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IRREDUCIBLE RESTRICTIONS OF REPRESENTATIONS OF
ALTERNATING GROUPS IN SMALL CHARACTERISTICS:
REDUCTION THEOREMS

ALEXANDER KLESHCHEV, LUCIA MOROTTI, AND PHAM HUU TIEP

ABSTRACT. We study irreducible restrictions from modules over alternating groups
to subgroups. We get reduction results which substantially restrict the classes of
subgroups and modules for which this is possible. This is known when the char-
acteristic of the ground field is greater than 3, but the small characteristics cases
require a substantially more delicate analysis and new ideas. In view of our earlier
work on symmetric groups we may consider only the restriction of irreducible mod-
ules over alternating groups which do not extend to symmetric groups. This work
fits into the Aschbacher-Scott program on maximal subgroups of finite classical
groups.

1. INTRODUCTION

Let F be an algebraically closed field of characteristic p > 0. Denote by A,, the
alternating group on n letters. We always assume that n > 5. In this paper we are
concerned with the following problem

Problem 1 (Irreducible Restriction Problem for Alternating Groups). Clas-
sify the subgroups G < A, and FA,-modules V' of dimension greater than 1 such that
the restriction V]q is irreducible.

This is a special case of the general Irreducible Restriction Problem where we
have an arbitrary almost quasi-simple group in place of A,,. A major application of
the Irreducible Restriction Problem is to the Aschbacher-Scott program on maximal
subgroups of finite classical groups, see [1,6,13,22,26] for more details on this. For
the purposes of the applications to the Aschbacher-Scott program we may assume that
G is also almost quasi-simple, but we will not be making this additional assumption.

For the case p = 0, Problem 1 has been solved by Saxl [25]. Let us assume from
now on that p > 0. Indeed, it is the positive characteristic case which is important
for the Aschbacher-Scott program. For p > 3, Problem 1 is solved in [20]. It is
important to extend this to the case of characteristics 2 and 3. However, there are
formidable technical obstacles which make the small characteristics cases much more
complicated. The most serious difficulty is that the submodule structure of certain
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important permutation modules over symmetric groups gets very complicated for
p = 2 and 3. This in turn necessitates a rather detailed study of branching for
symmetric groups.

Let V be an irreducible FA,-module. If V lifts to the symmetric group S,, then
the problem reduces to the Irreducible Restriction Problem for Symmetric Groups,
which is studied in [7], where the problem is completely solved for p > 3, and [17],
where reduction theorems are obtained for the small characteristics cases. So in this
paper we are concerned mostly with the case where V' does not lift to S,,, and prove
major reduction theorems for that case. These reduction theorems, together with the
ones in [17], will play a key role in our future work [18], which will complete the
solution of the Irreducible Restriction Problem for both S,, and A,, (and G a maximal
subgroup) in all characteristics.

To formulate our main result we recall some facts about irreducible representations
of symmetric and alternating groups referring the reader to the main body of the paper
for more details. The irreducible FS,-modules are labeled by the p-regular partitions
of n. If X is such a partition, we denote by D* the corresponding irreducible FS,,-
module. We refer the reader to [16, §11.1] for the definitions of combinatorial notions
of a residue of a node and of a normal node.

It is known that D)‘¢SW1 is irreducible if and only if A is in the explicitly defined
class of Jantzen-Seitz (or JS) partitions which go back to [12,14]. There is a special
irreducible FS,-module in characteristic 2 called the basic spin module DP».

We denote by L@ﬁ(n) the set of all p-regular partitions of n such that D], is
reducible. If X € L@ﬁ(n) we have DA, = E2 & EX for irreducible FA,-modules
E} % EA. The set of partitions L@ﬁ(n) is well understood—if p = 2 it is described
explicitly in [2] while for p > 2 these are exactly the partitions which are fixed by the
Mullineux bijection, see [3,9,24].

We formulate our main results for all characteristics, although they are only new
for p =2 and 3:

Theorem A. Letn > 5, X € L@ﬁ(n) and G < A,. If EX|q is irreducible then one
of the following statements holds.
(i) G is primitive.
(il) G < A,—1, and either
(a) X is JS, or
(b) A has exactly two normal nodes, both of residue different from 0.
(ili) G < Ap—22 and X is JS.
(iv) p=2,n#2 (mod 4) and A = 3,.
The exceptional case (i) in Theorem A will be treated in [18], and the exceptional

cases (ii), (iii), (iv) are addressed in Theorems B, C, D, respectively.

Theorem B. Letn > 5, A € e@lf‘(n). Then E}|p,
of the following statements holds.
(a) A is JS.

(b) A has exactly two normal nodes, both of residue different from 0.

, 18 irreducible if and only if one

We point out that the irreducible restrictions of the form EiiAn,1 for p > 2 have
been classified in [4, Theorem 5.10], see also [20, Proposition 3.7]. For p = 2 partial
information is available in [4, Theorem 6.5 and Proposition 6.6], but Theorem B
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says more. The irreducible restrictions EiLAWM for p > 2 have been classified
in [20, Theorem 3.6], but for p = 2 the following theorem is new.

Theorem C. Letn > 5 and A € @ﬁ(n). If p = 2, assume in addition that A # 5y.
Then the following are equivalent:
(1) EiiAn,m is irreducible;
(i) EXda, , is irreducible;
(i) A ds JS.
The case A = f3,,, excluded in Theorems A(iv) and C, is handled in the following
theorem (note that the condition n # 2 (mod 4) is equivalent to 3, € 225 (n)).

Theorem D. Let p =2, n # 2 (mod 4) and G < A,,. If Ei"iG is trreducible then
one of the following statements holds.
(i) G is primitive.
(i) G < Ap_gj for some 1 <k <n, and either n =0 (mod 4) and k is odd, or
k=2 (mod 4). Moreover, in all of these cases Ei”L‘LAnfk,k is 1rreducible.
(i) G < (Sa 1Sp) N A, for a,b > 1 with n = ab, and either a is odd or
a = 2 (mod4) and b = 2. Moreover, in all of these cases Eii(sazsb)ﬁAn
15 1rreducible.

Theorems A, B, C, D are proved in §§ 5.6, 5.2, 5.3, 6.3 respectively.

2. PRELIMINARIES

2.1. Groups and modules. Throughout the paper we work over a fixed alge-
braically closed ground field F of characteristic p > 0. We do not yet assume that
p = 2 or 3 but will do this when necessary.

For a group G, we denote by 1 the trivial FG-module. For an FG-module V,
we denote by V& the set of G-invariant vectors in V. If Ly,..., L, are irreducible
FG-modules, we denote by Li|- - -|L, a uniserial FG-module with composition factors
Lq,..., L, listed from socle to head. If V' is an FG-module, we use the notation

VgL1|...|La @D K1|“‘|Kb

to indicate that V is isomorphic to a direct sum of the uniserial modules L] - - |Lg,
..., K1| -+ |Kp. On the other hand, if V4,...,V, are any FG-modules, we write
Ve~V |V,

to indicate that V has a filtration with subquotients V1, ..., V, listed from bottom to
top. We use the notation

V"’Vl""’Va DD Wl""’Wb

to indicate that V=X & --- @Y for X ~ Ly|---|Lg, ..., Y ~ Ki|---|K}.

For an odd element o € S,, and an FA,-module V, we denote by V7 the FA,-
module which is V as a vector space with the twisted action ¢ - v = ogo v for
g € A,,v € V. If G is a subgroup of S,, (resp. A,,), we consider the induced modules

Z(G) == 11> (resp. J(G) := 1g1"").
For G < A, we have Z(G)l, = J(G) ® J(G)°.
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For a composition o = (u1,...,p,) of n and positive integers a, b with ab = n, we
have the subgroups
Su::Sulx"'XSur§5n7 SGZSbSSm
AL =S, NA, <A, Gap = (Sa1Sp) NAn < An.

2.2. Partitions. We denote by &(n) the set of all partitions of n and by Z,(n)
the set of all p-regular partitions of n, see [11, 10.1]. We identify a partition A\ =
(A1, A2, ...) with its Young diagram {(r,s) € Zso X Z=¢ | s < A+}. The number of
non-zero parts of a partition A is denoted by h(\). The following partition will play
a special role in this paper:

8, = (n/24+1,n/2-1) if n is even,
"o (n+1)/2,(n—1)/2) if n is odd.
We denote by A — A" the Mullineuz bijection on Z,(n), see [3,9,24]. If p = 2,
the Mullineux bijection is the identity map.
For partitions pu' = (u,...,pp ) € P(ny),...,puk = (,u'f,...,uﬁk) € Z(ng), we
define the composition

(2.1)

(/’1/17"’7/'1/k) = (M%?"'?M}L17"'7ulf7”'7M’I?Lk)
of ny + -+ + ng. For a partition A = (A1,...,Ap) of n, we now define its double

dbl(A) := (Bays---5Bn,)-
Following [2], we set
PN (n) == Py(n) N {dbI(\) | A € Pa(n), A\, Z2 (mod 4) for 1 <7 < h(N)}.
On the other hand, if p > 2, we set
PR(n) ={r € Py(n) | A= \"}

Lemma 2.2. Suppose that n > 5 and \ € L@I/)\(n). Then h(\) > 3 unless p = 2,
n# 2 (mod 4) and A = B,.

Proof. For p = 2 this is clear from the definition. For p > 2 the result is contained
in [20, Lemma 1.8(i)]. O

Let I := Z/pZ identified with {0,1,...,p — 1}. Given a node A = (r,s) in row
r and column s, we consider its residue res A := s —r (mod p) € I. Let i € I and
A€ P(n). Anode A € X (resp. B ¢ \) is called i-removable (resp. i-addable) for \ if
res A =i and Ay := A\ {A} (resp. AP := AU {B}) is a Young diagram of a partition.
We refer the reader to [16, §11.1] for the definition of i-normal, i-conormal, i-good,
and i-cogood nodes for A. We denote

g;(A) := #{i-normal nodes for A\}, ;(\) := #{i-conormal nodes for \}.

If £;(A) > 0, let A be the i-good node of A and set €A := Aa. If ;(A) > 0, let B be
the i-cogood node for A and set fi\ := AB. Then é;\ and f;\ are p-regular, whenever
A is so.

We call X € &,(n) a JS partition if X has only one normal node, equivalently
> icr€i(A) = 1. We will need the following technical result on JS partitions for p = 3:

Lemma 2.3. Let A € 24 (n) be a JS partition. Then one of the following holds:
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) AM>X4+9, A3>7 M < (n—|—2)/2 andn24h()\)

) M X+T7>A3410, A4 > 6, A+ < (n—|—8)/2, h(/\)26cmdn26h(/\)

))\1>)\2—|—4>)\3—|—8 M4, M+ < (n—|—8)/2 h( )>6andn26h(/\).

(iv) X is one of the following: (1), (4,1%), (7,3,2), (10,42), (13,6,5), (7,3,2,1),
(10,42,1), (13,6,5,1), (10,6,32,12), (13,6,5,4,12), (13,9,5,4,3,2,1).

Proof. Let < (;0 Zk > be the Mullineux symbol of A, and let A(© = X\, AW \K)
0 .- k

be obtained by recursively removing the 3-rim. From [5, Theorem 4.1] we have that

(ak > = ( 1 > and that for 0 < j < k:
Tk 1
o f aj+1 ) _ [ 6c+1 aj \ _ [ 6(c+1)—1
”f<rj+1>_<3c+1>then<rj “\ 3+ )
o if aji1 _ 6c—1 or ajy1 _ 6¢c then a; _ 6¢
rit1 3¢ T4l 3¢ r; 3c
a; . 6c+1
] o 3c+1
Note in particular that h(\) = rg is of the form 3c or 3¢+ 1 for some ¢ > 0.
Claim 1: if h()\) is of the form 3¢ or 3c + 1 then n > 2ch(\).

. B 6i—5\ [ 6(G—1)+1 6j — 1
Indeed, if h(\) = 3¢ then < 35— 2 > = < 3 — 1) +1 and 3 appear as

column of the Mullineux symbol for each 1 < j < e¢. So

or

n=ag+---+ap>» (6j—5+6j—1)=06¢"=2ch()),
j=1
while if A(A) = 3¢+ 1 then similarly

C
n>6c+ 1+ (6§ —5+6j—1)=06¢"+6c+1>2ch()).
j=1

Claim 2: if n > 42 then n > 6h(\).

Indeed, if ¢ > 3 then n > 6A(\) by Claim 1, so we may assume that ¢ < 2, in which
case h(A) < 7 and if n > 42 then n > 6h(A).

The next two claims are easy to see.

Claim 3: If/\gj) > )\gj) +3>...> /\,(%) +3(m — 1) for some 1 < j <k and m > 2
then A9V = 2UZD > A0 AU for all 1< 5 < m.

Claim 4: AV > A9 forall 1 < j <k and 1> 1.

Claim 5: if h(AY9)) > 3¢ and )\() .+)\(J < (IA9)] +b)/2 for some 1 < j <k,
¢ € Zso and b € Z, then A~V ...+A§J < (AU-D] +b)/2.

Indeed, using the fact that h(A\0)) = r; and A" =\, we deduce that aj_; > 6¢c. So
AT A <A 4 D 430 < (IAD)] + 6 + b) /2
= (IAUY] —aj_y + 6c+b)/2 < (]ATY] +b)/2.
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Claim 6: if 1 < j < k, |A\U)| > 42 and \Y9) satisfies (i) (resp. (ii), resp. (iii)), then
so does \.

We provide the proof for the condition (i), the conditions (i) and (iii) are treated
similarly. The condition A1 > Ao + 9 is deduced using Claim 3 with m = 2. The
condition A3 > 7 comes from Claim 4. The condition A\; < (n + 2)/2 comes from
Claim 5 with ¢ =1 and b = 2 since A3 > 7 of course implies h(A) > 3. The condition
n > 4h(\) comes from Claim 2.

