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Integral operators, bispectrality and growth of

Fourier algebras
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Abstract. In the mid 1980s it was conjectured that every bispectral meromorphic func-

tion  .x; y/ gives rise to an integral operator K .x; y/ which possesses a commuting differ-

ential operator. This has been verified by a direct computation for several families of functions

 .x; y/ where the commuting differential operator is of order � 6. We prove a general version

of this conjecture for all self-adjoint bispectral functions of rank 1 and all self-adjoint bispec-

tral Darboux transformations of the rank 2 Bessel and Airy functions. The method is based

on a theorem giving an exact estimate of the second- and first-order terms of the growth of

the Fourier algebra of each such bispectral function. From it we obtain a sharp upper bound

on the order of the commuting differential operator for the integral kernel K .x; y/ leading

to a fast algorithmic procedure for constructing the differential operator; unlike the previous

examples its order is arbitrarily high. We prove that the above classes of bispectral functions

are parametrized by infinite-dimensional Grassmannians which are the Lagrangian loci of the

Wilson adelic Grassmannian and its analogs in rank 2.

1. Introduction

1.1. Main result on bispectrality and integral operators. A meromorphic function

 .x; y/ on an open subset of C
2 is called bispectral if it is an eigenfunction of a nonzero dif-

ferential operator in each of the two variables. This notion was introduced by Duistermaat and

Grünbaum in [14] in relation to computer tomography and signal processing and since then has

found relations to many other areas: soliton equations [5, 27, 41], Calogero–Moser spaces and

systems [9,10,42], orthogonal polynomials [18,25,26], W -algebras and Kac–Moody algebras

[6, 8], automorphisms and ideal structure of rings of differential operators [9]. To  .x; y/ one

associates the integral operator

T W f .x/ 7!
Z

�1

K .x; y/f .y/ dy with kernel K .x; y/ D
Z

�2

 .x; z/ .y; z/ dy:
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2 Casper and Yakimov, Integral operators, bispectrality and Fourier algebras

Here �1 and �2 represent paths in C, chosen such that  .x; y/ 2 L2.�1 � �2/, along with

other analytic convergence conditions. The following property was conjectured in the mid

1980s and was in the heart of the formalization of the notion of bispectrality in [14].

Conjecture. Under mild conditions on the bispectral function  .x; y/ and the paths

�1; �2, the integral operator T posses a commuting differential operator.

The commutativity of integral and differential operators is formalized in Section 3.4. The

commutativity property in the conjecture has substantial applications to the analytic properties

of the integral operator T and to the numerical computation of its spectrum and eigenvalues.

The conjecture was proved in the following special cases:

(1) For the sine and Bessel bispectral functions .x; y/ D exy and
p
xyK�C 1

2
.xy/, Landau,

Pollak, Slepian [29, 36, 37] constructed a second-order differential operator commuting

with T and used it in time-band limiting in signal processing. Mehta proved the fact for

 .x; y/ D exy independently and applied it to random matrices [30].

(2) Tracy and Widom [38, 39] proved that for the Airy function  .x; y/ D Ai.x C y/, T 
posses a commuting second-order differential operator and applied the facts for the Bessel

and Airy functions to asymptotics of Fredholm determinants and scaling limits of random

matrix models.

(3) For two one-parameter, one-step Darboux transformations from the Bessel functionsp
xyK�C 1

2
.xy/ with � D 1 and � D 2, Grünbaum constructed a fourth- and sixth-order

commuting differential operators [17].

(4) Second-order commuting differential and difference operators were constructed in

several discrete-continuous and discrete-discrete situations starting with the Hermite,

Laguerre and Jacobi polynomials [16] and expanding to several other situations [34, 35].

(5) Commuting differential and difference operators were also constructed for matrix-valued

generalizations of the examples in (4), culminating in the work of Grünbaum, Pacharoni,

and Zurrian [19] which constructs second-order commuting differential/difference opera-

tors for matrix orthogonal polynomials whose weights satisfy a functional equation.

We obtain the following general solution of the conjecture:

Theorem A. (i) For all self-adjoint bispectral Darboux transformations � .x; y/ of the

exponential function exy and self-adjoint bispectral Darboux transformations of the rank 2 Airy

Ai.x C y/ and Bessel
p
xyK�C 1

2
.xy/ functions, the integral operator with kernel K� .x; y/

posses a commuting differential operator which is formally symmetric (i.e., equals its formal

adjoint).

(ii) The class of bispectral functions in part (i) of rank 1 are parametrized by the points

of the infinite-dimensional Grassmannian which is the Lagrangian locus of the Wilson’s adelic

Grassmannian [41]. The class of bispectral functions in part (i) of rank 2 are parametrized by

the points of the Lagrangian loci of the infinite-dimensional Grassmannians of rank 2 bispec-

tral functions from [5].

Additionally we obtain effective upper bounds on minimum order of a nonconstant com-

muting differential operator in Theorems 5.3, 5.6, 5.9. The arXiv version of the present paper
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(arXiv:1807.09314) contains an additional section where we describe an algorithm for fast

computation of the operators relying only on the calculation of products of differential opera-

tors and the solution of a finite-dimensional system of linear equations. The arXiv version also

features a variety of examples illustrating this algorithm, including examples of differential

operators of order 6; 8 and 22. The construction of differential operators of such high-order

commuting with integral operators was not previously feasible.

The first part of the theorem is proved in Section 5. The second part is proved in Section 6.

Section 3 contains background on the notion of self-adjoint bispectral Darboux transformations

and its role in previous works on the classification of bispectral functions.

Theorem A has the following important special cases:

(1) By the main result of [14], all bispectral meromorphic functions � .x; y/ that are

eigenfunctions of a second-order differential operator are obtained as iterated self-adjoint

bispectral Darboux transformations from the Bessel functions
p
xyK�C 1

2
.xy/ and are

covered as special cases by Theorem A. Even in this special situation the theorem is new

and few cases of it were previously known, cf. Section 1.1 (3).

(2) By the main result of [41] (and its interpretation in [5]), all rank 1 bispectral functions
� .x; y/ are bispectral Darboux transformations from the exponential function exy . Such

a function is called self-adjoint if it is an eigenfunction of a formally symmetric differ-

ential operator in x and y. All rank 1 self-adjoint bispectral functions � .x; y/ are also

covered by Theorem A.

1.2. Main result on growth of Fourier algebras. Our proof of Theorem A is based

on the construction of Fourier algebras associated to bispectral functions and a sharp estimate

on their growth. For a bispectral meromorphic function  .x; y/ defined on a connected open

subset U � V of C
2, define the left and right Fourier algebras of differential operators for  

by

Fx. / D ¹dx 2 D.U / W there exists a differential operator by 2 D.V /

satisfying dx �  .x; y/ D by �  .x; y/º

and

Fy. / D ¹by 2 D.V / W there exists a differential operator dx 2 D.U /

satisfying dx �  .x; y/ D by �  .x; y/º:

Here and below D.U / denotes the algebra of differential operators with meromorphic coeffi-

cients on U . The algebras Fx. / and Fy. / are anti-isomorphic, via the map

b W Fx. / ! Fy. /

defined by

dx �  .x; y/ D b .dx/ �  .x; y/;
see Proposition 2.4. This map will be called the generalized Fourier map of . The terminology

is motivated from the fact that for .x; y/ D exy one recovers the usual Fourier transformation

of differential operators. The key idea is that each operator dx 2 Fx. / has well-defined order

ord dx 2 N and co-order ord b .dx/ 2 N. They give rise to an N � N filtration of Fx. /
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4 Casper and Yakimov, Integral operators, bispectrality and Fourier algebras

formed by the subspaces

F
`;m
x . / D ¹d 2 Fx. / W ord.d/ � `; ord.b .b// � mº for `;m 2 N:

The spaces F
`;m
x . / are finite-dimensional and one can study the growth of their dimensions

as `;m ! 1. We will denote by F
`;m
x;sym. / the symmetric subspaces of F

`;m
x . / consisting

of operators dx 2 F
`;m
x . / such that dx and b .dx/ are formally symmetric.

After the breakthrough work of Wilson [41] bispectral functions are classified by rank

(see Definition 3.7) via a realization as bispectral Darboux transformations in the terminology

of [5]. This means that new bispectral functions � .x; y/ are constructed from old ones  .x; y/

via a representation of the form

� .x; y/ D 1

q.y/p.x/
u �  .x; y/ and  .x; y/ D �u � 1

�q.y/�p.x/
� .x; y/

for some differential operators u;�u 2 Fx. / and polynomials p.x/, �p.x/ and q.y/, �q.y/ as

in Definition 3.1. We call the pair .ord u; ord�u/ 2 N � N the bidegree of the transformation.

We refer the reader to Section 3 for details on the relation of this construction to the classical

Darboux process in terms of factorizations of differential operators.

For a fixed bispectral function .x; y/, all bispectral Darboux transformations of .x; y/

are classified by the points of infinite-dimensional Grassmannians generalizing Wilson’s adelic

Grassmannian [5, 41]. All rank 1 bispectral functions (classified by the points of the original

adelic Grassmannian) are bispectral Darboux transformations from the function exy .

Theorem B. (i) If � .x; y/ is a bispectral Darboux transformation from the bispectral

meromorphic function  .x; y/ satisfying natural mild assumptions, then for all `;m 2 C,

jdim F
`;m
x .� / � dim F

`;m
x . /j � const

for a constant that is independent on ` and m.

(ii) If � .x; y/ is a self-adjoint bispectral Darboux transformation of bidegree .d1; d2/

from the exponential function eyx , the Airy function Ai.x C y/, or the Bessel functionsp
xyK�C 1

2
.xy/ with � 2 C n N, then

jdim F
2`;2m
x;sym .� / � .`mC `CmC 2/j � d1d2

for all `;m 2 N.

The precise form of the first part of the theorem is given in Theorem 4.1 (see also Corol-

lary 4.2 and Remark 4.4). The second part of the theorem is a combination of Theorem 4.1 and

Lemmas 5.2, 5.5, and 5.8.

Remark. (i) Theorem B establishes the fact that the growth of both dim F
`;m
x .� / and

dim F
2`;2m
x;sym .� / as functions of ` and m is quadratic for huge classes of bispectral functions.

The theorem gives exactly the quadratic and the two linear terms of the dimension functions

and a sharp upper bound on their constant terms.

(ii) In a typical situation we start with a simple bispectral function  .x; y/ which is an

eigenfunction of low degree differential operators (e.g. eyx , Ai.x C y/, or
p
xyK�C 1

2
.xy/)

and we built a very complicated bispectral function � .x; y/ which is an eigenfunction of dif-

ferential operators of very high degrees. The remarkable feature of the theorem is that it proves

that the Fourier algebras Fx.� / and Fx. / have the exactly same growth up to a linear term.
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Theorem A is proved using the growth rates from Theorem B in conjunction with dimen-

sion estimates for the rank of the linear map taking formally symmetric differential operators

to their bilinear concomitant (see Definition 6.5). By comparing these growth rates, we prove

for large ` the algebra F
`;`
x;sym. / contains an operator whose concomitant is trivial and thus

commutes with T . Thus growth of Fourier algebras is used as a bridge from bispectrality to

commutativity of integral and differential operators.

This paper is a continuation of our collaboration with F. Alberto Grünbaum [20], which

aimed at constructing a bridge between bispectrality and commuting integral and differen-

tial operators by controlling the sizes of Fourier algebras under Darboux transformation. This

strategy was announced in [20]. Among other things, the results in this paper fully justify the

statements in [20] which contained no proofs.

When bispectral functions � .x; y/ are converted to wave functions �‰.x; y/ for the KP

hierarchy via asymptotic expansions at 1, the elements of the right Fourier algebra Fy.� /
correspond to theW -constraints for the wave function �‰.x; y/. The latter generalize the string

equation for the Airy wave function [28, 31, 43] which played a key role in quantum grav-

ity and intersection theory on moduli spaces of curves. Consequently, in algebraic geom-

etry the W -constraints of Gromov–Witten invariants and the total descendant potential of

a simple singularity were extensively studied by Okounkov and Pandharipande [32], Bakalov

and Milanov [7] and in many other works.

The W -constraints for wave functions of the Toda and multi-component KP hierarchies

have played an important role in many situations. In the theory of random matrices, Adler and

van Moerbeke [1–3] used Virasoro constraints to derive a system of partial differential equa-

tions for the distributions of the spectra of coupled random matrices. Bakalov, Horozov, and

Yakimov [6] used W -constraints to prove that all tau-functions in the quasifinite representa-

tions of the W1C1-algebra (in the sense of Frenkel, Kac, Radul, and Wang [15]) with highest

weight vectors given by Bessel tau-functions are bispectral tau-functions. Our growth estimate

theorem for the right Fourier algebra Fy.� / translates directly to a growth estimate theorem

for the algebra of W -constraints of a wave function. In this way Theorem B has potential

applications to the above topics in random matrices and representations of the W1C1-algebra.

More generally, Virasoro constraints are linked to the isomonodromic deformations

approach to random matrices from the works of Palmer [33], Harnad, Tracy, and Widom [22],

Its and Harnad [21], and Borodin and Deift [11]. Of particular interest is the relation to the

series of results in the literature on random matrices showing that the Fredholm determinants

of various kernels are solutions of Painlevé equation. The latter naturally appear in other prob-

lems, e.g. representations of U.1/; see Borodin and Olshanski [12, 13]. We expect that the

growth estimates from Theorem B on the algebra of W -constraints will also have applications

in these respects. The main idea here is to apply the full algebra of W -constraints vs concrete

Virasoro constraints.

We will use the following conventions for the notation in the paper. Differential operators

will always appear in the Gothic font, e.g., d D à2x � 2
x2 . When needed, we will write dx

in place of d to emphasize the action of the operator in the variable x. In this case dy will

represent the same operator, but acting in the variable y. We will denote by D.CŒx�/ and

D.C.x// the algebras of differential operators in x with polynomial and rational coefficients.

For a noncommutative algebra R and r; s 2 R, we set

adr.s/ D Œr; s� D rs � sr:
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2. Bispectrality and double filtrations of Fourier algebras

In this section we collect background material on bispectral functions and Fourier alge-

bras associated to them. We introduce one of the key players in the paper – a double filtration

on each such algebra.

