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TURNER DOUBLES AND GENERALIZED SCHUR ALGEBRAS

ANTON EVSEEV AND ALEXANDER KLESHCHEV

ABSTRACT. Turner’s Conjecture describes all blocks of symmetric groups and
Hecke algebras up to derived equivalence in terms of certain double algebras.
With a view towards a proof of this conjecture, we develop a general theory
of Turner doubles. In particular, we describe doubles as explicit maximal
symmetric subalgebras of certain generalized Schur algebras and establish a
Schur-Weyl duality with wreath product algebras.

1. INTRODUCTION

Turner’s Conjecture [Tu;, Conjecture 165] describes all blocks of symmetric
groups and Hecke algebras up to derived equivalence in terms of certain explicitly
constructed double algebras Dg(n,d), where @ is a quiver of finite type A. This
paper is the first in a series of two papers where we prove Turner’s Conjecture.
To achieve this goal, in this paper we develop a general theory of Turner doubles,
which we believe is of independent interest.

For simplicity, in this introduction we describe the results only over the ground
ring Z. We fix a Z-superalgebra X = X5 & X7 which is free of finite rank over Z.
Consider the invariants Inv? X := (X®%)S¢ under the action of the symmetric
group G4. This action depends crucially on the superstructure on X, as do the
structure and the dimension of Inv? X and of all algebras defined later in terms
of X. There is a natural superbialgebra structure on InvX := @ ., Inv? X,
The Turner double is the superalgebra DX := Inv X ® (Inv X)* with product
defined in terms of the superbialgebra structures on Inv X and (Inv X)*.

More precisely, (Inv X)* is naturally a superbimodule over Inv X, and the
product on DX is described, using Sweedler’s notation, as follows:

E@x)ney)=> £{nm @ (@ ne)E) - v),

for homogeneous &, € InvX and x,y € (InvX)*, with signs determined by
superalgebra data. We explain in §4.2 why this agrees with Turner’s definition in
[Tus]. A key property of DX is that it is always a symmetric algebra. Moreover,
under some reasonable assumptions on X, the double DX as well as all other
algebras defined later in terms of X are non-negatively graded. In this case, the
theorems below respect the gradings.

The superalgebra (Inv X)* can be identified with the symmetric superalge-
bra Sym(X*), which is naturally a sublattice in the divided power superalgebra
'Sym(X*). We show that the superalgebra structure on DX extends to that on
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'DX := InvX ® 'Sym(X*). Thus DX C 'DX is a subsuperalgebra. Upon ex-
tension of scalars to a filed K of characteristic 0, the embedding DX C 'DX
induces an isomorphism DXg — 'DXk. But, importantly, if K has positive
characteristic, the induced map is neither injective nor surjective.

Let Tx = X @& X™ be the trivial extension superalgebra of X, with the product
defined by (§,z)(n,y) = (En,§ -y +x-n) for {,n € X and z,y € X*. Let %
denote the shuffle product on @ d>0(TX)®d. We show in Lemma 3.10 that there

is a natural isomorphism #: ‘Sym(X*) =+ Inv(X*). Our first main result is the
following theorem, which often allows one to reduce the study of the double over
X to that of the invariants over T'x.

Theorem A. We have:
(i) The map p: 'DX — InvTx, £ ®@x — & * k() is an isomorphism of
superalgebras.
(ii) The subalgebra ¢(DX) C InvTx is generated by Inv(Xg) and all ele-
ments of the form t x 1§d with t € Tx and d > 0.

We have a natural superalgebra decomposition DX = @~ DX, with

DiX = EB Inv® X ® (Inv? ¢ X)*,
0<e<d
where the last direct sum is that of Z-modules, and similarly for 'DX. Then the
isomorphism ¢ of Theorem A restricts to isomorphisms ¢: ‘DX =5 Inv¢Tx.
Let A be a Z-superalgebra which is free of finite rank over Z, and consider the
case where X is the matrix superalgebra M, (A) for some fixed n. In this case
we use the special notation

DA(n,d) := DM, (A), 'D*n,d):="'DM,(A).

We refer to the superalgebra D4 (n,d) as a Schur double. The following theorem
shows that under a natural assumption, the subalgebra D“(n,d) C 'D%(n,d) is
a mazimal symmetric subalgebra:

Theorem B. Let d < n and C be a subalgebra of 'D?(n,d) such that D4 (n,d) C
C C'DA(n,d). Suppose that for every prime p the Fp-algebra C @z F, is sym-
metric. Then C' = D?(n,d).

Let S4(n,d) := Inv? M, (A). If A = Z, then S4(n,d) is just the (integral
version of) the classical Schur algebra. The generalized Schur algebras S*(n, d)
bear importance for the doubles, since, by Theorem A and the easy observation
that Thy, a) = My(Ta), we can identify 'DA(n,d) with ST4(n,d) and D*(n,d)
with an explicit subalgebra of S74(n,d).

The superalgebras S“(n, d) can be studied using a generalized Schur-Weyl du-
ality with the super wreath product Wj‘ = A®? x k&,. The superalgebra M, (A)
can be identified with End(V), where V := A%". The following generalized
version of Schur-Weyl duality is crucial for the proof of Turner’s Conjecture, but
is also of independent interest.

Theorem C. The natural left S (n,d)-action and the natural right Wf—actz’on
on V&4 commute and yield an isomorphism S4(n,d) = Endwf(V(@d).
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As a right Wf—supermodule, V@ decomposes explicitly as a direct sum of
certain permutation supermodules M;' where A runs over the set A(n,d) of all
compositions of d with n parts. So Theorem C realizes SA(n, d) as

Endw< & M;“).

AEA(n,d)

For the purposes of Turner’s Conjecture, it is important to ‘desuperize’ this de-
scription of SA(n,d) in the case where A is a certain zigzag superalgebra Z de-
pending on a quiver (). Let |X| denote the algebra obtained from a superalgebra
X by forgetting the superstructure. We construct a (rather delicate) explicit

isomorphism o from the ordinary wreath product Wcllz‘ to ]WdZ\ Twisting with
this isomorphism makes the permutation module M /\Z into an explicit alternating

sign permutation module M )‘\Z| over Wf'. Then

~ z
|Sz(n,d)| = EndW(\iz\ < @ M)‘\ |>

AEA(n,d)

Using Theorems A,B,C, we obtain an explicit description of Dg(n,d) as a maxi-
mal symmetric subalgebra of the endomorphism algebra on the right hand side.
This description is used in [EK] to identify Dg(n,d) with an algebra Morita
equivalent to (a Z-form of) a RoCK block of a Hecke algebra or a more general
cyclotomic KLR algebra, thus proving Turner’s Conjecture.

Now we describe the contents of the paper in more detail. In Section 2 we
set up some basic combinatorial notation. In Section 3 we discuss superspaces
and superalgebras, especially symmetric and divided power superalgebras and
various products and coproducts on them. In §3.4 we consider trivial extension
superalgebras. In Section 4 we begin to study Turner doubles. The properties of
invariant algebras Inv X are investigated in §4.1. The definition of DX is given
in §4.2, and its divided power version ‘DX is studied in §4.3. For Theorem A see
Theorems 4.26 in §4.4 and 4.30 in §4.4. We discuss gradings on doubles in §4.5
and symmetricity of doubles in §4.6.

Section 5 is on generalized Schur-Weyl duality. In §5.1 we discuss wreath
product algebras and permutation modules over them. In §5.2 we study the gen-
eralized tensor space, prove Theorem C (see Lemma 5.7) and discuss connections
with permutation modules over wreath product algebras. We consider idempo-
tent truncations of generalized Schur algebras in §5.3 and idempotent refinements
of permutation modules in §5.4. Desuperization is discussed in §5.5.

Section 6 is on Schur doubles. In §6.1 we identify D4 (n,d) with the subalgebra
of ST4(n,d) generated by certain explicit elements. Theorem B is proved in §6.2,
see Theorem 6.6. In §6.3 we discuss bases and product rules of Schur doubles
and their divided power versions. Section 7 is on the important special case of
the quiver Schur (schiver) doubles. Quivers and zigzag algebras are considered in
§7.1. Finally, in §7.2, we discuss the degree zero component of a schiver double
and results related to schiver generation and desuperization, which will be needed
in [EK].
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2. PRELIMINARIES

Throughout the paper, k is an arbitrary commutative (unital) ring. In some
constructions, involving divided powers, we will need to work over a more special
ring O, which is assumed to be a (commutative) integral domain with field of
fractions K of characteristic zero. We assume that there is a fixed ring homomor-
phism O — k, which allows us to extend scalars from O to k, i.e. to consider

Vi =V ok
for any O-module V. If U and V are k-modules, we denote U @ V := U ® V.
Important examples of triples (K, O,k) are (Q,Z,F,) and (Qp, Zy,F)p).

2.1. Weights and sequences. Let n € Z~ and d € Z>. We denote by A(n)
the set of compositions A = (A1,...,\,) with n parts Aj,..., A\, € Z>g. We
refer to the elements of A(n) as weights. For A = (\q,...,\,) € A(n), we denote
Al := A1+ -+ Ay We set

A(n,d) == {\ € A(n) | |\ = d}.

More generally, if S is a finite set, we denote by A(S, d) the set of tuples (Ag)segs of
non-negative integers such that ) _¢As = d. For S = [1,n], we identify A(S,d)
with A(n, d).

For 1 < m < n, we have special weights

em = (0,...,0,1,0,...,0) € A(n,1),
with 1 in the mth position, so that
A=A, ) = Ae1 + -+ Apen.
For m,n € Z, we consider the (possibly empty) segments

[m,n] :={re€Z|m<r<n}, (m,n]:={reZ|m<r<n},
[m,n):={reZ|m<r<n}
The symmetric group &,, acts naturally on the left on [1,n].
Let Seq(n,d) := [1,n]¢ be the set of (ordered) d-tuples r = (r1,...,ry) where
r1,...,7q € [1,n]. The action of the symmetric group &4 on [1,d] yields the right
action of &4 on Seq(n,d) by place permutations: for r € Seq(n,d) and g € Sy,

we have rg = s where s, = 14, for all a € [1,d].
For X € A(n,d) we set

*Seq:= {r € Seq(n,d) | &y, + -+ +er, = \}. (2.1)

Then Seq(n,d) = [ \en(n.a) ASeq is the decomposition of Seq(n, d) into &4-orbits.
For A\ € A(n,d) we define

r=(1,...,1,2,...,2,...,n,...,n) € *Seq,

where each r € [1,n] is repeated A, times.
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2.2. Integer-valued matrices and sequences. Define M(n) to be the set of
n X n-matrices with non-negative integer coefficients. Let E, ; € M(n) denote
the matriz unit with 1 in the (r, s)th position. For C' = (¢,5)1<r,s<n € M(n), we
set |C|:= > _ ¢, and we define

M(n,d) :={C € M(n) | |C| = d}.
Given C, D € M(n), define the integers
Cl= Crsls C> = <C>
e ()= 1 G
For any C' € M(n,d), we further set
a(C) = (Zs Clisy D s C2sre s Qg cms) € A(n,d),
B(C) = (ZT Cris 2 op Cr2yeees Doy cr,n) € A(n,d).
Let A\, i € A(n,d). Define
pM(n,d)y = {C € M(n,d) | «(C) = p and B(C) = A}.
The subsets of M(n) and M(n,d) consisting of {0, 1}-matrices are denoted by
"M(n) :={C € M(n) | c,s € {0,1} for all 1 <r,s < n},
"M(n,d) := M(n,d) N ' M(n).

In §6.3, we will use the following generalization. Let B = By LIB7 be a set split
as a disjoint union of two subsets B; and Bj. Set

MB(n) := {C = (CP)pep | C* € M(n) for b € By, C* € 'M(n) for b € By}
(2.2)
Let C = (C®)pes € MPB(n). For every b € B, we write C® = (¢ ;)1<r,s<n. Denote
|Clp := ZbEB(-) |CP], |Cl; = ZbEBi ICP|,

ICl:==[Cls+[Cli =) _[C°l= Y &, (2.3)
beB (r,s,0)€[1,n]2xB
MEB(n,d) == {C € MB(n) | |C| = d}. (2.4)

Let C = (C®)peg and D = (DP)pep € ME(n). We define C + D by (C + D)® =
CP?+ DP for all b € B. Note that C+ D may or may not be an element of M®(n).

We set
cl:=[Jcor= ] ¢ <g> =11 <gz>

beB bEBy beB
Define Seq®(n, d)? to be the set of tuples

(r,b,s)=((r1,...,7rq), (o1,-..,bq), (S1,...,84)) € Seq(n,d) x B x Seq(n, d)

such that for any distinct k,1 € [1, d] with (rg, bk, sg) = (r7, by, $;) we have by, € Bg.
The left action of &4 on [1,d] induces a right action on each component of the
direct product Seq(n, d) x B* x Seq(n, d) as in §2.1, so we have a right action of
G, on Seq®(n,d)?. There is a bijection

Squ(n7 d)z/Gd — MB(na d)a (’l", b, S) = M[T7 b, S] = ((Cﬁ,s)r,se[l,n})bEB
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where
CE,S = ﬁ{k € [17d] | (Tkabkysk) = (Tvbas)}‘

We always identify Seq®(n, d)? /&4 with MB(n, d) via this bijection. In particular,
given C € M®(n, d), we write (r,b,s) € C if M[r,b,s] = C.

