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A B S T R A C T

Colorectal cancer (CRC) is the fourth most common cancer type and is the second leading cause of cancer deaths
annually in the United States. Conventional treatment options include postoperative (adjuvant) and preoperative
(neoadjuvant) chemotherapy and radiotherapy. Although these treatment modalities have shown to decrease
tumor burden, a major limitation to chemothearpy/radiotherapy is the high recurrence rate in patients. Immune-
modulation strategies have emerged as a promising new therapeutic avenue to reduce this recurrence rate while
minimizing undesirable systemic side effects. This review will focus specifically on the mechanisms of mono-
clonal antibodies: immune checkpoint inhibitors and cytokines, as well as current drugs approved by the Food
and Drug Administration (FDA) and new clinical/pre-clinical trials. Finally, this review will investigate emerging
methods used to monitor tumor response post-treatment.

1. Introduction

Colorectal cancer (CRC) is the fourth most common cancer (by in-
cidence) in the United States, accounting for 140,000 new cases and
50,000 deaths in 2018 [1]. Before advancements in treatment and
cancer detection, patients with locally advanced CRC (high-risk stage II
and stage III tumors) and metastatic CRC (mCRC) were treated via
surgery followed by postoperative (adjuvant) chemotherapy.

In both the neoadjuvant and adjuvant settings, the current standard-
of-care chemotherapy regimen is FOLFOX, a combination of 5-fluor-
ouracil (5-FU), leucovorin and oxaliplatin [2]. FOLFOX, as an adjuvant
therapy, is given in 12 cycles every two weeks through intravenous (IV)
administration. Variations of this type of chemotherapy have been a
fixture in CRC treatment since the 1960’s, and have been optimized
since [3]. Although FOLFOX is the gold standard in treating mCRC, it is
associated with myriad and sometimes debilitating systemic side effects
(nausea, anemia, decrease in white blood cells, fatigue, etc.) [4].

In recent years, the addition of preoperative (neoadjuvant) che-
motherapy for locally advanced CRC has become clinically accepted
after success was demonstrated in esophageal [5] and gastric cancers
[6], following a series of clinical studies by the Fluoropyrimidine, Ox-
aliplatin and Targeted-Receptor pre-Operative Therapy (FOxTROT)
Collaborative Group [7]. The goals of neoadjuvant chemotherapy in-
clude achieving complete eradication of cancer cells or pathological

complete response (pCR) prior to surgery, reducing intraoperative
tumor cell shedding during surgery, and decreasing local recurrence
rates [8]. In a feasibility phase trial by the FOxTROT Collaborative
Group, 150 patients with locally advanced CRC were given a combi-
nation of chemotherapy drugs either in the neoadjuvant or adjuvant
setting. Patients receiving neoadjuvant chemotherapy experienced sig-
nificant tumor downstaging and regression [7].

Currently, in locally advanced colon cancer and mCRC, neoadjuvant
chemotherapy is generally given to patients in 2–12 two-week cycles
over 4–24 weeks [9]. After assessing tumor therapeutic response after
4–6 cycles (6–8 weeks after initiation) of neoadjuvant chemotherapy
using techniques such as endorectal ultrasound [9], computed tomo-
graphy (CT), positron emission tomography-computed tomography
(PET-CT), or magnetic resonance imaging (MRI) (or a combination of
these techniques), patients with locally advanced disease either receive
additional neoadjuvant chemotherapy cycles or proceed to surgery
[10].

Although there has been a steady reduction in CRC incidence and
mortality since the 1970′s, primarily attributed to reduction in pre-
ventable risk factors, advances in early detection, [11] nationwide
screening initiatives [1,12], and continued optimization of neoadjuvant
and adjuvant chemotherapy regimens, current treatment standards and
management of CRC remains problematic [8]. Although neoadjuvant
therapy has shown significant tumor downstaging and regression, a low
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5-year survival rate (∼10%) along with high recurrence rate (30–40%)
is a concern to clinicans [13]. Therefore, researchers are exploring new
therapeutic interventions to overcome these limitations. One broad-
scale intervention that has gained clinical traction is immunotherapy.

