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TURNER DOUBLES AND GENERALIZED SCHUR ALGEBRAS

ANTON EVSEEV AND ALEXANDER KLESHCHEV

Abstract. Turner’s Conjecture describes all blocks of symmetric groups and
Hecke algebras up to derived equivalence in terms of certain double algebras.
With a view towards a proof of this conjecture, we develop a general theory
of Turner doubles. In particular, we describe doubles as explicit maximal
symmetric subalgebras of certain generalized Schur algebras and establish a
Schur-Weyl duality with wreath product algebras.

1. Introduction

Turner’s Conjecture [Tu1, Conjecture 165] describes all blocks of symmetric
groups and Hecke algebras up to derived equivalence in terms of certain explicitly
constructed double algebras DQ(n, d), where Q is a quiver of finite type A. This
paper is the first in a series of two papers where we prove Turner’s Conjecture.
To achieve this goal, in this paper we develop a general theory of Turner doubles,
which we believe is of independent interest.

For simplicity, in this introduction we describe the results only over the ground
ring Z. We fix a Z-superalgebra X = X0̄ ⊕X1̄ which is free of finite rank over Z.
Consider the invariants InvdX := (X⊗d)Sd under the action of the symmetric
group Sd. This action depends crucially on the superstructure on X, as do the
structure and the dimension of InvdX and of all algebras defined later in terms
of X. There is a natural superbialgebra structure on InvX :=

⊕

d≥0 Inv
dX.

The Turner double is the superalgebra DX := InvX ⊗ (InvX)∗ with product
defined in terms of the superbialgebra structures on InvX and (InvX)∗.

More precisely, (InvX)∗ is naturally a superbimodule over InvX, and the
product on DX is described, using Sweedler’s notation, as follows:

(ξ ⊗ x)(η ⊗ y) =
∑

± ξ(2)η(1) ⊗ (x · η(2))(ξ(1) · y),

for homogeneous ξ, η ∈ InvX and x, y ∈ (InvX)∗, with signs determined by
superalgebra data. We explain in §4.2 why this agrees with Turner’s definition in
[Tu3]. A key property of DX is that it is always a symmetric algebra. Moreover,
under some reasonable assumptions on X, the double DX as well as all other
algebras defined later in terms of X are non-negatively graded. In this case, the
theorems below respect the gradings.

The superalgebra (InvX)∗ can be identified with the symmetric superalge-
bra Sym(X∗), which is naturally a sublattice in the divided power superalgebra
′Sym(X∗). We show that the superalgebra structure on DX extends to that on
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2 ANTON EVSEEV AND ALEXANDER KLESHCHEV

′DX := InvX ⊗ ′Sym(X∗). Thus DX ⊆ ′DX is a subsuperalgebra. Upon ex-
tension of scalars to a filed K of characteristic 0, the embedding DX ⊆ ′DX
induces an isomorphism DXK

∼
−→ ′DXK. But, importantly, if K has positive

characteristic, the induced map is neither injective nor surjective.
Let TX = X ⊕X∗ be the trivial extension superalgebra of X, with the product

defined by (ξ, x)(η, y) = (ξη, ξ · y + x · η) for ξ, η ∈ X and x, y ∈ X∗. Let ∗
denote the shuffle product on

⊕

d≥0(TX)⊗d. We show in Lemma 3.10 that there

is a natural isomorphism κ : ′Sym(X∗)
∼

−→ Inv(X∗). Our first main result is the
following theorem, which often allows one to reduce the study of the double over
X to that of the invariants over TX .

Theorem A. We have:

(i) The map ϕ : ′DX → InvTX , ξ ⊗ x 7→ ξ ∗ κ(x) is an isomorphism of

superalgebras.

(ii) The subalgebra ϕ(DX) ⊆ InvTX is generated by Inv(X0̄) and all ele-

ments of the form t ∗ 1⊗d
X with t ∈ TX and d ≥ 0.

We have a natural superalgebra decomposition DX =
⊕

d≥0D
dX, with

DdX =
⊕

0≤e≤d

InveX ⊗ (Invd−eX)∗,

where the last direct sum is that of Z-modules, and similarly for ′DX. Then the
isomorphism ϕ of Theorem A restricts to isomorphisms ϕ : ′DdX

∼
−→ Invd TX .

Let A be a Z-superalgebra which is free of finite rank over Z, and consider the
case where X is the matrix superalgebra Mn(A) for some fixed n. In this case
we use the special notation

DA(n, d) := DdMn(A),
′DA(n, d) := ′DdMn(A).

We refer to the superalgebra DA(n, d) as a Schur double. The following theorem
shows that under a natural assumption, the subalgebra DA(n, d) ⊆ ′DA(n, d) is
a maximal symmetric subalgebra:

Theorem B. Let d ≤ n and C be a subalgebra of ′DA(n, d) such that DA(n, d) ⊆
C ⊆ ′DA(n, d). Suppose that for every prime p the Fp-algebra C ⊗Z Fp is sym-

metric. Then C = DA(n, d).

Let SA(n, d) := InvdMn(A). If A = Z, then SA(n, d) is just the (integral
version of) the classical Schur algebra. The generalized Schur algebras SA(n, d)
bear importance for the doubles, since, by Theorem A and the easy observation
that TMn(A)

∼= Mn(TA), we can identify ′DA(n, d) with STA(n, d) and DA(n, d)

with an explicit subalgebra of STA(n, d).
The superalgebras SA(n, d) can be studied using a generalized Schur-Weyl du-

ality with the super wreath product WA
d := A⊗d⋊kSd. The superalgebra Mn(A)

can be identified with EndA(V ), where V := A⊕n. The following generalized
version of Schur-Weyl duality is crucial for the proof of Turner’s Conjecture, but
is also of independent interest.

Theorem C. The natural left SA(n, d)-action and the natural right WA
d -action

on V ⊗d commute and yield an isomorphism SA(n, d) ∼= EndWA
d
(V ⊗d).
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As a right WA
d -supermodule, V ⊗d decomposes explicitly as a direct sum of

certain permutation supermodules MA
λ where λ runs over the set Λ(n, d) of all

compositions of d with n parts. So Theorem C realizes SA(n, d) as

EndWA
d

(
⊕

λ∈Λ(n,d)

MA
λ

)

.

For the purposes of Turner’s Conjecture, it is important to ‘desuperize’ this de-
scription of SA(n, d) in the case where A is a certain zigzag superalgebra Z de-
pending on a quiver Q. Let |X| denote the algebra obtained from a superalgebra
X by forgetting the superstructure. We construct a (rather delicate) explicit

isomorphism σ from the ordinary wreath product W
|Z|
d to |W Z

d |. Twisting with

this isomorphism makes the permutation module MZ

λ into an explicit alternating

sign permutation module M
|Z|
λ over W

|Z|
d . Then

|SZ(n, d)| ∼= End
W

|Z|
d

(
⊕

λ∈Λ(n,d)

M
|Z|
λ

)

.

Using Theorems A,B,C, we obtain an explicit description of DQ(n, d) as a maxi-
mal symmetric subalgebra of the endomorphism algebra on the right hand side.
This description is used in [EK] to identify DQ(n, d) with an algebra Morita
equivalent to (a Z-form of) a RoCK block of a Hecke algebra or a more general
cyclotomic KLR algebra, thus proving Turner’s Conjecture.

Now we describe the contents of the paper in more detail. In Section 2 we
set up some basic combinatorial notation. In Section 3 we discuss superspaces
and superalgebras, especially symmetric and divided power superalgebras and
various products and coproducts on them. In §3.4 we consider trivial extension
superalgebras. In Section 4 we begin to study Turner doubles. The properties of
invariant algebras InvX are investigated in §4.1. The definition of DX is given
in §4.2, and its divided power version ′DX is studied in §4.3. For Theorem A see
Theorems 4.26 in §4.4 and 4.30 in §4.4. We discuss gradings on doubles in §4.5
and symmetricity of doubles in §4.6.

Section 5 is on generalized Schur-Weyl duality. In §5.1 we discuss wreath
product algebras and permutation modules over them. In §5.2 we study the gen-
eralized tensor space, prove Theorem C (see Lemma 5.7) and discuss connections
with permutation modules over wreath product algebras. We consider idempo-
tent truncations of generalized Schur algebras in §5.3 and idempotent refinements
of permutation modules in §5.4. Desuperization is discussed in §5.5.

Section 6 is on Schur doubles. In §6.1 we identify DA(n, d) with the subalgebra
of STA(n, d) generated by certain explicit elements. Theorem B is proved in §6.2,
see Theorem 6.6. In §6.3 we discuss bases and product rules of Schur doubles
and their divided power versions. Section 7 is on the important special case of
the quiver Schur (schiver) doubles. Quivers and zigzag algebras are considered in
§7.1. Finally, in §7.2, we discuss the degree zero component of a schiver double
and results related to schiver generation and desuperization, which will be needed
in [EK].
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2. Preliminaries

Throughout the paper, k is an arbitrary commutative (unital) ring. In some
constructions, involving divided powers, we will need to work over a more special
ring O, which is assumed to be a (commutative) integral domain with field of
fractions K of characteristic zero. We assume that there is a fixed ring homomor-
phism O → k, which allows us to extend scalars from O to k, i.e. to consider

Vk := V ⊗O k

for any O-module V . If U and V are k-modules, we denote U ⊗ V := U ⊗k V .
Important examples of triples (K,O,k) are (Q,Z,Fp) and (Qp,Zp,Fp).

2.1. Weights and sequences. Let n ∈ Z>0 and d ∈ Z≥0. We denote by Λ(n)
the set of compositions λ = (λ1, . . . , λn) with n parts λ1, . . . , λn ∈ Z≥0. We
refer to the elements of Λ(n) as weights. For λ = (λ1, . . . , λn) ∈ Λ(n), we denote
|λ| := λ1 + · · ·+ λn. We set

Λ(n, d) := {λ ∈ Λ(n) | |λ| = d}.

More generally, if S is a finite set, we denote by Λ(S, d) the set of tuples (λs)s∈S of
non-negative integers such that

∑

s∈S λs = d. For S = [1, n], we identify Λ(S, d)
with Λ(n, d).

For 1 ≤ m ≤ n, we have special weights

εm := (0, . . . , 0, 1, 0, . . . , 0) ∈ Λ(n, 1),

with 1 in the mth position, so that

λ = (λ1, . . . , λn) = λ1ε1 + · · ·+ λnεn.

For m,n ∈ Z, we consider the (possibly empty) segments

[m,n] := {r ∈ Z | m ≤ r ≤ n}, (m,n] := {r ∈ Z | m < r ≤ n},

[m,n) := {r ∈ Z | m ≤ r < n}.

The symmetric group Sn acts naturally on the left on [1, n].
Let Seq(n, d) := [1, n]d be the set of (ordered) d-tuples r = (r1, . . . , rd) where

r1, . . . , rd ∈ [1, n]. The action of the symmetric group Sd on [1, d] yields the right
action of Sd on Seq(n, d) by place permutations: for r ∈ Seq(n, d) and g ∈ Sd,
we have rg = s where sa = rga for all a ∈ [1, d].

For λ ∈ Λ(n, d) we set

λSeq := {r ∈ Seq(n, d) | εr1 + · · ·+ εrd = λ}. (2.1)

Then Seq(n, d) =
⊔

λ∈Λ(n,d)
λSeq is the decomposition of Seq(n, d) into Sd-orbits.

For λ ∈ Λ(n, d) we define

rλ := (1, . . . , 1, 2, . . . , 2, . . . , n, . . . , n) ∈ λSeq,

where each r ∈ [1, n] is repeated λr times.
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2.2. Integer-valued matrices and sequences. Define M(n) to be the set of
n × n-matrices with non-negative integer coefficients. Let Er,s ∈ M(n) denote
the matrix unit with 1 in the (r, s)th position. For C = (cr,s)1≤r,s≤n ∈ M(n), we
set |C| :=

∑n
r,s=1 cr,s, and we define

M(n, d) := {C ∈ M(n) | |C| = d}.

Given C,D ∈ M(n), define the integers

C! =
∏

r,s∈[1,n]

cr,s!,

(
C

D

)

:=
∏

r,s∈[1,n]

(
cr,s
dr,s

)

.

For any C ∈ M(n, d), we further set

α(C) :=
(∑

s c1,s,
∑

s c2,s, . . . ,
∑

s cn,s
)
∈ Λ(n, d),

β(C) :=
(∑

r cr,1,
∑

r cr,2, . . . ,
∑

r cr,n
)
∈ Λ(n, d).

Let λ, µ ∈ Λ(n, d). Define

µM(n, d)λ := {C ∈ M(n, d) | α(C) = µ and β(C) = λ}.

The subsets of M(n) and M(n, d) consisting of {0, 1}-matrices are denoted by

′M(n) := {C ∈ M(n) | cr,s ∈ {0, 1} for all 1 ≤ r, s ≤ n},
′M(n, d) := M(n, d) ∩ ′M(n).

In §6.3, we will use the following generalization. Let B = B0̄ ⊔ B1̄ be a set split
as a disjoint union of two subsets B0̄ and B1̄. Set

MB(n) := {C = (Cb)b∈B | C
b ∈ M(n) for b ∈ B0̄, C

b ∈ ′M(n) for b ∈ B1̄}.
(2.2)

Let C = (Cb)b∈B ∈ MB(n). For every b ∈ B, we write Cb = (cbr,s)1≤r,s≤n. Denote

|C|0̄ :=
∑

b∈B0̄
|Cb|, |C|1̄ :=

∑

b∈B1̄
|Cb|,

|C| := |C|0̄ + |C|1̄ =
∑

b∈B

|Cb| =
∑

(r,s,b)∈[1,n]2×B

cbr,s, (2.3)

MB(n, d) := {C ∈ MB(n) | |C| = d}. (2.4)

Let C = (Cb)b∈B and D = (Db)b∈B ∈ MB(n). We define C +D by (C +D)b =
Cb+Db for all b ∈ B. Note that C+D may or may not be an element of MB(n).
We set

C! :=
∏

b∈B

Cb! =
∏

b∈B0̄

Cb!,

(
C

D

)

:=
∏

b∈B

(
Cb

Db

)

.

Define SeqB(n, d)2 to be the set of tuples

(r,b, s) = ((r1, . . . , rd), (b1, . . . , bd), (s1, . . . , sd)) ∈ Seq(n, d)× Bd × Seq(n, d)

such that for any distinct k, l ∈ [1, d] with (rk, bk, sk) = (rl, bl, sl) we have bk ∈ B0̄.
The left action of Sd on [1, d] induces a right action on each component of the
direct product Seq(n, d) × Bd × Seq(n, d) as in §2.1, so we have a right action of
Sd on SeqB(n, d)2. There is a bijection

SeqB(n, d)2/Sd
∼

−→ MB(n, d), (r,b, s) 7→ M [r,b, s] := ((cbr,s)r,s∈[1,n])b∈B
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where

cbr,s = ♯{k ∈ [1, d] | (rk, bk, sk) = (r, b, s)}.

We always identify SeqB(n, d)2/Sd withMB(n, d) via this bijection. In particular,
given C ∈ MB(n, d), we write (r,b, s) ∈ C if M [r,b, s] = C.

2.3. Cosets. Let (S,<) be a totally ordered finite set. Recall the notation Λ(S, d)
from §2.1. Let λ = (λs)s∈S ∈ Λ(S, d). The corresponding standard set partition

Ωλ is the partition of [1, d] into the segments

Ωλ
s :=

(∑

t<s λt,
∑

t≤s λt
]

(s ∈ S).

Note that the segment Ωλ
s has λs elements. Write S = {s1 < · · · < sn}. The

standard parabolic subgroup

Sλ
∼= Sλs1

× · · · ×Sλsn
≤ Sd (2.5)

preserves the set partition Ωλ. If λ ∈ Λ(n, d), we define Ωλ and Sλ via the usual
total order on [1, n].