2.3. Cosets. Let (S, <) be a totally ordered finite set. Recall the notation A(S, d)
from §2.1. Let A = (A\s)ses € A(S,d). The corresponding standard set partition
QO is the partition of [1,d] into the segments

Q? = (Et<s At? Ztﬁs )\t] (S € S)

Note that the segment Q) has )\, elements. Write S = {s; < --- < s,,}. The
standard parabolic subgroup

GA%GAslx"'XGA <Gy (2.5)

Sn —

preserves the set partition Q*. If A € A(n,d), we define Q* and &), via the usual
total order on [1,n].

Let A € A(S,d) and 2* be the set of shortest coset representatives for G;/6,
where the length ¢(g) of an element g € &), is the smallest integer ¢ such that g can
be represented as a product of ¢ transpositions of the form (r,r +1), 1 <r < d.
For € A(S,d), we also have the set #& of shortest coset representatives for
S, \&, and the set #Z* of shortest double coset representatives for &,\&,/& .
Note that we have a bijection

H9P — FSeq, T — 1ty (2.6)
and a bijection *P — P*, g+ g~ L.

It is well known and easy to see (cf. e.g. [JK, 1.3.10]) that for every C' =

(¢r,s) € ywM(n,d), there exists a unique element g(C) € #&* such that

9(C) ) N = cps
for all r,s € [1,n]. Moreover:
Lemma 2.7. For any A\, u € A(n,d), the map C — g(C) defines a bijection
M(n,d)y 1P,
Given C = (¢5) € uM(n,d)y and 1 < s < n, we have a composition
Cis = (Cls,.. . Cns) € A1, Ng).

Given elements g1 € Gy,,...,g9n € 6),, we consider (g1,...,9n) € Gy, X---xGy,
as an element of G4 via the natural embedding of &), x---x &), into &4. Another
easy and well-known result (see e.g. [DJ, Lemma 1.6]) is:

Lemma 2.8. Let A\, € A(n,d). There is a bijection
{(C,g1,...,9n) | C € ;JM(n,d)y, gs €D for s=1,...,n} kg
deﬁned by (07 g1, .- >gn) = 9(0)(917 s >gn)
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3. SUPERSPACES AND SUPERALGEBRAS

From now on, we write Zy := Z/2Z = {0,1}. Let V = V5 & V; be a free
k-supermodule of finite rank. We refer to V' as a (k-)superspace. The k-rank of
V is denoted by dim V. For parities of elements, we write # = 0 if v € Vj and
o = 1if v € V3. Whenever ¥ appears in a formula, this means that we assume
that v is a homogeneous element. If V' is an (associative unital) k-superalgebra,
we denote by |V| the same algebra without the Zs-grading.

By a Z-supergrading on a superspace V' we mean a Z-grading V = €p,,,c, V"™
such that V™ = (V™ N V) & (V™ N Vi) for all m € Z.

3.1. Dual superspaces and tensor products. The dual V* := Homy(V, k) is
a superspace in a natural way. We have the pairing (-,-) between V and V*:

(v,8) = (B,v) == B(v)  (veV, feV).

Let d € Z~q, and V1, ..., V; be superspaces. The tensor product V1 ® --- ® V,
is again a superspace in a natural way. We always identify (V; ® - - ® V)* with
ViF® - @ V] via

</@1 R R /@d71)1 R X® Ud> = (—1)[51"“’ﬁdwl"“’vd] <,81,’U1> . <,8d,?)d>, (31)

where 8, € VS, v, € Vg for a =1,...,d, and where

By Bay vty ..oy vg) = Z Bcla (3.2)
1<a<c<d
is defined for (homogeneous) elements f,...,B4,v1,...,04 of arbitrary super-

spaces. Note that

(1@ @ Ba,v1® V) = (1@ Qvg, 1 ® "~ @ Ba)
= (_1)[1)1,...,Ud;ﬁh...,ﬁd} (Ulv Bl> s (Ud7ﬁd>7

since (vg, B4) = 0 unless v, = 3, for any 1 < a < d.
If V1,..., Vg are k-superalgebras, then V] ® --- ® V; is again a superalgebra
with

(11 @ @vg) (w1 @ - @ wy) = (_1)[”17...7Ud§w17---7wd]vlw1 ®@ - ® vgwg,

for vy, wg € Vg, a=1,....,d.
The symmetric group G4 acts on the superspace V% on the right by (super)
place permutations. More precisely, for g € &4 and vy, ...,vq4 € V, we define

[g;v1,...,04) := Z Vq Ve, (3.3)
1<a<e<d, g~ta>g~ e
and
(V1 ® - ®ug) = (—1)[9;”1"“’”‘1]1)91 ® -+ ® Vgq- (3.4)

If V is a superalgebra, then &, acts on V®¢ with algebra automorphisms.
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3.2. Symmetric and divided power superalgebras. Recall that O is a do-
main of characteristic zero. Let V = V5 @ V7 be an O-superspace with bases
By = {z1,...,x;} of V5 and By = {zj41,...,%14m} of Vi. Then B = Bj LUB; is a
homogeneous basis of V. We identify Vi := V ®» k with the free k-supermodule
with basis B, and we identify V' with the O-subsupermodule V ® 1 C Vk.

For every d € Z>q, consider the O-superspace

Tens?V := V¥4,

Let
TensV = EB Tens®V
dEZZO

be the tensor superalgebra of V' and SymV = @dezm Sym? V be the symmetric
superalgebra on V. That is, SymV is the quotient of Tens V by the ideal generated
by all elements of the form v ® u — (v ® u)? for u,v € V and all elements of
the form v ® v for v € V;. Moreover, for every d € Zx>q, the subsuperspace
Sym?V < SymV is the intersection of SymV with the subsuperspace Tens? V' of
Tens V.

We consider SymV as an O-form of SymVkx. We will also need another O-
form. The divided powers superalgebra 'SymV = @’ Sym? V is the O-subalgebra
of Sym Vi generated by the divided powers v(™ = v™ /m! for all v € Vj and
m € Z>( together with all v € V5. We now define ‘Sym Vj := ('Sym V') ® k and
write v(™ := (™ @ 1 € 'Sym Vj.

For every d € Z>(, we have the fixed points Inv?V = (Tensd V)%4 of the
action (3.4) and set InvV := @ o Inve V. It is a subalgebra of TensV with
respect to a new product, which we now define.

For d,e € Z>q, recall that (d€) 9 stands for the set of the shortest coset repre-
sentatives for (G4 x 6,)\S41.. We consider the linear map

Tens? V @ Tens®V — Tens™*V, t @ s+ t s,
defined by

(21® - Qzg)* (Y1 @ QYe) 1= Z (21Q - QgY@ Dye)? (3.5)
geld:e) g

for all x1,...,24,%1,..-,Ye € V. This new *-product (or shuffle product) on
Tens V makes it an associative supercommutative superalgebra. Moreover, Inv V
is a subsuperalgebra of Tens V' with respect to the *-product.

Let V. =U @& W be a direct sum decomposition of O-supermodules. For every
e > 0, we identify Tens® U and Tens® W with subsupermodules of Tens® V in the
obvious way. The following is easy to see:

Lemma 3.6. Let d € Z>o. For every e € [0,d], the O-supermodule homomor-
phism
InveU @ Inv? W — Inv?V, s @t — st

1s injective, and we have a direct sum decomposition of O-superspaces:

d
Inv?V = @ (Inv® U) * (Inve ¢ W).
e=0
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To describe bases, set
MB = {(c1,...,c,C1015- s Clam) | €1y oo vyl € L0, Caty---sClam € {0,111}
For ¢ = (c1,...,Cem), define |¢| :==¢1 + -+ + ¢4, and denote
MG = {ce M®||c| = d}.
In terms of (2.2), (2.4), we have M® = MB(1) and M5 = M®(1,d). Then

{‘IE? e :Elcf:nT (Cl, R 7Cl+m) € M?{} (37)
is a basis of Sym? V|
{2l | (e, erpm) € MBY (3.8)

is a basis of 'Sym? V, and
® m
{az?cl - xlffg | (c1,...\Clym) € MB} (3.9)

is a basis of Inv? V.
Define
Star?V := Vx-ooxV Star V' ::@StardV,
d times d>0
so that Star V' is an O-subsupermodule of Inv V.

Lemma 3.10. There is an isomorphism of algebras k:'SymV — InvV which

maps xgcl) . xl(c”m)

- to az?cl Koo *x(ﬁf”m for all (c1,...,c14m) € ME. Moreover,
k(Sym(V)) = Star V.

m

Proof. 1t follows easily from the definitions that there is a homomorphism of
superalgebras SymV — InvV which is the identity on V. Under this map, for

. C, .
any (c1,...,C4m) € M3, the basis element z{' ... xlfn*m is sent to
! *Cltm ®c1 RCltm
R A =ci!...cpm! ] koeekx T

Extending scalars to K and restricting to ‘Sym V', we obtain the desired isomor-
phism ‘SymV -~ Inv V. The final statement of the lemma is clear. (]

3.3. Coproducts. We can also consider TensV as a supercoalgebra, with the
coproduct

A: Tens?V — @ Tens® V ® Tens’ V,
e7f207 e+f:d

MR R Y (1@ @) D (Vey1 @ @ ).
e7f207 e+f:d

(3.11)

For a supercoalgebra (X, A) and = € X, we repeatedly use Sweedler’s notation

A) =) w0y ® ()

where z(;) and () are homogeneous whenever z is.
The following is a superalgebra version of the well-known fact (see e.g. [Re,
Proposition 1.9]) that Tens V' is a bialgebra with respect to (x, A):
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Lemma 3.12. Let s,t € Tens V. Then
A(sxt) = Z(—l)g(z)t“) (s1) * 1)) ® (5(2) * t(2))-

Proof. We may assume that s = s1 ® - ® s, and t = 1 ® -+ ® ¢}, for some
S1y..+,8a,t1,...,t, € V. Let 7%/ be the projection from Tens V ® Tens V onto
the summand Tens®V ® Tens/ V. Fix e € [0,a + b] and denote by 2(0791792)
the sum over all triples (C, g1, ¢g2) corresponding to taking A = (e,a + b — e) and
i = (a,b) in Lemma 2.8. Then using that lemma, we get

TOT A (s x t) =rotHTA Y (st

hele) 9
_peatb—ep Z (s® t)g(C)(glvgz)
(C\91,92)
= DY (D"51® - ®se, DO Doy, )

(C.g1,92)
® (301,1—1-1 Q- Q8 Qley141 Q-+ & ty)9?

=D (DM (51® - ® 8¢, ,) x (@ B tey, )
C

@ ((Se1,041 @+ @ 50) % (teg 101 @ -+ @ 1))
=r@ot=e N (1)@ (s(1) # 1(1)) @ (5(2) * H2)),
where m = (f1 + -+ + ey, )(5¢; 141 + - -+ + 54). This completes the proof. O

Note that InvV is a subsupercoalgebra of Tens V. The supercoalgebra Inv V'
is supercocommutative, i.e. if A(§) = Y &1y ® &(2) in Sweedler’s notation for a
(homogeneous) § € InvV, then

A(©) = D (-1 g ® £u). (3.13)
Hence the (restricted) dual

(InvV)* = @(Invd V)*

d>0

has a superalgebra structure which is dual to the coalgebra structure on InvV.
More precisely, the superbialgebra structure on (InvV)* is determined by the
identity

(En,z) = ({E@n,Ax)) (&, € (InvV)*, z € Inv X),

where as usual we identify (InvV)* ® (InvV)* with (InvV ® InvV)* via (3.1).
This makes (InvV)* a supercommutative superalgebra. Given &1,...,&; € V*,
we have the functional & ®---®¢&; € (Tens? V))*. Extending by zero to the whole
Tens V and restricting to InvV, we can interpret £ ® --- ® &4 as an element of
(InvV)*. The following is now clear:

Lemma 3.14. The natural map V* — (InvV)* extends to the isomorphism of
superalgebras Sym(V*) — (Inv V)*, which maps any product & - - - £4 € Sym*(V*)
with &1,...,&q € V* to the functional & ® -+ @ &g € (InvV)*.
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Corollary 3.15. Identifying the O-submodule 'Sym(V*) C Sym(Vy) with an O-
submodule of (Inv Vk)* via Lemma 8.14, we have
StarV = {z € Inv Vk | (z,€) € O for all £ € 'Sym(V*)}.