Immunotherapy is an emerging technique to treat cancer by sti-
mulating or enhancing a patient’s immune components to target and
inhibit cancer cells, limiting the negative systemic effects associated
with untargeted chemotherapy approaches [14]. Current clinically ap-
proved immunotherapy techniques for CRC treatment include mono-
clonal antibody therapy, adoptive cell transfer (ACT) therapy, cancer
vaccines and cell therapy [13]. Among the many types of im-
munotherapy strategies, monoclonal antibody therapy has gained the
most clinical traction for treating CRC in recent years [15]. This review
discusses current CRC monoclonal antibody immunotherapy treat-
ments, which can be divided into antibodies targeting either immune
checkpoints or cytokines. Treatments discussed are either approved by
the U.S. Food and Drug Administration (FDA), in clinical trials in hu-
mans, or in pre-clinical trials. Finally, this review discusses emerging
methods (optical and non-optical) to monitor tumor response to im-
munotherapy treatments in CRC patients.

2. Immune checkpoints in colorectal cancer

Immune checkpoints are any set of ligand-mediated inhibitory
pathways that maintain homeostasis of the immune system by reg-
ulating the duration and amplitude of immune responses [16]. Within
these pathways, there are various types of cells that play a role in the
regulation of the immune system (i.e. CD4, CD8, monocytes, natural
killer (NK) cells and dendritic cells (DCs)). CD4 cells, a specific classi-
fication of T-cells, are responsible for immune system regulation, spe-
cifically the release of cytokines to increase the activity of other im-
mune cells [17]. CD8 cells, also known as “killer cells”, suppress
immune signaling during T cell activation [18]. Monocytes are types of
white blood cells which can differentiate into macrophages and DCs
[19]. When monocytes differentiate into macrophages, they can dif-
ferentiate into one of two subtypes: M1 or M2. M1 macrophages pro-
duce pro-inflammatory cytokines (i.e. interleukin-1 (IL-1), IL-6, IL-12,
tumor necrosis factor-alpha (TNF-α), etc.) that signals an immune re-
sponse [19]. M2 macrophages produce polyamines (i.e. spermidine and
spermine) that induce cell proliferation and extracellular matrix for-
mation [19]. Natural killer cells (NK) are effector lymphocytes that

engages in interactions with other cell types (macrophages, T cells, etc.)
to limit immune response [20]. DCs or antigen-presenting cells (APCs)
are responsible for the activation of adaptive immune responses by
presenting antigens to other cells such as T cells. Overall, the functions
of these cells play a role in how the immune system is activated to
decrease tumor burden.

Several immune checkpoints have been used as immunotherapeutic
targets in various cancer types such as melanoma, kidney, bladder and
non-small cell lung cancer as well as CRC, including cytotoxic T-lym-
phocyte antigen-4 (CTLA-4), programmed cell death protein-1 (PD-1),
and programmed cell death ligand-1 (PD-L1).

2.1. CTLA4

CTLA4, and its homolog, CD28, are cell surface receptors found on
CD4+ cells (helper T-cells) and CD8+ cells (cytotoxic T-cells). The li-
gands for CTLA4 and CD28 are the B7 proteins (B7-1 (CD80) and B7-2
(CD86)), which are produced by APCs. B7 ligands are upregulated and
presented on the cell surface by APCs when the APCs encounter and
acquire non-self-antigens [21]. When T-cells detect B7, along with
major histocompatibility complex loaded with cognate peptide, com-
petitive binding ensues between CD28/B7 and CTLA4/B7 to maintain
T-cell homeostasis. CD28/B7 binding initiates immune stimulation by
increasing T-cell proliferation whereas CTLA4/B7 binding initiates
immunosuppression by competitively reducing signaling of the CD28/
B7 complex (Fig. 1) [22]. Then, CTLA4 reduces the probability of future
CD28/B7 binding by removing B7 proteins from the APC surface via
trans-endocytosis [23]. Thus, CTLA4/B7 interaction is involved in im-
mune tolerance and immunosuppression, a hallmark of cancer [24].
Monoclonal antibodies which target and block the CTLA4 immune
checkpoint pathway results in increased CD28/B7-dependent clonal
expansion of T-cells [25].

