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Abstract

We will describe a next-generation active atomic frequency reference based on super-radiant pulses
of laser light from the ultra-narrow, 1 mHz linewidth, optical clock transition in an ensemble of

cold &Sr atoms. Light is stimulated from the millihertz linewidth transition by confining an ensemble
of laser cooled atoms inside of a high finesse optical cavity. Such a light source has been proposed
as a next-generation active atomic frequency reference, with the potential to enable high-precision
optical frequency references to be used outside laboratory environments. We achieve a remarkable
short term fractional frequency stability, 6.7 x 10 at 1 s of averaging, absolute accuracy, 2 Hz (4 x
10'¢ fractional frequency), and high insensitivity to changes in the cavity length that limits the
performance of todays more stable lasers. We will also discuss current work on cavity-enhanced
dispersive measurements to perform high resolution spectroscopy and atom counting.
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1.
INTRODUCTION

Atomic frequency standards have an increasing number of applications from technology to
fundamental physics. Currently, atomic clocks based on microwave transitions define the Sl
second’2 and are fundamental for network synchronization and satellite based navigation systems
such as the global positioning system (GPS).24 With time, atomic clocks based on narrow optical
transitions have pushed the frontier of precision frequency metrology, surpassing its microwave
counterparts.=** Among other applications, optical atomic clocks have been proposed to study
quantum many-body physics,'*¢ as state-of-the-art geodesy instruments,'z2 to test variation in
fundamental constants,2 to test fundamental symmetries,? and potentially detect, with table-top size
experiments, exotic physics as passing dark matter particles.22

The timekeeping element of a clock takes the form of a stable oscillator (e.g. a balance wheel, a
crystal oscillator or a laser) whose frequency is typically read. This frequency could be actively
stabilized to some precise frequency reference.?* The oscillator provides short-term stability, while
the frequency reference provides long-term stability and absolute accuracy. Optical atomic clocks
typically function by combining a laser as the stable oscillator and an atomic frequency reference,
which is an atom or collection of atoms with a well-suited transition between internal states (the
“clock transition”) to which the oscillator is stabilized.

There are two type of atomic frequency reference: active or passive. In a passive reference, as
sketched in Fig. 1(a), radiation from the oscillator, the laser, is applied to the atoms in a
spectroscopic sequence that maps the oscillator’s frequency to internal state populations in the
atoms. The populations are then measured to infer and stabilize the oscillator’s frequency.2252 |n
each of these experimental trials, information is obtained for one specific laser frequency, f, as seen
in Fig. 1(a). Examples include cesium and rubidium clocks in the microwave domain,?-% and
strontium, ytterbium, and aluminum ion clocks in the optical domain.2
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Figure 1.Download
Passive and active optical frequency references. (a) In a passive optical frequency reference, the
“clock transition” in the atomic medium is driven by radiation from a laser at frequency f. The laser
frequency is then determined relative to the clock transition frequency through a population
measurement of the two clock states, which could be used to stabilize the frequency of the laser.
Each experiment provides information about the current laser frequency with respect to the atomic
transition frequency. (b) In an active optical frequency reference, light is collected directly from the
atomic clock transition. This light can be compared to the reference laser by forming a heterodyne
beat-note. The power spectral density of the resulting signal (1) provides information about the
atomic system at all offset frequencies from the laser frequency. Figure reproduced from Ref. 36.
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On the other hand, in an active reference, radiation is collected directly from the clock transition, as
depicted in Fig. 1(b). A typical example is the hydrogen maser,2 which is an active frequency
reference in the microwave domain. In the optical domain, an active atomic frequency reference
candidate is the superradiant laser, as proposed in Ref. 30,31, and sketched in Fig. 1(b). This
superradiant laser consists of an ensemble of cold atoms with a suitable ultra-narrow transition,
trapped inside a highly damped optical cavity. The ensemble of atoms behave as a collective dipole,
strongly coupled to the cavity mode. When the atoms are excited, they will decay into the cavity
mode, in a collective process called superradiance emission.?22* A promise of this active frequency
reference is that its spectral properties will be highly insensitive to cavity frequency noise, which is
fundamentally difficult to overcome in ultra-stable lasers.®
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The quality factor of optical transitions could be much larger than its microwave counterparts, which
constitutes a huge fundamental advantage that has allowed passive optical frequency references to
overtake their microwave counterparts in both precision and accuracy over the last two
decades.’2% Here, we comment on our latest results® where we used our &Sr superradiant laser,
operating in the ultra-narrow 1 mHz clock transition, as the first active optical frequency

reference® to realize this advantage as proposed in references.:23! Until now, there have been no
high-precision active atomic frequency references in the optical domain.

