TYPE C BLOCKS OF SUPER CATEGORY O

JONATHAN BRUNDAN AND NICHOLAS DAVIDSON

ABSTRACT. We show that the blocks of category O for the Lie superalgebra g, (C)
associated to half-integral weights carry the structure of a tensor product categori-
fication for the infinite rank Kac-Moody algebra of type Co. This allows us to
prove two conjectures formulated by Cheng, Kwon and Wang. We then focus on the
full subcategory consisting of finite-dimensional representations, which we show is a
highest weight category with blocks that are Morita equivalent to certain generalized
Khovanov arc algebras.

1. INTRODUCTION

In this article, we apply some powerful tools from higher representation theory to the
study of the BGG category O for the Lie superalgebra g, (C), and its subcategory F
of finite-dimensional representations. We restrict our attention throughout to modules
with half-integral weights. In fact, by [C], the study of the category O for g, (C) reduces
to studying three types of blocks, known as the type A, type B, and type C blocks. The
half-integral weight case studied here constitutes all of the type C blocks. For types A
and B blocks, we refer the reader to [CKW, BD2] and [B1, CKW, D], respectively.

The type C blocks are already known to be highest weight categories in the sense
of [CPS]. We will prove two conjectures about them formulated by Cheng, Kwon and
Wang, namely, [CKW, Conjectures 5.12-5.13]. Roughly speaking, these assert that the
combinatorics of type C blocks is controlled by certain canonical bases for the tensor
power V®" of the minuscule natural representation V of the quantum group of type
Cs. Actually, in general, one needs to consider Webster’s “orthodox basis” from [W1],
which is subtley different from Lusztig’s canonical basis. Since there is no elementary
algorithm to compute Webster’s basis, this is still not an entirely satisfactory picture.

Interest in the category F (again, for half-integral weights) was rekindled by another
recent paper of Cheng and Kwon [CK]. We will show here that F is a highest weight
category, answering [CKW, Question 5.1(1)]. When combined with the main result of
[BS2], our approach actually allows us to describe F in purely diagrammatical terms: its
blocks are equivalent to finite-dimensional modules over the generalized Khovanov arc
algebras denoted K, in [BS1].

The remainder of the article is organized as follows.

e In section 2, we set up the underlying combinatorics of the sp,. -module V®".
As observed already in [CKW], this may be identified with the Grothendieck
group of the category O of A-filtered modules of the category O to be studied
later in the paper. We also give a brief review of Lusztig’s canonical basis for
this module, including an elementary algorithm to compute it in practice, and
recall [CKW, Proposition 4.1], which relates this type C canonical basis to some
other type A canonical bases.

e In section 3, we introduce the supercategory sO for the Lie superalgebra g, (C)
and all half-integral weights. Actually, when n is odd, it is more convenient to

Research supported in part by NSF grants DMS-1161094 and DMS-1700905.
1



2 JONATHAN BRUNDAN AND NICHOLAS DAVIDSON

work with supermodules over ¢, (C) @ q;1(C) following the idea of [BD2]. This
means that the supercategory sO considered here in the odd case is the Clifford
twist of the one appearing in [CKW]. This trick unifies our treatment of the
even and odd cases, and actually makes our results slightly stronger for odd
n. Mimicking the approach of [BD2], we then show that sO splits as O @ I1O
for a highest weight category O, and that O admits the structure of a tensor
product categorification of the sp,. -module V®™ in the general sense of Losev
and Webster [LW]. Our proof depends crucially on a particular instance of the
remarkable isomorphisms discovered by Kang, Kashiwara and Tsuchioka [KKT].

e In section 4, we combine our main result from section 3 with an argument in-
volving truncation from sp,_ to sp,y;, and the uniqueness of sp,;,-tensor product
categorifications established in [LW], in order to prove the first Cheng-Kwon-
Wang conjecture. This is similar to the proof of the Kazhdan-Lusztig conjecture
for the general linear supergroup given in [BLW]. We also give an application to
classifying the indecomposable projective-injective supermodules in sO.

e In section 5, we use another form of truncation, this time from sp,_ to sli.,
to establish the second Cheng-Kwon-Wang conjecture. In fact, we show that
the category O admits a filtration whose sections are sl .-tensor product cat-
egorifications, a result which may be viewed as a categorical version of [CKW,
Proposition 4.1]. When combined with the uniqueness of sl .. -tensor product
categorifications established in [BLW], this also allows us to understand the struc-
ture of the subcategory F of O consisting of the finite-dimensional supermodules:
we show that F decomposes as

F= B Fum

no+ni=n

with F,, |, being equivalent to a quotient of the category of rational represen-
tations of the general linear supergroup GL,, |, (C). From this, we deduce that
F is a highest weight category, and its blocks are Morita equivalent to certain
generalized Khovanov arc algebras like in [BS2].

Acknowledgements. We thank Shunsuke Tsuchioka for allowing us to include his coun-
terexamples to positivity in Example 2.12.

2. CANONICAL BASIS

We are going to be interested in categorifications of certain tensor products of minus-
cule representations of various Kac-Moody algebras. In this section, we define these ten-
sor products and make some elementary combinatorial observations about them. Most
of this material also be found in equivalent form in [CKW], but our conventions are
somewhat different.

2.1. Minuscule representations. We will need the (complex) Kac-Moody algebras of
the following types:

Type | Dynkin diagram Simple roots
-2 -1 0 1 2

Sloe | - O—O0—0—0—0-- QG =& — €i41

1 2 3
Slio | O—0—0---- Qi =E€j —&i41

o 1 2 3 .
5Py | O==0—0—0---- apg = —2¢e0, a; =¢g;-1 —&; (1 >0)

0 1 2 k-2 k-1
5Pos O==0—0----0—0 Qg = —2e0, @ = E;_1 —€; (0 <1< k)
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Suppose that s is one of these Lie algebras. Letting I denote the set that indexes the
vertices of the underlying Dynkin diagram in the above table, s is generated by its
Chevalley generators {e;, f; | i € I} subject to the usual Serre relations. Let t be the
Cartan subalgebra spanned by {h; := [e;, fi] | © € I}. We also introduce the weight lattice
P := @,c; Ze;, which we identify with an Abelian subgroup of t* so that the simple
roots {a; | i € I} of s are identified with the elements of P indicated in the table. Note
then that
(ai’ Q; )
(i, o)
where (-, -) is the bilinear form on P defined from (g;,¢;) = 6; ;. There is a corresponding
dominance order > on P defined from A Dy if and only if A — p is a sum of simple roots.
(The notation I, P,... just introduced is potentially ambiguous as it depends on the
particular choice of s, but this should always be clear from the context.)

As is evident from the Dynkin diagrams, there are natural inclusions

<hi,Oéj> =2 (21)

5Py <SPy > 5P > - > SPo o = Slyoe Sl

sending Chevalley generators to Chevalley generators. These embeddings will play an
important role in our applications.

We proceed to introduce various minuscule representations of these Lie algebras.

For sl.,, we will consider both its natural module V™ and the dual V~. These have
standard bases {v]+ |j € Z} and {v; |j € Z}, respectively. The weight of the vector vf
is +¢;, and the Chevalley generators act by

+ . . . + . . .
S B i) ifj=1 S B ifj=1+41
fiv; { 0 otherwise, €% 0 otherwise, (2:2)
_ v, ifj=1+1 _ v ifj=1
T — j—1 T — Jj+1
fiv; { 0 otherwise, €Y { 0 otherwise. (2:3)

Similarly, we have the natural and dual natural modules for sl ,, which will be denoted
V[]+ and V|, respectively. Exploiting the inclusion sli., < sl., we identify VOjE with
the submodule of the restriction of V* spanned by {v]i |7 > 0}.

For sp,y.,, we only have its natural module V. This has basis {v; | j € Z}, with v; of
weight €;_1 if j > 0 or —e_; if j <0, and action defined from

o Vj41 lf]:il o Vj—1 lszlil
fivj = { 0 otherwise, il = { 0 otherwise. (2.4)
Similarly, for any k > 1, we have the natural module Vj of sp,;, which is identified with
the submodule of the restriction of V' spanned by {v; | —k < j < k}.

Lemma 2.1. As an slyo-module, V is isomorphic to V0+ oV, .

Proof. The map v;f — v; defines an isomorphism between VO+ and the sl -submodule
of V spanned by {v; | j > 0}. Similarly, the map v;" — v1_; defines an isomorphism
between V;~ and the submodule spanned by {v; | j < 0}. O

2.2. Tensor products. We are really interested in tensor powers of the minuscule rep-
resentations defined so far. To introduce these, fix n > 1 and let B denote the set Z" of
n-tuples b = (by,...,b,) of integers. Let d,. € B be the tuple with 1 in its rth entry and
0 in all other places. Also, for £ > 1 and a tuple of signs o = (01, ...,0,) € {£}", let
BO :{b€B|b1,,bn>0}, (25)
By, ={beB | —k<by,...,b, <k}, (2.6)
By, ={beB |b.>0if 0, =+,b, <0if 5, = —}. (2.7)
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Let V®° denote the sl,-module V' ® - .- ® V=, It has the natural monomial basis
{vg’ = vgll R - ® vg: ’ be B}. The action of the Chevalley generators of sl,, on this
basis is given explicitly by

o __ o O o
Jivg = E Ubtoudy» €ilp = E Ub—o,dy> (2.8)
1<t<n 1<t<n
i-sigy (b)=£ i-sigy (b)=e

where i-sig? (b) = (i-sig{ (b), ..., i-sigZ (b)) is the i-signature of b € B (with respect to
o) defined from
fif (bt70t) = (ia +) or (bta Ut) = (1 + i, 7);
i-sigy (b) :=< e if (by,00) = (14+14,+) or (bs,04) = (¢, —), (2.9)
e otherwise.

Similarly, we have the sl .-module V°7 = V7' @ - - - ® V", which we identify with the
submodule of V®? spanned by {vg | b € Bg}. The projection

’Ug if b € By,

. 1/®o Ko o
pro : VT = Vo, Up { 0  otherwise

(2.10)

is an sl o-module homomorphism.
We also have the spy.-module V®"  with basis {vp := v, ® -+~ @ v, | b € B}. The
action is given explicitly by the formulae

five = Z Ubtd, €;Vp = Z UVb—d, (2.11)

1<t<n 1<t<n
i-sig, (b)=f i-sig, (b)=e

where this time i- sig(b) = (i-sig; (b), . .., i-sig,, (b)) is defined from
£ if b, = +i,
isig,(b) ;=4 e ifb =11, (2.12)

e otherwise.

Similarly, we have the sp,,-module V", which is identified with the submodule of V®"
spanned by {vp | b € Bi}. The projection
vp ifbe By,

0 otherwise (213)

pry, : VO — VE" Vp > {

is an spy;-module homomorphism.
From Lemma 2.1, we see that the restriction of V®" to the subalgebra sl ., is iso-

morphic to @ VO‘X"’. To write down an explicit isomorphism, introduce the function
oc{£}n
B — By, b— b (2.14)

where b’ is the tuple with rth entry b, if b, > 0 or 1 — b, if b, < 0. This restricts to
bijections B, — By for each o € {+}". Define a linear map

. ®n ®0c vy, if b € By,
Prg s VI = Vo™, b { 0 otherwise. (2.15)
Then:

Lemma 2.2. The map
Z pr, : Ve 5 @ Ve
oc{t}" oc{t}m
is an isomorphism of sl . -modules.



TYPE C BLOCKS 5

2.3. Bruhat order. Next, we introduce some partial orders on the index set B. These
orders arise in Lusztig’s construction of canonical bases for the spaces V7 and V&7,
which we’ll review in more detail in the next subsection. To define them, we need the
inverse dominance order < on P™ from [LW, Definition 3.2]. For 8 = (644,...,8,) € P",
we write |B| for f1 + -+ + B, € P. Then, < is defined by declaring that 3 < - if and
only if |3 =|y|and f1 + -+ Bs >y + -+ s for each s = 1,...,n. (Obviously, <
depends on the particular Lie algebra s being considered.)

We start with sl,. So fix & € {#}". Recall that the weight spaces of V* are

one-dimensional with U;t of weight £¢;. There is an injective map
wt? : B — P", b— (wt{ (b),...,wtZ (b))

with wtZ (b) := o,¢p,; in particular, vg is of weight | wt?(b)|. The sl -Bruhat order <4
on B is defined from

a <, b wt?(a) X wt?(b) (2.16)
in the inverse dominance order for sl,,. The induced order on the subset By from (2.5) is

the sl o -Bruhat order <,. Sometimes the following equivalent description of <, from
[BD2, Lemma 4.2] is useful:

Lemma 2.3. Fori € I (which is either Z or Z depending on whether we are considering
§lo 07 8l 00) and 1 < s < n, we let

N[‘;)S}(b,i) =#{1<r<s|b.>i,0, =4} —#{1 <r<s|b. >i,0, =—}. (2.17)
Then, we have that a <, b if and only if
. N[‘{’S](a,i) < N[‘{,S](b,i) foralliel ands=1,...,n—1;

* N[c{,n] (aa Z) = N[ol-’n](b, Z) fOT’ allie 1.

