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Abstract— In this paper, we investigate secure transmission
in a massive multiple-input multiple-output system adopting
low-resolution digital-to-analog converters (DACs). Artificial
noise (AN) is deliberately transmitted simultaneously with the
confidential signals to degrade the eavesdropper’s channel qual-
ity. By applying the Bussgang theorem, a DAC quantization
model is developed which facilitates the analysis of the asymp-
totic achievable secrecy rate. Interestingly, for a fixed power
allocation factorφ, low-resolution DACs typically result in a
secrecy rate loss, but in certain cases, they provide superior
performance, e.g., at low signal-to-noise ratio (SNR). Specifi-
cally, we derive a closed-form SNR threshold which determines
whether low-resolution or high-resolution DACs are preferable
for improving the secrecy rate. Furthermore, a closed-form
expression for the optimalφis derived. With AN generated in the
null-space of the user channel and the optimalφ,low-resolution
DACs inevitably cause secrecy rate loss. On the other hand,
for random AN with the optimalφ, the secrecy rate is hardly
affected by the DAC resolution because the negative impact of
the quantization noise can be compensated by reducing the AN
power. All the derived analytical results are verified by numerical
simulations.

Index Terms— Physical layer security, massive multiple-input
multiple-output (MIMO), digital-to-analog converter (DAC),
artificial noise (AN).

I. INTRODUCTION

SECRECY plays an important role in wireless commu-nications since it is difficult for a broadcast channel
to shield transmit signals from unintended recipients. Tra-
ditionally, secure transmission relies on key-based crypto-
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graphic methods implemented at the network and application
layers [1]. However, these cryptographic measures are based
on the assumption that it is computationally infeasible for
the encrypted message to be deciphered within a reasonable
amount of time. Consequently, they inevitably become more
vulnerable as the computational capability of the adversary
grows. In the past decade, physical layer security, as a
complement to existing cryptographic methods, has gained
increasing attention [2]–[4]. With appropriate designs, phys-
ical layer techniques enable secure communication over a
wireless medium without the help of encryption keys [5]–[7].
In addition, they can be used to augment already existing
security measures at higher layers, leading to a multilayer
secure transmission [8].
The classical three-terminal security model, known as the
wiretap channel, was originally proposed in [9], consisting
of a transmitter (Alice), an intended receiver (Bob), and
an unauthorized receiver (Eve) referred to as an eaves-
dropper. This concept has been extended to multi-antenna
networks [10], [11], while beamforming techniques have been
utilized in multiple-input multiple-output (MIMO) systems
to improve secrecy [12]. When the instantaneous channel
state information (CSI) of the eavesdropper is known at
the transmitter, it has been demonstrated in [13] that the
generalized singular value decomposition (GSVD) precoding
scheme can achieve the secrecy capacity in the high signal-to-
noise ratio (SNR) limit. The study in [14] showed that secret
communication is possible if the eavesdropper’s channel is
more noisy than the user channel. When the eavesdropper
happens to have a better channel than the legitimate user
(e.g., if the eavesdropper is much closer to the transmitter),
artificial noise (AN) has been proposed in [15] and [16] to
help degrade the channel quality of the eavesdropper. The AN
is usually designed to be orthogonal to the channel of the
intended receivers, thus causing no additional interference to
the legitimate users [17], [18]. In order to further combat the
uncertainty of channel information at the transmitter, robust
beamforming design for physical layer security with the aid
of AN has been studied in [19].
Recently, massive MIMO has become a candidate
technology for next-generation wireless communication
systems [20]–[23] and its application to guarantee communi-
cation security has attracted significant attention. In massive
MIMO, hundreds, or even thousands, of antennas are equipped
at the base station (BS) [24]–[26] and the corresponding
spatial-wideband effect has been studied in [27]. For instance,
downlink secure transmission at the physical layer in a
multi-cell MIMO network has been investigated in [28] and
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the impact of a massive MIMO relay on secrecy has been
studied in [29]. Zhuet al.[30] have derived two tight lower
bounds for the ergodic secrecy rate considering a maximal-
ratio-combining (MRC) precoder.In order to strike a balance
between complexity and performance, linear precoders based
on matrix polynomials have been proposed in [31] and a
phase-only zero-forcing (ZF) AN scheme has been presented
in [32]. Yanet al.[33] proposed a pilot-based channel training
scheme for a full-duplex receiver to enhance the physical layer
security. As demonstrated in [34], AN can also be injected into
the downlink training signals to prevent the eavesdropper from
obtaining accurate CSI forthe eavesdropping link.
Despite the promising performance gain brought by massive