Proof. Recall the basis B = {x1,...,24m} of V, and let {&1,...,&4m} be the
dual basis of V*. By Lemma 3.10,

{a*¢ = 2] * - % azlfg” le=(c1,...,cem) € MP}
is an O-basis of Star V. On the other hand,
(€0 =g gl le= (e ) € M)
is an O-basis of ‘Sym(V*). It remains to note that (2*¢, &) = £5, 4. O

3.4. Trivial extension algebras. Let A be a k-superalgebra. We consider A*
as an A-bimodule with respect to the dual regular actions given by

(a-a,b) = (a,ab), (b,a- )= (ba,q) (a,be A, o€ A). (3.16)
We refer to this bimodule as the dual reqular superbimodule.

The trivial extension superalgebra Ty of A is Ty = A @ A* as a superspace,
with multiplication

(a,a)(b,B) = (ab,a - 5+ - b) (a,be A, a,B € AY). (3.17)
Let m: A® A — A be the multiplication map on A and
m': A = A" ® A”
be the dual map. For a € A%, we write m*(a) = }_ a(1) ® () using Sweedler’s
notation. Then

(be, o) = <b®c m* (@) = (b@ e, Y am @ag) =Y (=10 (b, am)(c ap),
(a,be) = (m*(@),b@ c) = (3 ap) @ ap),b@c) = > (~1)%@%ag), b o), o).

Note that the right hand sides above are equal to each other since <a(1), b) =0
unless &) = b and (a(z), c) = 0 unless &9y = ¢. The formulas imply that for any
a € A and a € A*, we have

a-o= Z(_l)&@(l) <CL, ()((2)>O((1), (318)

a-a =Y (-1)%0%a,aq))ap). (3.19)

Let n € Z~o. The matrix algebra M, (A) is naturally a superalgebra. For
1 <r,s<nandac A, the matrix aE, ; € X with a in the (r, s)th position and
zeros elsewhere will be denoted by &' ;. Then §?7S§f7u = (58,t§f%. We have a = a.
For o € A* and 1 < 7,5 < n, we have the element z;'; € M, (A)* defined from

(T 5, §8 ) = Ort0sul, a) (1<t,u<n, ac€A). (3.20)
Lemma 3.21. There is an isomorphism of superalgebras
My (Ta) == Tag, ), €5 = (650 22,)

foralll<r,s<n,a€ A and a € A*.
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Proof. Let 1 <r,s,t,u,v,w <n and a,b,c € A. On the one hand, we have

(a,00) (bﬁ =6, S(aa(bﬁ =6, S(abaﬁ—l—ab Hés,t( ab xaﬁ—l—ab)

rs ) u,r

On the other hand
(67(“1787 s,T )(gt w? ut) (grsftuvfrs ’ t +xsr gt u)

Since §?7S§f7u = 68,t§r,u7 we just need to prove that

57[‘1,8' ut+$sr Etu_(S xaﬁ—l—ab (322)
But

b b
(€2, -, + 2%, €0 ) = T (€2,E2,) + 28 (EF uEC )

b
= wT"Tgt( )+5uvxs r( t,cw)

= 5w,r5u,u5t,s<5, ca) + 6y 005 t0r u v, bC)
= 0s,t0up0rw(a- f +a-b)(c)
= bs,0 N ED ),
proving (3.22). O

4. TURNER DOUBLES

In this section, we review and develop Turner’s theory of doubles [Tuy, Tus,
Tus]. We will freely use the notation and conventions of Section 3. Let X
be an O-superalgebra, free of finite rank as an O-supermodule. We consider
Xk = X ®0 k as a k-superalgebra.

4.1. Invariants. For d € Z>o we have a superalgebra structure on Tens? X :=
X®4 induced by that on X. So we have a (locally-unital) superalgebra structure
on Tens X := P - Tens? X, with the product on each summand Tens? X being
as above, and zy = 0 for € Tens?X and y € Tens®X with d # e. Note
that this algebra structure is different from the two algebra structures on Tens X
considered in §3.2, namely the product ® and the product .

In fact, Tens X is now even a superbialgebra with the coproduct (3.11). Since
S, acts on Tens? X with superalgebra automorphisms, the fixed points Inv? X =
(Tens? X)%4 is a subsuperalgebra of Tens? X. By observations made in §3.3,
InvX = P, Inv? X is a supercocommutative subsuperbialgebra of Tens X.

Lemma 4.1. Let x,y € Tens X and z € InvX. Then
(@ y)z =Y (=170 (z2)) * (y2(2)),
2z xy) = (1)°O%(zq)z) * (22)y)-

Proof. We may assume that z € Inv? X, z € Tens® X and y € Tens? ¢ X for
some non-negative integers d > e. Write Y’ 2(1) ® z(g) for the Inv® X ® Inv®—® X-
component of A(z). Then, since z is G4-invariant, we have

(@xy)z= >  (z@y)

ge (ed—e) g
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= Y (@oye)’

ge (e;d—e) g
g
= ) <Z, ((z®@y)(zq) @ 2(2))))
ge (e,d—e) g
__ g
= > (Tenroe o)
ge (e,d— e)g

! __
= (=10 (wz)) * (y2(2)
= Z DYV (z21)) * (y2(2))

where the last equality holds because a summand on the right hand side is zero
unless z(1) € Inv® X and z(y) € Inv?=¢ X. The second equality in the lemma is
proved similarly. O

Lemma 4.2. Let x,y,2z,u € InvX. Then

(@xy)(zxu) =D (1) (za)2) * W)2@) * @@um) * Gete),
where s = (Z(2) + J(2))7 + J1)(T(2) + Z(1)) + J2)%0)-
Proof. Writing A(x xy) = > (2 * y)1) ® (z * y)(2), we have

(@ry)(zxu) = (- 1)@ (@ %) (1)2) * (2 * ) 2)u)
= (-1)P@T)TIOT@ () * y(1))2) * (32 * Y2))u)

=D (1 (z0)2) * (W z@) * (@@un) * Ge)ue)
where s = (Z(2) + ¥(2))Z + ¥1)T(2) T ¥(1)Z(1) T Y(2)U(1) is as in the statement of the
lemma, the first and third equalities hold by Lemma 4.1, and the second one is
due to Lemma 3.12. O

Lemma 4.3. Letl € Z~o, di,...,di, f1,...,fi € Z>0, and 1x = e1 +--- + ¢
with e;ej = ;. je; for all i,j. If z; € (Tens® X)e?di and y; € e;@fi (Tens® X) for
i=1,...,1, then

(':Ul X o e .o $l)(y1 ko e. ok yl) — (_1)[xlv---vxﬁylv"'vyl]5d1’f1 L. 5dl7fl ($1y1) %k o. ok (xlyl)

Proof. Let A = (dy,...,d;) and = (f1,..., fi). Note that (z1 ® -+ ® 27)9(y1 ®
~@y)t=0if g € 22, h € *P and either A # p or g # h. Since &, acts on
Tens? X with superalgebra automorphisms for every d, the result follows. O

Corollary 4.4. If X = X1 & --- @ X; is a direct sum of superalgebras, then there
is an isomorphism of superalgebras

@ Inv® X ® -+ @ Inv?® X; =5 InvdX, TR Qx> T ¥ %I
(dl,...,dl)EA(Ld)
Proof. This follows from Lemmas 3.6 and 4.3. (]

Recall from from §3.4 that we consider X* as a bimodule over X. Note for
d € Z>o that Tens?(X*) is naturally a bimodule over Tens? X with respect to

(1@ Qxq) (1@ Q) = (_1)[$17~~~7$d§§1,---,5d](ml 8@ @ (g &q), (4_5)
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where x1,...,2q4 € X and &1,...,&§; € X*, or &,...,¢&; € X and z1,...,24 €
X*. As usual, if d # e we define the action trivially: Tens? X - Tens®(X*) =
Tens®(X*)-Tens? X = 0. This yields a Tens X-bimodule structure on Tens(X™*).
Upon restriction, we now get an Inv X-superbimodule structure on Inv(X™*). We
refer to this superbimodule structure as the standard superbimodule structure.
On the other hand, we have the dual regular Inv X-superbimodule structure on
(Inv X)*, see (3.16). By Lemmas 3.14 and 3.10, we have an embedding

i (Inv X)* 5 Sym(X™) < 'Sym(X*) > Inv(X™). (4.6)
Lemma 4.7. The embedding ¢ is a homomorphism of Inv X -bimodules.

Proof. Every element of Inv(X™) is by definition a linear combination of func-
tions of the form & ® --- ® &; with &1,...,& € X*. On the other hand, by
Lemma 3.14, (Inv X)* is spanned by the functions of the form ({1 ®- -+ ®&g)|1av x
with &,...,&; € X*, and

(& ® @& mvx) =& - x&a
Note that

(51 koewe ok gd)|Ian — d'(£1 R 5d)|Ian-
We have proved for any ¢ € Tens?(X*) that

L(£|IHVX)|IHVX = d!£|InVX- (48)

Let z € InvX. We now prove that ¢(x - (§{|tvx)) = @ - t(&|mnv x), the proof
that ¢((§|tov x) - ) = t(§|mv x) - © being similar. Using (4.8), we get

L(gj : (£|Ian))|Ian = L((l‘ . £)|Ian)|Ian = d'(l‘ : £)|Ian =dux- (£|Ian)
=T~ ((L(f‘InVX))’Ian) = (‘T : L(ﬂIan))‘Ian-

To prove that ¢(z - (§|mvx)) = @ - t(§|mmv x) it now suffices to show that the
map Inv(X*) — (Inv X)* given by 7 — 7|myx is injective. Let n € Inv?(X*)
satisfy 7|my x = 0. Since d!('Sym(X™*)) C Sym(X*), we can write d!n = (|t x)
for some ¢ € Tens?(X*). Then, using (4.8),

0= d!U\Ian = L(ﬂIan)’Ian = dlg’Ian

Hence |1y x = 0. But ¢(§|1mv x) = d!n, whence n = 0, as desired. O

Recall the trivial extension algebra Tx = X @ X* from §3.4. For d,e € Z>y,
we define Tens®® T'x to be the span in Tens? ¢ T'x of pure tensors y; ® - - - ® Ygre
such that d of the y’s are in X and e of the y’s are in X*. We identify Tens? X
with Tens?® Tx and Tens?(X*) with Tens®?Tx in the obvious way. Then for
¢ € Tens? X and = € Tens®(X*), we have

x=¢-x and x{=x-&,

where the left hand sides are products in the algebra Tens? Ty and the right
hand sides are the standard actions in the sense of (4.5). (Note the change of our
notational ‘paradigm’: from now on we use Greek letters to denote elements of
Tens X and Roman letters for elements of Tens(X™*).)
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Lemma 4.9. Let a,b,d € Z>¢ with a,b < d. Suppose that v € Inv*(X*),
y € Inv?(X*), € € Inv? % X, and ) € Inv? =" X. Then in Inv? Tx we have

(Exaz)(nxy) =D (~D)OCDFTEDIIOTE 0 n oy (- 1)) * €1y - v)-
Proof. Since X*X* = 0 in T, the result follows from (3.13) and Lemma 4.2. O

4.2. Doubles. We have a natural pairing (-, -) between Inv X and (Inv X)*, with
(x,6) = (£,2) =0 for £ € Inv® X and z € (Inv® X)* with d # e. Also, for every
d € Z>o we have the dual regular actions (3.16) of Inv? X on (Inv? X)*. Again,
we declare that ¢ -2 = z-& = 0if £ € Inv? X and z € (Inv® X)* with d # e.
There is a superbialgebra structure on (Inv X)* which is dual to that on Inv X.
We write
V:(InvX)" = (InvX)* ® (Inv X)* (4.10)

for the corresponding coproduct. Note that V((Inv? X)*) C (Inv? X)*®(Inv? X)*
for all d € Z>o.

We now recall Turner’s construction [Tus] of a double superalgebra DX. As
an (O-superspace,

DX :=InvX ® (Inv X)"

The product is defined, using Sweedler’s notation for A, as follows:

E@r)(mey) = Z(—l)g(”(E(Q)Jrﬁm)m“)fi(z)na) ® (r-ne))Eay -y)  (4.11)

for &,n € InvX and z,y € (InvX)*. The associativity of the product can
be checked by a straightforward computation, cf. [Tus, Theorem 1.1]. In view
of (3.18) and (3.19), this product formula can be rewritten, using Sweedler’s
notation for A and V, to match [Tus, Remark 1.3]:

E@r)mey) = Z(—1)8<§(1)7 Y@ (T 1y, M) 6@y @ T2)Ya), (4.12)
where

s =Emée) + 0T + Tl + InTe) + I)in + Ze)le) + e

It is easy to see that we can write the superalgebra DX as a direct sum of
subsuperalgebras

DX =P DX,
d>0
where
DiX = EB Inv® X ® (Inv/ X)*. (4.13)
e,f>0, et f=d
We use the following notation for the summands on the right hand side above:
D4 X = Inv® X ® (Inv/ X)*. (4.14)

Remark 4.15. The definition of the double D?X makes sense for any k-algebra
X, without any assumption on the ring k. We also note that Lemmas 4.1, 4.2,
and 4.9 do not need the assumption that k = O. However, it is crucial to work
over @ when we deal with the divided power version 'D?X below.
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Remark 4.16. The direct sum decomposition in (4.13) is a priori only a decom-
position of O-modules. But one can say a little more.
(i) DX is a subalgebra of DX naturally isomorphic to the algebra Inv? X.
(ii) D*4X is an ideal in D?X. Moreover,
(D% X)) (D™ X) = (D™ X)(D*'X) =0
unless e = d, in which case for £ € Inv? X and z € (Inv? X)*, we have

Eo(loz) =1 (- z), (4.17)
1Rz)(E®1) =10 (z-&). (4.18)

In particular, D#°X @ D%?X is a subalgebra of D?X, isomorphic to Ty a x. As
a still more special case, we get D'X = T'x.