Turning our attention to spy.., we consider instead the inclusion
wt: B — P", b — (wt1(b),..., wt,(b))
defined by setting wt,.(b) := ep, 1 if b, > 0 or —e_y,_ if b, < 0; in particular vp is of
weight | wt(b)|. Then we define the sp, -Bruhat order < on B as before:
a <Xb<s wt(a) X wt(b) (2.18)

in the inverse dominance order for sp,.,. The sp,, -Bruhat order < is the induced order
on the subset By from (2.6). There is a similar characterization of these orders to
Lemma 2.3:

Lemma 2.4. For i € I (which is either N or {0,1,....k — 1} for spyo, or $pgyy,) and
1 <s<n, welet
Npg(byi) :=#{1 <r <s|b, >i} —#{1 <r <s|b, < —i}. (2.19)
Then, we have that a =< b if and only if
o N (a,0) = Np 4(b,0) (mod 2) for each s =1,...,n—1;
o Npjg(a,i) < Npyg(b,i) forallie I ands=1,...,n—1;
® Npnj(a,i) = Npn(b,i) forallie 1.

Recall the set B, from (2.7) and the bijection B, = Bg, b+ b’ from (2.14).
Lemma 2.5. The map b+ b’ defines a poset isomorphism (Bo, <) = (Bo, <¢).

Proof. This follows easily from the characterizations of the two Bruhat orders that
we have given, on noting from (2.17)-(2.19) that N 4(b,0) = 011 + --- + 0,1 and
Npp,s(b,i) = N[‘is](b’,i) for b € B, and all ¢ > 0. O
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The remaining lemmas in this subsection are concerned with the case s = sp, .

Lemma 2.6. Suppose that a = b and i-sig,.(a) = i-sig, (b) = £ for some i € I and
1<r<n. Then a+d, = b+ d,, with equality if and only if a = b and r = n.

Proof. This may be checked directly from the characterization of the Bruhat order given
by Lemma 2.4. O

Lemma 2.7. For b € B, there exists a € B and a monomial X in the Chevalley
generators {f; |1 € I} of spyo, such that

e a;>-->apanda,+as#1 foralll <r<s<mn;

o Xvg =vp+ (a sum of v.’s for ¢ = b).

Proof. We first explain an explicit construction for @ and X. Suppose we are given b € B.
Define a € B by setting a; := by, then inductively defining each a4 for s =2,...,n to
be the greatest integer such that as < by and as < min(a, —1,—-b,) for all 1 <r < s.
It is clear from the definition of a that a; > -+ > a,. Also for 1 <r < s < n, we have
that a, +as < b, — b, = 0. Then take X = X, - -+ Xo where X, := fly__1] "+ fla.+1f]a.|-

To show that Xve = vp + (a sum of higher v.’s), we proceed by induction on n, the
result being trivial in case n = 1. Forn > 1, let @ := (ay,...,a,_1), b:= (b1, ..., bp_1)
and X := X,,_1 --- Xo. Applying the induction hypothesis in the sp,._-module yem-—1
we get that Xvz = vg+(a sum of vg’s for € = b). Now we observe that if f; is a Chevalley
generator appearing in one of the monomials X, for r < n then ¢ # *a,, hence, f;v,, =
0. Letting b= (bi,...,by_1,a,), we deduce that Xv, = v + (a sum of ve’s for € > B)
Finally we act with X,,, which sends v,, to vs,, and apply Lemma 2.6. (|

n )

2.4. Canonical basis. So far, we have introduced the following tensor product modules
over various Lie algebras s:

5 Tensor space | Monomial basis | Canonical basis
sl yee vg forbe B cg forbe B
slyoo Vb®a vy for b € By | prycg for b € By
SPooe yen vp for be B cp for be B
5Po Vk®" vp for b € By, | pricp for b e By,

In this subsection, we give meaning to the rightmost column of this table by introducing
some canonical bases, basically following a construction of Lusztig from [L, §27.3].

In each of the above cases, let Uys be the quantized enveloping algebra associated to s
over the field Q(q) (¢ an indeterminate). We denote the standard generators of Uys by
{éi, fi, Icli | i € I'}. They are subject to the usual g-deformed Serre relations. We view
U,s as a Hopf algebra with comultiplication A defined from

A(f)=1®@ fi+ [ @k, Al&)=ki'®@é+é@1, Alk) =k ® k.

The various minuscule representations introduced in §2.1 all have g-analogs; cf. [J,
§5A.1]. We will denote them by decorating our earlier notation with a dot, so we have the
Q(q)-vector spaces V=, ViE, V and V;, with bases {vjlL |je Z},. {vji |j >0}, {v;|j€Z}
and {0;| —k < j < k}, respectively. The Chevalley generators f; and é; act on these bases

by the same formulae (2.2)—(2.4) as before, while the diagonal action is given explicitly
by
klv;_ — q5¢,j—51+i‘j@;‘, szJ_ — q51+i,j—51xj1')],_7
for the sl cases, or
ki@j — q(si,j“r(s—i,j*51+i,j*61—i,]’ijj
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for sp. Taking tensor products, we obtain the modules V®"’7 %@"’, Ve and Vk®", with
their natural monomial bases denoted now by {vg | b € B}, {07 | b € Bo},{vs | b € B}
and {0p | b € By}, respectively.

In the infinite rank cases, we need to pass from the g-tensor spaces just defined to
completions in which certain infinite sums of the basis vectors also make sense, as follows.

For sl.,, the completed tensor space is denoted Vo, Tt is the Q(g)-vector space
consisting of formal linear combinations of the form  , - ps(q)vg for rational functions
pb(q) € Q(q) such that the support {b € B | pp(q) # 0} is contained in a finite union of
sets of the form {b € B | wt?(b) = B} for 8 € P" (working with the inverse dominance
order for sly,). This definition is justified in [BD2, Lemma 8.1]. For sl ., exactly the
same procedure gives a completion ‘A/O@” of VO®", which embeds naturally into Ve,
Also, as in (2.10), there is a projection

pry: VO — V29, Zl)b(Q)i)g = Z pu(9)0F
beB beByg

which is left inverse to the inclusion ing : ‘//\b®" s VO,

For sp,., we define the completion Ve of VO in an analogous way, replacing the
sloo-Bruhat order by the sp,.-Bruhat order. So it is the Q(g)-vector space consisting
of formal linear combinations of the form ), g ps(q)Us Whose support is contained in
a finite union of sets of the form {b € B | wt(b) = B} for 3 € P" (working with the
inverse dominance order for sp,_). Just like in [BD2, Lemma 8.1], the action of Uysp,
on V& extends to an action on ‘A/@”, and the completion still splits as the direct sum
of its weight spaces. The U,spy,-module Vk‘g’" embeds naturally into V®”, hence, its

completion Ven. Asin (2.13), we also have the projection

pr), : V& VE, Zpb(Q)'[)b = Z Po(q) s,
beB beBy

which is left inverse to the inclusion iny, : V2™ < yen,
The projection (2.15) carries over to the present setting too: there is a Uysly -module
homomorphism

pr, : VO — VP, Z Pb(q) 06 = Z po(q)ig
beB beB,

for o € {+}". Tt is left inverse to in, : 170®" < Von, > beB, Po()g = D pep, Pb(a)b.

The key point now is that there are canonical bar involutions on each of the spaces
yee, ‘A/O®", Ven and V2™ which we’ll denote by 1, ¥, ¢ and 1y, respectively. Each one
is antilinear with respect to the field automorphism Q(q) — Q(q),q + ¢!, it preserves
weight spaces, and it commutes with all fl and é;. The construction in finite rank is
explained in [L, §27.3.1] using the quasi-R-matrix ©; note for this due to our different
choice of A compared to [L] that Lusztig’s v is our ¢~}. The approach in infinite rank
is essentially the same; one needs the completion so that the infinite sums that arise
still make sense. In the next paragraph, we go through the details of the definition of
(U Ven 5 V9 in the case of 5Pseo- The constructions for sl and sl are entirely
analogous; see also [BD2, Lemma 8.2].

So consider V®". Proceeding by induction on n, we set (0;) = v; for each j € Z.
For n > 1, we assume that the analog 1 of ¢ on the space V®((n-1) hag already been
defined by induction. Letting b denote the (n — 1)-tuple (by,...,b,_1), we define ¥ on
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Ve@n by setting

P (Zpb(Q)??b) = Zpb(qfl) O (¥ (vp) @ e, )- (2.20)
bcB bcB

To better understand this expression, recall that the quasi- R-matrix © is a formal sum

of terms O for § € @,;c; Nay, with Og = 1 and O € (U, 5pa.)—p @ (U P2y, ). The

only monomials in the generators of U;r 5Py, that are non-zero on v; are of the form

€i|€Ji+1) * * - €|j—1) for integers ¢ < j. Hence, for any v € yer-1 and j € Z, we have that

@(’U@’Dj) :U®’0j JrZ(@mv) ®’[)i (221)
i<j
for ©;,; € (U 5P200) —(ay+aisn |+t _q))- Bach ©;; lies in Lusztig’s Zq, q]-form for
U, 5Paoe by the integrality of the quasi-R-matrix established in [L, Corollary 24.1.6].
Applying these remarks to (2.20) and using induction, we deduce 1 (vp) equals 0p plus
a Z[gq, ¢~ ']-linear combination of 9,’s for a = b, which is a well-defined element of yen,
The formula (2.20) also makes sense for arbitrary sums ) _, g pb(q)0s due to the interval-
finiteness of the inverse dominance order on P". Finally, to see that ¢ commutes with
the actions of all fZ and é;, and that it is an involution, one argues as in [L, §27.3.1].
As the following lemma shows, the various bar involutions we have defined are closely
related.

Lemma 2.8. The following diagrams commute:

® Yo . U® @ Yr @ ® Yo . U®
inoJ/ TPFO , inkl Tprk , inal Tpra X
Ves %o yen y on yen pen

P P P

Proof. In each case, this follows because the quasi- R-matrix © used to define the bottom
map is a sum of the form Zﬁ O3 for B in the positive root lattice of sl., or sp,.,, while
the quasi-R-matrix used to define the top map is a sum of the same ©g’s for 3 taken
from the positive root lattice of the subalgebra sl or sp,. (]

Now we can introduce the canonical basis for each of our completed tensor spaces. In
each case, the bar involution maps the monomial basis vector indexed by b to itself plus
a Z[q, ¢ !]-linear combination of monomial basis vectors indexed by strictly larger a’s
in the appropriate Bruhat order. Then we apply “Lusztig’s Lemma” as in the proof of
[L, Theorem 27.3.2]: the canonical basis vector indexed by b is the unique bar-invariant
vector that is equal to the monomial basis vector indexed by b modulo a ¢ Z[g]-linear
combination of other monomial basis vectors. Our notation for the canonical basis in
each case is explained in the next two paragraphs.

For sl,, we denote the canonical basis for VO as just defined by {é¢7 | b € B}. So,
¢g is the unique vector fixed by 1 such that

i =3 d7 4 (a)ig (2.22)

acB
for polynomials d ,(q) with dg,(q) = 1, dg ;,(q) = 0 unless a = b, and d ,(q) € qZ[q]
if @ = b. These polynomials have a natural representation theoretic interpretation dis-
cussed in detail in [BLW, §5.9]. They are some finite type A parabolic Kazhdan-Lusztig
polynomials (suitably normalized), hence, all of their coefficients are non-negative. More-
over, each ¢f is always a finite sum of 07’s, i.e. ¢f € V® before completion. We will
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not introduce any new notation for the canonical basis of ‘70®0 in the sl -case, because
by the first diagram from Lemma 2.8 it is simply the projection {pry¢g | b € Bg} of the
basis just defined.

Moving on to our notation for sp,.,, the canonical basis for ven s {év| b€ B}. We
have that

b= dap(q)ia (2.23)
acB

for polynomials dg b(q) € Z[g] with dps(q) =1, da,p(q) = 0 unless @ = b, and dq p(q) €
qZ[q] if @ = b. Unlike in the previous paragraph, the polynomials dg(q) may have
negative coefficients; see Example 2.12 below. Consequently, it is conceivable that some
¢p’s might fail to be finite sums of 9,’s, but this seems unlikely to us. In view of the second
diagram from Lemma 2.8, the canonical basis for V&™ is the projection {prj,ép|b € By}

The following lemma is an equivalent formulation of [CKW, Proposition 4.1].