2.2. PD-1

PD-1, a well-studied immune checkpoint, has a primary function to
suppress the immune response to regulate tolerance and autoimmunity
[26–28]. PD-1 is a cell surface receptor found on CD4+ cells, CD8+

cells, B-cells, NK cells, myeloid-derived cells, and macrophages [27].
The primary function of PD-1 is to suppress the immune response
(Fig. 1) [26]. The ligands for PD-1 are the B7 proteins, B7-H1 (PD-L1)

Fig. 1. Schematic representation of CTLA-4 and PD-1/
PD-L1 pathway through T-cell deactivation in CRC,
along with T-cell activation through antibody binding.
T-cell deactivation begins when the T-cell receptor
(TCR) binds to the Major Histocompatibility Complex
II (MHCII) and binding of PD1 and PDL1/2 and CTLA4
and CD80/86. When anti-CTLA4, anti-PDL1 and anti-
PD1 are present, the antibodies bind to their respective
ligands, inducing T cell activation.

S.N. Bess, et al. Cytokine and Growth Factor Reviews 49 (2019) 1–9

2



and B7-DC (PD-L2). PD-L2 is produced by APCs. PD-L1 is expressed by
T-cells, B-cells, DCs, and macrophages and is upregulated by many pro-
tumor cytokines such as IL-4, IL-10 VEGF, and TNF-α produced by in-
filtrating immune cells [26,29]. Additionally, PD-L1 is directly ex-
pressed by many types of cancer cell, including CRC and is associated
with poor prognosis [30]. PD-1/PD-L1 binding results in T-cell apop-
tosis and reduced IL-2 (an anti-tumor cytokine) production [27]. Al-
though the induction of T-cell apoptosis is problematic in tumors, it is
essential for some T cells to survive apoptotic death in order to become
memory T cells [31]. PD-1 and PD-L1 are active targets in CRC im-
munotherapy research with the goal of introducing monoclonal anti-
bodies to block PD-1/PD-L1 binding and improve the anti-tumor im-
mune response.

3. Immune checkpoint inhibition immunotherapy

3.1. FDA-approved drugs

Nivolumab (Opdivo®) is an immune checkpoint inhibitor that binds
to PD-1 receptors, blocking PD-1 activation and resulting in T-cell ac-
tivation and immune response. The first uses of Nivolumab was a first
line treatment for metastatic melanoma as well as bladder cancer and
brain metastases. Nivolumab was granted accelerated approval by the
FDA in 2017 following an ongoing, multicenter Phase II trial
(NCT02060188) [32], funded by Bristol-Myers Squibb, that indicated
Nivolumab was effective for CRC patients with deficient DNA mismatch
repair (dMMR)/microsatellite instability high (MSI-H) disease [33].
dMMR/MSI-H CRC makes up approximately 12–15% of cases and is
phenotypically characterized by a high quantity of tumor infiltrating
lymphocytes (TILs), prevalence in the right side of the colon (proximal
colon), and poor differentiation [33]. The approval of Nivolumab was
particularly important since standard FOLFOX-based chemotherapy has
limited benefit for dMMR/MSI-H CRC patients as shown in five ran-
domized clinical trials evaluating 5-FU vs surgical treatment [33].
There are currently 39 ongoing clinical trials further exploring Nivo-
lumab as either stand alone or combinatorial treatment (Ipilimumab,
Azacytidine, etc.) for CRC.

Pembrolizumab (Keytruda®) is an IgG4-k monoclonal antibody that
inhibits PD-1 binding with PD-L1 and PD-L2. This results in an upre-
gulated immune response against CRC cells [30]. Pembrolizumab was
granted accelerated approval by the FDA in 2017 as a second-line
treatment for either unresectable, dMMR, or MSI-H CRC following
multiple Phase II and III clinical trials [34,35]. There are currently 52
ongoing clinical trials further exploring Pembrolizumab as either stand
alone or combinatorial treatment with standard chemotherapy for CRC.

3.2. Clinical studies

Table 1 shows a current list of ongoing clinical trials that use im-
mune checkpoint inhibitors.

3.3. Pre-clinical studies

Table 2 shows a list of ongoing pre-clinical trials that use immune
checkpoint inhibitors.