4.3. Divided power doubles. In view of Lemma 3.14, we identify the superal-
gebras

(Inv X)* = Sym(X™). (4.19)
Then
Sym(X*) C 'Sym(X™*) C Sym(X™) ®0 K = Sym(Xg) = (Inv Xk)*,

where we have used the identification (4.19) over K for the last equality. We have
the left and right dual regular actions of Inv Xkx on (Inv Xk)*. Since InvX C
Inv Xk in a natural way, we can also speak of the dual regular actions of Inv X
on (Inv Xg)*.

Lemma 4.20. The O-submodule 'Sym(X*) C (Inv Xg)* is invariant with re-
spect to the dual regular actions of InvX on (InvXg)*. Thus, 'Sym(X™*) is
an Inv X-superbimodule. With respect to this Inv X -superbimodule structure
on 'Sym(X*) and the standard Inv X -superbimodule structure on Inv(X™*), the
map k:'Sym(X*) > Inv(X*) of Lemma 5.10 is an isomorphism of Inv X -
superbimodules.

Proof. By (4.6) and Lemma 4.7, we have an Inv X-bimodule homomorphism

t: (Inv X)* = Sym(X™) — 'Sym(X*) - Inv(X™). (4.21)
As

Sym(Xg) = Sym(X™) ®0 K =2 'Sym(X™) @0 K = 'Sym(XF),
extending scalars in (4.21), we get an Inv Xg-superbimodule isomorphism
i (Inv Xg)* = Sym(X§) = 'Sym(Xg) — Inv(Xy).

Considering 'Sym(X*) as the sublattice in Sym(Xy), the restriction ik |rgym(x+) is
the isomorphism #: 'Sym(X*) =+ Inv(X*). Now the standard left and right

actions of Inv.X C Inv Xk on Inv(Xy) leave Inv(X*) = Inv(X5) N Tens(X™)
invariant, and we have Lﬂgl(Inv(X*)) ='Sym(X*). This implies the lemma. O

The identification Sym(X5) = (Inv Xk )* from (4.19) together with the coprod-
uct (4.10) yield a coproduct

Vk: Sym(Xg) — Sym(Xg) ® Sym(Xg).
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Lemma 4.22. We have

Vi ('Sym(X*)) C (Sym(X*) ® 'Sym(X*)) N ("Sym(X™) ® Sym(X™)).
Proof. Let x € 'Sym?(X*) for some d € Z>o. Let {&1,...,&n} be a homogeneous
basis of Inv? X and {z1,...,2,,} be the dual basis of (Inv?X)* = Sym?(X*),
cf. (4.19). We can write Vk(x) = 7", y; ® z;, where y; € sym?(X3) for
j=1,...,m. By Lemma 4.20, 'Sym(X*) is invariant under the left dual regular
action of InVX, so&-x € ’Sym (X*) for any i € {1,...,m}. On the other hand,

by (3.18),
iow = Y- 5,25}y = (1),
j=1
whence y; € ‘Sym?(X*). We have proved that Vg('Sym(X)) C (‘Sym(X*) ®
Sym(X *)) The other inclusion is proved similarly. O
By Lemma 4.22, we have a coproduct
V:/'Sym(X*) — 'Sym(X™*) ® 'Sym(X™) (4.23)
obtained by restricting V. Recalling (4.19), note that
DX =InvX ® (InvX)" = InvX ® Sym(X™) (4.24)

is an O-form of D Xg. We define a larger O-form
'DX := Inv X ® Sym(X"),
which is closed under the multiplication (4.11) because 'Sym(X*) is invariant
under the left and right dual regular actions of Inv.X by Lemma 4.20. The
product in ‘DX is also given by the formula (4.12) where we use the coproduct
(4.23) on = and y. We have 'DX = P, 'D?X, where
‘DX = Z Inv® X ® 'Sym/ (X*).
6,f20, 6+f:d

We use the following notation for the summands on the right hand side above:

‘D X = Inv® X @ 'Sym’ (X*). (4.25)

The following result often allows one to reduce the study of DX to that of
InvTx. Recall the isomorphism x from Lemma 3.10.

Theorem 4.26. There is an isomorphism of O-superalgebras
'DX = InvTy, @z Exn(z) (€€ InvX, € 'Sym(X")).

Proof. The map ¢ in the theorem is an isomorphism of O-supermodules by Lem-
mas 3.10 and 3.6. To see that it is an algebra homomorphism, we compute for
&, e InvX and z,y € 'Sym(X™):

p(E@n)n®Y)) = p( D (~DOETTHEDITE ngy @ (2 1w) () - 1)
= > () O EHTEEINT (¢ ) k(- 12)) () )
=> (-1 DEOE@HHDFIOT (£ n ) % v(2 - 1)) * K(EQ) - V)
=> (-1 )60 E@ TN (¢ ) * (k(2) - 1)) * () - £(Y))
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= (& x (@) (n * £(y))

=p(§@x)p(n®y),
where we have used (4.11) for the first equality, Lemma 3.10 for the third equality,
Lemma 4.20 for the fourth equality and Lemma 4.9 for the fifth equality. U

Example 4.27. Let O[z]; be the truncated polynomial algebra O[z]/(z9+1),
and 'O[z]4 be the divided power truncated polynomial algebra defined as the O-
subalgebra of K[z]/(24t1) spanned by all 2(¢) with e = 0,...,d. If X is the trivial
algebra O, let y € X* be the function which sends 1 to 1. Then DX = O[z],,
with 199-¢ ®9¢ € Inv?~¢ X ® Sym®(X*) corresponding to z¢, and 'D4X ='0lz],,
with 1%97¢ @ ¢(¢) € Inv? ¢ X ® 'Sym®(X*) corresponding to 2(¢).

4.4. A generating set for a Turner double. For any d € Z>(, define DiX C

Inv? Ty to be the image of DX under the isomorphism of Theorem 4.26, and
set DX = @dzo D4X. Of course D?X is just an isomorphic copy of DX,

considered as an explicit subalgebra of Inv? Tx. By (4.24) and Lemma 3.10, we
have

DiX = EB Inv? ¢(X) % Star®(X™). (4.28)

Let Y = X7 & X*, so that Y is naturally an Xg-superbimodule and Tx =
Xpg@Y.

Lemma 4.29. For any d € Z>0, we have
DiX = @ Invi™ °(Xp) * StarY.
Proof. By Lemma 3.6,

@Invd =1(Xp) * Inv/ (X7).

It follows from Lemma 3.10 that Inv/(Xj) = Star/(Xj) for all f € Zsq, so
by (4.28) we have

d e
DiX = @ @ Inv? ¢~/ (Xj) * Star/ (X7) * Star®(X*)
e=0 =0

= EBInv (X5) * Star®Y. U

In the rest of this subsection, we write 1 for the identity element 1x of X.

Theorem 4.30. For any d € Zwq, the O-superalgebra DX is generated by
Inv? X5 and 120D x Y,

Proof. Let G be the subalgebra of DX generated by Inv? X; and 1861 4y,
By Lemma 4.29, it suffices to show that D4=¢¢X := Inv¢~¢(Xj) * Star®Y C G
for all e € [0,d]. We will prove this by induction on e, the case e = 0 being clear.
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Let 0 < e < d and assume that D4/ X C G for all f € [0,e). Let z € Y and
y € Star® Y. It follows from Lemma 4.2 that
e—1
(120071 e ) (180D 5 ) € 190079) 4 gy gy 4 EB DIhI X
=0
So 1%(d—¢) x Star¢Y C G.

For every f € [0,d — ¢], write D¢/l X .= 19(d=¢=f) 4 Inv/ (Xj) * Star® Y.
We claim that D?—¢~/:/.¢ X C G for all such f. If the claim is true, then D4~ ¢¢X =
pPOd=ec X C G, which implies the lemma. We prove the claim by induction on f.
The base case f = 0 was established in the previous paragraph.

Given f € (0,d — €] and assuming that our claim is true for smaller f, let
¢ € Inv/(Xp) and z € Star®Y. By Lemma 4.2, we have

(19D 1 ) (1509 2) =

min(d—e,d—f)

= Z DA+ (1) x (1T 20 5 (o 2()

min(d—e,d—f)

— Z D 1% % (Eu) 1Y) x (Eyzie) x (1P oy,

where Supercommutatlwty of x* has been used for the last equality. Note that
§u) € Inv®(Xj) for some b < f, so 5(1)1®(d_e_“) =0ifa <d—e— f. Moreover,
any term in the sum with @ > d — e — f belongs to D*¢¢~%€X and hence
to G by the inductive hypothesis. The remaining term is 1%(@=¢=F) « ¢ % 2z, so
1®(d—e=f) 4 &%z € G, and we have proved our claim. O

Let W be an Xg-bimodule. For any & € Xj, define ad(§) € Endp(W) by
ad(§)(w) = &w — w¢ for all w € W. Further, for any r € Z>o, we define
ad"(X5) € Endp(W) as the O-span of all compositions ad(§;) o --- o ad(§,) for
&1,...,& € Xp. As usual, if F is a subset of Endp(W) and U is a subset of W,
we denote by F(U) the O-span of the elements f(u) for all f € F and u € U.

Corollary 4.31. Let U be a subsuperspace of Y such that 3, ,ad"(Xg)(U) =Y,
and let d € Zwq. Then the O-superalgebra DX is generated by Inv?(X5) and
1961 4 [,

Proof. If d = 1, the result is clear, so we assume that d > 2. By Lemma 4.2, for
any £ € Xg and x € Y, we have
(120D 4 ) (120 2y = 19002) £ 5 4 190D (gar),
(180607 4 ) (120D 5 £) = 190072) 4 gy € + 19070 4 (26).
Since ¢ has degree 0, we have x x £ = £ *x x, so
19670 5 (ad (&) (2)) = (127D 5 (124D s z) — (196D 5 2) (19071 5 ),

We have proved that if 1¥(@=1) x 2 belongs to the subalgebra G C D?X generated
by Inv?(X35) and 12@=1 « U, then 1%(4=1 x (ad(¢)(z)) € G for all ¢ € X. In view
of the hypothesis, this implies that 14~ « ¥ C G, and the result now follows
by Theorem 4.30. (]
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4.5. Gradings. By (4.11), the algebra DX (resp. 'D9X) is Zso-graded with
the graded degree e component being D*¢¢X (resp. 'D4%¢X) for e =0, ... ,d.
We refer to this grading as the standard grading. In fact, it is a supergalgebra
grading, which means that it is an algebra grading and a supergrading in the
sense of Section 3. If a superalgebra has a superalgebra grading, we just say that
it is graded.

Assume now that the multiplication in X satisfies X7 X7 = 0. Then X is a
Z-graded algebra with X° = X5, X! = X7 and X™ = 0 for m # 0,1. We will
always work with the grading on X* which is the shift by 2 of the canonical
grading, i.e. degé = 2 if € € X* satisfies £(X') = 0 and degé = 1 if £ € X*
satisfies £(X%) = 0. Now Tx = X @ X* is also graded, and it is easy to see that
this is a superalgebra grading.

This yields Z>o-gradings on Inv X, Sym(X™), 'Sym(X*) and Inv Tx. Moreover,
we let (Inv X)* inherit the grading from Sym(X*) via the identification (4.19).
So we have Z>o-gradings on the O-superspaces DX = InvX ® (Inv.X)* and
'DX = InvX @ 'Sym(X*), which we refer to as Turner’s gradings, cf. [Tuy,
Remark 156]. If Y = DX or 'DX with Turner’s grading, then Y5 = € ym™

m even

and Y7 = D, ,qq Y™ In particular, Turner’s grading is a supergrading.
Lemma 4.32. Let the superalgebra X have the property that X7 X7 = 0. Then,
for every d € Z>q, the superalgebras DX and 'DX are Z>o-graded with re-

spect to Turner’s gradings. Moreover, the isomorphism of Theorem 4.26 is an
isomorphism of graded superalgebras.

Proof. 1t is easy to check that Inv X, Sym(X*), 'Sym(X™*) are Z>(-graded super-
algebras. Moreover, Inv(X™) is graded with respect to the #-product. Next, one
checks that both Sym(X*) and 'Sym(X*) are graded Inv X-bimodules. Finally,
the homomorphisms A: Inv X — InvX ® Inv X and : 'Sym(X*) — Inv(X*)
are homogeneous of degree zero. So the lemma follows from (4.11). O

4.6. Symmetricity of doubles. Let X be a k-superalgebra which is free of
finite rank as a k-module. The Turner double superalgebra D?X defined in §4.2
is symmetric. To see this, we define the bilinear form on D¢X via

(E@x,n@y) = (€ y)z,n).