2.1. Bispectral meromorphic functions and associated Fourier algebras. We first

review the definition of a bispectral meromorphic function. For an open subset U of C, denote

by D.U / the algebra of differential operators on U with meromorphic coefficients.

Definition 2.1. A nonconstant meromorphic function  .x; y/ defined on a connected

open subset U � V of C
2 is said to be bispectral if there exist differential operators d 2 D.U /

and b 2 D.V / such that

dx �  .x; y/ D g.y/ .x; y/ and by �  .x; y/ D f .x/ .x; y/

for some nonconstant functions f .x/ and g.y/ meromorphic on U and V , respectively.

There are three examples of bispectral meromorphic functions that will play a funda-

mental role in this paper: the exponential, Airy and Bessel functions. We will refer to them as

the elementary bispectral functions. Due to their central role, we will introduce a notation for

each that will be used throughout the paper. The notation and values of the elementary bispec-

tral functions is given in Table 1, where for � 2 C the expression K�.t/ denotes the Bessel

function of the second kind and Ai.t/ denotes Airy function of the first kind.

name function operator

bispectral exponential  exp.x; y/ D exy àx
bispectral Airy  Ai.x; y/ D Ai.x C y/ dAi D à2x � x
bispectral Bessel  Be.�/.x; y/ D p

xyK�C 1
2
.xy/ dBe.�/ D à2x � �.�C1/

x2

Table 1. The elementary bispectral functions.

The bispectral Bessel functions  Be.�/.x; y/ are in particular a one parameter family

of functions indexed by �. For integer values of � the Bessel functions simplify to rational

functions multiplied by exponential functions. For example  Be.0/.x; y/ is proportional to exy

and  Be.1/.x; y/ is proportional to exy.1 � .xy/�1/.
Each of the elementary bispectral functions are, as the name suggests, bispectral and thus

are families of eigenfunctions in both variables x and y. For example the bispectral exponential

function satisfies

àx �  exp.x; y/ D y exp.x; y/ and ày �  exp.x; y/ D x exp.x; y/:
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The Bessel and Airy bispectral functions are eigenfunctions of the Bessel and Airy operators

dBe.�/ and dAi from the last column of Table 1. The associated differential equations are

dBe.�/;x �  Be.�/.x; y/ D y2 Be.�/.x; y/;(2.1)

dBe.�/;y �  Be.�/.x; y/ D x2 Be.�/.x; y/;

dAi;x �  Ai.x; y/ D y Ai.x; y/;(2.2)

dAi;y �  Ai.x; y/ D x Ai.x; y/:

Bispectral meromorphic functions in general satisfy a wide collection of differential

equations and the associated operators form algebras.

Definition 2.2. Let  .x; y/ be a bispectral meromorphic function defined on the con-

nected open subset U � V of C
2. We define the left and right Fourier algebras of differential

operators for  by

Fx. / D ¹d 2 D.U / W there exists a differential operator b 2 D.V /

satisfying d �  .x; y/ D b �  .x; y/º
and

Fy. / D ¹b 2 D.V / W there exists a differential operator d 2 D.U /

satisfying d �  .x; y/ D b �  .x; y/º:
The algebras Fx. / and Fy. / come with distinguished subalgebras

Bx. / D ¹d 2 Fx. / W there exists a meromorphic function g.y/

satisfying d �  .x; y/ D g.y/ .x; y/º;
By. / D ¹b 2 Fy. / W there exists a meromorphic function f .x/

satisfying b �  .x; y/ D f .x/ .x; y/º:
The algebras Bx. / and By. / are called the algebras of left and right bispectral differential

operators for  .x; y/.

The function .x; y/ is an eigenfunction of all operators in these two algebras. In a neigh-

borhood of a sufficiently nice point .x0; y0/ of the domain of  .x; y/, the coefficients of the

operators in Bx. / and By. / will be analytic. Then by an appropriate change of variables,

we may assume that Bx. / and By. / both contain a nonconstant differential operator whose

leading coefficient is constant. Consequently, by [14, equation (1.20)], all functions f .x/ and

g.y/ that appear in the definition of Bx. / and By. / are polynomial. Furthermore, the alge-

bras Bx. / and By. / are necessarily commutative, so every element in each algebra will

have constant leading coefficient. Throughout the rest of the paper, we adopt local coordinates

giving us constant leading coefficients.

Remark 2.3. The name Fourier algebras is inspired by the case where  is the sim-

plest bispectral function  exp.x; y/ D exy . In this case Fx. exp/ D D.CŒx�/, the algebra of

differential operators with polynomial coefficients. Similarly, Fy. exp/ D D.CŒy�/ and

d � exy D b � exy for d D
X

ajkx
kàjx and b D

X
ajky

j àky :
The operator b is the Fourier transform of d.
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8 Casper and Yakimov, Integral operators, bispectrality and Fourier algebras

Proposition 2.4. Let  .x; y/ be a bispectral meromorphic function defined on U � V .

The algebras Fx. / and Fy. / are anti-isomorphic via the map b W Fx. /! Fy. / defined

by sending d 2 Fx. / to b 2 Fy. /, where d �  .x; y/ D b �  .x; y/.

Proof. Suppose d 2 Fx. / with d �  .x; y/ D g.y/ .x; y/ for some g.y/ 2 Fy. /

nonconstant. If there exists a nonzero b 2 Fy. / satisfying b �  .x; y/ D 0, then

adkg.y/.b/ �  .x; y/ D 0

for all k. However, for k equal to the order of b, the operator adkg.y/.b/ will be equal to

a nonzero function h.y/. This would imply h.y/ .x; y/ D 0, and that  .x; y/ is therefore 0,

a contradiction. Thus if b 2 Fy. / satisfies b � .x; y/D 0, then b D 0. Similarly, if a 2 Fx. /

satisfies a �  .x; y/ D 0, then a D 0.

Using this, we see that for every a 2 Fx. / there exists a unique b 2 Fx. / such that

a �  .x; y/ D b �  .x; y/. This shows that the map b is well defined and bijective. A simple

argument shows that b is an anti-isomorphism. This completes the proof.

Definition 2.5. We call the map b W Fx. / ! Fy. / from the previous proposition

the generalized Fourier map or the bispectral anti-isomorphism of  .

Example 2.6. (1) By Remark 2.3, for the exponential bispectral function  exp, the

Fourier algebras are the algebras of differential operators with polynomial coefficients

Fx. exp/ D D.CŒx�/; Fy. exp/ D D.CŒy�/

and the anti-isomorphism

b exp
W D.CŒx�/ ! D.CŒy�/

is the Fourier transform given by àx 7! y and x 7! ày . The algebras of bispectral operators

Bx. exp/ and By. exp/ are the algebras of differential operators with constant coefficients

in x and y, respectively.

(2) The Bessel bispectral functions  Be.�/.x; y/ satisfy

xàx �  Be.�/.x; y/ D yày �  Be.�/.x; y/

in addition to equations (2.1). The left and right Fourier algebras are given by

Fx. Be.�// D hdBe.�/;x; xàx; x2i and Fy. Be.�// D hdBe.�/;y ; yày ; y2i

for � 2 C n Z. (In the case � 2 Z the Fourier algebras are bigger, but this will not a play a role

in the paper.) Here hd1; : : : ;dki denotes the algebra of differential operators with generators

d1; : : : ;dk . The generalized Fourier map b Be.�/
W Fx. Be.�// ! Fx. Be.�// is given by

dBe.�/;x 7! y2; xàx 7! yày ; x2 7! dBe.�/;y :

The algebras of bispectral operators Bx. Be.�// and Bx. Be.�// are the polynomial algebras

in the Bessel operators dBe.�/;x and dBe.�/;y , respectively.

(3) The Airy bispectral function  Ai.x; y/ satisfies

àx �  Ai.x; y/ D ày �  Ai.x; y/
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in addition to the equations (2.2). The left and right Fourier algebras associated to it are the

algebras of differential operators with polynomial coefficients

Fx. Ai/ D D.CŒx�/ and Fy. Ai/ D D.CŒy�/:

The generalized Fourier map b Ai
W Fx. Ai/ ! Fx. Ai/ is given by

àx 7! ày ; x 7! dAi;y :

It satisfies dAi;x 7! y. The algebras of bispectral operators Bx. Ai/ and Bx. Ai/ are the poly-

nomial algebras in the Airy operators dAi;x and dAi;y , respectively.

2.2. Double filtrations of Fourier algebras. Using the generalized Fourier map of

a bispectral function  .x; z/, we define natural filtrations of the left and right Fourier alge-

bras Fx. / and Fy. / as follows.

Definition 2.7. We define the co-order of an operator d 2 Fx. /, denoted cord.d/, to

be the order of b .d/. Similarly, we define the co-order of b 2 Fy. /, again denoted cord.b/,

to be the order of b�1
 .b/. We define N � N-filtrations of the Fourier algebras Fx. / and

Fy. / by

F
`;m
x . / D ¹d 2 Fx. / W ord.d/ � ` and cord.d/ � mº;

F
m;`
y . / D ¹b 2 Fy. / W ord.b/ � m and cord.b/ � `º:

Remark 2.8. By Proposition 2.4, the generalized Fourier map b restricts to an iso-

morphism F
`;m
x . / ! F

m;`
y . /. Moreover, under the above filtration

Bx. / D span

1[

`D0

F
`;0
x . / and By. / D span

1[

mD0

F
0;m
y . /:

We pause now to consider the filtrations of the Fourier algebras associated to the bispec-

tral functions  exp,  Be.�/ and  Ai, continuing Example 2.6.

Example 2.9. (1) For the bispectral exponential function  exp we have

F
`;m
x . exp/ D span¹xkàjx W 0 � j � `; 0 � k � mº;

F
m;`
y . exp/ D span¹yj àky W 0 � j � `; 0 � k � mº:

(2) The filtrations of the Fourier algebras associated to the bispectral Bessel functions

 Be.�/ for � 2 C n Z are given by

F
2`;2m
x . Be.�// D span¹x2kd

j

Be.�/;x
W 0 � j � `; 0 � k � mº

˚ span¹x2kxàxd
j

Be.�/;x
W 0 � j < `; 0 � k < mº;

F
2m;2`
x . Be.�// D span¹y2jdkBe.�/;y W 0 � j � `; 0 � k � mº

˚ span¹y2jyàydkBe.�/;y W 0 � j < `; 0 � k < mº

for even indices. Similar formulas hold for odd indices, we leave the details to the reader.
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10 Casper and Yakimov, Integral operators, bispectrality and Fourier algebras

(3) For the bispectral Airy function Ai the filtrations of the left and right Fourier algebras

are
F
2`;2m
x . Ai/ D span¹xkd

j
Ai;x W 0 � j � `; 0 � k � mº

˚ span¹xkàxd
j
Ai;x W 0 � j < `; 0 � k < mº;

F
2m;2`
y . Ai/ D span¹yjdkAi;y W 0 � j � `; 0 � k � mº

˚ span¹yj àydkAi;y W 0 � j < `; 0 � k < mº
for even indices. Similar formulas hold for odd indices.

All three facts are easily deduced from the facts for the left and right Fourier algebras and

generalized Fourier maps in Example 2.6.

3. Self-adjoint bispectral Darboux transformations

This section contains background material on bispectral Darboux transformations and

the classification of bispectral functions. We introduce the second main player in the paper –

self-adjoint Darboux transformations and prove that they correspond bijectively to self-adjoint

bispectral functions.

3.1. Bispectral Darboux transformations and classification results.

Definition 3.1. Let  .x; y/ be a bispectral meromorphic function on U � V . A bispec-

tral Darboux transformation � .x; y/ of  .x; y/ is a function satisfying

� .x; y/ D 1

q.y/p.x/
u �  .x; y/ and  .x; y/ D �u � 1

�q.y/�p.x/
� .x; y/

for some pairs of polynomials p.x/, �p.x/ and q.y/, �q.y/, and some differential operators

u;�u 2 Fx. /.

We call the pair .d1; d2/ the order of the bispectral Darboux transformation, where

d1 D ord.u/ and d2 D cord.u/ are the order and co-order of u (with the latter defined as

in Definition 2.7 above).

It follows from the definition that

�u 1

�p.x/p.x/u �  .x; y/ D�q.y/q.y/ .x; y/:

Therefore

(3.1) �u 1

�p.x/p.x/u 2 Bx. / and b 

�
�u 1

�p.x/p.x/u
�

D�q.y/q.y/:

Similar statements hold when the roles of  .x; y/ and � .x; y/ are interchanged.

Remark 3.2. If  .x; y/ is a bispectral function on U � V , then f .x/g.y/ .x; y/ is

also a bispectral function on U � V for all meromorphic functions f .x/ and g.y/ on U and V .

Because of this, the choice of p.x/ and q.y/ in Definition 3.1 is merely a choice of normaliza-

tion. The next paragraph describes the standard normalization.
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Casper and Yakimov, Integral operators, bispectrality and Fourier algebras 11

The new bispectral function � .x; y/ can be represented in two dual ways as a transfor-

mation of  .x; y/ in the x- and y-variables:

(3.2) � .x; y/ D 1

q.y/p.x/
u �  .x; y/ D 1

p.x/q.y/
b .u/ �  .x; y/:

The polynomials p.x/ and q.y/ are uniquely determined from the normalization that

(3.3) the differential operators
1

p.x/
u and

1

q.y/
b .u/ are monic:

Remark 3.3. In Theorem 3.6 we prove that if � .x; y/ is a bispectral Darboux trans-

formation of  .x; y/ and u;�u; p.x/; �p.x/; q.y/;�q.y/ are as in the definition of a bispectral

Darboux transformation, then necessarily �p.x/�u 1
�p.x/ 2 Fx.� /. In fact, the definition of a bis-

pectral Darboux transformation can be replaced with the equivalent condition that there exist

differential operators u 2 Fx. /, v 2 Fx.� / and polynomials p.x/; �p.x/; q.y/;�q.y/ such

that

� .x; y/ D 1

q.y/p.x/
u �  .x; y/ and  .x; y/ D 1

�q.y/�p.x/v � � .x; y/:

In particular, this latter definition is manifestly symmetric.

The following result of [4] establishes general bispectrality properties of the transforma-

tions in Definition 3.1.

