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LOWER BOUNDS FOR DIMENSIONS OF IRREDUCIBLE
REPRESENTATIONS OF SYMMETRIC GROUPS

ALEXANDER KLESHCHEV, LUCIA MOROTTI, AND PHAM HUU TIEP

ABSTRACT. We give new, explicit and asymptotically sharp, lower bounds for di-
mensions of irreducible modular representations of finite symmetric groups.

1. INTRODUCTION

Let F be a field of characteristic p > 0. We denote by Z?(n) the set of all partitions
of n and by &,(n) the set of all p-regular partitions of n, see [4]. Given a partition
= (p1,p2,...) € Z(m) and n € Z>mp,, we denote

(n—m,p) = (n—m,uy,u2,...) € ZMn).
Let S, be the symmetric group on n letters, and denote by D* the irreducible FS,,-
module corresponding to a p-regular partition A of n, see [4]. In [5], James gave sharp
lower bounds for dim D™~"#) for m < 4, and here we obtain asymptotically sharp
lower bounds for all m.
Set

P - { 0 ifp#2,

P11 ifp=2.
For integers m > 0 and n we define the rational numbers

CP (n) :=p™ (”/p - 6p>

m
1 m—1
- [ -6 +i)p)
" 4=0
n(np)(n=2p)-(n—(m=1p) ¢, 9
T\ e my) if p= 2.

Our first main result develops [5] as follows:

Theorem A. Let m >4, p a prime, n > p(0p, +m — 2), and let € F,(m). Then
for X :=(n—m,pn) € Pp(n) we have

dim D* > CP,(n).
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Note that Ch,(n) ~ n™/m! when p,m are fixed and n — oco. Hence, in view
of [5, Theorem 1], the lower bound of Theorem A is asymptotically sharp. Theorem A
will be crucially used in [11].

While Theorem A requires that n is relatively large compared to m, we also prove
the following universal lower bound which improves [3, Theorem 5.1].

Theorem B. Let p > 3 and X € Pp(n). Let ' = (N,AS,...) be the p-regular
partition determined from D ® sgn = D' Let a be minimal such that DAisn,a
contains a submodule of dimension 1, and let

k:=max{\;, \{}, t:= max{n — k,a}.

Then
dim D* > 2. 3(=2)/3

For p = 2 we have the following result, which is a special case of Lemma 2.7:

Theorem C. Let p=2 and A\ € P3(n). Then dim D* > 2",

2. MAIN RESULTS

2.1. Preliminaries on modular branching rules. In this subsection, we review
modular branching rules for symmetric groups, which will be used below without
further comment. The reader is referred to [8-10] for more details.

We identify A € & (n) and its Young diagram, which consists of nodes, i.e. elements
of Z~g X Z=go. Given any node A = (r, s), its residue res A := s — r (mod p) € Z/pZ.
For i € Z/pZ a node A € X (resp. B ¢ )) is called i-removable (resp. i-addable) for
Nif resA =i and Mg := A\ {A} (resp. AP := AU {B}) is a Young diagram of a
partition.

Let A € Z,(n). Labeling the i-addable nodes of A by + and the i-removable nodes
of A\ by —, the i-signature of X is the sequence of pluses and minuses obtained by going
along the rim of the Young diagram from bottom left to top right and reading off all
the signs. The reduced i-signature of X is obtained from the i-signature by successively
erasing all neighbouring pairs of the form —+. The nodes corresponding to —’s in the
reduced i-signature are called i-normal for X\. The leftmost i-normal node is called
i-good . A node is called removable (resp. mormal, good) if it is i-removable (resp.
i-normal, i-good) for some i. We denote

g;(A) := #{i-normal nodes of \}.

If £;(A) > 0, let A be the i-good node of A and set é;A := A\ 4. Let e; be the i-restriction
functor so that Vg = @iEZ/pZ e;V for any FS,-module V.

Lemma 2.1. Let A € Zy(n) and i € Z/pZ. Then:
(i) e;D* # 0 if and only if £;(\) > 0, in which case e;D* is a self-dual indecom-
posable module with socle and head both isomorphic to D%,
(i) Let A be a removable node of \ such that Aa is p-reqular. Then DM s
a composition factor of e;D* if and only if A is i-normal, in which case
[e;D* : D] is one more than the number of i-normal nodes for \ above A.

It follows easily from Lemma 2.1 that D)‘¢Sn71 is irreducible if and only if the top
removable node of A is its only normal node, in which case A is called a Jantzen-Seitz
(or JS) partition, cf. [6,7].
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2.2. Properties of Ch,(n).

Lemma 2.2. For any q € R>1, k € Z>¢ and a € R>;, we have
k

[[a—i) < (a—k+§>lﬁ<a—i—é>.

i=0 =0

Proof. Induction on k. For inductive step, it suffices to check that

-1
a—(k+1)< (a—k‘—1> <a—k¢—1—|—u> (a—k‘—l-ﬁ) ;
q q q

which is elementary. O

Lemma 2.3. Let m > 1. Then:

(i) Cin(n) = Ch(n—p) +pCy,_1(n —p).
(i) If n>p(6p +m —1) thenCp() Chin—=1)4+CP _(n—1).