Lemma 2.9. For b € B,, we have that pr,éy = procy,. Hence, dap(q) = d2, ./ (q) for
all a,b € B,.

Proof. As pr iy = pryvg,, this follows using the third diagram from Lemma 2.8. O

The vectors ¢f and cp displayed in the table at the beginning of the subsection refer
to the specializations of ¢f and ¢, at ¢ = 1.

2.5. An algorithm. In [BD2, §8], we described an algorithm to compute the canonical
basis {¢g | b € B} for the Uyslo-module V&7 In this subsection, we work instead with
Uy5P900, and describe an analogous algorithm to compute the canonical basis {¢,|b € B}
for V", The algorithm goes by induction on n. In case n = 1, we have that ¢, = 0p
always. If n > 1, we begin by recursively computing é; € ‘A/@(”_l), where b denotes

(b1,...,bp—1) as usual. Tt is a linear combination of vg’s for a > b. Then we define j to
be the greatest integer such that j < b,, and j < —|a,| for all 1 < r < n and all tuples
a = (ai,...,an—1) such that 05 occurs with non-zero coefficient in the expansion of ¢;.

Lemma 2.10. In the above notation, we have that © (¢g ® V) = ¢ ® ;.

Proof. As in (2.21), we have that © (¢ ® 0;) = ¢z @0+, (04,;¢5) ®0;, where ©; ; is
a linear combination of non-trivial monomials in f-|j_1‘,f.‘j_2|, ey f\il' By the definition
of j, all of these generators act as zero on ¢g. O

Lemma 2.10 shows that the vector ¢z ® v; € Von s fixed by 1. Hence, so too is
f|bn_1‘ e f|j+1‘f.‘j| (é5 ® ¥;). By Lemma 2.6, this new vector equals v plus a Z[g, ¢~ ']-
linear combination of v4’s for @ > b. If all but its leading coefficient lie in ¢ Z[q],
it is already the desired vector ¢p. Otherwise, one picks @ > b minimal so that the
Vq-coefficient is not in ¢ Z|[q], then subtracts a bar-invariant multiple of the recursively
computed vector ¢, to remedy this defficiency. Continuing in this way, we finally obtain
a bar-invariant vector with all of the required properties to be ¢p.

Example 2.11. The canonical basis of V®2 consists of the following vectors:
v; @ ; for i > j with i+ 7 # 1,
0; @V +qv; @0; for i < j with i +j # 1,
Vi @ V1—; + qU14, @ 0—; for i >0,
Vi @ 01— + qUip1 @ Vi + qU_; @ Vig1 + 201 @ v; for i <0,
Bo ® D1 + ¢°01 @ Dp.



10 JONATHAN BRUNDAN AND NICHOLAS DAVIDSON

We refer the reader to http://pages.uoregon.edu/brundan/papers/C.gap for some
GAP code implementing this algorithm. Using it, we have independently verified the next
examples, which were discovered originally by Tsuchioka:

Example 2.12. If a = (1,1,0,1,0,0) and b = (—1,2,—1,2,—1,2) then
dap(q) = q" +4¢° +3¢° — q.
Ifa=(1,-1,2,-1,2,0) and b = (—1,-2,3,-2,3,2) then
dab(q) = 8¢" — .

These examples demonstrate that positivity fails in this situation.

2.6. Crystals. To conclude the section, we recall the explicit combinatorial description
of the crystal associated to the sp,. -module V®". Later in the article, we will give a
representation-theoretic interpretation of this structure; see §4.3. The case of the sl..-
module V®7 can be treated entirely similarly on replacing i- sig(b) with i-sig” (b); its
representation-theoretic significance is discussed e.g. in [BLW, §2.10].

The set underlying the crystal that we need is the set B that parametrizes our various
bases for V®". Its weight decomposition B = |—|'v€ p B, is defined by setting

B,={beB ‘ |wt(b)| =~} .

We need to introduce crystal operators
fi : B,y — B"/—ai U{@}, €;: B"/ — B’y—i—ai U{@}

for each v € P and ¢ € I. These arise naturally by iterating Kashiwara’s tensor product
rule, and may be computed as follows. Take b € B,. Starting from the i-signature
i-sig(b) from (2.12), we define the reduced i-signature by replacing pairs of entries of
the form ef (possibly separated by e’s) with e’s, until all e entries appear to the right of
the entries £. Then define ﬁ-b to be b+ d, if the rightmost f in the reduced i-signature
appears in position r, or @ if there are no f’s remaining in the reduced i-signature.
Similarly, define ;b to be b — d; if the leftmost e in the reduced i-signature appears in
position s, or & if there are no e’s present.

Example 2.13. Take b = (2,—1,—-1,4,—2,-2,3,2,—2). The 2-signature of b is the
tuple (f,e,e,o f f e, f). The reduced 2-signature is (f,e,0 0 0 o o o f). Hence,
fob=b+do=(2,—1,-1,4,-2,-2,3,2,—1) and éxb = 2.

Let B° denote the set of all elements of B which can be obtained from z = (0, ...,0) by
applying a sequence of crystal operators. In other words, B° is the connected component
of the crystal B containing z.

Lemma 2.14. We have that b € B° if and only if b is antidominant in the sense that
by < < by

Proof. For the forward implication, we observe that whenever a € B is antidominant,
then so are fia and é;a. For instance, to check that the entries of ﬁ-a are weakly
increasing, we have that fia = a + d, where r is the maximal index for which the
reduced i-signature of a contains an £. We need to see that a, < a,11. Well, otherwise,
we would have that a, = a,,1, in which case i-sig,.(a) = i-sig,,(a) = f. Because we
cancel ef pairs (and not fe!) it would then follow that the reduced i-signature of a
contains a f in its (r + 1)th entry, which contradicts our assumption about r.
Conversely, suppose that by < --- < b,,. For every index r, define a monomial
~ { Jo,—1-fifo b >0

Tpoi=1< o .
" €_p, €261 if b, < 0.
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Letting t denote the maximal index for which b; < 0, taking ¢ := 0 in case b, > 0 for all
r, one then checks that T; - - ToT1%¢41T¢42 - Tnz = b. O

Similarly, one can make the subset By C B into an sp,,-crystal. The connected
component of By containing z is B} := By NB°. It is also the connected component
containing

Zktz(].—k,...,].—k)EBk. (224)

This is significant because the vector v,, is a highest weight vector in Vk®". Its weight
| wt(zy)| is —nep—1.

3. CATEGORY O

Next, we introduce the supercategory sO of representations of the Lie superalgebra
4 (C) that is the main object of study of this article. Then, we prove our main categori-
fication theorem, which asserts that sO splits as O @ IIO with O being a tensor product
categorification of the spy. -module V®". The proof of this theorem is similar to the
proof of a similar assertion for type A blocks from [BD2].

3.1. Superalgebra. We will work from now on over the ground field C. A wvector super-
space is a Z /2-graded vector space V = V5@ V7. We denote the parity of a homogeneous
vector v € V by |v| € Z /2. Any v € V has a canonical decomposition v = vg + vy with
|vp| = p. Let SVec be the category of vector superspaces and parity-preserving linear
maps. It is symmetric monoidal with braiding u ® v — (71)‘“””"0 ® u. Then, we make
the following definitions following [BE]:

o A supercategory is a SVec-enriched category.

o A superfunctor is a SVec-enriched functor.

o A supernatural transformation n : F' = G between superfunctors F,G : C — D is
a family of morphisms 1y = Ny 0 +npr1 1 FFM — GM for each M € obC, such
that ny o Ff = (=1)/IPG fony,,, for every homogeneous morphism f : M — N
in C and each p € Z /2.

For any supercategory C, there is a supercategory &nd(C) consisting of superfunctors
and supernatural transformations. It is a (strict) monoidal supercategory in the sense of
[BE, Definition 1.4]. A superequivalence between supercategories C and D is a superfunc-
tor F' : C — D such that there exists another superfunctor G : D — C with GF : C — C
and F'G : D — D being evenly isomorphic to identity functors.

Given any C-linear category C, one can form the supercategory C @ IIC with objects
being pairs (V1,Va2) of objects from C, and morphisms (V1,Vs) — (W7, Ws) that are

2 X 2 matrices f = ( hu Jio ) of morphisms f;; € Home(W;,V;). The Z /2-grading

Ja1 fa2
1s defined so fg = and f; = . We say that a supercategory
s defined so fy = (5 0 Yand = () ). Wesay
22 21

splits if it is superequivalent to a supercategory of this form.

Here is the basic example to keep in mind. Let A = Ag & A7 be an associative
superalgebra. There is a supercategory A-SMod consisting of left A-supermodules. Even
morphisms in A-SMod are parity-preserving linear maps such that f(av) = af(v) for
all a € A,v € M; odd morphisms are parity-reversing linear maps such that f(av) =
(=1)l*laf(v) for homogeneous a. If A is purely even, i.e A = Ag, then the category
A-SMod obviously splits as A-Mod @ II(A-Mod). In general, A-SMod splits if and only
if A is Morita superequivalent to a purely even superalgebra.
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3.2. Supercategory sO. We assume henceforth that we have fixed n > 1, and set
m = [n/2]. We are interested in a certain supercategory of representations of the Lie
superalgebra q,,(C), that is, the subalgebra of the general linear Lie superalgebra gl,,,,(C)
A

BT 4 > In order to unify our treatment of odd
versus even n as much as possible, we will adopt the same trick as used in [BD2], setting

consisting of matrices of the form (

O NP qn(C) if n is even,
8= fowar= 4, (C) & q1(C) if n is odd.

The point of the additional q; (C) in case n is odd is that it adjoins an extra odd involution
to the supercategory sO to be defined shortly. In language from the introduction of
[BD2], this amounts to working with the Clifford twist of the supercategory that one
would naturally define without this extra factor.

It will sometimes be helpful to identify g with a subalgebra of g := gly,;2,,(C). Let
Zr s be the usual rs-matrix unit in g, whichisevenif 1 < r,s <2mor 2m+1 <r,s < 4m,
and odd otherwise. Introduce the matrices

!
€rs = Trs + T2m+r,2m+s, er,s = Tr2m+s + T2m+r,s) (31)
/
fr,s = Trs — L2m+r,2m4t-s, frys = Tr2m+s — L2m+r,ss (32)
._ ro_
dy = ey, d.=e,.,. (3.3)

Then g is the subalgebra of g with basis {e,s, €] ;|1 < 1,5 < n} together with {day,, d5,, }
if n is odd. The matrices f, s, f;  are elements of @ but not g. Let h = bhg ® hy be the
Cartan subalgebra of g = go @ g7 with basis {d,,d,. |1 < r < 2m}. Also let d1,...,02m
be the basis for b that is dual to the basis dy, ..., day, for ho. Finally, let b be the Borel
subalgebra of g generated by h and the matrices {e, s, ). [1 <7 < s <n}.

As in the previous section, B will denote the set Z" of n-tuples b = (by,...,b,) of

integers. For b € B, let A\p € b be the weight defined from

Z(br — 2)6, if n is even,

Ap =< "Rt (3.4)
> by = 3)dr + b2 if nis odd.
r=1

Then we define sO to be the supercategory consisting of all g-supermodules M such that

e MM is finitely generated over g;
e M is locally finite-dimensional over b;
e )M is semisimple over hg with all weights of the form Ay for b € B.

We denote the usual parity switching functor by II : sO — sO. This sends a supermodule
M to the same vector space viewed as a superspace with (IIM)g := M7 and (IIM)7 :=
M, and new action defined from z - v := (—1)*lzv.

Let sO be the underlying C-linear category consisting of all of the same objects as
sO, but only the even morphisms. The category sO is obviously Abelian. In fact, it is
Schurian in following sense; this follows as in [B2, Lemma 2.3].

Definition 3.1. A C-linear category is Schurian if it is Abelian, all of its objects are of
finite length, the endomorphism algebras of the irreducible objects are one-dimensional,
and there are enough projectives and injectives.

We proceed to introduce the Verma supermodules in sO. We need to do this rather
carefully in order to be able to distinguish a Verma supermodule from its parity flip.
Since we reserve the letter i for elements of the set I as in the previous section, we’ll
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denote the canonical element of C by /—1. We also need to pick some distinguished
square roots for each element of the subset Z —i—% of C such that

Vit fi-b=y-itdy/-i—1 (3.5)

for each ¢ € N. For example, this can be done by letting 4/ + % denote the usual positive

square root when i > 0, then setting /i + 1 := (—1)""1y/=1/—i — L if i < 0.