Theorem 3.4 (Bakalov, Horozov, Yakimov [4, Theorem 4.2]). Let  .x; y/ be a bispec-

tral function on U � V and let � .x; y/ be a bispectral Darboux transformation from  .x; y/

with the notation in Definition 3.1. Then � .x; y/ is also a bispectral function which satisfies

the spectral equations

1

p.x/
u�u 1

�p.x/ � � .x; y/ D q.y/�q.y/� .x; y/;

1

q.y/
b .u/b .�u/

1

�q.y/ � � .x; y/ D p.x/�p.x/� .x; y/:

Dually to (3.1), we have

(3.4) b .�u/
1

�q.y/q.y/b .u/ 2 By. /; b .�p.x/p.x// D b .�u/
1

�q.y/q.y/b .u/:

Remark 3.5. (1) It follows from (3.1) and (3.4) that

p.x/ WD b�1
 

�
b .�u/

1

�q.y/q.y/b .u/
�

2 b�1
 .By. //;

q.y/ WD b 

�
�u 1

�p.x/p.x/u
�

2 b .Bx. //

and

p.x/�p.x/ D p.x/; q.y/�q.y/ D q.y/:

When p.x/2 b�1
 .By. //, q.y/2 b .Bx. //, and u;�u 2 Fx. / are fixed, there is a freedom

in the construction of � .x; y/ in that the polynomials p.x/ and q.x/ can be chosen to be arbi-

trary divisors of the polynomials p.x/ and q.x/. As noted in Remark 3.2, f .x/g.y/� .x; y/ is
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12 Casper and Yakimov, Integral operators, bispectrality and Fourier algebras

also a bispectral function on U � V for all meromorphic functions f .x/ and g.y/ on U and V .

Among these, the above bispectral Darboux transformations from .x; y/ come from the ratio-

nal functions f .x/, g.x/ with denominators p.x/, q.x/ and numerators given by polynomials

that are divisors of p.x/ and q.x/.

(2) The normalization (3.3) simply means that p.x/ and q.y/ are chosen to be the leading

terms of u and b .u/. Such a normalization is always possible for the following reasons. Recall

from Section 2.1 that we work in local coordinates in which all operators in By. / and By. /

have scalar leading term. The ad-condition then implies that all operators in Fx. / and Fy. /

have polynomial leading terms.

Start with a bispectral Darboux transformation � .x; y/ of  .x; y/. Equations (3.1) and

(3.4) imply that �p.x/p.x/ and�q.y/q.y/ are scalar multiples of the leading terms of the differ-

ential operators�uu and b .�uu/ D b .u/b .�u/. Since�u and b .�u/ have polynomial leading

terms, one can use a transformation of the type described in the first part of the remark to

change p.x/ and q.y/ so they equal the leading terms of u and b .u/.

(3) In [4] is was assumed that p.x/; �p.x/ 2 b�1
 .By. // and q.y/;�q.y/ 2 b .Bx. //.

The difference here is that we only assume that their products are in the spaces b�1
 .By. //

and b .Bx. //. One passes from one setting to the other by the transformations in the first

part of the remark.

The next theorem shows that being a bispectral Darboux transformation is a symmetric

condition.

Theorem 3.6. Let  .x; y/ be a bispectral function and suppose that � .x; y/ is a bis-

pectral Darboux transformation of  .x; y/. Then  .x; y/ is also a bispectral Darboux trans-

formation of � .x; y/ and �p.x/�u 1
�p.x/ ;

1
p.x/

up.x/ 2 Fx.� / with

b� 

�
�p.x/�u 1

�p.x/

�
D q.y/b .�u/

1

q.y/
and b� 

�
1

p.x/
up.x/

�
D 1

q.y/
b .u/q.y/:

Proof. Let u;�u; p.x/; �p.x/; q.y/; and�q.y/ be as in the definition of bispectral Darboux

transformations for the bispectral Darboux transformation from  .x; y/ to � .x; y/. Then

�p.x/�u 1

�p.x/ � � .x; y/ D �p.x/�u 1

�p.x/p.x/q.y/u �  .x; y/

D �p.x/�q.y/ �  .x; y/:

Therefore by Theorem 3.4 we find

p.x/�p.x/�u 1

�p.x/ � � .x; y/ D p.x/�p.x/�q.y/ .x; y/

D�q.y/b .�u/
1

�q.y/q.y/b .u/ �  ;

so that

�p.x/�u 1

�p.x/ � � .x; y/ D�q.y/b .�u/
1

p.x/�q.y/q.y/b .u/ �  

D�q.y/b .�u/
1

�q.y/ � � .x; y/:
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Casper and Yakimov, Integral operators, bispectrality and Fourier algebras 13

Thus �p.x/�u 1
�p.x/ 2 Fx.� /. Moreover,

1

p.x/
up.x/ � � .x; y/ D 1

p.x/q.y/
u2 �  .x; y/

D 1

p.x/q.y/
b .u/

2 �  .x; y/

D 1

q.y/
b .u/q.y/

1

p.x/q.y/
b .u/ �  .x; y/

D 1

q.y/
b .u/q.y/ � � .x; y/

so that 1
p.x/

up.x/ 2 Fx.� /. Then since

1

�q.y/�p.x/

�
�p.x/�u 1

�p.x/

�
� � .x; y/ D  .x; y/

and �
1

p.x/
up.x/

�
1

p.x/q.y/
�  .x; y/ D � .x; y/

we see that  is a bispectral Darboux transformation of � .

Definition 3.7. We define the rank of a bispectral function  .x; y/ to be the greatest

common divisor of the orders of the operators in the left bispectral algebra Bx. /.

In the cases when classification results are available, one can show that the rank of a bis-

pectral function  .x; y/ also equals the greatest common divisor of the orders of the operators

in the right bispectral algebra By. /, but there is currently no direct proof of this fact.

In [41] Wilson introduced the powerful idea that the classification of bispectral functions

should be performed on a per-rank basis in which case one sees a deep geometric picture of the

moduli spaces of such functions. Bispectral Darboux transformations preserve the rank and are

especially suited for these purposes.

Theorem 3.8 (Wilson [41]). The rank 1 bispectral functions are precisely the bispectral

Darboux transformations of the exponential function  exp.x; y/.

Wilson’s result as stated in [41] is a classification in the case that Bx. / is rank 1 and

maximally commutative in the sense that Bx. / is not contained in any larger commutative

subalgebra of the algebra of differential operators. However, in the rank 1 case the common

eigenspaces of Bx. / must be one-dimensional, so  is (up to normalization) equal to a wave

function of the KP hierarchy [31]. From this, one may show that Bx. / is necessarily maxi-

mally commutative, so the maximality assumption is not explicitly required. For higher rank, it

is not known whether maximality follows immediately, so this assumption will required below

when necessary.

Bispectral functions  for which the bispectral algebra Bx. / contains an operator of

prime order p were classified by Duistermaat and Grünbaum [14] in the case p D 2 and by

Horozov [23] in the case p > 2. These results and the methods of [5, 24, 27] prompted the

following conjecture which was has been widely circulated since the mid 1990s.
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14 Casper and Yakimov, Integral operators, bispectrality and Fourier algebras

Conjecture 3.9. The maximally commutative rank 2 bispectral meromorphic algebras

are precisely the algebras Bx. / corresponding to all bispectral Darboux transformations

 .x; y/ of the Bessel functions  Be.�/.x; y/ for � 2 C n Z and the Airy function  Ai.x; y/

see Section 2.1.

Example 3.10. Continuing Examples 2.6 and 2.9, we describe more explicitly the func-

tions in Theorem 3.8 and Conjecture 3.9.

(1) The bispectral Darboux transformations of the exponential function exp are precisely

the functions in the (infinite-dimensional) Wilson adelic Grassmannian Grad, [41]. They are the

functions of the form

� .x; y/ D 1

q.y/
v �  exp.x; y/;

where v 2 D.C.x// is a monic differential operator with rational coefficients satisfying

�vv D f .àx/

for a monic polynomial f .t/ and some�v 2 D.C.x//. The differential operators v that appear

in this way are classified in terms of their kernels consisting of quasi-exponential functions (i.e.,

solutions of homogeneous linear ordinary differential equations with constant coefficients).

This classification is recalled in Section 6 below. The polynomial q.y/ is uniquely determined

from v as the polynomial whose roots are the support of the quasi-exponential functions in the

kernel of v.

(2) The bispectral Darboux transformations of the Bessel functions Be.�/ (for � 2 C n Z)

are the functions of the form

� .x; y/ D 1

q.y/
v �  Be.�/.x; y/;

where v 2 D.C.x// is a monic differential operator with rational coefficients such that

�vv D f .dBe.�/;x/

for a monic polynomial f .t/ and some �v 2 D.C.x//. All differential operators v satisfying

these properties, and as a result, the rank 2 bispectral functions in the Bessel class, form

an infinite-dimensional manifold. They are classified by an explicit description of the possi-

ble forms of their kernels in terms of Bessel functions and their derivatives, see Section 6

for details.

(3) The bispectral Darboux transformations of the Airy function  Ai are the functions of

the form

� .x; y/ D 1

q.y/
v �  Ai.x; y/;

where v 2 D.C.x// is a monic differential operator with rational coefficients satisfying

�vv D f .dAi;x/

for a monic polynomial f .t/ and some�v 2 D.C.x//. The differential operators v satisfying

these properties and thus, the rank 2 bispectral functions in the Airy class, also form an infinite-

dimensional manifold. They are classified by an explicit description of the possible forms of

their kernels in terms of derivatives of the Airy functions, see Section 6.

Brought to you by | De Gruyter / TCS
Authenticated

Download Date | 10/4/19 3:58 PM



Casper and Yakimov, Integral operators, bispectrality and Fourier algebras 15

3.2. Self-adjoint bispectral Darboux transformations and self-adjoint bispectral

functions. We start with a series of definitions.

Definition 3.11. Let d D Pn
jD0 aj .x/à

j
x . We define the formal adjoint of d to be

d� D
nX

jD0

.�1/j àjxaj .x/ D
nX

jD0

jX

kD0

.�1/j
 
j

k

!
a
.k/
j .x/àj�k

x :

An operator d is called formally symmetric if d� D d.

Definition 3.12. Let � � C be a smooth path in C. Then we say d is adjointable with

respect to � if for every f .x/; g.x/ 2 C1
c .�/ the following integral identity holds:

Z

�

.d � f .x//g.x/ dx D
Z

�

f .x/.d� � g.x// dx:

If d is formally symmetric and adjointable, then we call d symmetric.

Definition 3.13. Let  .x; y/ be a bispectral meromorphic function. We call an opera-

tor d 2 Fx. / formally bisymmetric if both d and b .d/ are formally symmetric. Fix smooth

paths �1; �2 � C. We call d bisymmetric with respect to .�1; �2/ if d is symmetric with

respect to �1 and b .d/ is symmetric with respect to �2.

Definition 3.14. Let  .x; y/ be a bispectral meromorphic function. We call a bispectral

Darboux transformation � .x; y/ with the notation of Definition 3.1 a self-adjoint bispectral

Darboux transformation of  .x; y/ if

�p.x/ D p.x/;�q.y/ D q.y/ and �u D .�1/d1u�; b .�u/ D .�1/d2b .u/
�:

for d1 D ord.u/ and d2 D cord.u/.

Remark 3.15. In all of the situations that we consider in this paper the essential condi-

tions are

(3.5) �u D .�1/d1u�; b .�u/ D .�1/d2b .u/
�

and the conditions �p.x/ D p.x/, �q.y/ D q.y/ follow from them after a normalization. More

precisely, if is any of the exponential exp, Bessel Be.�/ or the Airy Ai bispectral functions,

then the left and right bispectral algebras Bx. /, By. / consist of differential operators with

constant leading terms. The normalization (3.3) implies that p.x/ and q.y/ equal the leading

terms of the differential operators u and b .u/. Therefore, by (3.4), �p.x/ and�q.y/ are scalar

multiples of the leading terms of the differential operators�u and b .�u/
If (3.5) is satisfied, one can rescale �p.x/ and �q.y/ so that �p.x/ D p.x/, �q.y/ D q.y/.

This rescaling does not change the function � .x; y/.

Theorem 3.4 implies that every self-adjoint bispectral Darboux transformation � .x; y/
of a bispectral function  .x; y/ with the above data satisfies

1

p.x/
uu� 1

p.x/
� � .x; y/ D q.y/2� .x; y/;(3.6)

1

q.y/
b .u/b .u/

� 1

q.y/
� � .x; y/ D p.x/2� .x; y/:(3.7)
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16 Casper and Yakimov, Integral operators, bispectrality and Fourier algebras

Moreover, (3.1) and (3.4) imply that the original wave function  .x; z/ satisfies

�u� 1

p.x/2
u �  .x; y/ D q.y/2 .x; y/;(3.8)

b .u/
� 1

q.y/2
b .u/ �  .x; y/ D p.x/2 .x; y/:(3.9)

Definition 3.16. We call a bispectral meromorphic function  .x; y/ self-adjoint if it is

an eigenfunction of nonconstant, formally symmetric differential operators in x and y.

Remark 3.17. A rank 1 bispectral function  .x; y/ is self-adjoint if and only if Bx. /

and By. / are preserved by taking formal adjoints �. This is because in the rank 1 case Bx. /

and By. / are maximally commutative and therefore equal to the centralizer of any of its non-

constant elements. The centralizer of the centralizer of a formally symmetric differential opera-

tor is closed under taking formal adjoints, so the self-adjointness of  follows immediately.

Equations (3.6)–(3.9) imply the following:

Proposition 3.18. Suppose that  .x; y/ is a bispectral meromorphic function and that
� .x; y/ is a self-adjoint bispectral Darboux transformation of .x; y/. Then both .x; y/ and
� .x; y/ are self-adjoint bispectral meromorphic functions.

Lemma 3.19. Let  .x; y/ and � .x; y/ be bispectral meromorphic functions and that
� .x; y/ is a bispectral Darboux transformation of  .x; y/. If Bx. / (resp. By. /) is maxi-

mally commutative, then so too is Bx.� / (resp. By.� /).