MIMO, it suffers from a challenging issue of high cost and
power consumption due to the fact that each antenna requires
a separate radio-frequency (RF) chain for signal processing.
One potential approach to reducing the required cost and
power is to use digital-to-analog converters (DACs) with
lower resolution for downlink transmissions [35]. A number
of authors have considered various direct nonlinear precoding
schemes that constrain the transmit signals to match the
DAC resolution. For example, a novel precoding technique
using 1-bit DACs has been presented in [36] and a nonlin-
ear beamforming algorithm has been proposed in [37]. Also,
perturbation methodsminimizing the probability of error at
the receivers have been studied in [38]. An alternative simpler
approach is to quantize the output of standard linear precoders,
which is referred to as quantized linear precoding [39]–[41].
Although it is generally difficult to analytically characterize
the performance degradation due to nonlinear quantization,
the well-known Bussgang theorem can be applied to develop
an equivalent linear model [42], [43]. This model decom-
poses the quantized signal into a linearly distorted version
of the signal together with an uncorrelated quantization noise
source [44]. It is noteworthy that the DAC quantization noise
shares some similarities with the AN injected by the BS
as both are transmitted along with the information-carrying
signals and produce interference at the eavesdropper. In other
words, the DAC quantization noise can be regarded, in some
sense, as a special type of AN. Hence, it can also decrease
the received signal-to-interference-and-noise ratio (SINR) at
the eavesdropper, while unavoidably interfering with legit-
imate users at the same time. While common sense dic-
tates that low-resolution DAC quantization degrades system
performance in conventional massive MIMO systems, it is
interesting to consider the possibility that DAC quantiza-
tion could enhance secrecy capacity in some scenarios. To
the best of our knowledge, only few of the existing works
(e.g., [9]–[19], [28]–[34]) have investigated secure massive
MIMO communications using low-resolution DACs.
On the other hand, although the effect of hardware impair-

ments on secure massive MIMO systems has been analyzed
in [45], only ideal converters with infinite resolution were
considered. In this paper, we investigate secure transmission in
a multiuser massive MIMO downlink network equipped with
low-resolution DACs at the BS. We assume that there exists a
multi-antenna eavesdropper that intends to eavesdrop the infor-
mation transmitted from the BS to multiple legitimate users.

The eavesdropper is passive in order to conceal its presence.
We assume for simplicity that perfect CSI is available at the
BS since there are already a number of studies, i.e., [46]–[49],
focusing on the problem of channel estimation. We consider
two popular AN methods for injecting AN at the BS in order
to prevent the unintended receiver from eavesdropping. One
method is based on AN which lies in the null-space spanned by
the channels of all the desired users, while the other assumes
random AN. We also study the impact of low-resolution DACs
on the achievable secrecy rate.The main contributions of this
work are summarized as follows:
1) For the case of low-resolution DAC quantization in secure
massive MIMO, we derive tight lower bounds for the secrecy
rate of the system using different types of AN methods. We
observe that lower-resolution DACs provide superior secrecy
performance under certain circumstances, e.g., at low SNR.
This is explained by the fact that the quantization noise
degrades the eavesdropper’s capacity more significantly than
that of the users. Specifically, we derive a closed-from expres-
sion for a threshold SNR̄γ0, such that if the transmit SNRγ0
satisfiesγ0<γ̄0, lower-resolution DACs enhance the secrecy
rate, while ifγ0>γ̄0, higher-resolution DACs are preferred.
2) It is found that secure transmission with low-resolution
DACs depends heavily on the power allocation factor
φ∈(0,1], which denotes the proportion of power used for
confidential signals, with the remainder of the power allocated
for AN. Generally, the secrecy rate first increases withφbut
then subsequently decreases. A closed-form expression for
an approximate optimalφ∗is obtained. We observe thatφ∗