Proof. (i) follows from
Ch.(n) (n/p—5p> n/p — op — 1> (n/p—ép— 1)
= = +
m—1
/p—20

. : —pm = p> N <(n —nzj)ipl— 5p>

Ch(n—p) Cp_1(n—p)
pm pm—l :

< 3

NS
S

(ii) Note that
Chin=1)+Cp 4 (n—1)

1 m— 1 1 m—2
= 1—5+Z))+mn(n_l_(5p+i)p)
2:0 =0
m—2
= —((n=1= O +m=1)p)+m) [[(n—1- (5 +0)p)
=0

Multiplying by m! and dividing by p™, it suffices to prove that

m—1 m—2
n n m—1 n 1
Il — =0, =i < |==9 —m+1—|——>||<——5 —i——)
<p P > (p P p p 7 p

i=0 i=0
This holds by Lemma 2.2 with a = % —0p, k=m —1and ¢ =p. O
2.3. Proof of Theorem A.

Lemma 2.4. [5] Let1 <m <4, p € Zy(m), and n be such that (n—m, ) € Pp(n).
Then

n—2 ifm=1,

2 .
. (n—m.p) (n®*—5n+2)/2 if m=2,
dim D = (0% — 9n? + 14n) /6 if m=3.

(nt —14n3 + 47n? — 34n) /24 if m = 4.
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Theorem 2.5. Let m > 4, n > p(6, + m —2), p € Pp(m), and suppose that \ :=
(n —m,p) € Py(n). Then dim D* > Ch,(n).

Proof. If p(6, + m —2) < n < p(§, + m — 1), we have Ch,(n) < 0 and there is nothing
to prove. So we assume that n > p(d, +m — 1).

Let m = 4 and set f(n) := (n? — 14n3 + 47n? — 34n)/24, see Lemma 2.4. If p > 3
then n > p(6, + m — 1) > 9 and f(n) > Ch(n), and so we are done in this case. If
p =2, then n > p(d, +m — 1) > 8, while f(n) > Ch(n) for n > 10. For n = 9 and
10, the claimed dimension bound holds by inspection of [4, Tables].

So, in addition to n > p(6,+m—1) we now assume that m > 5. We apply induction
on n. Note that n > p(d, + m — 1) implies n — 2m > 1, unless p = 2, in which case
we have n —2m > 1. Hence \; — A\ > 2, unless p = 2 and A = (m + 1,m). In the
exceptional case, D* is the basic spin module of dimension 2™, and the bound boils
down to 2™ > W, which is easily checked. Thus we may assume that A\ — Ao > 2.
Let A = (1,);) be the top removable node of .

Suppose first that A is not JS. Then A is not the only normal node of A, so there
exists a good node B of X\ with B # A. Then D*4 and D8 are composition factors
of D)‘¢Sn7 .- The inductive assumption applies to D*4 to give dim DA > Ch,(n — 1).
Since m > 5, the inductive assumption applies to DB to give dim D8 > Ct . (n—1).
Now the result follows from Lemma 2.3(ii).

Next, let A be JS, and let B be the second removable node from the top. Suppose
first that Ay — Ao > p and for t =0,1,2,...,p, set Ay := (1, \; +1 —¢). We denote

AD = (A =t A Ng, . ) = (o Oa)ay - ), (1<t<p).

As \is JS, we have D’\ian ~ DMV As Mis JS, we have res B = res Ay = res A4,,. So

. contains compo-

sition factors DX*™" and D8 )(%2), the second one with multiplicity at least p — 2.
Modular branching rules now imply that [D)‘(pil)isnip : D(’\B)(pfl)] = 2, and so we
deduce that D)‘LSWP contains composition factors D and D()‘B)(pil), the second
one with multiplicity at least p. Now result follows from the inductive assumption

and Lemma 2.3(i).
Thus we may assume that A is JS, and A\ — Ay < p. If p > 3, we deduce

successive application of the branching rules implies that D/\isn,,,

p>A—X>n—2m>pd,+m—1)—2m=pm—1)—2m = (p— 2)m —p,

implying p = 3, m = 5 and n = 13, hence A = (8,5), which is not JS.

Finally, let p = 2. Then A\;—Ay = 2 since Ais JS. The assumption n > p(d,+m—1) =
2m now implies that A = (m +2,m) or A = (m+1,m — 1,1). In the first case, A is a
basic spin module of dimension 2™, and the required bound boils down to 2™ > (277:’!)”,
which is actually an equality! In the second case we have A = (m +1,m — 1,1). By
the modular branching rules, D(™=21 appears in D)‘LSW , with multiplicity at least

2, and the result follows from

202 (n—2) = 2(%:;)!” > (27”77:! DY 2 ().

The theorem is proved. g
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Remark 2.6. Some other lower bounds on the dimensions of irreducible modular rep-
resentations of S,, were obtained in [12], based on an improved version [12, Theorems
(5.2), (5.6)] of James’ [5, Lemma 4].

