
ar
X

iv
:1

90
3.

09
85

1v
1 

 [m
at

h.
R

T]
  2

3 
M

ar
 2

01
9

IRREDUCIBLE RESTRICTIONS OF REPRESENTATIONS OF

ALTERNATING GROUPS IN SMALL CHARACTERISTICS:

REDUCTION THEOREMS

ALEXANDER KLESHCHEV, LUCIA MOROTTI, AND PHAM HUU TIEP

Abstract. We study irreducible restrictions from modules over alternating groups
to subgroups. We get reduction results which substantially restrict the classes of
subgroups and modules for which this is possible. This is known when the char-
acteristic of the ground field is greater than 3, but the small characteristics cases
require a substantially more delicate analysis and new ideas. In view of our earlier
work on symmetric groups we may consider only the restriction of irreducible mod-
ules over alternating groups which do not extend to symmetric groups. This work
fits into the Aschbacher-Scott program on maximal subgroups of finite classical
groups.

1. Introduction

Let F be an algebraically closed field of characteristic p ≥ 0. Denote by An the
alternating group on n letters. We always assume that n ≥ 5. In this paper we are
concerned with the following problem

Problem 1 (Irreducible Restriction Problem for Alternating Groups). Clas-
sify the subgroups G < An and FAn-modules V of dimension greater than 1 such that
the restriction V ↓G is irreducible.

This is a special case of the general Irreducible Restriction Problem where we
have an arbitrary almost quasi-simple group in place of An. A major application of
the Irreducible Restriction Problem is to the Aschbacher-Scott program on maximal
subgroups of finite classical groups, see [1,6,13,22,26] for more details on this. For
the purposes of the applications to the Aschbacher-Scott program we may assume that
G is also almost quasi-simple, but we will not be making this additional assumption.

For the case p = 0, Problem 1 has been solved by Saxl [25]. Let us assume from
now on that p > 0. Indeed, it is the positive characteristic case which is important
for the Aschbacher-Scott program. For p > 3, Problem 1 is solved in [20]. It is
important to extend this to the case of characteristics 2 and 3. However, there are
formidable technical obstacles which make the small characteristics cases much more
complicated. The most serious difficulty is that the submodule structure of certain
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important permutation modules over symmetric groups gets very complicated for
p = 2 and 3. This in turn necessitates a rather detailed study of branching for
symmetric groups.

Let V be an irreducible FAn-module. If V lifts to the symmetric group Sn then
the problem reduces to the Irreducible Restriction Problem for Symmetric Groups,
which is studied in [7], where the problem is completely solved for p > 3, and [17],
where reduction theorems are obtained for the small characteristics cases. So in this
paper we are concerned mostly with the case where V does not lift to Sn, and prove
major reduction theorems for that case. These reduction theorems, together with the
ones in [17], will play a key role in our future work [18], which will complete the
solution of the Irreducible Restriction Problem for both Sn and An (and G a maximal
subgroup) in all characteristics.

To formulate our main result we recall some facts about irreducible representations
of symmetric and alternating groups referring the reader to the main body of the paper
for more details. The irreducible FSn-modules are labeled by the p-regular partitions
of n. If λ is such a partition, we denote by Dλ the corresponding irreducible FSn-
module. We refer the reader to [16, §11.1] for the definitions of combinatorial notions
of a residue of a node and of a normal node.

It is known that Dλ↓Sn−1
is irreducible if and only if λ is in the explicitly defined

class of Jantzen-Seitz (or JS) partitions which go back to [12,14]. There is a special
irreducible FSn-module in characteristic 2 called the basic spin module Dβn .

We denote by PA
p (n) the set of all p-regular partitions of n such that Dλ↓An

is

reducible. If λ ∈ PA
p (n) we have Dλ↓An

∼= Eλ+ ⊕ Eλ− for irreducible FAn-modules

Eλ+ 6∼= Eλ−. The set of partitions PA
p (n) is well understood—if p = 2 it is described

explicitly in [2] while for p > 2 these are exactly the partitions which are fixed by the
Mullineux bijection, see [3,9,24].

We formulate our main results for all characteristics, although they are only new
for p = 2 and 3:

Theorem A. Let n ≥ 5, λ ∈ PA
p (n) and G ≤ An. If Eλ±↓G is irreducible then one

of the following statements holds.

(i) G is primitive.
(ii) G ≤ An−1, and either

(a) λ is JS, or
(b) λ has exactly two normal nodes, both of residue different from 0.

(iii) G ≤ An−2,2 and λ is JS.
(iv) p = 2, n 6≡ 2 (mod 4) and λ = βn.

The exceptional case (i) in Theorem A will be treated in [18], and the exceptional
cases (ii), (iii), (iv) are addressed in Theorems B, C, D, respectively.

Theorem B. Let n ≥ 5, λ ∈ PA
p (n). Then Eλ±↓An−1

is irreducible if and only if one
of the following statements holds.

(a) λ is JS.
(b) λ has exactly two normal nodes, both of residue different from 0.

We point out that the irreducible restrictions of the form Eλ±↓An−1
for p > 2 have

been classified in [4, Theorem 5.10], see also [20, Proposition 3.7]. For p = 2 partial
information is available in [4, Theorem 6.5 and Proposition 6.6], but Theorem B
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says more. The irreducible restrictions Eλ±↓An−2,2
for p > 2 have been classified

in [20, Theorem 3.6], but for p = 2 the following theorem is new.

Theorem C. Let n ≥ 5 and λ ∈ PA
p (n). If p = 2, assume in addition that λ 6= βn.

Then the following are equivalent:

(i) Eλ±↓An−2,2
is irreducible;

(ii) Eλ±↓An−2
is irreducible;

(iii) λ is JS.

The case λ = βn, excluded in Theorems A(iv) and C, is handled in the following
theorem (note that the condition n 6≡ 2 (mod 4) is equivalent to βn ∈ PA

2 (n)).

Theorem D. Let p = 2, n 6≡ 2 (mod 4) and G ≤ An. If Eβn± ↓G is irreducible then
one of the following statements holds.

(i) G is primitive.
(ii) G ≤ An−k,k for some 1 ≤ k < n, and either n ≡ 0 (mod 4) and k is odd, or

k ≡ 2 (mod 4) . Moreover, in all of these cases Eβn± ↓An−k,k
is irreducible.

(iii) G ≤ (Sa ≀ Sb) ∩ An for a, b > 1 with n = ab, and either a is odd or
a ≡ 2 (mod 4) and b = 2. Moreover, in all of these cases Eλ±↓(Sa≀Sb)∩An

is irreducible.

Theorems A, B, C, D are proved in §§ 5.6, 5.2, 5.3, 6.3 respectively.

2. Preliminaries

2.1. Groups and modules. Throughout the paper we work over a fixed alge-
braically closed ground field F of characteristic p > 0. We do not yet assume that
p = 2 or 3 but will do this when necessary.

For a group G, we denote by 1G the trivial FG-module. For an FG-module V ,
we denote by V G the set of G-invariant vectors in V . If L1, . . . , La are irreducible
FG-modules, we denote by L1| · · · |La a uniserial FG-module with composition factors
L1, . . . , La listed from socle to head. If V is an FG-module, we use the notation

V ∼= L1| · · · |La ⊕ · · · ⊕ K1| · · · |Kb

to indicate that V is isomorphic to a direct sum of the uniserial modules L1| · · · |La,
. . . , K1| · · · |Kb. On the other hand, if V1, . . . , Va are any FG-modules, we write

V ∼ V1| . . . |Va

to indicate that V has a filtration with subquotients V1, . . . , Va listed from bottom to
top. We use the notation

V ∼ V1| · · · |Va ⊕ · · · ⊕ W1| · · · |Wb

to indicate that V ∼= X ⊕ · · · ⊕ Y for X ∼ L1| · · · |La, . . . , Y ∼ K1| · · · |Kb.
For an odd element σ ∈ Sn and an FAn-module V , we denote by V σ the FAn-

module which is V as a vector space with the twisted action g · v = σgσ−1v for
g ∈ An, v ∈ V . If G is a subgroup of Sn (resp. An), we consider the induced modules

I(G) := 1G↑
Sn (resp. J (G) := 1G↑

An).

For G ≤ An we have I(G)↓An
∼= J (G)⊕ J (G)σ .



4 ALEXANDER KLESHCHEV, LUCIA MOROTTI, AND PHAM HUU TIEP

For a composition µ = (µ1, . . . , µr) of n and positive integers a, b with ab = n, we
have the subgroups

Sµ := Sµ1 × · · · × Sµr ≤ Sn, Sa ≀ Sb ≤ Sn,

Aµ := Sµ ∩ An ≤ An, Ga,b := (Sa ≀ Sb) ∩ An ≤ An.

2.2. Partitions. We denote by P(n) the set of all partitions of n and by Pp(n)
the set of all p-regular partitions of n, see [11, 10.1]. We identify a partition λ =
(λ1, λ2, . . . ) with its Young diagram {(r, s) ∈ Z>0 × Z>0 | s ≤ λr}. The number of
non-zero parts of a partition λ is denoted by h(λ). The following partition will play
a special role in this paper:

βn :=

{
(n/2 + 1, n/2 − 1) if n is even,
((n + 1)/2, (n − 1)/2) if n is odd.

(2.1)

We denote by λ 7→ λM the Mullineux bijection on Pp(n), see [3,9,24]. If p = 2,
the Mullineux bijection is the identity map.

For partitions µ1 = (µ11, . . . , µ
1
h1
) ∈ P(n1), . . . , µ

k = (µk1, . . . , µ
k
hk
) ∈ P(nk), we

define the composition

(µ1, . . . , µk) := (µ11, . . . , µ
1
h1 , . . . , µ

k
1 , . . . , µ

k
hk
)

of n1 + · · · + nk. For a partition λ = (λ1, . . . , λh) of n, we now define its double

dbl(λ) := (βλ1 , . . . , βλh).

Following [2], we set

P
A
2 (n) := P2(n) ∩ {dbl(λ) | λ ∈ P2(n), λr 6≡ 2 (mod 4) for 1 ≤ r ≤ h(λ)}.

On the other hand, if p > 2, we set

P
A
p (n) := {λ ∈ Pp(n) | λ = λM}.

Lemma 2.2. Suppose that n ≥ 5 and λ ∈ PA
p (n). Then h(λ) ≥ 3 unless p = 2,

n 6≡ 2 (mod 4) and λ = βn.

Proof. For p = 2 this is clear from the definition. For p > 2 the result is contained
in [20, Lemma 1.8(i)]. �

Let I := Z/pZ identified with {0, 1, . . . , p − 1}. Given a node A = (r, s) in row
r and column s, we consider its residue resA := s − r (mod p) ∈ I. Let i ∈ I and
λ ∈ P(n). A node A ∈ λ (resp. B 6∈ λ) is called i-removable (resp. i-addable) for λ if
resA = i and λA := λ \ {A} (resp. λB := λ∪{B}) is a Young diagram of a partition.
We refer the reader to [16, §11.1] for the definition of i-normal, i-conormal, i-good,
and i-cogood nodes for λ. We denote

εi(λ) := ♯{i-normal nodes for λ}, ϕi(λ) := ♯{i-conormal nodes for λ}.

If εi(λ) > 0, let A be the i-good node of λ and set ẽiλ := λA. If ϕi(λ) > 0, let B be

the i-cogood node for λ and set f̃iλ := λB . Then ẽiλ and f̃iλ are p-regular, whenever
λ is so.

We call λ ∈ Pp(n) a JS partition if λ has only one normal node, equivalently
∑

i∈I εi(λ) = 1. We will need the following technical result on JS partitions for p = 3:

Lemma 2.3. Let λ ∈ PA
3 (n) be a JS partition. Then one of the following holds:
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(i) λ1 ≥ λ2 + 9, λ3 ≥ 7, λ1 ≤ (n+ 2)/2, and n ≥ 4h(λ).
(ii) λ1 ≥ λ2+7 ≥ λ3+10, λ4 ≥ 6, λ1+λ2 ≤ (n+8)/2, h(λ) ≥ 6 and n ≥ 6h(λ).
(iii) λ1 ≥ λ2 + 4 ≥ λ3 + 8, λ4 ≥ 4, λ1 + λ2 ≤ (n+8)/2, h(λ) ≥ 6 and n ≥ 6h(λ).
(iv) λ is one of the following: (1), (4, 12), (7, 3, 2), (10, 42), (13, 6, 5), (7, 3, 2, 1),

(10, 42, 1), (13, 6, 5, 1), (10, 6, 32, 12), (13, 6, 5, 4, 12), (13, 9, 5, 4, 3, 2, 1).

Proof. Let

(
a0 . . . ak
r0 . . . rk

)

be the Mullineux symbol of λ, and let λ(0) = λ, λ(1), . . . , λ(k)

be obtained by recursively removing the 3-rim. From [5, Theorem 4.1] we have that
(
ak
rk

)

=

(
1
1

)

and that for 0 ≤ j < k:

• if

(
aj+1

rj+1

)

=

(
6c+ 1
3c+ 1

)

then

(
aj
rj

)

=

(
6(c+ 1)− 1
3(c + 1)

)

,

• if

(
aj+1

rj+1

)

=

(
6c− 1
3c

)

or

(
aj+1

rj+1

)

=

(
6c
3c

)

then

(
aj
rj

)

=

(
6c
3c

)

or

(
aj
rj

)

=

(
6c+ 1
3c+ 1

)

.

Note in particular that h(λ) = r0 is of the form 3c or 3c+ 1 for some c ≥ 0.

Claim 1: if h(λ) is of the form 3c or 3c+ 1 then n ≥ 2ch(λ).

Indeed, if h(λ) = 3c then

(
6j − 5
3j − 2

)

=

(
6(j − 1) + 1
3(j − 1) + 1

)

and

(
6j − 1
3j

)

appear as

column of the Mullineux symbol for each 1 ≤ j ≤ c. So

n = a0 + · · ·+ ak ≥

c∑

j=1

(6j − 5 + 6j − 1) = 6c2 = 2ch(λ),

while if h(λ) = 3c+ 1 then similarly

n ≥ 6c+ 1 +
c∑

j=1

(6j − 5 + 6j − 1) = 6c2 + 6c+ 1 ≥ 2ch(λ).

Claim 2: if n ≥ 42 then n ≥ 6h(λ).

Indeed, if c ≥ 3 then n ≥ 6h(λ) by Claim 1, so we may assume that c ≤ 2, in which
case h(λ) ≤ 7 and if n ≥ 42 then n ≥ 6h(λ).

The next two claims are easy to see.

Claim 3: If λ
(j)
1 ≥ λ

(j)
2 + 3 ≥ . . . ≥ λ

(j)
m + 3(m − 1) for some 1 ≤ j ≤ k and m ≥ 2

then λ
(j−1)
s − λ

(j−1)
s+1 ≥ λ

(j)
s − λ

(j)
s+1 for all 1 ≤ s < m.

Claim 4: λ
(j−1)
l ≥ λ

(j)
l for all 1 ≤ j ≤ k and l ≥ 1.

Claim 5: if h(λ(j)) ≥ 3c and λ
(j)
1 + . . . + λ

(j)
c ≤ (|λ(j)| + b)/2 for some 1 ≤ j ≤ k,

c ∈ Z>0 and b ∈ Z, then λ
(j−1)
1 + . . .+ λ

(j−1)
c ≤ (|λ(j−1)|+ b)/2.

Indeed, using the fact that h(λ(j)) = rj and λ
M = λ, we deduce that aj−1 ≥ 6c. So

λ
(j−1)
1 + . . .+ λ(j−1)

c ≤ λ
(j)
1 + . . .+ λ(j)c + 3c ≤ (|λ(j)|+ 6c+ b)/2

= (|λ(j−1)| − aj−1 + 6c+ b)/2 ≤ (|λ(j−1)|+ b)/2.
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Claim 6: if 1 ≤ j ≤ k, |λ(j)| ≥ 42 and λ(j) satisfies (i) (resp. (ii), resp. (iii)), then
so does λ.

We provide the proof for the condition (i), the conditions (ii) and (iii) are treated
similarly. The condition λ1 ≥ λ2 + 9 is deduced using Claim 3 with m = 2. The
condition λ3 ≥ 7 comes from Claim 4. The condition λ1 ≤ (n + 2)/2 comes from
Claim 5 with c = 1 and b = 2 since λ3 ≥ 7 of course implies h(λ) ≥ 3. The condition
n ≥ 4h(λ) comes from Claim 2.

For n < 42 the lemma holds by inspection (the exceptional cases are listed in part

(iv)). Assume that n ≥ 42. Pick j maximal such that |λ(j)| ≥ 42. Then |λ(j+1)| < 42

and by inspection again we see that (i), (ii) or (iii) holds for λ(j). The proof is
completed using Claim 6. �

2.3. Irreducible modules over symmetric and alternating groups. We use
James’ notation {Dλ | λ ∈ Pp(n)} for the set of the irreducible FSn-modules up to

isomorphism, see [11, §11]. For example, D(n) ∼= 1Sn . By [12] and [14], Dλ↓Sn−1
is

irreducible if and only if λ is JS. The following much more general result is contained
in [16, Theorems 11.2.10] and [15, Theorem 1.4].