3.4. Conclusion

Immune checkpoint inhibition is a promising approach for CRC
treatment [42], with several FDA-approved drugs already on the
market and many more in clinical trials. Although immune checkpoint
inhibition has shown success in treating CRC, the biggest challenge for
investigators is identifying which patients may or not respond before
treatment initiation [42] and overcoming tumor cell resistance to this
immunotherapy [16]. Jenkins et al. provides a comprehensive review of
tumor cell resistance to immune checkpoint inhibition [42]. This Ta
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heterogeneous patient response to immune checkpoint inhibition is a
strikingly similar problem to identifying responders vs. non-responders
for standard first-line neoadjuvant chemotherapy in CRC [43]. The
current state-of-the-art is to biopsy the tumor during colonoscopy and
determine expression levels of markers such as a PD-L1 using im-
munohistochemistry (IHC). Patients overexpressing the target bio-
marker, such as PD-LI, are considered the best candidates for that im-
munotherapy [44]. In the future, investigators are looking into
identifying other biomarkers and personalized gene-expression sig-
natures to identify candidates most likely to respond to immune
checkpoint inhibition [43,45].

4. Cytokines in colorectal cancer

Cytokines are small (∼5-20 kDa) cell-signaling proteins, produced
by immune cells, that are involved in myriad pathways in CRC. [46]
Chemokines, members of a family of cytokines able to induce cellular
chemotaxis, are also involved in CRC pathways such as CCL2, IL-6, and
other growth factor and their corresponding receptor pathways [47].

Interleukins (i.e. IL-6), are naturally occurring proteins that regulate
communication between cells. Unlike most cytokines, interleukins are
not stored within a cell, but it is secreted rapidly in response to stimuli.
After being produced, interleukins travel to its target cells and binds to
a receptor molecule on the cell surface, releasing a cascade of signals
that controls a cell’s behavior.

Growth factors are signaling molecules between cells that are cap-
able of stimulating cell growth, proliferation, healing and cell differ-
entiation. Examples of growth factors include vascular endothelial
growth factors (VEGFs) and epidermal growth factors (EGFs), which
will be discussed in the following sections.

Thus, cytokines and chemokines, and their receptors, make attrac-
tive targets for CRC therapy, although pre-clinical and clinical research
currently lags other discussed CRC immunotherapy techniques [48].
Development of cytokine-targeted immunotherapy can potentially be
used as stand-alone treatment or, more likely, combinatorial treatment
with either chemotherapy, radiotherapy, or other immunotherapy
techniques to normalize the CRC tumor microenvironment (TME) [49].

5. Cytokine-targeted immunotherapy

5.1. FDA-approved drugs

All current FDA-approved cytokine-targeted immunotherapy drugs
for melanoma, renal cell carcinoma, as well as CRC target either vas-
cular endothelial growth factor receptors (VEGFRs) or epidermal
growth factor receptors (EGFRs), depicted in Fig. 2. VEGFs are signaling
proteins responsible for the simulation of blood vessel formation, while
EGFRs are transmembrane proteins responsible for cell differentiation
and proliferation upon activation. Cytokine-targeted immunotherapy
drugs targeting VEGFRs include bevacizumab, aflibercept, and regor-
afenib. Drugs targeting EGFRs include cetuximab and panitumumab.
All five FDA-approved drugs primarily benefit mCRC patients, although
many clinical trials are ongoing for other CRC subtypes in both
neoadjuvant and adjuvant settings.

5.1.1. Anti-vascular endothelial growth factors (anti-VEGFs)
The FDA approved bevacizumab as first line treatment for mCRC in

2004 [50] and in 2006 for second-line treatment of mCRC in combi-
nation with FOLFOX4 [51], making it the first anti-VEGF drug for CRC.
A phase III clinical trial by Eastern Cooperative Oncology Group
(ECOG) tested bevacizumab’s efficacy and safety in combination with
FOLFOX4 [52]. Patients treated with the combination therapy saw a
longer median overall survival of 12.9 months with a 22.2% response
rate compared to an overall survival of 10.8 months and an 8.6% re-
sponse rate for patients receiving standalone FOLFOX4 chemotherapy
[53]. Additional studies have confirmed the benefits of bevacizumab in
treating mCRC [54,55]. In three phase III clinical trials, the addition of
bevacizumab to a chemotherapy regime was well-tolerated and im-
proved progression-free survival [54]. However, even though the
findings from these clinical studies have been supported by a large
clinical practice-based study (ATHENA), the efficacy of bevacizumab in
terms of overall survival showed no significant benefit [54]. At an
average cost of $100,000 a year for treatment and an average increase
in overall survival of an average of two-four months, many clinicians
have restricted the use bevacizumab. The FDA reversed the fast-track
approval for bevacizumab in 2010, leaving the future of this agent in
limbo.