increases with a decreasing DAC resolution. This suggests that
less power can be utilized to generate AN for DACs with a
lower resolution.
3) For the null-space AN method with the optimalφ∗,
we observe that low-resolution DACs lead to secrecy rate
loss for all SNR values. On the other hand, for the random
AN method, the secrecy rate withφ∗is insensitive to the
DAC resolution. This is because the DAC quantization noise
behaves the same as random AN at both the intended user
and eavesdropper. As the quantization noise increases, we can
maintain the same secrecy rate by reducing the power of the
random AN with an increasingφ.
4) If extremely low-resolution DACs, i.e., 1-bit DACs,
are employed at the BS, the advantage of null-space AN
over random AN becomes marginal, while the null-space AN
also suffers from a much higher computational complexity
especially in massive MIMO. In this scenario, the null-space
AN method is not cost-efficient and random AN is preferred.
The rest of this paper is structured as follows. The DAC
quantization model, channel model, and two AN design meth-
ods are introduced in Section II. We derive a tight lower
bound for the achievable secrecy rate in Section III assuming
low-resolution DACs. Section IV analyzes the effect of vari-
ous system parameters on secure communication. Simulation
results are presented in Section V, and conclusions are drawn
in Section VI.
Notation:AT,A∗,andAH represent the transpose,
conjugate, and conjugate transpose ofA, respectively.
a ∼ CN(0,Σ)denotes a circularly symmetric complex
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Fig. 1. Block diagram of the secure multiuser massive MIMO system.

Gaussian vector with zero mean and covariance matrixΣ.
tr{A}denotes the trace ofA and diag(A)is a matrix that
retains only the diagonal entries ofA.E{·}is the expectation
operator. ·2 denotes the Euclidean norm.

a.s.
−−→ denotes

almost sure convergence.[x]+ = max{0,x}chooses the
maximum between0andx.

II. SYSTEMMODEL

In this section, we investigate a multiuser massive
MIMO security network employing low-resolution DACs. The
DAC quantization model and two AN design methods are
introduced.

A. Quantization Model for Low-Resolution DACs

It is in general difficult to accurately characterize the quan-
tization error of an arbitrary low-resolution DAC. Fortunately,
an equivalent linear representation has been widely adopted
by using the Bussgang theorem [42]. This model has been
verified to be accurate enough for most DAC quantization
levels in practice [50]. In this model, the quantized data is
decomposed into two uncorrelated parts as

QDA(x)=Fx+nDA, (1)

whereQDA(·)denotes the quantization operation,xdenotes
the input data vector to the DAC,Frepresents the equiva-
lent linear transformation matrix, andnDA ∼CN(0,CDA)
denotes the Gaussian quantization noise. It was shown in [50]
that

F= 1−ρI, (2)

and

CDA=ρE diagxx
H , (3)

whereρ∈(0,1)is a distortion factor that depends on the DAC
resolutionbDA, which represents the number of quantized bits
for the DAC.

B. Secure Massive MIMO Transmission

In the considered massive MIMO downlink network as
illustrated in Fig. 1,K single-antenna users are served by
anN-antenna BS, where each transmit antenna employs
a pair of low-resolution DACs for processing the in-phase
and quadrature signals. Meanwhile, a passive eavesdropper
equipped withM antennas strives to eavesdrop the information
sent to the users. In order to protect the confidential data from
eavesdropping, the BS injects AN into the information-bearing
signals. Before transmission, the signal vectors∈CK×1with
E{ssH}=IK is precoded by a matrixW ∈CN×K with
tr{WWH}=K, while the AN vectorz∼CN(0,IN−K)is
multiplied by an AN shaping matrixV ∈CN×(N−K)with
tr{VVH}=N−K. The weighted data vector at the BS
before transmission is expressed as

x=
φP

K
Ws +

(1−φ)P

N−K
Vz

√
pWs +

√
qVz, (4)

where P denotes the total transmit power andφ ∈
(0,1]is a power allocation factor. For notational simplicity,
we define

p
φP

K
(5)

and

q
(1−φ)P

N−K
. (6)