Lemma 2.4. Let λ ∈ Pp(n), i ∈ I and r ∈ Z≥0. Then:

(i) eriD
λ ∼= (e

(r)
i Dλ)⊕r!;

(ii) e
(r)
i Dλ 6= 0 if and only if r ≤ εi(λ), in which case e

(r)
i Dλ is a self-dual

indecomposable module with socle and head both isomorphic to Dẽri λ.

(iii) [e
(r)
i Dλ : Dẽri λ] =

(εi(λ)
r

)
= dimEndSn−r(e

(r)
i Dλ);

(iv) if Dµ is a composition factor of e
(r)
i Dλ then εi(µ) ≤ εi(λ)− r, with equality

holding if and only if µ = ẽriλ;
(v) dimEndSn−1(D

λ↓Sn−1
) =

∑

j∈I εj(λ).

(vi) Let A be a removable node of λ such that λA is p-regular. Then DλA is
a composition factor of eiD

λ if and only if A is i-normal, in which case
[eiD

λ : DλA ] is one more than the number of i-normal nodes for λ above A.

To describe the irreducible FAn-modules, let us first suppose that p = 2. For
λ ∈ P2(n), by [2, Theorem 1.1], we have Dλ↓An

is irreducible if and only if λ 6∈

PA
2 (n). In this case, we denote Eλ = Dλ↓An

. On the other hand, if λ ∈ PA
2 (n), then

Dλ↓An
∼= Eλ+ ⊕ Eλ− for irreducible FAn-modules Eλ+ 6∼= Eλ−. Moreover

{Eλ | λ ∈ P2(n) \ P
A
2 (n)} ∪ {Eλ± | λ ∈ P

A
2 (n)}

is a complete set of irreducible FAn-modules up to isomorphism.
Now, let p > 2. We denote by sgn the sign module over Sn. Then by [9] (see

also [3]), we have Dλ ⊗ sgn ∼= DλM , and Eλ := Dλ↓An
∼= DλM↓An

is irreducible if and

only if λ 6= λM. If λ = λM, i.e. λ ∈ PA
p (n), we have Dλ↓An

∼= Eλ+ ⊕Eλ− for irreducible

FAn-modules Eλ+ 6∼= Eλ−. By Clifford theory,

{Eλ | λ ∈ Pp(n) \ P
A
p (n)} ∪ {Eλ± | λ ∈ P

A
p (n)}

is a complete set of irreducible FAn-modules, and Eλ ∼= Eλ
M

for λ ∈ Pp(n) \ PA
p (n)

are the only non-trivial isomorphisms among these.
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For any p we now have that (Eλ±)
σ ∼= Eλ∓ for σ ∈ Sn\An and λ ∈ PA

p (n). It follows

that if G = σGσ−1 is a subgroup of An then Eλ+↓G is irreducible if and only if Eλ−↓G
is irreducible. For example, this applies to the subgroups of the form Aµ and Ga,b.

Lemma 2.5. Let V be an FSn-module, W be an FAn-module and µ ∈ Pp(n)\PA
p (n).

(i) If there is ψ ∈ HomSn(W↑Sn , V ) such that [imψ : Dµ] 6= 0 then there exists
ψ′ ∈ HomAn(W,V ↓An

) such that [imψ′ : Eµ] 6= 0.

(ii) If there is ψ ∈ HomSn(V,W↑Sn) such that [imψ : Dµ] 6= 0 then there exists
ψ′ ∈ HomAn(V ↓An

,W ) such that [imψ′ : Eµ] 6= 0.

Proof. We prove (i), the proof of (ii) being similar. Since W↑Sn↓An
∼=W ⊕W σ, there

exists ψ′ as required or there exists ψ′′ ∈ HomAn(W
σ, V ↓An

) such that [imψ′′ : Eµ] 6=
0. In the second case, twisting ψ′′ with σ yields the required ψ′. �

Lemma 2.6. Let n ≥ 8, λ ∈ Pp(n), and S4 × S4 ≤ S8 ≤ Sn be natural subgroups.

Then Dλ↓S4×S4
has a composition factor of the form Dµ

⊠Dν with dimDµ > 1 and
dimDν > 1, unless λ or λM belongs to {(n), (n − 1, 1)}.

Proof. If n = 8 this is an easy explicit check. Now the result follows by induction
using [21, Proposition 2.3]. �

2.4. Some special permutation modules. For a 2-row partition (n−k, k), we use
the special notation

Sk := S(n−k,k) and Mk :=M (n−k,k).

(when it is clear what n is). If (n− k, k) ∈ Pp(n), we also denote

Dk := D(n−k,k) and Ek := Dk↓An
.

By Lemma 2.2, we almost always have (n−k, k) 6∈ PA
p (n), in which case Ek ∼= E(n−k,k)

is irreducible.
Let 0 ≤ k ≤ n/2 and G ≤ Sn. We denote by ik(G) the number of G-orbits on Ωk.

Note that

ik(G) = dimMG
k = dimHomSn(I(G),Mk). (2.7)

We will need the following information on the structure of some special permutation
modules.

Theorem 2.8. [17, Lemmas 4.3, 4.4, 4.5] Let p = 3 and n ≥ 6. Then

M1 ∼ D0|S
∗
1 and M2 ∼M1|S

∗
2 .

Further

(i) If n ≡ 0 (mod 3) then M3 ∼ S∗
2 ⊕ ((D0 ⊕ S∗

1)|S
∗
3).

(ii) If n ≡ 1 (mod 3) then M3 ∼ S∗
1 ⊕ ((D0 ⊕ S∗

2)|S
∗
3).

(iii) If n ≡ 2 (mod 3) then M3 ∼M2|S
∗
3 .

Theorem 2.9. [17, Lemmas 4.6, 4.7, 4.9] Let p = 2 and n ≥ 7. Then M1 ∼ D0|S
∗
1 .

Further

(i) If n ≡ 0 (mod 4) then

M2 ∼ (D0 ⊕ S∗
1)|S

∗
2 and M3 ∼M1 ⊕ (S∗

2 |S
∗
3).
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(ii) If n ≡ 1 (mod 4) then

M2 ∼M1|S
∗
2 and M3

∼=M2 ⊕ S∗
3 .

(iii) If n ≡ 2 (mod 4) , then

M2 ∼ (D0 ⊕ S∗
1)|S

∗
2 and M3 ∼M1|S

∗
2 |S

∗
3 .

(iv) If n ≡ 3 (mod 4) , then

M2
∼=M1 ⊕ S∗

2 and M3 ∼M2|S
∗
3 .

Lemma 2.10. Let n ≥ 5, and λ ∈ Pp(n) be such that dimDλ > 1. If p = 2

assume further that λ 6= βn. Then there exists ζ2 ∈ HomSn(M2,EndF(D
λ)) with

[im ζ2 : D2] 6= 0.

Proof. This follows from [17, Corollary 6.4] and [19, Lemma 3.8]. �

Lemma 2.11. Let n ≥ 7, and λ ∈ Pp(n) with h(λ), h(λM) ≥ 3. Then there exists

ζ3 ∈ HomSn(M3,EndF(D
λ)) with [im ζ3 : D3] 6= 0.

Proof. This follows from [17, Corollaries 6.7, 6.10] and [7, Lemmas 3.1,3.2 and Corol-
lary 3.9]. �

2.5. Invariants. In this subsection we will compute some invariants (S∗
k)
G for small

k. We use the standard basis v1, . . . , vn in M1 and the corresponding elements
v̄1, . . . v̄n ∈ S∗

1 =M1/〈
∑n

j=1 vj〉 so that {v̄1, . . . , v̄n−1} is a basis of S∗
1 .

Let Ωn be the set of all 2-element subsets of {1, . . . , n} . We use the standard basis
{vA | A ∈ Ωn} in M2 and write vi,j := v{i,j} for {i, j} ∈ Ωn. It is easy to check that
S∗
2
∼=M2/K, where

K := span
( ∑

A∈Ωn

vA,
∑

j 6=i

vi,j | 1 ≤ i ≤ n
)

.

Set v̄A := vA +K ∈M2/K = S∗
2 . Then

{v̄A | A ∈ Ωn−2} ∪ {v̄i,n−1 | 1 ≤ i ≤ n− 3}

is a basis of S∗
2 , and

v̄i,n = −
∑

j∈[1,n−1]\{i}

v̄i,j (1 ≤ i ≤ n− 3),

v̄n−2,n−1 = −
∑

A∈Ωn−2

v̄A −
n−3∑

i=1

v̄i,n−1,

v̄n−2,n =
∑

A∈Ωn−3

v̄A +

n−3∑

i=1

v̄i,n−1,

v̄n−1,n =
∑

A∈Ωn−2

v̄A.

Lemma 2.12. Let n ≥ 5, 1 ≤ k ≤ n/2, and G = An−k,k. Then dim(S∗
1)
G =

dim(S∗
2)
G = 1, with the only exception (S∗

2)
An−1 = 0.



IRREDUCIBLE RESTRICTIONS OF REPRESENTATIONS OF SYMMETRIC GROUPS 9

Proof. For S∗
1 this is an easy explicit check left to the reader. For S∗

2 , assume first
that k = 1. Then, acting with An−3, we deduce that x ∈ (S∗

2)
G must be of the form

x = c
∑

A∈Ωn−3

v̄A + d

n−3∑

i=1

v̄i,n−2 + e

n−3∑

i=1

v̄i,n−1

for c, d, e ∈ F. Acting with (1, 2)(n − 2, n − 1) gives e = d and acting with (1, 2)(n −
3, n − 2) then gives c = d = 0. The case k = 2 is handled similarly, giving e = 0 and
c = d, which gives a non-trivial invariant if c = 1.

Let k > 2. Note that
∑

A∈Ωn−k
v̄A ∈ (S∗

2)
G. If k ≥ 3, then acting with An−k,k−3,

we deduce that x ∈ (S∗
2)
G must be of the form

x = a
∑

A∈Ωn−k

v̄A + b
n−3∑

j=n−k+1

n−k∑

i=1

v̄i,j + c
n−k∑

i=1

v̄i,n−2 + d
n−3∑

i=n−k+1

n−3∑

j=i+1

v̄i,j

+ e

n−r∑

i=n−k+1

v̄i,n−2 + f

n−k∑

i=1

v̄i,n−1 + g

n−3∑

i=n−k+1

v̄i,n−1

for some a, b, c, d, e, f, g ∈ F. In view of the invariant already found, we may assume
that a = 0 and then prove that x = 0. Acting with (1, 2)(n− 1, n) we get f = g = 0.
Then acting with (1, 2)(n− 2, n− 1) we get c = e = 0. In the case k = 3 we are done
since then the two remaining sums are empty, and we done. Otherwise, acting with
(1, 2)(n − 3, n− 2) we get b = d = 0. �

Lemma 2.13. Let Ga,b ≤ Sn for n = ab ≥ 6. Then:

(i) if a, b ≥ 2 then dim(S∗
1)
Ga,b = 0, unless p = b = 2 in which case dim(S∗

1)
Ga,b 6=

0
(ii) if a, b ≥ 3 then dim(S∗

2)
Ga,b = 1.

Proof. (i) is an easy explicit calculation similar to the proof of [17, Lemma 2.35].
(ii) For r = 1, . . . , b, we set Br = [(r − 1)a + 1, ra]. For 1 ≤ i 6= j ≤ n we write

i ∼ j if i, j ∈ Br for some r. Starting with the invariant vector v :=
∑

i∼j vi,j ∈ M2,
we express v̄ := v +K ∈ S∗

2 as

v̄ = 2
∑

1≤i<j≤n−a
i∼j

v̄i,j +
∑

1≤i<j≤n−a

i6∼j

v̄i,j

which yields a non-zero vector in (S∗
2)
Ga,b . Let now x ∈ (S∗

2)
Ga,b . Acting with

((Sa ≀ Sb−1) × S{n−a+1,...,n−3}) ∩ An and subtracting a multiple of v̄, we may assume
that

x = a
∑

1≤i<j≤n−a
i∼j

v̄i,j + b

n−3∑

j=n−a+1

n−a∑

i=1

v̄i,j + c

n−a∑

i=1

v̄i,n−2 + d

n−a∑

i=1

v̄i,n−1

+ e
∑

A⊆[n−a+1,n−3]

v̄A + f

n−3∑

i=n−a+1

v̄i,n−2 + g

n−3∑

i=n−a+1

v̄i,n−1.

Acting with (1, 2)(n − 1, n), we get that d = g = 0. Acting with (1, 2)(n − 2, n − 1),
we get c = f = 0. If a = 3, then the sums with coefficients b and e are empty.
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Otherwise, acting with (1, 2)(n−3, n−2) yields b = e = 0. Now using the permutation
which swaps the last two blocks Bb and Bb−1 (possibly multiplied with (1, 2)), we get
a = 0. �

3. Branching lemmas

In this section we prove some technical lemmas on branching for symmetric groups.

3.1. Some special composition factors. In this subsection we prove some techni-
cal results concerning special composition factors in Dλ↓Sk .

Lemma 3.1. Let n,m ∈ Z>0, and λ = (ab11 , . . . , a
bk
k ) ∈ Pp(n +m) with a1 > . . . >

ak > 0 and b1, . . . , bk > 0. Set hr := b1 + . . .+ br for 0 ≤ r ≤ k. Suppose that there is
1 ≤ j ≤ k and a composition ν = (ν1, . . . , νhj ) of n such that µ := λ−ν is a p-regular
partition of m and (λ1, . . . , λhj) is JS. If

νh1 ≥ · · · ≥ ν1 ≥ νh2 ≥ · · · ≥ νh1+1 ≥ · · · ≥ νhj ≥ · · · ≥ νhj−1+1.

and
νhr ≤ νhr−1+1 + p− br (for all 1 ≤ r ≤ j),

then Dµ is a composition factor of Dλ↓Sm .

Proof. In view of Lemma 2.4(v), it suffices to see that there exists a sequence A1, . . . , An
of nodes such that Ar is normal for λ\{A1, . . . , Ar−1} and λ\{A1, . . . , Ar} is p-regular
for r = 1, . . . n, and λ \ {A1, . . . , An} = µ. Such a sequence is obtained by removing
the nodes of λ \ µ in the ends of rows

h1, h1 − 1, . . . , 1, h2, h2 − 1, . . . , h1 + 1, . . . , hj , . . . , hj−1 + 1

if there are any, then starting over in the row h1 and proceeding in the same order
until all the nodes of λ \ µ are exhausted. �

Remark 3.2. For p = 2 the assumptions on ν in Lemma 3.1 are equivalent to
ν ∈ P(n), and so Lemma 3.1 generalizes [17, Lemma 3.14].

Let p = 2. Then λ ∈ P2(n) is JS if and only if all its parts λr are of the same
parity. We now describe a procedure which assigns to every partition λ ∈ P2(n) a
JS-partition λJS ∈ P2(m) for m ≤ n. If λ is already JS then λJS will return λ. We
begin by setting λ1 := λ. For r ≥ 1, as long as λrr+1 > 0 define λr+1 as follows. If

λrr+1 ≡ λrr (mod 2) then λr+1 := λr. If instead λrr+1 6≡ λrr (mod 2) let l ≥ r + 1 be
minimal such that λrl+1 > λrl + 1 or such that λrl+1 = 0 and define

λr+1 := (λr1, . . . , λ
r
r, λ

r
r+1 − 1, . . . , λrl − 1, λrl+1, λ

r
l+2, . . .).

Let s be minimal with λss+1 = 0. Take λJS := λs.

Lemma 3.3. Let p = 2 and λ ∈ P2(n). Then λJS is a 2-regular JS partition of
m ≤ n. Moreover, denoting h := h, we have:

(i) λJS = λ if and only if λ is JS.

(ii) DλJS is a composition factor of Dλ↓Sm .
(iii) λJSj − λJSj+1 ≤ 2⌈(λj − λj+1)/2⌉ for each j ≥ 1.

(iv) 0 ≤ λj − λJSj ≤ j − 1. In particular λh+1 ≤ h.

(v) if k is maximal such that λ2k−1 > 0 then |λJS| ≥ (n+ k)/2.
(vi) if λJSh ≥ 3 then λh+1 ≤ 1 and if λh+1 = 1 then λ1 is even.
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(vii) if λJSh = 2 and λJSh−1 ≥ 6 then λh ≤ 3.

(viii) if λJSh = 1 and λJSh−1 ≥ 5 then λh ≤ 2.

Proof. Let λ = λ1, . . . , λs = λJS be as in the construction. Then for all r = 1, . . . , s,
we have that λr is 2-regular, (λr1, . . . , λ

r
r) is JS. Moreover, to go from λr to λr+1 we

remove normal nodes on each step. So by Lemma 2.4, Dλr+1
is a composition factor

of Dλr↓S|λr+1|
. The statement that λJS is a 2-regular JS partition as well as (i) and

(ii) follow by induction, while (iv) holds by construction.
(iii) Notice that λr+1

j − λr+1
j+1 ≤ λrj − λrj+1 unless j = r and λrj − λrj+1 is odd, in

which case λr+1
j − λr+1

j+1 = λrj − λrj+1 + 1.

(v) Using (iv) we have that λJSi ≥ λi− i+1 ≥ λ2i−1 for all i. So, by definition of k,

|λJS| =
∑

i

λJSi ≥
∑

i

λ2i−1 ≥

k∑

i=1

(λ2i−1 + λ2i + 1)/2 = (n+ k)/2.