Six years later in 2012, aflibercept, an antiangiogenic VEGF in-
hibitor, was approved by the FDA as a second-line treatment for mCRC
in combination with the FOLFIRI chemotherapy regimen (leucovorin
calcium, fluorouracil, and irinotecan hydrochloride) [56]. Aflibercept
(Zaltrap®/Eylea®) is meant to be used for mCRC patients who failed to
respond to previous FOLFOX-based chemotherapy [57]. In a phase III
clinical trial (NCT00561470), the addition of aflibercept to FOLFIRI
improved overall median survival from 12.1 to 13.5 months and pro-
gression-free survival from 4.7 to 6.9 months for stage IV mCRC pa-
tients [58]. In an update to this same phase III clinical trial, published in
2014, investigators found that overall survival increased by 0.8 months
for mCRC patients with no prior treatment and 1.5 months for patients
with no prior treatment [59].

5.1.2. Anti-epidermal growth factor receptors (anti-EGFRs)
EGFRs are cellular receptor located on a cell’s surface that activates

tyrosine kinase that phosphorylates intracellular substrates responsible
for the genetic transcription for cell proliferation, angiogenesis, and
invasion (Fig. 2).

In 2004, the FDA approved cetuximab to treat advanced CRC pa-
tients who have failed standard chemotherapy [62–65]. Cetuximab,
also approved for use in breast cancer, targets the ligand-binding do-
main of EGFR, as a mutation (i.e. Kristen rat sarcoma (KRAS) gene
mutation) in this pathway results in an increase in uncontrolled cell
growth. A clinical trial conducted by the North Central Cancer Treat-
ment Group (NCCTG) N0147 compared the use of FOLFIRI with and
without cetuximab in stage III CRC with both wild-type KRAS and
mutant KRAS. In the clinical trial, a combination treatment with ce-
tuximab plus FOLFIRI showed that 5-year disease-free survival, overall
survival and time to recurrence in patients with wild-type KRAS im-
proved from 64% to 83% (p= 0.10), 76% to 87% (p-0.21), and 67% to
86% (p=0.09), respectively after 10 to 11 months [66]. Based in part
on this study, as well as the CEGOG trial, the FDA approved cetuximab
in 2012 as a first-line treatment in KRAS−/EGFR+ mCRC in

Table 2
Current list of ongoing pre-clinical trials using immune checkpoint inhibitors.

Author Study Title Methods Results

Jure-Kunkel et al. [55] “Synergy between chemotherapeutic agents and CTLA-4 blockade
in preclinical tumor models”

Subcutaneous CRC mouse model
with CTLA4

Reduced tumor growth in both treatment
groups

Zhao et al. [56] “Tumor location impacts immune response in mouse models of
colon cancer”

Orthotopic CRC and subcutaneous
allograft

Orthotopic models were more sensitive to
checkpoint inhibition

S.N. Bess, et al. Cytokine and Growth Factor Reviews 49 (2019) 1–9

4



combination with FOLFIRI.
In 2017, panitumumab, another EGFR inhibitor, was granted FDA

approval to treat mCRC patients with wild-type KRAS as a first-line
treatment in combination with FOLFOX [69,70]. A study by Leone et al.
used panitumumab in combination with capecitabine plus oxaliplatin
(XELOX) to study its efficacy in patients with liver only mCRC. Out of
the forty-six patients, the objective response rate was 54% with two
patients with complete responses and 23 with a partial response.
Overall, the combination of panitumumab with XELOX (P-XELOX)
yields a high response for patients with liver only mCRC [71].

Like many other clinically approved drugs, anti-VEGFs and anti-
EGFRs also have their limitations in mCRC and other cancer types.
Many clinicians and researchers have listed a number of explanations
for the generally limited efficacy for these inhibitors. One explanation is
that the formation of tumor blood vessels and how they are maintained
is not fully understood113. After treatment with an anti-VEGF therapy, it
has been shown that residual hypoxic tumor cells are simulated to in-
crease production in VEGF-A which can inhibit the anti-VEGF therapy
[72]. Also, in many pre-clinical studies, many protocols induce mice
with tumor xenografts and immediately start treatment after im-
plantation [72]. This treatment pattern does not follow the clinical
treatment pathway in tumors that have already established tumor
vasculature [72]. In conclusion, the limitations of anti-VEGF and anti-
EGFR therapies have pushed researchers to create new clinical trials
and pre-clinical trials to use other cytokine pathways for mCRC treat-
ment.