Furthermore, we present our progress towards cavity-enhanced dispersive measurements on the
ultra-narrow clock transition. These technique allow us to measure the phase change on the light
that transits our optical cavity, that depends, among other things, on the atom-light coupling strength
and the atom number.2Z Our measurements could be performed without significant photon scattering,
that would destroy the coherent properties of an atomic quantum state. This technique is proposed
as a way to measure fundamental atomic properties in a spectroscopic way, such as the dipole
element of the clock transition, as well as to allow dynamical non-destructive atom counting
measurements.

2.
EXPERIMENTAL SETUP

Our system, described previously in Ref. 36,38,39, consists of an ensemble of up to several 105 & Sr
atoms confined within a high finesse optical cavity by a near-magic wavelength# 813 nm optical
lattice that is supported by the cavity. This lattice fulfills two main roles: it tightly confines the atoms
along the cavity axis, eliminating Doppler shifts, and it imparts a near equal shifts to the clock states
of the lasing transition, the 'S, ground state and the 3P, excited state, as shown in Fig. 1(c). The
cavity is locked at frequency f, close to the frequency f, of the dipole-forbidden optical clock
transition near 698 nm, which has a radiative linewidth of 1.1(3) mHz.4* At 698 nm, the cavity’s
finesse is 2.5 x 104, and its linewidth is k = 2 x 145 kHz, placing the system in a highly damped,
“superradiant” regime. In typical operation, the cavity detuning &. = f; - f,, is nominally zero (&; < k),
but can be varied for characterization purposes.

Atoms are initialized in one or more ground states, after which a coherent drive on the clock
transition, using a laser that is coupled through the optical cavity, prepares them in a superposition
of the ground and excited state. The duration of the preparation pulse sets the population inversion.
After this pulse is turned off, the atoms emit collectively into the cavity.:¢ We refer to this process as
superradiant emission, which describes the collective radiation of an ensemble of emitters into a
highly damped optical mode. After the atoms emit a superradiant pulse, a new ensemble of atoms is
laser cooled and trapped and the sequence is repeated with a typical total cycle time T, = 1.1 s.

The light emitted by the atoms into the cavity mode constitutes our superradiant laser. In order to
study its spectral properties, we form a heterodyne beat-note between the light emitted from the
strontium atoms and light from a state-of-the-art stable laser system that we refer to as the reference
laser, as shown in Fig. 1(b). The reference laser system is described in24 and is stabilized to an
optical reference cavity with a thermal noise floor of 1 x 10-¢ from 1 to 1000 seconds, and a
linewidth of 26 mHz.

3.
SUPERRADIANT LASER AS AN ACTIVE OPTICAL FREQUENCY
REFERENCE

Two main aspects characterize this active frequency reference as such. One is its stability, while the
other is its absolute accuracy. To quantify the stability of our superradiant source, we rely on the
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commonly-used metric of the fractional Allan deviation.* We start by populating the atoms in both
stretched ground states m- = £9/2, and applying a m—polarized preparation pulse that will populate
both excited me = £9/2 states, respectively. In the prescence of a magnetic field, the frequency
spectrum of the beat note is described by two peaks, one corresponding to each Zeeman-shifted
excited state, as seen in Fig. 2(a) inset. In each run of the experiment, the frequency of each lasing
component, f.q», is determined from the center of a Lorentzian fitted to each of the peaks in the
power spectrum of the beat-note. For most of our measurements, the width of each peak is Fourier
limited by the observation window (about 100 ms).

