6.3 to the rank 2 Airy
and Bessel cases.

The Sato’s Grassmannian classifies the solutions of the KP hierarchy. We refer the reader
to [31] for details. The adelic Grassmannian is naturally embedded in it. In [5, Sections 2—4]
it was proved that the families of (normalized) bispectral Darboux transformations of the
Bessel functions ¥g(,) and Airy functions a; are canonically embedded in it, forming sub-
Grassmannians which we will denote by GridBe() apd Grad-Al respectively. (The Grassmanni-
ans Gr*&P¢(") and Gr*dA1 are disjoint from Gr*! which is also naturally embedded in the Sato’s
Grassmannian.)

In [5, Section 1.4] Wilson’s adjoint a and sign s involutions were extended to Sato’s
Grassmannian and it was shown that (6.3)—(6.7) are satisfied whenever 17 (x,y) and Yexp(x, y)
are replaced with any pair of wave functions of the KP hierarchy that satisfy the transfor-
mation property (6.4). Moreover, in [5, Sections 2 and 4] it was proved that a preserves
Grid-Be( and GridAl| while s preserves Gr¢P*(™) | Similarly to Theorem 6.9, using the fact
that ty,;, x = id and tyy,,,,.x = 0 (cf. Section 3.3 and equation (6.8)), one proves the follow-
ing:

Theorem 6.9. (a) Let %(x, y) be a (normalized) bispectral Darboux transformation
from the Airy bispectral function Yai(x, y). Then the following are equivalent:

(1) %(x, y) is self-adjoint.
(2) The algebra B (%) is closed under the formal adjoint .

(3) The plane W € Gr*™Al corresponding to J(x, V) is invariant under the adjoint involu-
tion a of Gr*dA,

(b) Let %(x, v) be a (normalized) bispectral Darboux transformation from the Bessel
bispectral function Ype)(x, y) for v € C \ Z. Then the following are equivalent:

(1) J(x, y) is self-adjoint.

(2) The algebra By (%) is closed under the formal adjoint * and the transformation o
from (6.8).

(3) The plane W € Grad-Be(v) corresponding to J(x, y) is invariant under the adjoint a and
sign s involutions of Gr*®Be(),

The (normalized) bispectral Darboux transformations from ¥a;(x, y) and Ve (x, y)
(for v € C \ Z) are constructed as follows, see [5, Sections 2 and 4] for details. Let D be a dif-
ferential operator which is a polynomial with constant coefficients in the differential operators
Daj,x (resp. Dpe(y),x) from Table 1. (As a consequence of this, b* = b.) Let @ be an open
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connected subset of C such that the dimension of the kernel of D in the space of holomorphic
functions on @ equals the order of b. The kernel of the operator b is given in terms of deriva-
tives of the Airy function (resp. derivatives of the Bessel functions and products of powers of x
and logarithmic functions) by [5, Proposition 4.9 and Lemma 2.1].

The planes in Gr*®A! and Gr*®B¢(") correspond to bispectral functions of the form

V(x.y) = w-y(x, ),

1
q(y)p(x)
where

V(x,y) = Yailx,y) tesp. ¥(x,y) = ¥pew)(X, ),

ker u is a subspace of b satisfying certain adelic type conditions [5, Definition 2.5 and Propo-
sition 4.9], and ¢(y), p(x) are appropriate normalization polynomials.

We define the Airy Lagrangian adelic Grassmannian Grﬁﬁi to be the sub-Grassmannian

of Gr*®Al consisting of those points for which keru is a Lagrangian subspace of ker d with
respect to the symplectic form €y (-,-). Similarly, we define the Bessel Lagrangian adelic

Grassmannian Grii’;e(v) to be the sub-Grassmannian of Gr*d-Be() consisting of those points

for which ker ut is a Lagrangian subspace of ker d with respect to the symplectic form € (-, -).
and is preserved under the transformations x — —x.
From Theorems 6.6 and 6.9, we get:

Theorem 6.10. The self-adjoint bispectral Darboux transformations from the Airy
bispectral function Ya;i(x, y) (resp. the Bessel bispectral functions Yge(y)(x, y) forv € C \ Z)

are in bijective correspondence with the points of the Airy Lagrangian adelic Grassmann-

. ad,Ai . . . ad,Be(v)
ian Gry . (resp. the Bessel Lagrangian adelic Grassmannian Gry o)

This theorem gives an explicit algorithmic way to construct all self-adjoint bispectral
Darboux transformations from the Airy and Bessel bispectral functions.
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