Lemma 3.2. For each b € B, there is a unique (up to even isomorphism) irreducible
h-supermodule V (b) of weight Xy such that the element d} - - - d5,,, € U(g) acts on all even
(resp. odd) vectors in V(b) by multiplication by the scalar cp (resp. —cp), where

ey = (VD)™ by — &b — & (3.6)

Moreover, any h-supermodule of weight Ny splits as a direct sum of copies of V(b) and
its parity flip TV (b).

Proof. This is similar to [BD2, Lemma 2.1]. The supermodule V(b) may be constructed
explicitly as there as an irreducible supermodule over a Clifford superalgebra of rank
2m; in particular, dim V' (b) = 2™. |

For each b € B, we define the Verma supermodule
M(b) :=Ul(g) @u(v) V(b), (3.7)

viewing V(b) as a b-supermodule via the natural surjection b — h. It is obvious that
this belongs to sO. Here we list some more basic facts.

e The Verma supermodule M (b) has a unique irreducible quotient L(b). The
supermodules {L(b) | b € B} give a complete set of representatives for the iso-
morphism classes of irreducible objects in sO. Moreover, L(b) is not evenly
isomorphic to its parity flip.

e There is a duality x on sO such that L(b) and L(b)* are evenly isomorphic for
each b € B; cf. [BD2, Lemma 2.3].

e If b is both dominant in the sense that by > --- > b,,, and typical, meaning that
br+bs #1foralll <r < s<mn,then M(b) is projective; cf. [BD2, Lemma 2.4].

Let sO® be the full subcategory of sO consisting of all supermodules possessing a
Verma flag, i.e. for which there is a filtration 0 = My C --- C M; = M with sections
My, /M. that are isomorphic to Verma supermodules. As in [BD2, Lemma 2.5], the
multiplicities (M : M (b)) and (M : IIM (b)) of M(b) and IIM (b) in any Verma flag of
M € obsO* satisfy

(M : M (b)) = dim Home (M, M (b)*)g,
(M : TIM (b)) = dim Hom,o (M, M (b)*);.
Moreover, if M possesses a Verma flag, then so does any direct summand of M.

3.3. Special projective superfunctors. Let U be the natural g-supermodule of col-
umn vectors with standard basis wuy, ..., usm,u], ..., u),,, so the unprimed vectors are
even, the primed ones are odd. Let U* be its dual, with basis ¢1,..., Pom, &, ..., Po
that is dual to the basis uq, ..., ugm,ul, ..., ub,,. Then, let U C U and U* C U* be the
g-supermodules with bases u1, ..., up, u},...,ul, and ¢1, ..., én, P, ..., @), respectively.

It is easy to see that tensoring either with U or with U* sends supermodules in sO to
supermodules in sO. Hence, we have endofunctors

sF:=U® —:s0 — s0O, sE:=U*® —:s0 — sO. (3.8)



14 JONATHAN BRUNDAN AND NICHOLAS DAVIDSON

The superfunctors sF' and sE are both left and right adjoint to each other. The canonical
adjunction making (sE, sF') into an adjoint pair is induced by the linear maps

U'®U —=C, ¢@u—du), CoUU 1Y (U@ ¢ +u,@4¢)),

r=1

while the adjunction (sF, sE) is induced by

UU* = Cuepm (—)Mpw), CoU QU 1> (¢ ®ur — ¢, ®ul).

r=1
As well as these adjunctions, there are even supernatural transformations z : sF' = sF
and t : sF? = sF2, and an odd supernatural transformation ¢ : sF = sF, which are
defined on M € ob sO as follows:
o 2 :U®M — U ® M is left multiplication by the tensor
n

W= Z (fr,s ® esr — f,’,’S ® e’w) €Iy,

r,s=1
which defines a g-supermodule homomorphism by the proof of [BD2, Lemma
3.1];
ety URURM -U®U®M sends u®@v@m— (—1)*ly @ u@m;
e ¢y : UM — U ® M is left multiplication by v/—12' ® 1 where

n

= thlt €9
=1

Similarly, there are supernatural transformations z* : sE = sE,t* : sE? = sE? and
c* : sE = sE: x* and ¢* are defined similarly to = and ¢ but with an additional sign,
so they are given by left multiplication by —w and by —/—12' ® 1, respectively; t* is
defined using the braiding on SVec in exactly the same way as . One can check that
x*,t* and c¢* are both the left and right mates of x, ¢ and ¢, respectively, with respect to
the adjunctions fixed in the previous paragraph; cf. [BD2, Lemma 3.6].

Definition 3.3. The (degenerate) affine Hecke-Clifford supercategory AHC is the strict
monoidal supercategory with a single generating object 1, even generating morphisms
+ :1—1and >< :1®1—1®1, and an odd generating morphism + :1 — 1, subject
to the following relations:

RS TR E O S
XX XXAH XX

(Here, we are using the string calculus for strict monoidal supercategories as in [BE].)

The following theorem is essentially [HKS, Theorem 7.4.1]; cf. [BD2, Theorem 6.2].
It is proved by explicitly checking the relations.

Theorem 3.4. There is a strict monoidal superfunctor ¥ : AHC — End(sO) sending
the generating object 1 to the endofunctor sF', and the generating morphisms + , >< and

+ to the supernatural transformations x,t and c, respectively.
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The superfunctor ¥ from Theorem 3.4 induces superalgebra homomorphisms

U, : AHCy — End(sF?) (3.9)
for each d > 0, where AHC} denotes the (degenerate) affine Hecke-Clifford superalgebra
AHCy := End g3 (1%7). (3.10)

These superalgebras were introduced originally in [N], and can be understood alge-
braically as follows. Numbering the strings of a d-stringed diagram by 1,...,d from
right to left, let . (resp. ¢,) denote the element of AHC, defined by a closed dot (resp.
an open dot) on the rth string. Let ¢, denote the crossing of the rth and (r+ 1)th string.
The even elements x1,...,xq commute, the odd elements cy, ..., cq satisy the relations
c2 =1 and c,.cs = —cse, (1 # s) of the rank d Clifford superalgebra Cy, and t1,...,tq_1
satisfy the same relations as the basic transpositions in the symmetric group S4. In fact,
by the basis theorem for AHCy from [BK, §2-k], x4, ..., 24 generate a copy of the poly-
nomial algebra Ay := Claq,...,x4] inside AHCy, while ¢1,...,¢q,t1,...,tq—1 generate a
copy of the Sergeev superalgebra HCy := S4 x Cyq. Moreover, the natural multiplication
map HCy; ® Aqg — AHCy is an isomorphism of vector superspaces. We note also that
the multiplication in AHC}; satisfies the following;:

fer=cren(f), (3.11)
ftr=tt.(f) +0:(f) + Crcr+1é7'(f)a (3.12)

for each f € Ay4. Here, the operators ¢, t,, 0., O, : Ay — Ay are defined as follows:

e t,. is the automorphism that interchanges x,. and z,,1 and fixes all other gener-
ators;

e ¢, is the automorphism that sends x,, — —x, and fixes all other generators;

e 0, is the Demazure operator 0,(f) := ;T(fi‘g_fl;

e 0O, is the twisted Demazure operator ¢, 41 © 9y o ;.

Next, we are going to decompose sF' and sF into generalized eigenspaces with respect
to the endomorphisms = and z*. The key ingredient needed to understand this is the
following, whose proof is identical to that of [BD2, Lemma 3.2].

Lemma 3.5. Suppose that b € B and let M := M (b).
(1) There is a filtration

O=MyCcM,C---CM,=UxM

with My/My—1 =2 M(b+d;) @ UM (b+d;) for eacht =1,...,n. The endomor-
phism xp; preserves this filtration, and the induced endomorphism of the subquo-

tient My /M;_1 is diagonalizable with exactly two eigenvalues +4/b; + %, /by — %

Its 4 /by + %, /by — %—eigenspace is evenly isomorphic to M (b+d;), while the other

eigenspace is evenly isomorphic to IIM (b + d;).
(2) There is a filtration

O=M"Cc---cM'cM°=U"@M

with M= /M = M(b—d;) @TIM (b —d;) for eacht =1,...,n. The endomor-
phism x}; preserves this filtration, and the induced endomorphism of the subquo-

tient M*~1/M?" is diagonalizable with ezactly two eigenvalues £4/b; — %, /by — %
Its /by — %, /by — %-eigenspace is evenly isomorphic to M (b—d;), while the other

eigenspace is evenly isomorphic to IIM (b — d;).
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For the remainder of the section, we let I denote the set N. In the notation from
the previous section, this is the index set for the simple roots of the Kac-Moody algebra

5 = 8Py, Let
J = {i\/i—&— 1 i—12

This set is relevant due to the following lemma.

i€ I}. (3.13)

Lemma 3.6. For any M € obsO, all roots of the minimal polynomials of xpr and
x5 (computed in the finite dimensional superalgebras End,o(sF M) and Endso(sE M))
belong to the set J.

Proof. This reduces to the case that M is a Verma supermodule, when it follows from
Lemma 3.5 and (3.5). O

For j € J, let sF; (resp. sE;) be the subfunctor of sF' (resp. sE) defined by letting
sF; M (resp. sE; M) be the generalized j-eigenspace of xas (resp. x},) for each M €
ob sO. Lemma 3.6 implies that

sF = GB sFy, sE = @SEJ'. (3.14)
JjeJ JjeJ
The adjunctions (sE, sF') and (sF, sE) fixed earlier restrict to adjunctions (sE;, sF;) and
(sFj, sE;) for each j € J; this follows because z* is both the left and right mate of x.
Also, by Theorem 3.4, c restricts to an odd isomorphism sF} = sF_; for each j € J;
similarly, sE; = sE_;.
Recalling (2.11), the following theorem reveals the first significant connection between
combinatorics in sO and the spy -module V&,

Theorem 3.7. Givenbe B andi € I, let j:= ,/i—i—% i— % Then:

(1) sF; M(b) (resp. sF_; M(b)) has a multiplicity-free filtration with sections that
are evenly (resp. oddly) isomorphic to the Verma supermodules

{M(b+dy) | for 1 <t <n such that i-sig,(b) = £},

appearing from bottom to top in order of increasing t.
(2) sE; M(b) (resp. sE_; M(b)) has a multiplicity-free filtration with sections that
are evenly (resp. oddly) isomorphic to the Verma supermodules

{M(b—d;) | for 1 <t <mn such that i-sig,(b) = e},
appearing from top to bottom in order of increasing t.

Proof. (1) We just need to check the statement for sF; M (b); the one about sF_; M (b)
then follows because it is isomorphic to sF; M(b) via an odd isomorphism. Apply-
ing Lemma 3.5, we see that sF; M(b) has a multiplicity-free filtration with sections
that are evenly isomorphic to the supermodules M (b + d;) for t = 1,...,n such that

7/ be + %\/bt —% =7 =4/i+ %w/i— % Squaring both sides, we deduce that b7 = 42,

hence, by = +i. Both cases do indeed give solutions thanks to (3.5). It remains to

compare what we have proved with the definition of i-signature from (2.12).
(2) Similar. O

Finally in this subsection, we introduce a completion A/H\Cd of the affine Hecke-
Clifford superalgebra AHCy from (3.10), following [KKT, Definition 5.3]. As a vector
superspace, we have that

@d = HC’d X A\d where A\d = @ (CHJUl — jl, ey Id — jdﬂlj, (315)
jeJja
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and J? denotes the set of d-tuples j = jq---j; of elements of J. For h € HCy and
feCllx1—71,-..,2a—ja], we write simply hf1; in place of h® f1;. The multiplication
in A/PR’d is defined so that /Td is a subalgebra, the maps HCy — II{\Cd, h +— hlj; are
algebra homomorphisms, and, extending (3.11)—(3.12), we have that:

(f15) (erly) = er e (F)Len(y Ly (3.16)
tr (M), = 1
(F15) (tr1y0) = tr to(f)1g, ) 15 + b 71,
Ty — Tpry1
tr(fﬂn(j) - Cr+1(Cr(f))lc,,,ﬂ(c,,,(j)) 1.
T+ Lr41 I

+ ¢reri1 (3.17)
Let End(sF?) be the superalgebra of all supernatural transformations sF'? = sF¢. Since
(x — j) acts locally nilpotently on sF;, i.e. it induces a nilpotent endomorphism of sF; M
for each M € obsO, we can extend the homomorphism ¥, from (3.9) uniquely to a
homomorphism

U, : AHC 4 — End(sF?) (3.18)
;) is the projection of sF'? onto its summand sFj, - - - sFj,, and \f/d(alj) =

such that U 4(
J

1
U4(a)o \/I\/d(l ) for each a € AHCYy.

3.4. Indecomposable projectives. In this subsection, we relate the sp,. -Bruhat or-
der =< on B from §2.3 to the structure of the Verma supermodules in sO. Actually, it is
better to work in terms of projectives, so let P(b) be a projective cover of L(b) in sO.