(vi) Note that λhh = λJSh ≥ 3 and λJSh+1 = 0. If some node had been removed from

row h+ 1 of λ to obtain λh then λhh+1 = λhh − 1 ≥ 2 and then λJSh+1 ≥ 1, leading to a

contradiction. So no node was removed from row h+1 of λ and then λJSh+1 = 0 implies

λh+1 ≤ 1. Further if λh+1 = 1 then since λJSh+1 = 0 the node (h + 1, 1) needs to be

removed on step h+1 of the construction, so (λh1 , . . . , λ
h
h) is JS, while (λh1 , . . . , λ

h
h, 1)

is not. Hence λ1 = λh1 is even.
(vii) and (viii) are proved similarly to (vi). �

Lemma 3.4. Let n ≥ 12 be even, p = 2 and λ ∈ PA
2 (n). Exclude the cases where λ

is the double of one of the following partitions:

(11, 1), (9, 3), (9, 5), (11, 5), (11, 7), (13, 8, 3), (13, 9, 4), (13, 9, 5, 1), (15, 11, 5, 1),

(15, 11, 7, 1), (15, 11, 7, 3), (17, 13, 9, 3), (17, 13, 9, 5), (19, 15, 11, 7), (21, 17, 13, 9, 4),

(21, 17, 13, 9, 5, 1), (23, 19, 15, 11, 7, 1), (23, 19, 15, 11, 7, 3), (25, 21, 17, 13, 9, 5),

(29, 25, 21, 17, 13, 9, 5, 1), (31, 27, 23, 19, 15, 11, 7, 3).

Then |λJS| ≥ n/2 + 5 and λJS2j−1 − λJS2j ≤ 2 for each j ≥ 1.

Proof. The inequalities λJS2j−1 − λJS2j ≤ 2 come from the assumption that λ ∈ PA
2 (n)

and Lemma 3.3(iii).
If h(λ) ≥ 17 then |λJS| ≥ n/2 + 5 by Lemma 3.3(v). Moreover, by Lemma 3.3(iv),

n− |λJS| ≤

h(λ)
∑

i=1

(i− 1) = h(λ)(h(λ) − 1)/2.

So the lemma holds if h(λ)(h(λ)− 1)/2 ≤ n/2− 5. So we may assume that h(λ) ≤ 16
and h(λ)(h(λ)− 1)/2 > n/2− 5. This leaves only a finite number of partitions to be
considered. For these it can be checked, using GAP [10], that |λJS| ≥ n/2+5, unless
we are in one of the exceptional cases. �

3.2. Non-isomorphic composition factors. In this subsection we obtain various
technical results which guarantee the presence of several non-isomorphic composition
factors in the restriction Dλ↓Sk .
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Lemma 3.5. Let p = 3, n be even and λ ∈ PA
3 (n) be a JS partition with λ 6= (4, 1, 1).

Then Dλ↓Sn/2
has at least 5 non-isomorphic composition factors.

Proof. By Lemma 2.3, λ is belongs to one of the families (i)-(iv) of that lemma. By
the assumptions the only partitions from the family (iv) that need to be considered
are (7, 3, 2), (10, 42), (13, 6, 5), (10, 6, 32, 12) and (13, 6, 5, 4, 12). For λ = (7, 3, 2) the
lemma can be checked using [11, Tables] and branching in characteristic 0. For the
remaining ones, the lemma can be proved using Lemma 3.1. So we may assume that
we are in one of the cases (i), (ii), (iii) of Lemma 2.3. Let λ = (ab11 , . . . , a

bm
m ) with

a1 > . . . > am > 0 and all bj > 0. Define hj := b1 + . . .+ bj.

Set λ0 := λ and then recursively define λi := (λi−1
1 − 1, . . . , λi−1

h(λi−1)
− 1). By

Lemma 3.1, Dλi is a composition factor of Dλ↓S|λi|
for all i. Let k maximal such

that |λk| ≥ n/2. Let ν := λ − λk. For any composition α = (α1, . . . , αhm) define

α := (αh1 , . . . , α1, . . . , αhm , . . . , αhm−1+1), and let ν1 = ν + (1n/2−|ν|). Note that

ν1 ∈ P(n/2). By Lemma 3.1, Dλ−ν1 is a composition factor of Dλ↓Sn/2
. We will

now construct ν2, . . . , ν5 and apply the same lemma to see that Dλ−ν1 , . . . ,Dλ−ν5 are
distinct composition factors of Dλ↓Sn/2

.

Case 1. λ is as in case (i) of Lemma 2.3. Note that b1 = 1 and k ≥ 2 since
n/2 ≥ 2h(λ). Now, k ≥ 2 and λ3 ≥ 7 imply ν11 , ν

1
2 , ν

1
3 ≥ 2. As λ1 ≤ n/2 + 1 we

have λ1 − ν11 ≤ n/2 + 1 − 2 < n/2, so λ2 − ν12 > 0. We write ν1 in the ‘canonical’

form ν1 = (c1,1, c
d1,2
1,2 , c

d1,3
1,3 , . . .) with c1,1 ≥ c1,2 > c1,3 > . . . and d1,j > 0, and

then proceed to define ν2, . . . , ν5 in the ‘canonical’ form νi = (ci,1, c
di,2
i,2 , c

di,3
i,3 , . . .)

recurrently according to the cases.
Case 1.1. d1,2 ≥ 2 or c1,2 = c1,3+1. For 1 ≤ i < 5 define νi+1 recurrently by setting

νi+1 := (ci,1+1, c
di,2−1
i,2 , ci,2−1, c

di,3
i,3 , c

di,4
i,4 , . . .) (this form is not necessarily ‘canonical’,

so we might have to rewrite into the ‘canonical’ form before the next recurrent step).
Case 1.2. d1,2 = 1, c1,2 > c1,3 + 1, and either of the following conditions holds:

d1,3 ≥ 2, c1,3 = c1,4 + 1. In this case let ν2 := ν1 + (1,−1, 0, 0, . . .), ν3 := ν2 +
(1, 0,−1, 0, 0, . . .), ν4 := ν3 + (1, 0, 0,−1, 0, 0, . . .) and ν5 := ν4 + (1,−1, 0, 0, . . .).

Case 1.3. d1,2 = d1,3 = 1, c1,2 > c1,3 + 1 > c1,4 + 2. In this case let ν2 :=
ν1 + (1,−1, 0, 0, . . .), ν3 := ν2 + (1, 0,−1, 0, 0, . . .), ν4 := ν3 + (1,−1, 0, 0, . . .) and
ν5 := ν4 + (1, 0,−1, 0, 0, . . .).

Case 2. λ is as in case (ii) or (iii) of Lemma 2.3. Then b1 = b2 = 1, and since n/2 ≥
3h(λ), we have k ≥ 3. Now, h(λ) ≥ 6, λ4 ≥ 4 and k ≥ 3 imply that ν1, ν2, ν3, ν4 ≥ 3.

As λ1 + λ2 ≤ n/2 + 4 it then follows that λ3 − ν13 > 0. We will be writing νi in the

‘canonical’ form νi = (ci,1, ci,2, c
di,3
i,3 , c

di,4
i,4 , . . .) with ci,1 ≥ ci,2 ≥ ci,3 > ci,4 > . . . and

all di,j > 0.
Case 2.1. d1,3 ≥ 2 or c1,3 = c1,4 + 1. For 1 ≤ i < 5 define

νi+1 :=

{

(ci,1 + 1, ci,2, c
di,3−1
i,3 , ci,3 − 1, c

di,4
i,4 , c

di,5
i,5 , . . .) if λ1 − ci,1 − 1 ≥ λ2 − ci,2,

(ci,1, ci,2 + 1, c
di,3−1
i,3 , ci,3 − 1, c

di,4
i,4 , c

di,5
i,5 , . . .) if λ1 − ci,1 − 1 < λ2 − ci,2.

Case 2.2. d1,3 = 1, c1,3 > c1,4 + 1, and either of the following conditions holds:
d1,4 ≥ 2, c1,4 = c1,5 + 1. In this case let ν2 := ν1 + (1, 0,−1, 0, 0, . . .), ν3 := ν2 +
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(1, 0, 0,−1, 0, 0, . . .), ν4 := ν3+(1, 0, 0, 0,−1, 0, 0, . . .) and ν5 := ν4+(1, 0,−1, 0, 0, . . .)
if λ1 − λ2 ≥ 5 or ν5 := ν4 + (0, 1,−1, 0, 0, . . .) if λ1 − λ2 = 4.

Case 2.3. d1,3 = d1,4 = 1, c1,3 > c1,4 + 1 > c1,5 + 2. In this case let ν2 :=
ν1 + (1, 0,−1, 0, 0, . . .), ν3 := ν2 + (1, 0, 0,−1, 0, 0, . . .), ν4 := ν3 + (1, 0,−1, 0, 0, . . .)
and ν5 := ν4 + (1, 0, 0,−1, 0, 0, . . .) if λ1 − λ2 ≥ 5 or ν5 := ν4 + (0, 1, 0− 1, 0, 0, . . .) if
λ1 − λ2 = 4. �

Lemma 3.6. Let p = 2, λ ∈ P2(n) be a JS-partition and 5 ≤ k ≤ n/2. Then
Dλ↓Sn−k

has at least three non-isomorphic composition factors, unless possibly one of
the following holds:

• λ = (n)
• n is even and λ = (n− 1, 1),
• n is even and λ = (n/2 + 2, n/2− 2),
• n is even and λ = (n/2 + 1, n/2− 1),
• n is odd and λ = ((n+ 1)/2, (n − 3)/2, 1),
• n ≡ 0 (mod 3) and λ = (n/3 + 2, n/3, n/3 − 2),
• n ≥ 14 with n ≡ 2 (mod 3) , λ = ((n− 2)/3+4, (n− 2)/3, (n− 2)/3− 2) and
k ≡ 1 (mod 3) ,

• n ≥ 19 with n ≡ 1 (mod 3) , λ = ((n+2)/3+2, (n+2)/3, (n+2)/3− 4) and
k ≡ 2 (mod 3) ,

• h(λ) = 3, λ1 = λ2 + 2, λ2 ≥ λ3 + 4 and k = 5,
• n ≥ 22 with n ≡ 4 (mod 6) , λ = ((n − 1)/3 + 2, (n − 1)/3, (n − 1)/3 − 2, 1)
and k 6≡ 0 (mod 3) ,

• λ = (λ1, λ1 − 2, λ1 − 4, λ4) and k = 5,
• n ≥ 20 with n ≡ 0 (mod 4) and λ = (n/4 + 3, n/4 + 1, n/4 − 1, n/4− 3).

Proof. Let λ0 := λ and then recursively define λj := (λj−1
1 − 1, . . . , λj−1

h(λj−i)
− 1).

Note that λj is JS. Let aj := |λj| − n + k. Since |λj | − aj = n − k ≥ n/2, we have
n ≥ 2(n− |λj |+ aj). Moreover, |λj |/2 ≤ n/2 ≤ n− k = |λj | − aj implies aj ≤ |λj |/2.
There is a unique i with 5 ≤ ai ≤ h(λi) + 4.

By Lemma 3.1, Dλj is a composition factor of Dλ↓S
|λj |

, so it suffices to show that

for some j such that |λj| ≥ n− k there exist distinct composition factors Dµ,Dν ,Dπ

of Dλj↓Sn−k
. We always assume that we are not in one of the excluded cases. We will

repeatedly apply Lemma 3.1 without referring to it. We denote by δm the composition
(0, . . . , 0, 1, 0, . . . , 0) with 1 in the mth position.

Case 1. ai ≤ h(λi). Then, using the fact that ai ≥ 5, we can take µ = λi − δ1 −
· · · − δai , ν = λi − 2δ1 − δ2 − · · · − δai−1, and π = λi − 2δ1 − 2δ2 − δ3 − · · · − δai−2.

Case 2. ai = h(λi) + 1 ≥ 6. Then we can take µ = λi − 2δ1 − δ2 − · · · − δai−1,
ν = λi − 2δ1 − 2δ2 − δ3 − · · · − δai−2 and π = λi − 3δ1 − 2δ2 − δ3 − · · · − δai−3.

Case 3. ai = h(λi) + 2 ≥ 7. Then we can take µ = λi− 2δ1 − 2δ2 − δ3 − · · · − δai−2,
ν = λi − 2δ1 − 2δ2 − 2δ3 − δ4 − · · · − δai−3 and π = λi − 3δ1 − 2δ2 − δ3 − · · · − δai−3.

Case 4. ai = h(λi)+3 ≥ 8. Then we can take µ = λi−2δ1−2δ2−2δ3−δ4−· · ·−δai−3,
ν = λi − 3δ1 − 2δ2 − 2δ3 − δ4 − · · · − δai−4 and π = λi − 3δ1 − 2δ2 − δ3 − · · · − δai−3.

Case 5. ai = h(λi)+4 ≥ 9. Then we can take µ = λi−2δ1−2δ2−2δ3−2δ4−δ5−· · ·−
δai−4, ν = λi−3δ1−3δ2−2δ3−δ4−· · ·−δai−5 and π = λi−3δ1−2δ2−2δ3−δ4−· · ·−δai−4.

Case 6. h(λi) ≤ 4. Note that |λi| ≥ n/2 + 5 ≥ 10.
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Case 6.1. h(λi) = 1. By assumption λ 6= (n), (n − 1, 1). Since λ is JS, there exists

0 ≤ j ≤ i− 2 with λj = (λj1, 2). From j < i we have that aj > ai = 5. So we can take

µ = (λj1− (aj−2)), ν = (λj1− (aj−1), 1) and π = (λj1−aj , 2) (notice that λ
j
1−aj > 2

since n− k ≥ n/2 ≥ 5).
Case 6.2. h(λi) = 2. In this case ai = 5 or 6.
Case 6.2.1. λi2 = 1. Then i ≥ 1 and so λi−1 = (λi1 + 1, 2), since λ 6= (n − 1, 1) is

JS. So we can take µ = (λi1 − (ai − 1)), ν = (λi1 − ai, 1) and π = (λi1 − (ai + 1), 2).
Case 6.2.2. λi2 = 2. Then we can take µ = (λi1 − (ai − 2)), ν = (λi1 − (ai − 1), 1)

and π = (λi1 − ai, 2).
Case 6.2.3. λi2 ≥ 3 and λi1 ≥ λi2+6. Then we can take µ = (λi1−⌈ai/2⌉, λ

i
2−⌊ai/2⌋),

ν = (λi1 − ⌈ai/2⌉ − 1, λi2 − ⌊ai/2⌋+ 1) and π = (λi1 − ⌈ai/2⌉ − 2, λi2 − ⌊ai/2⌋ + 2).
Case 6.2.4. λi2 ≥ 3 and λi1 = λi2 +4 (note that we cannot have λi1 = λi2 +5 since λi

is JS). Let µ = (λi1 − ⌈ai/2⌉, λ
i
2 − ⌊ai/2⌋), ν = (λi1 − ⌈ai/2⌉ − 1, λi2 − ⌊ai/2⌋+ 1). To

get the third composition factor, note that by assumption λ 6= (n/2 + 2, n/2− 2), so

there exists 0 ≤ j < i with λj = (λj1, λ
j
1 − 4, 1). In particular n ≥ |λi| + 3 ≥ 13 and

then n − k ≥ 7. Now we take π = (λj1 − 2 − ⌈(aj − 2)/2⌉, λj1 − 4 − ⌊(aj − 2)/2⌋, 1)

(note that λj1 − 4− ⌊(aj − 2)/2⌋ > 1 since 2(λj1 − 4− ⌊(aj − 2)/2⌋) + 3 = n− k ≥ 7).
Case 6.2.5. λi2 ≥ 3 and λi1 = λi2 + 2. We can take µ = (λi1 − ⌈ai/2⌉, λ

i
2 − ⌊ai/2⌋).

To get two more composition factors, note that since λ 6= (n/2 + 1, n/2 − 1), ((n +
1)/2, (n − 3)/2, 1) is JS, we have that i ≥ 2 and there exists 0 ≤ j ≤ i− 2 with λj =

(λj1, λ
j
1−2, 2). In this case n ≥ 2(n−|λi|+ai) ≥ 22 and so n−k ≥ 11. So we can take

ν = (λj1−⌈(aj−1)/2⌉, λj1−2−⌊(aj−1)/2⌋, 1) and π = (λj1−⌈aj/2⌉, λ
j
1−2−⌊aj/2⌋, 2)

(note that aj > ai ≥ 5 and λj1−2−⌊aj/2⌋ > 2 since 2(λj1−2−⌊aj/2⌋)+5 ≥ n−k ≥ 11).
Case 6.3. h(λi) = 3. In this case 5 ≤ ai ≤ 7.
Case 6.3.1. λi3 = 1 and λi1 ≥ λi2 +6. Then we can take µ = (λi1 −⌈(ai− 1)/2⌉, λi2 −

⌊(ai−1)/2⌋), ν = (λi1−⌈(ai+1)/2⌉, λi2−⌊(ai−3)/2⌋) and π = (λi1−⌈(ai+3)/2⌉, λi2−
⌊(ai − 5)/2⌋).