Proof. To be explicit, suppose

� .x; y/ D 1

p.x/q.y/
u �  .x; y/ and  .x; y/ D �u 1

�p.x/�q.y/ � � .x; y/

for some operators u;�u 2 Fx. / and polynomials p.x/; �p.x/; q.y/;�q.y/. Set

d D �u 1

�p.x/p.x/u and �d D 1

p.x/
u�u 1

�p.x/ :

Centralizers of nonconstant differential operators are maximally commutative, so to prove that

Bx.� / is maximal, it suffices to show that Bx.� / is the centralizer of�d. Suppose that b is a dif-

ferential operator which commutes with�d. Then the Darboux conjugate �u 1
�p.x/b

�d�p.x/�u�1 is

a differential operator which commutes with d. By the maximality assumption on Bx. /, we

know that Bx. / is equal to the centralizer of d and thus�u 1
�p.x/b

�d�p.x/�u�1 is in Bx. /. Con-

sequently, the Darboux conjugate b�d is in Bx.� /. Since�d 2 Bx.� /, it follows that b 2 Bx.� /.
Note that b was an arbitrary element in the centralizer of�d, so this completes the proof.

A maximally commutative bispectral algebra Bx. / almost determines the function

 .x; y/, i.e., the family of joint eigenfunctions of a fixed bispectral algebra is almost unique.

However, different bispectral meromorphic functions do exist for the same bispectral algebra,

such as exp.�xy/ and exp.xy/ for the bispectral algebra CŒàx�. Even so, it is not possible to

jump between different families via bispectral Darboux transformations, as the next proposi-

tion shows.

Brought to you by | De Gruyter / TCS
Authenticated

Download Date | 10/4/19 3:58 PM



Casper and Yakimov, Integral operators, bispectrality and Fourier algebras 17

Proposition 3.20. Suppose that  and � are bispectral meromorphic functions with

Bx. / and Bx. / D Bx.� /. If there exists u 2 Fx. / satisfying � .x; y/q.y/ D u �  .x; y/
for some q.y/, then u 2 Bx. / and � .x; y/ is a constant multiple of  .x; y/.

Proof. For all d 2 Bx. / D Bx.� / we have that

du �  .x; y/ D d � � .x; y/q.y/ D  .x; y/q.y/b� .d/ D ub�1
 .b� .d//:

Hence

du D ub�1
 .b� .d// for all d 2 Bx. /;

and in particular b�1
 ı b� preserves the order and leading coefficient of operators. Choose

a monic differential operator d 2 Bx. / with order ` taken to be positive but as small as

possible. Then we see that for some constant c 2 C

du D ub�1
 ı b� .d/ D u.d C c/:

In particular, add.u/ D cu. However, since d is in the bispectral algebra and u is in the Fourier

algebra, the ad-condition implies that for some integer m > 0 we have 0 D adm
d
.u/ D cmu.

Hence c D 0 and d and u commute. Since Bx. / is maximally commutative, this implies

u 2 Bx. / and u �  .x; y/ D g.y/ .x; y/ for some g.y/ 2 CŒy�. This implies that

� .x; y/ D  .x; y/g.y/

q.y/

and since both bispectral functions are normalized, the ratio
g.y/
q.y/

must be a constant.

The next theorem shows that when we restrict our attention to a self-adjoint bispec-

tral meromorphic functions  .x; y/, the self-adjoint bispectral meromorphic functions aris-

ing from bispectral Darboux transformations of  .x; y/ are precisely those which arise from

self-adjoint bispectral Darboux transformations. This statement, which is converse to that in

Proposition 3.18, is harder and some easily verifiable conditions on the initial function  .x; y/

are imposed.

Theorem 3.21. Let .x; y/ and � .x; y/ be a self-adjoint bispectral meromorphic func-

tions and suppose that � .x; y/ is a bispectral Darboux transformation of  .x; y/ with

� .x; y/ D 1

p.x/q.y/
u �  .x; y/ and  .x; y/ D �u 1

�p.x/�q.y/ � � .x; y/

for some operators u;�u 2 Fx. / and polynomials p.x/; �p.x/; q.y/;�q.y/ such that the bis-

pectral operators

�u 1

p.x/�p.x/u 2 Bx. / and b .�u/
1

p.x/�p.x/b .�u/ 2 By. /

are formally symmetric. Assume that Bx. / and By. / are maximally commutative, that

p.x/ D �p.x/ and q.y/ D�q.y/, and that u�;�u� 2 Fx. /. Then � .x; y/ is a self-adjoint bis-

pectral Darboux transformation of  .x; y/, and in fact the above bispectral Darboux trans-

formation is self-adjoint.
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18 Casper and Yakimov, Integral operators, bispectrality and Fourier algebras

Remark 3.22. (i) In the case that .x; y/ D  Ai.x; y/, the assumptions follow trivially

since b�1
 .By. // D CŒx�, b .Bx. // D CŒy�, and b .w

�/ D b .w/
� for all w 2 Fx. /.

For  .x; y/ D  Be.�/.x; y/ (with � … Z) the conditions follow from the explicit characteriza-

tion of the bispectral Darboux transformations by Bakalov, Horozov, and Yakimov [5, Theo-

rem 2.7].

(ii) If .x; y/ is self-adjoint and rank 2with maximally commutative Bx. / and By. /,

then all the operators in Bx. / and By. / are formally symmetric.

(iii) The condition p.x/ D �p.x/ and q.y/ D�q.y/ in the theorem is equivalent to the

seemingly weaker condition that

p.x/

�p.x/ D �p1.x/
p1.x/

and
q.y/

�q.y/ D �q1.y/
q1.y/

for some polynomials p1.x/; �p1.x/ 2 Fx. / and q1.y/;�q1.y/ 2 Fy. /. This is the condition

that is directly verified by [5, Theorem 2.7]. If the second condition holds, then by setting

d1 D b�1
 .q1.y// and �d1 D b�1

 .�q1.y//, and by changing

p.x/ 7! p1.x/p.x/; u 7! p1.x/ud1; q.y/ 7! q1.y/q.y/;

�p.x/ 7! �p1.x/�p.x/; �u 7! �p1.x/�u�d1; �q.y/ 7!�q1.y/�q.y/;

we get a new bispectral Darboux transformation from  .x; y/ to � .x; y/ which satisfies the

condition (a) of the theorem.

Proof. Since u� and �u� belong to Fx. /, the expressions b .u
�/ and b .�u�/ make

sense. Let r.y/ and�r.y/ denote the leading coefficients of these two expressions, respectively.

Define

'.x; y/ WD 1

�p.x/�r.y/�u
� �  .x; y/; and �d D

�
1

p.x/
u�u 1

�p.x/

�
:

Note that�u 1
�p.x/p.x/u �  .x; y/ D q.y/�q.y/ .x; y/. Furthermore, by assumption

u� 1

p.x/�p.x/�u
� �  .x; y/ D q.y/�q.y/ �  .x; y/:

This expression immediately implies

b .u
�/

1

q.y/�q.y/b .�u
�/ �  .x; y/ D p.x/�p.x/ .x; y/:

In particular, b .u
�/ 1
q.y/�q.y/b .�u

�/ is in the bispectral algebra and therefore

q.y/�q.y/ D r.y/�r.y/

up to a scalar multiple. This multiple equals 1 by the normalization in (3.3). Thus we have

u� 1

r.y/p.x/
� '.x; y/ D 1

r.y/�r.y/u
� 1

p.x/�p.x/u �  .x; y/ D  .x; y/

and thus '.x; y/ is a bispectral Darboux transformation of  .x; y/.

We also calculate

�d � � .x; y/ D 1

p.x/q.y/
u

�
�u 1

�p.x/p.x/u
�

�  .x; y/ D � .x; y/q.y/�q.y/
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Casper and Yakimov, Integral operators, bispectrality and Fourier algebras 19

and

�d� � '.x; y/ D 1

�p.x/�q.y/�u
�

�
u� 1

p.x/�p.x/�u
�

�
�  .x; y/ D '.x; y/q.y/�q.y/:

The functions � .x; y/ and '.x; y/ are both bispectral Darboux transformations of  .x; y/, so

the algebras Bx.� / and Bx.'/ are maximally commutative. Since � .x; y/ was self-adjoint

and maximally commutative, Bx. / is closed under �. Thus�d� is contained in both bispectral

algebras and by maximal commutativity we must have Bx.� / D Bx.'/. Furthermore, the two

bispectral Darboux transformations '.x; y/ and � .x; y/ are related by the identity

'.x; y/ D 1

�q.y/�r.y/a � � .x; y/ for a D 1

�p.x/�u
��u 1

�p.x/ 2 Fx.� /:

Then by the previous proposition a 2 Bx.� / and � .x; y/ D c'.x; y/ for some constant c. In

particular,
1

�p.x/�u
�q.y/�q.y/ �  D h.y/

1

p.x/
u �  :

This means
1

p.x/q.y/
u �  .x; y/ D c

�p.x/�r.y/�u
� �  .x; y/;

so that

�q.y/r.y/c�1 .x; y/ D �u 1

�p.x/�p.x/�u
� �  .x; y/:

Consequently,

b .�u/
c

�q.y/r.y/b .
�u�/ �  .x; y/ D �p.x/�p.x/ .x; y/:

Since p.x/ D �p.x/ this implies

b .�u/
c

�q.y/r.y/b .�u
�/ D b .u

�/
1

r.y/�r.y/b .�u
�/;

which simplifies to

b .�u/
1

�q.y/ D b .u
�/

1

c�r.y/ :

The left side is monic, so the right side must be also and hence c�r.y/ D r.y/. Thus since

q.y/ D�q.y/, we find

r.y/2 D q.y/2c

so that r.y/ D ˙p
cq.y/. Inserting this above yields

�u D ˙ u�

p
c
:

Since�u and u have the same leading coefficient, this simply says that

�u D .�1/d1u�

for d1 D ord.u/. By the same argument applied on the opposite side, we also obtain

b .�u/ D .�1/d2b .u/
�

for d2 D cord.u/.
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20 Casper and Yakimov, Integral operators, bispectrality and Fourier algebras

Corollary 3.23. The self-adjoint bispectral Darboux transformations of the exponen-

tial, Airy and Bessel functions are precisely those functions � .x; y/ that may be obtained by

a bispectral Darboux transformations of  exp;  Ai or  Be.�/ and are self-adjoint as bispectral

functions in the sense of Definition 3.16.

3.3. Interplay between adjoints and the generalized Fourier map. In this subsection

we discuss the interaction between the formal adjoint � and the generalized Fourier map b .

Specifically, we consider in this subsection the value of b .d
�/, assuming that both d and d�

are in Fx. /. It turns out that in the cases we consider, the value of b .d
�/ is related to b .d/

�

by a certain automorphism of the Weyl algebra. As a consequence of this, the elements of

Fx;sym. / are invariant under this automorphism. This invariance property of Fx;sym. / will

play an important role of our proof of Theorem A from the introduction.

For many self-adjoint bispectral meromorphic functions the associated algebras Fx. /

and Fy. / are closed under the formal adjoint operation �. This is true in particular of the ele-

mentary bispectral meromorphic functions: by Example 2.6, the Fourier algebras for  exp;  Ai

and Be.�/ are all closed under the operation of taking formal adjoints. The same property turns

out to hold for the Fourier algebras of all functions obtained by self-adjoint bispectral Darboux

transformations from them.

Proposition 3.24. Let � be a self-adjoint bispectral Darboux transformation of . Sup-

pose that Fx. / is closed under the formal adjoint operation �. Then Fx.� / is also closed

under the �-operation. The same statement holds with Fx replaced with Fy .

Proof. Let u;�u D u�; p.x/ D �p.x/ and q.x/ D�q.x/ be as in the definition of a self-

adjoint bispectral Darboux transformation with

� .x; y/ D 1

p.x/q.y/
u �  .x; y/:

Also define�a D 1
p.x/

uu� 1
p.x/

2 Fx;sym.� / with

�a � � .x; y/ D q.y/2� .x; y/:

Next note that for any differential operator q with meromorphic coefficients,

(3.10) q�a 2 Fx.� / H) q 2 Fx.� /:

This follows from the identity

q � � .x; y/q.y/2 D q�a � � .x; y/ D b� .q�a/� .x; y/;

which implies that

q � � .x; y/ D q.y/�2b� .q�a/ � � .x; y/:
For any�d 2 Fx.� /, one easily checks that

d WD u� 1

p.x/
�d 1

p.x/
u 2 Fx. /:

In fact, b .d/ D q.y/b� .
�d/q.y/. Since Fx. / is closed under �, it follows that

d� D u� 1

p.x/
�d� 1

p.x/
u 2 Fx. /:
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Casper and Yakimov, Integral operators, bispectrality and Fourier algebras 21

Consequently,

�a�d� � � .x; y/ D 1

q.y/
b .d

�/ � q.y/� .x; y/;

so that in particular�a�d� 2 Fx.� / for all�d 2 Fx.� /. In the remainder of the proof we show

that this implies that�d� 2 Fx.� /.
Let ` be the co-order of�d. Then ad`C1�a .�d/ is sent under b� to

.�1/`C1 ad`C1
q.y/2

.b .�d// D 0:

Since the generalized Fourier map is an anti-isomorphism, this implies that ad`C1�a .�d/ D 0.

Using the fact that�a is formally symmetric, we obtain that

0 D ad`C1�a .�d�/ D
`C1X

kD0

.�1/k
 
`C 1

k

!
�a`C1�k�d��ak :

This identity and the fact that �a�d�;�a 2 Fx.� / give that �d��a`C1 2 Fx.� /. By repeatedly

applying (3.10), we obtain that �d� 2 Fx. /. This proves that Fx.� / is closed under �. In

a similar way, one proves that Fy.� / is closed under �.

Assuming that both Fx. / and Fy. / are closed under the �-operation, we can define

automorphisms � ;x and � ;y of Fx. / and Fy. / by setting

(3.11) � ;x.d/ D b�1
 .b .d

�/�/ and � ;y.b/ D b .b
�1
 .d�/�/:

These automorphisms encode the interaction between the generalized Fourier map b and the

formal adjoint. Clearly, � ;x and � ;y restrict to the identity on Fx;sym. / and Fy;sym. /.