Let λ ∈ Λ(S, d) and Dλ be the set of shortest coset representatives for Sd/Sλ,
where the length ℓ(g) of an element g ∈ Sλ is the smallest integer ℓ such that g can
be represented as a product of ℓ transpositions of the form (r, r + 1), 1 ≤ r < d.
For µ ∈ Λ(S, d), we also have the set µD of shortest coset representatives for
Sµ\Sd and the set µDλ of shortest double coset representatives for Sµ\Sd/Sλ.
Note that we have a bijection

µ
D → µSeq, rµ 7→ rµg (2.6)

and a bijection µD → Dµ, g 7→ g−1.
It is well known and easy to see (cf. e.g. [JK, 1.3.10]) that for every C =

(cr,s) ∈ µM(n, d)λ there exists a unique element g(C) ∈ µDλ such that

|g(C)(Ωλ
s ) ∩ Ωµ

r | = cr,s

for all r, s ∈ [1, n]. Moreover:

Lemma 2.7. For any λ, µ ∈ Λ(n, d), the map C 7→ g(C) defines a bijection

µM(n, d)λ
∼

−→ µ
D

λ.

Given C = (cr,s) ∈ µM(n, d)λ and 1 ≤ s ≤ n, we have a composition

c∗,s := (c1,s, . . . , cn,s) ∈ Λ(n, λs).

Given elements g1 ∈ Sλ1 , . . . , gn ∈ Sλn
, we consider (g1, . . . , gn) ∈ Sλ1×· · ·×Sλn

as an element ofSd via the natural embedding ofSλ1×· · ·×Sλn
intoSd. Another

easy and well-known result (see e.g. [DJ, Lemma 1.6]) is:

Lemma 2.8. Let λ, µ ∈ Λ(n, d). There is a bijection

{(C, g1, . . . , gn) | C ∈ µM(n, d)λ, gs ∈
c∗,sD for s = 1, . . . , n}

∼
−→ µ

D

defined by (C, g1, . . . , gn) 7→ g(C)(g1, . . . , gn).
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3. Superspaces and superalgebras

From now on, we write Z2 := Z/2Z = {0̄, 1̄}. Let V = V0̄ ⊕ V1̄ be a free
k-supermodule of finite rank. We refer to V as a (k-)superspace. The k-rank of
V is denoted by dimV . For parities of elements, we write v̄ = 0̄ if v ∈ V0̄ and
v̄ = 1̄ if v ∈ V1̄. Whenever v̄ appears in a formula, this means that we assume
that v is a homogeneous element. If V is an (associative unital) k-superalgebra,
we denote by |V | the same algebra without the Z2-grading.

By a Z-supergrading on a superspace V we mean a Z-grading V =
⊕

m∈Z V
m

such that V m = (V m ∩ V0̄)⊕ (V m ∩ V1̄) for all m ∈ Z.

3.1. Dual superspaces and tensor products. The dual V ∗ := Homk(V,k) is
a superspace in a natural way. We have the pairing 〈·, ·〉 between V and V ∗:

〈v, β〉 = 〈β, v〉 := β(v) (v ∈ V, β ∈ V ∗).

Let d ∈ Z>0, and V1, . . . , Vd be superspaces. The tensor product V1 ⊗ · · · ⊗ Vd
is again a superspace in a natural way. We always identify (V1 ⊗ · · · ⊗ Vd)

∗ with
V ∗
1 ⊗ · · · ⊗ V ∗

d via

〈β1 ⊗ · · · ⊗ βd, v1 ⊗ · · · ⊗ vd〉 := (−1)[β1,...,βd;v1,...,vd]〈β1, v1〉 . . . 〈βd, vd〉, (3.1)

where βa ∈ V ∗
a , va ∈ Va for a = 1, . . . , d, and where

[β1, . . . , βd; v1, . . . , vd] :=
∑

1≤a<c≤d

β̄cv̄a (3.2)

is defined for (homogeneous) elements β1, . . . , βd, v1, . . . , vd of arbitrary super-
spaces. Note that

〈β1 ⊗ · · · ⊗ βd, v1 ⊗ · · · ⊗ vd〉 = 〈v1 ⊗ · · · ⊗ vd, β1 ⊗ · · · ⊗ βd〉

:= (−1)[v1,...,vd;β1,...,βd]〈v1, β1〉 . . . 〈vd, βd〉,

since 〈va, βa〉 = 0 unless v̄a = β̄a for any 1 ≤ a ≤ d.
If V1, . . . , Vd are k-superalgebras, then V1 ⊗ · · · ⊗ Vd is again a superalgebra

with

(v1 ⊗ · · · ⊗ vd)(w1 ⊗ · · · ⊗ wd) = (−1)[v1,...,vd;w1,...,wd]v1w1 ⊗ · · · ⊗ vdwd,

for va, wa ∈ Va, a = 1, . . . , d.
The symmetric group Sd acts on the superspace V ⊗d on the right by (super)

place permutations. More precisely, for g ∈ Sd and v1, . . . , vd ∈ V , we define

[g; v1, . . . , vd] :=
∑

1≤a<c≤d, g−1a>g−1c

v̄av̄c, (3.3)

and

(v1 ⊗ · · · ⊗ vd)
g := (−1)[g;v1,...,vd]vg1 ⊗ · · · ⊗ vgd. (3.4)

If V is a superalgebra, then Sd acts on V ⊗d with algebra automorphisms.
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3.2. Symmetric and divided power superalgebras. Recall that O is a do-
main of characteristic zero. Let V = V0̄ ⊕ V1̄ be an O-superspace with bases
B0̄ = {x1, . . . , xl} of V0̄ and B1̄ = {xl+1, . . . , xl+m} of V1̄. Then B = B0̄ ⊔ B1̄ is a
homogeneous basis of V . We identify Vk := V ⊗O k with the free k-supermodule
with basis B, and we identify V with the O-subsupermodule V ⊗ 1 ⊆ VK.

For every d ∈ Z≥0, consider the O-superspace

Tensd V := V ⊗d.

Let

TensV :=
⊕

d∈Z≥0

Tensd V

be the tensor superalgebra of V and SymV =
⊕

d∈Z≥0
Symd V be the symmetric

superalgebra on V . That is, SymV is the quotient of TensV by the ideal generated
by all elements of the form v ⊗ u − (v ⊗ u)(1,2) for u, v ∈ V and all elements of
the form v ⊗ v for v ∈ V1̄. Moreover, for every d ∈ Z≥0, the subsuperspace
Symd V ≤ SymV is the intersection of SymV with the subsuperspace Tensd V of
TensV .

We consider SymV as an O-form of SymVK. We will also need another O-
form. The divided powers superalgebra ′SymV =

⊕
′Symd V is the O-subalgebra

of SymVK generated by the divided powers v(m) := vm/m! for all v ∈ V0̄ and
m ∈ Z≥0 together with all v ∈ V1̄. We now define ′SymVk := (′SymV ) ⊗O k and

write v(m) := v(m) ⊗ 1 ∈ ′SymVk.
For every d ∈ Z≥0, we have the fixed points Invd V :=

(
Tensd V )Sd of the

action (3.4) and set InvV :=
⊕

d≥0 Inv
d V. It is a subalgebra of TensV with

respect to a new product, which we now define.
For d, e ∈ Z≥0, recall that

(d,e)D stands for the set of the shortest coset repre-
sentatives for (Sd ×Se)\Sd+e. We consider the linear map

Tensd V ⊗ Tense V → Tensd+e V, t⊗ s 7→ t ∗ s,

defined by

(x1 ⊗ · · · ⊗ xd) ∗ (y1 ⊗ · · · ⊗ ye) :=
∑

g∈(d,e)D

(x1 ⊗ · · · ⊗ xd ⊗ y1 ⊗ · · · ⊗ ye)
g (3.5)

for all x1, . . . , xd, y1, . . . , ye ∈ V . This new ∗-product (or shuffle product) on
TensV makes it an associative supercommutative superalgebra. Moreover, InvV
is a subsuperalgebra of TensV with respect to the ∗-product.

Let V = U ⊕W be a direct sum decomposition of O-supermodules. For every
e ≥ 0, we identify Tense U and TenseW with subsupermodules of Tense V in the
obvious way. The following is easy to see:

Lemma 3.6. Let d ∈ Z≥0. For every e ∈ [0, d], the O-supermodule homomor-

phism

Inve U ⊗ Invd−eW → Invd V, s⊗ t 7→ s ∗ t

is injective, and we have a direct sum decomposition of O-superspaces:

Invd V =

d⊕

e=0

(Inve U) ∗ (Invd−eW ).
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To describe bases, set

MB := {(c1, . . . , cl, cl+1, . . . , cl+m) | c1, . . . , cl ∈ Z≥0, cl+1, . . . , cl+m ∈ {0, 1}}.

For c = (c1, . . . , cl+m), define |c| := c1 + · · · + cl+m, and denote

MB
d := {c ∈ MB | |c| = d}.

In terms of (2.2), (2.4), we have MB = MB(1) and MB
d = MB(1, d). Then

{xc11 · · · x
cl+m

l+m | (c1, . . . , cl+m) ∈ MB
d} (3.7)

is a basis of Symd V ,

{x
(c1)
1 · · · x

(cl+m)
l+m | (c1, . . . , cl+m) ∈ MB

d} (3.8)

is a basis of ′Symd V , and

{x⊗c1
1 ∗ · · · ∗ x

⊗cl+m

l+m | (c1, . . . , cl+m) ∈ MB
d} (3.9)

is a basis of Invd V .
Define

Stard V := V ∗ · · · ∗ V
︸ ︷︷ ︸

d times

, StarV :=
⊕

d≥0

Stard V,

so that StarV is an O-subsupermodule of InvV .

Lemma 3.10. There is an isomorphism of algebras κ : ′SymV
∼
−→ InvV which

maps x
(c1)
1 · · · x

(cl+m)
lm

to x⊗c1
1 ∗ · · · ∗x

⊗cl+m

l+m for all (c1, . . . , cl+m) ∈ MB
d. Moreover,

κ(Sym(V )) = StarV .

Proof. It follows easily from the definitions that there is a homomorphism of
superalgebras SymV → InvV which is the identity on V . Under this map, for
any (c1, . . . , cl+m) ∈ MB

d, the basis element xc11 . . . x
cl+m

lm
is sent to

x∗c11 ∗ · · · ∗ x
∗cl+m

l+m = c1! . . . cl+m!x⊗c1
1 ∗ · · · ∗ x

⊗cl+m

l+m .

Extending scalars to K and restricting to ′SymV , we obtain the desired isomor-

phism ′SymV
∼

−→ InvV . The final statement of the lemma is clear. �

3.3. Coproducts. We can also consider TensV as a supercoalgebra, with the
coproduct

∆: Tensd V →
⊕

e,f≥0, e+f=d

Tense V ⊗ Tensf V,

v1 ⊗ · · · ⊗ vd 7→
∑

e,f≥0, e+f=d

(v1 ⊗ · · · ⊗ ve)⊗ (ve+1 ⊗ · · · ⊗ vd).
(3.11)

For a supercoalgebra (X,∆) and x ∈ X, we repeatedly use Sweedler’s notation

∆(x) =
∑

x(1) ⊗ x(2)

where x(1) and x(2) are homogeneous whenever x is.
The following is a superalgebra version of the well-known fact (see e.g. [Re,

Proposition 1.9]) that TensV is a bialgebra with respect to (∗,∆):
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Lemma 3.12. Let s, t ∈ TensV . Then

∆(s ∗ t) =
∑

(−1)s̄(2) t̄(1)(s(1) ∗ t(1))⊗ (s(2) ∗ t(2)).

Proof. We may assume that s = s1 ⊗ · · · ⊗ sa and t = t1 ⊗ · · · ⊗ tb for some
s1, . . . , sa, t1, . . . , tb ∈ V . Let πe,f be the projection from TensV ⊗ TensV onto
the summand Tense V ⊗ Tensf V . Fix e ∈ [0, a + b] and denote by

∑

(C,g1,g2)

the sum over all triples (C, g1, g2) corresponding to taking λ = (e, a+ b− e) and
µ = (a, b) in Lemma 2.8. Then using that lemma, we get

πe,a+b−e∆(s ∗ t) =πe,a+b−e∆
∑

h∈(a,b)D

(s⊗ t)h

=πe,a+b−e∆
∑

(C,g1,g2)

(s⊗ t)g(C)(g1,g2)

=
∑

(C,g1,g2)

(−1)m(s1 ⊗ · · · ⊗ sc1,1 ⊗ t1 ⊗ · · · ⊗ tc2,1)
g1

⊗ (sc1,1+1 ⊗ · · · ⊗ sa ⊗ tc2,1+1 ⊗ · · · ⊗ tb)
g2

=
∑

C

(−1)m
(
(s1 ⊗ · · · ⊗ sc1,1) ∗ (t1 ⊗ · · · ⊗ tc2,1)

)

⊗
(
(sc1,1+1 ⊗ · · · ⊗ sa) ∗ (tc2,1+1 ⊗ · · · ⊗ tb)

)

=πe,a+b−e
∑

(−1)s̄(2) t̄(1)(s(1) ∗ t(1))⊗ (s(2) ∗ t(2)),

where m = (t̄1 + · · · + t̄c2,1)(s̄c1,1+1 + · · ·+ s̄a). This completes the proof. �

Note that InvV is a subsupercoalgebra of TensV . The supercoalgebra InvV
is supercocommutative, i.e. if ∆(ξ) =

∑
ξ(1) ⊗ ξ(2) in Sweedler’s notation for a

(homogeneous) ξ ∈ InvV , then

∆(ξ) =
∑

(−1)ξ̄(1) ξ̄(2)ξ(2) ⊗ ξ(1). (3.13)

Hence the (restricted) dual

(InvV )∗ :=
⊕

d≥0

(Invd V )∗

has a superalgebra structure which is dual to the coalgebra structure on InvV .
More precisely, the superbialgebra structure on (InvV )∗ is determined by the
identity

〈ξη, x〉 = 〈ξ ⊗ η,∆(x)〉 (ξ, η ∈ (InvV )∗, x ∈ InvX),

where as usual we identify (InvV )∗ ⊗ (InvV )∗ with (InvV ⊗ InvV )∗ via (3.1).
This makes (InvV )∗ a supercommutative superalgebra. Given ξ1, . . . , ξd ∈ V ∗,
we have the functional ξ1⊗· · ·⊗ξd ∈ (Tensd V )∗. Extending by zero to the whole
TensV and restricting to InvV , we can interpret ξ1 ⊗ · · · ⊗ ξd as an element of
(InvV )∗. The following is now clear:

Lemma 3.14. The natural map V ∗ → (InvV )∗ extends to the isomorphism of

superalgebras Sym(V ∗)
∼
−→ (InvV )∗, which maps any product ξ1 · · · ξd ∈ Symd(V ∗)

with ξ1, . . . , ξd ∈ V ∗ to the functional ξ1 ⊗ · · · ⊗ ξd ∈ (InvV )∗.
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Corollary 3.15. Identifying the O-submodule ′Sym(V ∗) ⊆ Sym(V ∗
K) with an O-

submodule of (InvVK)
∗ via Lemma 3.14, we have

StarV = {x ∈ InvVK | 〈x, ξ〉 ∈ O for all ξ ∈ ′Sym(V ∗)}.

Proof. Recall the basis B = {x1, . . . , xl+m} of V , and let {ξ1, . . . , ξl+m} be the
dual basis of V ∗. By Lemma 3.10,

{x∗c := x∗c11 ∗ · · · ∗ x
∗cl+m

l+m | c = (c1, . . . , cl+m) ∈ MB}

is an O-basis of StarV . On the other hand,

{ξ(c) := ξ
(c1)
1 · · · ξ

(cl+m)
l+m | c = (c1, . . . , cl+m) ∈ MB}

is an O-basis of ′Sym(V ∗). It remains to note that 〈x∗c, ξ(d)〉 = ±δc,d. �

3.4. Trivial extension algebras. Let A be a k-superalgebra. We consider A∗

as an A-bimodule with respect to the dual regular actions given by

〈α · a, b〉 = 〈α, ab〉, 〈b, a · α〉 = 〈ba, α〉 (a, b ∈ A, α ∈ A∗). (3.16)

We refer to this bimodule as the dual regular superbimodule.
The trivial extension superalgebra TA of A is TA = A ⊕ A∗ as a superspace,

with multiplication

(a, α)(b, β) = (ab, a · β + α · b) (a, b ∈ A, α, β ∈ A∗). (3.17)

Let m : A⊗A→ A be the multiplication map on A and

m∗ : A∗ → A∗ ⊗A∗

be the dual map. For α ∈ A∗, we write m∗(α) =
∑
α(1) ⊗ α(2) using Sweedler’s

notation. Then

〈bc, α〉 = 〈b⊗ c,m∗(α)〉 = 〈b⊗ c,
∑

α(1) ⊗ α(2)〉 =
∑

(−1)c̄ᾱ(1)〈b, α(1)〉〈c, α(2)〉,

〈α, bc〉 = 〈m∗(α), b ⊗ c〉 = 〈
∑

α(1) ⊗ α(2), b⊗ c〉 =
∑

(−1)ᾱ(2) b̄〈α(1), b〉〈α(2), c〉.