5.2. Clinical studies

Table 3 shows a list of ongoing clinical trials using cytokine in-
hibitors.

5.3. Pre-clinical studies

The effect of modulating cytokines and chemokines in the human
CRC TME is mostly hypothesized and has not yet been rigorously tested
in clinical trials. Most CRC cytokine modulation research, besides the
aforementioned interleukins, exists in the pre-clinical and basic biology
realms.

Two chemokine receptors, C-C chemokine receptor type 1 (CCR1)
and chemokine C-C motif receptor-like 2 (CCRL2), have been recently
implicated in aiding in liver metastasis [48], the primary cause of death
for CRC patients [73]. Ligands for CCR1 and CCRL2 are the chemokines
CCL3, CCL5, CCL7, and CCL23, and are suggested as potential targets
for cytokine-targeted immunotherapy [48]. CCL2 and CCL24 were also
found to be highly elevated (> 100-fold) in CRC liver metastases
compared to healthy adjacent liver tissue, implying that these chemo-
kines could also be targets for cytokine-targeted immunotherapy [74].

Chemokine neutralization, especially of CCL2, has gained traction in
both CRC and non-CRC studies of mice [75]. CRC, independent of
subtype [76,77], recruits circulating monocytes via chemotaxis to the
TME primarily through the release of CCL2, also known as monocyte
chemoattractant protein-1 (MCP1), a highly elevated chemokine in CRC
[68–71]. In the TME, monocytes differentiate into TAMs, partially as a
result of CCL2. TAMs, the most abundant immune cell in the TME, also
have the most substantial and pervasive effect of any immune cell in the
TME [72–,73,74,75]. In CRC, TAMs have been shown to have both anti-
tumor and pro-tumor functions, depending on whether they are po-
larized more towards an M1 (classical) or M2 (alternative) phenotype
and their physical location within the tumor [76]. Pro-tumor functions
of alternatively activated M2-polarized TAMs include tumor growth,
angiogenesis, immunosuppression, and matrix remodeling [77]. Ad-
ditionally, CCL2 binding to its receptor, CCR2, on endothelial cells in-
creases vascular permeability and metastatic risk [78]. Thus, targeting

Fig. 2. A). Through the activation of the A) VEGF and B) EGF pathway, intercellular pathways are also activated. These intercellular signaling pathways control cell
survival, migration and proliferation, affecting the production of blood vessels (angiogenesis). Binding of an anti-VEGF/EGF to a VEGF/EGF receptor, inhibits
receptor dimerization, preventing activation.

Table 3
Current list of ongoing clinical trials using cytokine inhibitors.

Name NCT.gov Identifier Phase Intervention Results

Siltuximab113 — I/II CRC patients with advanced solid tumors using interleukin-6 (IL-6) Increased tumor hemoglobin; low response rate
AM0100 — I Solid tumors in CRC using IL-10) No results posted
Nimotuzumab NCT00972465 II Advanced CRC by binding to an EGFR No results posted
Imalumab NCT02448810 II Patients with metastatic colorectal cancer through binding to a migration

inhibitory factor (MIF)
No patients completed treatment. Two deaths
reported.
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CCL2 to reduce M2-polarized, pro-tumor TAMs is an attractive ongoing
cytokine-targeted immunotherapy strategy in pre-clinical settings. In
mouse models, CCL2 blockade has resulted in reduced neovascular-
ization and tumor size of orthotopic colon tumors in Balb/c mice,
suggesting that CCL2 may be a promising target for treating colitis-
associated colon cancer [79]. Additionally, anti-CCL2 immunotherapy
prolonged survival in C57BL/6 mice with GL261 glioma [80], and re-
duced TAM infiltration in FVB/N mice with MCF-7 breast cancer [81].
However, few cytokine-targeted immunotherapy techniques have been
tested for efficacy in human CRC, although oral N-acetyl-L-cysteine
(NAC) co-administered with mesalamine, an anti-inflammatory, has
benefitted ulcerative colitis patients, attributed in part to the down-
regulation of CCL2 and IL-8 [82]. In summary, many investigators now
believe that CCL2-neutralizing immunotherapy will play an important
role in early-stage CRC treatment in future clinical studies [83].