2.4. Proof of Theorems B and C.
Lemma 2.7. Let A € Zy(n). Then
dim D* > [i/(p — D]
izp

In particular,
dim D* > 27

Proof. Let Ay, As, ... be the removable nodes counting from the top and let A = A; be
minimal such that A4, is p-regular. If A; is on row i then (j —1)(p—1) <i < j(p—1)

and nodes Aq,...,A; are all normal of the same residue. So
[DMs,_, : DM]=j=[i/(p - D],
from which the lemma follows by induction. O

Lemma 2.8. Let a,b > 0 witha —b>p—1. Then dim D(ab) > b,
Proof. If a —b > p — 1 then D@1 is a composition factor of D(“’b)iswl)ﬂ, while if
a—b=p—1then D@1 is a composition factor with multiplicity 2 of D(a’bUS
The lemma then follows.

Alternatively, the lemma follows from Lemma 2.7 and [1, Lemma 2.3]. O

Lemma 2.9. Let A € Z,(n). If M > p—1 and (M), (A2, Az, .. )") € Py(n) then
dim D* > 2771,

Proof. The lemma follows from Lemma 2.7 and [1, Lemma 2.2]. O

at+b—1"

The following result improves [3, Theorem 5.1].

Theorem 2.10. Let p > 3 and A € Py(n). Further let k := max{\,\{} and a € Z~q
be minimal such that DAiSnfa contains a submodule of dimension 1. Then

dim D* > 2. gmax{n—k.a}-2)/3

Proof. If X € {(n), (n)"} then the statement clearly holds. So we will assume that this
is not the case. If u is obtained from A by removing a sequence of b good nodes, then
1M can also be obtained from M by removing a sequence of b good nodes. In particular
max{yy, py} < k. Alsoif D*|g contains a submodule of dimension 1 then ¢ > a—b

by minimality of a. By induction we can assume that dim D* > 2. 3(max{f‘_k’“}_2_b)/ 3,
Case 1. X is mot JS. If g;(\) > 2 for some i then [D*|g  : D% > 2 and
D&A C D*|g . Otherwise there exist i # j with ;()),e;(A) = 1 and then D%* @
D%* C D*|g . In either case
dim D)\ > 4. 3(max{n—k,a}—3)/3 > 9. 3(max{n—k,a}—2)/3‘

Case 2. X\ is JS. Let A be the top normal node of A\. Then A is good in A and
D’\ian = DM, From [5, Lemma 3] we have that A4 has at least 2 normal nodes. If
A4 has at least 3 normal nodes we can conclude similarly to the previous case that

dim D)\ >6- 3(max{n—k,a}—4)/3 > 9. 3(max{n—k,a}—2)/3‘
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So we may assume that A4 has exactly 2 normal nodes. Further notice that D® and
DU are both composition factors of D*|s, since A & {(n),(n)"}. Since p > 3, it
follows that ,
DMs ,,=(D"RDP)e (DR DI),
where p,v € &)(n — 2) can each be obtained from A4 by removing a good node. In
particular if D™ C D’\isw3 then 7 can be obtained from A by removing a sequence of
3 good nodes. Also = €; 4 and v = €;\4 with ¢ # j.
If © and v are not both JS then similar to before

dim D)\ > 6. 3(max{n—k,a}—5)/3 —-9. 3(max{n—k,a}—2)/3‘

If p > 5 and p and v are both JS, then D)‘¢SW3 has only 2 composition factors.
From

DMs, ,, = (D"RDP) @ (D' RD™M)
it follows that either D>‘¢Sn7373 = (D™X D(271)) or
DMs, . = (DY RDP) e (D*RDMY)

for certain partitions 7,1, . So from [2, Corollary 3.9] with £ = 3 or from [2, Corollary
4.3] we have that n <5or p|nand A € {(n —1,1),(n —1,1)"}. The cases n <5 can
be checked separately. If p |n and A € {(n —1,1),(n — 1,1)"} then n —k =1, a = 2
and dimD* =n —2>3> 2,

So we can now assume that p = 3. We will show that in this case ¢ and v are not
both JS, from which the lemma follows. From the previous part all normal node of
A4 are good. So it is enough to show that that for a certain normal node B of A4 we
have that (A4)p is not JS.

Case 2.1. Ay > Ay + 3. If B:=(1,A\; — 1) then B is normal in A4 and (1,\; — 2)
and the second top removable node of A are normal in (A4)p.

Case 2.2. A\ = A9 + 2. Then X is not JS.

Case 2.3. A\ = A\g+ 1. Then A = ()\1,/\1 — 1,/\3,...) with 1 < A3 < M\ —2. If
B = (2,A\; — 1) then B is normal in A4 and (1,\; — 1) and the third top removable
node of A are normal in (A4)p.

Case 2.4. Ay = Xg. Then A = ()\%,)\3, .. ) with 1 < A3 <\ —2. If B= (1,)\1) then
B is normal in A4 and (2, A\; — 1) and the second top removable node of A are normal
in ()\A)B- O
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