Note that the right hand sides above are equal to each other since 〈α(1), b〉 = 0

unless ᾱ(1) = b̄ and 〈α(2), c〉 = 0 unless ᾱ(2) = c̄. The formulas imply that for any
a ∈ A and α ∈ A∗, we have

a · α =
∑

(−1)āᾱ(1)〈a, α(2)〉α(1), (3.18)

α · a =
∑

(−1)ᾱ(2)ā〈a, α(1)〉α(2). (3.19)

Let n ∈ Z>0. The matrix algebra Mn(A) is naturally a superalgebra. For
1 ≤ r, s ≤ n and a ∈ A, the matrix aEr,s ∈ X with a in the (r, s)th position and

zeros elsewhere will be denoted by ξar,s. Then ξ
a
r,sξ

b
t,u = δs,tξ

ab
r,u. We have ξar,s = ā.

For α ∈ A∗ and 1 ≤ r, s ≤ n, we have the element xαr,s ∈Mn(A)
∗ defined from

〈xαr,s, ξ
a
t,u〉 = δr,tδs,u〈α, a〉 (1 ≤ t, u ≤ n, a ∈ A). (3.20)

Lemma 3.21. There is an isomorphism of superalgebras

Mn(TA)
∼
−→ TMn(A), ξ

(a,α)
r,s 7→ (ξar,s, x

α
s,r)

for all 1 ≤ r, s ≤ n, a ∈ A and α ∈ A∗.
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Proof. Let 1 ≤ r, s, t, u, v, w ≤ n and a, b, c ∈ A. On the one hand, we have

ξ(a,α)r,s ξ
(b,β)
t,u = δs,tξ

(a,α)(b,β)
r,u = δs,tξ

(ab,a·β+α·b)
r,u 7→ δs,t(ξ

ab
r,u, x

a·β+α·b
u,r ).

On the other hand,

(ξar,s, x
α
s,r)(ξ

b
t,u, x

β
u,t) = (ξar,sξ

b
t,u, ξ

a
r,s · x

β
u,t + xαs,r · ξ

b
t,u).

Since ξar,sξ
b
t,u = δs,tξ

ab
r,u, we just need to prove that

ξar,s · x
β
u,t + xαs,r · ξ

b
t,u = δs,tx

a·β+α·b
u,r . (3.22)

But

(ξar,s · x
β
u,t + xαs,r · ξ

b
t,u)(ξ

c
v,w) = xβu,t(ξ

c
v,wξ

a
r,s) + xαs,r(ξ

b
t,uξ

c
v,w)

= δw,rx
β
u,t(ξ

ca
v,s) + δu,vx

α
s,r(ξ

bc
t,w)

= δw,rδu,vδt,s〈β, ca〉 + δu,vδs,tδr,w〈α, bc〉

= δs,tδu,vδr,w(a · β + α · b)(c)

= δs,tx
a·β+α·b
u,r (ξcv,w),

proving (3.22). �

4. Turner doubles

In this section, we review and develop Turner’s theory of doubles [Tu1,Tu2,
Tu3]. We will freely use the notation and conventions of Section 3. Let X
be an O-superalgebra, free of finite rank as an O-supermodule. We consider
Xk = X ⊗O k as a k-superalgebra.

4.1. Invariants. For d ∈ Z≥0 we have a superalgebra structure on TensdX :=
X⊗d induced by that on X. So we have a (locally-unital) superalgebra structure
on TensX :=

⊕

d≥0 Tens
dX, with the product on each summand TensdX being

as above, and xy = 0 for x ∈ TensdX and y ∈ TenseX with d 6= e. Note
that this algebra structure is different from the two algebra structures on TensX
considered in §3.2, namely the product ⊗ and the product ∗.

In fact, TensX is now even a superbialgebra with the coproduct (3.11). Since
Sd acts on TensdX with superalgebra automorphisms, the fixed points InvdX =
(TensdX)Sd is a subsuperalgebra of TensdX. By observations made in §3.3,
InvX =

⊕

d≥0 Inv
dX is a supercocommutative subsuperbialgebra of TensX.

Lemma 4.1. Let x, y ∈ TensX and z ∈ InvX. Then

(x ∗ y)z =
∑

(−1)ȳz̄(1)(xz(1)) ∗ (yz(2)),

z(x ∗ y) =
∑

(−1)z̄(2)x̄(z(1)x) ∗ (z(2)y).

Proof. We may assume that z ∈ InvdX, x ∈ TenseX and y ∈ Tensd−eX for
some non-negative integers d ≥ e. Write

∑′ z(1)⊗z(2) for the Inv
eX⊗Invd−eX-

component of ∆(z). Then, since z is Sd-invariant, we have

(x ∗ y)z =
∑

g∈ (e,d−e)D

(x⊗ y)gz
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=
∑

g∈ (e,d−e)D

((x⊗ y)z)g

=
∑

g∈ (e,d−e)D

(
∑′ ((x⊗ y)(z(1) ⊗ z(2))

))g

=
∑

g∈ (e,d−e)D

(
∑′(−1)ȳz̄(1)xz(1) ⊗ yz(2)

)g

=
∑′

(−1)ȳz̄(1)(xz(1)) ∗ (yz(2))

=
∑

(−1)ȳz̄(1)(xz(1)) ∗ (yz(2)),

where the last equality holds because a summand on the right hand side is zero
unless z(1) ∈ InveX and z(2) ∈ Invd−eX. The second equality in the lemma is
proved similarly. �

Lemma 4.2. Let x, y, z, u ∈ InvX. Then

(x ∗ y)(z ∗ u) =
∑

(−1)s(x(1)z(1)) ∗ (y(1)z(2)) ∗ (x(2)u(1)) ∗ (y(2)u(2)),

where s = (x̄(2) + ȳ(2))z̄ + ȳ(1)(x̄(2) + z̄(1)) + ȳ(2)ū(1).

Proof. Writing ∆(x ∗ y) =
∑

(x ∗ y)(1) ⊗ (x ∗ y)(2), we have

(x ∗ y)(z ∗ u) =
∑

(−1)(x∗y)(2) z̄((x ∗ y)(1)z) ∗ ((x ∗ y)(2)u)

=
∑

(−1)(x̄(2)+ȳ(2))z̄+ȳ(1)x̄(2)((x(1) ∗ y(1))z) ∗ ((x(2) ∗ y(2))u)

=
∑

(−1)s(x(1)z(1)) ∗ (y(1)z(2)) ∗ (x(2)u(1)) ∗ (y(2)u(2)),

where s = (x̄(2)+ ȳ(2))z̄+ ȳ(1)x̄(2)+ ȳ(1)z̄(1)+ ȳ(2)ū(1) is as in the statement of the
lemma, the first and third equalities hold by Lemma 4.1, and the second one is
due to Lemma 3.12. �

Lemma 4.3. Let l ∈ Z>0, d1, . . . , dl, f1, . . . , fl ∈ Z≥0, and 1X = e1 + · · · + el
with eiej = δi,jei for all i, j. If xi ∈ (Tensdi X)e⊗di

i and yi ∈ e⊗fi
i (Tensdi X) for

i = 1, . . . , l, then

(x1 ∗ · · · ∗ xl)(y1 ∗ · · · ∗ yl) = (−1)[x1,...,xl;y1,...,yl]δd1,f1 . . . δdl,fl(x1y1) ∗ · · · ∗ (xlyl).

Proof. Let λ = (d1, . . . , dl) and µ = (f1, . . . , fl). Note that (x1 ⊗ · · · ⊗ xl)
g(y1 ⊗

· · · ⊗ yl)
h = 0 if g ∈ λD , h ∈ µD and either λ 6= µ or g 6= h. Since Sd acts on

TensdX with superalgebra automorphisms for every d, the result follows. �

Corollary 4.4. If X = X1⊕· · ·⊕Xl is a direct sum of superalgebras, then there

is an isomorphism of superalgebras
⊕

(d1,...,dl)∈Λ(l,d)

Invd1 X1 ⊗ · · · ⊗ Invdl Xl
∼

−→ InvdX, x1 ⊗ · · · ⊗ xl 7→ x1 ∗ · · · ∗ xl.

Proof. This follows from Lemmas 3.6 and 4.3. �

Recall from from §3.4 that we consider X∗ as a bimodule over X. Note for
d ∈ Z≥0 that Tensd(X∗) is naturally a bimodule over TensdX with respect to

(x1⊗· · ·⊗xd) · (ξ1⊗· · ·⊗ ξd) = (−1)[x1,...,xd;ξ1,...,ξd](x1 · ξ1)⊗· · ·⊗ (xd · ξd), (4.5)
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where x1, . . . , xd ∈ X and ξ1, . . . , ξd ∈ X∗, or ξ1, . . . , ξd ∈ X and x1, . . . , xd ∈
X∗. As usual, if d 6= e we define the action trivially: TensdX · Tense(X∗) =
Tense(X∗) ·TensdX = 0. This yields a TensX-bimodule structure on Tens(X∗).
Upon restriction, we now get an InvX-superbimodule structure on Inv(X∗). We
refer to this superbimodule structure as the standard superbimodule structure.
On the other hand, we have the dual regular InvX-superbimodule structure on
(InvX)∗, see (3.16). By Lemmas 3.14 and 3.10, we have an embedding

ι : (InvX)∗
∼

−→ Sym(X∗) →֒ ′Sym(X∗)
∼

−→ Inv(X∗). (4.6)

Lemma 4.7. The embedding ι is a homomorphism of InvX-bimodules.

Proof. Every element of Inv(X∗) is by definition a linear combination of func-
tions of the form ξ1 ⊗ · · · ⊗ ξd with ξ1, . . . , ξd ∈ X∗. On the other hand, by
Lemma 3.14, (InvX)∗ is spanned by the functions of the form (ξ1⊗· · ·⊗ξd)|InvX
with ξ1, . . . , ξd ∈ X∗, and

ι((ξ1 ⊗ · · · ⊗ ξd)|InvX) = ξ1 ∗ · · · ∗ ξd.

Note that

(ξ1 ∗ · · · ∗ ξd)|InvX = d!(ξ1 ⊗ · · · ⊗ ξd)|InvX .

We have proved for any ξ ∈ Tensd(X∗) that

ι(ξ|InvX)|InvX = d!ξ|InvX . (4.8)

Let x ∈ InvX. We now prove that ι(x · (ξ|InvX)) = x · ι(ξ|InvX), the proof
that ι((ξ|InvX) · x) = ι(ξ|InvX) · x being similar. Using (4.8), we get

ι(x · (ξ|InvX))|InvX = ι((x · ξ)|InvX)|InvX = d!(x · ξ)|InvX = d!x · (ξ|InvX)

= x ·
(
(ι(ξ|InvX))|InvX

)
= (x · ι(ξ|InvX))|InvX .

To prove that ι(x · (ξ|InvX)) = x · ι(ξ|InvX) it now suffices to show that the
map Inv(X∗) → (InvX)∗ given by η 7→ η|InvX is injective. Let η ∈ Invd(X∗)
satisfy η|InvX = 0. Since d!(′Sym(X∗)) ⊆ Sym(X∗), we can write d!η = ι(ξ|InvX)
for some ξ ∈ Tensd(X∗). Then, using (4.8),

0 = d!η|InvX = ι(ξ|InvX)|InvX = d!ξ|InvX

Hence ξ|InvX = 0. But ι(ξ|InvX) = d!η, whence η = 0, as desired. �

Recall the trivial extension algebra TX = X ⊕X∗ from §3.4. For d, e ∈ Z≥0,
we define Tensd,e TX to be the span in Tensd+e TX of pure tensors y1⊗· · · ⊗ yd+e

such that d of the y’s are in X and e of the y’s are in X∗. We identify TensdX
with Tensd,0 TX and Tensd(X∗) with Tens0,d TX in the obvious way. Then for
ξ ∈ TensdX and x ∈ Tense(X∗), we have

ξx = ξ · x and xξ = x · ξ,

where the left hand sides are products in the algebra Tensd TX and the right
hand sides are the standard actions in the sense of (4.5). (Note the change of our
notational ‘paradigm’: from now on we use Greek letters to denote elements of
TensX and Roman letters for elements of Tens(X∗).)
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Lemma 4.9. Let a, b, d ∈ Z≥0 with a, b ≤ d. Suppose that x ∈ Inva(X∗),
y ∈ Invb(X∗), ξ ∈ Invd−aX, and η ∈ Invd−bX. Then in Invd TX we have

(ξ ∗ x)(η ∗ y) =
∑

(−1)ξ̄(1)(ξ̄(2)+η̄+x̄)+η̄(1)x̄ξ(2)η(1) ∗ (x · η(2)) ∗ (ξ(1) · y).

Proof. Since X∗X∗ = 0 in TX , the result follows from (3.13) and Lemma 4.2. �

4.2. Doubles. We have a natural pairing 〈·, ·〉 between InvX and (InvX)∗, with
〈x, ξ〉 = 〈ξ, x〉 = 0 for ξ ∈ InvdX and x ∈ (InveX)∗ with d 6= e. Also, for every
d ∈ Z≥0 we have the dual regular actions (3.16) of InvdX on (InvdX)∗. Again,
we declare that ξ · x = x · ξ = 0 if ξ ∈ InvdX and x ∈ (InveX)∗ with d 6= e.
There is a superbialgebra structure on (InvX)∗ which is dual to that on InvX.
We write

∇ : (InvX)∗ → (InvX)∗ ⊗ (InvX)∗ (4.10)

for the corresponding coproduct. Note that∇((InvdX)∗) ⊆ (InvdX)∗⊗(InvdX)∗

for all d ∈ Z≥0.
We now recall Turner’s construction [Tu3] of a double superalgebra DX. As

an O-superspace,

DX := InvX ⊗ (InvX)∗.

The product is defined, using Sweedler’s notation for ∆, as follows:

(ξ ⊗ x)(η ⊗ y) =
∑

(−1)ξ̄(1)(ξ̄(2)+η̄+x̄)+η̄(1)x̄ξ(2)η(1) ⊗ (x · η(2))(ξ(1) · y) (4.11)

for ξ, η ∈ InvX and x, y ∈ (InvX)∗. The associativity of the product can
be checked by a straightforward computation, cf. [Tu3, Theorem 1.1]. In view
of (3.18) and (3.19), this product formula can be rewritten, using Sweedler’s
notation for ∆ and ∇, to match [Tu3, Remark 1.3]:

(ξ ⊗ x)(η ⊗ y) =
∑

(−1)s〈ξ(1), y(2)〉〈x(1), η(2)〉ξ(2)η(1) ⊗ x(2)y(1), (4.12)

where

s = ξ̄(1)ξ̄(2) + ξ̄(1)η̄(1) + x̄(2)ȳ(2) + ȳ(1)ȳ(2) + x̄(1)η̄(1) + x̄(2)η̄(2) + x̄(2)η̄(1).

It is easy to see that we can write the superalgebra DX as a direct sum of
subsuperalgebras

DX =
⊕

d≥0

DdX,

where

DdX :=
⊕

e,f≥0, e+f=d

InveX ⊗ (Invf X)∗. (4.13)

We use the following notation for the summands on the right hand side above:

De,fX := InveX ⊗ (Invf X)∗. (4.14)

Remark 4.15. The definition of the double DdX makes sense for any k-algebra
X, without any assumption on the ring k. We also note that Lemmas 4.1, 4.2,
and 4.9 do not need the assumption that k = O. However, it is crucial to work
over O when we deal with the divided power version ′DdX below.
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Remark 4.16. The direct sum decomposition in (4.13) is a priori only a decom-
position of O-modules. But one can say a little more.

(i) Dd,0X is a subalgebra of DdX naturally isomorphic to the algebra InvdX.
(ii) D0,dX is an ideal in DdX. Moreover,

(De,fX)(D0,dX) = (D0,dX)(De,fX) = 0

unless e = d, in which case for ξ ∈ InvdX and x ∈ (InvdX)∗, we have

(ξ ⊗ 1)(1⊗ x) = 1⊗ (ξ · x), (4.17)

(1⊗ x)(ξ ⊗ 1) = 1⊗ (x · ξ). (4.18)

In particular, Dd,0X ⊕D0,dX is a subalgebra of DdX, isomorphic to TInvd X . As
a still more special case, we get D1X ∼= TX .