Figure 2.Download
Stability and accuracy of the superradiant laser. (a) Short-term stability of superradiant light source
expressed as fractional Allan deviation o(r). We populate both stretched states and compute the
Allan deviation for two quantities, as shown in the inset and described in the text: the average
frequency of the two lasing transitions £, (black) and half the difference of the two lasing transition
frequencies f, (red points). We measure a short-term fractional instability of

o(T) = 1.04(4) x 107'%/\/7/s

for f,, (black dashed line), and

o(T) = 4.5(2) x 1071/, /7/s

for f, (red dashed line). (b) Lattice-induced frequency shifts. Measurement shows superradiant light
frequency shifts, with respect to an optical atomic clock,? for three different trap depths (U = 1025,
760, 570 E.. for green, red and blue points respectively, where E.. is the lattice recoil energy), at
four different lattice detunings. A global linear fit to the whole data set gives an lattice independent
frequency offset (horizontal dashed line, with the uncertainty of the fit represented by the red band),
and the magic wavelength (vertical dashed line, with fit uncertainty given by the green band). (c)
Sensitivity of superradiant light frequency, f.,, to detuning of the cavity from resonance, &., for
different initial population inversions, as sketched on the side insets. An offset frequency f, set by the
detuning of the reference laser from the strontium transition is subtracted for each data set. When
tuned to minimize sensitivity to cavity detuning (red line, points) we observe a pulling coefficient P =
2(3) x 10-5. Changing the duration of the state preparation pulse leads to an increased absolute
value of P (black, blue points). Figure reproduced from Ref. 36.
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In contrast to a passive frequency reference, we obtain information about the emitted light at all
detunings with respect to the laser light. This is a fundamental advantage of this source, because it
offers increased detection bandwidth and dynamic range, which can be relevant outside laboratory
environments, and in mobile applications. For example, in contrast to passive frequency references,
our active frequency reference can still track large excursions of the oscillator frequency and does
not require the optical cavity to be precisely on resonance, as long as still enhances the atomic
emission.

The Allan deviation of the frequencies of our superradiant pulses, o(r), is shown in Fig. 2(a). In this
measurement, we compute the Allan deviation for two quantities: the average frequency of the two
lasing transitions £, = (fo2 + f92)/2 (black points), which provides an indication of the stability of our
system if used as an optical frequency reference, and half the difference of the two lasing transition
frequencies f, = (fy2 — fo2)/2 (red points), which provides a means of assessing the fundamental
limits of our system. For the black points, we have measured

o(1) = 1.04(4) x 10715/ /7 /s fo

. Our most favorable measurement of this value was

o(T) =6.7(1) X 10_16/\/%

obtained for a different, shorter set of data. This corresponds to a standard deviation of 300 mHz.

Importantly, the mean frequency f, is insensitive to magnetic field fluctuations, that would shift each
peak in opposite directions. Other perturbations, such as noise on the reference laser, cavity pulling
effects, and shifts associated with atomic density, would perturb the measurement of f,.. The short-
term stability of £, is also limited by photon-shot noise, as each atom emits at most one photon, and
our total quantum efficiency is 'l = 0.06, in contrast with most optical atomic clocks, which are rather
limited by atom shot noise, as each atom can scatter multiple photons during the state projection
measurement.

This can be further investigated by studying the dependence of another quantity that is insensitive to
these last few perturbations. That is the frequency difference f,, that is unchanged under
perturbations that affects both lasing transitions in the same manner. For the data set corresponding
to the black points of Fig. 2(a), f; exhibits a short-term stability of

o(T) = 4.5(2) x 10716/, /1/s

. This quantity constitutes a synchronous comparison of the atoms populating each of the two
stretched states, and is limited mostly by photon shot noise associated with the superradiant pulse.

The stable reference laser noise accounts for most of the difference between the measured Allan
deviations for f,, and f; at short times (7 < 10 s), through down-conversion of high-frequency noise to
lower frequencies (Dick effect®), due to the finite sampling fraction per experimental cycle. For
longer averaging windows (large T1), the measured Allan deviations flatten out near the reference
laser noise floor (around o(r) = 1 x 10" from 1 to 1000 seconds##), as seen in the fluctuations in
average frequencies f, (black points).
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In order to assess the absolute accuracy of the superradiant light source, we perform a comparison
with the optical lattice clock described in Ref. 9. For this comparison, we account for known shifts to
the frequencies of both the lattice clock and superradiant system at the Hz level, see Ref. 36 for
further details.