Besides CCL2, other cytokines and chemokines have been explored.
For example, blocking the pro-angiogenic and pro-tumor chemokine
ligand 1 (CXCL1), whose gene is also known as growth-regulated on-
cogene-α, using an anti-CXCL1 neutralizing antibody inhibited tumor
growth and angiogenesis in a mouse xenograft model of human CRC
[84]. Blockade of IL-1β reduced tumor formation in a mouse model of
colitis-associated CRC [85]. TNF blockade reduced CRC carcinogenesis
in an AOM/DSS (colitis-induced) mouse model [86]. On the other hand,
the addition of IL-15, which has anti-tumor effects in CRC, was shown
to increase the therapeutic effects of anti-PD-L1 and anti-CTLA4 treat-
ment in a CT26 colon carcinoma mouse model [87]. The overarching
current hypothesis is that cytokine-targeted immunotherapy, especially
the blockade of pro-tumor cytokines in CRC, may enhance tumor
therapeutic response in CRC tumors treated with chemotherapy, ra-
diation, or approved checkpoint inhibitors.

5.4. Conclusion

Cytokine-targeted immunotherapy research lags other discussed
CRC immunotherapy methods, although further investigation is justi-
fied. The biggest challenge facing this type of therapy is determining
which pharmacokinetic and pharmacodynamic variables are important
navigating cytokine pathways while decreasing systemic toxicity in
CRC patients. Additionally, the FDA approved drugs, cetuximab and
panitumumab are ineffective in patients with RAS mutations (∼23% of
stage IV CRC patients). Overall, cytokine therapies will likely be most
effective in combination with other immunotherapies or chemo- and/or
radiotherapy.

6. Assessing tumor therapeutic response

In addition to new CRC therapies being investigated, there is sig-
nificant interest in the development of clinically-translatable methods
to rapidly assess whether a therapy regimen is effective on a per patient
basis [87–90]. Rapid assessment of therapy can prevent unnecessary
chemotherapy in both responders and non-responders [91]. Currently,
tumors are assessed based on the widely accepted Response Evaluation
Criteria in Solid Tumors (RECIST) criteria, which grades tumors as,
from most desirable to least desirable, complete responders, partial
responders, stable disease, or progressive disease [92–94]. The overall
goal of assessing tumor therapeutic response is adjusting treatment if
necessary, avoiding surgery and reducing morbidity [95]. The stan-
dards for monitoring tumor therapeutic response to neoadjuvant
therapy (chemotherapy, radiation, and/or immunotherapy) using RE-
CIST are digital rectal examination (DRE), rigid proctoscopy, biopsy,
carcinoembryonic antigen (CEA) level, and a radiological technique
such as CT [96], PET-CT, MRI, or Diffusion-Weighted (DW)-MRI [97].
However, following neoadjuvant treatment initiation, assessing tumor
response does not occur for approximately two months [10]. Ad-
ditionally, for patients showing evidence of partial or complete re-
sponse after these two months of neoadjuvant treatment, they must

wait an additional 1–2 months for follow-up as part of the “Wait and
Watch Protocol.” Finally, studies have shown that current radiological
techniques are insufficient to identify responders with positive pre-
dictive values less than 50% [93]. Several research groups are in-
vestigating emerging optical and imaging methods to rapidly assess
therapeutic response on a scale of days or weeks, rather than months.

Some advantages to using optical methods to monitor tumor re-
sponse include non-ionizing radiation, better spatial resolution, sensi-
tivity to biological molecules, etc. Since the CRC screening, diagnostic,
and, in some cases, therapeutic standard (in early CRC stages only) is
colonoscopy, investigators are aiming to create minimally-invasive
endoscopy-compatible techniques. Techniques currently being eval-
uated, mostly in pre-clinical laboratory settings, for use in CRC include
nonlinear optical imaging, fluorescence-based endoscopy, and diffuse
reflectance spectroscopy.

6.1. Fluorescence-based endoscopy

Fluorescence-based endoscopy integrates colonoscopy with optical
imaging. This technique is a “robust method for early detection of CRC
owing to its intrinsic coupling of detection with the underlying mole-
cular-level pathology of the disease”. With the use of molecular ima-
ging, this type of optical system can detect variations in tissues unlike
other system that only detect changes in structure [94].