Case 6.3.2. λi3 = 1 and λi1 = λ12 + 4. Notice that λi1 is odd in this case. If λi1 ≥ 9
then λi2−⌊(ai−2)/2⌋ ≥ λi1−4−2 > 1. If λi1 ≤ 7 then λi = (7, 3, 1) and ai = 5 and then
λi2−⌊(ai− 2)/2⌋ > 1 again. So we can take µ = (λi1−⌈(ai− 1)/2⌉, λi2 −⌊(ai− 1)/2⌋),
ν = (λi1−⌈(ai+1)/2⌉, λi2−⌊(ai−3)/2⌋) and π = (λi1−⌈(ai+2)/2⌉, λi2−⌊(ai−2)/2⌋, 1).

Case 6.3.3. λi3 = 1 and λi1 = λ12 + 2. Since |λi| ≥ 10 and λi is JS, we have
λi1 ≥ 7 and so λi2 ≥ 5. We can take µ = (λi1 − ⌈(ai − 1)/2⌉, λi2 − ⌊(ai − 1)/2⌋),
ν = (λi1 − ⌈ai/2⌉, λ

i
2 − ⌊ai/2⌋, 1). To get the third composition factor, note that

since λ 6= ((n + 1)/3, (n − 3)/2, 1), we have i ≥ 1 and λi−1 = (λi1 + 1, λi1 − 1, 2).
If λi1 ≥ 9 then λi2 − ⌊(ai + 1)/2⌋ ≥ λi1 − 2 − 4 > 2. In this case we can take π =

(λi1−⌈(ai+1)/2⌉, λi2−⌊(ai+1)/2⌋, 2) = (λi−1
1 −⌈(ai+3)/2⌉, λi−1

2 −⌊(ai+3)/2⌋, λi−1
3 ).

If λi1 = 7 then n ≥ |λi−1| = 16 and ai−1 ≥ 8. It then follows that λ = λi−1 = (8, 6, 2)

and k = 8. Notice first D(4,3,2) that is a composition factor of D(8,6,2)↓S9 . From

[11, Tables] we have that [D(4,3,2)] = [S(4,3,2)] − [S(8,1)]. Using branching rule in

characteristic 0 and [11, Tables], it then follows that D(4,3,1), D(5,3) and D(6,2) are

composition factors of D(8,6,2)↓S8 .

Case 6.3.4. λi3 ≥ 2, λi1 ≥ λi2 + 4 and ai = 5. In this case we can take µ =
(λi1 − 2, λi2 − 2, λi3 − 1), ν = (λi1 − 3, λi2 − 1, λi3 − 1) and π = (λi1 − 4, λi2 − 1, λi3).
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Case 6.3.5. λi3 ≥ 2, λi1 ≥ λi2 + 4 and ai = 6. In this case we can take µ =
(λi1 − 2, λi2 − 2, λi3 − 2), ν = (λi1 − 3, λi2 − 2, λi3 − 1) and π = (λi1 − 4, λi2 − 1, λi3 − 1).

Case 6.3.6. λi3 ≥ 2, λi1 ≥ λi2 + 6 and ai = 7. In this case we can take µ =
(λi1 − 3, λi2 − 2, λi3 − 2), ν = (λi1 − 4, λi2 − 2, λi3 − 1) and π = (λi1 − 5, λi2 − 1, λi3 − 1).

Case 6.3.7. λi3 ≥ 2, λi1 = λi2 + 4, λi2 ≥ λi3 + 4 and ai = 7. In this case we can take
µ = (λi1−3, λi2−2, λi3−2), ν = (λi1−4, λi2−2, λi3−1) and π = (λi1−3, λi2−3, λi3−1).

Case 6.3.8. λi3 ≥ 2, λi1 = λi2 + 4, λi2 = λi3 + 2 and ai = 7. If h(λ) = 3 then
λ = ((n−2)/3+4, (n−2)/3, (n−2)/3−2) (and n ≡ 2 (mod 3) and n ≥ 14 since λ3 ≥
λi3 ≥ 2) and k = ai + 3i ≡ 1 (mod 3) , which is one of the excluded cases. Else there

exists j < i with λj = (λj1, λ
j
1−4, λj1−6, 1). If λi1 ≥ 10 then λj1 = λi1+i−j ≥ 10+i−j

and aj = ai+3(i−j)+1 = 8+3(i−j), so that we can take µ = (λi1−3, λi2−2, λi3−2),

ν = (λi1−4, λi2−2, λi3−1) and π = (λj1−3− (i− j), λj1−7− (i− j), λj1−8− (i− j), 1).
If λi1 ≤ 9 then λi = (8, 4, 2) or λi = (9, 5, 3). Since n ≤ 2(n − k) = 2(|λi| − ai) and

n ≥ |λj | ≥ |λi|+ 4, this leads to a contradiction.
Case 6.3.9. λi3 ≥ 2, λi1 = λi2 + 2, λi2 ≥ λi3 + 4, ai = 5 and h(λ) = 3. In this case

i ≥ 1, as otherwise we are in one of the excluded cases. Further λi2 ≥ λi3 + 6, since
else n ≡ 1 (mod 3) , λ = ((n + 2)/3 + 2, (n + 2)/3, (n + 2)/3 − 4) and k = ai + 3i =
5 + 3i ≡ 2 (mod 3) (this is one of the excluded cases, since λ3 > λi3 ≥ 2, so that
n ≥ 19). So we can take µ = (λi1 − 2, λi2 − 2, λi3 − 1), ν = (λi1 − 3, λi2 − 2, λi3) and

π = (λi1 − 3, λi2 − 3, λi3 + 1) = (λi−1
1 − 4, λi−1

2 − 4, λi−1
3 ).

Case 6.3.10. λi3 ≥ 2, λi1 = λi2 + 2, λi2 ≥ λi3 + 4, ai = 5 and h(λ) ≥ 4. In

this case there exists 0 ≤ j < i with λj = (λj1, λ
j
2, λ

j
3, 1). For this j we have that

aj = ai + 3(i − j) + 1 = 3(i − j) + 6. We can take µ = (λi1 − 2, λi2 − 2, λi3 − 1),

ν = (λi1−3, λi2−2, λi3) and π = (λj1− (i− j)−3, λj2− (i− j)−3, λj3− (i− j), 1) (notice

that λj3 = λi3 + i− j ≥ i− j + 2).
Case 6.3.11. λi3 ≥ 2, λi1 = λi2 + 2, λi2 ≥ λi3 + 4 and ai = 6. Then we can take

µ = (λi1 − 2, λi2 − 2, λi3 − 2), ν = (λi1 − 3, λi2 − 2, λi3 − 1) and π = (λi1 − 3, λi2 − 3, λi3).
Case 6.3.12. λi3 ≥ 2, λi1 = λi2 + 2, λi2 ≥ λi3 + 4 and ai = 7. Then we can take

µ = (λi1 − 3, λi2 − 2, λi3 − 2), ν = (λi1 − 3, λi2 − 3, λi3 − 1) and π = (λi1 − 4, λi2 − 3, λi3).
Case 6.3.13. λi3 ≥ 2, λi1 = λi2 + 2, λi2 = λi3 + 2. Then h(λ) ≥ 4, as otherwise we

are in one of the excluded cases. So there exists 0 ≤ j < i with λj = (λj1, λ
j
2, λ

j
3, 1) =

(λj1, λ
j
1 − 2, λj1 − 4, 1). If λi3 = 2 then |λi| = 12 and n/2 ≤ n − k = |λi| − ai ≤ 7.

So n − |λi| ≤ 2 ≤ h(λi) and then λ = λi, contradicting h(λ) ≥ 4 and h(λi) = 3.
If λi3 = 3 then |λi| = 15 and n/2 ≤ n − k = |λi| − ai ≤ 10, so that n ≤ 20. So
n − |λi| ≤ 5 and then i = j + 1 = 1. This contradicts λ being JS. So λi3 ≥ 4. Then

λj1 = λi3 + i− j + 4 ≥ i− j + 8. Further aj = ai + 3(i − j) + 1.

Case 6.3.13.1. ai = 5. Then we can take µ = (λj1 − (i − j) − 2, λj1 − (i − j) −

4, λj1 − (i − j) − 5), ν = (λj1 − (i − j) − 3, λj1 − (i − j) − 4, λj1 − (i − j) − 5, 1) and

π = (λj1 − (i− j)− 2, λj1 − (i− j)− 4, λj1 − (i− j)− 6, 1).

Case 6.3.13.2. ai = 6. In this case j ≥ 1, as otherwise, being λj3 > λi3 ≥ 4

and λj3 odd, it follows that n ≥ 22 with n ≡ 4 (mod 6) , λ = ((n − 1)/3 + 2, (n −
1)/3, (n−1)/3−2, 1) and k = ai+3i+1 = 3i+7 ≡ 1 (mod 3) . We have that λj−1 =

(λj1+1, λj1−1, λj1−3, 2) (since λ is a JS-partition) and aj−1 = aj+4 = 3(i−j)+11. If
λi3 = 4 then |λi| = 18 and n/2 ≤ n−k = |λi|−ai = 12, so that n ≤ 24. Since 1 ≤ j < i
we obtain |λj−1| ≥ |λi| + 8 > n, leading to a contradiction. So λi3 ≥ 5 (and then
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λj1 ≥ i−j+9). In this case we can take µ = (λj1−(i−j)−2, λj1−(i−j)−4, λj1−(i−j)−6),

ν = (λj1−(i−j)−3, λj1−(i−j)−4, λj1−(i−j)−6, 1) and π = (λj1−(i−j)−3, λj1−(i−

j)−5, λj1−(i−j)−6, 2) = (λj−1
1 −(i−j)−4, λj−1

2 −(i−j)−4, λj−1
3 −(i−j)−3, λj−1

4 ).

Case 6.3.13.3. ai = 7. In this case j ≥ 1, as otherwise, being λj3 > λi3 ≥ 4

and λj3 odd, it follows that n ≥ 22 with n ≡ 4 (mod 6) , λ = ((n − 1)/3 + 2, (n −
1)/3, (n−1)/3−2, 1) and k = ai+3i+1 = 3i+7 ≡ 2 (mod 3) . We have that λj−1 =

(λj1+1, λj1−1, λj1−3, 2) (since λ is a JS-partition) and aj−1 = aj+4 = 3(i−j)+12. If
λi3 = 4 then |λi| = 18 and n/2 ≤ n−k = |λi|−ai = 11, so that n ≤ 22. Since 1 ≤ j < i
we obtain |λj−1| ≥ |λi|+8 > n, leading to a contradiction. If λi3 = 5 then |λi| = 21 and
n ≤ 28. In this case |λj−1| ≥ |λi|+8 > n, again leading to a contradiction. So λi3 ≥ 6

(and then λj1 ≥ i−j+10). We can take µ = (λj1−(i−j)−3, λj1−(i−j)−4, λj1−(i−j)−6),

ν = (λj1−(i−j)−3, λj1−(i−j)−5, λj1−(i−j)−6, 1) and π = (λj1−(i−j)−3, λj1−(i−

j)−5, λj1−(i−j)−7, 2) = (λj−1
1 −(i−j)−4, λj−1

2 −(i−j)−4, λj−1
3 −(i−j)−4, λj−1

4 ).
Case 6.4. h(λi) = 4. In this case 5 ≤ ai ≤ 8.
Case 6.4.1. ai = 5. Then we can take µ = (λi1 − 2, λi2 − 1, λi3 − 1, λi4 − 1), ν =

(λi1 − 2, λi2 − 2, λi3 − 1, λi4).
Case 6.4.1.1. λi1 ≥ λi2 + 4. Then we can take π = (λi1 − 3, λi2 − 1, λi3 − 1, λi4).
Case 6.4.1.2. λi2 ≥ λi3 + 4. Then we can take π = (λi1 − 3, λi2 − 2, λi3, λ

i
4).

Case 6.4.1.3. λi1 = λi2+2, λi2 = λi3+2 and h(λ) = 4. If i = 0 then λ = λi = (λi1, λ
i
1−

2, λi1−4, λi4) and k = ai = 5, which is one of the excluded cases. So we can assume that
i ≥ 1. If λ3 = λ4+2 then n ≡ 0 (mod 4) and λ = (n/4+3, n/4+1, n/4−1, n/4−3),
which is also an excluded case. So we can also assume that λ3 ≥ λ4+2. In this case we
can take π = (λi1−2, λi1−4, λi1−6, λi4+1) = (λ1−i−2, λ2−i−2, λ3−i−2, λ4−i+1).

Case 6.4.1.4. λi1 = λi2 + 2, λi2 = λi3 + 2 and h(λ) ≥ 5. In this case there exists

0 ≤ j < i with λj = (λj1, λ
j
2, λ

j
3, λ

j
4, 1) = (λi1+i−j, λ

i
1+i−j−2, λi1+i−j−4, λi4+i−j, 1).

Case 6.4.1.4.1. λi4 ≥ 3. Then λj4 ≥ i− j+3, so we can take π = (λi1−2, λi1−4, λi1−

5, λi4 − 1, 1) = (λj1 − (i− j)− 2, λj2 − (i− j)− 2, λj3 − (i− j)− 1, λj4 − (i− j)− 1, λj5).
Case 6.4.1.4.2. λi4 = 2. Then we can take π = (λi1 − 3, λi1 − 4, λi1 − 5, λi4, 1) =

(λj1 − (i − j) − 3, λj2 − (i − j) − 2, λj3 − (i − j) − 1, λj4 − (i − j), λj5) (notice that
λi1 ≥ λi4 + 6 since λ is JS).

Case 6.4.1.4.3. λi4 = 1. If λi4 = 1 and λi1 = 7 then λi = (7, 5, 3, 1) and then
|λi| = 16. In this case n ≤ 22. Since λ is JS, we have that j ≤ i − 2, so that
n ≥ |λj | ≥ |λi|+ 9 = 25, leading to a contradiction. So λi1 ≥ 9 and then we can take

π = (λi1 − 3, λi1 − 4, λi1 − 6, λi4 +1, 1) = (λj1 − (i− j)− 3, λj2 − (i− j)− 2, λj3 − (i− j)−

2, λj4 − (i− j) + 1, λj5).
Case 6.4.2. ai = 6. Then we can take µ = (λi1 − 2, λi2 − 2, λi3 − 1, λi4 − 1) and

ν = (λi1 − 3, λi2 − 2, λi3 − 1, λi4).
Case 6.4.2.1. λi1 ≥ λi2 + 4. We can take π = (λi1 − 4, λi2 − 1, λi3 − 1, λi4).
Case 6.4.2.2. λi2 ≥ λi3 + 4. We can take π = (λi1 − 3, λi2 − 3, λi3, λ

i
4).

Case 6.4.2.3. λi3 ≥ λi4 + 4. We can take π = (λi1 − 2, λi2 − 2, λi3 − 2, λi4).
Case 6.4.2.4. λi1 = λi2 + 2, λi2 = λi3 + 2 and λi3 = λi4 + 2. Then λi = (λi1, λ

i
1 −

2, λi1 − 4, λi1 − 6) with λi1 ≥ 7. If h(λ) = 4 then n ≡ 0 (mod 4) and λ = (n/4 +
3, n/4 + 1, n/4 − 1, n/4 − 3), which is one of the excluded cases. So we can assume

that there exists 0 ≤ j < i with λj = (λj1, λ
j
1−2, λj1−4, λj1−6, 1). If λi1 ≥ 9 we can take
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π = (λi1−2, λi1−4, λi1−6, λi1−7, 1) = (λj1−(i−j)−2, λj2−(i−j)−2, λj3−(i−j)−2, λj4−

(i− j)− 1, λj5). If 7 ≤ λi ≤ 8 then λi = (7, 5, 3, 1) or λi = (8, 6, 4, 2) and then n ≤ 28,
so that λ = (9, 7, 5, 3, 1) and k = 11 (since h(λ) ≥ 5, n− k = |λi| − ai and k ≤ n/2).

In this case notice first that D(5,4,3,2,1) is a composition factor of D(9,7,5,3,1)↓S15 . Since

D(5,4,3,2,1) ∼= S(5,4,3,2,1), using branching rule in characteristic 0 and decomposition
matrices, we can see that D(9,7,5,3,1)↓S14 has more than 3 composition factors.

Case 6.4.3. ai = 7. Then we can take µ = (λi1 − 2, λi2 − 2, λi3 − 2, λi4 − 1) and
ν = (λi1 − 3, λi2 − 2, λi3 − 1, λi4 − 1).