We give another description of the form (-, -). Recall the standard grading on
DX from §4.5. Let F € (D?X)* be defined by requiring that F is zero on all
standard graded components D4=¢¢X for 0 < e < d, and F(1 ® x) = m(l?}d) for
r € (Inv? X)*.

Lemma 4.33. For any t,u € DX, we have (t,u) = F(tu).

Proof. We may assume that t = ¢ @ 2 and v = 1 ® y, where £ € Inv? X,
z € (Inv® X)*, n € Ind¥/ X and y € (Inv/ X)* for some 0 < e, f < d. We may
further assume that e = d — f, for otherwise both sides of the equation in the
lemma are zero. Then, using (4.11), we have

F(¢or)(noy)) = Z(—l)g(”(5(2)+ﬁ+f)+ﬁ(”fF(§(2)n(1) @ (z-ne2)Eaq) - v))
= (1) TIR(1 ()€ y))
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= (=) (@) (€ ) (1T
= (=DM (@ () (€ »)(1F)
= (=) ) (€, y),
where we have used (3.16) for the last equality. It remains to note that we can
drop the sign since (x,n) = 0 unless = = 7. O

Note that over an arbitrary k, non-degeneracy of a bilinear form (-,-) on a free
k-module V' of a finite rank means that for every k-basis {v1,..., v} of V there
is another basis {w1,...,wn} such that (ve,wp) = d4p. The following corollary
shows that DX is a symmetric algebra.

Corollary 4.34. [Tusz, Theorem 1.1] The form (-,-) on DX is non-degenerate,
symmetric and associative.

Proof. The non-degeneracy and symmetricity are clear, while the associativity
follows from Lemma 4.33. U
5. GENERALIZED SCHUR-WEYL DUALITY

Throughout this section, A = Ay & Az is a k-superalgebra with k-bases Bg of

Ap, By of A7, and B =By LBy of A. Fix d € Z>g and n € Z.
5.1. Wreath product superalgebras. We will consider super wreath products
Wi = A% 4 kS, (5.1)

with k&4 concentrated in degree 0. We identify A®¢ and k&, with the subsu-
peralgebras A%? ® 1g , and 1§d R kG4 of Wf, respectively. The multiplication
in Wf is then uniquely determined by the additional requirement that

g (@1 ® - Qze)g= (21 © - D xq)?! (5.2)
for g € G4 and x1,...,24 € A, see (3.4). Given z € A and 1 < ¢ < d, we denote
2 =14Q - Q14 0r01, @ - @1y € A®?,

with x in the cth position. The following lemma is obvious:

Lemma 5.3. Let A be a superalgebra and d € Z>o. Then the superalgebra ch
is generated by the elements {z[c] | x € A, 1 < ¢ < d} U Sy subject only to the
following relations:

z[c] - yle] = zylc] (z,ye A, 1<c<d),
(o] -yl = (=1)™ylc] - z[b] (zye A, 1<b#c<d),
g-h=gh (g,h € By),
g-zle] =zlgc] - g (e Gy, z€ A, 1<c<d).

Let A € A(n,d). We always consider the group algebra k&, of the standard
parabolic subgroup &) as a subalgebra k&), C kG, C Wf. In particular, k&,
acts naturally on the left on Wf. This makes Wf into a left k& y-module, which
is free with basis

{gb1®---®Dby) | g€ 2, by,...,bg €B}.
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So, denoting by triv), the trivial right k&y-module k - 1, we have the (right)
induced Wj‘—module

M)‘f‘ = triv) Qe, Wf (5.4)

with generator m)y := 1) ® 1. We refer to M j\4 as a permutation module.

5.2. Tensor space. The matrix algebra M, (A) is a superalgebra in its own right.
We use the elements

& s i =xE. s € Mp(A) (xe A, 1<rs<n) (5.5)
as in §3.4. We also introduce the special notation

S4(n,d) := Inv*(M,(A)) and S*(n) :=Inv(M,(A)) = P S (n,d).
d>0

If A=k, the algebra S4(n,d) is nothing but the classical Schur algebra S(n,d)
as in [Gr].

Let V = A®" considered as a right A-supermodule in the natural way. Note
that we have a natural isomorphism M, (4) — End4(V'), where we consider V
as column vectors and the isomorphism sends a matrix £ to the left multiplication
by £€. This implies the isomorphism

Tens? M, (A) — Endg,, . 4(Tens? V). (5.6)

Tens

Recall from (3.4) that &, acts on Tens? V with k-linear maps, and write vg :=
v forv € V, g € &,4. Thus we have right supermodule structures on Tens® V over
both k&4 and Tens® A. In view of Lemma 5.3, the superspace Tens? V' becomes
a right Wf—supermodule. We refer to this right action of Wf on Tens? V as the
standard permutation action.

Lemma 5.7. The natural embedding
S4(n,d) < Tens? M, (A) = Endy,, . 4(Tens? V)
defines an isomorphism of superalgebras

SA(n,d) = Endy; (Tens? V).

Proof. The action of G4 on Tens? V yields the action on Endy,  a 4(Tens? V) via
(¢-9)(v) = p(vg~t)g for ¢ € Endpyyea 4(Tens?V), g € G4 and v € Tens? V.

Let a: Tens? M, (A) = Endy, . 4(Tens? V) be the isomorphism (5.6). We
have the &4-action on Endy,,.q 4 (Tens? V) defined in the previous paragraph, and
the G4-action on Tens? M, (A) defined by (3.4). It is easy to see that « intertwines
the two actions. Taking invariants, we get an isomorphism between SA(n, d) =

(Tens? M,,(A))®¢ and Endyya (Tens? V) = (Endpyyea 4(Tens? V))Sd. O
For 1 <r <n, we set
vy = (0,...,0,14,0,...,0) €V, (5.8)
where 14 is in the rth position. For » = (r1,...,74) € Seq(n,d), we define

Vp = Up @+ @ Upy € Tens? V.
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Since {v1,...,v,} is an A-basis of V, the set {v, | r € Seq(n,d)} is a Tens? A-
basis of Tens? V. Note that

Upg = Upg (g € 84, T € Seq(n,d)). (5.9)

Let A\ € A(n,d). We denote by Tens*V the Tens? A-span of all v, such that
r € *Seq, cf. (2.1). By (5.9), Tens V is a Wl-submodule of Tens? V. We have
a special vector

vy = 0PN @ @08 € Tens V.

We have the decomposition of Wf-modules:

Tens? V = @ Tens V. (5.10)
AeA(n,d)

Lemma 5.11. Let A € A(n,d). There is an isomorphism of right Wf—mOdules
Tens*V = Mf which maps vy to the standard generator m)y of M;f‘.

Proof. Tt is immediate that vy is ©y-invariant, which yields a homomorphism
M /(4 — Tens™V, my — vy. This is an isomorphism, since it maps the Tens? A-
basis {mxg | g € *2} of M{! to the Tens? A-basis {v, | r € *Seq} of Tens* V, cf
the bijection (2.6). O

For any A € A(n,d), we define
& =B« x B9y € S4(n, d). (5.12)
Lemma 5.13. Let A\, u € A(n,d). Then:

(1) &&= 0ruén and 3 cpna) &v =1
(ii) €\ Tens?V = Tens* V.

Proof. Note that {yv, = 0y ,vx. But vy generates Tens™ V as a right Wf-module
by Lemma 5.11, and the action of S (n, d) on Tens? V commutes with that of Wf
by Lemma 5.7, so &, acts as the projection onto Tens* V' along @V7£>‘ Tens” V.

The lemma follows since S (n, d) acts on Tens? V' faithfully thanks to Lemma 5.7.
O

5.3. Idempotent truncation. Throughout the subsection we assume that d <
n and set

w = El—i-’”—l-EdEA(n,d). (5.14)
The main goal of this subsection is to explicitly identify &,54(n, d)&, with W;‘
and S4(n, d)¢, with Tens? V' so that the natural right action of £,54(n, d)€,, on

S4(n,d)&, becomes the standard permutation action of Wf on Tens?V, cf. [Gr,
Chapter 6] for the case when A = k.

Lemma 5.15. There is a superalgebra isomorphism
o Wit 5 6,54 (n, d)ew, (21 @+ @aa)g > & uy %o+ 650

Moreover, for any w € Wf, its image p(w) is the unique element of £,54(n, d)&,
such that p(w)v, = v,w.
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Proof. Using Lemma 5.7, we have an isomorphism of superalgebras
a: {wSA(n, d)é, — Endwéq (&, Tens? V)

which maps s € SWSA(n, d)&, to the left multiplication by s. On the other hand,
by Lemma 5.11, there is an isomorphism of right Wf—supermodules £, Tens? V =

Tens* V. — M, v, = my. But the Wit-module M is free of rank 1 with

generator my,. So there is an isomorphism g: Wit = EndW;x (€, Tens? V) of

superalgebras which sends w € W(f to the endomorphism v, — v,w.
Generalizing the notation (5.8), we set

v? = (0,...,0,2,0,...,00 €V (1<r<n, zcA), (5.16)

T

where z is in the rth position. Then

a(gilgfll fd ,1d)( ) (1g 17 * *ﬁd 71d)(U1®"'®vd)
= (- 1)”1’ o }v;‘/’fl@ - @ v
= (v ®vg")g

= vw(xl ®-Q® xd)g
=B((11 ® - ®24)9)(V0)-
This proves the lemma. O

Note that S4(n,d)&, is a right £,5%(n, d)&,-module, so we consider it as a
right Wf-module via the identification of Wf with &,54(n,d)&, coming from
the isomorphism ¢ of Lemma 5.15.

Proposition 5.17. There is a unique isomorphism SA(n,d)gw — Tens?V of
(S4(n,d), Wf)-superbz’modules which maps &, to v,,.

Proof. Since £,v,, = v, there is a unique homomorphism 1 of left S4(n,d)-
modules SA(n, d)&, — Tens?V mapping &, to v,. Using Lemma 5.15, we com-
pute for any s € S4(n,d) and any w € W;{‘:

Y((s€w)w) = P((séw)p(w)) = Y(séup(w)) = Y (sp(w)éw)
= sp(w)v, = sv,w = s€,U,w = Y(s&,)w

s0 v is a homomorphism of (S4(n,d), Wf)—superbimodules.

Moreover, 1) is injective since ¥(s,) = 0 only if s&,v, = 0, which implies
that s&,Tens”V = 0 because UWVVC;4 = Tens“ V. On the other hand, by
Lemma 5.13(ii), we have s&, Tens* V = 0 for all u # w, hence s, Tens? V = 0,
so s€, = 0.

Finally, for every u € A(n,d) there is a homomorphism of right Wf—modules
Mf — M ;?, my, — my, and so there is a homomorphism of right Wf—modules
Tens” V' — Tens"V, v, — v,, see Lemma 5.11. By Lemma 5.7, there is s €
S4(n,d) with sv, = vy. As v, generates Tens#V as a Wf-module for every
p € A(n,d), we now deduce that v, generates Tens?V as an (S4(n,d), Wi')-
bimodule. Hence % is surjective. U

Denote the center of an algebra Y by Z(Y'). Recall from Section 3 the notation
| X| for a superalgebra X. The following technical result, in which we forget the
superstructures, will be needed in §6.2:
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Lemma 5.18. Let d < n. If z € Z(|S4(n,d)|) and &, € |S4(n,d)|z, then z is
invertible.

Proof. Let S := [S4(n,d)| and W := |WZ'|. First, note that {,2€, = 26\, = 0
for any distinct A\, u € A(n,d). So z = Z/\e\(n’d) Zx, where z) 1= z&), = &)2.

Let A € A(n,d). There is a unique W-module homomorphism sending m,, to
my, so by Lemmas 5.7 and 5.11, there exists a unique element &) ,, € {5, such
that &) ,v, = vy.

By the hypothesis, there exists y,, € S such that y,z = £,. Replacing y,, with
Ewlwlw, we may (and do) assume that y, € &,5¢,, and then it is easy to see
that y, € Z(£,5&,). Let 4, € W be the image of y, under the isomorphism
£,5¢, — W of Lemma 5.15. Then 3, € Z(W) and y,v, = v,f.. For any
g € 6), we have m g9 = Mgy, = Mmily,. Hence, there is a right W-module
endomorphism of M) sending my to m)g,. By Lemmas 5.7 and 5.11, this implies
that there exists yy € £,5&) such that y vy = vyg,. Therefore,

ZAYAUN = 2\ = Z)\g)\,wvwgw = Z)\g)\,wywvw = Zg)\,wywvw = g)\,wawa
= gk,wfwvw = SA,wvw = V).

By Lemma 5.7, it follows that zyyy = £,. Setting y := EAeA(md) Yx, we have
zy = 1. U

5.4. Idempotent refinements. In this subsection we suppose that we are given
a fixed finite family {e1,...,e;} of non-zero orthogonal idempotents in A with
2221 e; = 14. Moreover, we assume that every e; A is free as a k-supermodule
with a (homogeneous) finite basis ;B, so that B = |_|§:1 ;B is a k-basis of A.