Theorem 3.8. The indecomposable projective supermodule P(b) has a Verma flag with
top section evenly isomorphic to M (b) and other sections evenly isomorphic to M(c)’s
for ¢ € B with ¢ = b.

Proof. By Lemma 2.7, there exists a dominant, typical a € B and a monomial X in the
Chevalley generators {f;|i € I} of sp,y., such that Xve = vp + (a sum of v.’s for ¢ > b).

Suppose that X = f;, --- fi, fi, for i, € I. Let ji := y/ir + %Hik — % and consider the

supermodule
P :=sFj, ---sF;,sF;, M(a).

Since a is dominant and typical, M (a) is projective. Since each sF; sends projectives to
projectives (being left adjoint to an exact functor), we deduce that P is projective. Since
the combinatorics of (2.11) matches that of Theorem 3.7, we can reinterpret Lemma 2.7 as
saying that P has a Verma flag with one section evenly isomorphic to M (b) and all other
sections evenly isomorphic to M(c)’s for ¢ > b. In fact, the unique section isomorphic
to M(b) appears at the top of this Verma flag, thanks the order of the sections arising
from Theorem 3.7(1). Hence, P has a summand evenly isomorphic to P(b), and we are
done as sO? is closed under passing to summands. O

Corollary 3.9. For ¢ € B, we have that [M(c) : L(c)] = 1. All other composition
factors of M(c) are evenly isomorphic to L(a)’s for a < c.

Proof. This follows from Theorem 3.8 using BGG reciprocity: for a,c € B and p € Z /2,
we have that

[M(c) : TI’L(a)] = [M(c)* : I’ L(a)] = dim Hom,o (P(a), M(c)*), = (P(a) : T M(c)).
O

Corollary 3.10. For any b € B, every irreducible subquotient of the indecomposable
projective P(b) is evenly isomorphic to L(a) for a € B with |wt(a)| = | wt(b)|.
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Proof. By Theorem 3.8 and Corollary 3.9, the composition factors of P(b) are L(a)’s for
a € B such that @ < ¢ > b for some ¢. This implies that | wt(a)| = | wt(d)|. O

3.5. The main categorification theorem. Recall that I = N. The monoidal category
in the following definition is one of the categories introduced by Khovanov and Lauda
[KL1, KL2] and Rouquier [R], for the graph arising from the Dynkin diagram of sp,.
and the matrix of parameters (g; j(u,v)); jer defined from

0 ifi=j,
1 if i — j| > 1,

¢ij(u,v) =< u?—v ifi=1and j=0, (3.19)
v —u ifi=0and j =1,

(i —j)u+(j —i)v otherwise.
Definition 3.11. The quiver Hecke category QH of type spy., is the strict C-linear
monoidal category generated by objects I and morphisms + 11— 1 and >< D9 ®ip —
K3

12 7:1
i1 ® iz subject to the following relations:
if iy = i,
- = - = i2 11
i 11 19 11 19 11 i 11 0 lf /L'l # 22’
0 if iy = i,
if |i1 —ig‘ > 1,
12 11
# - + if iy = 0 and ip = 1,
= i %1 i2 @
, *—+ if iy =1 and iy = 0,
12 11
ig 1 i 91
(i1 — i2) + + (2 —41) + otherwise;
’LQ il 7:2 il
+++ if i1 =13 =1 and iy = 0,
ig i2 il 'i3 iz il
- = (il — ig) if il = i3, |i1 — i2| =1 and ig 75 0,
ig i2 i1 i3 i2 ’il 7;3 i2 11

0 otherwise.

Although we will not make use of it in this section, we note that QH can be enriched

with a Z-grading by setting deg ( + ) = (e, ;) and deg ( >< ) = — (e, ).

7 i2 11

Our final definition is the analog for sp,. of [BLW, Definition 2.10], which reformu-
lated [LW, Definiton 3.2] for tensor products of minuscule representations of sl.

Definition 3.12. A tensor product categorification (TPC for short) of V®™ is the fol-
lowing data:
e a highest weight category C with standard objects {A(b)|b € B} indexed by the
set B ordered according to the Bruhat order =<;
e adjoint pairs (F;, E;) of endofunctors of C for each ¢ € I;
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e a strict monoidal functor ® : QH — End(C) with ®(i) = F; for each i € I.
We impose the following additional axioms for all ¢ € I and b € B:

FE; is isomorphic to a left adjoint of Fj;
F;A(b) has a filtration with sections {A(b+d;) |1 <t < n,i-sig,(b) = £};
E;A(b) has a filtration with sections {A(b—d;) |1 <t < n,i-sig,(b) = e};

the natural transformation <I>( + ) is locally nilpotent.

7

Now we let O (resp. IIO) be the subcategory of sO consisting of the supermodules
all of whose composition factors are evenly (resp. oddly) isomorphic to L(b)’s for b € B.
All morphisms between objects of O are purely even, so we may as well forget the
Z /2-grading and view O simply as a C-linear category.

Our main theorem is as follows.

Theorem 3.13. We have that sO = ODIIO, i.e. the supercategory sO splits. Moreover,
the C-linear category O admits all of the additional structure needed to make it into a
TPC of V&n.

Proof. The fact that sO = O @ 1O follows from Corollary 3.10; cf. the proof of [BD2,
Theorem 5.1]. To make O into a TPC, we need to introduce the additional data then
check the axioms from Definition 3.12.

It is clear that O is a Schurian category in the sense of Definition 3.1 with irreducible
objects {L(b) | b € B}. Since P(b) belongs to O, it is the projective cover of L(b) in O.
Theorem 3.8 and Corollary 3.9 then give the necessary technical ingredients needed to
check that O is a highest weight category with the required weight poset; cf. the proof
of [BD2, Theorem 5.4]. Its standard objects {A(b) |b € B} are the Verma supermodules
{M(b)|b € B}.

To define F; and F;, take i € I, and let j := /i + % i — % Theorem 3.7 shows that

sF; M (b) and sE; M (b) are objects of O. Hence, by exactness, the functors sF; and sE;
send arbitrary objects from O to objects of O. So we obtain the required endofunctors
by setting

F; ::SFj|OZO—)O, E; I:SEj|@ZO—>O.

The adjunctions (sFj, sE;) and (sEj, sF}) discussed earlier give adjunctions (F;, E;) and
(E;, F;) too. Also F; M(b) and E; M (b) have the required Verma filtrations thanks to
Theorem 3.7.

It remains to define ® : QH — End(O). Since QH is defined by generators and
relations, we can do this simply by declaring that ®(i) := F; for each 4, then specifying
natural transformations <I>< + ) : F;, = F; and <I>( >< ) : Fi, Fy, = F;, F;, satisfying

K3 12 21
the quiver Hecke relations from Definition 3.11. The explicit formulae for these natural
transformations are recorded in the next two paragraphs. They were derived like in
the proof of [BD2, Theorem 6.2] by starting from the supernatural transformations from
Theorem 3.4, which satisfy the affine Hecke-Clifford relations of Definition 3.3, then using
the remarkable isomorphism from [KKT, Theorem 5.4] to combine these into supernat-

ural transformations satisfying the quiver Hecke-Clifford relations of [KKT, Definition
3.5]. When ¢ = 0, the number j = /i + %1 [i— % satisfies j2 + i = 0. Hence, we are in
the situation of [KKT, §5.2(i)(c)] and the appropriate Dynkin diagram is of type sps.,

unlike in [BD2] where it was of type slo. This is really the only difference compared to
the proof of [BD2, Theorem 6.2], so we omit any further explanations.
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Here we give the explicit formula for <I>( + ) Let j:=4/i+ % i— %, then define y; €

(z1—7) C[[x1—j]] to be a3+ ] if i = 0, or the unique power series in (1 —j) C[[z1—j]] such
that (y1 +14)? = 3+ } if i # 0. Recalling (3.15), this gives us an element y;1; € AHC,.
Applying the homomorphism T, from (3.18), we obtain from this an even supernatural
transformation Wy (i 1;) : sF; — sFj;. Since F; is the restriction of sFj, this gives us

the required natural transformation <I>( + ) It is locally nilpotent because (z — j) acts

(2

locally nilpotently on sF; by the definition of sFj.
Finally, we give the formula for <I)( >< ) For this, we work in mg. For r=1,2,

i2 11

let jr := /i, + %,/ir — %, then define y,. € (2, — j.) C[[x, — j,] to be 22 +i if 7, = 0,

or the unique power series such that (y, + i,)?> = 22 4+ 1 if i, # 0 (like in the previous
paragraph). Let

(27 — 23)?
221 + 23) — (aF —23)*’
which is an element of C[[x1 — j1, 2 — jo]] unless |i; —iz| = 1 (when it should be viewed as
an element of the fraction field). Then, recalling (3.19), we define g € C[[x1 — j1, T2 — jo]
from

pi=

-1 if iy < o,
9:=1 vb/(y1—y2) if i1 =1is,
D in,ir(Y2,91)  if i1 > do,
choosing the square root when i; = i, so that g — ﬁ € (x1 — x9) Cllz1 — J1, 22 — J2]]-
Using (3.16)—(3.17), one can check that
9 b

1. €1, . AHCo1,. ;.
L1 — X Y1 — Yo J2J1 J1J2 J271

) lj,j, +c1co———

g
t1g9ljy5 + < pramr—

Applying @2, we obtain an even supernatural transformation sF}, sF;, = sF}, sF},, hence,
the desired natural transformation Fj, F;, = Fj, F;,. O

4. ORTHODOX BASIS

In this section, we prove the first Cheng-Kwon-Wang conjecture [CKW, Conjecture
5.12]. Throughout the section, I will denote the set N that indexes the simple roots of
5Py, and B = Z" as always. For k > 1, we’ll write Ij, for the set {0,1,...,k — 1} that
indexes the simple roots of the subalgebra sp,;, < sp,.,, and define By, as in (2.7).

4.1. Truncation from sp, . to sp,,. Fix £ > 1. The quiver Hecke category of
type spo;, is the full subcategory QHy of QH whose objects are monoidally generated
by I, € I. There is a notion of a tensor product categorification of Vk®". This is
defined in exactly the same way as Definition 3.12, replacing sp,.., V, B, I and QH with
SPar, Vie, B, I, and QHy, respectively. In this subsection, we are going to explain how
to construct such a structure out of a TPC of V®" by passing to a certain subquotient.
The approach is similar to that of [BLW, §2.8].

Recall (2.19). Let B<x denote the set of all b € B such that Nj; 4(b,k) < 0 for
s =1,...,n—1 and Np ,(b,k) = 0. Let B<y be the set of all b € B< such that
Npp,5(b, k) < 0 for at least one s. Lemma 2.4 implies that these are both ideals (lower
sets) in the poset B. Observe moreover that By, is the set difference B<y \ B<y.

Now let C be any TPC of V®™. Let C<j, be the Serre subcategory of C generated by
the irreducible supermodules {L(b) | b € B<}, and define C<y, similarly using B.y. As
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B« and B, are ideals, we are in the same general situation as discussed in [BLW, §2.5].
Hence, C<j and C.j get induced highest weight structures, as does the Serre quotient
Ci := C<k/C<k. Its weight poset is (By, <).

Theorem 4.1. The subquotient Cy, of C admits the structure of a TPC of Vk®".

Proof. We must check all of the properties from the sp,;, version of Definition 3.12. We've
already explained that Cj is a highest weight category with the appropriate weight poset.
Next, we show that the endofunctors E;, F; for i € I}, leave both C<j and C«j, invariant.
As in the proof of [BLW, Lemma 2.18], we just need to verify this on standard objects,
when it follows using the observation that

Npq(bxd,, k) = N q(b, k)

for all b € B and r,s = 1,...,n such that i-sig,.(b) € {e, £} for i € I;. Hence, E;, F;
induce biadjoint endofunctors of Cy for each i € I. All of the other required structure
comes immediately from the definitions. |

4.2. Proof of the first Cheng-Kwon-Wang conjecture. Our definition of a TPC of
V,E™ is a simplified version of the more general notion of TPC from [LW, Definition 3.2].
The simplification is possible because Vj is a minuscule highest weight representation
for spsy,. The equivalence of our definition with the Losev-Webster definition may be
verified by a similar argument to the one explained in [BLW, Remark 2.11]. Hence,
we obtain the following as a special case of the uniqueness theorem for TPCs that is
the main result of [LW]; we refer to [BD1, Definition 4.7] for the definition of strongly
equivariant equivalence being used here.

Theorem 4.2 (Losev—Webster). All TPCs of Vk®" are strongly equivariantly equivalent
via equivalences which preserve the labelling of irreducible objects.