The largest of such shifts is due to the differential AC Stark shift from the optical lattice. By
measuring the frequency of our superradiant pulse laser with respect to the optical atomic clock,? at
different lattice depths and detunings, as shown in Fig. 2(b), we can obtain measure the systematic
frequency shift between the two systems. After accounting for other known shifts,* the measured
frequency difference between our superradiant light and the value measured by the optical lattice
clock is 1 £ 2 Hz (fractionally 2(4) x 10-5).

The superradiant laser works on a regime where the atomic coherence tracks the phase of the
reference oscillator, while the cavity field has a short lifetime. Therefore, the frequency of the
superradiant light is highly insensitive to technical and fundamental thermal fluctuations in cavity
length that limit todays most stable lasers. As described in Ref. 36,46, different collective effects
create frequency shifts (6fsz = £, — o, where f, is an offset frequency) on the superradiant emitted
light that depend on the cavity detuning from the atomic transition (&.).

To characterize those effects, we measured the shifts on the emitted light as function of the cavity
detuning. We quantify this shift by the pulling coefficient P, defined as P = 6fsx/0..

Because P depends linearly on the population inversion, it will change sign if most of the atoms are
initialized in the ground or excited states. Furthermore, as the inversion changes during the
superradiant pulse, the measured shift is effectively averaged over the duration of the pulse, as
shown in Fig. 2(c) for different initial conditions. When the initial conditions are tuned to minimize the
pulling coefficient, we measure a value as low as P = 2(3) x 10-%. It is worth mentioning that this is a
characteristic of the pulsed system. A continuous superradiant laser will have a positive population
inversion, and therefore these effects will not average down. However, we still expect to

achieve P «< 1.

4.
CAVITY-ENHANCED DISPERSIVE MEASUREMENTS

Many cavity QED experiments work in the so called strong-coupling regime, where the frequency of
interaction between a single atom and the cavity mode, g, is significantly bigger than any other
dissipation rates, such as k and y. In cases where there are N atoms coupled to the cavity mode,
this condition can be written as NC > 1, where C = (2g)¥ky is the cooperativity.*4

A clear manifestation of this regime has been the observation of vacuum Rabi splitting in multiple

setups, as in Ref. 49-53 for example, for cases where g

experiment, this condition is fulfilled on the narrow 7.5 kHz linewidth transition, between

the 'S, ground state and 3P, excited state, at Ay = 689 nm.* However, for the ultra-narrow 1 mHz
clock transition at Ac = 698 nm, this condition is not satisfied. Consequently, when the cavity is on
resonance with the narrow transition at Ay, two distinct peaks can be observed. On the other hand,
when the cavity is on resonance with the ultra-narrow transition at Ac, these peaks will not be
resolved.®

. In our
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In the latter, the atoms still have an effect over the light that propagates through the cavity. That
effect manifests in two ways. Firstly, the atoms can absorb, and eventually emit, some of probe
photos. Secondly, the atoms phase shift the intra-cavity electric field, which we call dispersive phase
shift. When the probe is sufficiently detuned from the atomic resonance, the dispersive effects
overcome the dissipative ones. Intuitively, the atomic medium modifies the optical path length that
the light transits while reflecting between the cavity mirrors. The phase shift for this probe is

Apc = _(Ng — Ne)vC/(20p)

, where ¢, is the detuning between the driving field and the atomic transition, and N, and N, are the
number of atoms in the ground and excited clock states, respectively. The apparent advantage of
measuring the phase shift of a far detuned probe (6, >> y) is that one can decreases the excitation
fraction induced by the measuring process itself, which usually scales with

N./N o 1/5?
. This technique has been proposed in the past,

for instance, to perform non-demolition measurements of atomic populations, sub-Poissonian atom
counting® or monitoring atomic coherences.*

The light that transits the cavity not only sees the atomic phase shift, but also the shift provided by
the cavity itself. In order to isolate the atomic contribution, and remove noise sources, we weakly
probe the cavity with two probes detuned +6, from the atomic transition, with the cavity resonance
(6. = 0), while probing an adjacent? longitudinal mode of the cavity, about 3.8 GHz away, as
sketched in Fig. 3(a). This allow us to remove any cavity-only phase shift contribution, that will be
identical on both pairs of probes. This configuration provides enhanced insensitivity with respect to
cavity center frequency fluctuations, cavity and atomic frequency alignment, and small fluctuations in
the atomic frequency. While probing one of the cavity modes, after performing an heterodyne
measurement, the demodulated signal looks like the one shown in Fig. 3(b)(i).