For n < 42 the lemma holds by inspection (the exceptional cases are listed in part
(iv)). Assume that n > 42. Pick j maximal such that |AU)| > 42. Then |AU+D| < 42
and by inspection again we see that (i), (ii) or (iii) holds for AY). The proof is
completed using Claim 6. d

2.3. Irreducible modules over symmetric and alternating groups. We use
James’ notation {D* | A € &,(n)} for the set of the irreducible FS,-modules up to
isomorphism, see [11, §11]. For example, D™ = 15 . By [12] and [14], D*|g | is
irreducible if and only if A is JS. The following much more general result is contained
in [16, Theorems 11.2.10] and [15, Theorem 1.4].

Lemma 2.4. Let A € Zy(n), i € I and r € Z>g. Then:

(i) e7 D> = (eZ(T)DA)eBr!;

(ii) eszA # 0 if and only if r < &;(N\), in which case eszA s a self-dual
indecomposable module with socle and head both isomorphic to D™,

(iii) [e” D> : DFA = (50) = dimEnds,,_, (" DY);

(iv) if D* is a composition factor of eET)D)‘ then €;(p) < g;(\) — r, with equality
holding if and only if p = €} \;

(v) dimEnds, ,(DMs, ) =Y, (N).

(vi) Let A be a removable node of A such that \a is p-reqular. Then D> is
a composition factor of e;D* if and only if A is i-normal, in which case
[e;D* : D ] is one more than the number of i-normal nodes for X\ above A.

To describe the irreducible FA,-modules, let us first suppose that p = 2. For
A € P5(n), by [2, Theorem 1.1], we have D], is irreducible if and only if A\ ¢
2} (n). In this case, we denote E* = D*| . On the other hand, if A € &5 (n), then
DM\ = E} @ E? for irreducible FA,-modules E} % EA. Moreover

{BY [ X e Pa(n)\ 25 ()} U{EL | X € 25(n)}

is a complete set of irreducible FA,-modules up to isomorphism.

Now, let p > 2. We denote by sgn the sign module over S,. Then by [9] (see
also [3]), we have D* ® sgn = D' and E* := DM, & DAMLAn is irreducible if and
only if X £ M If A=\ ie X € QZZ’?‘(n), we have D*|p = E2 @ E? for irreducible
FA,,-modules Ej‘_ % EX. By Clifford theory,

{BY [ X € Zp(n)\ 2 ()} U{EL | X € Zp(n)}

is a complete set of irreducible FA,-modules, and E* = E\" for \ € Pp(n) \ L@‘? (n)
are the only non-trivial isomorphisms among these.
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For any p we now have that (F})7 = Ej‘t foro €S, \A, and X € e@lf‘(n). It follows
that if G = 0Go~! is a subgroup of A,, then Eﬁ‘rig is irreducible if and only if E* |,
is irreducible. For example, this applies to the subgroups of the form A, and G .

Lemma 2.5. Let V be an FS,,-module, W be an FA,,-module and . € e@p(n)\@ﬁ(n).
(i) If there is ¢ € Homs, (W15, V) such that [im) : DM # 0 then there exists

¢ € Homp,(W,V]a, ) such that im¢)’ : EF] # 0.
(ii) If there is 1 € Homs, (V,W1>") such that [im : D*] # 0 then there exists

Y € Homp, (Via,, W) such that [imy' : E*] # 0.

Proof. We prove (i), the proof of (ii) being similar. Since WTS"lAn 2 W W, there
exists 1) as required or there exists ¢ € Homa, (W7, V|, ) such that [im¢” : E#]
0. In the second case, twisting 1" with o yields the required 1. O

Lemma 2.6. Let n > 8, A € &y(n), and Sy x Sy < Sg < S,, be natural subgroups.
Then D)‘is4xs4 has a composition factor of the form D* X DY with dim D* > 1 and
dim D” > 1, unless X\ or \* belongs to {(n),(n —1,1)}.

Proof. If n = 8 this is an easy explicit check. Now the result follows by induction
using [21, Proposition 2.3]. d

2.4. Some special permutation modules. For a 2-row partition (n—k, k), we use
the special notation
Sp = SRR and My = MMk,
(when it is clear what n is). If (n — k, k) € &2,(n), we also denote
Dy := D" 5K and B = Dila,, -

By Lemma 2.2, we almost always have (n—k, k) ¢ #;}(n), in which case Ej, = E(n=kk)
is irreducible.

Let 0 <k <n/2and G <S,. We denote by i;(G) the number of G-orbits on €.
Note that

ir(G) = dim M = dim Homs,, (Z(G), My,). (2.7)

We will need the following information on the structure of some special permutation
modules.

Theorem 2.8. [17, Lemmas 4.3, 4.4, 4.5] Let p =3 and n > 6. Then
M1 ~ Do’Sik and M2 ~ ]\41’532k

Further
(i) If n =0 (mod 3) then Mz ~ S5 @& ((Do & S7)|S5).
(i) If n=1 (mod 3) then Mz ~ ST @ ((Do & S3)|5%).
(iii) If n =2 (mod 3) then Mz ~ M3|Sj.

Theorem 2.9. [17, Lemmas 4.6, 4.7, 4.9] Let p =2 and n > 7. Then M; ~ Dy|S7.
Further

(i) If n =0 (mod 4) then
My ~ (Do ® S57)|S3  and Mz ~ My @ (53|53).
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(ii)) If n=1 (mod 4) then
My ~ Mq|S5 and Ms = My & S3.
(i) If n =2 (mod 4), then
My ~ (Do © ST)|S3 and Mgz ~ M;|S5]S3.
(iv) If n =3 (mod 4), then
My = My &S5 and Ms ~ Ms|S5.

Lemma 2.10. Let n > 5, and A € Z,(n) be such that dimD* > 1. Ifp = 2
assume further that X\ # B,. Then there exists (; € Homs, (My, Endg(D")) with
[im Cg : Dg] 75 0.

Proof. This follows from [17, Corollary 6.4] and [19, Lemma 3.8]. O

Lemma 2.11. Let n > 7, and X\ € Py(n) with h(\),h(\") > 3. Then there exists
Cg S Homsn (Mg,EndF(D)‘)) with [im Cg : Dg] 75 0.

Proof. This follows from [17, Corollaries 6.7, 6.10] and [7, Lemmas 3.1,3.2 and Corol-
lary 3.9]. O

2.5. Invariants. In this subsection we will compute some invariants (S;)“ for small
k. We use the standard basis v1,...,v, in M; and the corresponding elements
U1y... 0 € ST = M1 /(377 vj) so that {1,..., 0,1} is a basis of S}.

Let €2, be the set of all 2-element subsets of {1,...,n} . We use the standard basis
{va | A€ Qu} in My and write v; j = vy, jy for {7, j} € Q. It is easy to check that
S5 = My /K, where

K:zspan( Z VA, qum | 1 §z’§n>.
AEQ, i
Set 14 :=va+ K € My/K = S;. Then
{Z_JA|A€Qn_2}U{ﬁi7n_1|1§’i§n—3}

is a basis of 55, and

Vim = — Z Vi, (1 <z<n—3),
je[tn—1]\{s}
n—3
Un—2n—1 = — E vA — Z Vin—1,
AEQ,_o =1
n—3
Un—2n = E VA + Z Vin—1,
AEQ,_3 =1
2_}n—l,n = g VA.
AEQH72

Lemma 2.12. Let n > 5, 1 < k < n/2, and G = A,_jx. Then dim(S7)¢ =
dim(S3)% = 1, with the only exception (S3)4n—1 = 0.
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Proof. For ST this is an easy explicit check left to the reader. For S5, assume first
that £ = 1. Then, acting with A4,,_3, we deduce that z € (Sék )¢ must be of the form

xr=c Z UA“‘dZ'Uzn 2+ezvzn 1

AEQn 3

for ¢,d,e € F. Acting with (1,2)(n —2,n — 1) gives e = d and acting with (1,2)(n —
3,n —2) then gives ¢ = d = 0. The case k = 2 is handled similarly, giving e = 0 and
¢ = d, which gives a non-trivial invariant if ¢ = 1.

Let k > 2. Note that erank va € (S3)%. If k > 3, then acting with Ap_k k-3,

we deduce that = € (S3)“ must be of the form

r =a Z UA+b Z ZUZ,]+CZUZH 2+d Z Z UZ,]

AEQ, 1 j=n—k+1 i=1 i=n—k+1j=i+1
n—r
+e E Vi p— 2+f§ Vin—1+9 E Vjn—1
i=n—k+1 i=n—k+1

for some a,b,c,d,e, f,g € F. In view of the invariant already found, we may assume
that a = 0 and then prove that = 0. Acting with (1,2)(n — 1,n) we get f =g = 0.
Then acting with (1,2)(n —2,n — 1) we get ¢ = e = 0. In the case k = 3 we are done
since then the two remaining sums are empty, and we done. Otherwise, acting with
(1,2)(n —3,n —2) we get b=d =0. O

Lemma 2.13. Let G, < S, for n =ab > 6. Then:

(i) ifa,b > 2 then dim(S;)% b = 0, unlessp = b = 2 in which case dim(S})Cab #
0
(ii) if a,b > 3 then dim(S3)%eb = 1.

Proof. (i) is an easy explicit calculation similar to the proof of [17, Lemma 2.35].

(ii) For r = 1,...,b, we set B, = [(r — 1)a + 1,7ra]. For 1 < i # j < n we write
i~ jifi,j € B, for some r. Starting with the invariant vector v := ij v;; € M,
we express U :=v + K € 55 as

v=2 Z v+ Z (R
1<i<j<n-—a 1<i<j<n-—a
i~j i

which yields a non-zero vector in (S3)%et. Let now x € (S5)%b. Acting with
((Sa tSp-1) X Stn—at1,...n—3}) N A, and subtracting a multiple of v, we may assume
that

r =a Z Uzg+b Z ZU’LJ +szzn 2+dzvzn 1

1<i<j<n—a j=n—a+1 =1
i~g
n—3 n—3
+e E oA+ f E UVin—2+g E Uin—1-
AC[n—a+1,n—3] i=n—a+1 i=n—a+1

Acting with (1 2)(n —1,n), we get that d = g = 0. Acting with (1,2)(n —2,n — 1),
we get ¢ = f = If @ = 3, then the sums with coefficients b and e are empty.
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Otherwise, acting with (1,2)(n—3,n—2) yields b = e = 0. Now using the permutation
which swaps the last two blocks By and Bj_1 (possibly multiplied with (1,2)), we get
a=0. ]

3. BRANCHING LEMMAS

In this section we prove some technical lemmas on branching for symmetric groups.

3.1. Some special composition factors. In this subsection we prove some techni-
cal results concerning special composition factors in D)‘is,c-

Lemma 3.1. Let n,m € Zg, and \ = (a?l,...,azk) € Zy(n+m) with a; > ... >
ap >0 and by,..., by > 0. Set hy. :=b1+...4+ b, for 0 <r < k. Suppose that there is
1< j <k and a composition v = (v1,. .. sVh;) of n such that p = X\ —v is a p-reqular

partition of m and (A1, ..., Ap;) is JS. If
Uhy 2 =" 2V 2 Vhy 20 2 Vpyql 2" 2 Vpy 20 2 Vhy 41

and
Vh, < Vhp_y+1+D —br (for all 1 < r < j),

then D* is a composition factor of D g

m°

Proof. Inview of Lemma 2.4(v), it suffices to see that there exists a sequence Ay, ..., A,
of nodes such that A, is normal for A\\{A;,..., A,_1} and A\\{A,..., A, } is p-regular
forr=1,...n,and A\ {41,...,A,} = p. Such a sequence is obtained by removing
the nodes of A\ p in the ends of rows

hl,hl—1,...,1,h2,h2—1,...,h1—l—l,...,hj,...,hj_l—l-l

if there are any, then starting over in the row h; and proceeding in the same order
until all the nodes of A\ p are exhausted. O

Remark 3.2. For p = 2 the assumptions on v in Lemma 3.1 are equivalent to
v e P(n), and so Lemma 3.1 generalizes [17, Lemma 3.14].

Let p = 2. Then A € P5(n) is JS if and only if all its parts A, are of the same
parity. We now describe a procedure which assigns to every partition A\ € P5(n) a
JS-partition A\’ € Py(m) for m < n. If X is already JS then A’® will return X. We
begin by setting A! := A. For r > 1, as long as Ari1 > 0 define N1 as follows. If
Aq = Al (mod 2) then A" := A", If instead A7, ; # A7 (mod 2) let [ > r + 1 be

minimal such that A} > Aj + 1 or such that A 1= 0 and define

r+1 . r roA\T r r r
A .—( 17--- A T,_j’_l_l,...,Al_l’Al_l_l’ l+27---).

s A\

Let s be minimal with AJ,; = 0. Take AT = )\s,

Lemma 3.3. Let p = 2 and A\ € P5(n). Then \° is a 2-reqular JS partition of
m < n. Moreover, denoting h := h, we have:

(i) A = X if and only if X is JS.

(i) DX is a composition factor of D, .

(iti) A —AJS ) <2[(Nj — Njy1)/2] for each j > 1.

(iv) 0 <\ — )\j-s < j—1. In particular \p+1 < h.

(v) if k is maximal such that Aog_1 > 0 then |\ > (n + k)/2.
(vi) if )\;TLS >3 then Apa1 < 1 and if Apy1 = 1 then Ay is even.
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(vii) if \J® =2 and \j® | > 6 then A, < 3.
(viil) if \j® =1 and \J® | > 5 then A\, < 2.

Proof. Let A = A',...,A* = A\’ be as in the construction. Then for all r = 1,...,s,

we have that A" is 2-regular, (A\},...,\]) is JS. Moreover, to go from A" to A we

remove normal nodes on each step. So by Lemma 2.4, DN is a composition factor
of DATLSW, ) The statement that A\ is a 2-regular JS partition as well as (i) and

(ii) follow by induction, while (iv) holds by construction.