If we apply the construction from the previous subsection to the category O of The-
orem 3.13, we obtain a subquotient Oy := O<y/O«j of O which is a TPC of Vk®”. Let
Ay denote Webster’s tensor product algebra associated to the n-fold tensor product of
the natural representation of sp,, that is, the algebra T%* from [W2, §4] associated to
the n-tuple of dominant weights wy := (—eg_1,..., —€k—1) for spy,. Webster’s general
theory from [W2] shows that the category Ag-mod of finite dimensional modules over
this algebra also has the structure of a TPC of Vk®”; see also [LW, Theorem 3.12]. Hence,
applying Theorem 4.2, we obtain the following;:

Corollary 4.3. The category Oy is equivalent to Ag-mod via an equivalence which
preserves the labelling of irreducible objects.

In particular, this means that the combinatorics of decomposition numbers in the
category O is the same as that of Webster’s tensor product algebras. More precisely,
given any a,b € B, we pick k£ large enough so that a,b both belong to Bj;. Then,
Corollary 4.3 implies that

[M(a) : L(b)] = [My(a) : Lr(b)], (4.1)

where My (a) denotes the standard Ag-module associated to a € By as constructed in
[W2, 85], and Li(a) is its unique irreducible quotient. Indeed, for @ € By, the canonical
images of the standard objects M (a) and their irreducible quotients L(a) in the quotient
category Oy map under the equivalence from Corollary 4.3 to copies of M (a) and L (a),
respectively. Then (4.1) follows just like in the proof of [BLW, Theorem 2.21],

We can reformulate the assertions made in the previous paragraph in terms of Web-
ster’s orthodox basis, as follows. Let Py(a) be the projective cover of Li(a) in Ag-mod.
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As Ai-mod is a TPC, there is a vector space isomorphism
i : CRzKo(Ag-mod) = V2", [My(a)] = va.

By the definition from [W1, §7], Webster’s orthodoz basis of Vk®” (specialized at ¢ = 1)
is the basis {1 ([Px(b)]) | b € By} . Analogously, we can consider the isomorphism

L CzKo(0%) 5 ven, [M(a)] = vq.
The following defines the orthodoz basis of VO™ (specialized at ¢ = 1).

Theorem 4.4. The space V™ has a unique topological basis {op | b € B} such that
pr0p = ti([Pr(b)]) for each k > 1 and b € By. Moreover, we have that op = t([P(b)])
for any b € B.

Proof. Let op := ¢([P(b)]). By BGG reciprocity in the highest weight categories O and
Ag-mod, respectively, we have that [P(b)] = >, .g[M(a) : L(b)][M(a)] and [Py(b)] =
> aeB, [Mr(a) : Li(b)][M)(a)]. Hence, for b € By, we have that

priop = Y [M(a): L(b)va = Y [Mk(a) : Li(b)]va = w([Pi(b))),

acBy acBy

using (4.1) for the middle equality. a

This establishes the truth of [CKW, Conjecture 5.12]. Actually, Cheng, Kwon and
Wang formulated their conjecture in terms of tilting modules instead of projective mod-
ules, i.e. they work in the Ringel dual setting. The equivalence of our Theorem 4.4 with
their conjecture follows by [B2, (7.12)].

Remark 4.5. Webster’s algebra A; admits a natural Z-grading. Hence, one can con-
sider the category Ag-grmod of finite-dimensional graded Ax-modules. The endofunctors
E; and F; also admit graded lifts, making Ag-grmod into a Ugsp,y,-tensor product cate-
gorification of Vk®". We refer the reader to [BLW, Definition 5.9] for a related definition
which is easily adapted to the present situation; this depends on the grading on QHy
noted at the end of Definition 3.11. The Grothendieck group Ko(A-grmod) is a Z[q,q']-
module with ¢ acting as the upward grading shift functor. Also the standard modules
My, (a) admit graded lifts Mj,(a), such that there is a Q(g)-vector space isomorphism

ir : Q(q) ®zpq,4-1 Ko(Ag-grmod) = VE",  [My(a)] — vq.

Webster’s orthodoz basis of VE™ is the basis {Lk([Pk(b)]) | b€ By }, where Py(b) is the
projective cover of Mk(b) in Ag-grmod. Using the graded analog of Theorem 4.2, one
can show that the coefficients of this basis stabilize as k — oo, hence, there is a unique
topological basis {0, | b € B} for V& such that pryop = ir([Pr(b)]) for all k > 1 and
b € By. This is the g-analog of the basis in Theorem 4.4.

Remark 4.6. We expect that the category O admits a graded lift @ which is a Uqshooe-

tensor product categorification of V@, Then there should be a Q(g)-vector space iso-
morphism

i: Q(q) ®z(q,4-1 Ko(O) S ver  [M(a)] ~ ta, [P(b)]— op,
for suitable graded lifts M(a) and P(b) of M(a) and P(b). It should be possible to
prove these statements by mimicking the general approach developed in [BLW]. The
argument would also yield an extension of the uniqueness theorem (Theorem 4.2) from
Py, 10 SPooe.



TYPE C BLOCKS 23

4.3. Prinjectives and the associated crystal. The proof of the uniqueness theorem
in [LW] gives a great deal of additional information about the structure of TPCs of
Vk®”. In particular, [LW, Theorem 7.2] gives an explicit combinatorial description of the
associated crystal in the general sense of [BD1, §4.4]. Also, [LW, Proposition 5.2] gives
a classification of the indecomposable prinjective (= projective and injective) objects.
Here is a precise statement of these results:

Theorem 4.7 (Losev-Webster). Let Cy be a TPC of V,*". Denote its distinguished
irreducible objects by {Li(b) | b € By}.

(1) The associated crystal is the crystal structure on By, defined in §2.6. This means
that FyLy(b) # 0 (resp. EiL(b) # 0) if and only if fib # @ (resp. &b +# @), in
which case F;Li(b) (resp. E;Li (b)) has irreducible head and socle isomorphic to
Ly (fib) (resp. Li(é;b)).

(2) The projective cover of Li(b) is injective if and only if b is antidominant, i.e.
it is an element of the connected component By of the crystal generated by the

tuple zy from (2.24).

Using also Theorem 4.1 and letting k& — oo, we get the following corollary, which
extends this result to infinite rank.

Corollary 4.8. Let C be a TPC of VE™ with irreducible objects {L(b)|b € B} (e.g., the
category O from Theorem 3.13).

(1) The associated crystal is the crystal structure on B defined in §2.6.
(2) The projective cover of L(b) is injective if and only if b is antidominant.

Proof. For (1), choose k so that i € I} and all of the composition factors of F;L(b) have
label belonging to By. Then, F;L(b) € obC<y, and its socle and head can be determined
by passing to the quotient category Cj, where the result follows from Theorem 4.7(1).
For (2), choose k so that all composition factors of the projective cover of L(b) have
label belonging to By. Then we get done by Theorem 4.7(2), since an object of C with
composition factors labelled by By is projective or injective in C if and only if its image
is projective or injective in Cg. (Il

5. CATEGORY F

To conclude the article, we formulate and prove a generalization of [CKW, Conjecture
5.13], then deduce some consequences for the structure of the category F of finite-
dimensional half-integral weight g-supermodules. Throughout this section, I denotes
N and Iy := Z4, i.e. they are the index sets for the simple roots of spy. and s,
respectively.

5.1. Truncation from sp,., to slio. Recall the sl;-module V°7 from §2.2. We
gave two different realizations of that, one as a submodule of the sl.,-module V®7, the
other as a submodule of the sp,, -module V™. In turn, categorifications of V7 can
be constructed either by truncating from a TPC of the sl,.-module V®° as explained in
[BLW, §2.8], or by truncating from a TPC of the sp,, -module V®". In this subsection,
we are going to follow the latter route.

We begin with a couple more definitions. The quiver Hecke category QHgy of type
5l o may be identified with the full subcategory of the quiver Hecke category QH of
type §py. from Definition 3.11 whose objects are monoidally generated by Iy C I.

Definition 5.1. Fix o = (01,...,0,) € {£}". A TPC of the s, -module VZ7 is the
following data:
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e a highest weight category C with standard objects {A(b) | b € By} indexed by
the set By from (2.5) ordered according to the Bruhat order <, from (2.16);

e adjoint pairs (F;, E;) of endofunctors of C for each ¢ € I;

e a strict monoidal functor ® : QHy — End(C) with (i) = F; for each i € Ij.

We impose the following additional axioms for all ¢ € Iy and b € By:

FE; is isomorphic to a left adjoint of Fj;
F;A(b) has a filtration with sections {A(b+ o:d;) |1 < t < n,i-sig{ (b) = £};
E;A(b) has a filtration with sections {A(b — ovd;) |1 <t < n,i-sigy (b) = e};

the natural transformation <I>( + ) is locally nilpotent.

?

View B as a poset via the sp,. -Bruhat order from (2.18). Recalling (2.19), let B<»
be the set of all b € B such that Nj; 4(b,0) < 01+ -+ 0, for s =1,...,n —1 and
N1,y (b,0) = 01 + -+ + 0. Let B.o be the set of all b € B<, such that Nj; 4(b,0) <
o1+ -+ + og for at least one s. Lemma 2.4 implies that these are both ideals in B.
Moreover, the set difference B<, \ B« is precisely the index set B,

Now let C be a TPC of V®" in the sense of Definition 3.12. Let C<, and C., be
the Serre subcategories of C corresponding to the ideals B<, and B, respectively.
Then form the Serre quotient Cp := C<4/C<o. This has a naturally induced structure
of highest weight category with weight poset (Bg, <). Its irreducibles {L(b) | b € B, }
are the canonical images of the L(b)’s. The following parallels Theorem 4.1.

Theorem 5.2. The subquotient C, of C admits the structure of a TPC of VO®".

Proof. Like in [BLW, §2.5], C, is a highest weight category with weight poset (B,, <),
which is isomorphic to (Bp, <) thanks to Lemma 2.5. Also, the endofunctors E;, F; for
i € Iy leave both C<, and C., invariant, hence, they induce endofunctors of C,. This
follows by a similar argument to the proof of Theorem 4.1; the key point this time is
that b € B satisfies
N[l,s] (b +d,, O) = N[l,s] (ba O)

whenever i-sig,.(b) € {e, £} for some i € Iy. We should also note for i € Iy, b € B, and
b’ € By defined via (2.2) that:

e i-sig,(b) = e (resp. f) if and only if i-sigf (b') = e (resp. £);

[ ] (b + O'tdt)/ = b/ + dt.
This follows from Lemma 2.2 using (5.6) and (2.11). O

The extremal choices for o deserve some special mention. For o as in the following
lemma, the subquotient C, of Theorem 5.2 may be identified with a subcategory of C.

Lemma 5.3. Suppose that o = (—,...,—,+,...,+) with ny entries equal to — followed
by ng entries equal to +. Then B, is an ideal in B.

Proof. We actually show that B, = B<,, which is an ideal. Take a € B<,. Since
Nii,n)(@,0) = ng — ny, exactly n; of the entries of @ are < 0. Since Nj1 ,,1(a,0) < —ny,
these must constitute the first ny entries of a. Hence, a € B,. O

At the other extreme, for o as in the next lemma, the subquotient C, may be identified
with a quotient of C itself.

Lemma 5.4. Suppose that o = (+,...,+,—,...,—) with ng entries equal to + followed
by ny entries equal to —. Then B is a coideal (upper set) in B.

Proof. We first observe that
B<, = {a €B | N1 ni(a,0) =ng — nl} . (5.1)
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To see this, any a € B<, satisfies Njj ,)(a,0) = o1 + - -+ + 0, = ng — n1. Conversely, if
N1 (@, 0) = ng —nq, then exactly ng of the entries of a are > 0 and n; entries are < 0.
Permuting the positive entries to the beginning makes the numbers Ny 4(a,0) bigger,
hence, N 4(a,0) < o1+ -+ o, for all s. This shows a € B<,.

Now we can show that B, is a coideal. Suppose that a € B, and b = a. Then
Ni1,1(b,0) = Npi (@, 0), hence, b € B<,. Since B, is a coideal in B<,, this implies
that b € B, O

5.2. Proof of the second Cheng-Kwon-Wang conjecture. TPCs of V7 and VO®”
are studied in detail in [BLW]. Combining results established there with Theorem 5.2 and
our main categorification theorem, recalling the definition of the canonical and orthodox
bases from (2.22)—(2.23) and Theorem 4.4, we obtain the following:

Theorem 5.5. Given b € B, define o so that b € B, i.e. we take 0. :== + if b. > 0 or
o, = — if b, < 0. Then, pr,op = pr,cpy = procy .