Applying the quantization model in (1), the transmit vector
after DAC quantization is given by

xq=QDA(x)= 1−ρx+nDA, (7)

where nDA ∼ CN(0,CDA)represents the quantization
noise which is uncorrelated withx. By substituting (4)
into (3), the quantization noise covariance matrixCDA is
obtained as

CDA=ρpdiagWW
H +qdiagVVH . (8)
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Then, from (4) and (7), the received vector at theKusers
can be expressed as

y=Hxq+n

= 1−ρ
√
pHWs+

√
qHVz +HnDA+n,(9)

wheren ∼CN(0,σ2nIK)represents the thermal additive
white Gaussian noise (AWGN) at the users, andH∈CK×N

denotes the channel matrix between the BS andK users.
In this work, we assume that long-term power control is
employed to compensate for the large-scale fading of the
different users. Furthermore, the entries ofH are modeled
as independent and identically distributed (i.i.d.) complex
Gaussian random variables with zero mean and unit variance.
Similarly, the received vector at the eavesdropper is

ye=Hexq+ne

= 1−ρ
√
pHeWs +

√
qHeVz +HenDA+ne,

(10)

wherene ∼CN(0,σ
2
eIM)represents the thermal AWGN

at the eavesdropper, andHe∈C
M×N denotes the channel

matrix between the BS and the eavesdropper, whose entries
are also modeled as i.i.d. complex Gaussian random vari-
ables with zero mean and unit variance. To guarantee secure
communication in the worst case, we assume thatσ2e is
sufficiently small at the eavesdropper and can be ignored in
the sequel [16], [30], [31].

C. AN Design Methods

In this paper, we consider two common methods to generate
the AN shaping matrixV.Letvi,∀i∈{1,2,...,N−K},
denote theith column ofVsatisfying the constraintvi

2=1.
1) Null-Space Artificial Noise:For downlink data transmis-

sion, AN is added to the transmit signals at the BS to degrade
the decoding ability of the eavesdropper. However, it can
simultaneously interfere with the legitimate users as well. In
order to avoid any potential leakage of the AN to the intended
users, the AN is often designed to lie in the null-space of the
channel matrixH, i.e.,HV =0, assumingH is available
at the transmitter. However, taking low-resolution DACs into
account, the AN no longer perfectly lies in the channel
null-space after quantization and thus additional interference
still exists.
2) Random Artificial Noise:For massive MIMO commu-
nication, the computational complexity of the null-space of
H becomes prohibitively large with a large dimensionN.
Therefore, a much simpler but effective method to designV
was introduced in [30]. In this method, the columns ofVare
generated as mutually independent random vectors satisfying
vi

2=1,∀i∈{1,2,...,N−K}. The random AN is
inevitably leaked to the intended users but it offers much
lower computational complexity compared to the null-space
based AN.
Note that for both AN design methods, the columns of

V asymptotically form an incomplete orthogonal basis with
largeN due to the strong law of large numbers [30]. In the
following, we refer to the above two AN design methods by
using superscripts,N andR, respectively.

III. ACHIEVABLEERGODICSECRECYRAT E

Given the expressions of the received signals at both the
users and eavesdropper, we derive the achievable secrecy rate
per user in this section, under the assumption of large numbers
of antennas and users but with fixed ratios given as:

α
M

N
(11)

and

β
K

N
, (12)

whereβdenotes the user loading ratio [44]. To start, we first
recall the following lemma from [30, Lemma 1].
Lemma 1:The achievable ergodic secrecy rate for thekth
user is given by

Rsec,k=[Rk−Ck]
+, (13)

where [x]+ = max{0,x},Rk represents the achievable
ergodic rate of thekth user, andCk denotes the ergodic
capacity between the BS and the eavesdropper seeking to
decode the information of thekth user.
In the following, we derive a lower bound forRkand an
upper bound forCkassuming low-resolution DACs, which
then provides us a lower bound for the achievable ergodic
secrecy rate.