Case 6.4.3.1. λi1 ≥ λi2 + 4. We can take π = (λi1 − 4, λi2 − 2, λi3 − 1, λi4).
Case 6.4.3.2. λi2 ≥ λi3 + 4. We can take π = (λi1 − 3, λi2 − 3, λi3 − 1, λi4).
Case 6.4.3.3. λi3 ≥ λi4 + 4. We can take π = (λi1 − 3, λi2 − 2, λi3 − 2, λi4).
Case 6.4.3.4. λi1 = λi2 + 2, λi2 = λi3 + 2 and λi3 = λi4 + 2. Then λi = (λi1, λ

i
1 −

2, λi1 − 4, λi1 − 6) with λi1 ≥ 7. Again we can assume that there exists 0 ≤ j < i with

λj = (λj1, λ
j
1 − 2, λj1 − 4, λj1 − 6, 1). If λi1 ≥ 9 we can take π = (λi1 − 3, λi1 − 4, λi1 −

6, λi1 − 7, 1) = (λj1 − (i− j)− 3, λj2 − (i− j)− 2, λj3 − (i− j)− 2, λj4 − (i− j)− 1, λj5). If
7 ≤ λi ≤ 8 then λi = (7, 5, 3, 1) or λi = (8, 6, 4, 2) and n ≤ 26, so that λ = (9, 7, 5, 3, 1)
and k = 12 (since h(λ) ≥ 5, n − k = |λi| − ai and k ≤ n/2). In this case notice first

that D(5,4,3,2,1) is a composition factor of D(9,7,5,3,1)↓S15 . Since D
(5,4,3,2,1) ∼= S(5,4,3,2,1),

using branching rule in characteristic 0 and [11, Tables], we can see thatD(9,7,5,3,1)↓S13
has more than 3 composition factors.

Case 6.4.4. ai = 8 and λi4 ≥ 2. Then we can take µ = (λi1− 2, λi2− 2, λi3− 2, λi4− 2)
and ν = (λi1 − 3, λi2 − 2, λi3 − 2, λi4 − 1).

Case 6.4.4.1. λi1 ≥ λi2 + 4. We can take π = (λi1 − 4, λi2 − 2, λi3 − 1, λi4 − 1).
Case 6.4.4.2. λi2 ≥ λi3 + 4. We can take π = (λi1 − 3, λi2 − 3, λi3 − 1, λi4 − 1).
Case 6.4.4.3. λi3 ≥ λi4 + 4. We can take π = (λi1 − 3, λi2 − 3, λi3 − 2, λi4).
Case 6.4.4.4. λi1 = λi2 + 2, λi2 = λi3 + 2 and λi3 = λi4 + 2. Then λi = (λi1, λ

i
1 −

2, λi1 − 4, λi1 − 6) with λi1 ≥ 8. Again we can assume that 0 ≤ j < i with λj =

(λj1, λ
j
1−2, λj1−4, λj1−6, 1). If λi1 ≥ 9 we can take π = (λi1−2, λi1−4, λi1−6, λi1−7, 1) =

(λj1 − (i− j)− 2, λj2 − (i− j)− 2, λj3 − (i− j)− 2, λj4 − (i− j)− 1, λj5). If λ
i = 8 then

λi = (8, 6, 4, 2) and n ≤ 24 and it can be checked that no λ exists (since h(λ) ≥ 5).
Case 6.4.5. ai = 8 and λi4 = 1.
Case 6.4.5.1. λi1 ≥ λi2 + 4. Then we can take µ = (λi1 − 3, λi2 − 2, λi3 − 2, λi4 − 1),

ν = (λi1 − 4, λi2 − 2, λi3 − 1, λi4 − 1) and π = (λi1 − 5, λi2 − 2, λi3 − 1, λi4).
Case 6.4.5.2. λi2 ≥ λi3 + 4. Then we can take µ = (λi1 − 3, λi2 − 2, λi3 − 2, λi4 − 1),

ν = (λi1 − 3, λi2 − 3, λi3 − 1, λi4 − 1) and π = (λi1 − 4, λi2 − 3, λi3 − 1, λi4).
Case 6.4.5.3. λi1 = λi2 + 2 and λi2 = λi3 + 2. Then λi = (λi1, λ

i
1 − 2, λi2 − 4, 1)

with λi1 ≥ 7 odd. If i ≥ 1 then λi−1 = (λi1 + 1, λi1 − 1, λi1 − 3, 2) and ai−1 =
ai + 4 = 12. Then 3λi1 − 1 = |λi−i| ≥ 2ai−1 = 24 and so λi1 ≥ 9. So we can take
µ = (λi1 − 3, λi1 − 4, λi1 − 6), ν = (λi1 − 3, λi1 − 5, λi1 − 6, 1) and π = (λi1 − 4, λi1 −

5, λi1 − 6, 2) = (λi−1
1 − 5, λi−1

2 − 4, λi−1
3 − 3, λi−1

4 ). If i = 0 then λ = λi and so
n ≡ 4 (mod 6) , λ = ((n − 1)/3 + 2, (n − 1)/3, (n − 1)/3 − 2, 1) and k = ai = 8. If
n = 16 then λ = (7, 5, 3, 1), else n ≥ 22, so that we are in one of the excluded cases.

If λ = (7, 5, 3, 1) notice first that D(4,3,2,1) is a composition factor of D(7,5,3,1)↓S10 .

Since (4, 3, 2, 1) is a 2-core, we have that D(4,3,2,1) ∼= S(4,3,2,1). From [11, Tables] and
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branching rule in characteristic 0, it then follows that D(7,5,3,1)↓S8 has more than 3
non-isomorphic composition factors. �

Lemma 3.7. Let p = 2 | n, and λ ∈ PA
2 (n). Then Dλ↓Sn/2

has at least 3 non-

isomorphic composition factors unless λ has one of the following forms:

(i) βn with n ≡ 0 (mod 4) ,
(ii) (βn−1, 1),
(iii) n ≥ 24 with n ≡ 0 (mod 8) and λ = (n/4 + 3, n/4 + 1, n/4 − 1, n/4− 3),
(iv) n ≥ 10 with n ≡ 2 (mod 4) and λ = ((n+6)/4, (n+2)/4, (n−2)/4, (n−6)/4),
(v) n ≥ 24 with n ≡ 0 (mod 4) and λ = (n/4 + 2, n/4 + 1, n/4 − 1, n/4− 2),
(vi) n ≥ 14 with n ≡ 2 (mod 4) and λ = ((n + 10)/4, (n + 6)/4, (n − 6)/4, (n −

10)/4),

Proof. If n ≤ 10 then λ ∈ PA
2 (n) implies that λ = βn, (βn−1, 1) or (4, 3, 2, 1), in

particular, λ is of the exceptional forms (i), (ii) or (iv), and so we may assume that
n ≥ 12.

If λ is the double of (11, 1), (9, 5) or (11, 7) then λ is of the exceptional forms (ii)
or (iv). So we do not need to consider them. Let E1 be the set of the doubles of the
remaining exceptional partitions appearing in Lemma 3.4. Moreover, let

E2 := {(7, 5, 4, 3, 2, 1), (7, 6, 5, 3, 1), (8, 7, 5, 3, 2, 1), (8, 7, 5, 4, 3, 1), (8, 7, 5, 4, 3, 2, 1),

(8, 7, 6, 5, 3, 1), (8, 7, 6, 5, 3, 2, 1), (8, 7, 6, 5, 4, 3, 1), (8, 7, 6, 5, 4, 3, 2, 1)}.

(there is an overlap between E1 and E2). Finally let

E3 := {(7, 5, 3, 1), (7, 5, 3, 2, 1), (7, 6, 2, 1), (8, 7, 5, 3, 1), (9, 7, 3, 2, 1)}.

By Lemma 2.4, D(h(λ),h(λ)−1,...,1) is a composition factor of Dλ↓Sh(λ)(h(λ)+1)/2
. Since

D(h(λ),h(λ)−1,...,1) ∼= S(h(λ),h(λ)−1,...,1) is an irreducible Specht module, using branching
rule for Specht modules and known decomposition matrices, the lemma can be checked
for all λ ∈ E1 ∪ E2 ∪ E3.

Recalling the partition λJS from §3.1, we can now assume that n ≥ 12 and that
we are not in one of the exceptional cases of Lemma 3.4. Then by Lemma 3.4,
m := |λJS| ≥ n/2 + 5 and λJS2j−1 − λJS2j ≤ 2 for all j ≥ 1. By Lemma 3.3 we have that

DλJS is a composition factor of Dλ↓Sm . Moreover, by Lemma 3.6, DλJS↓Sn/2
has at

least three non-isomorphic composition factors, unless λJS in one of the exceptional
cases listed in Lemma 3.6. Since λJS2j−1 − λJS2j ≤ 2 for all j ≥ 1, we are left only with
the following cases:

(a) m is even and λJS = βm,
(b) m is odd and λJS = (βm−1, 1),
(c) λJS = (6, 4, 2),
(d) m ≥ 16 with m ≡ 0 (mod 4) , λJS = (βm−2, 2) and m = n/2 + 5,
(e) λJS = (7, 5, 3, 1) and n = 22,
(f) m ≥ 20 with m ≡ 0 (mod 4) and λJS = (m/4+3,m/4+1,m/4−1,m/4−3).

So, using Lemma 3.3 and since n is even, in each of the corresponding above cases
the following holds:

(a) λ is βn or (βn−1, 1).
(b) λ is (βn−1, 1), (βn−2, 2), (βn−3, 3), (βn−3, 2, 1), (βn−4, 3, 1), (βn−5, 3, 2) or

(βn−6, 3, 2, 1).
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(c) λ is (6, 4, 2), (6, 4, 3, 1), (6, 4, 3, 2, 1), (6, 5, 2, 1), (6, 5, 3), (6, 5, 3, 2), (6, 5, 4, 1),
(6, 5, 4, 2, 1), (6, 5, 4, 3) or (6, 5, 4, 3, 2).

(d) In this case λ is one of the partitions in (b).
(e) λ is (7, 5, 4, 3, 2, 1), (7, 6, 4, 3, 2), (7, 6, 5, 3, 1) or (7, 6, 5, 4).
(f) (f1) λ1 ≥ 8, λ1 − λ2 ≤ 2, λ1 − λ3 ≤ 4, λ1 − λ4 ≤ 6, λ5 = 0 if λ1 is odd or

λ5 ≤ 1 if λ1 is even;
(f2) λ is one of the following: (8, 6, 4, 3, 2, 1), (8, 6, 5, 3, 2), (8, 6, 5, 4, 2, 1),

(8, 6, 5, 4, 3), (8, 6, 5, 4, 3, 2), (8, 7, 4, 3, 2), (8, 7, 5, 3, 2, 1), (8, 7, 5, 4, 2),
(8, 7, 5, 4, 3, 1), (8, 7, 5, 4, 3, 2, 1), (8, 7, 6, 3, 2), (8, 7, 6, 4, 2, 1), (8, 7, 6, 4, 3),
(8, 7, 6, 5, 2), (8, 7, 6, 5, 3, 1), (8, 7, 6, 5, 3, 2, 1), (8, 7, 6, 5, 4), (8, 7, 6, 5, 4, 2),
(8, 7, 6, 5, 4, 3, 1) or (8, 7, 6, 5, 4, 3, 2, 1).

Since λ ∈ PA
2 (n) we then have that one of the following holds:

(1) n ≡ 0 (mod 4) and λ = βn,
(2) λ = (βn−1, 1),
(3) λ = (βn−3, 2, 1),
(4) n ≡ 0 (mod 4) and λ = (βn−4, 3, 1),
(5) λ = (βn−5, 3, 2),
(6) n ≡ 2 (mod 4) and λ = (βn−6, 3, 2, 1),
(7) n ≥ 24 with n ≡ 0 (mod 8) and λ = (n/4 + 3, n/4 + 1, n/4 − 1, n/4− 3),
(8) n ≥ 18 with n ≡ 2 (mod 4) and λ = ((n+6)/4, (n+2)/4, (n−2)/4, (n−6)/4),
(9) n ≥ 24 with n ≡ 0 (mod 4) and λ = ((n+8)/4, (n+4)/4, (n−4)/4, (n−8)/4),

(10) n ≥ 14 with n ≡ 2 (mod 4) and λ = ((n + 10)/4, (n + 6)/4, (n − 6)/4, (n −
10)/4),

(11) n ≥ 24 with n ≡ 0 (mod 8) and λ = (n/4 + 2, n/4 + 1, n/4 − 1, n/4− 3, 1),
(12) λ ∈ E2.

Taking into account that we have already dealt with λ ∈ E2 and that in the statement
of the lemma we have excluded certain classes of partitions, it remains to deal with
the cases (3)–(6), (11). We will repeatedly use Lemma 2.4.

To deal with (3)–(6), first note that if ν = (βl, ν) with ν 6= 0 and ν1 ≤ (βl)2−2, then

D(βl−1,ν) and D(βl−2,ν) are composition factors of Dν↓S|ν|−1
and Dν↓S|ν|−2

respectively

and at least one of ν, (βl−1, ν) or (βl−2, ν) has a good node below the second row.

(3) If n ≥ 18 it then follows that D(βn/2−2,2), D(βn/2−1,1) and Dβn/2 are composition
factors of D(βn−3,2,1)↓Sn/2

. If n = 10 then λ is in the exceptional family (iv), if n = 12

then λ ∈ E1, if n = 14 then λ is in the exceptional family (vi), while if n = 16 then
λ ∈ E3.

(4) If n ≥ 20 that D(βn/2−3,2,1), D(βn/2−2,2) and D(βn/2−1,1) are composition factors

of D(βn−4,3,1)↓Sn/2
. If n = 16 then λ ∈ E3.

(5) If n ≥ 24 that D(βn/2−3,2,1), D(βn/2−2,2) and D(βn/2−1,1) are composition factors

of D(βn−5,3,2)↓Sn/2
(this can be checked also for n = 20 and n = 22). If n = 14 then

λ is in the exceptional family (iv), if n = 16 then λ ∈ E1, if n = 18 then λ is in the
exceptional family (vi).

(6) If n ≥ 26 that D(βn/2−4,3,1), D(βn/2−3,2,1) and D(βn/2−2,2) are composition factors

of D(βn−6,3,2,1)↓Sn/2
. If n = 18 or n = 22 then λ ∈ E3.
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(11) If n ≥ 24 with n ≡ 0 (mod 8) notice that D(n/4+2,n/4,n/4−2,n/4−4,1) is a compo-

sition factor of D(n/4+2,n/4+1,n/4−1,n/4−3,1)↓Sn−3
and D(n/4+2,n/4,n/4−2,n/4−4) is a com-

position factor of D(n/4+2,n/4+1,n/4−1,n/4−3,1)↓Sn−4
. Using Lemma 3.1 it follows that

D(n/8+3,n/8+1,n/8−1,n/8−3), D(n/8+2,n/8+1,n/8−1,n/8−2) and D(n/8+3,n/8+1,n/8−1,n/8−2,1)

are composition factor of D(n/4+2,n/4+1,n/4−1,n/4−3,1)↓Sn/2
if n ≥ 32. If n = 24 then

λ ∈ E3.
�

Lemma 3.8. Let p = 2, n ≡ 0 (mod 4) and λ = (n/4+ 2, n/4+1, n/4− 1, n/4− 2).
Assume that 2 ≤ k ≤ n− 9 and let µ and ν be given by

(i) µ = (n/4−m+ 2, n/4−m+ 1, n/4−m− 1, n/4−m− 2), ν = (n/4−m+
3, n/4 −m+ 1, n/4−m− 1, n/4−m− 3) if k = 4m,

(ii) µ = (n/4 − m + 2, n/4 − m,n/4 − m − 1, n/4 − m − 2), ν = (n/4 − m +
2, n/4 −m+ 1, n/4−m− 1, n/4−m− 3) if k = 4m+ 1,

(iii) µ = (n/4 − m + 2, n/4 − m,n/4 − m − 1, n/4 − m − 3), ν = (n/4 − m +
1, n/4 −m,n/4−m− 1, n/4 −m− 2) if k = 4m+ 2,

(iv) µ = (n/4 − m + 1, n/4 − m,n/4 − m − 1, n/4 − m − 3), ν = (n/4 − m +
2, n/4 −m,n/4−m− 2, n/4 −m− 3) if k = 4m+ 3.

Then Dµ and Dν are composition factor of Dλ↓Sn−k
.

Proof. Notice that repeatedly applying Lemma 2.4 we have that

• D(n/4+2,n/4,n/4−1,n/4−2) is a composition factor of Dλ↓Sn−1
,

• D(n/4+2,n/4,n/4−1,n/4−3) and D(n/4+1,n/4,n/4−1,n/4−2) are composition factors
of Dλ↓Sn−2

,

• D(n/4+1,n/4,n/4−1,n/4−3) and D(n/4+2,n/4,n/4−2,n/4−3) are composition factors
of Dλ↓Sn−3

,

• D(n/4+1,n/4,n/4−2,n/4−3) and D(n/4+2,n/4,n/4−2,n/4−4) are composition factors
of Dλ↓Sn−4

,

• D(n/4+1,n/4−1,n/4−2,n/4−3) and D(n/4+1,n/4,n/4−2,n/4−4) are composition fac-
tors of Dλ↓Sn−5

.

Since µ = ((n− 4)/4 + 2, (n− 4)/4 + 1, (n− 4)/4− 1, (n− 4)/4− 2) for k = 4, the
lemma then follows by induction. �

4. Reduction Theorems

4.1. Criterion for reducibility of restrictions. For λ ∈ Pp(n) we denote

E(λ) := EndF(D
λ).

Note that E(λ) is naturally an FSn-module.
If λ ∈ PA

p (n), then upon restriction to An, we have the FAn-module decomposition

E(λ) = E+,+(λ)⊕ E−,−(λ)⊕ E+,−(λ)⊕ E−,+(λ),

where
Eδ,ε(λ) := HomF (E

λ
δ , E

λ
ε ) (δ, ε ∈ {+,−}).