(iii) Notice that A;H - )\;ﬂ < A} — Alyp unless j =7 and A7 — A7, is odd, in
which case X7t — NIt = X7 — A7, 4+ 1.

(v) Using (iv) we have that \J® > \; —i+1 > A\g;_; for all i. So, by definition of ,

k
A = Z)\qu 2 Z)\%—l > Z()Qi—l + Ao +1)/2=(n+k)/2.
i i i=1

(vi) Note that AP = A% > 3 and Aj%, = 0. If some node had been removed from

row h + 1 of \ to obtain A" then AZH = )\Z — 1 > 2 and then )\;TEH > 1, leading to a

contradiction. So no node was removed from row h+1 of A and then )\;TEH = 0 implies

Ana1 < 1. Further if Ap11 = 1 then since )‘ijtil = 0 the node (h + 1,1) needs to be

removed on step h + 1 of the construction, so (A%, ... ,)\Z) is JS, while (A}, ... ,)\Z, 1)
is not. Hence A\ = /\}1‘ is even.
(vii) and (viii) are proved similarly to (vi). O

Lemma 3.4. Let n > 12 be even, p =2 and A\ € 2§ (n). Exclude the cases where \
is the double of one of the following partitions:
(11,1), (9,3), (9,5), (11,5), (11,7), (13,8,3), (13,9,4), (13,9,5,1), (15,11,5,1),
(15,11,7,1), (15,11,7,3), (17,13,9,3), (17,13,9,5), (19,15,11,7), (21,17,13,9,4),
(21,17,13,9,5,1), (23,19,15,11,7,1), (23,19,15,11,7,3), (25,21,17,13,9,5),
(29,25,21,17,13,9,5,1), (31,27,23,19,15,11,7,3).

Then [M®] > n/2 +5 and A3 | — N33 < 2 for each j > 1.

Proof. The inequalities )\55’_1 - )\gi < 2 come from the assumption that A € 24 (n)
and Lemma 3.3(iii).
If h(\) > 17 then |A3| > n/2 + 5 by Lemma 3.3(v). Moreover, by Lemma 3.3(iv),
h(\)
n— A8 < ) (- 1) = h(A)(R(N) - 1)/2.
i=1
So the lemma holds if h(\)(h(A\) —1)/2 < n/2—5. So we may assume that h(\) < 16
and h(A\)(h(X\) —1)/2 > n/2 — 5. This leaves only a finite number of partitions to be
considered. For these it can be checked, using GAP [10], that |[A7%| > n/2+ 5, unless
we are in one of the exceptional cases. O

3.2. Non-isomorphic composition factors. In this subsection we obtain various
technical results which guarantee the presence of several non-isomorphic composition
factors in the restriction D/\isk'
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Lemma 3.5. Let p = 3, n be even and A € 2L\(n) be a JS partition with X # (4,1,1).
Then D)‘Lsn/2 has at least 5 non-isomorphic composition factors.

Proof. By Lemma 2.3, X is belongs to one of the families (i)-(iv) of that lemma. By
the assumptions the only partitions from the family (iv) that need to be considered
are (7,3,2), (10,4%), (13,6,5), (10,6,32,12) and (13,6,5,4,12). For A\ = (7,3,2) the
lemma can be checked using [11, Tables| and branching in characteristic 0. For the
remaining ones, the lemma can be proved using Lemma 3.1. So we may assume that

we are in one of the cases (i), (i), (iii) of Lemma 2.3. Let A = (a%', ..., abm) with
ai > ...> ay, >0 and all b; > 0. Define h; := b1—|—...+b

Set AV := A and then recursively define X' := (A\7! — )\;L(;Z 1y~ 1). By
Lemma 3.1, DV is a composition factor of D’\isw_‘ for all 4. Let k& maximal such
that [A\¥| > n/2. Let v := A — A¥. For any composition o = (az,...,qp,, ) define
Q= (Quyyee s Qs Qs ey, 41), and let v = v + (17/2-IVI). Note that
v € P(n/2). By Lemma 3.1, DX is a composition factor of DA|g wype We will
now construct v/ ,v® and apply the same lemma to see that DA~ v ,D)‘_V " are

distinct composmon factors of D’\isn e

Case 1. X is as in case (i) of Lemma 2.3. Note that by = 1 and k£ > 2 since
n/2 > 2h()\). Now, k > 2 and A3 > 7 imply vi,vd, v > 2. As A\ < n/2+1 we
have A} — 14 <n/2+1—2 < n/2, 80 Ay —vd > 0. We write ' in the ‘canonical’

— di2 d .
form v! = (611,612 ,01133,...) with ¢11 > ¢12 > ¢13 > ... and d;; > 0, and
— —= . . — dio d
then proceed to define v2,...,15 in the ‘canonical’ form v* = (¢, 2122,62133,...)

recurrently according to the cases.

Casel.1l. dig >2o0rcip=cy 3—1—1 For 1 < i < 5 define v*T! recurrently by setting

I dio—1 d . . . .
vitl = (¢ +1, ciff JCia—1,¢ 133,0Z %', ...) (this form is not necessarily ‘canonical’,

so we might have to rewrite into the ‘canonical’ form before the next recurrent step).

Case 1.2. dip =1, c12 > c13 + 1, and either of the following conditions holds:
di3 > 2, c13 = c14+ 1. In this case let v? =yl +( 1 0,0,...), v3 = 12 +
(1,0,—-1,0,0,...), v*:= 3 +(1,0,0,—-1,0,0,...) and v° := v* +( ,—1,0,0,...).

Case 1.3. dip = diz =1, c12 > c13+1 > ci4+ 2. In this case let V2=
v+ (1,-1,0,0,...), v3 == v2 4+ (1,0,-1,0,0,...), v* := v3 + (1,-1,0,0,...) and
v =v*+(1,0,-1,0,0,...).

Case 2. \is as in case (ii) or (iii) of Lemma 2.3. Then b; = by = 1, and since n/2 >
3h(A), we have k > 3. Now, h(\) > 6, Ay > 4 and k > 3 imply that vy, ve,v3,14 > 3.

As A\ 4+ A2 < n/2+ 4 it then follows that A3 — 1/% > 0. We will be writing Vi in the

. — dig d .
‘canonical’ form v* = (¢;1,¢i2,c i3 ,02244, o) with ¢1 > ¢i2 > ¢i3 > ¢iqa > ... and

all di,j > 0.
Case 2.1. dy3>2o0rci3=ciq+ 1. For 1 <i <5 define

d;3—1 di 5 .
W’—{ (Ci1+1 Ci,2, 223 ,Ci,3 — 17624 ,CZ% ,) lf/\l—Ci,l—lz/\Q—C@g,

37 1 4 .
(czl,c,2+1,cl ,Ci3 — 1,6214,6215“’,...) ifAM —c1—1<X—cpo

Case 2.2. di3 =1, c13 > c14 + 1, and either of the following conditions holds:
dig > 2, c14 = c15+ 1. In this case let v? := v! +(1,0,-1,0,0,...), v® := v? +
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(1,0,0,—1,0,0,...), v* := v3+(1,0,0,0,—1,0,0,...) and ° := v*4(1,0,-1,0,0,...)
if Ay — Ao >5or 5 :=v*+(0,1,-1,0,0,...) if A\; — Ao = 4.

Case 23. di3 = dia =1, c13 > cia+1 > c15+ 2. In this case let V2
vt +(1,0,-1,0,0,...), v* := v? + (1,0,0,-1,0,0,...), v* :== 3 + (1,0,-1,0,0,.
and v° :=v* 4+ (1,0,0,—1,0,0,...) if A — Ay > 5 or /% := v 4+ (0,1,0 — 1,0,0,. )
A — Ao = 4.

I:I:h\_/ |

Lemma 3.6. Let p = 2, A\ € P5(n) be a JS-partition and 5 < k < n/2. Then
DAiSn, . has at least three non-isomorphic composition factors, unless possibly one of
the following holds:

e A= (n)

e n is even and A = (n — 1,1),

e n is even and A = (n/2+2 n/2—2),

e n is even and A = (n/2+1,n/2 — 1),

e nis odd and A= ((n+1)/2,(n —3)/2,1),

e n=0 (mod 3) and A= (n/3+2,n/3,n/3 —2),

e n>14 withn=2 (mod 3), A\=((n—2)/3+4,(n—2)/3,(n—2)/3—2) and
k=1 (mod 3),

en>19withn=1 (mod 3), A= ((n+2)/3+2,(n+2)/3,(n+2)/3—4) and
k=2 (mod 3),

e h(A) =3, Mi=X+2, \a>N3+4 and k =5,
en>22withn=4(mod6), \=(n—-1)/3+2,(n—1)/3,(n —1)/3 —2,1)
and k # 0 (mod 3),

o )\ = ()\1,)\1 —2,)\1 —4,)\4) and k = 5,

e n>20 withn=0 (mod4) and A= (n/4+3,n/4+1,n/4—1,n/4—3).
Proof. Let A\° := X and then recursively define M/ := ()\{_1 ,...,A?L()\lj iy~ 1).
Note that M\ is JS. Let a; := |M| — n + k. Since |N| —a; =n —k > n/2, we have
n > 2(n —|M|+a;). Moreover, |N|/2 <n/2 <n—k=|N|—a; implies a; < |M|/2.
There is a unique i with 5 < a; < h(\*) + 4.

By Lemma 3.1, DV is a composition factor of D’\isw_‘, so it suffices to show that

for some j such that |AM7| > n — k there exist distinct composition factors D*, DV, D™
of DV ls, .- We always assume that we are not in one of the excluded cases. We will
repeatedly apply Lemma 3.1 without referring to it. We denote by d,, the composition
(0,...,0,1,0,...,0) with 1 in the mth position.

Case 1. a; < h()\Y). Then, using the fact that a; > 5, we can take p = A — §; —

"—5[12., l/:)\i—251—52—"'—5ai_1, andw:)\i—251—252—53—---—5%_2
Case 2. a; = h(\) +1 > 6. Then we can take p = \' — 2§, — 6 — +++ — §4,_1,
I/:/\i—251—252—53—"'—5%_2 andw:)\i—351—252—53—---—5%_3.
Case 3. a; = h(\Y) +2 > 7. Then we can take u = A" — 267 — 269 — 03 — - - — §4,_2,
I/:/\i—251—252—253—54—"'—5%_3 and7r:/\i—351—252—53—---—5%_3.
Case 4. a; = h(\))+3 > 8. Then we can take 1 = \'—28; —209—203— 84— - - — 34,3,
I/:/\i—351—252—253—54—"'—5%_4 and7r:/\i—351—252—53—---—5%_3.
Case 5. a; = h(\")+4 > 9. Then we can take 1 = \'—26; —265—203— 254 — 05— - - —
5%._4, vV = /\i—351—352—253—54—' . '—5[12._5 and 7w = )\i—351—252—253—54—' . '—5[12._4

Case 6. h(A\Y) < 4. Note that |A\!| > n/2+5 > 10.
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Case 6.1. h()\") = 1. By assumption A # (n), (n — 1,1). Since X is JS, there exists
0<j<i—2with )M = ()\{,2). From j < i we have that a; > a; = 5. So we can take
p=—(a;j—2),v=( —(a;—1),1) and m = (A] —a;,2) (notice that ] —a; > 2
since n — k >n/2 > 5).

Case 6.2. h(A\") = 2. In this case a; = 5 or 6.

Case 6.2.1. X\, = 1. Then i > 1 and so X'~ = (\{ + 1,2), since A # (n — 1,1) is
JS. So we can take u = (A} — (a; — 1)), v = (A} —a;,1) and 7 = (A} — (a; + 1), 2).

Case 6.2.2. X} = 2. Then we can take u = (A} — (a; —2)), v = (XY — (a; — 1),1)
and T = (\} — a;,2).

Case 6.2.3. A\, > 3 and A} > A\5+6. Then we can take u = (X —[a; /2], \o—|ai/2]),
v=(—[ai/2] = 1,0y — [ai/2] + 1) and 7 = (A} — [a;/2] — 2,0 — [ai/2] +2).

Case 6.2.4. X}, > 3 and A} = A, +4 (note that we cannot have A} = A, + 5 since \*
is JS). Let p = (A} — [a;/2], A5 — |a;/2]), v = (A} — [a;/2] — 1, M5 — |a;/2] +1). To
get the third composition factor, note that by assumption A # (n/2 +2,n/2 — 2), so
there exists 0 < j < 4 with M = (M, A} —4,1). In particular n > |\’| + 3 > 13 and
then n — k > 7. Now we take 7 = (A — 2 — [(a; — 2)/2],A] — 4 — [(a; — 2)/2],1)
(note that X — 4 — [(a; — 2)/2| > 1 since 20X —4 — [(a; —2)/2]) +3=n—k > 7).

Case 6.2.5. A\, > 3 and A} = A +2. We can take p = (X — [a;/2],\5 — [ai/2]).
To get two more composition factors, note that since A # (n/2+1,n/2 — 1), ((n +
1)/2,(n —3)/2,1) is JS, we have that i > 2 and there exists 0 < j < i — 2 with M =
(M, A —2,2). In this case n > 2(n—|A"|+a;) > 22 and so n—k > 11. So we can take
v= ()‘{_ Ra’j—l)/z—‘ﬂ)‘]l _2._ I_(a’j_l)/2J7 1) and 7 = ()‘{_ (CLj/Q—‘,)\]l—2— La’j/2J72)
(note that a; > a; > 5 and ] —2—|a;/2] > 2 since 2(X] —2—|a;/2|)+5 > n—k > 11).

Case 6.3. h(\!) = 3. In this case 5 < a; < 7.