Proof. Remembering that O is a TPC of V®" thanks to Theorem 3.13, let O, =
O<o/O«s be constructed from O as in Theorem 5.2. For b € B,, the canonical image
of P(b) in the quotient category O, is the indecomposable projective object of this TPC
of V2% indexed by b'. By [BLW, Corollary 5.30], its isomorphism class is identified
with procy € VO®"’. In view of the definition of op from Theorem 4.4, this shows that
Pr,0p = procey. This equals pr,cp thanks to Lemma 2.9. (]

Corollary 5.6. Suppose that a,b € B have the property that a, > 0 if and only if b, > 0
for each r=1,....n. Then, (P(b): M(a)) = [M(a): L(b)] = das(1) = dF, ,(1).

Proof. The first equality is BGG reciprocity in the highest weight category O. Defining
o so that a,b € B,, we can compute [M(a) : L(b)] by passing to the quotient category
O, and computing the corresponding composition multiplicity there. Theorem 5.5 tells
us that that is computed by the polynomials (2.22)—(2.23) evaluated at ¢ = 1. O

In particular, if all of the strictly positive entries of b € B appear after the weakly
negative ones, then Corollary 5.6 plus Lemma 5.3 show that all composition multiplicities
in the Verma supermodule M (b) are determined by computing corresponding coefficients
of canonical basis elements (either type A or C). At the other extreme, using Lemma 5.4
instead, if all of the strictly positive entries of b € B come before the weakly negative
ones, then the same is true for all of the Verma multiplicities in the projective P(b). We
can state this formally in terms of the orthodox basis as follows:

Corollary 5.7. If b € B has all its strictly positive entries appearing before the weakly
negative ones, then op = pr,0p = Pr,Cy = Procy = Cp.

This is exactly the situation of [CKW, Conjecture 5.13], which follows easily from
Corollary 5.7 using also the Ringel duality of [B2, (7.12)].

Remark 5.8. The g-analog of Theorem 5.5 is also true: in the setup of the theorem, we
have that pr,op = pr,cs = procy. If we had proved the assertions in Remark 4.6, this
would follow by repeating the proof of Theorem 5.5 in the graded setting. Without this,
one needs a slightly more roundabout argument, involving truncating to sly — spy.
Since we have not introduced notation for this, we omit the detailed argument. This
implies also the g-analog of Corollary 5.7: we have that

Ob = Pry0p = Py = Prolpy = Cp

in case all strictly positive entries of b precede the weakly negative ones.
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5.3. Decomposition of category F. In this subsection, we view B as a poset via the
5py.o-Bruhat order < from (2.18). Given a decomposition n = ng + ny with ng,ny > 0,
let

B,yn, := {b € B | b has ng entries that are > 0 and n; entries that are <0}, (5.2)
B L ={bEB [bi,. . by > 0,bygr1, .., by <O}, (5.3)
Bl i =A{bEB [b1> > bny > 02> bpgp1 >0 > by} (5.4)
Lemma 5.9. Let o = (+,...,+,—,...,—) with ng entries + and ny entries —. Then
B,jn, = B<o and Bfolm = B,. In particular, Bf;)lm is a coideal in By, -
Proof. The first equality follows from (5.1), and the second is clear from (2.7). O
Lemma 5.10. Any b € B’jl_ohll can be connected to a typical a € B:0|n1 by applying a

sequence of the crystal operators €;, ﬁ (i € Iy) from §2.6.

Proof. We proceed by induction on the atypicality of b € B:O‘ ny?

pairs 1 < r < s < n such that b, +bs = 1. If b is typical, the result is trivial. So suppose
that b is not typical. Let  be minimal such that b, + bs = 1 for some s > r. Set i := b,
so that by = 1 — 4. Since b, > bs, we have that ¢ > 0. Then let j > ¢ be minimal such
that {j +1,—5}N{b1,.... b} = 2.

Now we make a second induction on j—1i. If j = 4, then we let ¢ € B:o\m be obtained
from b by replacing its entry ¢ with ¢ + 1. Then ¢ is of smaller atypicality than b. Also
c= ﬁb7 and we get done by applying the first induction hypothesis to e¢. If j > i, we
either have that j € {b1,...,b,} or 1—j € {b1,...,b,}, but not both (by the minimality

of r). In the former case, let ¢ € B:()\’ﬂl be obtained from b by replacing its entry j with

i.e. the number of

7+ 1; then, ¢ = fjb. In the latter case, let ¢ € B:0|’ﬂ1 be obtained from b by replacing
its entry 1 — j with —j; then, ¢ = €;b. Either way, ¢ has the same atypicality as b, but
the analog of the statistic j — ¢ for ¢ is one less than it was for b. It remains to apply

the second induction hypothesis to ¢ to finish the proof. ([l

Let Oy (s, be the Serre subcategory of O generated by {L(b) | b € B, |, }. One can
determine whether b € B belongs to B,, |, just from knowledge of |wt(b)| (it does so
if and only if ), (| wt(b)],e;) = no —n1). So Corollary 3.10 implies that O, is a
sum of blocks of O. Hence:

O= P Oy, (5.5)
no+ni=n
Let F be the full subcategory of O consisting of all finite-dimensional supermodules.
Setting F,, := F N Oyyjn,, the decomposition (5.5) induces a decomposition

notni=n

oln1

By [P, Theorem 4], the supermodule L(b) is finite-dimensional if and only if b is strictly
dominant in the sense that by > --- > b,. Consequently, 7, |,, is the Serre subcategory
of O generated by {L(b) | b € B:0|’ﬂ1 b

The categorical sp,.-action on O leaves the subcategory F invariant; this follows
because the special projective functors from (3.8) send finite-dimensional supermodules
to finite-dimensional supermodules. From this, we get induced categorical sl -actions

on Froin, < Opgln, for each ng + ny = n. Recalling Lemma 5.9, let 6n0|n1 be the
quotient of Oy, |, by the Serre subcategory generated by {L(b) | beByn, \B# }

no|n1
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Writing L(b) for the canonical image of L(b) in @nolmv the irreducible objects of @nolm
are represented by {L(b) | be B }.

n0|n1
Lemma 5.11. O, |,, is a TPC of the sl; o-module (Vy")®" @ (Vi )®m.

Proof. This follows from Lemma 5.9 and Theorem 5.2, since @no‘m is the same as the
quotient category O, for o as in that lemma. O

Let F (1, be the Serre subcategory of O, |, generated by {L(b)|be B} 1. We

no\nl
are going to consider the following commutative diagram of functors:

fno\nl O’I’Lo"ﬂl

o| | (5.7)

f’ﬂo"nl On0|n1~

Here, the horizontal functors are the canonical inclusions, the right hand functor is the
quotient functor, and the commutativity of the diagram then determines the left hand
functor @ uniquely. The categorical sl -action on O, |,, induces an action on the
quotient category 6n0|n1. Then this restricts also to an action on ?nolnr

Lemma 5.12. The functor Q : Fpgjn, — ?noml s a strongly equivariant equivalence of
5l oo -categorifications.

Proof. Tt is immediate from the construction that @ is strongly equivariant. Also, since
B:O‘nl - Bfo\m’ the images under @ of all of the irreducible objects of F,, |, are non-
zero. This is enough to show that @ is fully faithful; ¢f. [BD1, Lemma 2.13]. It just
remains to show that @ is dense. - -

As it is a Serre subcategory of the Schurian category O, , the category F n, is

itself Schurian; in particular, it has enough projectives. For b€ B' | let P(b) be the

no|ny
projective cover of L(b) in F,|,,. It suffices to show that each P(b) is a summand of
something in the essential image of (). Then, to get all other objects of 7n0|n1, one can
argue by considering a two-step projective resolution, using the exactness of () and the
Five Lemma.

Suppose in this paragraph that a € B:olm is typical. Then the Verma supermodule
M(a) is projective in O,,},,. Hence, the projective object P(a) may be realized as
the largest quotient of the canonical image of M(a) in 6n0|n1 which belongs to ?noml.
Typicality also implies that there are no strictly dominant b € B with b < a. We deduce
that this largest quotient is L(a). This shows that P(a) = L(a).

Now take any b € B | . Applying Lemma 5.10, we can find a typical a € B

no|ny

+

° no|ni
connected to b by a sequence of the crystal operators é;, f; (i € Ip). In view of Corol-
lary 4.8, it follows that there is a sequence X of the functors E;, F; (i € Ip) such that
L(b) appears in the head of X L(a). Passing to the quotient category, this shows that

Homfnmﬂ1 (XL(a),L(b)) # 0.

By the previous paragraph, L(a) is projective in fno|n1‘ Since X has a biadjoint, it
sends projectives to projectives. This means that X L(a) is projective in 7n0|n1 too.
We deduce that P(b) is a summand of X L(a). Since QL(a) = L(a) and Q is strongly
equivariant, we have that Q(XL(a)) & XL(a). Thus, P(b) is a summand of something
in the essential image of Q. O
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5.4. Realization of 7, ,, via gl |,, (C). Through the subsection, we fix ng,n1 > 0
with ng +n1 = n. The goal is to show that F,, |,,, is a highest weight category. To do
this, we are going to give a different realization of the categories ?noml — 6%‘”1, then
appeal to Lemma 5.12. We'll view B as a poset using the sl,,-Bruhat order <, from
(2.16), taking o := (+,...,+, —, ..., —) with ng entries + and n; entries —. Recall also

the subset By of B from (2.5). Let
B .= (b€ B by > - > bugybpgr1 < -+ <bp}, BRI =B™MAB,. (58)

Recalling the posets (5.3)—(5.4) from the previous subsection, the map b ++ b’ from (2.14)

~

defines poset isomorphisms B¥ | 5 By and BY | 5 Bgolnl.

no|ni no|n1
Lemma 5.13. The subsets By and Bg”‘nl are coideals in B and B™!™ | respectively.
Proof. This follows from Lemma 2.3, on noting that
B, — {b €B ] NE 10 (8,0) = 19, N& (8,0) = ng — nl} ,
where 0 = (+,...,+,—,...,—) as usual. O

Now we consider the general linear Lie superalgebra g’ := gl,, |, (C). Let b" and b’
be the Cartan subalgebra and Borel subalgebra of g’ consisting of diagonal and upper
triangular matrices, respectively. Let 07, ..., d,, be the basis for (§')* dual to the diagonal
matrix units in §’. Then define O;zol | to be the category of all g’-supermodules M such
that

e M is finitely generated over g';

e M is locally finite-dimensional over b’;
e M is semisimple over h’ with all weights of the form A} for b € B, where

n
b +r—1 if1<r<ng
! !/ ! i _ T =~ -~ 5
Ap 1= Zl)‘b,rér where b,r _{ b +1r—2n9 ifng+1<r<m
=

n

e for b € B, the Z /2-grading on the A\j-weight space of M is concentrated in parity
S Ap, (mod 2).

r=ngo+1
Note that O’

no|ny
2.2]. Tt is a special case of the category constructed in [BLW, Definition 3.7], taking the
type (n, c) there to be ((1™), (0™, 1™)). In particular, [BLW, Theorem 3.10] verifies the
following:

is exactly the same as the Abelian category & defined in [B3, Lemma

Lemma 5.14. The category O;l(]lnl admits additional structure making it into a TPC
of the sloo-module (V1T)®m0 @ ()&,

Let us give a little more detail about the highest weight structure here. The irreducible
objects of (’);Lo‘m are parametrized naturally by their highest weights. We denote the one
of highest weight A; by L’(b). It can be constructed explicitly as the unique irreducible
quotient of the corresponding Verma supermodule M’ (b). This is the standard object in
the highest weight category O/, ol indexed by b € B.

Next, let ‘7:120|n1 ol

be the subcategory of O/, consisting of all of the finite-dimensional
supermodules. Note F, olny MAY also be described as the Serre subcategory of O

/
n0|n1

generated by the irreducible objects {L'(b) | b € Bmolm }. This follows from Kac’ clas-
sification of finite dimensional g’-supermodules in [K]. The argument there realizes each
of the finite-dimensional L’(b) as a quotient of a corresponding Kac supermodule K'(b).
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The categorical sl,-action on O;O‘nl restricts to an action on fv/zolnl' Taking the type
(n,c) of [BLW, Definition 3.7] to be ((ng,n1),(0,1)), we get the following as another
special case of [BLW, Theorem 3.10], recalling also [BLW, Definition 2.10] for this more
general sort of TPC.

Lemma 5.15. The category F, is a TPC of the sloo-module N Ve A" V.

oln1

Part of the content of Lemma 5.15 is that F olma is a highest weight category. Its

standard objects are the Kac supermodules {K '(b) ’ be BT } mentioned already.