Lemma 4.1. Let λ ∈ PA
p (n) and V be an FSn-module. Then

HomSn(V, E(λ))
∼= HomAn(V ↓An

, E±,±(λ)⊕ E±,∓(λ)).



IRREDUCIBLE RESTRICTIONS OF REPRESENTATIONS OF SYMMETRIC GROUPS 21

Proof. Using Dλ ∼= Eλ± ↑Sn , it is easy to check that E(λ) ∼= HomF (E
λ
±, E

λ
+ ⊕Eλ−)↑

Sn ,
which implies the lemma using Frobenious reciprocity. �

Let

πδ,ε : E(λ) → Eδ,ε(λ) (δ, ε ∈ {+,−}) (4.2)

be the corresponding projections. Note that Eλ± with (Eλ±)
σ ∼= Eλ∓ implies

E+,±(λ)
σ ∼= E−,∓(λ). (4.3)

Note also that E+,+(λ)⊕E−,−(λ) is an FSn-submodule of E(λ), as is E+,−(λ)⊕E−,+(λ).
We then have the corresponding projections

π0 : E(λ) → E+,+(λ)⊕ E−,−(λ) and π1 : E(λ) → E+,−(λ)⊕ E−,+(λ). (4.4)

Recall the notation J (G) from §2.1. The following is an analogue of [17, Lemma 2.17]:

Lemma 4.5. Let λ ∈ PA
p (n), δ ∈ {+,−} and G ≤ An be a subgroup such that Eλδ ↓G

is irreducible. Then dimHomAn(J (G), Eδ,ε(λ)) ≤ 1 for all ε ∈ {+,−}.

Proof. We have

HomAn(J (G), Eδ,ε(λ)) = HomAn(1G↑
An , Eδ,ε(λ))

∼= HomG(1G, Eδ,ε(λ)↓G)

∼= HomG(E
λ
δ ↓G, E

λ
ε ↓G).

Since Eλδ ↓G is irreducible and dimEλδ = dimEλε the lemma follows. �

Lemma 4.6. Let k ∈ Z≥0 and n ≥ max(5, 2k), and exclude the cases (p, n −
2k) = (2,≤ 2), (3,≤ 1). Suppose that λ ∈ PA

p (n), G ≤ An and there is ψ ∈
HomSn(I(G),Mk) such that [imψ : Dk] 6= 0.

(i) If there is ζ ∈ HomSn(Mk, E+,+(λ)⊕ E−,−(λ)) such that [im ζ : Dk] 6= 0 then
there exist

ξ′ ∈ HomAn(J (G), E+,+(λ)) and ξ′′ ∈ HomAn(J (G), E−,−(λ))

such that [im ξ′ : Ek] 6= 0 and [im ξ′′ : Ek] 6= 0.
(ii) If there is ζ ∈ HomSn(Mk, E+,−(λ)⊕ E−,+(λ)) such that [im ζ : Dk] 6= 0 then

there exist

ξ′ ∈ HomAn(J (G), E+,−(λ)) and ξ′′ ∈ HomAn(J (G), E−,+(λ))

such that [im ξ′ : Ek] 6= 0 and [im ξ′′ : Ek] 6= 0.

Proof. We prove (i), the proof of (ii) being similar. By Lemma 2.2, the assumptions
n ≥ max(5, 2k) and (p, n−2k) 6= (2,≤ 2), (3,≤ 1) guarantee that Ek is irreducible and

appears with multiplicity 1 inMk↓An
. Note that I(G) ∼= J (G)↑Sn . By Lemma 2.5(i),

there is ψ′ ∈ HomAn(J (G),Mk↓An
) with [imψ′ : Ek] 6= 0. Furthermore,

E+,+(λ)↑
Sn ∼= E+,+(λ)⊕ E−,−(λ) ∼= E−,−(λ)↑

Sn .

By Lemma 2.5(ii), there are

ζ ′ ∈ HomAn(Mk↓An
, E+,+(λ)) and ζ ′′ ∈ HomAn(Mk↓An

, E−,−(λ))

with [im ζ ′ : Ek] 6= 0 and [im ζ ′′ : Ek] 6= 0. Since Ek appears in Mk with multiplicity
1, we can now take ξ′ := ζ ′ ◦ ψ′ and ξ′′ := ζ ′′ ◦ ψ′. �
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Theorem 4.7. Let k ≥ 1, n ≥ max(5, 2k), and exclude the cases (p, n− 2k) = (2,≤
2), (3,≤ 1). Suppose that λ ∈ PA

p (n), G ≤ An and there are

ψ ∈ HomSn(I(G),Mk) and ζ ∈ HomSn(Mk, E+,+(λ)⊕ E−,−(λ))

such that [imψ : Dk] 6= 0 and [im ζ : Dk] 6= 0. Then Eλ±↓G is reducible.

Proof. We prove that Eλ+↓G is reducible, the argument for Eλ−↓G being similar. Note
that there always exists ξ0 ∈ HomAn(J (G), E+,+(λ)) whose image is the trivial module
1An . On the other hand, by Lemma 4.6(i), there exists ξk ∈ HomAn(J (G), E+,+(λ))
whose image contains Ek as a composition factor. Since ξ0 and ξk are linearly inde-
pendent, the theorem follows from Lemma 4.5. �

Theorem 4.8. Let 1 ≤ k < l, n ≥ max(5, 2l), and exclude the cases (p, n − 2l) =
(2,≤ 2), (3,≤ 1). Suppose that λ ∈ PA

p (n), G ≤ An and for j = k, l there are

ψj ∈ HomSn(I(G),Mj) and ζj ∈ HomSn(Mj , E+,−(λ)⊕ E−,+(λ))

such that [imψj : Dj ] 6= 0 and [im ζj : Dj ] 6= 0. Then Eλ±↓G is reducible.

Proof. We prove that Eλ+↓G is reducible, the argument for Eλ−↓G being similar. By
Lemma 4.6(ii), for j = k, l, there exists ξj ∈ HomAn(J (G), E+,−(λ)) whose image
contains Ej as a composition factor. Note that ξk and ξl are linearly independent
since Mk↓An

does not have El as a composition factor and therefore im ξk does not
have El as a composition factor. The theorem now follows from Lemma 4.5. �

4.2. First reduction theorems for alternating groups. Recall the projections
π0, π1 defined in (4.4) and the integers ik(G) from §2.4

Proposition 4.9. Let n ≥ 8 and exclude the case (n, p) = (8, 2). If λ ∈ PA
p (n) and

G ≤ An is a subgroup such that 1 < i1(G) < i2(G) and Eλ+↓G or Eλ−↓G is irreducible
then one of the following holds:

(i) i2(G) = i3(G) and λ is JS.
(ii) p = 2 and λ = βn.
(iii) p = 2 | n and dim(S∗

1)
G ≥ i2(G)− 1.

(iv) λ is JS, p = 2 | n and dim(S∗
2)
G ≥ i3(G) − i1(G).

(v) λ is JS, p = 3, n ≡ 0 (mod 3) and dim(S∗
1)
G ≥ i3(G)− i2(G) + i1(G)− 1.

(vi) λ is JS, p = 3, n ≡ 1 (mod 3) and dim(S∗
2)
G ≥ i3(G)− i1(G).

Proof. The result for p > 3 follows from [20, Main Theorem]. So we may now assume
that p = 2 or p = 3. Also, without loss of generality we assume that Eλ+↓G is
irreducible. Moreover, in view of (ii) if p = 2 we further assume that λ 6= βn. From
Lemma 2.2 it then follows that h(λ) ≥ 3.

In view of (2.7), the assumption i1(G) > 1 implies the existence of

ψ1 ∈ HomSn(I(G),M1)

with [imψ1 : D1] 6= 0. There also exists

ψ2 ∈ HomSn(I(G),M2)

with [imψ2 : D2] 6= 0. Indeed, if p = 2 | n, then in view of (iii), we may assume that
dim(S∗

1)
G < i2(G)− 1, whence ψ2 exists by Theorem 2.9. On the other hand if p = 3

or p = 2 ∤ n, by Theorems 2.8 and 2.9, we have that M2 ∼M1|S
∗
2 , so the assumption

i2(G) > i1(G) and (2.7) imply the existence of ψ2 with the required properties.
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Furthermore, by Lemma 2.10, there exists

ζ2 ∈ HomSn(M2, E(λ))

with [im ζ2 : D2] 6= 0. By Lemma 2.11, there exists

ζ3 ∈ HomSn(M3, E(λ))

with [im ζ3 : D3] 6= 0.
Case 1. λ is not JS. Then

1 < dimEndSn−1(D
λ↓Sn−1

) = dimHomSn(M1, E(λ))

and the well-known structure of M1 (see for example Theorems 2.8 and 2.9) imply
that there is ζ1 ∈ HomSn(M1, E(λ)) with [im ζ1 : D1] 6= 0.

Case 1.1. ζ ′1 := π0 ◦ ζ1 satisfies [im ζ ′1 : D1] 6= 0. Then the proposition follows by
Theorem 4.7 (with k = 1).

Case 1.2. ζ ′1 satisfies [im ζ ′1 : D1] = 0. Then ζ ′′1 := π1 ◦ ζ1 satisfies [im ζ ′′1 : D1] 6= 0.
Case 1.2.1. ζ ′2 := π0 ◦ ζ2 satisfies [im ζ ′2 : D2] 6= 0. Then the proposition follows by

Theorem 4.7 (with k = 2).
Case 1.2.2. ζ ′2 satisfies [im ζ ′2 : D2] = 0. Then ζ ′′2 := π1 ◦ ζ2 satisfies [im ζ ′′2 : D2] 6= 0

and we can conclude by Theorem 4.8 (with k = 1 and l = 2).
Case 2. λ is JS.
Case 2.1. ζ ′2 := π0 ◦ ζ2 satisfies [im ζ ′2 : D2] 6= 0. Then the proposition follows by

Theorem 4.7 (with k = 2).
Case 2.2. ζ ′2 satisfies [im ζ ′2 : D2] = 0. Then ζ ′′2 := π1 ◦ ζ2 satisfies [im ζ ′′2 : D2] 6= 0.

In view of (iv), (v) and (vi), using Theorems 2.8 and 2.9, we may assume that there
exists ψ3 ∈ HomSn(I(G),M3) with [imψ3 : D3] 6= 0.

Case 2.2.1. ζ ′3 := π0 ◦ ζ3 satisfies [im ζ ′3 : D3] 6= 0. Then the proposition follows by
Theorem 4.7 (with k = 3).

Case 2.2.2. ζ ′3 satisfies [im ζ ′3 : D3] = 0. Then ζ ′′3 := π1 ◦ ζ3 satisfies [im ζ ′′3 : D3] 6= 0
and we can conclude by Theorem 4.8 (with k = 2 and l = 3). �

Proposition 4.10. Let n ≥ 8 and exclude the case (n, p) = (8, 2). Suppose that λ ∈
PA
p (n) and G ≤ An is a transitive subgroup such that Eλ+↓G or Eλ−↓G is irreducible.

Then one of the following holds:

(i) G is 2-homogeneous.
(ii) p = 2 and λ = βn.
(iii) n is even and G ≤ Gn/2,2 or G ≤ G2,n/2.

(iv) p = 3, n ≡ 1 (mod 3) and dim(S∗
2)
G > i2(G) − 1.

(v) p = 2 | n and dim(S∗
2)
G > i2(G)− 1.

Proof. The result for p > 3 follows from [20, Theorem 3.13], so let p = 2 or 3. We
will now prove the following

Claim. We are in one of the cases (i)-(v) or one of the following conditions holds:
(a) p = 3, n ≡ 0 (mod 3) and (S∗

1)
G 6= 0;

(b) p = 2 | n and dim(S∗
1)
G ≥ i2(G) − 1.

To prove the claim, we assume that we are not in the cases (i)-(v) or (a),(b)
and apply Theorems 4.7 and 4.8 to deduce that Eλ±↓G are reducible, obtaining a
contradiction.
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Since we are not in case (i), we have i2(G) > 1. Since we are not in case (ii) we
have that Dλ is not basic spin in characteristic 2. So h(λ) ≥ 3 by Lemma 2.2. Since
we are not in case (iii), using [8, §5, Corollary], we have that i2(G) < i3(G).

Since we are not in case (b) and i2(G) > 1, Theorems 2.8 and 2.9 imply that there
exists

ψ2 ∈ HomSn(I(G),M2)

with [imψ2 : D2] 6= 0. Since we are not in cases (iv),(v),(a) and i2(G) < i3(G),
Theorems 2.8 and 2.9 imply that there exists

ψ3 ∈ HomSn(I(G),M3)

with [imψ3 : D3] 6= 0.
Furthermore, by Lemma 2.10, there exists

ζ2 ∈ HomSn(M2, E(λ))

with [im ζ2 : D2] 6= 0. By Lemma 2.11, there exists

ζ3 ∈ HomSn(M3, E(λ))

with [im ζ3 : D3] 6= 0.
Case 1. ζ ′2 := π0 ◦ ζ2 satisfies [im ζ ′2 : D2] 6= 0. The proposition now follows from

Theorem 4.7 (with k = 2).
Case 2. ζ ′2 satisfies [im ζ ′2 : D2] = 0. Then ζ ′′2 := π1 ◦ ζ2 satisfies [im ζ ′′2 : D2] 6= 0.
Case 2.1. ζ ′3 := π0 ◦ ζ3 satisfies [im ζ ′3 : D3] 6= 0. The proposition now follows from

Theorem 4.7 (with k = 3).
Case 2.2. ζ ′3 satisfies [im ζ ′3 : D3] = 0. Then ζ ′′3 := π1 ◦ ζ3 satisfies [im ζ ′′3 : D3] 6= 0

and so the proposition follows from Theorem 4.8 (with k = 2 and l = 3).
This completes the proof of the claim.

We now eliminate the exceptional cases (a) and (b) in the Claim. Indeed, if we
are in one of those cases then, in view of (i), we may assume that (S∗

1)
G 6= 0. If G is

primitive then by [17, Corollary 2.32 and Lemma 2.33] this implies that Op(G) 6= 1,

in which case Eλ±↓G is reducible for example by [17, Lemma 2.19]. In the imprimitive
case, G ≤ Ga,b for some a, b > 1 with ab = n. In view of (iii), we may assume that

a, b 6= 2, in which case (S∗
1)
Ga,b = 0 by Lemma 2.13, and so by the Claim, Eλ±↓Ga,b

is

reducible and so is Eλ±↓G. �

5. Imprimitive subgroups

In this section we analyze restrictions Eλ±↓G for imprimitive subgroups G ≤ An

and prove Theorems A, B and C.

5.1. Intransitive subgroups. In this subsection we deal with maximal intransitive
subgroups G ≤ An, i.e. subgroups of the form An−k,k. The following is easy to check.

Lemma 5.1. Let n ≥ 5, 1 < k ≤ n/2, and G = An−k,k. Then i1(G) = 2, i2(G) = 3,
i3(G) = 4 for k > 2, and i3(G) = 3 for k = 2.

Proposition 5.2. Let n ≥ 8 and exclude the case (n, p) = (8, 2). If λ ∈ PA
p (n),

G ≤ An is an intransitive subgroup and Eλ+↓G or Eλ−↓G is irreducible then one of the
following holds:

(i) G ≤ An−1.
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(ii) G ≤ An−2,2 and λ is JS.
(iii) p = 2 and λ = βn.

Proof. We may assume that G = An−k,k with 1 < k ≤ n/2, in which case the result
follows from Proposition 4.9 and Lemmas 2.12 and 5.1. �

The next result deals with the case k = 1 when p = 2 (for p > 2 the corresponding
result is known, see §5.2 below).

Theorem 5.3. Let p = 2 and λ ∈ PA
2 (n). Then Eλ±↓An−1

is irreducible if and only
if one of the following holds:

(i) λ is JS;
(ii) λ has exactly two normal nodes, λ1 = λ2 + 1 and λ1 is even.

Proof. If Eλ±↓An−1
is irreducible then Dλ↓Sn−1

has at most two composition factors
and if it has two composition factors, they are isomorphic and they do not split when
restricted to An−1. In particular λ has at most two normal nodes.

Case 1. λ is JS. Then Dλ↓Sn−1
is irreducible, and so Eλ±↓An−1

is irreducible.

Case 2. λ has two normal nodes. Let A := (1, λ1) and B := (2, λ2). If λA is
2-regular, then by Lemma 2.4, Dλ↓Sn−1

has two non-isomorphic composition factors,

so in this case Eλ±↓An−1
is not irreducible. So we may assume that λ1 = λ2 + 1. Let

µ = λB. Then [Dλ↓Sn−1
: Dµ] = 2 by Lemma 2.4.

Case 2.1. λ1 is odd. Notice that λ1 = µ1 = µ2 + 2 and µ1 + µ2 ≡ 0 (mod 4) .
Since λ ∈ PA

2 (n), it then follows that µ ∈ PA
2 (n− 1). So in this case Eλ±↓An−1

is not
irreducible.

Case 2.2. λ1 is even. In this case µ1+µ2 ≡ 2 (mod 4) , so µ 6∈ PA
2 (n−1). Moreover,

by Lemma 2.4
Dλ↓Sn−1

∼ Dµ
︸︷︷︸

soc

| . . .
︸︷︷︸

no Dµ

| Dµ
︸︷︷︸

head

.