Set I := {1,...,1}. We order [1,n] x I lexicographically and, recalling the
theory of §2.3, consider the set of compositions A([1,n]xI,d). Given XA € A([1,n]x

I,d), we denote AW = (i) for (r,i) € [1,n] x I. We have the map

me A([L ] % Td) = Al d), Ao (Sigr A Eie 25 Dier M)
Let A € A([1,n] x I,d). We have the idempotent
Al

RO (1) 0)
A=l @@t @M @@ eTens? A (5.19)

Recalling the notation of §2.3, note that
By = {b1®---®by|b, € Bifac)} (5.20)
is a k-basis of ef Tens? A. We define the parabolic subalgebra
Wi = el k&) C Wi

Note that ef is the identity in Wf, and Wf is a (usually non-unital) subsu-
peralgebra in Wf, isomorphic to the group algebra k&y. So we may consider the
trivial right supermodule trivf =k- 1§ over Wf with the action on the basis
element 14 given by 14 - (e4 ® g) = 14 for any g € G,.

As usual, we view Tens? A and k&, as subsuperalgebras of Wf, so we can also
view ef as an element of Wj‘. Then efo is naturally a left W)‘f‘—module. We
now define the colored permutation supermodule

Mf = trivf O efo
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with generator mf = 1§ ® ef.
Lemma 5.21. The following set is a k-basis of Mf:

(M1 ®- - @byg)g | b1 ®--- @by €BY, g € D). (5.22)

n (#)
In particular, dim M§! = [&4: S| [[;c;(dime; A) =1,

Proof. Note that
AvprA oAb oa® oAl N0
AW = (1A% @ @ (AN @ @ (1 A)®" @+ ® (g A)*M @kGy,
and so
{eA(P1® - ®by)g|b1® - ®by EBY, g€ T}

is a basis of efo as a left Wf—module. The lemma follows. O

Recalling (5.16), we define
v =vp =(0,...,0,€;,0,...,0) € V (1<r<n,iel),
where e; is in the rth position. For A € A([1,n] x I,d), we denote by Tens* V' C
Tens?V the (right) Tens? A-span of all v, ;, ® -+ ® v,,;, such that for every
(ryi) € [1,n] x I we have #{a € [1,d] | (ra,iq) = (r,0)} = AD We say that a
sequence ((ri,b1),...,(rq,bq)) of elements of [1,n] x B is of type A if #{a € [1,d] |
rqe =1 and b, € ;B)} = )\512). It is easy to see that

{1)?11 R ® fufj ((r1,b1),...,(rq,bq)) is of type A} (5.23)
is a k-basis of Tens* V. Hence for any A € A(n,d), we have a decomposition

Tens V = @ Tens™ V (5.24)
Aer—1(\)

of k-modules. We have a special vector

o) 2! AW A
vAI=0 ) @ ®u )l ®- Uyt ®--Qup)t € TensM V.

Lemma 5.25. We have:

(i) For any A € A([1,n] x I,d), we have that Tens*V is a submodule of the
right Wf—module Tens® V. Moreover, there is an isomorphism of right
Wf-modules Tens* V — Mf which maps vy to mf.

(ii) For any A\ € A(n,d), we have Tens*V = Dac—10n) Tens* V' as right
W#-modules. In particular, Tens?V = Dacainxr.a Tens*V and

]\4;\4 =] @Aerl(k) Mf as right Wf—modules.

Proof. Note that UAef = vy and vxg = vy for any g € &x. So, by the adjointness
of induction and restriction, there exists a homomorphism of right Wf—modules
M ;\4 — Tens®V under which mf is mapped to vy. It maps the elements of the
k-basis (5.22) of My to the elements of the k-basis (5.23) of Tens* V up to signs.
This proves (i). Part (ii) follows from (i), (5.24), (5.10) and Lemma 5.11. O
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By Lemma 5.7, the superalgebra S4(n, d) acts naturally on Tens? V with Wf-
homomorphisms. But by Lemma 5.25, we have an explicit identification of right
Wf—modules

Tens? V = EB Tens* V = EB Mf.
AEA([1,n]x1,d) AEA([L,n]x1,d)
So, for any y € SA(n, d), the endomorphism v ~ yv of Tens? V becomes identified
with an endomorphism which we denote by ¢(y) of @, Anxna M. ! Recalling
Lemma 5.7 again, we deduce:

Corollary 5.26. Let M4 (n,d) := Dacainxr.a Mg, Then ¢: S4(n,d) —
Endwf(M A(n,d)) is a superalgebra isomorphism.

5.5. Desuperization. Recall from Section 3 that |X| denotes the algebra ob-
tained from a k-superalgebra X by forgetting the Zs-grading. In particular, we
have the associative algebra |A| and the usual wreath product WC‘lA|, where the
symmetric group acts on |A|®? by place permutations without signs. On the
other hand, we can consider the associative algebra |W:!|. In general, the al-

gebras WgA‘and |W[§4| are not isomorphic. However, we describe one important
situation when they are. o
Let €” and e' be orthogonal idempotents in A with 1 :=14 = el + e{. We call
such a pair of idempotents adapted if Ay = e®Ac’@e! Ae! and A7 = e Ae! el Acl.
Let 1 <r < d. We denote the elementary transposition (r,r + 1) € &4 by 7,.. If
in addition &1, &9 € Zo, we set
ef1%2[r] := ef1[r]e®2 [r + 1] = 19771 @ ! @ %2 @ 1947771 ¢ 494,

Lemma 5.27. Let (eﬁ,ei) be an adapted pair of idempotents in A. Then there
is an isomorphism of associative k-algebras
o: thiA‘ = w,
x[t] = Z (_1)(51_,_...-1-&,1)55651 ® - ® eft-1 Rr® 1®d—t’
€1,..,Et—1€ZL2
Tr > TT(GG’G[T] + eﬁ’i[r] + ei’ﬁ[r] - ei’i[r]).
Proof. 1t is straightforward to check for all admissible r, ¢, z,y that the elements
o(71),...,0(14-1) satisfy the Coxeter relations, that o(x[t])o(y[t]) = o(xy[t]),
and that o(7,.)o(z[t]) = o(z[t])o(r.) if t £ r,r+ 1.
Let 1 < s <t <d. Then o(z[t])o(y[s]) equals
Z (_1)10651 R ® 65371 ® eEsy R 65571 R ® eEtfl Rx® 1®d_t7
€1, st —1€L2
where
p=(e1+-+e-1)T+(e1+ - +es-1)y + 77,

and o(y[s])o(z[t]) equals

Z (_1)‘1651 R ® efs—1 ® yeas R efs—1 R ® eft—1 Rr® 1®d_t7

E1ye-Et—1€ZL2
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where
g= (14 +e-1)T+ 1+ +e)y

Considering the efyet’ components in the sth tensor position for all €,&’ € Zy in
the expressions above, and taking into account that eeyeel =0 unless j = ¢ + ¢’
since (€%, e!) is adapted, we see that o (z[t])o(y[s]) = o(y[s])o(z[t]).

Let x € A and 1 < r < d. Then, writing

= Z (_1)(€1+~~~+€T-71)9_ﬁe€1 Q@ v=1Q---®1,
———
€1y Er—1€ZL2 d—r—1 times

we have

o(z[r+1)o(r.) = ] ] B B B B
= (u@ (" + (=1)%") @ 2 @v)(e"[r] + e [r] + €[] — M [r)) 7,

elz ® v)T,

v)

=
~—

—woE@+e)odrov+ue (e
—nwelr®leut+ues® (€ —e)

— o(r)a(alr]),
where the second equality is proved by a case-by-case check using the adaptedness
of (€9, el). Since o(7,)2 = 1, it follows also that o (7)o (z[r +1]) = o(z[r])o (7).
In view of Lemma 5.3, we have an algebra homomorphism ¢ as in the statement

of the lemma. Moreover, it is easy to see that for each g € &4, the map o restricts
to an automorphism of the k-submodule A®?®g, whence o is an isomorphism. [J

Let again (eo e ) be an adapted pair of idempotents in A. Assume in addition
that we are given two finite famlhes of non-zero orthogonal idempotents {e; | i €
19} and {e; | i € I'} such that €9 = =Y e ande! =3, re. Let I = nurt
and recall the theory of §5.4. In particular, I is identified with {1,...,[} for some
[ and for any A € A([1,n] x I,d), we have the colored permutation Supermodule
M 5\4 over the superalgebra W(f. Forgetting the Zs-gradings, we get the \W(f[—
module |M 5\4| On the other hand, by Lemma 5.27, there is an isomorphism of
algebras o: WlA‘ = ]Wd |. Composing with this isomorphism, we get the WC‘lAl—
module |M f!” In other words, |M3}|” = M3 as a k-module, but the action is
defined by vh = vo(h) for all v € Mg} and h € WLLA‘.

For every i € I we define the sign (; as follows:

.= | T1 e 1,
L -1 ifie Il
Recall the parabolic subgroup
6)\:6)\51) X e X 6)\@ X e XG)\S) X e XG)\S) < Gy
Let ¢ be the usual length function on a symmetric group, cf. §2.3. Define the
function ex: Gy — {£1} Ck by

¢ (95) n
(g g0 gD gD = (T D) (5.8)

for all (ggl),...,ggl),...,ggl),...,gg)) € Gy.



TURNER DOUBLES AND GENERALIZED SCHUR ALGEBRAS 29

The algebra WlliA‘ has the parabolic subalgebra WJ‘A‘ = e‘;‘ql R kG = kSy
defined by analogy with the parabolic subsuperalgebra Wf C Wf. We define
the alternating right module altl)fu =k- 1|}1\4\ over WJ‘A‘ with the action on the

basis element 1&4‘ given by

A A A
I (K og) =eax@1y!  (gesy.
As in the superalgebra situation, e‘;"WJlA‘ is naturally a left WLA‘—module. We
now define the colored permutation module

MM = a1l Dyl et A (5.29)

with generator m‘fl = 1‘;4' ® elf‘.

Proposition 5.30. There is an isomorphism of right WC‘lAl—modules
MLA‘ = |Mf|‘7, m‘f' — mﬁf.

Proof. Let 7. be an elementary transposition which belongs to &y. This means

that r,r + 1 € Q(As h for some (s,7) € [1,n] x I. By Lemma 5.27, we have
A

0(6'{” ® 1) = Gi(ey ® 7). This implies that myo(ey ' ® g) = ex(g)mj for all
g € 6. By adjointness of induction and restriction, we get a homomorphism
of WC‘lALmodules as in the statement. Since |M3‘4|" is generated by mf, this
homomorphism is surjective. Now, since M LA| and | M 3\4]” are free as k-modules
and have the same rank, the result follows. O

Let y € S4(n,d). By Lemmas 5.7 and 5.25, for any X € A([1,n] x I, d), we can
write

Yoy = Z Vphp (5.31)
peA([Ln]x1,d)

for some hy,x € Wi If o: SA4(n,d) — Endwf(MA(n,d)) is the isomorphism
of Corollary 5.26, then

p)ma) = > mphua.
peA([1,n]x1,d)

Consider the right thiA‘—module

MAmd) = @ M (5.32)
AEA([1,n]x1,d)

By Lemma 5.27 and Proposition 5.30, there exists ¢ (y) € EndW\A\(MM‘(n,d))
d
such that for any A € A([1,n]| x I,d),

v)myh = 3 mplo T k). (5.33)

peA([1,n]x1,d)

Corollary 5.34. The map : |S4(n,d)| — EndW\A\(MW(n,d)) is an algebra
d

isomorphism.
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Remark 5.35. If the superalgebra A is graded, the theory of this section goes
through, yielding gradings on S4(n,d) and Wf, as well as all the modules over
them that were considered. To be more precise, M, (A) inherits a grading from
A, and then so do Tens M, (A) and InvM,(A). On the other hand, Wi =
A®1 @ kS, is graded with k&, in degree 0. In particular, the isomorphism 1
from Corollary 5.34 is an isomorphism of graded algebras.

6. SCHUR DOUBLES

Let d € Z~o and n € Z>q. For an O-superalgebra A which is free of finite rank
as an O-supermodule, we denote

'DA(n,d) :=="'DM,(A) and D*(n,d) := DM, (A).

The main result of this section is Theorem 6.6, which roughly speaking asserts
that D4(n,d) is a maximal symmetric subalgebra of ‘D4 (n,d). But first, we
develop the results of §4.4 on generation in this set-up.

6.1. Generating D4(n,d). Let Ty = A ® A* be the trivial extension superal-
gebra of A, cf. §3.4. In view of Lemma 3.21, we identify M,(T4) with Ty, (a)

(a,0)

so that &5 € M, (Ta) corresponds to (&, 2¢,) € Thy,(a) for all 1 < 7,5 <n,
a € Aand a € A*, where zy'; € M, (A)* is the element defined in (3.20).