4.3. Divided power doubles. In view of Lemma 3.14, we identify the superal-
gebras

(InvX)∗ = Sym(X∗). (4.19)

Then

Sym(X∗) ⊆ ′Sym(X∗) ⊆ Sym(X∗)⊗O K ∼= Sym(X∗
K) = (InvXK)

∗,

where we have used the identification (4.19) over K for the last equality. We have
the left and right dual regular actions of InvXK on (InvXK)

∗. Since InvX ⊆
InvXK in a natural way, we can also speak of the dual regular actions of InvX
on (InvXK)

∗.

Lemma 4.20. The O-submodule ′Sym(X∗) ⊂ (InvXK)
∗ is invariant with re-

spect to the dual regular actions of InvX on (InvXK)
∗. Thus, ′Sym(X∗) is

an InvX-superbimodule. With respect to this InvX-superbimodule structure

on ′Sym(X∗) and the standard InvX-superbimodule structure on Inv(X∗), the

map κ : ′Sym(X∗)
∼
−→ Inv(X∗) of Lemma 3.10 is an isomorphism of InvX-

superbimodules.

Proof. By (4.6) and Lemma 4.7, we have an InvX-bimodule homomorphism

ι : (InvX)∗ = Sym(X∗) →֒ ′Sym(X∗)
κ

−→ Inv(X∗). (4.21)

As

Sym(X∗
K)

∼= Sym(X∗)⊗O K ∼= ′Sym(X∗)⊗O K ∼= ′Sym(X∗
K),

extending scalars in (4.21), we get an InvXK-superbimodule isomorphism

ιK : (InvXK)
∗ = Sym(X∗

K) = ′Sym(X∗
K)

∼
−→ Inv(X∗

K).

Considering ′Sym(X∗) as the sublattice in Sym(X∗
K), the restriction ιK|′Sym(X∗) is

the isomorphism κ : ′Sym(X∗)
∼

−→ Inv(X∗). Now the standard left and right
actions of InvX ⊆ InvXK on Inv(X∗

K) leave Inv(X∗) = Inv(X∗
K) ∩ Tens(X∗)

invariant, and we have ι−1
K (Inv(X∗)) = ′Sym(X∗). This implies the lemma. �

The identification Sym(X∗
K) = (InvXK)

∗ from (4.19) together with the coprod-
uct (4.10) yield a coproduct

∇K : Sym(X∗
K) → Sym(X∗

K)⊗ Sym(X∗
K).
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Lemma 4.22. We have

∇K(
′Sym(X∗)) ⊆

(
Sym(X∗)⊗ ′Sym(X∗)

)
∩
(
′Sym(X∗)⊗ Sym(X∗)

)
.

Proof. Let x ∈ ′Symd(X∗) for some d ∈ Z≥0. Let {ξ1, . . . , ξm} be a homogeneous
basis of InvdX and {x1, . . . , xm} be the dual basis of (InvdX)∗ = Symd(X∗),
cf. (4.19). We can write ∇K(x) =

∑m
j=1 yj ⊗ xj , where yj ∈ Symd(X∗

K) for

j = 1, . . . ,m. By Lemma 4.20, ′Sym(X∗) is invariant under the left dual regular
action of InvX, so ξi · x ∈ ′Symd(X∗) for any i ∈ {1, . . . ,m}. On the other hand,
by (3.18),

ξi · x =

m∑

j=1

(−1)ξ̄iȳj〈ξi, xj〉yj = (−1)ξ̄iȳiyi,

whence yi ∈ ′Symd(X∗). We have proved that ∇K(
′Sym(X)) ⊆

(
′Sym(X∗) ⊗

Sym(X∗)
)
. The other inclusion is proved similarly. �

By Lemma 4.22, we have a coproduct

∇ : ′Sym(X∗) → ′Sym(X∗)⊗ ′Sym(X∗) (4.23)

obtained by restricting ∇K. Recalling (4.19), note that

DX = InvX ⊗ (InvX)∗ = InvX ⊗ Sym(X∗) (4.24)

is an O-form of DXK. We define a larger O-form
′DX := InvX ⊗ ′Sym(X∗),

which is closed under the multiplication (4.11) because ′Sym(X∗) is invariant
under the left and right dual regular actions of InvX by Lemma 4.20. The
product in ′DX is also given by the formula (4.12) where we use the coproduct
(4.23) on x and y. We have ′DX =

⊕

d≥0
′DdX , where

′DdX :=
∑

e,f≥0, e+f=d

InveX ⊗ ′Symf (X∗).

We use the following notation for the summands on the right hand side above:
′De,fX := InveX ⊗ ′Symf (X∗). (4.25)

The following result often allows one to reduce the study of DX to that of
InvTX . Recall the isomorphism κ from Lemma 3.10.

Theorem 4.26. There is an isomorphism of O-superalgebras

′DX
∼

−→ InvTX , ξ ⊗ x 7→ ξ ∗ κ(x) (ξ ∈ InvX, x ∈ ′Sym(X∗)).

Proof. The map ϕ in the theorem is an isomorphism of O-supermodules by Lem-
mas 3.10 and 3.6. To see that it is an algebra homomorphism, we compute for
ξ, η ∈ InvX and x, y ∈ ′Sym(X∗):

ϕ
(
(ξ ⊗ x)(η ⊗ y)

)
= ϕ

(∑

(−1)ξ̄(1)(ξ̄(2)+η̄+x̄)+η̄(1)x̄ξ(2)η(1) ⊗ (x · η(2))(ξ(1) · y)
)

=
∑

(−1)ξ̄(1)(ξ̄(2)+η̄+x̄)+η̄(1) x̄(ξ(2)η(1)) ∗ κ
(
(x · η(2))(ξ(1) · y)

)

=
∑

(−1)ξ̄(1)(ξ̄(2)+η̄+x̄)+η̄(1) x̄(ξ(2)η(1)) ∗ κ(x · η(2)) ∗ κ(ξ(1) · y)

=
∑

(−1)ξ̄(1)(ξ̄(2)+η̄+x̄)+η̄(1) x̄(ξ(2)η(1)) ∗ (κ(x) · η(2)) ∗ (ξ(1) · κ(y))



18 ANTON EVSEEV AND ALEXANDER KLESHCHEV

= (ξ ∗ κ(x))(η ∗ κ(y))

= ϕ(ξ ⊗ x)ϕ(η ⊗ y),

where we have used (4.11) for the first equality, Lemma 3.10 for the third equality,
Lemma 4.20 for the fourth equality and Lemma 4.9 for the fifth equality. �

Example 4.27. Let O[z]d be the truncated polynomial algebra O[z]/(zd+1),
and ′O[z]d be the divided power truncated polynomial algebra defined as the O-

subalgebra of K[z]/(zd+1) spanned by all z(e) with e = 0, . . . , d. If X is the trivial
algebra O, let y ∈ X∗ be the function which sends 1 to 1. Then DdX ∼= O[z]d,
with 1⊗d−e⊗ye ∈ Invd−eX⊗Syme(X∗) corresponding to ze, and ′DdX ∼= ′O[z]d,

with 1⊗d−e ⊗ y(e) ∈ Invd−eX ⊗ ′Syme(X∗) corresponding to z(e).

4.4. A generating set for a Turner double. For any d ∈ Z≥0, define D
dX ⊆

Invd TX to be the image of DdX under the isomorphism of Theorem 4.26, and
set DX :=

⊕

d≥0 D
dX. Of course DdX is just an isomorphic copy of DdX,

considered as an explicit subalgebra of Invd TX . By (4.24) and Lemma 3.10, we
have

DdX =

d⊕

e=0

Invd−e(X) ∗ Stare(X∗). (4.28)

Let Y = X1̄ ⊕ X∗, so that Y is naturally an X0̄-superbimodule and TX =
X0̄ ⊕ Y .

Lemma 4.29. For any d ∈ Z≥0, we have

DdX =

d⊕

e=0

Invd−e(X0̄) ∗ Star
e Y.

Proof. By Lemma 3.6,

Invd−e(X) =

d−e⊕

f=0

Invd−e−f (X0̄) ∗ Inv
f (X1̄).

It follows from Lemma 3.10 that Invf (X1̄) = Starf (X1̄) for all f ∈ Z≥0, so
by (4.28) we have

DdX =

d⊕

e=0

e⊕

f=0

Invd−e−f (X0̄) ∗ Star
f (X1̄) ∗ Star

e(X∗)

=
d⊕

e=0

Invd−e(X0̄) ∗ Star
e Y. �

In the rest of this subsection, we write 1 for the identity element 1X of X.

Theorem 4.30. For any d ∈ Z>0, the O-superalgebra DdX is generated by

InvdX0̄ and 1⊗(d−1) ∗ Y .

Proof. Let G be the subalgebra of DdX generated by InvdX0̄ and 1⊗(d−1) ∗ Y .
By Lemma 4.29, it suffices to show that Dd−e,eX := Invd−e(X0̄) ∗ Star

e Y ⊆ G
for all e ∈ [0, d]. We will prove this by induction on e, the case e = 0 being clear.
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Let 0 < e ≤ d and assume that Dd−f,fX ⊆ G for all f ∈ [0, e). Let x ∈ Y and
y ∈ Stare−1 Y . It follows from Lemma 4.2 that

(1⊗(d−1) ∗ x)(1⊗(d−e+1) ∗ y) ∈ 1⊗(d−e) ∗ x ∗ y +
e−1⊕

f=0

Dd−f,fX.

So 1⊗(d−e) ∗ Stare Y ⊆ G.
For every f ∈ [0, d− e], write Dd−e−f,f,eX := 1⊗(d−e−f) ∗ Invf (X0̄) ∗ Star

e Y .
We claim thatDd−e−f,f,eX ⊆ G for all such f . If the claim is true, thenDd−e,eX =
D0,d−e,eX ⊆ G, which implies the lemma. We prove the claim by induction on f .
The base case f = 0 was established in the previous paragraph.

Given f ∈ (0, d − e] and assuming that our claim is true for smaller f , let
ξ ∈ Invf (X0̄) and z ∈ Stare Y . By Lemma 4.2, we have

(1⊗(d−f) ∗ ξ)(1⊗(d−e) ∗ z) =

=

min(d−e,d−f)
∑

a=0

∑

±(1⊗a) ∗ (ξ(1)1
⊗(d−e−a)) ∗ (1⊗(d−f−a)z(1)) ∗ (ξ(2)z(2))

=

min(d−e,d−f)
∑

a=0

∑

±(1⊗a) ∗ (ξ(1)1
⊗(d−e−a)) ∗ (ξ(2)z(2)) ∗ (1

⊗(d−f−a)z(1)),

where supercommutativity of ∗ has been used for the last equality. Note that
ξ(1) ∈ Invb(X0̄) for some b ≤ f , so ξ(1)1

⊗(d−e−a) = 0 if a < d− e− f . Moreover,

any term in the sum with a > d − e − f belongs to Da,d−e−a,eX and hence
to G by the inductive hypothesis. The remaining term is 1⊗(d−e−f) ∗ ξ ∗ z, so
1⊗(d−e−f) ∗ ξ ∗ z ∈ G, and we have proved our claim. �

Let W be an X0̄-bimodule. For any ξ ∈ X0̄, define ad(ξ) ∈ EndO(W ) by
ad(ξ)(w) := ξw − wξ for all w ∈ W . Further, for any r ∈ Z≥0, we define
adr(X0̄) ⊆ EndO(W ) as the O-span of all compositions ad(ξ1) ◦ · · · ◦ ad(ξr) for
ξ1, . . . , ξr ∈ X0̄. As usual, if F is a subset of EndO(W ) and U is a subset of W ,
we denote by F (U) the O-span of the elements f(u) for all f ∈ F and u ∈ U .

Corollary 4.31. Let U be a subsuperspace of Y such that
∑

r≥0 ad
r(X0̄)(U) = Y ,

and let d ∈ Z>0. Then the O-superalgebra DdX is generated by Invd(X0̄) and

1⊗(d−1) ∗ U .

Proof. If d = 1, the result is clear, so we assume that d ≥ 2. By Lemma 4.2, for
any ξ ∈ X0̄ and x ∈ Y , we have

(1⊗(d−1) ∗ ξ)(1⊗(d−1) ∗ x) = 1⊗(d−2) ∗ ξ ∗ x+ 1⊗(d−1) ∗ (ξx),

(1⊗(d−1) ∗ x)(1⊗(d−1) ∗ ξ) = 1⊗(d−2) ∗ x ∗ ξ + 1⊗(d−1) ∗ (xξ).

Since ξ has degree 0̄, we have x ∗ ξ = ξ ∗ x, so

1⊗(d−1) ∗ (ad(ξ)(x)) = (1⊗(d−1) ∗ ξ)(1⊗(d−1) ∗ x)− (1⊗(d−1) ∗ x)(1⊗(d−1) ∗ ξ).

We have proved that if 1⊗(d−1) ∗x belongs to the subalgebra G ⊆ DdX generated
by Invd(X0̄) and 1⊗(d−1) ∗U , then 1⊗(d−1) ∗(ad(ξ)(x)) ∈ G for all ξ ∈ X0̄. In view
of the hypothesis, this implies that 1⊗(d−1) ∗ Y ⊆ G, and the result now follows
by Theorem 4.30. �
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4.5. Gradings. By (4.11), the algebra DdX (resp. ′DdX) is Z≥0-graded with
the graded degree e component being Dd−e,eX (resp. ′Dd−e,eX) for e = 0, . . . , d.
We refer to this grading as the standard grading. In fact, it is a supergalgebra

grading, which means that it is an algebra grading and a supergrading in the
sense of Section 3. If a superalgebra has a superalgebra grading, we just say that
it is graded.

Assume now that the multiplication in X satisfies X1̄X1̄ = 0. Then X is a
Z-graded algebra with X0 = X0̄, X

1 = X1̄ and Xm = 0 for m 6= 0, 1. We will
always work with the grading on X∗ which is the shift by 2 of the canonical
grading, i.e. deg ξ = 2 if ξ ∈ X∗ satisfies ξ(X1) = 0 and deg ξ = 1 if ξ ∈ X∗

satisfies ξ(X0) = 0. Now TX = X ⊕X∗ is also graded, and it is easy to see that
this is a superalgebra grading.

This yields Z≥0-gradings on InvX, Sym(X∗), ′Sym(X∗) and InvTX . Moreover,
we let (InvX)∗ inherit the grading from Sym(X∗) via the identification (4.19).
So we have Z≥0-gradings on the O-superspaces DX = InvX ⊗ (InvX)∗ and
′DX = InvX ⊗ ′Sym(X∗), which we refer to as Turner’s gradings, cf. [Tu1,
Remark 156]. If Y = DX or ′DX with Turner’s grading, then Y0̄ =

⊕

m even Y
m

and Y1̄ =
⊕

m odd Y
m. In particular, Turner’s grading is a supergrading.

Lemma 4.32. Let the superalgebra X have the property that X1̄X1̄ = 0. Then,

for every d ∈ Z≥0, the superalgebras DdX and ′DdX are Z≥0-graded with re-

spect to Turner’s gradings. Moreover, the isomorphism of Theorem 4.26 is an

isomorphism of graded superalgebras.

Proof. It is easy to check that InvX, Sym(X∗), ′Sym(X∗) are Z≥0-graded super-
algebras. Moreover, Inv(X∗) is graded with respect to the ∗-product. Next, one
checks that both Sym(X∗) and ′Sym(X∗) are graded InvX-bimodules. Finally,

the homomorphisms ∆: InvX → InvX ⊗ InvX and κ : ′Sym(X∗)
∼

−→ Inv(X∗)
are homogeneous of degree zero. So the lemma follows from (4.11). �

4.6. Symmetricity of doubles. Let X be a k-superalgebra which is free of
finite rank as a k-module. The Turner double superalgebra DdX defined in §4.2
is symmetric. To see this, we define the bilinear form on DdX via

(ξ ⊗ x, η ⊗ y) := 〈ξ, y〉〈x, η〉.

We give another description of the form (·, ·). Recall the standard grading on
DdX from §4.5. Let F ∈ (DdX)∗ be defined by requiring that F is zero on all

standard graded components Dd−e,eX for 0 ≤ e < d, and F (1⊗ x) = x(1⊗d
X ) for

x ∈ (InvdX)∗.