In the case  D  exp or  D  Be.�/ the automorphisms � ;x and � ;y are exactly

obtained by restricting the automorphism of the algebra of differential operators with rational

coefficients induced by the affine transformation x 7! �x and y 7! �y. In the case  D  Ai

the automorphisms are just the identity. Moreover, as a consequence of the previous proposi-

tion, for any self-adjoint bispectral Darboux transformation � of  D  exp;  Ai or  Be.�/ the

involutive automorphisms �� ;x and �� ;y are well defined. The next proposition shows that �� ;x
and �� ;y behave identically to � ;x and � ;y .

Proposition 3.25. Let  be a self-adjoint bispectral meromorphic function and let � 
be a self-adjoint bispectral Darboux transformation of  . Suppose that Fx. / and Fy. / are

closed under the formal adjoint operation �. Assume moreover that there are involutive auto-

morphisms �x and �y of the algebras of differential operators with meromorphic coefficients

in x and y, respectively, restricting to � ;x and � ;y . Then �x and �y also restrict to �� ;x
and �� ;y , respectively. In particular, the elements of Fx;sym.� / are fixed by �x and similarly

for Fy;sym.� /.

Proof of Proposition 3.25. Let u;�u D u�; p.x/ D �p.x/, and q.x/ D�q.x/ be as in the

definition of a self-adjoint bispectral Darboux transformation with

� .x; y/ D 1

p.x/q.y/
u �  .x; y/:

For sake of brevity set n D 1
p.x/

u. First note that if p.x/ is constant, then � .x; y/ is a con-
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22 Casper and Yakimov, Integral operators, bispectrality and Fourier algebras

stant multiple of  .x; y/ and the proposition is trivial. Therefore we assume otherwise. Sup-

pose that�d 2 Fx.� /. Then n��dn 2 Fx. / with b .n
��dn/ D q.y/b� .

�d/q.y/. In particular,

if�d 2 Fx;sym.� /, then n��dn 2 Fx;sym. /. Since � ;x acts as the identity on Fx;sym. /, for all

d 2 Fx;sym. / we have

n��dn D � ;x.n
��dn/ D �x.n

�/�x.�d/�x.n/:

Applying this to the case when�d D 1, we see that as pseudo-differential operators

�x.n
�/�1n� D �x.n/n

�1:

Since  .x; y/ is self-adjoint and � .x; y/ is a self-adjoint bispectral Darboux transformation

of  .x; y/, we know that p.x/2 2 Fx;sym. / \ Fx;sym.� /. Letting�d D p.x/2 2 Fx;sym.� /,
we calculate

�x.n/n
�1p.x/2 D p.x/2�x.n/n

�1:

Since p.x/ is nonconstant, this implies that �x.n/n
�1 D g.x/ for some rational function g.x/.

Thus for all�d 2 Fx;sym.� / we see

g.x/�dg.x/�1 D �x.�d/:

Since �x was assumed to be an involution, this implies that g.x/2 is in the center if Fx;sym. /,

and must therefore be constant. Hence g.x/ is constant, i.e., g.x/ D c for some constant c 2 C.

In particular, �x.n/ D cn and since �x is an involution, c2 D 1 so that c D ˙1. This also

implies that �.n�/ D cn.

Suppose that�d 2 Fx.� /. From the proof of the previous proposition, we know that

b .n
��dn/ D q.y/b� .

�d/q.y/:

From this, we see

b� .�� ;x.
�d// D b� .

�d�/�

D 1

q.y/
b .n

��d�n/�
1

q.y/

D 1

q.y/
b ı � ;x.n��dn/

1

q.y/

D 1

q.y/
b .n

��x.�d/n/
1

q.y/
D b� .�x.

�d//:

It follows that �� ;x.�d/ D �x.�d/ for all�d 2 Fx. /. A similar proof holds for Fy. /.

The following corollary follows immediately.

Corollary 3.26. If  .x; y/ is a self-adjoint bispectral Darboux transformation of  exp

or  Be.�/, then the elements of Fx;sym. / and Fy;sym. / are invariant under the affine trans-

formations x 7! �x and y 7! �y, respectively.

3.4. Formalization of commutativity of integral and differential operators. In the

final part of this section we formalize commutativity of integral and differential operators.
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Let � be a smooth curve in C and let D.�/ be the space of differential operators on

� with smooth coefficients. Let C1.�/ denote the space of smooth functions on � and let

C1
c .�/ be the subspace of C1.�/ consisting of functions with compact support. Consider

an integral operator T W f .x/ 7!
R
� K.x; y/f .y/ dy with kernel K.x; y/ smooth on � � �

and satisfying the property that the functions
R
� jK.x; y/j dx and

R
� jK.x; y/j dy both lie

in L1.�/. Then for any f .x/ 2 C1
c .�/ the integral

R
� K.x; y/f .y/ dy converges uniformly

to a smooth function T .f .x// 2 C1.�/. Furthermore, an operator d 2 D.�/ restricts to an

endomorphism ofC1.�/ andC1
c .�/. Thus for any f .x/ 2 C1

c .�/, the expressions T .d � f /
and d � .T .f // are both elements of C1.�/.

We say that the integral operator T and the differential operators d commute if

T .d � f / D d � .T .f // for all f 2 C1
c .�/:

4. Darboux transformations and growth of Fourier algebras

In this section we carry out two key steps of our strategy for going from bispectral mero-

morphic functions to integral operators possessing a commuting differential operator.

Firstly, we prove a theorem that gives a lower bound of the growth of the double filtration

of the Fourier algebra Fx.� / of a bispectral Darboux transformation � of  . Modulo technical

details we show that

jdim.F `;m
x .� // � dim.F `;m

x . //j � const

for a constant that is independent on ` and m. We also prove that a similar inequality holds for

F
`;m
x replaced with F

`;m
x;sym.

Secondly, we prove that if the dimension of the space F
`;m
x .� / satisfies a natural lower

bound, then it contains a bisymmetric operator with respect to a pair of contours.

4.1. Control of the growth of Fourier algebras under Darboux transformations.

Theorem 4.1. Suppose that  .x; y/ is a bispectral meromorphic function and that
� .x; y/ is a self-adjoint bispectral Darboux transformation of  .x; y/ of order .d1; d2/. Then

the following is true for all ` > d2 and m > d1:

dim.F `;m
x .� // � dim.F `;m�2d2

x . //C dim.F `�2d1;2d2�1
x . //C 1;

dim.F `;m
x;sym.

� // � dim.F `;m�2d2
x;sym . //C dim.F `�2d1;2d2�1

x;sym . //C 1:

Proof. By the definition of a self-adjoint bispectral Darboux transformation, there exists

a differential operator u 2 Fx. / and polynomials p.x/ 2 CŒx� and q.y/ 2 CŒy� such that

� D 1

p.x/q.y/
u �  ;

and such that for w D b .u/,

b .p.x/
2/ D w� 1

q.y/2
w

and

b�1
 .q.y/2/ D u� 1

p.x/2
u:
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24 Casper and Yakimov, Integral operators, bispectrality and Fourier algebras

Let d1 be the order of u and let d2 be the order of w. If d 2 F
`;m
x . /, then we have

p.x/dp.x/ � � .x; y/ D p.x/

q.y/
du �  .x; y/

D 1

q.y/
wb .d/ � p.x/ .x; y/

D 1

q.y/
wb .d/ � p.x/2 1

p.x/
 .x; y/

D 1

q.y/
wb .d/w

� 1

q.y/2
w � 1

p.x/
 .x; y/

D 1

q.y/
wb .d/w

� 1

q.y/
� � .x; y/:

This shows that p.x/dp.x/ 2 F
`;mC2d2
x .� / with

b� .p.x/dp.x// D 1

q.y/
wb .d/w

� 1

q.y/
:

In particular, we have an inclusion

p.x/F `;m
x . /p.x/ � F

`;mC2d2
x .� /:

Similarly, we can show that if b 2 F
m;`
y . /, then q.y/bq.y/ 2 F

m;`
y .� / with

b�1
� .q.y/bq.y// D 1

p.x/
ub�1
 .b/u� 1

p.x/
:

Thus we also have an inclusion

p.y/F m;`
y . /p.x/ � F

m;`C2d1
y .� /:

Therefore we have two inclusions

p.x/F `C2d1;m
x . /p.x/ � F

`C2d1;mC2d2
x .� /

and

b�1
� .q.y/F mC2d2;`

y . /q.y// � F
`C2d1;mC2d2
x .� /:

Furthermore,

p.x/F `C2d1;m
x . /p.x/ \ b�1

� .q.y/F 2d2�1;`
y . /q.y// D 0;

because the nonzero elements in p.x/F
`C2d1;m
x . /p.x/ are mapped under b� to elements of

order at least 2d2. Thus we can write

C ˚ p.x/F `C2d1;m
x . /p.x/˚ b�1

� .q.y/F 2d2�1;`
y . /q.y// � F

`C2d1;mC2d2
x .� /;

which in particular gives us the dimension estimate

dim.F `C2d1;mC2d2
x .� // � dim.F `C2d1;m

x . //C dim.F 2d2�1;`
y . //C 1:

The above inclusion also sends formally symmetric operators to formally symmetric operators,

and therefore

C ˚ p.x/F `C2d1;m
x;sym . /p.x/˚ b�1

� .q.y/F 2d2�1;`
y;sym . /q.y// � F

`C2d1;mC2d2
x;sym .� /;
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so that

dim.F `C2d1;mC2d2
x;sym .� // � dim.F `C2d1;m

x;sym . //C dim.F 2d2�1;`
y;sym /C 1:

This completes the proof of the theorem.

Corollary 4.2. Let  .x; y/ be a bispectral meromorphic function and let � .x; y/ be

a self-adjoint bispectral Darboux transformation of  .x; y/ of order .d1; d2/. Assume that for

some r > 0 there exist constants a11; a10; a01; a00 such that for all `;m � 0 we have

(4.1) dim.F r`;rm
x . // � a11`mC a10`C a01mC a00:

Then the growth of the Fourier algebra Fx.� / is controlled by the inequality

(4.2) dim.F r`;rm
x .� // � a11`mC .2a10 � a11/`C a01mC a00 ��c;

where

�c D a11

�
2d1

r

��
2d2 � 1
r

�
C a10

�
2d1

r

�
C a01

��
2d2

r

�
�
�
2d2 � 1
r

��
� a00 � 1:

The statement also holds if we replace F
r`;rm
x with F

r`;rm
x;sym in (4.1) and (4.2).

Remark 4.3. The precise form of�c in the above inequalities plays an especially impor-

tant role in practical implementations of the search for differential operators commuting with

integral operators, as we shall see below. This is because it provides an explicit bound for orders

and co-orders of the operators which we must search through to find an operator commuting

with our integral operator, and restricting our search to a finite-dimensional vector space.

Remark 4.4. We note that for all the cases of bispectral meromorphic functions  

which we have computed, the values of a11; a10; and a01 are the same for suitably chosen r .

Simply put, for all rank 1 or rank 2 bispectral functions  .x; y/, along with all other cases we

have considered, when � is a self-adjoint bispectral Darboux transformation of  , then

jdim.F r`;rm
x .� // � dim.F r`;rm

x . //j ��c

for�c defined as in Corollary 4.2. A similar statement holds for F
r`;rm
x replaced with F

r`;rm
x;sym .

Proof of Corollary 4.2. Plugging in the lower bound into the dimension estimate from

the previous theorem, we see

dim.F r`;rm
x .� // � dim.F r`;rm�2d2

x . /C dim.F r`�2d1;2d2�1
x /

� dim.F
r`;r.m�b

2d2
r

c/
x . //C dim.F

r.`�b
2d1

r
c/;rb 1

r
.2d2�1/c

x . //

� a11`

�
m �

�
2d2

r

��
C a10`C a01

�
m �

�
2d2

r

��
C a00

C a11

�
` �

�
2d1

r

���
2d2 � 1
r

�
C a10

�
` �

�
2d1

r

��

C a01

�
2d2 � 1
r

�
C a00 C 1

� a11`mC .2a10 � a11/`C a01mC a00 ��c:

Brought to you by | De Gruyter / TCS
Authenticated

Download Date | 10/4/19 3:58 PM
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In the cases considered in this paper, we will find

F
2`;2m
x;sym . / D `mC `CmC a00;

so that

F
2;2
x;sym. / D 3C a00:

In this case�c D d1d2 � a00, so that if � is a self-adjoint bispectral Darboux transformation of

 of order .1; 1/, then

dim.F 2;2
x;sym.

� // � 2.1C a00/:

This means that as long as a00 > 0, any self-adjoint bispectral Darboux transformation � of

order .1; 1/ will necessarily have a four-dimensional space of formally bisymmetric bispectral

differential operators. This will be shown by Proposition 4.7 below to in turn guarantee the

existence of a differential operator of order two commuting with an integral operator whose

kernel is defined using � .

4.2. Existence of bisymmetric operators. We next use the growth rate estimates

established above to prove that Fx. / must contain bisymmetric operators.

Lemma 4.5. A differential operator d 2 D.C.x// is formally symmetric if and only if

it has the form

(4.3) d D
nX

jD0

àjxaj .x/àjx

for some functions a0.x/; : : : ; aj .x/ 2 D.C.x//.

Proof. Clearly every differential operator of the form (4.3) is formally symmetric. In

the opposite direction, if d is formally symmetric, then necessarily d must have even order 2n.

If n D 0, then the statement of the lemma is true immediately. As an inductive assumption, sup-

pose that the statement of the lemma is true for formally symmetric operators of order � 2m.

Let d be an operator of order 2n for n D mC 1, and let an.x/ 2 C.x/ be the leading coeffi-

cient of d. Then d � ànxan.x/ànx is a formally symmetric operator of order � 2m. Therefore by

the inductive assumption

d � ànxan.x/ànx D
X̀

jD0

àjxaj .x/àjx

for some functions a0.x/; : : : ; an.x/ 2 C.x/. The lemma now follows by induction.