Using Frobenius reciprocity, for any ν ∈ P2(n− 1), we have

dimHomAn−1(E
ν
(±),D

λ↓An−1
) = dimHomSn−1(E

ν
(±) ↑

Sn−1 ,Dλ↓Sn−1
)

Moreover, Eν± ↑Sn−1∼= Dν if ν ∈ PA
2 (n − 1), and Eν ↑Sn−1= Dν |Dν otherwise. So

soc(Dλ↓An−1
) ∼= (Eµ)⊕k for k ≤ 2. But λ ∈ PA

2 (n), so soc(Dλ↓An−1
) ∼= Eµ ⊕Eµ. By

Frobenius reciprocity again, we now conclude that Eµ ↑Sn−1= Dµ|Dµ is a submodule
of Dλ↓Sn−1

. Hence Dλ↓Sn−1
∼= Dµ|Dµ and Eλ±↓An−1

is irreducible. �

We now deal with the case k = 2 when p = 2 and λ is not basic spin (for p > 2 the
corresponding result is known, see §5.3 below).

Theorem 5.4. Let p = 2 and λ ∈ PA
2 (n) \ {βn}. Then Eλ±↓An−2,2

is irreducible if

and only if λ is JS, in which case Eλ±↓An−2
∼= E ẽ1−iẽiλ where i is the residue of (1, λ1).

Proof. If Eλ±↓An−2,2
is irreducible, then λ is JS by Proposition 5.2. Conversely, let λ

be JS. Note that h(λ) ≥ 2 and µ := ẽ1−iẽiλ = (λ1−1, λ2−1, λ3, λ4, . . .). In particular
µ1 + µ2 = λ1 + λ2 − 2 ≡ 2 (mod 4) and so µ 6∈ PA

2 (n − 2). Since λ is JS it follows
that Dλ↓Sn−1

∼= Dẽiλ by Lemma 2.4. Further εi(ẽiλ) = 0 and ε1−i(ẽiλ) = 2. So

Dλ↓Sn−2
∼ Dµ

︸︷︷︸

soc

| . . .
︸︷︷︸

no Dµ

| Dµ
︸︷︷︸

head

.
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Using Frobenius reciprocity as in the proof of Theorem 5.3, we deduce that Eµ ↑Sn−2=
Dµ|Dµ is a submodule of Dλ↓Sn−2

. Hence Dλ↓Sn−2
= Dµ|Dµ, so Eλ±↓An−2

is irre-
ducible. �

5.2. Proof of Theorem B. Suppose first that p > 2. By [20, Proposition 3.7]
(see also [4, Theorem 5.10]), Eλ±↓An−1

is irreducible if and only if λ is JS or λ has

two normal nodes of different residues. Under the assumption λ ∈ PA
p (n) this is

equivalent to the requirement that the two normal nodes have residues different from
0. On the other hand, if p = 2 then by Theorem 5.3, Eλ±↓An−1

is irreducible if and
only if λ is JS or λ has two normal nodes and λ1 = λ2 + 1 is even. It remains to
show that the latter condition holds if and only if λ has exactly two normal nodes of
residue 1. The ‘only-if’ part is clear. For the ‘if’ part, suppose that λ has exactly two
normal nodes of residue 1. Since the top removable node is always normal it follows
that λ1 is even. Since λ ∈ PA

2 (n) it then follows that λ1 = λ2 + 1.

5.3. Proof of Theorem C. If p > 2, the result is [20, Theorem 3.6]. If p = 2 use
Theorem 5.4.

5.4. Transitive imprimitive subgroups. In this section we begin to investigate
restrictions to the maximal transitive imprimitive subgroups G ≤ An, i.e. subgroups
of the form Ga,b with a, b ≥ 2 and n = ab.

Proposition 5.5. Let n = 2b ≥ 8, λ ∈ PA
p (n). Then Eλ±↓G2,b

are reducible.

Proof. For p > 3 this is known, see [20, Main Theorem]. For p = 2, this is clear since
G2,b has a non-trivial normal 2-subgroup, cf. [17, Lemma 2.19]. Let p = 3. It suffices

to prove that Dλ↓S2≀Sb has at least three composition factors. Let S(2b)
∼= S2×· · ·×S2

be the base subgroup, with generators g1, . . . , gb of order 2. The irreducible FS(2b)-

modules are of the form {L(δ1, . . . , δb) | δ1, . . . , δb ∈ {0, 1}} where L(δ1, . . . , δb) = F ·v
and grv = (−1)δrv for r = 1, . . . , b. Restriction of any irreducible F(S2 ≀ Sb)-module
to S(2b) is a direct sum of modules of the form L(δ1, . . . , δb) with fixed δ1 + · · · + δb.

So it suffices to prove that Dλ↓S
(2b)

has three composition factors L(δ1, . . . , δb) with

three different sums δ1 + · · · + δb. Note that D(3,1)↓S
(2b)

∼= L(0, 0) ⊕ L(0, 1) ⊕ L(1, 0)

and D(2,1,1)↓S
(2b)

∼= L(1, 1) ⊕ L(0, 1) ⊕ L(1, 0). Moreover, by Lemmas 2.2 and 2.6,

the restriction Dλ↓S4×S4
has a composition factor of the form L1 ⊠ L2 with L1, L2 ∈

{D(3,1),D(2,1,1)}. Hence Dλ↓S
(4,4,2b−4)

has a a composition factor of the form L1 ⊠

L2 ⊠ L(δ5, . . . , δb). Restricting this module to S(2b) yields composition factors of the

form L(η1, η2, η3, η4, δ5, . . . , δb) with fixed δ5, . . . , δb and at least three different sums
η1 + η2 + η3 + η4. �

Proposition 5.6. Let n = 2a with a ≥ 4. Let G = Ga,2 and λ ∈ PA
p (n). If Eλ+↓G

or Eλ−↓G is irreducible then p = 2 and λ has at most three normal nodes.

Proof. For p ≥ 5 the proposition holds by [20, Proposition 3.12]. So we may assume
that p = 2 or p = 3. Without loss of generality we assume that Eλ+↓G is irreducible.

Let p = 2. We may assume that λ has at least four normal nodes. Hence by
Lemma 2.4(v),

dimHomSn(M1, E(λ)) = dimEndSn−1(D
λ↓Sn−1

) ≥ 4
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Since M1 ∼ D0|S
∗
1 for example Theorem 2.9, it follows that dimHom(S∗

1 , E(λ)) ≥ 3.
So by Lemma 4.1,

dimHom(S∗
1↓An

, E+,+(λ)⊕ E−,−(λ)) ≥ 3.

But S∗
1 = D1 or S∗

1 = D1|D0, so there exist ζ, ζ ′ ∈ HomAn(S
∗
1↓An

, E+,+(λ)⊕E+,−(λ))
such that ζ|E1 and ζ ′|E1 are linearly independent.

On the other hand, by Lemma 2.13(i) there exists ψ ∈ HomAn(J (G), S∗
1↓An

) with
[imψ : E1] 6= 0. Note also that there exists ξ ∈ HomAn(J (G), E+,+(λ)⊕E+,−(λ)) with
im ξ ∼= E0. Note that ξ, ζ ◦ ψ and ζ ′ ◦ ψ are linearly independent which contradicts
Eλ+ being irreducible, due to Lemma 4.5.

If p = 3 then M2 ∼ M1|S
∗
2 by Theorem 2.8. Now, i1(G) = 1 < 2 = i2(G) imply

that there exists ψ ∈ HomSn(I(G),M2) with [imψ : D2] 6= 0.
Assume first that λ is not JS. Then by [19, Theorem 3.3] and [23, Lemmas 4.9,

4.11, 4.12] we have

dimHomSn(M2, E(λ)) = dimEndSn−2,2(D
λ↓Sn−2,2

)

≥ dimEndSn−1(D
λ↓Sn−1

) + 2

= dimHomSn(M1, E(λ)) + 2.

So from Lemma 4.1

dimHomAn(M2↓An
, E+,+(λ)⊕E+,−(λ)) ≥ dimHomAn(M1↓An

, E+,+(λ)⊕E+,−(λ))+2.

Since M2 ∼ S2|M1 by Theorem 2.8, we now deduce that there exist homomorphisms
ζ, ζ ′ ∈ HomAn(M2↓An

, E+,+(λ) ⊕ E+,−(λ)) whose restrictions to S2↓An
are linearly

independent. Let further ξ ∈ HomAn(J (G), E+,+(λ)⊕E+,−(λ)) with im ξ ∼= E0. Then

ξ, ζ ◦ ψ and ζ ′ ◦ ψ are linearly independent. This contradicts Eλ+ being irreducible,
due to Lemma 4.5.

Assume now that λ is JS. Since Eλ+↓G is irreducible, so is Eλ−↓G. In particular

Dλ↓Sn/2≀S2
has at most 2 composition factors. So by the classification of the irreducible

Sn/2 ≀ S2-modules, we have that Dλ↓Sn/2,n/2
has at most 4 composition factors. From

Lemma 3.5 we have that Dλ↓Sn/2
has at least 5 non-isomorphic composition factors,

leading to a contradiction.
�

Proposition 5.7. Let n ≥ 8 and exclude the case (n, p) = (8, 2). If λ ∈ PA
p (n),

a, b ≥ 2 with ab = n ≥ 8, and Eλ+↓Ga,b
or Eλ−↓Ga,b

is irreducible then p = 2 and one

of the following holds:

(i) b = 2 and λ has at most three normal nodes.
(ii) λ = βn.

Proof. By Propositions 5.5 and 5.6 we may assume that a, b ≥ 3. Now by Proposition
4.10, we may assume that we are in the cases (iv) or (v) of that proposition. Since
i2(Ga,b) = 2, the proposition follows by Lemma 2.13(ii). �

5.5. Restrictions to Ga,2 for p = 2. The goal of this subsection is to eliminate the
exceptional case which appears in Proposition 5.7(i).

Lemma 5.8. Let n = 2a ≥ 4, λ ∈ PA
2 (n) and G = Ga,2. If Eλ+↓G or Eλ−↓G

is irreducible then Dλ↓Sa≀S2 is either irreducible or it has exactly two composition
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factors which are isomorphic to each other. In particular, Dλ↓Sa has at most two
isomorphism classes of composition factors.

Proof. Note that Eλ+↓G is irreducible if and only if so is Eλ−↓G. Hence Dλ↓Sa≀S2 is

either irreducible or has exactly two composition factors. If Dλ↓Sa≀S2 is irreducible

then Dλ↓Sa,a is of the form Dµ
⊠Dµ or Dµ

⊠Dν ⊕ Dν
⊠Dµ, and so all composition

factors of Dλ↓Sa are isomorphic to Dµ or Dν .

Suppose that Dλ↓Sa≀S2 has two composition factors L+ and L−. We may assume

that L±↓G
∼= Eλ±↓G. Then, since (1, 2) ∈ Sa ≀ S2, we get

L−↓G
∼= Eλ−↓G

∼= (Eλ+↓G)
(1,2) ∼= (L+↓G)

(1,2) ∼= L
(1,2)
+ ↓G

∼= L+↓G.

As p = 2 = [Sa ≀ S2 : G], it now follows from Clifford theory that L+
∼= L−, and we

are done as in the previous paragraph. �

Combining Lemmas 5.8 and 3.7 allows us to assume that we are in one of the
exceptional cases of Lemma 3.7. The next lemma deals with the exceptional case (ii)
of Lemma 3.7.

Lemma 5.9. Let p = 2 | n ≥ 6 and λ = (βn−1, 1). Then Eλ±↓Gn/2,2
is reducible.

Proof. Assume that Eλ±↓Gn/2,2
is irreducible. On the other hand, by [17, Theorem

A], Dλ↓Sn/2≀S2
is reducible. By Lemma 5.8, we conclude that in the Grothendieck

group we have either

[Dλ↓Sn/2,n/2
] = 2[Dµ

⊠Dν ] + 2[Dν
⊠Dµ]

for some distinct µ, ν ∈ P2(n/2) or

[Dλ↓Sn/2,n/2
] = 2[Dµ

⊠Dµ]

for some µ ∈ P2(n/2). For n ≤ 10, using [11, Tables], one checks that neither of
these ever happens. Let now n ≥ 12. It is easy to see by repeatedly applying Lemma
2.4 that Dβn/2 and D(βn/2−1,1) are composition factors of Dλ↓Sn/2

. So

[Dλ↓Sn/2,n/2
] = 2[Dβn/2 ⊠D(βn/2−1,1)] + 2[D(βn/2−1,1) ⊠Dβn/2 ].

In particular

dimDλ = 4dimDβn/2 dimD(βn/2−1,1). (5.10)

For any m, let 〈m〉 be a basic spin representation and 〈m− 1, 1〉 be a second basic
spin representation of Sm in characteristic 0. From [2, Theorem 1.2] we have that

Dβm is a composition factor of 〈m〉 and that D(βm−1,1) is a composition factor of
〈m − 1, 1〉, provided βm and (βm−1, 1) are 2-regular. This leads to a contradiction
with (5.10) using [27, Tables III and IV]. �

The next result, whose proof is similar to that of [17, Lemma 7.20], treats the
exceptional case (iii) of Lemma 3.7.

Lemma 5.11. Let p = 2, n ≥ 24, n ≡ 0 (mod 8) and λ = (n/4 + 3, n/4 + 1, n/4 −
1, n/4− 3). Then Eλ±↓Gn/2,2

is reducible.
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Proof. Assume that Eλ±↓Gn/2,2
is irreducible. Let

µ := (n/8 + 3, n/8 + 1, n/8 − 1, n/8− 3),

ν := (n/8 + 2, n/8 + 1, n/8 − 1, n/8− 2).

By Lemma 3.1 or [17, Lemma 3.14], Dµ and Dν are composition factors of Dλ↓Sn/2
.

It then follows from Lemma 5.8 that all composition factors of Dλ↓Sn/2,n/2
are of the

form Dµ
⊠Dν or Dν

⊠Dµ.
Let

π := (n/8 + 2, n/8 + 1, n/8, n/8 − 1),

ψ := (n/8 + 1, n/8, n/8 − 1, n/8 − 2).

By [7, Lemma 1.11], we have that Dπ
⊠Dψ is a composition factor of Dλ↓Sn/2+2,n/2−2

.

As ν = ẽ2i π, by Lemma 2.4, we have that Dν
⊠ 1S1,1 ⊠Dψ is a composition factor of

Dλ↓Sn/2,1,1,n/2−2
. So Dψ is a composition factor of Dµ↓Sn/2−2

, which contradicts [17,

Lemma 3.7]. �

The next two lemmas deal with the exceptional case (v) of Lemma 3.7.

Lemma 5.12. Let p = 2, n ≥ 24, n ≡ 0 (mod 8) , and λ = (n/4 + 2, n/4 + 1, n/4 −
1, n/4− 2) then Eλ±↓Gn/2,2

is reducible.

Proof. Assume that Eλ±↓Gn/2,2
is irreducible. Let

µ := (n/8 + 2, n/8 + 1, n/8 − 1, n/8− 2),

ν := (n/8 + 3, n/8 + 1, n/8 − 1, n/8− 3).

By Lemmas 5.8 and 3.8(i), all composition factors of Dλ↓Sn/2,n/2
are of the form

Dµ
⊠ Dν or Dν

⊠Dµ. Let π := (n/8 + 3, n/8 + 1, n/8 − 1, n/8 − 2). From Lemma
3.8(iv), Dπ is a composition factor of Dλ↓Sn/2+1

. In particular there exists ψ ∈

P2(n/2−1) such that Dπ
⊠Dψ is a composition factor of Dλ↓Sn/2+1,n/2−1

. Restricting

this module to Sn/2,1,n/2−1 we have by Lemma 2.4 that Dµ
⊠ 1S1 ⊠ Dψ and Dν

⊠

1S1⊠D
ψ are composition factors of Dλ↓Sn/2,1,n/2−1

. In particular Dψ is a composition

factor of Dµ↓Sn/2−1
and Dν↓Sn/2−1

. Since ν is JS, Lemma 2.4 gives that ψ = (n/8 +

2, n/8+1, n/8−1, n/8−3), contradicting Dµ↓Sn/2−1
also having a composition factor

isomorphic to Dψ, again using Lemma 2.4. �

Lemma 5.13. Let p = 2, n ≥ 20, n ≡ 4 (mod 8) , and λ = (n/4 + 2, n/4 + 1, n/4 −
1, n/4− 2). Then Eλ±↓Gn/2,2

is reducible.

Proof. Assume that Eλ±↓Gn/2,2
is irreducible. Let

µ := (n/8 + 5/2, n/8 + 1/2, n/8 − 1/2, n/8 − 5/2),

ν := (n/8 + 3/2, n/8 + 1/2, n/8 − 1/2, n/8 − 3/2).

By Lemmas 5.8 and 3.8(iii), in the Grothendieck group we have for some a ∈ Z>0:

[Dλ↓Sn/2,n/2
] = a[Dµ

⊠Dν ] + a[Dν
⊠Dµ]. (5.14)
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In particular, all composition factors of Dλ↓Sn/2
are of the form Dµ or Dν . It follows

using Lemma 2.4 that all composition factors of Dλ↓Sn/2+1
are of the form Dκ with

ẽiκ = µ or ν for some i. Since any composition factor of Dλ↓Sk for any k ≤ n is
indexed by a partition with at most 4 rows (for example by [17, Lemma 3.7]), it then
follows that any composition factor of Dλ↓Sn/2+1

is of the form Dπ or Dψ, where

π := (n/8 + 5/2, n/8 + 3/2, n/8 − 1/2, n/8 − 5/2),

ψ := (n/8 + 5/2, n/8 + 1/2, n/8 − 1/2, n/8 − 3/2).