Case 6.3.1. \; =1 and A} > X\, + 6. Then we can take p = (XY — [(a; —1)/2], A} —
[(ai—1)/2)), v = (N — [(ai-+1)/2], X — (s — 3)/2]) and 7 = (A} — [(ai+3)/2], A —
[(ai = 5)/2]). ‘ ‘ ‘

Case 6.3.2. \; = 1 and X! = A\l + 4. Notice that A} is odd in this case. If A\{ > 9
then A5 —|(a;—2)/2] > XY —4—2 > 1. If \{ < 7then \* = (7,3,1) and a; = 5 and then
Ao — | (a; —2)/2] > 1 again. So we can take u = (A} — [(a; —1)/2], Ny — | (a; — 1)/2)),
v = (N = [(ai+1)/2], My~ [(a—3)/2]) and 7 = (X, — [(as+2)/2], o [(a;~2) /2], 1).

Case 6.3.3. A} = 1 and X! = A\ + 2. Since [A| > 10 and X\’ is JS, we have
A > 7 and so Ay > 5. We can take p = (A — [(a; — 1)/2], 2% — [(a; — 1)/2)),
v =\ — [a;/2],\5 — |ai/2],1). To get the third composition factor, note that
since A # ((n + 1)/3,(n — 3)/2,1), we have i > 1 and A=} = (A\Y + 1,\} — 1,2).
If XY > 9 then A5 — |(a; +1)/2] > A} —2 —4 > 2. In this case we can take T =
(M~ [+ 1)/2], 3 — [(00+1)/2),2) = 4~ (a3 +8)/2], X~ [(a-+3)/2), 3.
If \i =7 then n > |A\"!| =16 and a;_1 > 8. It then follows that A = \"! = (8,6,2)
and k = 8. Notice first D®32) that is a composition factor of D(8’6’2)¢Sg. From
[11, Tables] we have that [D(*32)] = [§(432)] — [S®D]. Using branching rule in
characteristic 0 and [11, Tables], it then follows that D3 D63 and D62 gre
composition factors of D(8’6’2)¢58

Case 6.3.4. N, > 2, X\t > X, +4 and a; = 5. In this case we can take p =
(A —20 =208 — 1), v =\ —3,\5 — 1,A\, — 1) and m = (A} — 4,2\, — 1,)\%).
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Case 6.3.5. /\g > 2, /\’i > /\é + 4 and a; = 6. In this case we can take p =
A —=2,05 —2,0 —2), v =] —3,X, — 2,05 —1) and m = (XY — 4,05 — 1, M\ —1).
Case 6.3.6. A\, > 2, XY > M\, + 6 and a; = 7. In this case we can take yu =
(A =30 — 2,08 —2), v =] —4,05 — 2,05 — 1) and m = (A} — 5,2\ — 1,\; — 1).
Case 6.3.7. )\i > 2, /\i = /\é + 4, )\i > /\i + 4 and a; = 7. In this case we can take
= (A} =3\, -2 Ag 2), v (/\Z 4 Ay —2, M5 —1) and m = (A] =3, \5 =3, A5 — 1).

Case 6.38. A, > 2, AN =X +4, Ay = A, +2and q; = 7. If h(\) = 3 then
A= ((n— 2)/3+4 (n— 2)/3 (n— 2)/3 2) (and n =2 (mod 3) and n > 14 since A\g >
A, >2)and k=a; +3i =1 (mod 3), which is one of the excluded cases. Else there
exists j < i with M = (A, A\ —4,A] —6,1). If \{ > 10 then M| = Xe +i—5 > 10+i—j
and a; = a;+3(i—j)+1 = 8+3(z— ) so that we can take 1 = (A —3, A} —2, A} —2),

:()\11_4,)\12_2’/\73 )andﬂ-_(/\jl _( )7>‘{ - ( )7)‘{_8_(1_])71)

If A} <9 then X = (8,4,2) or \' = (9,5,3). Since n < 2(n — k) = 2(]\!| — a;) and
n > |M| > |X¥| + 4, this leads to a contradiction.

Case 6.3.9. A, > 2, A} = A5 +2, Ay > N\, +4, a; = 5 and h(\) = 3. In this case
i > 1, as otherwise we are in one of the excluded cases. Further A} > )\, + 6, since
elsen=1(mod3), A= ((n+2)/3+2,(n+2)/3,(n+2)/3—4) and k =a; +3i =
5+ 3i = 2 (mod 3) (this is one of the excluded cases, since A3 > A} > 2, so that
n > 19). So we can take p = (XY — 2,05 — 2,05 — 1), v = (A} — 3,\5 — 2, %) and

= (\L =3, 0, =3, N, 4+ 1) = (Nt —4 XS4 ),

Case 6.3.10. X, > 2, A} = X5 +2, X, > A\, +4, a; =5 and h(\) > 4. In
this case there exists 0 < j < i with M = ()\{,)\%,)\g, 1). For this j we have that
aj = a; +3(i —j)+1 =3(G—j)+6. We can take u = (A} — 2,\) — 2, X} — 1),
v=(\ =3 —2 X)) and m = (M — (i—5) =3, M, — (i — ) — 3, \, — (i — ), 1) (notice
that M, =X\, +i—j>1i—j+2).

Case 6.3.11. A, > 2, \i = A\, +2, Ay > M\, +4 and a; = 6. Then we can take

=\ = 2,05 =20 —2), v =(\] —3,A, —2,A5 — 1) and m = (A — 3, A5 — 3, \%).

Case 6.3.12. X, > 2, XY = A, +2, A\, > A\, +4 and a; = 7. Then we can take

=N =3, — 2,05 —2), v =\ = 3,05 —3,\, — 1) and m = (A} — 4, A, — 3, )\%).

Case 6.3.13. X§ > 2, XY = A, +2, A} = A\, + 2. Then h()\) > 4, as otherwise we
are in one of the excluded cases. So there exists 0 < j < i with A = (M, A, A}, 1)
MM — 2,0 —4,1). If Ay =2 then N[ =12 and n/2 <n—k = [X| —a; <
So n — |/\Z| < 2 < h(XNY) and then A = )\, contradicting h()\) > 4 and h(\') =
If Ay = 3 then || = 15 and n/2 < n—k = |\ — a; < 10, so that n < 20. So
n — |\ <5 and then i = j + 1 = 1. This contradicts A being JS. So A} > 4. Then
N =X, +i—j+4>i—j+8. Further a; = a; + 3(i — j) + 1.

Case 6.3.13.1. a; = 5. Then we can take u = (N — (i — j) — 2,X — (i — j) —
AN — (i =) =5),v=NM~(—j) —3M — (i —j) —4X — (i —j) —51) and
772()‘{_(2'_].)_2))‘] (Z_j)_4>)‘{_(i_j)_6>1)‘

Case 6.3.13.2. @a; = 6. In this case j > 1, as otherwise, being A > X\, > 4
and A} odd, it follows that n > 22 with n = 4 (mod 6), A = ((n — 1)/3 + 2,(n —
1)/3,(n—1)/3—2,1) and k = a; +3i+1 =3i+7 =1 (mod 3). We have that \~! =
(M 4+1,M —1,M —3,2) (since \ is a JS-partition) and a;_; = a;+4 = 3(i—j)+11. If

¢ =4 then |\| =18 and n/2 < n—k = |\|—a; = 12, so that n < 24. Since 1 < j < i
we obtain |M~!| > |\{| + 8 > n, leading to a contradiction. So A > 5 (and then

w N
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N > i—549). In this case we can take p = (X —(i—j)—2, X —(i—j)—4, )\{—(z’—_j)—ﬁ),
v=ON—(i—j)—=3,X —(i—j)—4,X —(i—7)—6,1) and 7 = ()\] (i—7)—3,X —(i—
])_57>\{ ( )_ ’ ) (/\]1_1_(’5'_]') 47)‘j 1 ( ) 47)‘j ' ('_j)_g”)‘gl_l)'

Case 6.3.133. a; = 7. In this case j > 1, as otherwise, being \, > N > 4
and A} odd, it follows that n > 22 with n = 4 (mod 6), A = ((n — 1)/3 + 2, (n —
1)/3,(n—1)/3—-2,1) and k = a; +3i+1 = 3i+7 =2 (mod 3). We have that \~! =
(A]+1,X] —1,X] —3,2) (since A is a JS-partition) and a;_1 = a;+4 = 3(i—j)+12. If
Ay =4 then |\'| = 18 and n/2 < n—k = |\!|—a; = 11, so that n < 22. Since 1 < j < i
we obtain [M 71| > |\f|+8 > n, leading to a contradiction. If \; = 5 then |\!| = 21 and
n < 28. In this case |\~ > |/\Z| +8 > n, again leading to a contradlctlon So N, > 6
(and then X] > i— j+10). We can take y1 = (N = (=) =3, N —(i—j)—4, X —(i— 7)—6),
v=ON—(i—j)=3,X —(i—j)—5,X —(i—j)— 6 1) and 7 = ()\] (i—§)—3,X —(i—
N=5M—==7)=7,2) = M7 =(i—5) =4, X = (i—j)—4, M —(i— J)—ax),

Case 6.4. h(\') = 4. In this case 5 < a; < 8.

Case 6.4.1. a; = 5. Then we can take u = (A} — 2,05 — 1,A\, — 1,\) — 1), v =
(NG — 2,05 — 2,08 — 1, )%).

Case 6.4.1.1. X! > X} +4. Then we can take m = (A} — 3,\} — 1 )\’ 1,A%).

Case 6.4.1.2. A} > A} + 4. Then we can take m = (A} — 3, )\2 )

Case 6.4.1.3. X! = \)+2 A = ,+2and h(A) =4. Ifi =0 then /\ X = (NG, N —
2, )\ﬁ—4, )\i) and k = a; = 5, which is one of the excluded cases. So we can assume that
i>1. If A3 =X +2thenn=0 (mod 4) and A = (n/4+3,n/4+1,n/4—1,n/4—3),
which is also an excluded case. So we can also assume that A3 > A4+2. In this case we
can take 7 = (A] =2, \] =4, AN} =6, N0 +1) = (A1 —i—2,Aa—i—2,A\3—i—2, Ay —i+1).

Case 6.4.1.4. N} = X, +2, Ay = A\, + 2 and h(\) > 5. In this case there exists
0<j<iwithX = (M, X, X, M, 1) = (Ni4i—j, X +i—j—2, Xi fi—j—4, X +i— 4, 1).

Case 6.4.1.4.1. \} > 3. Then X} > i—j+3, so we can take 7 = (\] —2,\] —4, X! —
5))‘51_171) = ()‘{ _(i_j) _27/\% _(i_j) _27/\%_(2._].) _17/\31_(2._].) _17/\%)'

Case 6.4.1.4.2. X = 2. Then we can take m = (\] — 3,\] —4,\] —5,\|1) =
()‘{ - (2 - .7) - 37/\% - (2 - .7) - 27/\]3 - (Z - ]) - 1>>‘ZL - (Z - ])a/\%) (nOtice that
AL > N+ 6 since \ is JS).

Case 6.4.1.43. \; = 1. If \i = 1 and A\Y = 7 then \* = (7,5,3,1) and then
|A{| = 16. In this case n < 22. Since X is JS, we have that j < i — 2, so that
n > |M| > |\ + 9 = 25, leading to a contradiction. So XY > 9 and then we can take
T=A =3 N =4 X =6, X, +1,1) = (M —(i—j) =3, —(i—j) =2, —(i—j) —
2,M — (i —J) + 1,A3).

Case 6.4.2. a; = 6. Then we can take u = (A} — 2,25 — 2, M5 — 1,\} — 1) and

= (N} — 3,05 — 2,05 — 1,\%).

Case 6.4.2.1. \} > )\’ + 4. We can take 7 = (XY — 4, A5 — 1, M — 1, \%).

Case 6.4.2.2. Ny > X\ +4. We can take m = (A} — 3, ) — 3, A5, \Y).

Case 6.4.2.3. )\é > )\Z + 4. We can take m = (XY — 2, Ay — 2.\ — 2, \)).

Case 6.4.2.4. N} = Xy +2, Ay = M\, +2 and \; = A\ +2. Then X' = (X, \] —
2,\i — 4, A} —6) with \{ > 7. If h(\) = 4 then n = 0 (mod 4) and X\ = (n/4 +
3,n/4+1,n/4 —1,n/4 — 3), which is one of the excluded cases. So we can assume
that there exists 0 < j < i with M = (M, X —2, X —4, M —6,1). If \} > 9 we can take
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=N =2, X =4 X6 X =T, 1) = (M —(i—j) =2, N, — (=) =2, X, — (i—5) =2, X, —
(i—7)—1,A). If 7 < X < 8 then X = (7,5,3,1) or \' = (8,6,4,2) and then n < 28,
so that A = (9,7,5,3,1) and k = 11 (since h(\) > 5, n — k = |\!| — a; and k < n/2).
In this case notice first that D®43:2.1) ig a composition factor of D(9’7’5’3’1)¢515. Since
D6A321) o §6G:4321) ysing branching rule in characteristic 0 and decomposition
matrices, we can see that D(977’573’1)¢51 , has more than 3 composition factors.

Case 6.43. a; = 7. Then we can take u = (XY — 2,2} — 2, A5 —2,\) — 1) and
v=(\ =3, -2, 2 — 1\, —1).

Case 6.4.3.1. X! > A\, +4. We can take m = (XY —4,\) — 2,5 — 1, \}

Case 6.4.3.2. A, > A\{ +4. We can take m = (XY — 3, Ay — 3, \§ — 1, \]).

Case 6.4.3.3. A, > X} +4. We can take m = (XY — 3, A5 — 2, A — 2, \)).

Case 6.434. X = X, +2, X, = Ay +2 and Ay = A} +2. Then X' = (A}, \] —
2,\] —4,\] — 6) with A} > 7. Again we can assume that there exists 0 < j < i with
N o=\, N — 2,')\{ —4,M — 6, 1) If X >9 we can take m = ()\’1 -3, — 4,){ -
67)‘3_77” = ()\{—(i—j)—3,)\%—(i—j)—Q,)\%—(i—j)—Q,)\i—(i—j)—1,)\%). If
7 < X' < 8then X = (7,5,3,1) or \' = (8,6,4,2) and n < 26, so that A = (9,7,5,3,1)
and k = 12 (since h(\) > 5, n — k = |\| — a; and k < n/2). In this case notice first
that DG4321) i a composition factor of D(9’775’371)¢515. Since DG4:3:21) o §(5:4:3.2,1)
using branching rule in characteristic 0 and [11, Tables], we can see that D(977’573’1)¢513
has more than 3 composition factors.