Lemma 4.6. Suppose that d 2 D.C.x// is formally symmetric with

d D
nX

jD0

àjxaj .x/àjx ;

and let � be a smooth path in C with endpoints p0; p1. Assume moreover that the poles of

aj .x/ are not on � . If a
.k/
j .pi / D 0 for all 0 � k < j and for all i with pi ¤ 1, then d is

symmetric with respect to � .
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Proof. By linearity, it suffices to show that if a.k/.pi / D 0 for all 0 � k < n then

d D ànxa.x/ànx is symmetric with respect to � . For f; g 2 C1
c .�/, integration by parts gives

Z

�

.a.x/f .x//.n/g.x/ dx D .�1/n
Z

�

f .x/a.x/g.n/.x/ dx

C
n�1X

jD0

.�1/j .a.x/f .x//.n�1�j /g.j /.x/jp1
p0

D .�1/n
Z

�

f .x/a.x/g.n/.x/ dx C 0:

Replacing f .x/ with f .n/.x/ yields
Z

�

.a.x/f .n/.x//.n/g.x/ dx D .�1/n
Z

�

f .n/.x/a.x/g.n/.x/ dx:

Swapping f and g in the last identity leads to

.�1/n
Z

�

f .n/.x/a.x/g.n/.x/ dx D
Z

�

f .x/.a.x/g.n/.x//.n/ dx:

Combining the two identities, we obtain
Z

�

.d � f .x//g.x/ dx D
Z

�

.a.x/f .n/.x//.n/g.x/ dx

D
Z

�

f .x/.a.x/g.n/.x//.n/ dx

D
Z

�

f .x/.d � g.x// dx:

This shows that d is symmetric with respect to � , completing the proof.

Proposition 4.7. Suppose that .x; y/ is a bispectral meromorphic function. Let �1; �2
be two smooth curves in C with the endpoints of �i equal to pi0 and pi1 (one of which is

allowed to be 1 for each i ). Assume that the coefficients of the bispectral operators of  .x; y/

are holomorphic in a neighborhood of �1 and �2. Assume moreover that for each i D 0; 1

either one of the following two conditions holds:

(i) pi0 D �pi1 and every operator of Fx;sym. / and Fy;sym. / is invariant under the trans-

formations x 7! �x and y 7! �y, respectively, or

(ii) one of the points pi0 or pi1 is 1.

If for some values of `;m we have

dim.F 2`;2m
x;sym . // >

1

2
`.`C 1/C 1

2
m.mC 1/C 1;

then Fx. / must contain an operator of positive order which is bisymmetric with respect

to .�1; �2/.

Proof. Without loss of generality, assume that pi0 is a finite point of �i . Suppose

d 2 F
2`;2m
x;sym . / with b .d/ D b. By Lemma 4.5,

d D
X̀

jD0

àjxaj .x/àjx and b D
mX

jD0

àjybj .y/àjy
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for some functions aj .x/; bj .y/ which are holomorphic in neighborhoods of pi0, for i D 1; 2,

respectively. The linear map F
`;m
x;sym. / ! C

1
2
`.`C1/ ˚ C

1
2
m.mC1/ defined by

d 7! .a
.r/
j .p10/0�r<j�`; b

.s/

k
.p20/0�s<k�m/

has a kernel of dimension at least

dim.F `;m
x;sym. // � `.`C 1/

2
� m.mC 1/

2
�

Moreover, if condition (i) or condition (ii) is satisfied, then the elements in the kernel are

bisymmetric with respect to .�1; �2/ by Lemma 4.6.

5. Differential operators commuting with integral operators

In this section, we prove the main theorems in the paper that self-adjoint bispectral mero-

morphic functions on ranks 1 and 2 give rise to integral operators possessing a commuting

differential operator. The kernel of the integral operator corresponding to such a bispectral

function � .x; y/ is given by

(5.1) �K.x; y/ D
Z

�2

� .x; z/� .y; z/ dz

for an appropriate smooth curve �2 � C. The commuting differential operator will come from

Fx;sym.� /. In order for the value of �K.x; y/ to exist and to define a kernel for an inte-

gral operator with the desired domain, we have to make certain assumptions about � .x; y/.
We specifically assume that � .x; y/ is holomorphic in a neighborhood of �1 � �2 and for

all j; k;m; n � 0,
Z

�1

jxmynàjxàky � � .x; y/j dx 2 L1.�2/;(5.2)

Z

�2

jxmynàjxàky � � .x; y/j dy 2 L1.�1/:

Note that the inclusion of the xmyn multiplier is vacuous unless �1 or �2 has an endpoint at

infinity, in which case the condition imposes a lower bound on the rate of decay of the partial

derivatives of � .x; y/. Under the above assumptions, the integral formula for �K.x; y/ exists

and satisfies the assumptions required for differentiation under the integral for operators of

arbitrary order. Therefore �K.x; y/ is holomorphic in a neighborhood of �1 � �1 and

àjxàky � �K.x; y/ D
Z

�2

.àjx � � .x; z//.àky � � .y; z// dz:

Furthermore, we have the norm estimate

kxmynàjxàky � �K.x; y/k1;�1
�





Z

jxmynàjx � � .x; y/j dy






1;�1






Z

jàkx � � .x; y/j dy






1;�1

;

where the L1-norm on the left is taken with respect to either x or y. In particular, (5.2) also

holds with � .x; y/ replaced with �K.x; y/ and �2 replaced with �1, and so differentiation

under the integral may also be applied to the integral operator defined with kernel �K.x; y/.
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5.1. Relationship to bisymmetric operators. The next theorem establishes that every

bisymmetric differential operator in the Fourier algebra of a bispectral function  .x; y/ auto-

matically commutes with the integral operator with kernel (5.1).

Theorem 5.1. Suppose that � .x; y/ is a bispectral meromorphic function and that

�1; �2 � C are two smooth curves such that � is holomorphic in a neighborhood of �1 � �2
and satisfies (5.2). If d 2 Fx;sym.� / is a bisymmetric differential operator with respect to

.�1; �2/ whose coefficients are holomorphic in a neighborhood of �1, then it commutes with

the integral operator

T W f .x/ 7!
Z

�1

�K.x; y/f .y/ dy with kernel �K.x; y/ D
Z

�2

� .x; z/� .y; z/ dz:

Proof. Denote b D b� .d/. Differentiation under the integral along with the fact that b

is symmetric with respect to �2 implies

dx � �K.x; y/ D
Z

�2

.dx � � .x; z//� .y; z/ dz

D
Z

�2

.bz � � .x; z//� .y; z/ dz

D
Z

�2

� .x; z/.bz � � .y; z// dz

D
Z

�2

� .x; z/.dy � � .y; z// dz D dy � �K.x; y/:

Moreover, for any f 2 C1
c .C/, Fubini’s theorem, differentiation under the integral and the

fact that d is symmetric with respect to �1 imply

d � T .f / D
Z

�1

.dx � �K.x; y//f .y/ dy

D
Z

�1

.dy � �K.x; y//f .y/ dy

D
Z

�1

�K.x; y/..dy � f .y// dy D T .d � f /:

It follows that d and T commute.

5.2. The rank 1 case.

Lemma 5.2. The exponential bispectral function  exp.x; y/ D exy satisfies

F
2`;2m
x;sym . exp/ D

´
X̀

jD0

àjxaj .x2/àjx W deg aj .x
2/ � 2m

µ
:

In particular,

dim F
2`;2m
x;sym . exp/ D `mC `CmC 1:

Proof. From Example 2.6 (1) we have Fx. exp/D D.CŒx�/ and Fy. exp/D D.CŒy�/,

so that both Fx. exp/ and Fy. exp/ are closed under �. Recall that Fx. exp/ is closed under
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30 Casper and Yakimov, Integral operators, bispectrality and Fourier algebras

the adjoint � so that the automorphism � D � exp;x defined by (3.11) is well defined. One may

readily check that the automorphism � agrees with the endomorphism � of the Weyl algebra

induced by the affine transformation x 7! �x, i.e.,

� W
X̀

jD0

aj .x/àjx 7!
X̀

jD0

aj .�x/.�1/j àjx :

Therefore the formally bisymmetric operators in Fx;sym. exp/ are exactly those fixed by � ,

which are those operators of the form

d D
X̀

jD0

àjxaj .x2/àjx

for some integer ` � 0 and some functions aj .x
2/ 2 CŒx�. The corresponding element of

Fy;sym. exp/ is

b exp
.d/ D

X̀

jD0

yjaj .à2y/yj :

From this the statement of the lemma follows immediately.

Theorem 5.3. Let � .x; y/ be a self-adjoint bispectral meromorphic function of rank 1,

and let �1 and �2 be two finite, smooth curves in C whose endpoints are ˙p1 and ˙p2,

respectively. Assume moreover that the coefficients of the operators in Fx.� / and Fy.� / are

holomorphic in a neighborhood of �1 and �2, respectively, and that � .x; y/ is holomorphic

in a neighborhood of �1 � �2 and satisfies (5.2). Then there exists a differential operator d of

positive order commuting with the integral operator

T W f .x/ 7!
Z

�1

�K.x; y/f .y/ dy with kernel �K.x; y/ D
Z

�2

� .x; z/� .y; z/ dy:

Moreover, the operator d may be taken to be in F
2d1d2;2d1d2
x;sym .� /, for .d1; d2/ the bidegree of

the self-adjoint bispectral Darboux transformation from  exp.x; y/ D exy to � .x; y/.

Remark 5.4. The rank one bispectral functions � .x; y/ are all of the form

exy
h.x; y/

p.x/q.y/

for some polynomials p.x/; q.y/; h.x; y/. The poles of the coefficients of operators in Fx.� /
and Fy.� / occur at the zeros of p.x/ and q.y/, respectively. In particular, as long as �1 avoids

the zeros of p.x/ and �2 avoids the zeros of q.y/, and the endpoints of �1 and �2 satisfy the

desired symmetry, the assumptions of the above theorem will be satisfied.

Proof. Suppose that � .x; y/ is a self-adjoint bispectral meromorphic function of rank 1.

Then by Lemma 5.2 and Corollary 4.2, we have

dim F
2`;2m
x;sym .� / � `mC `CmC 2 � d1d2:

Thus for ` D m, we have

dim F
2m;2m
x;sym .� / � m2 C 2mC 2 � d1d2 > m2 CmC 1
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for m � d1d2. Proposition 4.7 combined with Corollary 3.26 implies that F
2d1d2;2d1d2
x;sym .� /

contains a differential operator bisymmetric with respect to .�1; �2/. This differential operator

commutes with the integral operator T by Theorem 5.1.

5.3. The rank 2 Airy case. We next deal with the bispectral Darboux transformations

in the rank 2 Airy case. The relevant integral operator differs in this case from the integral

operators in the rank 1 case and in the rank 2 Bessel case (discussed below) in that the kernel is

not compactly supported. For the resultant kernel to satisfy (5.2), the support must be contained

in a certain subdomain of the complex plane. For this reason, for all � > 0 we consider the

domain

†� D
²
rei� 2 C W r > 0; j� j < �

6
� �

³
:

The Airy function is holomorphic on this domain and has the asymptotic expansion

 Ai.x C y/ D e� 2
3
.xCy/

3
2

 
1X

jD1

cj .x C y/�
j
4

!

for some real constants cj 2 R where .x C y/
1
4 is interpreted as the principal fourth root of

.x C y/. Furthermore, any bispectral Darboux transformation of  Ai.x C y/ will be equal to

� .x; y/ D 1

p.x/q.y/
u �  Ai.x C y/

for some rational functions p.x/; q.y/ and some differential operator u with rational coeffi-

cients. Thus for any bispectral Darboux transformation of  Ai.x C y/ we have the asymptotic

estimate

kàjxàky �  Ai.x C y/k D e� 2
3
.xCy/

3
2

O..jxj C jyj/ 1
2
.jCk/Cm/

for some integer m.

Note that z 7! 2
3
z

3
2 sends � into the sector ¹rei� 2 C W r > 0; j� j < �

4
� 3
2
�º. There-

fore if �1; �2 � †� are smooth, semi-infinite curves inside this domain with parametrizations


i .t/ W Œ0;1/ ! C, then the real part of �2
3
.
1.t/C 
2.s//

3
2 must go to �1 as t ! 1 or

s ! 1. Therefore the above asymptotic estimate shows that � .x; y/ will satisfy (5.2) for any

pair of curves �1; �2 � †�.

Lemma 5.5. The Airy bispectral function  Ai.x; y/ D Ai.x C y/ satisfies

dim F
2`;2m
x;sym . Ai/ D `mC `CmC 1:

Proof. Recall from Example 2.6 (3) that

Fx. Ai/ D D.CŒx�/ and Fy. Ai/ D D.CŒy�/:

In particular, Fx. Ai/ is closed under �. From the description of b Ai
in Example 2.6 (3) one

easily sees that b Ai
and � commute. Therefore d 2 Fx. Ai/ is formally bisymmetric if and

only if d� D d.

Recall that the space Bx. Ai/ contains all polynomials in x as well as the Airy operator

dAi;x D à2x � x. Moreover, for d 2 F
`;m
x . Ai/ the Ad-condition admC1

dAix
.d/ D 0 implies that

the leading coefficient of d must be a polynomial. For each j; k � 0 consider the formally

symmetric differential operator in Fx. Ai/ defined by

ajkx D d
j
Ai;xx

k C xkd
j
Ai;x;
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which in particular has order 2j and leading coefficient 2xk . The anti-isomorphism b Ai
sends

ajkx to ajky , so ajkx 2 Fx;sym. Ai/.

If d is self-adjoint, it must have even order with polynomial leading coefficient. Thus

by comparing leading coefficients, we see that Fx;sym. Ai/ has basis ¹ajkx W j; k � 0º. There-

fore comparing orders we see that F
2`;2m
x;sym . Ai/ has basis ¹aj ix W 0 � j � l; 0 � k � mº. In

particular, it has dimension .`C 1/.mC 1/.

Theorem 5.6. Let � .x; y/ be a self-adjoint bispectral Darboux transformation of the

Airy bispectral function  Ai.x; y/ D Ai.xCy/, and let �1 and �2 be two semi-infinite, smooth

curves in †� for some � > 0 whose finite endpoints are p1 and p2, respectively. Assume more-

over that � .x; y/ is holomorphic in a neighborhood of �1 � �2 and satisfies (5.2) and that the

operators Fx.� / and Fy.� / have holomorphic coefficients in a neighborhood of �1 and �2,

respectively. Then there exists a differential operator d of positive order commuting with the

integral operator

T W f .x/ 7!
Z

�1

�K.x; y/f .y/ dy with kernel �K.x; y/ D
Z

�2

� .x; z/� .y; z/ dy:

Moreover, the operator d may be taken to be in F
2d1d2;2d1d2
x;sym .� /, for .d1; d2/ the bidegree the

self-adjoint bispectral Darboux transformation from  Ai.x; y/ to � .x; y/.