We also identify ‘D4 (n,d) =DM, (A) with Inv? T, 4y Via the explicit iso-
morphism of Theorem 4.26. Combining this with the identification T}y, 4) =
M,,(T4) from the previous paragraph, we now can and do identify ' D4 (n, d) with
Inv? M, (T4) = STA(n,d). Since DA (n,d) is a subsuperalgebra of 'D4(n, d), we
now identify it as a subsuperalgebra of S74(n,d). As Ag is a subalgebra of T4,
the algebra S40(n,d) = Inv? M, (Ap) is also a subalgebra of the superalgebra
STa(n,d) = Inv?® M, (T4) in the natural way.

Theorem 6.1. The subsuperalgebra D (n,d) C ST4(n,d) is precisely the subal-
gebra generated by SA49(n,d) and the set {&f 1 * 1906@=1 |9 e T4} € ST (n,d).

Proof. This follows from Corollary 4.31. Indeed, we consider that corollary with
M, (A) in place of X. Then, taking into account the identifications made in
this subsection, Inv?(Ag) in Corollary 4.31 corresponds to S49(n,d), and Y in
Corollary 4.31 corresponds to M, (A @ A*). Tt remains to take U := {&7, |y €
A7 @ A*}, which is easily seen to satisfy the assumptions of Corollary 4.31. O

Corollary 6.2. Let A and A’ be O-superalgebras which are free of finite rank as
O-supermodules. If we have an isomorphism p: Ty — T which restricts to an
isomorphism Ay — A%, then the isomorphism STa(n,d) — STa’(n,d) induced
by @ restricts to an isomorphism D?(n,d) — DA (n, d).

If AjA; = 0, then M, (A);M,(A); = 0, and so we have Turner’s grading on
D4(n,d), cf. Lemma 4.32.

Corollary 6.3. If AjA; = 0, then D?(n,d) is generated by the elements of
degrees 0, 1 and 2 with respect to Turner’s grading.
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Corollary 6.4. Let n > d. Then the subsuperalgebra D4 (n,d) C STA(n,d) is
precisely the subalgebra generated by S49(n,d) and the set

(¢, *Eg?gz ko x BN |y € Tay (Nay.. o \n) € A(n—1,d — 1)} C ST4(n, d).

Proof. Let D be the subalgebra generated by the elements in the statement of
the corollary. Let A = (1,Aq,...,\,) € A(n,d). Recalling the idempotent &, =
Eq 1 * E%\Q Kook Ef%” from (5.12) and using Lemma 4.3, we have

5>\(5Z1/,1 * 1®(d_1))5>\ = 5%,1 * E§§\2 Kok E,?i;”

By Theorem 6.1, this shows that D C D%(n,d). For the reverse inclusion, it
suffices to show that the elements of the form 5%71 % 190@=1) with y € T4 belong
to D. For any A € A(n,d — 1), define

x(y,\) = 531/71 * Eff‘l * Eg?éb Kook E,?i;” e STa(n,d).

Then 531/’1*1®(d_1) = > \eA(n,d—1) T(¥; A), so it suffices to prove that each z(y, \) €
D. Fix A € A(n,d —1). Since d — 1 < n, there is k € [1,n] with A\ = 0. Let

._ @A ®Ak—1 OAk41 An
b:= 15171>»<E172 *---*Ek_Lk *Ek+1,k+1*”’*En,n ,

;. ®A1 ®Ak—1 @Ak41 RN
b = FEi1 * E271 % ..ok Ek,k—l * EI,CJFL/LH_1 Kok Emn",

Y 20 S ®Ak—1 OAk+1 . ®An
ci=E kBt ke B T B ke kBT

Then b,b',c € D, and beh’ = z(y, \) by Lemma 4.3, completing the proof. O

For every A € A(n,d), the idempotent &, € S74(n,d) defined in (5.12) belongs
to S49(n, d), and so, by Corollary 6.4, to D4(n,d) C ST4(n,d). The following is
known, cf. [Tug, Lemma 13]:

Corollary 6.5. If d < n, then £,D4(n,d)¢, = £,9T4(n,d)¢, and there is a
superalgebra isomorphism
P WJA ;> ngA(nv d)&u, (xl X xd)g = gilgfll Hoeeo ok gg:‘igfld'

1
1,971

% fzdg*ld belongs to DA(n,d). Indeed, the case ¢ = 1 is handled using
Lemma 4.3 and Corollary 6.4, and the case 1 = --- = x4 = 1 is clear since
£,...,1;9) € S4(n,d). By Lemma 5.15, the elements &(z1,...,24;g) span in
STa(n,d) a copy of WJA, with the elements &(z1,...,24;1) spanning de and
the elements £(1,...,1;g) spanning k&S,4. The claim follows.

Now, using Lemma 5.15 and Corollary 6.4, we conclude that &,D%(n,d)¢, =
£,974(n, d)¢,,, and another application of Lemma 5.15 completes the proof. [

Proof. First, we claim that every element of the form £(z1,...,24;9) ==& *

6.2. Symmetric lattices in 'D“(n,d). In this subsection, in addition to the
hypotheses specified at the beginning of Section 2, we assume that O is a principal
ideal domain. Let A be an O-superalgebra which is free of finite rank as an O-
supermodule. The following result shows, in particular, that D4 (n, d) is maximal
among the symmetric subalgebras of 'D“(n, d). The superstructure on’D*(n, d)
plays no role in the theorem, so the content of the statement does not change if
'DA(n, d) is replaced by |'D?(n,d)| and D*(n,d) by |D*(n,d)|.
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Theorem 6.6. Let d € Z>g, n € Zg, and assume that d < n. Let C' be an
O-subalgebra of 'DA(n,d) such that DA(n,d) C C C'D*(n,d). Suppose that for
every maximal ideal m of O the (O/m)-algebra C @p (O/m) is symmetric. Then
C = D4(n,d).

Proof. If the theorem is true in the case where O is a discrete valuation ring
(DVR), then it is true in general. Indeed, for every maximal ideal m of O the
localisation Oy, is a DVR, and so by the DVR case of the theorem, C ®¢ O, is
equal to the Oy-span of D4(n,d) ® 1e,,. Then we have (C/D*(n,d)) @0 On = 0
for all m, whence the O-module C//D*(n,d) is 0.

In the rest of the proof, O is a DVR with the maximal ideal (7) for some
m € O, and k := O/(w). For any free O-module V' of finite rank, we have the
k-vector space Vkx = V ®0 k, which we identify with V/7V .

Recall the notation (4.14) and (4.25). In this proof, for all e =0, ..., d, we use
the following shorthands:

D :=D%n,d), 'D:='D%n,d), S:=5%n,d),
Di=ee .= pd=eep (A) = Inv? ¢ M, (A) ® Sym®(M,(A)*) C D,
'Diec .= DI=¢C N (A) = Inv? ¢ M, (A) ® 'Sym®(M,,(A)*) C'D,

'D>¢:= ‘DN, ciee=cn'DiTee, CPC = C0n'D
e+1<f<d

Claim 1. The O-submodule C4~%¢ is pure in C.
This follows immediately from the fact that /D€ is pure in ’D.

Claim 2. We have C%0 = D40 =/D0 and ¢ = 040 ¢ C>0.

Since ‘D40 = DY by definition, the assumption D C C C ’D implies that
C%0 = D40, The second assertion of the claim follows easily from the first one.
Claim 3. We have dim C’H[:’O = dim Cﬂg’d.

Indeed,

dim Cﬂf’o — rankp C%° = rankp D% = rankp D%¢ = rankp C*? = dim Cﬂg’d,
where the penultimate equality comes from D%¢ C ¢%d C /D%,
Since 'D%? is an ideal in ‘D and C' C 'D is a subalgebra, C%? is an ideal in

C, and so naturally a C%%-bimodule. After extending scalars, C’Hg’d becomes a
CH0pi
i -bimodule.

Claim 4. The Cﬂf’o-bimodule C’Hg’d is isomorphic to (C’H‘j’o)*.

Since Ck is symmetric by assumption, there is a function G' € Cf such that the
bilinear form on Cy defined by (z,y) := G(xy) is symmetric and non-degenerate.
By Claims 1 and 2, we can naturally identify Co’d, Cﬂg ’0, and Cf 0 with k-subspaces
of Ck. Using the standard grading on ' D, we see that the orthogonal complement
to Cﬂg’d in Cy contains Cf 0. Comparing dimensions using Claim 3, we deduce
that (-,-) restricts to a perfect pairing between Cﬂg’d and Cﬂg’o, which yields the
required isomorphism.
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In view of Remark 4.16, we identify D% with S and D%¢ with S*, so that
S* C ¢%1 C D%, Extending scalars to the field of fractions K of O, we identify
Sk = C’]%d = ’D]%d, and so we can consider C%? and D% as O-submodules of
Sk. Now, define

'S ={zx e Sk|(x,/D*) C O} and N ={ze Sk | (z,C%) C O}.
Then 'S C N C S. The following claim follows easily from the definitions:

Claim 5. We have that 'S and N are S-subbimodules of S, and there are isomor-
phisms of S-bimodules 'S = ('D%)* and N = (C%9)*,

Claim 6. We have &, €'S.

By Corollary 3.15, we have 'S = Star? M, (A), and the claim follows from the
definition of &,,.

Claim 7. We have N = S.

By Claims 2, 4 and 5, we have isomorphisms S = C’H?’O = (Cﬂg’d)* =~ Ny of
Sk-bimodules. Let z + 7N € N/mN = Ng be the image of 1 € Sk under this
isomorphism. Then z(z + 7N) = (z + #N)z for all x € Sk. Since 7S O 7N, it
follows that z + S € Z(S/mS) = Z(Sk). Since Sk is generated by 1 as a left
Sk-module, Ny is generated by z + 7N as a left S-module. Moreover, &, €S by
Claim 6, so &, € N. Hence there exists y € Sk such that y(z +7N) =&, + 7N,
whence y(z + 715) = &, + ©S. By Lemma 5.18, z + S is invertible in Sk. So
N+ 78 = Sk(z+71S)Skx = Sk. By Nakayama’s Lemma, this implies that N = S.

Now we complete the proof of the theorem. By Claim 7, we have C%¢ = D04,
Assume for a contradiction that C' # D. Choose an element = € C'\ D such that
x lies in 'D>¢~! with e maximal possible. Then we can write & = xe + - - - + x4,
where z; € 'DI=1f for f =e,...,d. By the maximality of e, we have z, ¢ D¢,
Hence z, = cy for some ¢ € K\ O and y € D¢\ xD=e,

Let F' € (Dg)* be as in Lemma 4.33. Taking into account Corollary 4.34 and
the standard grading on D, we conclude that there exists u € D®%¢ such that
F(yu+mD) # 0 in k, whence yu ¢ 7D%?. By the standard grading again, xpu =0
for all f > e, and hence ru = cyu. Since ¢ ¢ O, it follows that zu ¢ D% = 04,
This is a contradiction, since z € C' and v € D%¢ C C. O

Example 6.7. Continuing with Example 4.27, assume that d = 2e + 1 for some
e € Z~o, and define the Z-algebra C' to be the subalgebra of Q[z]; spanned over
Z by the elements 1, z,...,2% 2¢71 /2, ... 221 /2. We then have DZ =~ Z[z]; C
C C'Z[2]q = 'DZ. However, it is easy to see that C ®z F, is symmetric for all
primes p. This shows that the assumption d < n in Theorem 6.6 is essential.

6.3. Bases and product rules. Let By be an O-basis of Ag, Bj be an O-basis
of A, and B = B UB;. The structure constants k2, € O of A are determined
from
b = Kb (b0 €B).
bEB
Then

{&,11<r,s<n, beB} (6.8)
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is a homogeneous basis of M, (A) with £2_ = b, and
& }5’/; = s Z Fgrpr &l (o', v €B, 1 <7 s,t,u<n). (6.9)
bEB
We fix a total order < on the basis (6.8) as follows. First, we fix a total order <
on B so that the elements of By precede the elements of B;. Then for b’,b” € B
and 1 <r, s, t,u <n, we set 53:5 < SEI; if and only if one of the following happens:
M <v”, (2)=b"and r <t,(3) b’ =b", r=tand s < u.
Recall the notation of §2.2. For C = (C®)yeg € M®(n), we have the element
b
€ = Hprs ((2)%7) € S (n),
where the %-product is taken in the order just defined. This agrees with (3.9), so
{c | CeMP(n)} and {&c|C e MP(n,d)}

are bases of S4(n) and S4(n,d), respectively. The parity of a basis element is
éc = C:=|CJ; (mod 2).