Case 6.4.4. a; = 8 and \} > 2. Then we can take g = (A} —2, A\, —2, A\, —2,\} —2)
and v = (A — 3,05 — 2,0, — 2\ —1).

Case 6.4.4.1. N} > X\ +4. We can take m = (A} — 4,5 — 2, A5 — 1,\] — 1).

Case 6.4.4.2. N\, > AL + 4. We can take m = (A} — 3,05 — 3,05 — 1, A} — 1).

Case 6.4.4.3. N > X} + 4. We can take m = (XY — 3, A5 — 3,2\ — 2, )\)).

Case 6.4.4.4. N} = Xy +2, Xy = M\, +2and Ay = A\ +2. Then N = (X, \] —
2,\] —4,A\] — 6) with \] > 8. Again we can assume that 0 < j < i with M =
(M, A =2, M —4, M —6,1). If \] > 9 we can take m = (XY —2,\] =4, \] —6,\! —7,1) =
()‘{ - (Z_]) _2a)‘% - (2_]) _2¢)‘é - (2_]) _2a)‘31 - (Z_]) - la)‘%) If)‘z = 8 then
A= (8,6,4,2) and n < 24 and it can be checked that no X exists (since h(\) > 5).

Case 6.4.5. a; =8 and \; = 1.

Case 6.4.5.1. \! > A\, + 4. Then we can take p = (A} — 3, Ay — 2,05 — 2, \} — 1),
v=N =405 — 2,0, —1,\, — 1) and 7 = (A} —5,A, — 2,05 — 1, \)).

Case 6.4.5.2. A, > i + 4. Then we can take u = (A} — 3, Ay — 2, \§ — 2,0 — 1),
v=A =3, -3 A —1,\, — 1) and m = (\] — 4, A} — 3, \] — 1,)\%).

Case 6.4.53. N = X, +2 and A\, = M\; +2. Then A" = (A}, N} — 2,0\ —4,1)
with AXY > 7 odd. If i > 1 then X1 = (A} + 1,A\] — 1,A] — 3,2) and a;—1 =
ai +4 = 12. Then 3\} — 1 = [X7¢ > 2a;_1 = 24 and so \! > 9. So we can take
n = ()‘71 - 3>)‘11 - 4a)‘7i - 6)7 v = ()‘11 - 3a)‘7i - 5a)‘7i - 671) and m = ()‘71 _4¢)‘§ -
5,0 —6,2) = (A7t =5 A5t — 4 St 3 A7), If i = 0 then A = A and so
n=4(mod6), \=(n-1)/3+2,(n—1)/3,(n—1)/3—-2,1) and k = a; = 8. If
n =16 then A = (7,5,3,1), else n > 22, so that we are in one of the excluded cases.
If A = (7,5,3,1) notice first that D®:321) i a composition factor of D(775’371)¢510
Since (4,3,2,1) is a 2-core, we have that D(*321) =~ §(43.21) " From [11, Tables] and
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branching rule in characteristic 0, it then follows that D(775’371)¢58 has more than 3
non-isomorphic composition factors. O

Lemma 3.7. Let p = 2 | n, and A € 25 (n). Then D’\isn/2 has at least 3 non-
isomorphic composition factors unless X\ has one of the following forms:
(i) Bn with n =0 (mod 4),

(i) (Bu_s. 1),

(iii) n > 24 withn =0 (mod 8) and A = (n/4+3,n/4+1,n/4—1,n/4—3),
(iv) n > 10 withn =2 (mod 4) and A = ((n+6)/4, (n+2)/4, (n—2)/4, (n—6)/4),
(V) n>24 withn =0 (mod 4) and A = (n/4+2,n/4+1,n/4—1,n/4—2),
(vi) » > 14 with n = 2 (mod 4) and A = ((n + 10)/4,(n + 6)/4,(n — 6)/4, (n —

10)/4),

Proof. If n < 10 then A\ € 25 (n) implies that A = B,, (Bn_1,1) or (4,3,2,1), in
particular, X is of the exceptional forms (i), (ii) or (iv), and so we may assume that
n > 12.

If A is the double of (11,1), (9,5) or (11,7) then A is of the exceptional forms (ii)
or (iv). So we do not need to consider them. Let E; be the set of the doubles of the
remaining exceptional partitions appearing in Lemma 3.4. Moreover, let

E, :={(7,5,4,3,2,1),(7,6,5,3,1),(8,7,5,3,2,1),(8,7,5,4,3,1),(8,7,5,4,3,2,1),
(8,7,6,5,3,1),(8,7,6,5,3,2,1),(8,7,6,5,4,3,1),(8,7,6,5,4,3,2,1)}.
(there is an overlap between E; and Es). Finally let
Es :={(7,5,3,1),(7,5,3,2,1),(7,6,2,1),(8,7,5,3,1),(9,7,3,2,1) }..

By Lemma 2.4, D)) =121) g o composition factor of D ish(A)(h(A)ﬂ)/z Since

DR)RN)=1,01) o g(AA)AA)=1,-1) g an irreducible Specht module, using branching
rule for Specht modules and known decomposition matrices, the lemma can be checked
for all A € E4 U Ey U Ej5.

Recalling the partition A\’ from §3.1, we can now assume that n > 12 and that

we are not in one of the exceptional cases of Lemma 3.4. Then by Lemma 3.4,
m = AP >n/245 and A} | — A3® < 2 for all j > 1. By Lemma 3.3 we have that

D is a composition factor of D>‘¢5m. Moreover, by Lemma 3.6, D)‘Jsisn P has at

least three non-isomorphic composition factors, unless A® in one of the exceptional
cases listed in Lemma 3.6. Since )\2] 1 )\%? < 2 for all j > 1, we are left only with
the following cases:

(a) m is even and A\ = 3,,,,

(b) m is odd and \® = (8,1, 1),

(c) M8 =(6,4,2),

(d) m > 16 with m =0 (mod 4), \¥° = (B8,,_2,2) and m = n/2 + 5,

(e) M8 =(7,5,3,1) and n = 22,

(f) m > 20 with m =0 (mod 4) and A\’ = (m/4+3,m/4+1,m/4—1,m/4—3).
So, using Lemma 3.3 and since n is even, in each of the corresponding above cases
the following holds:

(a) Nis B, or (Br-1,1).
( ) Als (ﬁn 1, )) (Bn—2>2)> (Bn—3>3)7 (ﬁn—3>2a 1)a (ﬂn—4a3a 1)7 (ﬂn—5a3)2) or
(Bn-6,3,2,1).
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(c) Ais (6,4,2), (6,4,3,1), (6,4,3,2,1), (6,5,2,1), (6,5,3), (6,5,3,2), (6,5,4, 1),
(6,5,4,2,1), (6,5,4,3) or (6,5,4,3,2).
(d) In this case A is one of the partitions in (b).
(e) Als (775747 3,2, 1)7 (776747372)7 (77 6757371) or (7767574)
(f) (ﬂ) )\1 28, )\1—)\2 § 2, )\1—)\3 §4, )\1—)\4 §6, )\5 :Oif)\l is odd or
A5 < 1if Ay is even;
(f2) X is one of the following: (8,6,4,3,2,1), (8,6,5,3,2), (8,6,5,4,2,1),
16,5,4,3), (8,6,5,4,3,2), (8,7,4,3,2), (8,7,5,3,2,1), (8,7,5,4,2),
3.1, (8.7,5.4,3,2, 1 (
, (8,7,6,5,3,1), (8
3,1) or (8,7,6,5,4,3,2,1).

(1) n=0 (mod 4) and X\ = f,,

(2) A= (ﬁn—hl))

(3) A= (ﬁn—3727 1)7

(4) n=0 (mod 4) and A = (8,,—4,3,1),

(5) A= (ﬁn 5:3,2),

(6) n=2 (mod 4) and A = (B,—¢,3,2,1),

(7) n>24 withn=0 (mod 8) and A = (n/4+3,n/4+1,n/4—1,n/4—3),

(8) n > 18 withn =2 (mod 4) and A = ((n+6)/4, (n+2)/4, (n—2)/4, (n—6)/4),

(9) n > 24 withn =0 (mod 4) and A = ((n+8)/4, (n+4)/4, (n—4)/4, (n—8)/4),
(10) n» > 14 with n = 2 (mod 4) and A = ((n + 10)/4,(n + 6)/4,(n — 6)/4, (n —

10)/4),
(11) n > 24 with n =0 (mod 8) and A = (n/4+2,n/4+1,n/4 —1,n/4—3,1),
(12) A E By,

Taking into account that we have already dealt with A € E5 and that in the statement
of the lemma we have excluded certain classes of partitions, it remains to deal with
the cases (3)—(6), (11). We will repeatedly use Lemma 2.4.

To deal with (3)—(6), first note that if v = (5;,7) with 7 # 0 and 71 < (f;)2—2, then
DB-17) and DB1-27) are composition factors of D”LSWH and D%SM,Z respectively
and at least one of v, (8j_1,7) or (5;—2,7) has a good node below the second row.

(3) If n > 18 it then follows that Dn/2-22) DFn/2-1:1) and DPn/2 are composition
factors of D(B"*3’2’1)¢Sn/2. If n = 10 then A is in the exceptional family (iv), if n = 12
then A\ € Eq, if n = 14 then ) is in the exceptional family (vi), while if n = 16 then
A€ Es.

(4) If n > 20 that DBnj2=321)  pBn/2-22) and DBr/2-1:1) are composition factors
of DPn=13D g . If n =16 then A € Ej.

(5) If n > 24 that DBny2-3.21) - D(Bn2-2:2) and DBn/2-1:1) are composition factors
of D(B”*5’3’2)¢Sn/2 (this can be checked also for n = 20 and n = 22). If n = 14 then
A is in the exceptional family (iv), if n = 16 then A\ € Fy, if n = 18 then A is in the
exceptional family (vi).

(6) If n. > 26 that DPr/2-4:31)  DBn/2-321) and DBr/2-2:2) are composition factors
of D(B”*G’?”Zl)isn/z. If n =18 or n =22 then \ € E3.
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(11) If n > 24 withn = 0 (mod 8) notice that D(/4+2n/4n/4=2n/4=4.1) i5 4 compo-
sition factor OfD(n/4+2,n/4+1,n/4—1,n/4—3,1)\LS p and D®/4+2n/4n/4=2,n/4—4) ic o com-
position factor of D(/4+2n/4+1n/a=1n/4=3.1) | Using Lemma 3.1 it follows that
Dn/8+3,n/8+1,n/8—1,n/8-3) [(n/8+2,n/8+1,n/8—1,n/8-2) and D(n/8+3,n/8+1,n/8-1,n/8-2,1)
are composition factor of D(W/4+2n/4+1n/A=1n/4=31) | . if n > 32 If n = 24 then

A € Es.

n/2
t
Lemma 3.8. Letp=2,n=0 (mod 4) and A= (n/4+2,n/4+1,n/4—1,n/4—2).
Assume that 2 < k <n —9 and let u and v be given by
i) p=Mm/A—m+2n/d—m+1n/d—m—-1n/d—m—2), v=(n/4—m+
3nfd—m+1,n/4—m—1,n/4—m—3) if k = 4m,
(i) p=Mm/A4A-—m+2,n/d—mn/d—m—-1n/4—m—-2), v=(n/4d—m+
2,n/d—m+1n/d—m—1n/d—m—3) if k =4m +1,
(i) p = (/4 —m+2,n/4 —m,n/d—m—-1,n/d—m—-3), v = (n/4d —m+
Ln/d—mmn/d—m—1,n/d—m—2) if k=4m + 2,
(iv) p=(n/4d—m+1n/4—mmn/4—m—1n/d—m—3), v =(n/4—m+
2,n/d—mn/d—m—2n/4—m—3) if k=4m+ 3.
Then D* and DY are composition factor of DAiSn,k-

Proof. Notice that repeatedly applying Lemma 2.4 we have that
o D(/4+2n/4n/i=1,n/4=2) i5 o composition factor of D/\isn,p
o D(/4+2n/4n/i=1n/4=3) o q pD(n/4+1n/4n/i=1n/4=2) g6 composition factors
of D)‘isn,ga
o D/4+1Ln/4n/i=1,n/1=3) onq pDn/4+2n/4n/4=2n/1=3) 416 composition factors
of D)\\LSn,gv
o D(/4+Ln/dn/4=2n/4=3) anq pD(n/4+2n/4n/4=2n/4=4) g1 composition factors
of D)\\I/Sn,47
e D(n/4+1n/4=1n/4-2,n/4-3) and Dn/4+1n/4n/4-2,n/4—-4) are composition fac-
tors of D)‘¢57L75.
Since p=((n—4)/4+2,(n—4)/4+1,(n—4)/4—1,(n —4)/4 —2) for k =4, the
lemma then follows by induction. O

4. REDUCTION THEOREMS
4.1. Criterion for reducibility of restrictions. For A € &2,(n) we denote
E(N) := Endg(D?).

Note that £()\) is naturally an FS,-module.
IfAe L@I/}(n), then upon restriction to A,, we have the IFA,,-module decomposition

EN) = Ere(N) B E_(N) @ Er (V) @ E- 4 (M),

where
Es-(\) := Homp(Ey, E2) (0, € {+,-}).