Lemma 4.33. For any t, u ∈ DdX, we have (t, u) = F (tu).

Proof. We may assume that t = ξ ⊗ x and u = η ⊗ y, where ξ ∈ Invd−eX,
x ∈ (InveX)∗, η ∈ Indd−fX and y ∈ (Invf X)∗ for some 0 ≤ e, f ≤ d. We may
further assume that e = d − f , for otherwise both sides of the equation in the
lemma are zero. Then, using (4.11), we have

F
(
(ξ ⊗ x)(η ⊗ y)

)
=

∑

(−1)ξ̄(1)(ξ̄(2)+η̄+x̄)+η̄(1)x̄F
(
ξ(2)η(1) ⊗ (x · η(2))(ξ(1) · y)

)

= (−1)ξ̄(η̄+x̄)F
(
1⊗ (x · η)(ξ · y)

)
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= (−1)ξ̄(η̄+x̄)
(
(x · η)(ξ · y)

)
(1⊗d

X )

= (−1)ξ̄(η̄+x̄)
(
(x · η)(1⊗e

X )
)(
(ξ · y)(1⊗f

X )
)

= (−1)ξ̄(η̄+x̄)〈x, η〉〈ξ, y〉,

where we have used (3.16) for the last equality. It remains to note that we can
drop the sign since 〈x, η〉 = 0 unless x̄ = η̄. �

Note that over an arbitrary k, non-degeneracy of a bilinear form (·, ·) on a free
k-module V of a finite rank means that for every k-basis {v1, . . . , vm} of V there
is another basis {w1, . . . , wm} such that (va, wb) = δa,b. The following corollary

shows that DdX is a symmetric algebra.

Corollary 4.34. [Tu3, Theorem 1.1] The form (·, ·) on DdX is non-degenerate,

symmetric and associative.

Proof. The non-degeneracy and symmetricity are clear, while the associativity
follows from Lemma 4.33. �

5. Generalized Schur-Weyl duality

Throughout this section, A = A0̄ ⊕ A1̄ is a k-superalgebra with k-bases B0̄ of
A0̄, B1̄ of A1̄, and B = B0̄ ⊔ B1̄ of A. Fix d ∈ Z≥0 and n ∈ Z>0.

5.1. Wreath product superalgebras. We will consider super wreath products

WA
d := A⊗d ⋊ kSd, (5.1)

with kSd concentrated in degree 0̄. We identify A⊗d and kSd with the subsu-
peralgebras A⊗d ⊗ 1Sd

and 1⊗d
A ⊗ kSd of WA

d , respectively. The multiplication

in WA
d is then uniquely determined by the additional requirement that

g−1(x1 ⊗ · · · ⊗ xd)g = (x1 ⊗ · · · ⊗ xd)
g (5.2)

for g ∈ Sd and x1, . . . , xd ∈ A, see (3.4). Given x ∈ A and 1 ≤ c ≤ d, we denote

x[c] := 1A ⊗ · · · ⊗ 1A ⊗ x⊗ 1A ⊗ · · · ⊗ 1A ∈ A⊗d,

with x in the cth position. The following lemma is obvious:

Lemma 5.3. Let A be a superalgebra and d ∈ Z≥0. Then the superalgebra WA
d

is generated by the elements {x[c] | x ∈ A, 1 ≤ c ≤ d} ⊔ Sd subject only to the

following relations:

x[c] · y[c] = xy[c] (x, y ∈ A, 1 ≤ c ≤ d),

x[b] · y[c] = (−1)x̄ȳy[c] · x[b] (x, y ∈ A, 1 ≤ b 6= c ≤ d),

g · h = gh (g, h ∈ Sd),

g · x[c] = x[gc] · g (g ∈ Sd, x ∈ A, 1 ≤ c ≤ d).

Let λ ∈ Λ(n, d). We always consider the group algebra kSλ of the standard
parabolic subgroup Sλ as a subalgebra kSλ ⊆ kSd ⊆ WA

d . In particular, kSλ

acts naturally on the left on WA
d . This makes WA

d into a left kSλ-module, which
is free with basis

{g(b1 ⊗ · · · ⊗ bd) | g ∈ λ
D , b1, . . . , bd ∈ B}.



22 ANTON EVSEEV AND ALEXANDER KLESHCHEV

So, denoting by trivλ the trivial right kSλ-module k · 1λ, we have the (right)
induced WA

d -module

MA
λ := trivλ ⊗kSλ

WA
d (5.4)

with generator mλ := 1λ ⊗ 1. We refer to MA
λ as a permutation module.

5.2. Tensor space. The matrix algebraMn(A) is a superalgebra in its own right.
We use the elements

ξxr,s := xEr,s ∈Mn(A) (x ∈ A, 1 ≤ r, s ≤ n) (5.5)

as in §3.4. We also introduce the special notation

SA(n, d) := Invd(Mn(A)) and SA(n) := Inv(Mn(A)) =
⊕

d≥0

SA(n, d).

If A = k, the algebra SA(n, d) is nothing but the classical Schur algebra S(n, d)
as in [Gr].

Let V = A⊕n, considered as a right A-supermodule in the natural way. Note
that we have a natural isomorphism Mn(A)

∼
−→ EndA(V ), where we consider V

as column vectors and the isomorphism sends a matrix ξ to the left multiplication
by ξ. This implies the isomorphism

TensdMn(A)
∼

−→ EndTensd A(Tens
d V ). (5.6)

Recall from (3.4) that Sd acts on Tensd V with k-linear maps, and write vg :=
vg for v ∈ V , g ∈ Sd. Thus we have right supermodule structures on Tensd V over
both kSd and TensdA. In view of Lemma 5.3, the superspace Tensd V becomes
a right WA

d -supermodule. We refer to this right action of WA
d on Tensd V as the

standard permutation action.

Lemma 5.7. The natural embedding

SA(n, d) →֒ TensdMn(A)
∼

−→ EndTensd A(Tens
d V )

defines an isomorphism of superalgebras

SA(n, d) ∼= EndWA
d
(Tensd V ).

Proof. The action of Sd on Tensd V yields the action on EndTensd A(Tens
d V ) via

(ϕ · g)(v) = ϕ(vg−1)g for ϕ ∈ EndTensd A(Tens
d V ), g ∈ Sd and v ∈ Tensd V .

Let α : TensdMn(A)
∼

−→ EndTensd A(Tens
d V ) be the isomorphism (5.6). We

have theSd-action on EndTensd A(Tens
d V ) defined in the previous paragraph, and

theSd-action on TensdMn(A) defined by (3.4). It is easy to see that α intertwines
the two actions. Taking invariants, we get an isomorphism between SA(n, d) =
(TensdMn(A))

Sd and EndWA
d
(Tensd V ) = (EndTensd A(Tens

d V ))Sd . �

For 1 ≤ r ≤ n, we set

vr := (0, . . . , 0, 1A, 0, . . . , 0) ∈ V, (5.8)

where 1A is in the rth position. For r = (r1, . . . , rd) ∈ Seq(n, d), we define

vr := vr1 ⊗ · · · ⊗ vrd ∈ Tensd V.
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Since {v1, . . . , vn} is an A-basis of V , the set {vr | r ∈ Seq(n, d)} is a TensdA-
basis of Tensd V . Note that

vrg = vrg (g ∈ Sd, r ∈ Seq(n, d)). (5.9)

Let λ ∈ Λ(n, d). We denote by Tensλ V the TensdA-span of all vr such that
r ∈ λSeq, cf. (2.1). By (5.9), Tensλ V is a WA

d -submodule of Tensd V . We have
a special vector

vλ := v⊗λ1
1 ⊗ · · · ⊗ v⊗λn

n ∈ Tensλ V.

We have the decomposition of WA
d -modules:

Tensd V =
⊕

λ∈Λ(n,d)

Tensλ V. (5.10)

Lemma 5.11. Let λ ∈ Λ(n, d). There is an isomorphism of right WA
d -modules

Tensλ V
∼

−→MA
λ which maps vλ to the standard generator mλ of MA

λ .

Proof. It is immediate that vλ is Sλ-invariant, which yields a homomorphism
MA

λ → Tensλ V, mλ 7→ vλ. This is an isomorphism, since it maps the TensdA-

basis {mλg | g ∈ λD} of MA
λ to the TensdA-basis {vr | r ∈ λSeq} of Tensλ V , cf.

the bijection (2.6). �

For any λ ∈ Λ(n, d), we define

ξλ := E⊗λ1
1,1 ∗ · · · ∗ E⊗λn

n,n ∈ SA(n, d). (5.12)

Lemma 5.13. Let λ, µ ∈ Λ(n, d). Then:

(i) ξλξµ = δλ,µξλ and
∑

ν∈Λ(n,d) ξν = 1.

(ii) ξλ Tens
d V = Tensλ V .

Proof. Note that ξλvµ = δλ,µvλ. But vλ generates Tensλ V as a rightWA
d -module

by Lemma 5.11, and the action of SA(n, d) on Tensd V commutes with that ofWA
d

by Lemma 5.7, so ξλ acts as the projection onto Tensλ V along
⊕

ν 6=λ Tens
ν V .

The lemma follows since SA(n, d) acts on Tensd V faithfully thanks to Lemma 5.7.
�

5.3. Idempotent truncation. Throughout the subsection we assume that d ≤
n and set

ω := ε1 + · · · + εd ∈ Λ(n, d). (5.14)

The main goal of this subsection is to explicitly identify ξωS
A(n, d)ξω with WA

d

and SA(n, d)ξω with Tensd V so that the natural right action of ξωS
A(n, d)ξω on

SA(n, d)ξω becomes the standard permutation action of WA
d on Tensd V , cf. [Gr,

Chapter 6] for the case when A = k.

Lemma 5.15. There is a superalgebra isomorphism

ϕ : WA
d

∼
−→ ξωS

A(n, d)ξω , (x1 ⊗ · · · ⊗ xd)g 7→ ξx1

1,g−11
∗ · · · ∗ ξxd

d,g−1d
.

Moreover, for any w ∈WA
d , its image ϕ(w) is the unique element of ξωS

A(n, d)ξω
such that ϕ(w)vω = vωw.
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Proof. Using Lemma 5.7, we have an isomorphism of superalgebras

α : ξωS
A(n, d)ξω

∼
−→ EndWA

d
(ξω Tens

d V )

which maps s ∈ ξωS
A(n, d)ξω to the left multiplication by s. On the other hand,

by Lemma 5.11, there is an isomorphism of rightWA
d -supermodules ξω Tens

d V =

Tensω V
∼

−→ MA
ω , vω 7→ mω. But the WA

d -module MA
ω is free of rank 1 with

generator mω. So there is an isomorphism β : WA
d

∼
−→ EndWA

d
(ξω Tens

d V ) of

superalgebras which sends w ∈WA
d to the endomorphism vω 7→ vωw.

Generalizing the notation (5.8), we set

vxr := (0, . . . , 0, x, 0, . . . , 0) ∈ V (1 ≤ r ≤ n, x ∈ A), (5.16)

where x is in the rth position. Then

α(ξx1

1,g−11
∗ · · · ∗ ξxd

d,g−1d
)(vω) = (ξx1

1,g−11
∗ · · · ∗ ξxd

d,g−1d
)(v1 ⊗ · · · ⊗ vd)

= (−1)[g;x1,...,xd]v
xg1

g1 ⊗ · · · ⊗ v
xgd

gd

= (vx1
1 ⊗ · · · ⊗ vxd

d )g

= vω(x1 ⊗ · · · ⊗ xd)g

= β((x1 ⊗ · · · ⊗ xd)g)(vω).

This proves the lemma. �

Note that SA(n, d)ξω is a right ξωS
A(n, d)ξω-module, so we consider it as a

right WA
d -module via the identification of WA

d with ξωS
A(n, d)ξω coming from

the isomorphism ϕ of Lemma 5.15.

Proposition 5.17. There is a unique isomorphism SA(n, d)ξω
∼

−→ Tensd V of

(SA(n, d),WA
d )-superbimodules which maps ξω to vω.

Proof. Since ξωvω = vω, there is a unique homomorphism ψ of left SA(n, d)-
modules SA(n, d)ξω → Tensd V mapping ξω to vω. Using Lemma 5.15, we com-
pute for any s ∈ SA(n, d) and any w ∈WA

d :

ψ((sξω)w) = ψ((sξω)ϕ(w)) = ψ(sξωϕ(w)) = ψ(sϕ(w)ξω)

= sϕ(w)vω = svωw = sξωvωw = ψ(sξω)w,

so ψ is a homomorphism of (SA(n, d),WA
d )-superbimodules.

Moreover, ψ is injective since ψ(sξω) = 0 only if sξωvω = 0, which implies
that sξω Tens

ω V = 0 because vωW
A
d = Tensω V . On the other hand, by

Lemma 5.13(ii), we have sξω Tens
µ V = 0 for all µ 6= ω, hence sξω Tens

d V = 0,
so sξω = 0.

Finally, for every µ ∈ Λ(n, d) there is a homomorphism of right WA
d -modules

MA
ω → MA

µ , mω 7→ mµ, and so there is a homomorphism of right WA
d -modules

Tensω V → Tensµ V, vω 7→ vµ, see Lemma 5.11. By Lemma 5.7, there is s ∈
SA(n, d) with svω = vµ. As vµ generates Tensµ V as a WA

d -module for every

µ ∈ Λ(n, d), we now deduce that vω generates Tensd V as an (SA(n, d),WA
d )-

bimodule. Hence ψ is surjective. �

Denote the center of an algebra Y by Z(Y ). Recall from Section 3 the notation
|X| for a superalgebra X. The following technical result, in which we forget the
superstructures, will be needed in §6.2:
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Lemma 5.18. Let d ≤ n. If z ∈ Z(|SA(n, d)|) and ξω ∈ |SA(n, d)|z, then z is

invertible.

Proof. Let S := |SA(n, d)| and W := |WA
d |. First, note that ξλzξµ = zξλξµ = 0

for any distinct λ, µ ∈ Λ(n, d). So z =
∑

λ∈Λ(n,d) zλ, where zλ := zξλ = ξλz.

Let λ ∈ Λ(n, d). There is a unique W -module homomorphism sending mω to
mλ, so by Lemmas 5.7 and 5.11, there exists a unique element ξλ,ω ∈ ξλSξω such
that ξλ,ωvω = vλ.

By the hypothesis, there exists yω ∈ S such that yωz = ξω. Replacing yω with
ξωyωξω, we may (and do) assume that yω ∈ ξωSξω, and then it is easy to see
that yω ∈ Z(ξωSξω). Let ỹω ∈ W be the image of yω under the isomorphism

ξωSξω
∼

−→ W of Lemma 5.15. Then ỹω ∈ Z(W ) and yωvω = vωỹω. For any
g ∈ Sλ, we have mλỹωg = mλgỹω = mλỹω. Hence, there is a right W -module
endomorphism ofMλ sendingmλ to mλỹω. By Lemmas 5.7 and 5.11, this implies
that there exists yλ ∈ ξλSξλ such that yλvλ = vλỹω. Therefore,

zλyλvλ = zλvλỹω = zλξλ,ωvωỹω = zλξλ,ωyωvω = zξλ,ωyωvω = ξλ,ωzyωvω

= ξλ,ωξωvω = ξλ,ωvω = vλ.

By Lemma 5.7, it follows that zλyλ = ξλ. Setting y :=
∑

λ∈Λ(n,d) yλ, we have
zy = 1. �

5.4. Idempotent refinements. In this subsection we suppose that we are given
a fixed finite family {e1, . . . , el} of non-zero orthogonal idempotents in A with
∑l

i=1 ei = 1A. Moreover, we assume that every eiA is free as a k-supermodule

with a (homogeneous) finite basis iB, so that B =
⊔l

i=1 iB is a k-basis of A.
Set I := {1, . . . , l}. We order [1, n] × I lexicographically and, recalling the

theory of §2.3, consider the set of compositions Λ([1, n]×I, d). Given λ ∈ Λ([1, n]×

I, d), we denote λ
(i)
r := λ(r,i) for (r, i) ∈ [1, n]× I. We have the map

π : Λ([1, n] × I, d) → Λ(n, d), λ 7→ (
∑

i∈I λ
(i)
1 ,

∑

i∈I λ
(i)
2 , . . . ,

∑

i∈I λ
(i)
n ).