Figure 3.Download

Cavity-enhanced dispersive measurements. (a) Atomic structure and relevant properties for ultra-
narrow 1 mHz and the narrow 7.5 kHz transitions. Different probes for measuring atomic phase
shifts at the ultra-narrow transition, A¢c, and cavity frequency shifts, Awy, on the narrow transition.
This schemes suppresses cavity frequency noise, as well as atom number fluctuations. (b) Example
of demodulated signals used to extract phases and cavity frequency center. (i) Beating between two
tones at +6, = £1 kHz from the clock transition. (ii) Probe sweeping across the cavity resonance on
the narrow transition. (c) Measured A¢. and Awy for different atom numbers. In this measurement,
the excitation fraction in the clock transition is not negligible.
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On the other narrow transition in neutral &’Sr at Ay, the collective coupling, i.e. gN )

where gy is the light-atom coupling associated with this transition as before, is big enough to
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N from the atomic

overcome the dissipative behaviour. If there is a cavity mode detuned
transition at Ay, the cavity resonance frequency will be shifted by

_ 2 180
AL&JN S NgN /5N .2 A measurement of the cavity

resonance frequency can be done by sweeping the frequency of a weak probe across the cavity
resonance. By probing simultaneously a different and further detuned cavity longitudinal mode, as
shown in Fig. 3(a), the measurement can be made insensitive to cavity frequency noise.® A typical
measurement after demodulation looks like the one in Fig. 3(b)(ii).

As our cavity can support high finesse modes at both wavelengths, we can perform consecutive
measurements on the two transitions. If the probe power is low enough, such that most of the atoms
remain in the ground state, a phase shift measurement on the clock transition using the configuration
described before, A¢c, can be complemented with a simultaneous cavity frequency shift, Awy, on the
narrow transition at Ay, to have further atom number insensitivity. Moreover, the two measurements
have the same degree of inhomogeneity in the coupling strength gy and gc, due to the fact that the
probe wavelengths are incommensurate with the lattice wavelength, which simplifies greatly the
analysis. As an example, we show in Fig. 3(c) a simultaneous measurement of A¢. and Awy, where
each point represents a different atom number loaded into the lattice.

Dispersive measurements are preferred in order to perform non-demolition measurements, as
required, for instance, for several spin-squeezing experiments.®-¢2 So far, on alkaline-earth atoms,
these measurements have limited to atom counting in the 7.5 kHz narrow transition.>* On the clock
transition, these measurements have the potential to be used as a non-destructive atom-counting
tool, allowing, for example, the possibility to evaluate dynamical behaviour on driven systems.%

5.
OUTLOOK

In this work we have demonstrated the first optical high-precision active atomic frequency reference
to date, with a short-term stability that already surpasses that of existing active atomic frequency
references (masers), and intrinsic insensitivity to various environmental perturbation sources, as
drifts in the optical cavity frequency and to fluctuating magnetic fields. In terms of the absolute
accuracy of this active frequency reference, we have characterized its systematic frequency shifts to
the Hz level.

In the near future, it will be advantageous to extend the pulsed mode of operation demonstrated
here to steady-state operation. Doing so would mean to overcome the limitations photon shot noise
present for its short-time stability. In order to do so, a system with constant inversion must be
prepared, for instance, by either incoherently pumping atoms from the ground to the excited state, or
bringing new fresh atoms in the excited state at a steady rate. Work is under development to create
such a frequency reference source.

Furthermore, we have commented on ongoing efforts to perform dispersive measurements on the
clock transition. These scheme shows great insensitivity to cavity frequency noise and atom number
fluctuations, and allows to measure real time population dynamics on the clock states as well as
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performing precise spectroscopy on the clock transition. Performing such measurements on the
clock transition have fundamental implication on future optical atomic clocks.
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