Then, in the Grothendieck group,

[Dλ↓Sn/2+1,n/2−1
] = [Dπ

⊠M ] + [Dψ
⊠N ],

for certain modules M,N of Sn/2−1. Comparing this to (5.14) and using Lemma 2.4,
we deduce

[Dλ↓Sn/2,1,n/2−1
] = 2[Dµ

⊠ 1S1 ⊠M ] + 2[Dµ
⊠ 1S1 ⊠N ] + [Dν

⊠ 1S1 ⊠N ]

= a[Dµ
⊠ 1S1 ⊠Dν↓Sn/2−1

] + a[Dν
⊠ 1S1 ⊠Dµ↓Sn/2−1

].

Notice that from Lemma 2.4, Dµ↓Sn/2−1
∼= Dγ ⊕Dδ with

γ := (n/8 + 5/2, n/8 + 1/2, n/8 − 3/2, n/8 − 5/2),

δ := (n/8 + 3/2, n/8 + 1/2, n/8 − 1/2, n/8 − 5/2).

In particular Dµ
⊠1S1⊠D

γ is a composition factor of Dλ↓Sn/2,1,n/2−1
and then Dγ is a

composition factor of Dν↓Sn/2−1
, which contradicts Lemma 2.4 by a block argument.

�

Proposition 5.15. Let p = 2 | n ≥ 10 and λ ∈ PA
2 (n). If Eλ±↓Gn/2,2

is irreducible

then λ = βn.

Proof. By Lemma 5.8, we may also assume thatDλ↓Sn/2
has at most two isomorphism

classes of composition factors. So by Lemma 3.7, we may assume that we are in one
of the exceptional cases (i)-(vi) of that lemma. The case (i) does not need to be
considered since this is the case λ = βn. In the cases (iv) and (vi), λ has four
normal nodes, so we can exclude them by Proposition 5.7. The case (ii) is treated
in Lemma 5.9, the case (iii) is treated in Lemma 5.11, and the case (v) is treated in
Lemmas 5.12 and 5.13. �

5.6. Proof of Theorem A. For p > 3 the result follows from [20, Main Theorem].
So we may assume that p = 3 or 2. In view of the exceptions (i) and (iv) in Theorem A,
we may assume that G is imprimitive and λ 6= βn if p = 2.

The theorem is easily checked for n = 5, 6, 7. Indeed, in view of Theorems B and
C, we may assume that G is one of the following: G2,3, G3,2,A4,3. Moreover, we
only have to consider the cases where either p = 2 and λ = (3, 2, 1) or p = 3 and
λ = (4, 12) or (4, 2, 1). In the exceptional cases the restriction Eλ±↓G are reducible

since
√

|G| ≤ dimEλ±.

The case (n, p) = (8, 2) is also easy since in this case λ ∈ PA
2 (8) \{β8} implies λ =

(4, 3, 1) and dimEλ± = 20 and G is contained in one of {A7,A6,2,A5,3,A4,4, G2,4, G4,2}.
The case G ≤ A7 is covered by the exceptional case (ii)(b) of Theorem A. The case
G ≤ A6,2 is excluded by Theorem 5.4. The cases G ≤ A5,3, G ≤ A4,4 and G ≤ G2,4
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are excluded since then
√

|G| < dimE
(4,3,1)
± . The case G ≤ G4,2 is excluded by

Lemma 5.9. From now we assume that (n, p) 6= (8, 2).
If G is intransitive then G ≤ An−k,k for some 1 ≤ k ≤ n/2. By Proposition 5.2, we

may assume that either k = 1, or k = 2 and λ is JS. It remains to apply Theorem B.
If G is transitive then G ≤ Ga,b for some a, b > 1 with ab = n. By Proposition 5.7,

we may assume that p = 2 = b (and λ has at most three normal nodes). Now, we
apply Proposition 5.15.

6. Basic spin case

In this section, we assume that p = 2. Recall e.g. from [27] that

dimDβn =

{
2(n−2)/2 if n is even,

2(n−1)/2 if n is odd.
(6.1)

Moreover, βn ∈ PA
2 (n) if and only n 6≡ 2 (mod 4) (although we consider a general n

in this section).

6.1. Restricting basic spin module to intransitive subgroups.

Lemma 6.2. Let ν = (n1, . . . , nh) be a composition of n with n1, . . . , nh > 1, and
D = Dλ1 ⊠ · · · ⊠Dλh be an irreducible FSν-module. Then D↓Aν

splits if and only if

λr ∈ PA
2 (nr) for all r = 1, . . . , h.

Proof. Suppose λr ∈ PA
2 (nr) for all r = 1, . . . , h. Then the number of composition

factors of D↓An1×···×Anh
is 2h. On the other hand An1×· · ·×Anh

is a normal subgroup

of Aν of index 2h−1, so D↓Aν
must have at least two composition factors.

Conversely, suppose that λr 6∈ PA
2 (nr) for some r. Without loss of generality, we

may assume that λ1 ∈ PA
2 (n1), . . . , λs ∈ PA

2 (ns) and λs+1 6∈ PA
2 (ns+1), . . . , λh 6∈

PA
2 (nh) for some 0 ≤ s < h. Then

D↓An1×···×Anh
=

⊕

ε1,...εs∈{+,−}

Eλ1ε1 ⊠ · · · ⊠ Eλsεs ⊠ Eλs+1 ⊠ · · ·⊠ Eλh .

So any submodule of D↓An1×···×Anh
is the direct sum of some of the summands in

the right hand side. But if one such summand lies in an FAν-submodule of D↓Aν

then all of them do (this can be seen by conjugating with elements of Aν having odd
components in some of the first s positions and, if necessary, an odd component in
one of the remaining positions). �

Proposition 6.3. Let n ≥ 5, ν = (n1, . . . , nh) be a composition of n with h > 1.

Then Eβn(±)↓Aν
is irreducible if and only if one of the following conditions holds:

(1) n ≡ 0 (mod 4) , h = 3, nr ≡ 2 (mod 4) for exactly one r, and the other two
parts of ν are odd;

(2) n ≡ 0 (mod 4) , h = 2, and n1, n2 are both odd;
(3) n 6≡ 2 (mod 4) , h = 2, and nr ≡ 2 (mod 4) for at least one r.

Proof. We may assume that n 6≡ 2 (mod 4) , since otherwise Eβn = Dβn↓An
, and

by [17, Theorem C], Aν ≤ An−k,k with n − k and k odd, in which case Eβn↓A(n−k,k)

is reducible by Lemma 6.2, hence Eβn↓Aν
is also reducible.
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All composition factors of Dβn↓Sν are isomorphic to Dβn1 ⊠ · · · ⊠ Dβnh , and by
dimensions, we have

[Dβn↓Sν : Dβn1 ⊠ · · ·⊠Dβnh ] = 2⌊
n−1
2

⌋−⌊
n1−1

2
⌋−···−⌊

nh−1

2
⌋. (6.4)

If the last expression is greater than 2, we must have that Eβn± ↓Aν
is reducible. So

we may assume that it is at most 2, which leaves us with the following cases:

(a) h = 4 and all nr’s are odd;
(b) h = 3 and nr is even for at most one r;
(c) h = 2.

In the case (a) the restriction Eβn± ↓Aν
is reducible, since by (6.4), we have that

Dβn↓Sν has two composition factors, and these split when restricted to Aν by Lemma
6.2.

In the case (b) Dβn↓Sν has exactly two composition factors by (6.4). Suppose first

that nr 6≡ 2 (mod 4) for all r. In this case Eβn± ↓Aν
is reducible by the argument

as in the previous paragraph. Without loss of generality we may then assume that
n1 ≡ 2 (mod 4) and that n2 and n3 are odd. In this case (Dβn1 ⊠Dβn2 ⊠Dβn3 )↓Aν

does not split by Lemma 6.2. So Dβn↓Aν
has exactly two composition factors and

then Eβn± ↓Aν
is irreducible.

In the case (c) assume first that both n1 and n2 are odd. Then Dβn↓Sν is irre-

ducible by (6.4). So Dβn↓Aν has at most two composition factors and then Eβn± ↓Aν
is irreducible. So we may assume that at least one of n1, n2 is even. In this case
Dβn↓Sν has exactly two composition factors by (6.4). If n1, n2 6≡ 2 (mod 4) then

(Dβn1 ⊠Dβn2 )↓Aν
splits by Lemma 6.2 and so Eβn± ↓Aν is reducible. Otherwise we may

assume without loss of generality that n1 ≡ 2 (mod 4) . In this case (Dβn1 ⊠Dβn2 )↓Aν

does not split by Lemma 6.2. So Dβn↓Aν
has exactly two composition factors and

then Eβn± ↓Aν
is irreducible. �

6.2. Restricting basic spin module to transitive imprimitive subgroups.
Throughout this subsection, a, b ∈ Z≥2 with ab = n. We investigate when the restric-

tion Eβn± ↓Ga,b
is irreducible.

A special role will be played by the irreducible F(Sa ≀ Sb)-modules of the form
Dµ ≀Dν for µ ∈ P2(a) and ν ∈ P2(b). As a vector space, Dµ ≀Dν = (Dµ)⊗b ⊗Dν ,
and the action on v1 ⊗ · · · ⊗ vb ⊗ w ∈ (Dµ)⊗b ⊗Dν is determined from the following
requirements: (g1, . . . , gb) ∈ Sa × · · · × Sa acts as

(g1, . . . , gb) · (v1 ⊗ · · · ⊗ vb ⊗w) = (g1v1)⊗ · · · ⊗ (gbvb)⊗ w,

and h ∈ Sb acts as

h · (v1 ⊗ · · · ⊗ vb ⊗ w) = vh−1(1) ⊗ · · · ⊗ vh−1(b) ⊗ hw.

Lemma 6.5. All composition factors of the restriction Dβn↓Sa≀Sb are of the form

Dβa ≀Dβb, and

[Dβn↓Sa≀Sb : D
βa ≀Dβb] =







2b/2 if a is even and b is even,

2(b−1)/2 if a is even and b is odd,
1 if a is odd.
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Proof. The first statement is established in the course of proving [17, Lemma 7.19].
The second one follows by dimensions taking into account that dimDβa ≀ Dβb =
dimDβb(dimDβa)b. �

Proposition 6.6. Suppose that n 6≡ 2 (mod 4) . The restriction Eβn± ↓Ga,b
is irre-

ducible if and only if one of the following conditions holds:

(i) a is odd;
(ii) a ≡ 2 (mod 4) and b = 2.

Proof. We consider the following cases.
Case 1. a is odd. Then b 6≡ 2 (mod 4) . By Lemma 6.5, we have that Dβn↓Sa≀Sb

∼=

Dβa ≀ Dβb . Since Dβn splits and Ga,b is an index 2 subgroup of Sa ≀ Sb, it follows

that Dβa ≀ Dβb↓Ga,b
is a direct sum of two irreducible modules and so Eβn± ↓Ga,b

is

irreducible, giving case (i).
Case 2. a is even and b is even. As Ga,b is an index 2 subgroup of Sa ≀ Sb,

by Lemma 6.5, we may assume that b = 2, in which case we have [Dβn↓Sn/2≀S2
:

Dβa ≀Dβ2 ] = 2. Note that Dβ2 ∼= 1S2 .
Case 2.1. a ≡ 2 (mod 4) . In this case Dβa↓Aa

is irreducible, so the restriction

(Dβa ≀Dβ2)↓Aa×Aa
∼= Dβa ⊠Dβa is irreducible. Hence (Dβa ≀Dβ2)↓Ga,2

is irreducible,

as Aa × Aa ≤ Ga,2. It follows that E
βn
± ↓Ga,2

is irreducible, giving case (ii).

Case 2.2. a ≡ 0 (mod 4) . We claim that in this case Eβn± ↓Ga,2
is reducible. To

prove this it suffices to show that (Dβa ≀ Dβ2)↓Ga,2
is reducible. If (Dβa ≀ Dβ2)↓Ga,2

was irreducible, restricting further to the subgroup Aa ≀S2 ≤ Ga,2 would give at most

two composition factors, but we claim that (Dβa ≀Dβ2)↓Aa≀S2
has three. To see this,

note that

(Dβa ≀Dβ2)↓Aa×Aa
∼= Eβa+ ⊠ Eβa+ ⊕ Eβa− ⊠ Eβa− ⊕ Eβa+ ⊠ Eβa− ⊕ Eβa− ⊠ Eβa+ .

It now follows from the classification of irreducible modules over wreath products that

(Dβa ≀Dβ2)↓Aa≀S2
has composition factors E+, E−, E such that E±↓Aa×Aa

∼= Eβa± ⊠Eβa± ,

and E↓Aa×Aa
∼= Eβa+ ⊠ Eβa− ⊕ Eβa− ⊠ Eβa+ .

Case 3. a is even and b is odd. In this case by the assumption n 6≡ 2 (mod 4)
we have a ≡ 0 (mod 4) . As Ga,b is an index 2 subgroup of Sa ≀ Sb, by Lemma 6.5,

we may assume that b = 3, in which case we have [Dβn↓Sa≀S3 : Dβa ≀ Dβ3 ] = 2. We

claim that in this case Eβn± ↓Ga,b
is reducible. To prove this it suffices to show that

(Dβa ≀Dβ3)↓Ga,3
is reducible. For that note first that

Aa × Aa × Aa ✂ Aa,a,a ✂Ga,3

and that [Aa,a,a : Aa × Aa × Aa] = 4 and [Ga,3 : Aa,a,a] = 6. Also note that Dβ3 has

dimension 2, and Dβa↓Aa
splits since a ≡ 0 (mod 4) , so

(Dβa ≀Dβ3)↓Aa×Aa×Aa
∼=

⊕

ε1,ε2,ε3∈{+,−}

(Eβaε1 ⊠ Eβaε2 ⊠ Eβaε3 )
⊕2.

In particular (Dβa ≀Dβ3)↓Aa×Aa×Aa
has 16 composition factors all of the same dimen-

sion.
If (Dβa ≀Dβ3)↓Ga,3

was irreducible, then (Dβa ≀Dβ3)↓Aa,a,a
would have k composition

factors all of the same dimensions with k | 6. From the previous paragraph it then
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follows that there exists l | 4 such that the restriction of any of these k composition
factors has l composition factors. In particular kl = 16, which leads to a contradiction,
since k | 6 and l | 4. �

We consider the case n ≡ 2 (mod 4) for completeness, even though it is not needed
for the proof of the mains theorems.

Proposition 6.7. Let n ≡ 2 (mod 4) . Then Eβn↓Ga,b
is irreducible if and only of a

is odd.

Proof. If a is even then even Dβn↓Sa≀Sb is reducible by [17, Theorem C], so we may

assume that a is odd. Then by [17, Theorem C] again, Dβn↓Sa≀Sb
∼= Dβa ≀Dβb , and

we claim that (Dβa ≀Dβb)↓Ga,b
is irreducible. As vector spaces we can write

Dβa ≀Dβb = (Dβa)⊗b ⊗Dβb =
⊕

ε1,...,εb∈{+,−}

Eβaε1 ⊗ · · · ⊗Eβaεb ⊗Eβb .

Note that the direct summand Eβa+ ⊗ · · · ⊗ Eβa+ ⊗ Eβb is invariant under the action

of the subgroup Aa ≀ Ab, and forms a submodule of (Dβa ≀ Dβb)↓Aa≀Ab
isomorphic to

Eβa+ ≀Eβb . Note that [(Dβa ≀Dβb)↓Aa≀Ab
: Eβa+ ≀ Eβb ] = 1.

If (Dβa ≀Dβb)↓Ga,b
is reducible, then restricting further to Aa ≀ Ab, the submodule

Eβa+ ⊗ · · · ⊗ Eβa+ ⊗ Eβb ∼= Eβa+ ≀ Eβb described in the previous paragraph, must lie in

a proper submodule V ⊆ (Dβa ≀Dβb)↓Ga,b
. Acting with elements of Aab with exactly

two odd components, we see that all the subspaces Eβaε1 ⊗ · · · ⊗Eβaεb ⊗Eβb with even
|{k | εk = −}| lie in V . Next, taking into account the fact that a is odd, there exists
an element of Ga,b ≤ Sa ≀ Sb with exactly one odd component in the base group Sab .

Acting with this element we see that all the remaining subspaces Eβaε1 ⊗· · ·⊗Eβaεb ⊗E
βb

also lie in V . Thus V = Dβa ≀Dβb giving a contradiction. �

6.3. Proof of Theorem D. We may assume that G is not primitive. If G is in-
transitive, then (up to conjugation) G is contained in a subgroup of the form An−k,k

for 1 ≤ k < n, and we can apply Proposition 6.3. If G is transitive then (up to
conjugation) G is contained in a subgroup of the form Ga,b for a, b ≥ 2 and n = ab.
In this case we apply Proposition 6.6.
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