Let λ ∈ Λ([1, n] × I, d). We have the idempotent

eAλ := e
⊗λ

(1)
1

1 ⊗ · · · ⊗ e
⊗λ

(l)
1

l ⊗ · · · ⊗ e⊗λ
(1)
n

1 ⊗ · · · ⊗ e⊗λ
(l)
n

l ∈ TensdA. (5.19)

Recalling the notation of §2.3, note that

BAλ := {b1 ⊗ · · · ⊗ bd | ba ∈ iB if a ∈ Ωλ
(r,i)} (5.20)

is a k-basis of eAλ TensdA. We define the parabolic subalgebra

WA
λ := eAλ ⊗ kSλ ⊆WA

d .

Note that eAλ is the identity in WA
λ , and WA

λ is a (usually non-unital) subsu-

peralgebra inWA
d , isomorphic to the group algebra kSλ. So we may consider the

trivial right supermodule trivAλ = k · 1Aλ over WA
λ with the action on the basis

element 1Aλ given by 1Aλ · (eAλ ⊗ g) = 1Aλ for any g ∈ Sλ.

As usual, we view TensdA and kSd as subsuperalgebras of WA
d , so we can also

view eAλ as an element of WA
d . Then eAλW

A
d is naturally a left WA

λ -module. We
now define the colored permutation supermodule

MA
λ := trivAλ ⊗WA

λ

eAλW
A
d
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with generator mA
λ := 1Aλ ⊗ eAλ .

Lemma 5.21. The following set is a k-basis of MA
λ :

{mA
λ(b1 ⊗ · · · ⊗ bd)g | b1 ⊗ · · · ⊗ bd ∈ BAλ , g ∈ λ

D}. (5.22)

In particular, dimMA
λ = |Sd : Sλ|

∏

i∈I(dim eiA)
∑n

r=1 λ
(i)
r .

Proof. Note that

eAλW
A
d = (e1A)

⊗λ
(1)
1 ⊗ · · · ⊗ (elA)

⊗λ
(l)
1 ⊗ · · · ⊗ (e1A)

⊗λ
(1)
n ⊗ · · · ⊗ (elA)

⊗λ
(l)
n ⊗ kSd,

and so

{eAλ(b1 ⊗ · · · ⊗ bd)g | b1 ⊗ · · · ⊗ bd ∈ BAλ , g ∈ λ
D}.

is a basis of eAλW
A
d as a left WA

λ -module. The lemma follows. �

Recalling (5.16), we define

vr,i := veir = (0, . . . , 0, ei, 0, . . . , 0) ∈ V (1 ≤ r ≤ n, i ∈ I),

where ei is in the rth position. For λ ∈ Λ([1, n]× I, d), we denote by Tensλ V ⊆
Tensd V the (right) TensdA-span of all vr1,i1 ⊗ · · · ⊗ vrd,id such that for every

(r, i) ∈ [1, n] × I we have ♯{a ∈ [1, d] | (ra, ia) = (r, i)} = λ
(i)
r . We say that a

sequence ((r1, b1), . . . , (rd, bd)) of elements of [1, n]× B is of type λ if ♯{a ∈ [1, d] |

ra = r and ba ∈ iB)} = λ
(i)
r . It is easy to see that

{vb1r1 ⊗ · · · ⊗ vbdrd | ((r1, b1), . . . , (rd, bd)) is of type λ} (5.23)

is a k-basis of Tensλ V . Hence for any λ ∈ Λ(n, d), we have a decomposition

Tensλ V =
⊕

λ∈π−1(λ)

Tensλ V (5.24)

of k-modules. We have a special vector

vλ := v
⊗λ

(1)
1

1,1 ⊗ · · · ⊗ v
⊗λ

(l)
1

1,l ⊗ · · · ⊗ v⊗λ
(1)
n

n,1 ⊗ · · · ⊗ v⊗λ
(l)
n

n,l ∈ Tensλ V.

Lemma 5.25. We have:

(i) For any λ ∈ Λ([1, n]× I, d), we have that Tensλ V is a submodule of the

right WA
d -module Tensd V . Moreover, there is an isomorphism of right

WA
d -modules Tensλ V

∼
−→MA

λ which maps vλ to mA
λ .

(ii) For any λ ∈ Λ(n, d), we have Tensλ V =
⊕

λ∈π−1(λ) Tens
λ V as right

WA
d -modules. In particular, Tensd V =

⊕

λ∈Λ([1,n]×I,d) Tens
λ V and

MA
λ

∼=
⊕

λ∈π−1(λ)M
A
λ as right WA

d -modules.

Proof. Note that vλe
A
λ = vλ and vλg = vλ for any g ∈ Sλ. So, by the adjointness

of induction and restriction, there exists a homomorphism of right WA
d -modules

MA
λ → Tensd V under which mA

λ is mapped to vλ. It maps the elements of the

k-basis (5.22) of MA
λ to the elements of the k-basis (5.23) of Tensλ V up to signs.

This proves (i). Part (ii) follows from (i), (5.24), (5.10) and Lemma 5.11. �
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By Lemma 5.7, the superalgebra SA(n, d) acts naturally on Tensd V with WA
d -

homomorphisms. But by Lemma 5.25, we have an explicit identification of right
WA

d -modules

Tensd V =
⊕

λ∈Λ([1,n]×I,d)

Tensλ V =
⊕

λ∈Λ([1,n]×I,d)

MA
λ .

So, for any y ∈ SA(n, d), the endomorphism v 7→ yv of Tensd V becomes identified
with an endomorphism which we denote by ϕ(y) of

⊕

λ∈Λ([1,n]×I,d)M
A
λ . Recalling

Lemma 5.7 again, we deduce:

Corollary 5.26. Let MA(n, d) :=
⊕

λ∈Λ([1,n]×I,d)M
A
λ . Then ϕ : SA(n, d) →

EndWA
d
(MA(n, d)) is a superalgebra isomorphism.

5.5. Desuperization. Recall from Section 3 that |X| denotes the algebra ob-
tained from a k-superalgebra X by forgetting the Z2-grading. In particular, we

have the associative algebra |A| and the usual wreath product W
|A|
d , where the

symmetric group acts on |A|⊗d by place permutations without signs. On the
other hand, we can consider the associative algebra |WA

d |. In general, the al-

gebras W
|A|
d and |WA

d | are not isomorphic. However, we describe one important
situation when they are.

Let e0̄ and e1̄ be orthogonal idempotents in A with 1 := 1A = e0̄ + e1̄. We call
such a pair of idempotents adapted if A0̄ = e0̄Ae0̄⊕e1̄Ae1̄ and A1̄ = e0̄Ae1̄⊕e1̄Ae0̄.
Let 1 ≤ r < d. We denote the elementary transposition (r, r + 1) ∈ Sd by τr. If
in addition ε1, ε2 ∈ Z2, we set

eε1,ε2 [r] := eε1 [r]eε2 [r + 1] = 1⊗r−1 ⊗ eε1 ⊗ eε2 ⊗ 1⊗d−r−1 ∈ A⊗d.

Lemma 5.27. Let (e0̄, e1̄) be an adapted pair of idempotents in A. Then there

is an isomorphism of associative k-algebras

σ : W
|A|
d

∼
−→ |WA

d |,

x[t] 7→
∑

ε1,...,εt−1∈Z2

(−1)(ε1+···+εt−1)x̄eε1 ⊗ · · · ⊗ eεt−1 ⊗ x⊗ 1⊗d−t,

τr 7→ τr(e
0̄,0̄[r] + e0̄,1̄[r] + e1̄,0̄[r]− e1̄,1̄[r]).

Proof. It is straightforward to check for all admissible r, t, x, y that the elements
σ(τ1), . . . , σ(τd−1) satisfy the Coxeter relations, that σ(x[t])σ(y[t]) = σ(xy[t]),
and that σ(τr)σ(x[t]) = σ(x[t])σ(τr) if t 6= r, r + 1.

Let 1 ≤ s < t ≤ d. Then σ(x[t])σ(y[s]) equals
∑

ε1,...,εt−1∈Z2

(−1)peε1 ⊗ · · · ⊗ eεs−1 ⊗ eεsy ⊗ eεs−1 ⊗ · · · ⊗ eεt−1 ⊗ x⊗ 1⊗d−t,

where

p = (ε1 + · · ·+ εt−1)x̄+ (ε1 + · · ·+ εs−1)ȳ + x̄ȳ,

and σ(y[s])σ(x[t]) equals
∑

ε1,...,εt−1∈Z2

(−1)qeε1 ⊗ · · · ⊗ eεs−1 ⊗ yeεs ⊗ eεs−1 ⊗ · · · ⊗ eεt−1 ⊗ x⊗ 1⊗d−t,
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where

q = (ε1 + · · · + εt−1)x̄+ (ε1 + · · · + εs−1)ȳ.

Considering the eεyeε
′
components in the sth tensor position for all ε, ε′ ∈ Z2 in

the expressions above, and taking into account that eεyeε
′
= 0 unless ȳ = ε+ ε′

since (e0̄, e1̄) is adapted, we see that σ(x[t])σ(y[s]) = σ(y[s])σ(x[t]).
Let x ∈ A and 1 ≤ r < d. Then, writing

u :=
∑

ε1,...,εr−1∈Z2

(−1)(ε1+···+εr−1)x̄eε1 ⊗ · · · ⊗ eεr−1 , v := 1⊗ · · · ⊗ 1
︸ ︷︷ ︸

d−r−1 times

,

we have

σ(x[r + 1])σ(τr) =

= (u⊗ (e0̄ + (−1)x̄e1̄)⊗ x⊗ v)(e0̄,0̄[r] + e0̄,1̄[r] + e1̄,0̄[r]− e1̄,1̄[r])τr

= (u⊗ (e0̄ + e1̄)⊗ e0̄x⊗ v + u⊗ (e0̄ − e1̄)⊗ e1̄x⊗ v)τr

= τr(u⊗ e0̄x⊗ 1⊗ v + u⊗ e1̄x⊗ (e0̄ − e1̄)⊗ v)

= σ(τr)σ(x[r]),

where the second equality is proved by a case-by-case check using the adaptedness
of (e0̄, e1̄). Since σ(τr)

2 = 1, it follows also that σ(τr)σ(x[r + 1]) = σ(x[r])σ(τr).
In view of Lemma 5.3, we have an algebra homomorphism σ as in the statement

of the lemma. Moreover, it is easy to see that for each g ∈ Sd, the map σ restricts
to an automorphism of the k-submoduleA⊗d⊗g, whence σ is an isomorphism. �

Let again (e0̄, e1̄) be an adapted pair of idempotents in A. Assume in addition
that we are given two finite families of non-zero orthogonal idempotents {ei | i ∈

I 0̄} and {ei | i ∈ I 1̄} such that e0̄ =
∑

i∈I 0̄ ei and e
1̄ =

∑

i∈I 1̄ ei. Let I = I 0̄ ⊔ I 1̄

and recall the theory of §5.4. In particular, I is identified with {1, . . . , l} for some
l and for any λ ∈ Λ([1, n]× I, d), we have the colored permutation supermodule
MA

λ over the superalgebra WA
d . Forgetting the Z2-gradings, we get the |WA

d |-

module |MA
λ |. On the other hand, by Lemma 5.27, there is an isomorphism of

algebras σ : W
|A|
d

∼
−→ |WA

d |. Composing with this isomorphism, we get the W
|A|
d -

module |MA
λ |σ. In other words, |MA

λ |σ = MA
λ as a k-module, but the action is

defined by vh = vσ(h) for all v ∈MA
λ and h ∈W

|A|
d .

For every i ∈ I we define the sign ζi as follows:

ζi :=

{
+1 if i ∈ I 0̄,

−1 if i ∈ I 1̄.

Recall the parabolic subgroup

Sλ = S
λ
(1)
1

× · · · ×S
λ
(l)
1

× · · · ×S
λ
(1)
n

× · · · ×S
λ
(l)
n

≤ Sd.

Let ℓ be the usual length function on a symmetric group, cf. §2.3. Define the
function ελ : Sλ → {±1} ⊆ k by

ελ(g
(1)
1 , . . . , g

(l)
1 , . . . , g(1)n , . . . , g(l)n ) := ζ

ℓ(g
(1)
1 )

1 · · · ζ
ℓ(g

(l)
1 )

l . . . ζ
ℓ(g

(1)
n )

1 · · · ζ
ℓ(g

(l)
n )

l (5.28)

for all (g
(1)
1 , . . . , g

(l)
1 , . . . , g

(1)
n , . . . , g

(l)
n ) ∈ Sλ.
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The algebra W
|A|
d has the parabolic subalgebra W

|A|
λ := e

|A|
λ ⊗ kSλ

∼= kSλ

defined by analogy with the parabolic subsuperalgebra WA
λ ⊆ WA

d . We define

the alternating right module alt
|A|
λ = k · 1

|A|
λ over W

|A|
λ with the action on the

basis element 1
|A|
λ given by

1
|A|
λ · (e

|A|
λ ⊗ g) = ελ(g)1

|A|
λ (g ∈ Sλ).

As in the superalgebra situation, e
|A|
λ W

|A|
d is naturally a left W

|A|
λ -module. We

now define the colored permutation module

M
|A|
λ := alt

|A|
λ ⊗

W
|A|
λ

e
|A|
λ W

|A|
d (5.29)

with generator m
|A|
λ := 1

|A|
λ ⊗ e

|A|
λ .

Proposition 5.30. There is an isomorphism of right W
|A|
d -modules

M
|A|
λ

∼
−→ |MA

λ |σ, m
|A|
λ 7→ mA

λ .

Proof. Let τr be an elementary transposition which belongs to Sλ. This means
that r, r + 1 ∈ Ωλ

(s,i) for some (s, i) ∈ [1, n] × I. By Lemma 5.27, we have

σ(e
|A|
λ ⊗ τr) = ζi(e

A
λ ⊗ τr). This implies that mA

λσ(e
|A|
λ ⊗ g) = ελ(g)m

A
λ for all

g ∈ Sλ. By adjointness of induction and restriction, we get a homomorphism

of W
|A|
d -modules as in the statement. Since |MA

λ |σ is generated by mA
λ , this

homomorphism is surjective. Now, since M
|A|
λ and |MA

λ |σ are free as k-modules
and have the same rank, the result follows. �

Let y ∈ SA(n, d). By Lemmas 5.7 and 5.25, for any λ ∈ Λ([1, n]× I, d), we can
write

yvλ =
∑

µ∈Λ([1,n]×I,d)

vµhµ,λ (5.31)

for some hµ,λ ∈ WA
d . If ϕ : SA(n, d)

∼
−→ EndWA

d
(MA(n, d)) is the isomorphism

of Corollary 5.26, then

ϕ(y)(mA
λ) =

∑

µ∈Λ([1,n]×I,d)

mA
µhµ,λ.

Consider the right W
|A|
d -module

M |A|(n, d) :=
⊕

λ∈Λ([1,n]×I,d)

M
|A|
λ . (5.32)

By Lemma 5.27 and Proposition 5.30, there exists ψ(y) ∈ End
W

|A|
d

(M |A|(n, d))

such that for any λ ∈ Λ([1, n]× I, d),

ψ(y)(m
|A|
λ ) =

∑

µ∈Λ([1,n]×I,d)

m
|A|
µ σ−1(hµ,λ). (5.33)

Corollary 5.34. The map ψ : |SA(n, d)| → End
W

|A|
d

(M |A|(n, d)) is an algebra

isomorphism.
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Remark 5.35. If the superalgebra A is graded, the theory of this section goes
through, yielding gradings on SA(n, d) and WA

d , as well as all the modules over
them that were considered. To be more precise, Mn(A) inherits a grading from
A, and then so do TensMn(A) and InvMn(A). On the other hand, WA

d =

A⊗d ⊗ kSd is graded with kSd in degree 0. In particular, the isomorphism ψ
from Corollary 5.34 is an isomorphism of graded algebras.

6. Schur doubles

Let d ∈ Z>0 and n ∈ Z≥0. For an O-superalgebra A which is free of finite rank
as an O-supermodule, we denote

′DA(n, d) := ′DdMn(A) and DA(n, d) := DdMn(A).

The main result of this section is Theorem 6.6, which roughly speaking asserts
that DA(n, d) is a maximal symmetric subalgebra of ′DA(n, d). But first, we
develop the results of §4.4 on generation in this set-up.