The idea now is to truncate ]:r/m\ L (9;1 from sl to sl to obtain our alternate

n 0|n1

realization of the categories 7,L0|n1 < Opgln,- The construction we need for this has
already been developed in [BLW, §2.8] (and is entirely analogous to §§4.1-5.1 above).
Recalling Lemma 5.13, let @lnﬂlnl be the quotient of (9:10‘ - by the Serre subcategory
generated by {L'(b) ’ b € B\ By }. Denoting the canonical image of L'(b) in O. by
f(b)7 the irreducible objects of O,

/
’I’Lo‘nl

are represented by {f/(b) ’ beBg}. Let at

ng|n1 n()lnl
be the Serre subcategory of 5;0‘7“ generated by {f/(b) | bec B¢ } Analogously to (5.7),
we get a commutative diagram of functors:

! O/

no|ny no|ny

Rl l (5.9)

?/ 6/

no|ny ng|ny -

. . , .
The categorical sl,.-actions on Ono‘m and ‘7:”0|"1

and F

restrict to actions of sl ... These then

/

induce categorical sl -actions on 5;0| so that all of the above functors

are strongly equivariant.

ni n0|n17

Lemma 5.16. Let F/ be the quotient of F,, by the Serre subcategory generated by

no|n1 oln1
{L'(b)|be Bol™ \Bg"‘n1 }. The functor R : olns 7:1(””1 induces an equivalence
= 5 .,
R: ]:nolnl = Frglns -
Proof. By the universal property of Serre quotients, R induces R: ‘frlmlm — 7; oln1- As

in the proof of Lemma 5.12, Ris fully faithful. To show that it is dense, we show equiva-
lently that R is dense, again by mimicking the arguments from the proof of Lemma 5.12.
This involves replacing the notion of atypicality and the crystal structure used in the
proof of that lemma with their counterparts in the category O’. For b € B™ /™ | its atyp-
icality is the number of pairs 1 < r < s < n such that b, = b;. The appropriate crystal
structure, and the required analog of Corollary 4.8, are described in [BLW, Lemma 2.23].

Actually, the bijection B: = Bg”‘nl,b +— b’ preserves atypicality, and intertwines

no [n1 ~
the crystal operators é;, f; (i € Ip) from §5.10 with the crystal operators é;, f; (i € Ip)
defined in [BLW]. Then the argument in the proof of Lemma 5.12 (dependent especially
on the combinatorial Lemma 5.10) carries over almost immediately. g

/
no|ny

Lemma 5.17. The categories O., |, and F are TPCs of (V3H)®mo @ (V7 )®™ and
A" Vot @ N Vg, respectively.

/!

Proof. For @no‘m,
2.19]. The same result shows that ﬁr’l
appeal to Lemma 5.16 to get the result for 7

0|n1

our statement follows immediately as a special case of [BLW, Theorem
is a TPC of A" V;" ® A™ V; . It remains to
/

|

nolni-

oln1
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/!

nolny re strongly equivariantly

#

nolni”

Theorem 5.18. The sl -categorifications 6no|m and O
equivalent via an equivalence which sends L(b) to a copy of f/(b') for each b € B

Proof. In Lemmas 5.11 and 5.17, we have shown that both categories are TPCs of
(Vyh)®mo @ (V)@ Now the result follows from the uniqueness theorem for such TPCs,
which is a special case of [BLW, Theorem 2.12]. O

/
no|ni

Corollary 5.19. The sl -categorifications 7n0|n1 and F are strongly equivari-

antly equivalent via an equivalence which sends L(b) to a copy of fl(b/) for each b €
+

TLo"ﬂl'

Proof. Recall ?nolm is the Serre subcategory of 6"0|”1 generated by {f(b) | be B:O‘m },
?;lo\’m is the Serre subcategory of @;O‘m generated by {f/(b) |b e BJoIm }, and the

map b +— b is a bijection between B} and Bgolnl. Then apply Theorem 5.18. O

ng|n1

Corollary 5.20. The category Fp,n, is a TPC of \™° Vot @A™ Vi~ . In particular, it is
a highest weight category with weight poset (B =) and irreducible objects represented

7740"”117 -
+
b (L) | e B, ,, )
Proof. This follows from Lemma 5.12, Corollary 5.19 and Lemma 5.17. (]

5.5. Realization of F via arc algebras. In the final subsection, we are going to briefly
explain another realization of the category F in terms of the generalized Khovanov
arc algebras of [BS1]. We will assume the reader is familiar with the language and
constructions in [BS1, BS2].

Let A be the set of weights in the diagrammatic sense of [BS1, §2] drawn on a number
line with vertex set Iy, such that the number of vertices labelled x plus the number of
vertices labelled o plus two times the number of vertices labelled v is equal to n; all of
the (infinitely many) remaining vertices are labelled . The set A is in bijection with

B':={beB|b>-->b}= [|J B} (5.10)

noln1
no+ni=n

according to the following weight dictionary. Given b € BT, let

Iy(b) :=={b.|r=1,...,n,b. >0}

IA(b) =T \{1—=0b,|r=1,...,n,b. <0}
Then we identify b with the element of A whose ith vertex is labelled

if ¢ does not belong to either Iy, (\) or Ix(\),
if ¢ belongs to I, (A) but not to Ix (),

if ¢ belongs to In(A) but not to I, (\),

if ¢ belongs to both I, (\) and IA(A).

(5.11)

x > < O

Let K be the generalized Khovanov algebra associated to the set A as defined in [BS1].
This is a basic algebra with isomorphism classes of irreducible representations indexed
in a canonical way by the set A.

Theorem 5.21. There is an equivalence of categories between F and the category
Ka-mod of finite-dimensional left Kx-modules. It sends L(b) (b € BT) to the irre-
ducible Kx-module indezed by the element of A associated to b according to the above
weight dictionary.
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Proof. Corresponding to the decomposition (5.10), we have that A =, ,,,, =, A(no|n1)
where A(ng|n1) consists of the weights in A whose diagrams have ng entries equal to v or
x and n; entries equal to v or o. The algebra K, decomposes as
In view of (5.6), to prove the theorem, it suffices to show that F,
KA("o\nl)_mOd'

By Lemma 5.12, Lemma 5.16 and Corollary 5.19, Froln, 18 equivalent to the quotient
]T';Lo‘m of 7, |, by the Serre subcategory generated by {L'(b)|be Bmolm \Bgolnl}.

By the main theorem of [BS2], F/, o|n, 1S equivalent to the category Ka-mod of finite-
dimensional modules over another arc algebra K. The set A of weights this time are
drawn on a number line with vertex set Z, such that the number of vertices labelled v
or X is ng, and the number labelled v or o is ny. Under the weight dictionary from the
introduction of [BS2], the set Bg(’l"l is identified with the subset Ay of A consisting of
weights b whose diagrams have label A on vertex i for all ¢ < 0.

We conclude that f;lolnl
over the algebra @a’be A, €alaep, where ep denotes the primitive idempotent in Ka
indexed by b. Noting that Ag is in bijection with A(ng|ni) via the map which deletes
all vertices indexed by Z<¢, this algebra is obviously isomorphic to K (n,n,)- (]

no+ni=n KA(n0|n1)-

oln: i equivalent to

is equivalent to the category of finite-dimensional modules

Theorem 5.21 has a number of consequences for the structure of the category F.
We refer to the introduction of [BS2] for a comprehensive list: the present situation is
entirely analogous. It shows moreover that any block of F of atypicality r (which in the
diagrammatic setting is the number of vertices labelled v in weights belonging to the
block) is Morita equivalent to the algebra K;*° from [BS1]. Thus, the category F gives
the first known occurrence “in nature” of the algebras K, .

REFERENCES

[B1] J. Brundan, Kazhdan-Lusztig polynomials and character formulae for the Lie superalgebra ¢(n),
Advances Math. 182 (2004), 28-77.

[B2] J. Brundan, Tilting modules for Lie superalgebras, Commun. Alg. 32 (2004), 2251-2268.

B3] J. Brundan, Representations of the general linear Lie superalgebra in the BGG category O, in:
“Developments and Retrospectives in Lie Theory: Algebraic Methods,” eds. G. Mason et al.,
Developments in Mathematics 38, Springer, 2014, pp. 71-98.

[BD1] J. Brundan and N. Davidson, Categorical actions and crystals, Contemp. Math. 684 (2017),

116-159.

[BD2] J. Brundan and N. Davidson, Type A blocks of super category O, J. Algebra 473 (2017),
447-480.

[BE] J. Brundan and A. Ellis, Monoidal supercategories, Commun. Math. Phys. 351 (2017), 1045—
1089.

[BK] J. Brundan and A. Kleshchev, Hecke-Clifford superalgebras, crystals of type Ag) and modular
branching rules for §n, Represent. Theory 5 (2001), 317-403.

[BLW] J. Brundan, I. Losev, and B. Webster, Tensor product categorifications and the super Kazhdan-
Lusztig conjecture, to appear in IMRN.

[BS1] J.Brundan and C. Stroppel, Highest weight categories arising from Khovanov’s diagram algebras
I: cellularity, Mosc. Math. J. 11 (2011), 685-722.

[BS2] J.Brundan and C. Stroppel, Highest weight categories arising from Khovanov’s diagram algebras
IV: the general linear supergroup, JEMS 14 (2012), 373-419.

C] C.-W. Chen, Reduction method for representations of queer Lie superalgebras, J. Math. Phys.
57 (2016), no. 5, 051703, 12 pp.

[CK] S.-J. Cheng and J.-H. Kwon, Finite-dimensional half-integer weight modules over queer Lie
superalgebras, Commun. Math. Phys. 346 (2016) 945-965.

[CKW] S.-J. Cheng, J.-H. Kwon, and W. Wang, Character formulae for queer Lie superalgebras and
canonical bases of types A/C, to appear in Commun. Math. Phys..

[CPS] E. Cline, B. Parshall and L. Scott, Finite dimensional algebras and highest weight categories,
J. Reine Angew. Math. 391 (1988), 85-99.



32

(D]
[HKS]

[J]
(K]

[KKT)
[KL1]
[KL2]
[LW]

(L]
(N]

(P]

[R]
(Wi]

(W2]

JONATHAN BRUNDAN AND NICHOLAS DAVIDSON

N. Davidson, Type B blocks of super category O, in preparation.

D. Hill, J. Kujawa and J. Sussan, Degenerate affine Hecke-Clifford algebras and type Q Lie
superalgebras, Math. Zeit. 268 (2011), 1091-1158.

J. C. Jantzen, Lectures on Quantum Groups, AMS, 1995.

V. Kac, Characters of typical representations of classical Lie superalgebras, Commun. Algebra
5 (1977), 889-897.

S.-J. Kang, M. Kashiwara and S. Tsuchioka, Quiver Hecke superalgebras, J. Reine Angew.
Math. 711 (2016), 1-54.

M. Khovanov and A. Lauda, A diagrammatic approach to categorification of quantum groups
I, Represent. Theory 13 (2009), 309-347.

M. Khovanov and A. Lauda, A diagrammatic approach to categorification of quantum groups
I, Trans. Amer. Math. Soc. 363 (2011), 2685-2700.

I. Losev and B. Webster, On uniqueness of tensor products of irreducible categorifications,
Selecta Math. 21 (2015), 345-377.

G. Lusztig, Introduction to Quantum Groups, Birkhauser, 1993.

M. Nazarov, Young’s symmetrizers for projective representations of the symmetric group, Ad-
vances Math. 127 (1997), 190-257.

I. Penkov, Characters of typical irreducible finite-dimensional q(n)-modules, Func. Anal. Appl.
20 (1986), 30-37.

R. Rouquier, 2-Kac-Moody algebras; arXiv:0812.5023.

B. Webster, Canonical bases and higher representation theory, Compositio Math. 151 (2015),
121-166.

B. Webster, Knot invariants and higher representation theory, Mem. Amer. Math. Soc. 1191
(2017), 133pp..

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF OREGON, EUGENE, OR 97403, USA
E-mail address: brundan@uoregon.edu

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF OKLAHOMA, NORMAN, OK 73019, USA
E-mail address: njd@ou.edu


http://arxiv.org/abs/0812.5023

	1. Introduction
	2. Canonical basis
	2.1. Minuscule representations
	2.2. Tensor products
	2.3. Bruhat order
	2.4. Canonical basis
	2.5. An algorithm
	2.6. Crystals

	3. Category O
	3.1. Superalgebra
	3.2. Supercategory sO
	3.3. Special projective superfunctors
	3.4. Indecomposable projectives
	3.5. The main categorification theorem

	4. Orthodox basis
	4.1. Truncation from sp2 to sp2k
	4.2. Proof of the first Cheng-Kwon-Wang conjecture
	4.3. Prinjectives and the associated crystal

	5. Category F
	5.1. Truncation from sp2 to sl+
	5.2. Proof of the second Cheng-Kwon-Wang conjecture
	5.3. Decomposition of category F
	5.4. Realization of Fn0|n1 via gln0|n1(`39`42`"613A``45`47`"603AC)
	5.5. Realization of F via arc algebras

	References