Lemma 4.1. Let A € L@I/j(n) and V' be an FS,,-module. Then
Homs,, (V,€(A)) = Homa, (Via,, €.+ (N) © €5 (X))
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Proof. Using D* = E} 157, it is easy to check that £(\) = Homp(E}, E} @ EX)15",

which implies the lemma using Frobenious reciprocity. O
Let
Toe: EA) = E5(A) (b e{+,—-}) (4.2)
be the corresponding projections. Note that E} with (E})7 =2 Ej‘t implies
£V = E_ (). (4.3)

Note also that &4  (A\)&E_ _(A) is an FS,,-submodule of £(N), asis E4 _(A\)BE_ +(N).
We then have the corresponding projections

m:EN) =& yN)@E-_(N) and m:EN) = E4_(N)BE- L (N). (4.4)
Recall the notation J(G) from §2.1. The following is an analogue of [17, Lemma 2.17]:

Lemma 4.5. Let A € ) (n), 6 € {+,—} and G < A, be a subgroup such that E|q
is irreducible. Then dimHoma, (7 (G),E:(N)) <1 for all e € {+,—}.

Proof. We have
Homp, (J(G), £5(A)) = Homa, (161", £5(N))
= Homeg(1a, E5:(N)g)
= Homg (B3, B2 lq)-
Since E}| is irreducible and dim E} = dim E2 the lemma follows. O

Lemma 4.6. Let k € Z>p and n > max(5,2k), and exclude the cases (p,n —
2k) = (2,< 2),(3,< 1). Suppose that \ € L@ﬁ(n), G < A, and there is ¢ €
Homs, (Z(G), My) such that [im1) : Dg] # 0.
(i) If there is ¢ € Homs, (M, E4 +(X) @ E- (X)) such that im( : Dy] # 0 then
there exist
¢ € Homa, (J(G),E+ +(N) and £" € Homa, (J(G),E-—(N))
such that im¢&’ : Ex] #0 and [im&" : Ey] # 0.
(i) If there is ¢ € Homs, (M, E4 —(N) @ E— (X)) such that [im ¢ : Dy] # 0 then
there exist
¢ € Homa, (J7(G),E4-(N\) and &' € Homa, (T (G),E-+(N))
such that [im ¢ : Ex] # 0 and [im&” : Ey] # 0.
Proof. We prove (i), the proof of (ii) being similar. By Lemma 2.2, the assumptions
n > max(5,2k) and (p,n—2k) # (2,< 2), (3, < 1) guarantee that E}, is irreducible and

appears with multiplicity 1 in M|, . Note that Z(G) = J(G)15". By Lemma 2.5(i),
there is ¢/ € Homa,, (J(G), Myla,) with [im¢)’ : E;] # 0. Furthermore,

Er P =& (V@ _(\)=E ()P
By Lemma 2.5(ii), there are
(' € Homa, (Mila,,E44+(N) and (" € Homa, (Mila,,E-—(N))

with [im ¢’ : Ex] # 0 and [im " : Ey] # 0. Since Ej appears in M}, with multiplicity
1, we can now take & := (' o)/ and " := (" o). O
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Theorem 4.7. Let k > 1, n > max(5,2k), and exclude the cases (p,n — 2k) = (2, <
2),(3,< 1). Suppose that \ € e@lf‘(n), G < A, and there are

¢ € Homs,, (Z(G), My) and ¢ € Homs, (M, E4 +(N) ®E-_(N))
such that [im : D] # 0 and [im ¢ : Dy] # 0. Then EX|q is reducible.

Proof. We prove that E7} 2l is reducible, the argument for E* | being similar. Note
that there always exists {o € Homa, (J (G) &+ +(X)) whose image is the trivial module
1a,. On the other hand, by Lemma 4.6(i), there exists & € Homa, (J(G),E+ +(N))
whose image contains Fj as a composition factor. Since £y and & are linearly inde-
pendent, the theorem follows from Lemma 4.5. O

Theorem 4.8. Let 1 < k < I, n > max(5,2l), and exclude the cases (p,n — 2l) =
(2,<2),(3,<1). Suppose that \ € L@ﬁ(n), G < A, and for j = k,l there are

¢; € Homs, (Z(G), M;) and (; € Homs, (M;,E4 —(N) @ E- +(N))
such that [imv; : D;] # 0 and [im(; : D;] # 0. Then E}l¢ is reducible.

Proof. We prove that Ef‘rig is reducible, the argument for EiiG being similar. By
Lemma 4.6(ii), for j = k,l, there exists {; € Homa, (J(G),E4 —(N)) whose image
contains £ as a composition factor. Note that &, and ¢ are linearly independent
since Myla, does not have E; as a composition factor and therefore im &, does not
have E; as a composition factor. The theorem now follows from Lemma 4.5. O

4.2. First reduction theorems for alternating groups. Recall the projections
mo, 1 defined in (4.4) and the integers ix(G) from §2.4

Proposition 4.9. Let n > 8 and exclude the case (n,p) = (8,2). If A € L@ﬁ(n) and
G < A, is a subgroup such that 1 < i1(G) < i2(G) and E|q or EX] is irreducible
then one of the following holds:

(i) i2(GQ) = i3(G) and X is JS.

(il)) p=2 and X\ = j,.
(iii) p = 2| n and dim(S}) > is(G) —
(iv) X is JS, p=2|n and dim(S3)% > i ( ) —i1(G).

v) Ais JS, p=3,n=0 (mod 3) and dim(S7)¢ > i3(G) — iz(G) +i1(G) — 1.

(vi) Ais JS, p=3, n =1 (mod 3) and dim(S3) > i3(G) — i1(G).

Proof. The result for p > 3 follows from [20, Main Theorem]. So we may now assume
that p = 2 or p = 3. Also, without loss of generality we assume that Ei\_\LG is
irreducible. Moreover, in view of (ii) if p = 2 we further assume that \ # ,. From
Lemma 2.2 it then follows that h(\) > 3.

In view of (2.7), the assumption 4;(G) > 1 implies the existence of

P € Homsn (I(G), Ml)
with [im : D1] # 0. There also exists
9 € Homs, (Z(G), Ms)

with [im o : Do] # 0. Indeed, if p = 2 | n, then in view of (iii), we may assume that
dim(S})¢ < i2(G) — 1, whence vy exists by Theorem 2.9. On the other hand if p = 3
or p = 21{n, by Theorems 2.8 and 2.9, we have that My ~ M;|S5, so the assumption
i2(G) > i1(G) and (2.7) imply the existence of 12 with the required properties.

( >
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Furthermore, by Lemma 2.10, there exists
(2 € Homg, (M3, E(N))
with [im (s : D3] # 0. By Lemma 2.11, there exists
(3 € Homg, (M3,E(N))

with [im (3 : D3] # 0.
Case 1. M is not JS. Then

1 < dimEnds, ,(D*|g ) = dim Homs, (M7, E(N))

and the well-known structure of M; (see for example Theorems 2.8 and 2.9) imply
that there is (1 € Homs, (M1,E(N)) with [im (; : Dy # 0.

Case 1.1. (} := mp o (1 satisfies [im (] : D1] # 0. Then the proposition follows by
Theorem 4.7 (with k& = 1).

Case 1.2. (] satisfies [im (] : D1] = 0. Then ¢} := m; o (; satisfies [im () : Dq] # 0.

Case 1.2.1. ¢} := my o (o satisfies [im (} : Do) # 0. Then the proposition follows by
Theorem 4.7 (with k = 2).

Case 1.2.2. ¢} satisfies [im ¢} : Dy] = 0. Then ¢ := m o (o satisfies [im ¢} : Ds] # 0
and we can conclude by Theorem 4.8 (with £k =1 and [ = 2).

Case 2. )\ is JS.

Case 2.1. ¢} := my o (y satisfies [im ¢} : D3] # 0. Then the proposition follows by
Theorem 4.7 (with k = 2).

Case 2.2. ¢} satisfies [im ¢} : Dy] = 0. Then () := m o (o satisfies [im ¢} : Do) # 0.
In view of (iv), (v) and (vi), using Theorems 2.8 and 2.9, we may assume that there
exists 13 € Homs, (Z(G), M3) with [im g : D3] # 0.

Case 2.2.1. (4 := mp o (3 satisfies [im ¢} : D3] # 0. Then the proposition follows by
Theorem 4.7 (with k = 3).

Case 2.2.2. ¢} satisfies [im ¢} : D3] = 0. Then ¢} := m o (3 satisfies [im ¢ : D3] # 0
and we can conclude by Theorem 4.8 (with £k =2 and [ = 3). O

Proposition 4.10. Let n > 8 and exclude the case (n, p) (8,2). Suppose that \ €
@?(n) and G < A, is a transitive subgroup such that E? g or E | is irreducible.
Then one of the following holds:

(i) G is 2-homogeneous.

(il) p=2 and A = B,.

(iii) n is even and G < Gy, j99 or G < ng/2

(iv) p=3,n =1 (mod 3) and dim(S3)% > is(G) — 1.
(v) p —2|n and dim(S3)% > is(G) — 1.

Proof. The result for p > 3 follows from [20, Theorem 3.13], so let p = 2 or 3. We
will now prove the following

Claim. We are in one of the cases (i)-(v) or one of the following conditions holds:
(a) p=3,n =0 (mod 3) and (S7)¢ # 0;
(b) p=2 | n and dim(S7)¢ > ix(G) — 1.
To prove the claim, we assume that we are not in the cases (i)-(v) or (a),(b)

and apply Theorems 4.7 and 4.8 to deduce that E}|. are reducible, obtaining a
contradiction.
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Since we are not in case (i), we have i2(G) > 1. Since we are not in case (i) we
have that D? is not basic spin in characteristic 2. So h(\) > 3 by Lemma 2.2. Since
we are not in case (iii), using [8, §5, Corollary]|, we have that io(G) < i3(G).

Since we are not in case (b) and i2(G) > 1, Theorems 2.8 and 2.9 imply that there
exists

¥ € Homs, (Z(G), Ma)
with [ime : Dy] # 0. Since we are not in cases (iv),(v),(a) and i2(G) < i3(G),
Theorems 2.8 and 2.9 imply that there exists

1/13 c Homsn (I(G), Mg)

with [im 3 : D3] # 0.
Furthermore, by Lemma 2.10, there exists

(o € Homsn (MQ,(S(/\))
with [im (s : D3] # 0. By Lemma 2.11, there exists
(3 € Homsn (M3,g(/\))

with [im (3 : D3] # 0.

Case 1. (4 := mp o (o satisfies [im ¢} : Da] # 0. The proposition now follows from
Theorem 4.7 (with k = 2).

Case 2. () satisfies [im ( : Do) = 0. Then ¢ := m o (s satisfies [im (¥ : Do) # 0.

Case 2.1. (4 := mg o (3 satisfies [im (4 : D3] # 0. The proposition now follows from
Theorem 4.7 (with k£ = 3).

Case 2.2. ¢} satisfies [im (4 : D3] = 0. Then (4 := m o (3 satisfies [im ¢4 : D3] # 0
and so the proposition follows from Theorem 4.8 (with £ = 2 and | = 3).

This completes the proof of the claim.

We now eliminate the exceptional cases (a) and (b) in the Claim. Indeed, if we
are in one of those cases then, in view of (i), we may assume that (S7)¢ # 0. If G is
primitive then by [17, Corollary 2.32 and Lemma 2.33] this implies that O,(G) # 1,
in which case E2} | is reducible for example by [17, Lemma 2.19]. In the imprimitive
case, G < Ggy for some a,b > 1 with ab = n. In view of (iii), we may assume that
a,b # 2, in which case (S7)%* = 0 by Lemma 2.13, and so by the Claim, E;\_Liga’b is
reducible and so is E} . O

5. IMPRIMITIVE SUBGROUPS

In this section we analyze restrictions E} ] for imprimitive subgroups G < A,
and prove Theorems A, B and C.

5.1. Intransitive subgroups. In this subsection we deal with maximal intransitive
subgroups G' < A,,, i.e. subgroups of the form A,,_j, .. The following is easy to check.

Lemma 5.1. Letn >5, 1 <k <n/2, and G = A,_k . Then i1(G) =2, i2(G) = 3,
i3(G) =4 for k> 2, and i3(G) = 3 for k = 2.
Proposition 5.2. Let n > 8 and exclude the case (n,p) = (8,2). If A € L@ﬁ(n),

G < A, is an intransitive subgroup and Ei\l,G or E* g is irreducible then one of the
following holds:

(i) G < An_1.
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(il) G < A,_22 and X is JS.
(iii) p=2 and A = B,.

Proof. We may assume that G = A,,_j ; with 1 < & < n/2, in which case the result
follows from Proposition 4.9 and Lemmas 2.12 and 5.1. O

The next result deals with the case k = 1 when p = 2 (for p > 2 the corresponding
result is known, see §5.2 below).

Theorem 5.3. Let p =2 and A € 2)(n). Then E;\_QAW1 is irreducible if and only
if one of the following holds:

(i) A is JS;

(ii) A has exactly two normal nodes, \y = Ao + 1 and \y is even.

Proof. If EX |, . is irreducible then D*|g  has at most two composition factors
and if it has two composition factors, they are isomorphic and they do not split when
restricted to A,,_1. In particular A has at most two normal nodes.

Case 1. X is JS. Then D)‘LS%1 is irreducible, and so Ej‘:iAn,l is irreducible.

Case 2. A has two normal nodes. Let A := (1,\1) and B := (2,X). If A4 is
2-regular, then by Lemma 2.4, D’\¢Sn71 has two non-isomorphic composition factors,
so in this case Ej‘ELA%l is not irreducible. So we may assume that A\; = Ao + 1. Let
= Ap. Then [D)‘ian : D*] = 2 by Lemma 2.4.

Case 2.1. )\; is odd. Notice that \y = g3 = p2 + 2 and pg + po = 0 (mod 4).
Since A € 225\(n), it then follows that 1 € £25'(n —1). So in this case E} ], _, is not
irreducible.