6.1. Generating DA(n, d). Let TA = A ⊕ A∗ be the trivial extension superal-
gebra of A, cf. §3.4. In view of Lemma 3.21, we identify Mn(TA) with TMn(A)

so that ξ
(a,α)
r,s ∈ Mn(TA) corresponds to (ξar,s, x

α
s,r) ∈ TMn(A) for all 1 ≤ r, s ≤ n,

a ∈ A and α ∈ A∗, where xαr,s ∈Mn(A)
∗ is the element defined in (3.20).

We also identify ′DA(n, d) = ′DdMn(A) with Invd TMn(A) via the explicit iso-
morphism of Theorem 4.26. Combining this with the identification TMn(A) =

Mn(TA) from the previous paragraph, we now can and do identify ′DA(n, d) with
InvdMn(TA) = STA(n, d). Since DA(n, d) is a subsuperalgebra of ′DA(n, d), we
now identify it as a subsuperalgebra of STA(n, d). As A0̄ is a subalgebra of TA,
the algebra SA0̄(n, d) = InvdMn(A0̄) is also a subalgebra of the superalgebra
STA(n, d) = InvdMn(TA) in the natural way.

Theorem 6.1. The subsuperalgebra DA(n, d) ⊆ STA(n, d) is precisely the subal-

gebra generated by SA0̄(n, d) and the set {ξy1,1 ∗ 1
⊗(d−1) | y ∈ TA} ⊆ STA(n, d).

Proof. This follows from Corollary 4.31. Indeed, we consider that corollary with
Mn(A) in place of X. Then, taking into account the identifications made in
this subsection, Invd(A0̄) in Corollary 4.31 corresponds to SA0̄(n, d), and Y in
Corollary 4.31 corresponds to Mn(A1̄ ⊕ A∗). It remains to take U := {ξy1,1 | y ∈

A1̄ ⊕A∗}, which is easily seen to satisfy the assumptions of Corollary 4.31. �

Corollary 6.2. Let A and A′ be O-superalgebras which are free of finite rank as

O-supermodules. If we have an isomorphism ϕ : TA
∼

−→ TA′ which restricts to an

isomorphism A0̄
∼

−→ A′
0̄
, then the isomorphism STA(n, d)

∼
−→ STA′ (n, d) induced

by ϕ restricts to an isomorphism DA(n, d)
∼

−→ DA′
(n, d).

If A1̄A1̄ = 0, then Mn(A)1̄Mn(A)1̄ = 0, and so we have Turner’s grading on
DA(n, d), cf. Lemma 4.32.

Corollary 6.3. If A1̄A1̄ = 0, then DA(n, d) is generated by the elements of

degrees 0, 1 and 2 with respect to Turner’s grading.
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Corollary 6.4. Let n ≥ d. Then the subsuperalgebra DA(n, d) ⊆ STA(n, d) is

precisely the subalgebra generated by SA0̄(n, d) and the set

{ξy1,1 ∗E
⊗λ2
2,2 ∗ · · · ∗E⊗λn

n,n | y ∈ TA, (λ2, . . . , λn) ∈ Λ(n− 1, d− 1)} ⊆ STA(n, d).

Proof. Let D be the subalgebra generated by the elements in the statement of
the corollary. Let λ = (1, λ2, . . . , λn) ∈ Λ(n, d). Recalling the idempotent ξλ =

E1,1 ∗ E
⊗λ2
2,2 ∗ · · · ∗ E⊗λn

n,n from (5.12) and using Lemma 4.3, we have

ξλ(ξ
y
1,1 ∗ 1

⊗(d−1))ξλ = ξy1,1 ∗E
⊗λ2
2,2 ∗ · · · ∗E⊗λn

n,n .

By Theorem 6.1, this shows that D ⊆ DA(n, d). For the reverse inclusion, it

suffices to show that the elements of the form ξy1,1 ∗ 1
⊗(d−1) with y ∈ TA belong

to D. For any λ ∈ Λ(n, d− 1), define

x(y, λ) := ξy1,1 ∗ E
⊗λ1
1,1 ∗ E⊗λ2

2,2 ∗ · · · ∗ E⊗λn
n,n ∈ STA(n, d).

Then ξy1,1∗1
⊗(d−1) =

∑

λ∈Λ(n,d−1) x(y, λ), so it suffices to prove that each x(y, λ) ∈

D. Fix λ ∈ Λ(n, d− 1). Since d− 1 < n, there is k ∈ [1, n] with λk = 0. Let

b := E1,1 ∗ E
⊗λ1
1,2 ∗ · · · ∗ E

⊗λk−1

k−1,k ∗ E
⊗λk+1

k+1,k+1 ∗ · · · ∗ E
⊗λn
n,n ,

b′ := E1,1 ∗ E
⊗λ1
2,1 ∗ · · · ∗ E

⊗λk−1

k,k−1 ∗ E
⊗λk+1

k+1,k+1 ∗ · · · ∗ E
⊗λn
n,n ,

c := ξy1,1 ∗ E
⊗λ1
2,2 ∗ · · · ∗ E

⊗λk−1

k,k ∗ E
⊗λk+1

k+1,k+1 ∗ · · · ∗ E
⊗λn
n,n .

Then b, b′, c ∈ D, and bcb′ = x(y, λ) by Lemma 4.3, completing the proof. �

For every λ ∈ Λ(n, d), the idempotent ξλ ∈ STA(n, d) defined in (5.12) belongs
to SA0̄(n, d), and so, by Corollary 6.4, to DA(n, d) ⊆ STA(n, d). The following is
known, cf. [Tu2, Lemma 13]:

Corollary 6.5. If d ≤ n, then ξωD
A(n, d)ξω = ξωS

TA(n, d)ξω and there is a

superalgebra isomorphism

ϕ : W TA

d
∼

−→ ξωD
A(n, d)ξω, (x1 ⊗ · · · ⊗ xd)g 7→ ξx1

1,g−11
∗ · · · ∗ ξxd

d,g−1d
.

Proof. First, we claim that every element of the form ξ(x1, . . . , xd; g) := ξx1

1,g−11
∗

· · · ∗ ξxd

d,g−1d
belongs to DA(n, d). Indeed, the case g = 1 is handled using

Lemma 4.3 and Corollary 6.4, and the case x1 = · · · = xd = 1 is clear since
ξ(1, . . . , 1; g) ∈ SA0̄(n, d). By Lemma 5.15, the elements ξ(x1, . . . , xd; g) span in

STA(n, d) a copy of W TA

d , with the elements ξ(x1, . . . , xd; 1) spanning T⊗d
A and

the elements ξ(1, . . . , 1; g) spanning kSd. The claim follows.
Now, using Lemma 5.15 and Corollary 6.4, we conclude that ξωD

A(n, d)ξω =
ξωS

TA(n, d)ξω, and another application of Lemma 5.15 completes the proof. �

6.2. Symmetric lattices in ′DA(n, d). In this subsection, in addition to the
hypotheses specified at the beginning of Section 2, we assume that O is a principal
ideal domain. Let A be an O-superalgebra which is free of finite rank as an O-
supermodule. The following result shows, in particular, that DA(n, d) is maximal
among the symmetric subalgebras of ′DA(n, d). The superstructure on ′DA(n, d)
plays no role in the theorem, so the content of the statement does not change if
′DA(n, d) is replaced by |′DA(n, d)| and DA(n, d) by |DA(n, d)|.
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Theorem 6.6. Let d ∈ Z≥0, n ∈ Z>0, and assume that d ≤ n. Let C be an

O-subalgebra of ′DA(n, d) such that DA(n, d) ⊆ C ⊆ ′DA(n, d). Suppose that for

every maximal ideal m of O the (O/m)-algebra C ⊗O (O/m) is symmetric. Then

C = DA(n, d).

Proof. If the theorem is true in the case where O is a discrete valuation ring
(DVR), then it is true in general. Indeed, for every maximal ideal m of O the
localisation Om is a DVR, and so by the DVR case of the theorem, C ⊗O Om is
equal to the Om-span of DA(n, d)⊗ 1Om

. Then we have (C/DA(n, d))⊗O Om = 0
for all m, whence the O-module C/DA(n, d) is 0.

In the rest of the proof, O is a DVR with the maximal ideal (π) for some
π ∈ O, and k := O/(π). For any free O-module V of finite rank, we have the
k-vector space Vk = V ⊗O k, which we identify with V/πV .

Recall the notation (4.14) and (4.25). In this proof, for all e = 0, . . . , d, we use
the following shorthands:

D := DA(n, d), ′D := ′DA(n, d), S := SA(n, d),

Dd−e,e := Dd−e,eMn(A) = Invd−eMn(A)⊗ Syme(Mn(A)
∗) ⊆ D,

′Dd−e,e := ′Dd−e,eMn(A) = Invd−eMn(A)⊗
′Syme(Mn(A)

∗) ⊆ ′D,

′D>e :=
⊕

e+1≤f≤d

′Dd−f,f , Cd−e,e := C ∩ ′Dd−e,e, C>e := C ∩ ′D>e.

Claim 1. The O-submodule Cd−e,e is pure in C.

This follows immediately from the fact that ′Dd−e,e is pure in ′D.

Claim 2. We have Cd,0 = Dd,0 = ′Dd,0 and C = Cd,0 ⊕ C>0.

Since ′Dd,0 = Dd,0 by definition, the assumption D ⊆ C ⊆ ′D implies that
Cd,0 = Dd,0. The second assertion of the claim follows easily from the first one.

Claim 3. We have dimCd,0
k = dimC0,d

k .

Indeed,

dimCd,0
k = rankO C

d,0 = rankOD
d,0 = rankOD

0,d = rankO C
0,d = dimC0,d

k ,

where the penultimate equality comes from D0,d ⊆ C0,d ⊆ ′D0,d.

Since ′D0,d is an ideal in ′D and C ⊆ ′D is a subalgebra, C0,d is an ideal in

C, and so naturally a Cd,0-bimodule. After extending scalars, C0,d
k becomes a

Cd,0
k -bimodule.

Claim 4. The Cd,0
k -bimodule C0,d

k is isomorphic to (Cd,0
k )∗.

Since Ck is symmetric by assumption, there is a function G ∈ C∗
k such that the

bilinear form on Ck defined by (x, y) := G(xy) is symmetric and non-degenerate.

By Claims 1 and 2, we can naturally identify C0,d
k , Cd,0

k , and C>0
k with k-subspaces

of Ck. Using the standard grading on ′D, we see that the orthogonal complement

to C0,d
k in Ck contains C>0

k . Comparing dimensions using Claim 3, we deduce

that (·, ·) restricts to a perfect pairing between C0,d
k and Cd,0

k , which yields the
required isomorphism.
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In view of Remark 4.16, we identify Dd,0 with S and D0,d with S∗, so that
S∗ ⊆ C0,d ⊆ ′D0,d. Extending scalars to the field of fractions K of O, we identify

S∗
K = C0,d

K = ′D0,d
K , and so we can consider C0,d and ′D0,d as O-submodules of

S∗
K. Now, define

′S = {x ∈ SK | 〈x, ′D0,d〉 ⊆ O} and N = {x ∈ SK | 〈x,C0,d〉 ⊆ O}.

Then ′S ⊆ N ⊆ S. The following claim follows easily from the definitions:

Claim 5. We have that ′S and N are S-subbimodules of S, and there are isomor-
phisms of S-bimodules ′S ∼= (′D0,d)∗ and N ∼= (C0,d)∗.

Claim 6. We have ξω ∈ ′S.

By Corollary 3.15, we have ′S = StardMn(A), and the claim follows from the
definition of ξω.

Claim 7. We have N = S.

By Claims 2, 4 and 5, we have isomorphisms Sk = Cd,0
k

∼= (C0,d
k )∗ ∼= Nk of

Sk-bimodules. Let z + πN ∈ N/πN = Nk be the image of 1 ∈ Sk under this
isomorphism. Then x(z + πN) = (z + πN)x for all x ∈ Sk. Since πS ⊇ πN , it
follows that z + πS ∈ Z(S/πS) = Z(Sk). Since Sk is generated by 1 as a left
Sk-module, Nk is generated by z+πN as a left Sk-module. Moreover, ξω ∈ ′S by
Claim 6, so ξω ∈ N . Hence there exists y ∈ Sk such that y(z + πN) = ξω + πN ,
whence y(z + πS) = ξω + πS. By Lemma 5.18, z + πS is invertible in Sk. So
N +πS = Sk(z+πS)Sk = Sk. By Nakayama’s Lemma, this implies that N = S.

Now we complete the proof of the theorem. By Claim 7, we have C0,d = D0,d.
Assume for a contradiction that C 6= D. Choose an element x ∈ C \D such that
x lies in ′D>e−1 with e maximal possible. Then we can write x = xe + · · · + xd,
where xf ∈ ′Dd−f,f for f = e, . . . , d. By the maximality of e, we have xe /∈ Dd−e,e.

Hence xe = cy for some c ∈ K \ O and y ∈ Dd−e,e \ πDd−e,e.
Let F ∈ (Dk)

∗ be as in Lemma 4.33. Taking into account Corollary 4.34 and
the standard grading on D, we conclude that there exists u ∈ De,d−e such that
F (yu+πD) 6= 0 in k, whence yu /∈ πD0,d. By the standard grading again, xfu = 0

for all f > e, and hence xu = cyu. Since c /∈ O, it follows that xu /∈ D0,d = C0,d.
This is a contradiction, since x ∈ C and u ∈ De,d−e ⊆ C. �

Example 6.7. Continuing with Example 4.27, assume that d = 2e+ 1 for some
e ∈ Z>0, and define the Z-algebra C to be the subalgebra of Q[z]d spanned over
Z by the elements 1, z, . . . , ze, ze+1/2, . . . , z2e+1/2. We then have DdZ ∼= Z[z]d (

C ( ′Z[z]d ∼= ′DdZ. However, it is easy to see that C ⊗Z Fp is symmetric for all
primes p. This shows that the assumption d ≤ n in Theorem 6.6 is essential.

6.3. Bases and product rules. Let B0̄ be an O-basis of A0̄, B1̄ be an O-basis
of A1̄, and B = B0̄ ⊔ B1̄. The structure constants κbb′b′′ ∈ O of A are determined
from

b′b′′ =
∑

b∈B

κbb′b′′b (b, b′ ∈ B).

Then

{ξbr,s | 1 ≤ r, s ≤ n, b ∈ B} (6.8)
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is a homogeneous basis of Mn(A) with ξ̄
b
r,s = b̄, and

ξb
′

r,sξ
b′′

t,u = δs,t
∑

b∈B

κbb′b′′ξ
b
r,u (b′, b′′ ∈ B, 1 ≤ r, s, t, u ≤ n). (6.9)

We fix a total order < on the basis (6.8) as follows. First, we fix a total order <
on B so that the elements of B0̄ precede the elements of B1̄. Then for b′, b′′ ∈ B

and 1 ≤ r, s, t, u ≤ n, we set ξb
′

r,s < ξb
′′

t,u if and only if one of the following happens:
(1) b′ < b′′, (2) b′ = b′′ and r < t, (3) b′ = b′′, r = t and s < u.

Recall the notation of §2.2. For C = (Cb)b∈B ∈ MB(n), we have the element

ξC := ∗b,r,s
(
(ξbr,s)

⊗cbr,s
)
∈ SA(n),

where the ∗-product is taken in the order just defined. This agrees with (3.9), so

{ξC | C ∈ MB(n)} and {ξC | C ∈ MB(n, d)}

are bases of SA(n) and SA(n, d), respectively. The parity of a basis element is
ξ̄C = C̄ := |C|1̄ (mod 2).