A. Achievable Ergodic Rate of Each User

From (9), the received signal of userk,i.e.,yk, can be
expressed as

yk= 1−ρ
√
phTkWs +

√
qhTkVz +hTknDA+nk,(14)

wherehTk denotes thekth row ofH andnk is thekth
element ofn. We also expressW =[w1,w2,...,wk]
wherewk∈C

N×1,∀k∈{1,2,...,K},isthekth column
ofW. Then, the signal-to-interference-quantization-and-noise
ratio (SIQNR) of thekth user,γk, can be expressed as (15) at
the top of next page, whereSkis the power of the desired sig-

nal andIkrepresents the power of the inter-user interference.
Va r i a b l e sQkandAkdenote the interference power caused by
DAC quantization and AN, respectively. Then, by imposing the
worst-case assumption of Gaussian distributed interference and
applying Shannon’s formula, a lower bound for the achievable
ergodic rate of userkcan be evaluated as

Rk=E log2(1 +γk). (16)

In order to characterize the user rate performance, we derive
the asymptotic behavior ofγkwith both AN and DAC quan-
tization in the following lemma.
Lemma 2:Under the assumption ofN→∞ with fixedα
andβ, the SIQNR of each user almost surely converges to

γNk
a.s.
−−→

(1−ρ) 1
β−1φγ0

ργ0+1
γN, (17)
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γk=

Sk

(1−ρ)p|hTkwk|
2

(1−ρ)p
j=k

|hTkwj|
2

Ik

+hTkCDAh
∗
k

Qk

+(1−ρ)qhTkVV
Hh∗k

Ak

+σ2n
, (15)

for null-space AN and

γRk
a.s.
−−→

(1−ρ) 1
β−1φγ0

ργ0+(1−ρ)(1−φ)γ0+1
γR, (18)

for random AN, whereγ0 =
P
σ2n
represents the average

transmit SNR.
Proof: See Appendix A.
Since convergence is preserved for continuous functions

according to the Continuous Mapping Theorem [51], we apply
Lemma 2to (16) and thus the asymptotic achievable rates of
each user for both the AN design methods are respectively
obtained as

RN =log2

⎛

⎝1+
(1−ρ) 1

β−1φγ0

ργ0+1

⎞

⎠ (19)

and

RR =log2

⎛

⎝1+
(1−ρ) 1

β−1φγ0

ργ0+(1−ρ)(1−φ)γ0+1

⎞

⎠. (20)

From (19) and (20), it can be observed that bothRN andRR

increase with decreasingβ, which implies that the achievable
rate increases with more BS antennas or fewer users. In
addition, lower-resolution DACs cause higher quantization
distortion with largerρ, which leads to more severe user rate
loss. Asφincreases, bothRN andRR grow since more signal
power is allocated to the users. By comparing (19) and (20)
with the same parameter values, it can be easily verified
thatRN >RR, as expected. This is because random AN
causes additional interference to the legitimate receivers while
the more complicated null-space based AN mitigates inter-
ference leakage to the users except for the leakage due to the
DAC quantization noise. Considering extremely low-resolution
DACs withρ→1,wehaveRR →RN and thus random AN
achieves almost the same rate performance as the null-space
based AN. Under this condition, hardly any of the AN lies
in the null-space of the user’s channel matrix after DAC
quantization and the performance of null-space based AN
tends to that of random AN.

B. Ergodic Capacity of Eavesdropper

Without loss of generality, suppose that the data of user
kis of interest to the eavesdropper. In order to characterize
the achievable secrecy rate, we assume the worst case that
the eavesdropper has perfect knowledge of all the data chan-
nels and is able to cancel all inter-user interference before
attempting to decode the message of userk[16], [30], [31].