Let C = (C®)pep € MB(n,d) and (r,b,s) € C. Let (’I"O b?, s%) € C be the
tuple defined by the property that the triples (17, b}, 31) - (r9, b9, %) appear

0
in the increasing order, i.e. for 1 < k <[ < d we have STO 0 < 5% <0 Let g € G4
k' 7k 171
be an element such that (%, b%, s%)g = (r,b, s), and define
[r,b,s]:= [g;b(l),...,bg],

cf. (3.3). Tt follows from the definition of Seq®(n, d)? that [r, b, s] does not depend
on the choice of ¢g. By the definition of the *-product, we have

fc= Y, (NP @@ (6.10)

(r,b,s)eC
For C,D € M?®(n), we let

0 otherwise.

ecp = { (—1)= "% if C+D e MB(n),

where the summation is over all 1 < r,s,t,u < n and b',b” € B such that
713,/5 > 52,;. Using Lemma 3.12, we obtain for all C € M5(n):

A(éc) = Z eDE D ® EE. (6.11)

D,E€MB(n), D+E=C

Define the structure constants ng € O from

(cép= Y fEpée  (C,D e MP(n)). (6.12)
EcME(n)
In particular, f&5 = 0 unless |C| = |D| = |E|. These structure constants

are uniquely determined by the structure constants kg, ,,. More precisely, if
(r,b,s) € Seq®(n,d)? and E = M|[r, b, s], then using (6.9) and (6.10) we obtain
the formula
f&n = Z (_1)[T,bvsH[?‘,b’th[t,b” 8]4[b],-. bbb
b’,t,b"

b
/ H"'K:;i "
Y b, b/
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where the sum is over all triples (b’,¢,b”) € B? x Seq(n,d) x B? such that
(r,b/,t) € C and (t,b”,s) € D. In the case when A = O and B = {1}, this
is Green’s formula [Gr, (2.3b)] for the structure constants of the Schur algebra.

Let {z€ | C € M&(n)} be the basis of S4(n)* = (Inv M, (A))* dual to the
basis {¢c | C € MB(n)} of S4(n). As the product and the coproduct on S4(n)*
are by definition dual to the coproduct and the product on S4(n), respectively,
we have in view of (6.11), (6.12) and (3.1):

2€2P = (=1)®PecpzCtP (C,D e ME(n)), (6.13)
V(C) = S (-DPEfSeaP @a®  (Ce ME(n,d)). (6.14)
D,EcMB(n,d)

It is easy to see that S4(n)* is the free supercommutative superalgebra on the
even variables {zp, | b € Bg, 1 < 7,5 < n} and the odd variables {z2, | b €
Bi, 1 <r,s<n}, and

2€ = (-1)IChlCi-D/2 T (aB,)he,
beB, 1<r,s<n

with the product taken in the total order on the variables w};s which is the same
as the one on the basis {£7} fixed above.
C
x

Let 2(©) .= &r- By (6.13), we have

2(©z®) = (=1)Pecp <CI+)D> 2P (C,D e MB(n)).

Then 'Sym(M,,(A)*) is the O-span in S*(n)% of all 2(€) with C € M®(n). Let

g fE,C! g [EpD!
fow =" ad f&p) =2 (C,D,E € M(n)).

A priori, these are elements of K, but by Lemma 4.22, they actually belong to
O, and for C € M®(n,d) we have

V@)= 3 (—)PEGlpaPet = Y (—1)PErS 2Pea®.
D,EcM8(n,d) D,EcM8(n,d)
Denoting
M(n,d) = {(C,D) | C,D € M(n), |C| + D = d},
we have bases
{tc®a® [ (C,D) e Mi(n,d)} and  {&c @) | (C,D) € M5(n,d)}
of DA(n,d) and 'D?(n,d), respectively. If A;A; = 0, then M, (A); M,(A); = 0,
and the Turner gradings on D4 (n,d) and 'D*(n, d) satisfy
deg(éc @ 2P) = deg(éc @ 2(P)) = [C; + 2Dy + Dy,

for all (C,D) € M5(n,d), cf. Lemma 4.32.
For (C,D), (E,F) € M3(n,d), we have the following product rules, which come
from (4.12):

(ﬁc ® ﬂfD)(gE ® $F) = Z(_1)8501025E1E2f11*332D’fFF’Cl (£C2£E1 ® 33D/$F/)

t D F G D’+F’
:Z(_l) 501025]*31]32‘SD’F’ngD’fF’ClngEl(gG®3j - )
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(tc®aP) (g ea®)) = Z(—1)860102€E1E2fé?()nz)f((gf))cl(502£E1 ® z(P) ()

D F
= Z(_1)t501025E1E25D’F’f]E]2()D/)f((F/))Cl

D' +F ey
nggE1< D’ >(£G®$(D +F))

where the first sums in both formulas are over all C1, Cy, D', Eq, Eo, F/ € M8(n)
such that C; + Cy = C, E1 + E5 = E, the second sums have an additional
summation parameter G € M&®(n), and

s=C1C2+ CE; +C,D'+D'E; + E/E;, t=s+D'F.

7. THE QUIVER CASE

In this section we consider an important class of algebras D4 (n,d) sometimes
referred to as schiver doubles, from ‘schiver=Schur+quiver’ [Tuy].

7.1. Quivers and quiver algebras. Let () be a quiver with a finite set of
vertices I = {1,...,l} and a finite set of directed edges E. For an edge 8 € E, we
denote by s(3) € I the source of 5 and by ¢(3) € I the target of 5. We denote by
I" the underlying graph of (). We assume that I is connected and has no loops or
multiple edges. If i, 7 € I, we say that ¢ and j are neighbors if they are connected
by an edge in T.

We define the algebra Fg to be the quotient of the path algebra k@ by all
quadratic relations. We consider P as a superalgebra with vertices in parity 0
and edges in parity 1. The parity 0 component Py 5 has a basis {e; | i € I'}, and
the parity 1 component Pg 1 has a basis {3 | 8 € E}. Note that Py1Py1 = 0,
so Pp is also Z-graded with the degree 0 component Pc% = Pgp and degree 1
component Pé =Py1

Let {ef,8* | i € I, 3 € E} be the basis of P}y dual to the basis {ei,Bliel,pe
E} of Py. According to the agreement made in §4.5, we always work with the
Z-grading on Fj, which is the shift by 2 of the canonical grading, i.e. dege; = 2
and degf* =1 for all ¢ € I and 8 € E. Then the trivial extension superalgebra
Tp, = Py @ Pé is also graded. This superalgebra has an easy description as a
zigzag algebra, which we introduce next.

The zigzag algebra Z = Zr of type T is defined in [HK] as follows. First assume
that [ > 1. Let I be the quiver obtained by doubling all edges in I' and then
orienting the edges so that if ¢ and j are neighboring vertices in I', then there is
a directed edge a*/ from j to i and a directed edge a’* from i to j. Then Z is the
path algebra kI, generated by length 0 paths e; for i € I and length 1 paths a7,
subject only to the following relations:

(i) All paths of length three or greater are zero.
(ii) All paths of length two that are not cycles are zero.
(iii) All length-two cycles based at the same vertex are equal.

The algebra Z inherits the path length grading from kI'. If [ = 1, i.e. ' is of type
A1, we define Z 4, := k[c]/(c?), where c is an indeterminate in degree 2.

If I > 1, for every vertex ¢ pick its neighbor j and denote c(? := a*Jal?. The
relations in Z imply that ¢ = e;c(e; is independent of choice of j. Define
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Ci= D ey c®). Then in all cases Z has a basis
{a% |i,j €I, j is a neighbor of i} U {c™e; | i € I, m € {0,1}},

and the graded k-rank of Z equals (1 + ¢%) + 2|E|q € Zl|q], where q is an inde-
terminate. Moreover, we consider Z as a superalgebra with Z; = Z° @ 72 and
Z; =7

The following is known [Tug, Lemma 6] and easy to check:

Lemma 7.1. There is an isomorphism of graded superalgebras Tp, =5 7 given
by e v e, ef > W B ahl B* s a0 if s(B) = j and t(B) = i.

7.2. Schiver doubles. From now on we will work over O. For a quiver () as in
the previous subsection, we define

Dg(n,d) := D@ (n,d), 'Dg(n,d):='D"(n,d).

In view of Lemma 7.1, we identify T, with Z, and so, as in §6.1, we identify
'Dg(n,d) with S77 (n,d) = S%(n,d). In this way, we identify Dq(n,d) with
a subalgebra of S%(n,d). By Corollary 6.2, the superalgebra Dg(n,d) does not
depend on the choice of orientation on @, cf. [Tuy, Theorem 157]. As Py 1Pg1 =
0, we have Turner’s gradings on Dg(n,d) and 'Dg(n,d), see §4.5. We also have
a grading on S%(n,d), see Remark 5.35. All our identifications respect gradings.

Note that the degree zero component of Py is P9 = Zézl Oe; =2 0%, Recall
that S(n,d) = S®(n,d) is the classical Schur algebra. By Corollary 4.4,

sfomd) = P Shd) o ®Snd). (7.2)
(dl,...,dl)EA(Ld)

Lemma 7.3. The image of the natural embedding AL (n,d) — S%(n,d) is exactly
the degree zero component S%(n,d)°.

Proof. As P9 = Z°, we have Mn(PC%) = M,,(Z)°, which implies the lemma. [

Theorem 7.4. Let n > d. Then the subsuperalgebra Dg(n,d) C S%(n,d) is
precisely the subalgebra generated by S%(n,d)? and the set

{651 ES) % x BN | 2€Z, (Mg, M) € A(n — 1,d — 1)} C S%(n,d).
Proof. In view of Lemma 7.3, this is a restatement of Corollary 6.4. g

Note that Dg(n,d), 'Dg(n,d) and S%(n,d) are graded superalgebras, whose
constructions depend on the superalgebra structures on Py and Z. However, after
we construct them, we want to forget the superalgebra structures and work with
Dg(n,d) and S?%(n,d) as usual graded algebras. In order to do that, recall the
theory of §5.5. From now on, we assume that I" has no odd cycles. Then to every
vertex 7 € I, we can assign a sign ¢; € {£1} such that (;¢; = —1 whenever 7 and
j are neighbors. Let

e = E e; and e = g ;.
iel, Gi=1 iel, Gi=—1

One can easily check that (e, e!) is an adapted pair of idempotents for the
superalgebra Z in the sense of §5.5.
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By Lemma 5.27, there is an explicit isomorphism of graded algebras o : I/Vc‘lz| =
|WZ%|. Moreover, as in (5.29) and (5.32), we have the colored permutation mod-

ules ML\Z‘ labeled by A € A([1,n] x I,d) and set
MZma = @ Ml

AEA([Ln]x1,d)
For A€ A([L,n — 1] x I,d — 1) and k € J, we define X' € A([1,7] x I, d) by

ke A(T—l,i) if r > 1,
Apiy =9 1 ifr=1and¢=k,
0 ifr=1and i # k.

Lemma 7.5. Let z € e;Zey, for some j,k € I and A € A(1,n—1] x I,d —1).
Then there is a unique i*(z) € EndW\Z\(Mm(n,d)) such that
d

1Z| o3k
i)\(z): mLZ‘ — (mxj )Z[]‘] pr’ - A )
0 otherwise,

where z[1] = z ® 1®d le W'Z‘

Proof. Recalling (5.19), for any p € A(n,d) set e, = e'lf” € Tens?|A| C WJlA‘.
Note that for all 7 € I, we have e =€ ®ex and 65‘i = 61 x 6. It follows that

2[(ey @ g) = e (g)mls 2[1]

forallg e & 5t By adjointness of induction and restriction, there exists a unique
map as in the statement. O

mlZ
"y

Using the maps of Lemma 7.5, define
|Z|—>End \z\(M' \(n,d)), z»—>z (ejzer).
j,kel
The following is easy to see:

Lemma 7.6. For any X\ € A([1,n — 1] x I,d — 1), the map i* is an injective
homomorphism of graded algebras.

By Corollary 5.34 and Remark 5.35, there is an explicit isomorphism of graded
algebras

1 |5%(n,d)] = End iz (M (n, d)).
d
We use this isomorphism to identify the graded algebra |'Dg(n,d)| = |S%(n,d)|
with the graded algebra End 1z (M Zl(n, d)).
d

Theorem 7.7. Letn > d. The subalgebra |Dg(n,d)| C |S%(n,d)| is precisely the
subalgebra generated by the degree zero component |S%(n,d)|® and the set

U iN2).

AEA([1,n—1]xI,d—1)



TURNER DOUBLES AND GENERALIZED SCHUR ALGEBRAS 39

Proof. Let A= (A1,...,A\p—1) € A(n —1,d — 1) and z € e;Zey, for some j, k € 1.
We claim that
Byt wx Efrt = 0 iMa),
Aer—1(N)
which implies the result by Theorem 7.4. To prove the claim, let v € A([1,n] X
I,d). Note that (£ * Egzjg‘l SRR Ef?iﬁ”’l)v,, = 0 unless v is of the form " for
some p € 7 1(\) and k € I. Moreover, for p € 7= (), we have
(651 % Bg3t s - % B o = 201k @ 0y = 01,2 @ U
= (v1,; @ vp)z[l] = vys2(l],

where 2[1] = 2 ® 19971 is viewed as an element of W#. Comparing with (5.31)
and (5.33), we deduce that

(&1 % B53 w - x EZyr—)(m5) = mi2 o™ (2[1]) = ml 2[1] = 3#(2) (m!%)

(1) l“"]
. z
= > PR,
Aer—1(N)
where we have used the fact that o~1(2[1]) = z[1], see Lemma 5.27. The claim is
proved. O
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