Remark 5.7. The bispectral Darboux transformations of the Airy bispectral function

will be holomorphic away from the roots of a polynomial p.x/ and a polynomial q.y/, which

are the polynomials entering in the definition of the concrete bispectral Darboux transformation

as in (3.2). Furthermore, the poles of the coefficients of the operators in Fx.� / and Fy.� /
occur at the roots of these polynomials also. Therefore the assumptions of the theorem will be

automatically satisfied as long as �1 and �2 are both semi-infinite paths in †� which avoid the

zero sets of p.x/ and q.y/.

Proof. By Lemma 5.5 and Corollary 4.2, we have

dim F
2`;2m
x;sym .� / � `mC `CmC 2 � d1d2

for some constant c. Thus for ` D m, we have

dim F
2m;2m
x;sym .� / � m2 C 2mC 2 � d1d2 > m2 CmC 1

for m � d1d2. By Proposition 4.7, F
2d1d2;2d1d2
x;sym .� / contains a differential operator which is

bisymmetric with respect to .�1; �2/. It follows from Theorem 5.1 that this differential operator

commutes with the integral operator T .

5.4. The rank 2 Bessel case.

Lemma 5.8. Let � 2 R n Z. The Bessel bispectral function

 Be.�/.x; y/ D p
xyK�C 1

2
.xy/

satisfies

dim F
2`;2m
x;sym . Be.�// D `mC `CmC 1:
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Proof. It follows from Example 2.6 (2) that the algebra Fx. Be.�// is generated over

C by the Bessel operator dBe.�/x D à2x � �.�C1/

x2 the operator sx D xàx and x2. In particu-

lar, all of the elements of Fx. Be.�// are invariant under the change of coordinates x 7! �x.

Furthermore, for all j; k � 0,

ajk D skxd
j

Be.�/x
.s�
x/
k and bjk D skxx

2j .s�
x/
k

are formally symmetric differential operators with

ord.ajk/ D 2j C 2k; ord.bjk/ D 2k; cord.ajk/ D 2k; cord.bjk/ D 2j C 2k:

In particular, ord.ajk/ � cord.ajk/ and ord.bjk/ � cord.bjk/ with equality if and only if j is

zero. Thus the set

¹ajk W j C k � `; k � mº [ ¹bjk W j C k � m; k � `; j ¤ 0º

is a linearly independent collection of .`C 1/.mC 1/ elements of F
2`;2m
x;sym . Be.�//.

If d 2 Fx;sym. 
2`;2m
Be.�/

/ is an arbitrary operator, then the Ad-condition

ad2mC1
dBe.�/;x

.d/ D 0

implies that the leading coefficient of d must be a polynomial. Furthermore, since d is formally

symmetric it must have even order. Finally, since d must be invariant under the transforma-

tion x 7! �x, the leading coefficient of d must be a polynomial in x2. Therefore by compar-

ing leading coefficients, we see that d must lie in the span of the ajk and bjk . Thus the set

¹ajk;bjk W j; k � 0º forms a basis for Fx;sym. Be.�// and by noting the orders and co-orders,

we see that the linearly independent collection noted in the previous paragraph is actually

a basis for F
2`;2m
x;sym . Be.�//.

Theorem 5.9. Let � .x; y/ be a self-adjoint bispectral Darboux transformation of the

bispectral Bessel function  Be.�/, and let �1 and �2 be two finite, smooth curves in C whose

endpoints are ˙p1 and ˙p2, respectively. Assume moreover that the coefficients of the opera-

tors in Fx.� / and Fy.� / are holomorphic in a neighborhood of �1 and �2, respectively, and

that � .x; y/ is holomorphic in a neighborhood of �1 � �2 and satisfies (5.2). Then there exists

a differential operator d of positive order commuting with the integral operator

T W f .x/ 7!
Z

�1

�K.x; y/f .y/ dy with kernel �K.x; y/ D
Z

�2

� .x; z/� .y; z/ dy:

Moreover, the operator d may be taken to be in F
2d1d2;2d1d2
x;sym .� /, for .d1; d2/ the bidegree the

self-adjoint bispectral Darboux transformation from  Be.�/ to � .x; y/.

Remark 5.10. As in the rank 1 and the Airy case, the assumptions of Theorem 5.9 will

be automatically satisfied as long as the end points of �1 and �2 satisfy the symmetry condition

stated above and the curves avoid the branching point 0 of the Bessel functions and the roots of

the polynomials p.x/ and q.y/, entering in the definition of the concrete bispectral Darboux

transformation as in (3.2).

Proof. By Lemma 5.8 and Corollary 4.2, we have

dim F
2`;2m
x;sym .� / � `mC `CmC 2 � d1d2
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for some constant c. Thus for ` D m, we have

dim F
2m;2m
x;sym .� / � m2 C 2mC 2 � d1d2 > m2 CmC 1

for m � d1d2. Proposition 4.7 and Corollary 3.26 imply that F
2d1d2;2d1d2
x;sym .� / contains a dif-

ferential operator bisymmetric with respect to .�1; �2/. This differential operator commutes

with the integral operator specified in the statement of the proposition by Theorem 5.1.

6. Classification of self-adjoint bispectral meromorphic functions

In this section we describe a classification of the self-adjoint bispectral meromorphic

functions that appear in Theorems 5.3, 5.6, and 5.9. This classification is given in terms of

(infinite-dimensional) lagrangian versions of Wilson’s adelic Grassmannian [41]. We use the

construction of the latter in terms of bispectral Darboux transformations as in [5].

6.1. The adelic Grassmannian. By Theorem 3.8, the class of rank 1 bispectral mero-

morphic functions is precisely the class of bispectral Darboux transformations of the exponen-

tial function  exp.x; y/ D exy , normalized as in Remark 3.2. A function � .x; y/ in this class

has the form

(6.1) � .x; y/ D h.x; y/

p.x/q.y/
exy

for some polynomials p.x/ 2 CŒx�, q.y/ 2 CŒy� and a polynomial h.x; y/ 2 CŒx; y�. (Note

however that not all functions of the form (6.1) are bispectral Darboux transformations of

 exp.x; y/ D exy ; the polynomials p.x/; q.y/; h.x; y/ need to satisfy some conditions.) We

can recover the bispectral transformation data from this form. Writing

h.x; y/ D
mX

iD0

nX

jD0

aijx
iyj ;

we define the operators

vL D
mX

iD0

nX

jD0

aijx
iàjx 2 Fx;sym. exp/ and vR D

mX

iD0

nX

jD0

aijy
j àiy 2 Fy;sym. exp/:

Then vR is the Fourier transform b exp
of vL and by virtue of their definition,

� .x; y/ D 1

p.x/q.y/
vL �  exp.x; y/ and � .x; y/ D 1

p.x/q.y/
vR �  exp.x; y/:

Let C be the span of all linear functionals of the form ı.k/.y � a/ for k 2 N and a 2 C,

defined on smooth functions by

hf .y/; ı.k/.y � a/i D f .k/.a/:

Note that C comes with a natural left action of CŒy�, defined by

f .y/ � ı.k/.y � a/ D
kX

jD0

kŠ

.k � j /Šj Šı
.j /.y � a/f .k�j /.a/:
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For a given � .x; y/, we define the set of linear functionals

CL.� / D ¹� 2 C W hexyh.x; y/; �.y/i D 0º:

The vector space CL.� / is finite-dimensional and naturally isomorphic to the kernel of the

differential operator vL. Specifically, for any � 2 CL.� / we have

0 D hexyh.x; y/; �.y/i D hvL � exy ; �.y/i D vL � hexy ; �.y/i;

so that � 7! hexy ; �.y/i defines a linear map of CL.� / into ker.vL/. With a reverse argument

one shows that this is an isomorphism.

Conjugation by 1
p.x/

vL sends Bx.� / into CŒàx�. In fact,

Bx.� / D
²

vLf .àx/v�1
L p.x/

p.x/
W f .àx/ 2 CŒàx�; and vLf .àx/v�1

L is a differential operator

³
:

From the study of kernels of differential operators, we know that vLf .àx/v�1
L is a differential

operator if and only if f .àx/ � ker.vL/ � ker.vL/. Each element of the kernel of vL is of the

form hexy ; �.y/i for some � 2 CL.� /. Therefore

f .àx/ � hexy ; �.y/i D hexy ; f .y/ � �.y/i:

Thus, if f .àx/ preserves the kernel, then

hexy ; f .y/ � �.y/i D
X

�2CL.� /

hexy ; c��i;

which in turn implies that

f .y/ � �.y/ D
X

�2CL.� /

c��:

Thus,

Bx.� / D
²

1

p.x/
vLf .àx/v�1

L p.x/ W f .àx/ 2 CŒàx�; f .y/ � CL.� / � CL.� /
³
:

For a finite-dimensional subspace C of C , define

VC D ¹f .y/ 2 CŒy� W hf .y/; �.y/i D 0; 8� 2 C º:

By a direct argument, one shows that f .y/ � C � C if and only if f .y/VC � VC . This gives

the following characterization of Bx.� /:

Bx.� / D
²

1

p.x/
vLf .àx/v�1

L p.x/ W f .àx/ 2 CŒàx�; f .y/VCL.� / � V
CL.� /

³
:

It motivates the following definition of the rational Grassmannian Grrat of Wilson [41].

Definition 6.1. We define the rational Grassmannian Grrat to be the set of all sub-

spaces W of C.y/ of the form

W D 1

q.y/
VC

for some C � C and q.y/ 2 CŒy� with dim.C / D deg.q.y//. The subspace C � C is called

the space of conditions of W .
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To each point W 2 Grrat, we can associate an algebra

AW D ¹f .y/ 2 CŒy� W f .y/W � W º:
The pair .W;AW / is called a Schur pair. From the construction above, we have shown that

every bispectral meromorphic function � .x; y/ of rank 1 corresponds to a point W in Grrat

whose associated algebra AW is isomorphic to Bx.� /.
Not every point of Grrat corresponds to a bispectral meromorphic function. In order for

this to be true, the space of conditions C of W must be homogeneous.

Definition 6.2. For any point c 2 C, let Cc denote the subspace of C spanned by linear

functionals of the form ı.k/.x � c/ for k � 0 an integer. Put another way, Cc is the subspace

of linear functionals of C supported at the point c. A linear functional � 2 C is called ho-

mogeneous if � 2 Cc for some value c 2 C. A finite-dimensional subspace C of C is called

homogeneous if it is spanned by homogeneous elements. Equivalently, C is homogeneous if

C D
M

c2C

C \ Cc :

Wilson showed that bispectral meromorphic functions give rise to points W 2 Grrat with

CL.� / homogeneous. He also proved that the converse is true: a point

W D 1

q.y/
VC

in Grrat with C homogeneous gives rise to a bispectral meromorphic function � .x; y/ with

CL.� / D C .

Definition 6.3. We define the adelic Grassmannian Grad to be the subset of Grrat con-

sisting of the subspaces W of C.y/ of the form

W D 1

q.y/
VC ;

where C � C is homogeneous and

(6.2) q.y/ D
Y

c2C

.y � c/n.c/; n.c/ D dim.C \ Cc/:

The above correspondence between the points of Grad and the normalized (as in

Remark 3.2) bispectral Darboux transformations � .x; y/ of  exp.x; y/ is a bijection.

6.2. A classification in rank 1 in terms of fixed points of involutions. In [41] Wilson

defined two involutions of the adelic Grassmannian Grad: the adjoint and sign involutions.

The adjoint involution on Grad sends a pointW 2 Grad to the point aW 2 Grad, given by

aW D
²
f .y/ 2 CŒy� W 1

2�i

I

jyjD1

f .y/g.�y/ dz D 0 for all g.y/ 2 W
³
;

see [41, Section 7] for details. Letting � .x; y/ and a� .x; y/ be the associated bispectral mero-

morphic functions, the bispectral algebras of � and a� are related by the formal adjoint

(6.3) Bx.a� / D ¹d� W d 2 Bx.� /º; By.a� / D ¹d� W d 2 By.� /º;
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see [41, Corollary 7.7]. If � .x; y/ is given as a bispectral Darboux transformation of exp.x; y/

as

� .x; y/ D 1

q.y/p.x/
u �  exp.x; y/;(6.4)

 exp.x; y/ D �u � 1

�q.y/�p.x/
� .x; y/;

then a� .x; y/ is given by

a� .x; y/ D 1

�q.�y/�p.x/�u
� �  exp.x; y/;(6.5)

 exp.x; y/ D u� 1

q.�y/p.x/ � a� .x; y/;

see [5, Proposition 1.7 (i)].

The sign involution s of Grad, defined in [41, Section 8], is given by

W 7! sW WD ¹f .�y/ W f .y/ 2 W º:
On the level of bispectral functions, the sign involution is given by

(6.6) s� .x; y/ WD � .�x;�y/:
The associated bispectral algebras are related by

(6.7) Bx.s� / D �Bx.� /;
where � is the automorphism of the algebra of differential operators with rational coefficients

(6.8) �.x/ D �x; �.àx/ D �àx :

Theorem 6.4. Let � .x; y/ be a bispectral meromorphic function of rank 1. Then the

following are equivalent:

(1) � .x; y/ is self-adjoint.

(2) The algebra Bx.� / is closed under the formal adjoint � and the transformation � .

(3) The planeW 2 Grad corresponding to � .x; y/ is invariant under the adjoint a and sign s

involutions of Grad.