Case 2.2. \; is even. In this case ju1+p2 =2 (mod 4), so u & 25 (n—1). Moreover,
by Lemma 2.4

DM  ~D"| ... |D".
n <~ R~
soc  no DF head

Using Frobenius reciprocity, for any v € &P5(n — 1), we have
dimHoma, , (E{y), D*a,_,) = dimHoms, _, (Efy) 151, DM )

Moreover, EY 1512 DV if v € 25\ (n — 1), and E¥ 15»-1= D”|D" otherwise. So
soc(DMa, ) = (EM)®F for k < 2. But A € 2\ (n), so soc(D* |5, ) = E# @ E*. By
Frobenius reciprocity again, we now conclude that E* $57-1= D#|D# is a submodule
of D)\isn,l' Hence D’\ian &~ DH|D# and Ej‘EiAW1 is irreducible. O

We now deal with the case k = 2 when p = 2 and \ is not basic spin (for p > 2 the
corresponding result is known, see §5.3 below).

Theorem 5.4. Let p = 2 and A € 25 (n) \ {Bn}. Then Ej‘ciA%M is irreducible if
and only if X is JS, in which case Ej‘ELA%2 & Ee1-i®\ yhere i is the residue of (1, A1).

Proof. If Ej\:iAn,g,Q is irreducible, then A is JS by Proposition 5.2. Conversely, let A
be JS. Note that h(\) > 2 and p := é1_;6;A = (A1 —1, A2 — 1, A3, Ay, . ..). In particular
p1 4 p2 =M 4+ A2 —2 =2 (mod 4) and so pu & P5(n — 2). Since X is JS it follows

that D|g | = D% by Lemma 2.4. Further ;(€;\) = 0 and &1_;(&A) = 2. So
A ~ DM H
DM, , ~D"| ... | D".

soc  no D# head
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Using Frobenius reciprocity as in the proof of Theorem 5.3, we deduce that E* 45n—2=
DF|D* is a submodule of DX . Hence D*|g , = DH|D*, so E} |, , is irre-

ducible. O

5.2. Proof of Theorem B. Suppose first that p > 2. By [20, Proposition 3.7]
(see also [4, Theorem 5.10]), E4], | is irreducible if and only if A is JS or A has
two normal nodes of different residues. Under the assumption A € @;(n) this is
equivalent to the requirement that the two normal nodes have residues different from
0. On the other hand, if p = 2 then by Theorem 5.3, Ef‘_@ A,,_, is irreducible if and
only if A is JS or A has two normal nodes and Ay = Ay + 1 is even. It remains to
show that the latter condition holds if and only if A has exactly two normal nodes of
residue 1. The ‘only-if’ part is clear. For the ‘if’ part, suppose that A has exactly two
normal nodes of residue 1. Since the top removable node is always normal it follows
that \; is even. Since A € &25'(n) it then follows that A\; = A\g + 1.

5.3. Proof of Theorem C. If p > 2, the result is [20, Theorem 3.6]. If p = 2 use
Theorem 5.4.

5.4. Transitive imprimitive subgroups. In this section we begin to investigate
restrictions to the maximal transitive imprimitive subgroups G < A, i.e. subgroups
of the form G, with a,b > 2 and n = ab.

Proposition 5.5. Let n =2b > 8, A € #)\(n). Then Filg,, are reducible.

Proof. For p > 3 this is known, see [20, Main Theorem|. For p = 2, this is clear since
G has a non-trivial normal 2-subgroup, cf. [17, Lemma 2.19]. Let p = 3. It suffices
to prove that D>‘¢5225b has at least three composition factors. Let Sigpy = Sgx -+ xSy
be the base subgroup, with generators g1, ..., g, of order 2. The irreducible FS(2Z))‘
modules are of the form {L(d1,...,0) | d1,...,9 € {0,1}} where L(d1,...,05) =F-v
and g,v = (=1)%w for r = 1,...,b. Restriction of any irreducible F(Sy? Sp)-module
to S(gr) is a direct sum of modules of the form L(d1,...,0) with fized 61 + - -+ + .

So it suffices to prove that D)‘is(zb) has three composition factors L(dy,...,d,) with
three different sums d; + - - - + d,. Note that D(3’1)¢S(2b) = L(0,0) & L(0,1) & L(1,0)
and D(2’1’1)¢S(2b) =~ L(1,1) @ L(0,1) & L(1,0). Moreover, by Lemmas 2.2 and 2.6,
the restriction D)\JfS4><S4 has a composition factor of the form L X Ly with Ly, Ly €
{DBY, DELDY Hence 17Ais(&42b,@
Ly X L(ds,...,0p). Restricting this module to S(avy yields composition factors of the

form L(ni,m2,m3,M4,05,...,0) with fixed ds,...,d, and at least three different sums
M+ M2 + 13+ 1. O

Proposition 5.6. Let n = 2a with a > 4. Let G = Ga2 and X\ € L@ﬁ(n). If EX g
or EX | is irreducible then p = 2 and X has at most three normal nodes.

has a a composition factor of the form L X

Proof. For p > 5 the proposition holds by [20, Proposition 3.12]. So we may assume
that p = 2 or p = 3. Without loss of generality we assume that Eﬁ\ric is irreducible.

Let p = 2. We may assume that \ has at least four normal nodes. Hence by
Lemma 2.4(v),

dim Homs,, (My, () = dimEnds, ,(D*s ) >4
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Since M ~ Dy|ST for example Theorem 2.9, it follows that dim Hom(S5,£(X)) > 3.
So by Lemma 4.1,

dim HOIn(Sik\l,An,5+7+()\) @ 5_7_()\)) > 3.

But ST = Dy or ST = D1|Dy, so there exist ¢, € Homa, (STla, ,E++(A) @ E4+ (X))
such that (|g, and ('|g, are linearly independent.

On the other hand, by Lemma 2.13(i) there exists ¢ € Homa,, (J(G), S7{a,) with
[im1) : E1] # 0. Note also that there exists £ € Homa, (J(G), 4 +(A) @&+ — (X)) with
im& = Fy. Note that £, ( 09 and ¢’ 0 ¢ are linearly independent which contradicts
Ej\r being irreducible, due to Lemma 4.5.

If p = 3 then My ~ M;]S5 by Theorem 2.8. Now, i;(G) =1 < 2 = i2(G) imply
that there exists ¢ € Homs, (Z(G), M2) with [im) : D] # 0.

Assume first that A is not JS. Then by [19, Theorem 3.3] and [23, Lemmas 4.9,
4.11, 4.12] we have

dim Homs,, (Mz, £(\)) = dimEnds,,_,,(D*]s, ,,)
> dimEnds, ,(D*s ) +2
= dim Homs, (M7, E(N)) + 2.
So from Lemma 4.1
dimHoma, (M|, €4 +(N) @ E4 () > dimHoma, (Mila,, €4 +(N) @ EL (X)) +2.

Since Ms ~ S3|M; by Theorem 2.8, we now deduce that there exist homomorphisms
¢,¢' € Homp, (Malp,,E4+(X) @ E4 —(N)) whose restrictions to Szl are linearly
independent. Let further £ € Homa,, (7 (G), &+ +(N\)®E+ (M) withim € = Ey. Then
&, Cotp and (' o) are linearly independent. This contradicts Eﬁ‘r being irreducible,
due to Lemma 4.5.

Assume now that A is JS. Since EJ)‘FLG is irreducible, so is F* 5. In particular
D/\isn /2152 has at most 2 composition factors. So by the classification of the irreducible
Sy/2 1 Se-modules, we have that D)‘¢Sn Jom2 has at most 4 composition factors. From
Lemma 3.5 we have that D>‘¢Sn P has at least 5 non-isomorphic composition factors,
leading to a contradiction.

O
Proposition 5.7. Let n > 8 and exclude the case (n,p) = (8,2). If A\ € L@I’?(n),
a,b>2 withab=n > 8, and Ej\_\LGa,b or Ei\LGa,b 1s 1rreducible then p = 2 and one
of the following holds:
(i) b =2 and A has at most three normal nodes.

Proof. By Propositions 5.5 and 5.6 we may assume that a,b > 3. Now by Proposition
4.10, we may assume that we are in the cases (iv) or (v) of that proposition. Since
i2(Gap) = 2, the proposition follows by Lemma 2.13(ii). d

5.5. Restrictions to G, for p = 2. The goal of this subsection is to eliminate the
exceptional case which appears in Proposition 5.7(i).

Lemma 5.8. Let n = 2a > 4, A € P5(n) and G = Gao. If E}lg or EX|g
s irreducible then D)‘Lsazs2 s either irreducible or it has exactly two composition
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factors which are isomorphic to each other. In particular, D)‘isa has at most two
isomorphism classes of composition factors.

Proof. Note that E} | is irreducible if and only if so is E*|,. Hence D)‘Lsazs2 is
either irreducible or has exactly two composition factors. If D>‘¢Sa252 is irreducible
then D)‘LSM is of the form D* X D* or D*¥ X D¥ & DY X D*, and so all composition
factors of D)‘isa are isomorphic to D* or D".

Suppose that D>‘¢Sa252 has two composition factors Ly and L_. We may assume
that Lyl = E)lg. Then, since (1,2) € S, 1Sq, we get

L lg= B o= (BMe)M = (Lile)™? 2 L8P s =2 L.

As p=2=1[S,1Ss : G], it now follows from Clifford theory that Ly = L_, and we
are done as in the previous paragraph. O

Combining Lemmas 5.8 and 3.7 allows us to assume that we are in one of the
exceptional cases of Lemma 3.7. The next lemma deals with the exceptional case (ii)
of Lemma 3.7.

Lemma 5.9. Let p=2|n>6 and A = (Bn—1,1). Then Ej\:\l,Gn/2 , is reducible.

Proof. Assume that Eiign 120 18 irreducible. On the other hand, by [17, Theorem

Al D>‘¢Sn /2155 is reducible. By Lemma 5.8, we conclude that in the Grothendieck
group we have either

[D* s ] = 2[D* K D¥] 4+ 2[D¥ K DH]

n/2,n/2

for some distinct p,v € P2(n/2) or

[D*|< = 2[D* X D¥|

n/2,n/2]
for some p € P3(n/2). For n < 10, using [11, Tables], one checks that neither of
these ever happens. Let now n > 12. It is easy to see by repeatedly applying Lemma
2.4 that DPv2 and DPn/2-11) are composition factors of D)‘¢Sn/2. So

[D* s | = 2[DPn/2 ® DBr2-1:1] 4 o[ DBr/2-1:1) [ DPns2],

n/2,n/2
In particular
dim D* = 4 dim D2 dim D¥n/2-1:1), (5.10)

For any m, let (m) be a basic spin representation and (m — 1,1) be a second basic
spin representation of S,, in characteristic 0. From [2, Theorem 1.2] we have that
DPm is a composition factor of (m) and that D11 is a composition factor of
(m — 1,1), provided B, and (B,,—1,1) are 2-regular. This leads to a contradiction
with (5.10) using [27, Tables IIT and IV]. O

The next result, whose proof is similar to that of [17, Lemma 7.20], treats the
exceptional case (iii) of Lemma 3.7.

Lemma 5.11. Letp=2,n>24, n=0 (mod 8) and A\ = (n/4+3,n/4+ 1,n/4 —
1,n/4 —3). Then E;\_LLGWZ , is reducible.
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Proof. Assume that Ej‘ELGn Jap 1 irreducible. Let

p=(n/8+3,n/8+1,n/8—1,n/8—3),
v:i=(n/8+4+2,n/8+1,n/8—1,n/8—2).

By Lemma 3.1 or [17, Lemma 3.14], D* and D" are composition factors of D’\isn/Q.
It then follows from Lemma 5.8 that all composition factors of D)‘¢Sn Jam 2 ATE of the
form D* X DY or DY X DH.
Let
m:=(Mn/8+2,n/8+1,n/8n/8—1),
Y :=(Mn/8+1,n/8n/8—1,n/8 —2).

By [7, Lemma 1.11], we have that D™X D¥ is a composition factor of D)‘Lsn/2+2 aa

As v = &7, by Lemma 2.4, we have that D" X 1s,, X DV is a composition factor of
D/\¢Sn/2,1,1,n/272' So DY is a composition factor of D“isnmﬁ, which contradicts [17,
Lemma 3.7]. O

The next two lemmas deal with the exceptional case (v) of Lemma 3.7.

Lemma 5.12. Letp=2,n>24, n=0 (mod 8), and A\ = (n/4+2,n/4+ 1,n/4 —
1,n/4 —2) then EiiGn/Q , is reducible.

Proof. Assume that Eiign Ja,, 18 irreducible. Let

p=mn/8+2,n/8+1,n/8—1,n/8—2),
v:=(n/8+3,n/8+1,n/8—1,n/8—3).
By Lemmas 5.8 and 3.8(i), all composition factors of D>‘¢Sn Jamya BT€ of the form

DFX DY or DY X D*. Let m := (n/8+3,n/8 +1,n/8 —1,n/8 — 2). From Lemma
3.8(iv), D™ is a composition factor of D>‘¢Sn oy D particular there exists ¢ €
P5(n/2—1) such that D™X DY is a composition factor of DA\LSn/2+1,n/271' Restricting
this module to S,,/2.1 /21 We have by Lemma 2.4 that D" X 15, X DY and D K
1s, X DY are composition factors of D>‘¢Sn otz In particular DY is a composition
factor of D|s , ~and D"|s , . Since v is JS, Lemma 2.4 gives that ¢ = (n/8 +
2,n/84+1,n/8—1,n/8—3), contradicting D‘%Sn/%1 also having a composition factor
isomorphic to D¥, again using Lemma 2.4. d
Lemma 5.13. Letp=2,n>20,n=4 (mod 8), and A\ = (n/4+2,n/4+ 1,n/4 —
1,n/4 —2). Then E;\_LiGn/Q , is reducible.