In a study by Mitsunaga et al., they developed a “rapid fluorescent
detection method” using a “topically applied enzymatically activatable
probe (gGlu-HMRG)” to detect the γ-glutamyltranspeptidase (GGT)
enzyme during a colonoscopy. Expression of GGT was higher in mouse
models with CRC than those without. Five minutes after topical ad-
ministration, gGlu-HMRG fluorescent lesions were detected using
fluorescent microscopy. Based on these results, the use of gGlu-HMRG
can improve detection of colitis-associated colon cancer (CAC) with a
“higher target to background ratio” compared to conventional white
light colonoscopy [98].

In a human study by Watanabe et al., used the PINPOINT®
Endoscopic Fluorescence Imaging System intraoperatively to identify
tumor sites using indocyanine green during laparoscopic surgery. Using
this system, surgeons saw a tumor visibility rate of 93.8%. No adverse
effects were observed during these procedures. As a result, this study
provided evidence that the PINPOINT® system was able to identify
colorectal tumors without adverse effects [99].

6.2. Diffuse reflectance spectroscopy

Diffuse reflectance spectroscopy (DRS) is a non-invasive or mini-
mally-invasive technique that uses a small probe to deliver broadband
light to tissue and collect the diffusely reflected light with a spectro-
meter [97]. DRS can provide relevant clinical information such as total
hemoglobin content, tissue oxygen saturation, oxy- and deox-
yhemoglobin, lipid and water content, and tissue scattering properties,
and can thus be applied to monitoring tumor response to therapy
[97,99].

DRS has recently been used in an ex vivo study of resected human
colon tissue to differentiate tissue type with an overall accuracy of 95%.
The investigators hope to eventually apply this technology in an in vivo
setting for real-time guidance during CRC surgery. DRS has also been
integrated into a fiber-optic biopsy needle to assess functional tissue
properties in an in vivo study of lung cancer patients. Greening et al.
used their DRS system to monitor tumor response to chemotherapy in a
murine subcutaneous colonic tumor model. The investigators are cur-
rently studying short-term vs long-term data points after various
treatment modalities and believe this technology can someday help
optimize personalized cancer treatments.146

One of the primary limitations with optical methods, such as DRS, is
relatively poor sampling depth into highly scattering tissues, especially
when compared to methods such as MRI. However, DRS sampling depth
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is greater than 0.5mm at 630 nm at source-detector separations
(< 1mm) compatible with the biopsy port of standard colonoscopes
(1.5 mm) [97]. This indicates that data obtained via DRS endoscopy
could yield data from a similar region of the tumor as can be obtained
via endoscopic biopsy. Although the entire tumor volume may not be
accessible, this may provide enough functional information to guide
clinical decision-making with respect to therapeutic monitoring.

As of yet, DRS applied to CRC is in its infancy; it has only been
applied to monitor tumor therapeutic response to chemotherapy in
mouse models, although investigators believe DRS technology can be
used to quantify volumetric tumor perfusion in response to im-
munotherapies, which can eventually help guide clinicians in identi-
fying potential responders and non-responders during early therapy
[97].

7. Conclusion

Colorectal cancer is still one of the most prominent cancer types
within the United States. Although current treatment standards
(neoadjuvant therapy, surgery, and adjuvant therapy) treat a wide
spectrum of cancer patients, recurrence, patient heterogeneity, toxicity,
and poor survival rate remain problematic. Therefore, research into
antibody-based immunotherapies in both clinical and pre-clinical set-
tings is highly active. Clinical research into immune checkpoint in-
hibitors is more mature than cytokine-targeted immunotherapy. At
present, cytokine-targeted immunotherapy is limited to anti-VEGF,
anti-VEGFR, and anti-EGFR therapies for mCRC patients, although
there is a growing interest in interleukin and chemokine therapies in
both pre-clinical and early clinical trials. Additionally, monitoring CRC
tumor response is a major problem, and investigators are continuing to
engineer optical methods to improve the state-of-the-art. One of the
biggest emerging challenges for immunotherapy in CRC is elucidating
the genomic biomarkers for identifying patients likely to be responders
or non-responders for certain immunotherapy regimens and monitoring
response in real-time.
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