Proof. (1) ) (3) Let � .x; y/ be a self-adjoint bispectral Darboux transformation of

 exp.x; y/ with the notation of Definition 3.1 and the normalization of Remark 3.2. By (6.5),

a� .x; y/ D 1

�q.�y/�p.x/�u
� �  .x; y/ D 1

q.y/�p.x/u �  .x; y/ D � .x; y/:

Since

� exp;x D � jFx. exp/

(see Section 3.3), it follows from (6.6) that

s� .x; y/ D 1

q.�y/p.�x/.�.u// �  .x; y/ D 1

q.y/p.x/
u �  .x; y/ D � .x; y/:

Here the equalities q.�y/ D q.y/ and p.�x/ D p.x/ follow from the facts that q.y/ and p.x/

are the leading coefficients of the differential operators u and b exp
.u/ (see Remark 3.2) and

the facts that these operators are fixed under � exp;x and � exp;y , respectively.
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(3) ) (1) If the plane W 2 Grad corresponding to � .x; y/ is invariant under the adjoint

and sign involutions of Grad, then it follows from (6.2) that q.�y/ D q.y/. Applying Wilson’s

bispectral involution b of Grad (cf. [41, Section 8]) to � , and using that bs D sb and ab D bsa

(cf. [41, Section 8]), gives that p.�x/ D p.x/. The rest of this implication is proved with a

reverse argument to the one used for the previous implication.

The equivalence (1) , (3) follows from (6.3) and (6.7).

6.3. The Lagrangian adelic Grassmannian. In this subsection we provide a geomet-

ric classification of the self-adjoint bispectralfunctions of rank 1. Specifically, we relate the

points of Grad fixed by the adjoint a and sign s involutions to certain Lagrangian subspaces of

kernels of formally symmetric differential operators with constant coefficients.

Definition 6.5. Let d be a differential operator

d D
mX

jD0

dj .x/àjx :

The bilinear concomitant of d is the bilinear form Cd. � ; � Ip/ defined on pairs of sufficiently

smooth functions f .x/; g.x/ by

Cd.f; gIp/ D
mX

jD1

j�1X

kD0

.�1/kf .j�1�k/.x/.dj .x/g.x//
.k/jxDp

D
mX

jD1

j�1X

kD0

kX

`D0

 
k

`

!
.�1/kf .j�1�k/.x/dj .x/

.k�`/g.x/.`/jxDp:

Equivalently, for Cd.x/ the m �m matrix whose n; `-th entry is given by

(6.9) Cd.x/n;` D
mX

jDnC`�1

 
j � n
` � 1

!
.�1/j�ndj .x/

.jC1�n�`/

the bilinear concomitant may be expressed as

Cd.f; gIp/ D Œf .x/ f 0.x/ : : : f .m�1/.x/�Cd.x/Œg.x/ g
0.x/ : : : g.m�1/.x/�T jxDp:

Note also that via integration by parts, we find that

(6.10)

Z x1

x0

Œ.d � f .x//g.x/ � f .x/.d� � g.x//� dx D Cd.f; gI x1/ � Cd.f; gI x0/:

In this way the bilinear concomitant may be seen to act as a means of comparison between

the formal adjoint d� of a differential operator d and the adjoint of d as an unbounded linear

operator on a sufficiently nice space of functions on a path connecting x0 to x1.

First we prove a general classification result for the factorizations of a formally sym-

metric differential operator d (i.e., d D d�) with analytic coefficients into a product u�u for

differential operators u with analytic coefficients.

Start with a (not necessarily formally symmetric) differential operator d with analytic

coefficients on an open subset of C. Choose a sufficiently small connected open subset O of C

such that the kernels ker d and ker d� in the space of holomorphic functions on O have dimen-

sion equal to the order of d. Note from (6.10) that if f .x/ 2 ker.d/ and g.x/ 2 ker.d�/, then
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for all pairs of points x0; x1 we have Cd.f; gI x1/ D Cd.f; gI x0/. Thus the bilinear concomi-

tant Cd. � ; � Ip/ restricts to a pairing

Cd. � ; � / W ker.d/ � ker.d�/ ! C

which is independent of the value of p, where m D ord d. Let f1.x/; : : : ; fm.x/ be a basis for

the kernel of d and let g1.x/; : : : ; gm.z/ be a basis for the kernel of d�. Consider the matrix

Md WD WrŒf1.x/; : : : ; fm.x/�
TCd.x/WrŒg1.x/; : : : ; gm.x/�

where WrŒ � � denotes the Wronskian matrix and Cd.x/ is the matrix defined in (6.9). Then

Md is a constant matrix representing the pairing with respect to the chosen bases. If Md is

singular, then there exists a constant vector Ec with EcTMd D 0. Note that since the Wronskian

is nonsingular, the matrix Md is singular if and only if there exists an element f .x/ 2 ker.d/

with Cd.f; g/ D 0 for all g. Using the integral formula in (6.10), this would in fact implyR x1

x0
f .x/.d� � g.x// dx for all g.x/. That is, f .x/ would have to lie orthogonal to the closure

of the image of d� on the Hilbert space of square integrable function of a suitably chosen path

from x0 to x1. However, the image of d� will be dense, so this in turn implies that f .x/ is zero.

Hence Cd. � ; � / is nonsingular and defines a non-degenerate pairing.

The bilinear concomitant of d� is related to that of d by

Cd�.f; gIp/ D �Cd.g; f Ip/:
This in particular, when d is formally symmetric the bilinear concomitant defines a symplectic

form on ker d.

Now suppose that d D d�. Recall that factorizations of d correspond to choices of sub-

spaces of ker d. Specifically given a subspace V � ker d, there exists a differential operator b

(unique up to multiplication by a function on the left) with ker b D V and d D ab for some

differential operator a. Since d D d�, this also implies that d D b�a� so that a� also corre-

sponds to a certain subspace of ker d, which turns out to be exactly the orthogonal subspace

V ? of V under the symplectic form defined by the bilinear concomitant. In particular, in the

special case of a factorization of the form d D b�b, the subspace V of b satisfies V ? D V ,

i.e., is a Lagrangian subspace of ker.d/. This is the content of the next theorem.

Theorem 6.6. Let d be a monic formally symmetric operator on an open subset O of C.

Choose O sufficiently small so that the kernel ker d in the space of holomorphic functions on O

has dimension equal to the order of d. Let a; b 2 O with a ¤ b.

If d has a factorization d D ab into differential operators a;b with analytic coefficients

on O, then ker b and ker a� are complementary subspaces of ker d relative to the symplectic

form Cd. Furthermore, given a subspace V � ker d there exist monic differential operators

a;b satisfying ker a� D V ? and ker b D V .

In particular, factorizations of the form d D b�b for monic differential operators b with

analytic coefficients on O are in bijective correspondence with Lagrangian subspaces of ker d.

Proof. Suppose that d is an operator of order m and has a factorization of the form

d D ab. If ord b D r , then ord a D m � r . Since d D d�, we have d� D b�a�. Therefore

ker a� and ker b are subspaces of ker d of dimension m � r and r , respectively. Following

Wilson in [40], for all f; g we have that

Cd.f; gIp/ D Ca.b � f; gIp/C Cb.f; a
� � gIp/:
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This implies that for all f 2 ker b and g 2 ker a� we must have Cd.f; gIp/ D 0. Hence

ker a� � .ker b/?:

Since the dimension of .ker b/? must be m � r , this implies that ker a� D .ker b/?. This

proves the first claim of the theorem.

To prove the second claim, we start with an arbitrary subspace V � ker d. Then the usual

construction may be used to produce a differential operator b whose kernel is V . Then since the

kernel of b is contained in the kernel of d, there must exist a differential operator a with d D ab.

By the previous argument then ker a� D V ?. This proves the second claim of the theorem.

In the special case that d D b�b, we must have that ker b D .ker b/?. Thus in this case,

the kernel of b defines a Lagrangian subspace of ker d. Conversely, a lagrangian subspace

V � ker.d/ defines a factorization d D ab, where ker a� D ker b. This implies that a� D h.x/b

for some function h.x/, and therefore that d D b�h.x/b. Setting c D ˙
p
h.x/b, this gives us

a factorization d D c�c for a monic differential operator c.

By the discussion in Section 6.1, the bispectral functions in the adelic Grassmannian are

obtained as follows. Start with a differential operator with constant coefficients

d D
Y

j

.àx � cj /mj :

Its kernel in the space of entire functions consists of the quasipolynomials

ker d D
²X

j

pj .x/e
cjx W degpj .x/ � nj � 1

³
:

Let V be a subspace of ker d having a basis consisting of quasiexponential functions each of

which contains a single exponent ecjx; this is the adelic condition. Let 1
p.x/

u be the unique

monic differential operator such that ker u D V and u 2 Fx. exp/ (i.e., u has polynomial

coefficients). Let

q.y/ D
Y
.y � cj /nj ;

where nj equals the number of basis elements of V whose exponent is ecjx . The bispectral

functions in the adelic Grassmannian are the functions of the form

� .x; y/ D 1

q.y/p.x/
u � exy :

The corresponding W 2 Grad (recall Definition 6.3) is obtained as follows: it corresponds to

the unique space of conditions C � C such that

V D C.exy/;

keeping in mind that the delta function in C act in the variable y.

With this in mind, we define the Lagrangian adelic Grassmannian.

Definition 6.7. The Lagrangian adelic Grassmannian is the sub-Grassmannian Grad
Lagr

of Grad consisting of those points for which d� D d and the corresponding subspaces V as

above are

(1) Lagrangian subspaces of ker d with respect to the symplectic form Cd. � ; � / and

(2) are preserved under the transformations x 7! �x.
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Combining Theorems 6.4 and 6.6, we obtain the following:

Theorem 6.8. The self-adjoint bispectral functions of rank 1 are in bijective correspon-

dence with the points of the Lagrangian adelic Grassmannian Grad
Lagr.

This theorem gives an explicit algorithmic way to construct all self-adjoint bispectral

functions of rank 1.

6.4. Classification of the self-adjoint transformations in the Airy and Bessel cases.

In this subsection we describe extensions of the results in Sections 6.2–6.3 to the rank 2 Airy

and Bessel cases.

The Sato’s Grassmannian classifies the solutions of the KP hierarchy. We refer the reader

to [31] for details. The adelic Grassmannian is naturally embedded in it. In [5, Sections 2–4]

it was proved that the families of (normalized) bispectral Darboux transformations of the

Bessel functions  Be.�/ and Airy functions  Ai are canonically embedded in it, forming sub-

Grassmannians which we will denote by Grad;Be.�/ and Grad;Ai, respectively. (The Grassmanni-

ans Grad;Be.�/ and Grad;Ai are disjoint from Grad which is also naturally embedded in the Sato’s

Grassmannian.)

In [5, Section 1.4] Wilson’s adjoint a and sign s involutions were extended to Sato’s

Grassmannian and it was shown that (6.3)–(6.7) are satisfied whenever � .x; y/ and  exp.x; y/

are replaced with any pair of wave functions of the KP hierarchy that satisfy the transfor-

mation property (6.4). Moreover, in [5, Sections 2 and 4] it was proved that a preserves

Grad;Be.�/ and Grad;Ai, while s preserves Grad;Be.�/. Similarly to Theorem 6.9, using the fact

that � Ai;x D id and � Be.�/;x D � (cf. Section 3.3 and equation (6.8)), one proves the follow-

ing:

Theorem 6.9. (a) Let � .x; y/ be a (normalized) bispectral Darboux transformation

from the Airy bispectral function  Ai.x; y/. Then the following are equivalent:

(1) � .x; y/ is self-adjoint.

(2) The algebra Bx.� / is closed under the formal adjoint �.

(3) The plane W 2 Grad;Ai corresponding to � .x; y/ is invariant under the adjoint involu-

tion a of Grad;Ai.

(b) Let � .x; y/ be a (normalized) bispectral Darboux transformation from the Bessel

bispectral function  Be.�/.x; y/ for � 2 C n Z. Then the following are equivalent:

(1) � .x; y/ is self-adjoint.

(2) The algebra Bx.� / is closed under the formal adjoint � and the transformation �

from (6.8).

(3) The plane W 2 Grad;Be.�/ corresponding to � .x; y/ is invariant under the adjoint a and

sign s involutions of Grad;Be.�/.

The (normalized) bispectral Darboux transformations from  Ai.x; y/ and  Be.�/.x; y/

(for � 2 C n Z) are constructed as follows, see [5, Sections 2 and 4] for details. Let d be a dif-

ferential operator which is a polynomial with constant coefficients in the differential operators

dAi;x (resp. dBe.�/;x) from Table 1. (As a consequence of this, d� D d.) Let O be an open
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connected subset of C such that the dimension of the kernel of d in the space of holomorphic

functions on O equals the order of d. The kernel of the operator d is given in terms of deriva-

tives of the Airy function (resp. derivatives of the Bessel functions and products of powers of x

and logarithmic functions) by [5, Proposition 4.9 and Lemma 2.1].

The planes in Grad;Ai and Grad;Be.�/ correspond to bispectral functions of the form

� .x; y/ D 1

q.y/p.x/
u �  .x; y/;

where

 .x; y/ D  Ai.x; y/ resp.  .x; y/ D  Be.�/.x; y/;

ker u is a subspace of d satisfying certain adelic type conditions [5, Definition 2.5 and Propo-

sition 4.9], and q.y/, p.x/ are appropriate normalization polynomials.

We define the Airy Lagrangian adelic Grassmannian Gr
ad;Ai
Lagr to be the sub-Grassmannian

of Grad;Ai consisting of those points for which ker u is a Lagrangian subspace of ker d with

respect to the symplectic form Cd. � ; � /. Similarly, we define the Bessel Lagrangian adelic

Grassmannian Gr
ad;Be.�/
Lagr to be the sub-Grassmannian of Grad;Be.�/ consisting of those points

for which ker u is a Lagrangian subspace of ker d with respect to the symplectic form Cd. � ; � /.
and is preserved under the transformations x 7! �x.

From Theorems 6.6 and 6.9, we get:

Theorem 6.10. The self-adjoint bispectral Darboux transformations from the Airy

bispectral function Ai.x; y/ (resp. the Bessel bispectral functions Be.�/.x; y/ for � 2 C n Z)

are in bijective correspondence with the points of the Airy Lagrangian adelic Grassmann-

ian Gr
ad;Ai
Lagr (resp. the Bessel Lagrangian adelic Grassmannian Gr

ad;Be.�/
Lagr ).

This theorem gives an explicit algorithmic way to construct all self-adjoint bispectral

Darboux transformations from the Airy and Bessel bispectral functions.
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