Proof. Assume that Ej\:\l/Gn Jap 18 irreducible. Let

w:=(n/8+5/2,n/8+1/2,n/8 —1/2,n/8 —5/2),
v:=(n/8+3/2,n/8+1/2,n/8 —1/2,n/8 —3/2).
By Lemmas 5.8 and 3.8(iii), in the Grothendieck group we have for some a € Z~:

[DMs, ,.,,,] = a[D* K D”] + a[D¥ K D"]. (5.14)
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In particular, all composition factors of D)‘Lsn ), Bre of the form D* or D¥. It follows
using Lemma 2.4 that all composition factors of D)‘Lsn P L of the form D" with

é;x = p or v for some i. Since any composition factor of D’\isk for any £ < n is
indexed by a partition with at most 4 rows (for example by [17, Lemma 3.7]), it then
follows that any composition factor of D)‘¢Sn o is of the form D™ or D¥, where

m:=(n/8+5/2,n/8+3/2,n/8 —1/2,n/8 —5/2),

Y :=(n/8+5/2,n/8+1/2,n/8 —1/2,n/8 — 3/2).
Then, in the Grothendieck group,

[DA‘LSn/Hl,n/Ll] = [D" W M] + [Dd} X N,
for certain modules M, N of S, /5_;. Comparing this to (5.14) and using Lemma 2.4,
we deduce
(Do = 2[D' K 1s, ® M] + 2[D* K 15, © N] + [D” K 15, K N]

= a[DM X 151 X DV‘LSn/gfl] + (I[DV X 151 X Du\l’sn/271]'

n/2,1,n/271]

Notice that from Lemma 2.4, D¥|s = =D7® D% with

v:=(n/8+5/2,n/8+1/2,n/8 —3/2,n/8 —5/2),
0:=(n/8+3/2,n/8+1/2,n/8 —1/2,n/8 —5/2).
In particular D¥X1g, K D7 is a composition factor of D>‘¢Sn P and then D7 is a
composition factor of D" P which contradicts Lemma 2.4 by a block argument.
O

Proposition 5.15. Let p =2 | n > 10 and A € PN (n). If EQ\ELGWM is irreducible
then A = 3,.

Proof. By Lemma 5.8, we may also assume that D)‘Lsn P has at most two isomorphism
classes of composition factors. So by Lemma 3.7, we may assume that we are in one
of the exceptional cases (i)-(vi) of that lemma. The case (i) does not need to be
considered since this is the case A = (,. In the cases (iv) and (vi), A has four
normal nodes, so we can exclude them by Proposition 5.7. The case (ii) is treated
in Lemma 5.9, the case (iii) is treated in Lemma 5.11, and the case (v) is treated in
Lemmas 5.12 and 5.13. O

5.6. Proof of Theorem A. For p > 3 the result follows from [20, Main Theorem].
So we may assume that p = 3 or 2. In view of the exceptions (i) and (iv) in Theorem A,
we may assume that G is imprimitive and A # 3, if p = 2.

The theorem is easily checked for n = 5,6,7. Indeed, in view of Theorems B and
C, we may assume that G is one of the following: Gb3,G32,A43. Moreover, we
only have to consider the cases where either p = 2 and A = (3,2,1) or p = 3 and
A = (4,12) or (4,2,1). In the exceptional cases the restriction E{|, are reducible
since /|G| < dim E?.

The case (n,p) = (8,2) is also easy since in this case A € 2)(8)\ {Bs} implies A =
(4,3,1) and dim E} = 20 and G is contained in one of {A7, Ag 2, A5 3,As4,Goa,Ga2}
The case G < A7 is covered by the exceptional case (ii)(b) of Theorem A. The case
G < Ag 2 is excluded by Theorem 5.4. The cases G < As3, G < Ayy and G < Gog
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are excluded since then /|G| < dim Ef 31D The case G < G4, is excluded by

Lemma 5.9. From now we assume that (n,p) # (8,2).
If G is intransitive then G < A,,_j, , for some 1 < k < n/2. By Proposition 5.2, we
may assume that either k = 1, or £ = 2 and ) is JS. It remains to apply Theorem B.
If G is transitive then G < Gy, for some a,b > 1 with ab = n. By Proposition 5.7,
we may assume that p = 2 = b (and A has at most three normal nodes). Now, we
apply Proposition 5.15.

6. BASIC SPIN CASE
In this section, we assume that p = 2. Recall e.g. from [27] that

2n=2)/2 if p is even,

2(n=1)/2 " if n is odd. (6.1)

dim DA = {

Moreover, 3, € 25 (n) if and only n # 2 (mod 4) (although we consider a general n
in this section).

6.1. Restricting basic spin module to intransitive subgroups.

Lemma 6.2. Let v = (nqy,...,n,) be a composition of n with ny,...,ny > 1, and
D =DMK ... KD be an irreducible FS,-module. Then DJa, splits if and only if

A € PN(n,) forallr =1,... h.

Proof. Suppose A, € @?(m) for all » = 1,...,h. Then the number of composition
factors of D], XX A, 19 2. On the other hand A,,, x - - - x A,, is a normal subgroup
of A, of index 2"~ so D], must have at least two composition factors.

Conversely, suppose that \, & 2)\(n,) for some r. Without loss of generality, we
may assume that \; € P)(ny1),..., s € PN(ng) and \gi1 € Po(nsi1),.. .\ &
25\ (ny,) for some 0 < s < h. Then

DiA”lx“'XA”h = @ Eg\ll X--- gEe)\sS gE)\erl X "'gE)‘h.
€1,--Es€{+,—}
So any submodule of D, XX An, is the direct sum of some of the summands in

the right hand side. But if one such summand lies in an FA,-submodule of D,
then all of them do (this can be seen by conjugating with elements of A, having odd
components in some of the first s positions and, if necessary, an odd component in
one of the remaining positions). O

Proposition 6.3. Let n > 5, v = (ny,...,np) be a composition of n with h > 1.
Then E(@)iAU is irreducible if and only if one of the following conditions holds:
(1) n=0 (mod 4), h =3, n, =2 (mod 4) for exactly one r, and the other two
parts of v are odd;
(2) n=0 (mod 4), h =2, and n1, ny are both odd;
(3) n£2 (mod 4), h =2, and n, =2 (mod 4) for at least one r.

Proof. We may assume that n # 2 (mod 4), since otherwise Ef» = DB"LAn, and
by [17, Theorem CJ, A, < A, with n — k and k odd, in which case EﬁniA(n,k o

is reducible by Lemma 6.2, hence EﬁniAu is also reducible.
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All composition factors of Dﬁnisu are isomorphic to D% K ... K DA and by
dimensions, we have

MJ_..._LL*J

[DB7L\I/SV :DPm ... R DP) = ol "5t =1 2 (6.4)

If the last expression is greater than 2, we must have that Ei"iAV is reducible. So
we may assume that it is at most 2, which leaves us with the following cases:

(a) h =4 and all n,’s are odd;

(b) h =3 and n, is even for at most one r;

(c) h=2.

In the case (a) the restriction Ei”im is reducible, since by (6.4), we have that
D5”¢SV has two composition factors, and these split when restricted to A, by Lemma
6.2.

In the case (b) D”"|S, has exactly two composition factors by (6.4). Suppose first
that n, #Z 2 (mod 4) for all . In this case Ei"LAD is reducible by the argument
as in the previous paragraph. Without loss of generality we may then assume that
niy =2 (mod 4) and that ny and ng3 are odd. In this case (D & DPrz ) D) |,
does not split by Lemma 6.2. So DﬁniAu has exactly two composition factors and
then Ei"iAy is irreducible.

In the case (c) assume first that both n; and ny are odd. Then D[S, is irre-
ducible by (6.4). So DP»|A, has at most two composition factors and then Ei"iA,,
is irreducible. So we may assume that at least one of nq, no is even. In this case
DPn|S, has exactly two composition factors by (6.4). If ny,ny #Z 2 (mod 4) then
(DB ) DPn2 )da, splits by Lemma 6.2 and so Ei" JA, is reducible. Otherwise we may
assume without loss of generality that ny =2 (mod 4) . In this case (D1 K DPm2)| 5
does not split by Lemma 6.2. So DB"lA,, has exactly two composition factors and
then Ei"iAy is irreducible. O

6.2. Restricting basic spin module to transitive imprimitive subgroups.
Throughout this subsection, a,b € Z>o with ab = n. We investigate when the restric-

tion Ei"iga , 1s irreducible.

A special role will be played by the irreducible F(Sq ¢ Sp)-modules of the form
DH QDY for i € Py(a) and v € P5(b). As a vector space, DH ) DV = (D*)®* @ D,
and the action on v; ® -+ ®@ v, @ w € (DH)®® ® DY is determined from the following
requirements: (g1,...,9s) € Sq X -+ X S, acts as

(g1,--596) - (11 @+ vy @w) = (g101) @ -+ @ (govp) @ W,

and h € S acts as

he(v1 @ ®@up @ W) = vp-11) @+ ® Vp-1() @ haw.
Lemma 6.5. All composition factors of the restriction Dﬁ"isazsb are of the form
DPay D and

2b/2 if a is even and b is even,
[DPr s, : DP* 1 D] = 20=D/2 if o is even and b is odd,
1 if a is odd.
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Proof. The first statement is established in the course of proving [17, Lemma 7.19].
The second one follows by dimensions taking into account that dim DA ) D =
dim D (dim DPa)b, O
Proposition 6.6. Suppose that n # 2 (mod 4). The restriction Ei"iGab 18 1rre-
ducible if and only if one of the following conditions holds:

(i) a is odd;

(ii) a =2 (mod 4) and b= 2.
Proof. We consider the following cases.

Case 1. a is odd. Then b # 2 (mod 4). By Lemma 6.5, we have that Dﬁ"isazsb =
DPay DPe. Since DP» splits and Gap is an index 2 subgroup of S, ¢Sy, it follows
that D% ZDB"LGG , is a direct sum of two irreducible modules and so Ei”iga , 18
irreducible, giving case (i).

Case 2. a is even and b is even. As G,y is an index 2 subgroup of S, S,
by Lemma 6.5, we may assume that b = 2, in which case we have [D5”¢S
DPay DP2] = 2. Note that D2 = 1s,.

Case 2.1. a = 2 (mod 4). In this case D% |, is irreducible, so the restriction
(DPay DP2)|p . = DPe & DPe is irreducible. Hence (DPe 2D62)¢Ga,2 is irreducible,
as Ag X Ay < Gy 2. It follows that Ei"iGa , 1s irreducible, giving case (ii).

Case 2.2. a = 0 (mod 4). We claim that in this case Ei”igw is reducible. To
prove this it suffices to show that (DPs DP2)]  is reducible. If (D DP2)]
was irreducible, restricting further to the subgroup A, 1.S2 < Gy 2 would give at most
two composition factors, but we claim that (D DP2)|, o has three. To see this,
note that

(DB DP2) g op, 2 EFREN @ E*RE™ @ Ef*RE™ ¢ Ef R Ef.
It now follows from the classification of irreducible modules over wreath products that
(DﬁaZD@)iAaZS2 has composition factors E, E_, E'such that E+ |5 xa, = Ei“ @Ei",
and El wa, = Bl RE" @ B R B

Case 3. a is even and b is odd. In this case by the assumption n # 2 (mod 4)
we have a = 0 (mod 4). As G, is an index 2 subgroup of S, S, by Lemma 6.5,
we may assume that b = 3, in which case we have [DPn|g . : D) D3] = 2. We
claim that in this case Ei”iga , is reducible. To prove this it suffices to show that

(DFay D53)¢Ga’3 is reducible. For that note first that
Aa X Aa X Aa g Aa,a,a g Ga,S

and that [Agqq @ Ag X Ag X Ag] =4 and [Gy3 : Ag ) = 6. Also note that DB has
dimension 2, and Dﬁ%Aa splits since a = 0 (mod 4) , so
(D1 D%) | 4oxnixa, = B (BERENREN)®.

e1,62,e36{+,—}

7L/2252 :

In particular (DP= D), 4 4 has 16 composition factors all of the same dimen-
sion.
If (DB 2D53)¢Ga,3 was irreducible, then (D% 2D63)¢Aa,a,a would have k£ composition

factors all of the same dimensions with k | 6. From the previous paragraph it then
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follows that there exists [ | 4 such that the restriction of any of these k& composition
factors has [ composition factors. In particular kI = 16, which leads to a contradiction,
since k | 6 and [ | 4. O

We consider the case n = 2 (mod 4) for completeness, even though it is not needed
for the proof of the mains theorems.

Proposition 6.7. Let n =2 (mod 4). Then Eﬁniga , 18 irreducible if and only of a
is odd.

Proof. If a is even then even Dﬁ’%salsb is reducible by [17, Theorem C], so we may
assume that a is odd. Then by [17, Theorem C] again, D" |g ,s, = D D% and
we claim that (D ZDﬁb)iga , is irreducible. As vector spaces we can write

DﬁazDﬁb:(Dﬁa)®b®Dﬁb: @ E?f@...@E?;@Eﬁb‘
817"'781)6{"_7_}

Note that the direct summand Ef_" Q- ® Ef_" ® EP is invariant under the action
of the subgroup A, ! Ay, and forms a submodule of (D% Dﬁb)iAazAb isomorphic to

EJ* 1 EP. Note that [(Da ) D) p a, : EJ* 1 EP] = 1.

If (DPa 2D5b)¢Ga , is reducible, then restricting further to A, ¢ Ay, the submodule
Eﬁ“ & ® Eﬁ“ ® EPv = Eﬁ“ ! EP described in the previous paragraph, must lie in
a proper submodule V' C (D# ZDﬁb)iga ,- Acting with elements of A, with exactly

two odd components, we see that all the subspaces ng R QL ® EBv with even
{k | ex = —}| lie in V. Next, taking into account the fact that a is odd, there exists
an element of G, <S4Sy with exactly one odd component in the base group S,s.

Acting with this element we see that all the remaining subspaces ng - -®E§b" QR EPe
also lie in V. Thus V = Dfa ) DP giving a contradiction. O

6.3. Proof of Theorem D. We may assume that G is not primitive. If G is in-
transitive, then (up to conjugation) G is contained in a subgroup of the form A,,_j &
for 1 < k < n, and we can apply Proposition 6.3. If G is transitive then (up to
conjugation) G is contained in a subgroup of the form G, for a,b > 2 and n = ab.
In this case we apply Proposition 6.6.
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