Let C = (Cb)b∈B ∈ MB(n, d) and (r,b, s) ∈ C. Let (r0,b0, s0) ∈ C be the
tuple defined by the property that the triples (r01 , b

0
1, s

0
1), . . . , (r

0
d, b

0
d, s

0
d) appear

in the increasing order, i.e. for 1 ≤ k ≤ l ≤ d we have ξ
b0
k

r0
k
,s0

k

≤ ξ
b0
l

r0
l
,s0

l

. Let g ∈ Sd

be an element such that (r0,b0, s0)g = (r,b, s), and define

[r,b, s] := [g; b01, . . . , b
0
d],

cf. (3.3). It follows from the definition of SeqB(n, d)2 that [r,b, s] does not depend
on the choice of g. By the definition of the ∗-product, we have

ξC =
∑

(r,b,s)∈C

(−1)[r,b,s] ξb1r1,s1 ⊗ · · · ⊗ ξbdrd,sd. (6.10)

For C,D ∈ MB(n), we let

εCD :=

{

(−1)
∑

cb
′

r,sd
b′′

t,u if C+D ∈ MB(n),
0 otherwise.

where the summation is over all 1 ≤ r, s, t, u ≤ n and b′, b′′ ∈ B1̄ such that
ξb

′

r,s > ξb
′′

t,u. Using Lemma 3.12, we obtain for all C ∈ MB(n):

∆(ξC) =
∑

D,E∈MB(n), D+E=C

εDE ξD ⊗ ξE. (6.11)

Define the structure constants fE
CD

∈ O from

ξCξD =
∑

E∈MB(n)

fECDξE (C,D ∈ MB(n)). (6.12)

In particular, fE
CD

= 0 unless |C| = |D| = |E|. These structure constants
are uniquely determined by the structure constants κbb′,b′′ . More precisely, if

(r,b, s) ∈ SeqB(n, d)2 and E = M [r,b, s], then using (6.9) and (6.10) we obtain
the formula

fECD =
∑

b′,t,b′′

(−1)[r,b,s]+[r,b′,t]+[t,b′′,s]+[b′1,...,b
′
d
;b′′1 ,...,b

′′
d
] κb1

b′1,b
′′
1
· · · κbd

b′
d
,b′′

d
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where the sum is over all triples (b′, t,b′′) ∈ Bd × Seq(n, d) × Bd such that
(r,b′, t) ∈ C and (t,b′′, s) ∈ D. In the case when A = O and B = {1}, this
is Green’s formula [Gr, (2.3b)] for the structure constants of the Schur algebra.

Let {xC | C ∈ MB(n)} be the basis of SA(n)∗ = (InvMn(A))
∗ dual to the

basis {ξC | C ∈ MB(n)} of SA(n). As the product and the coproduct on SA(n)∗

are by definition dual to the coproduct and the product on SA(n), respectively,
we have in view of (6.11), (6.12) and (3.1):

xCxD = (−1)C̄D̄εCD x
C+D (C,D ∈ MB(n)), (6.13)

∇(xC) =
∑

D,E∈MB(n,d)

(−1)D̄ĒfCDEx
D ⊗ xE (C ∈ MB(n, d)). (6.14)

It is easy to see that SA(n)∗ is the free supercommutative superalgebra on the
even variables {xbr,s | b ∈ B0̄, 1 ≤ r, s ≤ n} and the odd variables {xbr,s | b ∈
B1̄, 1 ≤ r, s ≤ n}, and

xC = (−1)|C|1̄(|C|1̄−1)/2
∏

b∈B, 1≤r,s≤n

(xbr,s)
cbr,s ,

with the product taken in the total order on the variables xbr,s which is the same

as the one on the basis {ξbr,s} fixed above.

Let x(C) := xC

C! . By (6.13), we have

x(C)x(D) = (−1)C̄D̄εCD

(
C+D

D

)

x(C+D) (C,D ∈ MB(n)).

Then ′Sym(Mn(A)
∗) is the O-span in SA(n)∗K of all x(C) with C ∈ MB(n). Let

f
(E)
(C)D :=

fE
CD

C!

E!
and f

(E)
C(D) :=

fE
CD

D!

E!
(C,D,E ∈ MB(n)).

A priori, these are elements of K, but by Lemma 4.22, they actually belong to
O, and for C ∈ MB(n, d) we have

∇(x(C)) =
∑

D,E∈MB(n,d)

(−1)D̄Ēf
(C)
(D)E x

(D)⊗xE =
∑

D,E∈MB(n,d)

(−1)D̄Ēf
(C)
D(E) x

D⊗x(E).

Denoting

MB
2(n, d) := {(C,D) | C,D ∈ MB(n), |C|+ |D| = d},

we have bases

{ξC ⊗ xD | (C,D) ∈ MB
2(n, d)} and {ξC ⊗ x(D) | (C,D) ∈ MB

2(n, d)}

of DA(n, d) and ′DA(n, d), respectively. If A1̄A1̄ = 0, then Mn(A)1̄Mn(A)1̄ = 0,
and the Turner gradings on DA(n, d) and ′DA(n, d) satisfy

deg(ξC ⊗ xD) = deg(ξC ⊗ x(D)) = |C|1̄ + 2|D|0̄ + |D|1̄,

for all (C,D) ∈ MB
2(n, d), cf. Lemma 4.32.

For (C,D), (E,F) ∈ MB
2(n, d), we have the following product rules, which come

from (4.12):

(ξC ⊗ xD)(ξE ⊗ xF) =
∑

(−1)sεC1C2εE1E2f
D

E2D
′fFF′C1

(ξC2ξE1 ⊗ xD
′
xF

′
)

=
∑

(−1)tεC1C2εE1E2εD′F′fD
E2D

′fFF′C1
fGC2E1

(ξG ⊗ xD
′+F

′
),
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(ξC ⊗ x(D))(ξE ⊗ x(F)) =
∑

(−1)sεC1C2εE1E2f
(D)
E2(D′)f

(F)
(F′)C1

(ξC2ξE1 ⊗ x(D
′)x(F

′))

=
∑

(−1)tεC1C2εE1E2εD′F′f
(D)
E2(D′)f

(F)
(F′)C1

× fGC2E1

(
D′ + F′

D′

)

(ξG ⊗ x(D
′+F′))

where the first sums in both formulas are over all C1,C2,D
′,E1,E2,F

′ ∈ MB(n)
such that C1 + C2 = C, E1 + E2 = E, the second sums have an additional
summation parameter G ∈ MB(n), and

s = C̄1C̄2 + C̄1Ē1 + C̄1D̄
′ + D̄′Ē1 + Ē1Ē2, t = s+ D̄′F̄′.

7. The quiver case

In this section we consider an important class of algebras DA(n, d) sometimes
referred to as schiver doubles, from ‘schiver=Schur+quiver’ [Tu1].

7.1. Quivers and quiver algebras. Let Q be a quiver with a finite set of
vertices I = {1, . . . , l} and a finite set of directed edges E. For an edge β ∈ E, we
denote by s(β) ∈ I the source of β and by t(β) ∈ I the target of β. We denote by
Γ the underlying graph of Q. We assume that Γ is connected and has no loops or
multiple edges. If i, j ∈ I, we say that i and j are neighbors if they are connected
by an edge in Γ.

We define the algebra PQ to be the quotient of the path algebra kQ by all
quadratic relations. We consider PQ as a superalgebra with vertices in parity 0̄
and edges in parity 1̄. The parity 0̄ component PQ,0̄ has a basis {ei | i ∈ I}, and

the parity 1̄ component PQ,1̄ has a basis {β | β ∈ E}. Note that PQ,1̄PQ,1̄ = 0,

so PQ is also Z-graded with the degree 0 component P 0
Q = PQ,0̄ and degree 1

component P 1
Q = PQ,1̄.

Let {e∗i , β
∗ | i ∈ I, β ∈ E} be the basis of P ∗

Q dual to the basis {ei, β | i ∈ I, β ∈

E} of PQ. According to the agreement made in §4.5, we always work with the
Z-grading on P ∗

Q which is the shift by 2 of the canonical grading, i.e. deg e∗i = 2
and deg β∗ = 1 for all i ∈ I and β ∈ E. Then the trivial extension superalgebra
TPQ

= PQ ⊕ P ∗
Q is also graded. This superalgebra has an easy description as a

zigzag algebra, which we introduce next.
The zigzag algebra Z = ZΓ of type Γ is defined in [HK] as follows. First assume

that l > 1. Let Γ be the quiver obtained by doubling all edges in Γ and then
orienting the edges so that if i and j are neighboring vertices in Γ, then there is
a directed edge ai,j from j to i and a directed edge a

j,i from i to j. Then Z is the
path algebra kΓ, generated by length 0 paths ei for i ∈ I and length 1 paths ai,j,
subject only to the following relations:

(i) All paths of length three or greater are zero.
(ii) All paths of length two that are not cycles are zero.
(iii) All length-two cycles based at the same vertex are equal.

The algebra Z inherits the path length grading from kΓ. If l = 1, i.e. Γ is of type
A1, we define ZA1 := k[c]/(c2), where c is an indeterminate in degree 2.

If l > 1, for every vertex i pick its neighbor j and denote c
(i) := a

i,j
a
j,i. The

relations in Z imply that c
(i) = eic

(i)
ei is independent of choice of j. Define
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c :=
∑

i∈V c
(i). Then in all cases Z has a basis

{ai,j | i, j ∈ I, j is a neighbor of i} ∪ {cmei | i ∈ I, m ∈ {0, 1}},

and the graded k-rank of Z equals l(1 + q2) + 2|E|q ∈ Z[q], where q is an inde-
terminate. Moreover, we consider Z as a superalgebra with Z0̄ = Z

0 ⊕ Z
2 and

Z1̄ = Z
1.

The following is known [Tu2, Lemma 6] and easy to check:

Lemma 7.1. There is an isomorphism of graded superalgebras TPQ

∼
−→ Z given

by ei 7→ ei, e
∗
i 7→ c

(i), β 7→ a
i,j, β∗ 7→ a

j,i if s(β) = j and t(β) = i.

7.2. Schiver doubles. From now on we will work over O. For a quiver Q as in
the previous subsection, we define

DQ(n, d) := DPQ(n, d), ′DQ(n, d) :=
′DPQ(n, d).

In view of Lemma 7.1, we identify TPQ
with Z, and so, as in §6.1, we identify

′DQ(n, d) with S
TPQ (n, d) = SZ(n, d). In this way, we identify DQ(n, d) with

a subalgebra of SZ(n, d). By Corollary 6.2, the superalgebra DQ(n, d) does not
depend on the choice of orientation on Q, cf. [Tu1, Theorem 157]. As PQ,1̄PQ,1̄ =
0, we have Turner’s gradings on DQ(n, d) and

′DQ(n, d), see §4.5. We also have

a grading on SZ(n, d), see Remark 5.35. All our identifications respect gradings.

Note that the degree zero component of PQ is P 0
Q =

∑l
i=1 Oei

∼= O⊕l. Recall

that S(n, d) = SO(n, d) is the classical Schur algebra. By Corollary 4.4,

SP 0
Q(n, d) ∼=

⊕

(d1,...,dl)∈Λ(l,d)

S(n, d1)⊗ · · · ⊗ S(n, dl). (7.2)

Lemma 7.3. The image of the natural embedding SP 0
Q(n, d) → SZ(n, d) is exactly

the degree zero component SZ(n, d)0.

Proof. As P 0
Q = Z

0, we have Mn(P
0
Q) =Mn(Z)

0, which implies the lemma. �

Theorem 7.4. Let n ≥ d. Then the subsuperalgebra DQ(n, d) ⊆ SZ(n, d) is

precisely the subalgebra generated by SZ(n, d)0 and the set

{ξz1,1 ∗ E
⊗λ2
2,2 ∗ · · · ∗ E⊗λn

n,n | z ∈ Z, (λ2, . . . , λn) ∈ Λ(n− 1, d− 1)} ⊆ SZ(n, d).

Proof. In view of Lemma 7.3, this is a restatement of Corollary 6.4. �

Note that DQ(n, d),
′DQ(n, d) and SZ(n, d) are graded superalgebras, whose

constructions depend on the superalgebra structures on PQ and Z. However, after
we construct them, we want to forget the superalgebra structures and work with
DQ(n, d) and SZ(n, d) as usual graded algebras. In order to do that, recall the
theory of §5.5. From now on, we assume that Γ has no odd cycles. Then to every
vertex i ∈ I, we can assign a sign ζi ∈ {±1} such that ζiζj = −1 whenever i and
j are neighbors. Let

e0̄ =
∑

i∈I, ζi=1

ei and e1̄ =
∑

i∈I, ζi=−1

ei.

One can easily check that (e0̄, e1̄) is an adapted pair of idempotents for the
superalgebra Z in the sense of §5.5.
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By Lemma 5.27, there is an explicit isomorphism of graded algebras σ : W
|Z|
d

∼
−→

|W Z

d |. Moreover, as in (5.29) and (5.32), we have the colored permutation mod-

ules M
|Z|
λ labeled by λ ∈ Λ([1, n]× I, d) and set

M |Z|(n, d) :=
⊕

λ∈Λ([1,n]×I,d)

M
|Z|
λ .

For λ ∈ Λ([1, n − 1]× I, d− 1) and k ∈ J , we define λ̂
k
∈ Λ([1, n]× I, d) by

λ̂
k
(r,i) =







λ(r−1,i) if r > 1,
1 if r = 1 and i = k,
0 if r = 1 and i 6= k.

Lemma 7.5. Let z ∈ ejZek for some j, k ∈ I and λ ∈ Λ([1, n − 1] × I, d − 1).

Then there is a unique iλ(z) ∈ End
W

|Z|
d

(M |Z|(n, d)) such that

iλ(z) : m
|Z|
µ 7→

{

(m
|Z|

λ̂
j )z[1] if µ = λ̂

k
,

0 otherwise,

where z[1] = z ⊗ 1⊗d−1
Z

∈W
|Z|
d .

Proof. Recalling (5.19), for any µ ∈ Λ(n, d) set eµ := e
|A|
µ ∈ Tensd |A| ⊆ W

|A|
d .

Note that for all i ∈ I, we have e
λ̂
i = ei ⊗ eλ and S

λ̂
i = S1 ×Sλ. It follows that

m
|Z|

λ̂
j z[1](eλ̂k

⊗ g) = ε
λ̂
k(g)m

|Z|

λ̂
j z[1]

for all g ∈ S
λ̂
i . By adjointness of induction and restriction, there exists a unique

map as in the statement. �

Using the maps of Lemma 7.5, define

iλ : |Z| → End
W

|Z|
d

(M |Z|(n, d)), z 7→
∑

j,k∈I

iλ(ejzek).

The following is easy to see:

Lemma 7.6. For any λ ∈ Λ([1, n − 1] × I, d − 1), the map iλ is an injective

homomorphism of graded algebras.

By Corollary 5.34 and Remark 5.35, there is an explicit isomorphism of graded
algebras

ψ : |SZ(n, d)|
∼

−→ End
W

|Z|
d

(M |Z|(n, d)).

We use this isomorphism to identify the graded algebra |′DQ(n, d)| = |SZ(n, d)|

with the graded algebra End
W

|Z|
d

(M |Z|(n, d)).

Theorem 7.7. Let n ≥ d. The subalgebra |DQ(n, d)| ⊆ |SZ(n, d)| is precisely the

subalgebra generated by the degree zero component |SZ(n, d)|0 and the set
⋃

λ∈Λ([1,n−1]×I,d−1)

iλ(Z).
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Proof. Let λ = (λ1, . . . , λn−1) ∈ Λ(n − 1, d − 1) and z ∈ ejZek for some j, k ∈ I.
We claim that

ξz1,1 ∗ E
⊗λ1
2,2 ∗ · · · ∗ E⊗λn−1

n,n =
∑

λ∈π−1(λ)

iλ(z),

which implies the result by Theorem 7.4. To prove the claim, let ν ∈ Λ([1, n] ×

I, d). Note that (ξz1,1 ∗ E
⊗λ1
2,2 ∗ · · · ∗ E

⊗λn−1
n,n )vν = 0 unless ν is of the form µ̂k for

some µ ∈ π−1(λ) and k ∈ I. Moreover, for µ ∈ π−1(λ), we have

(ξz1,1 ∗ E
⊗λ1
2,2 ∗ · · · ∗ E⊗λn−1

n,n )vµ̂k = zv1,k ⊗ vµ = v1,jz ⊗ vµ

= (v1,j ⊗ vµ)z[1] = vµ̂jz[1],

where z[1] = z ⊗ 1⊗d−1 is viewed as an element of W Z

d . Comparing with (5.31)
and (5.33), we deduce that

(ξz1,1 ∗ E
⊗λ1
2,2 ∗ · · · ∗ E⊗λn−1

n,n )(m
|Z|

µ̂k) = m
|Z|

µ̂j σ
−1(z[1]) = m

|Z|

µ̂j z[1] = iµ(z)(m
|Z|

µ̂k)

=
∑

λ∈π−1(λ)

iλ(z)(m
|Z|

µ̂k),

where we have used the fact that σ−1(z[1]) = z[1], see Lemma 5.27. The claim is
proved. �
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