This assumption is reasonable because the quantization noise
dominates the rate performance compared to the multiuser
interference, especially for low-resolution DACs. Using (10)
and under the assumption of largeN andK, the ergodic
capacity of the eavesdropper can be evaluated as [52]

Ck=E log2 1+(1−ρ)pw
H
kH

H
eX

−1Hewk ,(21)

whereXis defined as

X (1−ρ)qHeVV
HHHe +HeCDAH

H
e. (22)

Since analysis of the eavesdropper’s capacity in (21) appears
less tractable, as an alternative, we derive a tight upper bound
forCk, as given in the following theorem.
Theorem 1:ForN→ ∞ andα+β<1, an upper bound
for the ergodic capacity of the eavesdropper is given by

C̄

log2

×

⎛

⎝1+

α
βφ(1−φ+̃ρ)

1− α
1−β (1−φ)

2+2(1−α)(1−φ)̃ρ+(1−α)̃ρ2

⎞

⎠,

(23)

whereρ̃ ρ
1−ρ.

Proof: See Appendix B.
FromTheorem 1, we have the following observations.
1) The expression for the eavesdropper’s capacity in (21)
only exists ifX in (22) is invertible. Whenρ → 0,
we haveX → qHeVV

HHHe sinceCDA → 0from (8).
In this case,X is invertible ifN −K > M since the
columns of the tall matrix,V, form an orthogonal basis
for asymptotically largeN and the elements ofHe are
i.i.d. complex Gaussian distributed. Similarly forρ→ 1,
X→He pdiag(WW

H)+qdiag(VVH)HHe is invertible
ifN>M. Combining the above two conditions, we see that
Xis invertible whenN−K>M regardless of the value of
ρ∈(0,1). This results in the same constraint, i.e.,α+β<1,
as inTheorem 1, and is a common condition for massive
MIMO systems with a largeN.
2) From (23), it is obvious thatC̄is monotonically increas-

ing withα. This implies that the BS can reduce the amount of
private information leaked to the eavesdropper by deploying
more transmit antennas, while the eavesdropper can improve
its wiretapping capability by employing more receive antennas.
3) Givenα,ρ,andφ, the effect ofβonC̄is generally not
monotonic. By characterizing the derivative ofC̄with respect
to (w.r.t.)β,wefindthat̄Cdecreases forβ∈(0,̄β), while it
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RNsec=

⎡

⎣log2

⎛

⎝1+
(1−ρ) 1

β−1φγ0

ργ0+1

⎞

⎠−log2

⎛

⎝1+
αφ 1

β−1μ

(ν+αβ)μ2−ζ

⎞

⎠

⎤

⎦

+

. (27)

RRsec=

⎡

⎣log2

⎛

⎝1+
(1−ρ) 1

β−1φγ0

ργ0+(1−ρ)(1−φ)γ0+1

⎞

⎠−log2

⎛

⎝1+
αφ 1

β−1μ

(ν+αβ)μ2−ζ

⎞

⎠

⎤

⎦

+

. (28)

increases whenβ∈(̄β,1−α),where

β̄ 1−
α(1−φ)2

(1−α)[(1−φ)+̃ρ]
2
+α(1−φ)2

. (24)

This can be explained as follows. Whenβis small, the transmit
power allocated to each user decreases significantly with
increasingβand thus the eavesdropper’s capacity decreases
accordingly. Asβcontinues increasing, the impact of the
reduced power per user becomes less significant. Whenβ
approaches1−α,Xbecomes ill-conditioned and the eaves-
dropper’s capacity improves. In addition, it is noted thatβ̄can
be larger than1−αfor large values ofρandφ. Under this
condition,C̄decreases monotonically forβ∈(0,1−α).
4) The parameterρ̃∈(0,∞)represents the influence of

the low-resolution DACs on the capacity of the eavesdropper.
By characterizing the derivative ofC̄w.r.t.ρ̃,wefindthat
∂C̄
∂̃ρ <0,∀̃ρ. It implies thatC̄decreases withρ̃, and hence
withρ.Sinceρincreases with decreasing DAC resolutionbDA,
a smallerbDA leads to a lower̄Cdue to the increasing power
of the quantization noise. This implies that the utilization of
low-resolution DACs makes some contribution to protecting
the legitimate users from eavesdropping, although it concur-
rently decreases the achievable user rate.
5) It is found thatC̄increases withφ, i.e.,∂C̄

∂φ>0,asthe
eavesdropper’s capacity increases with decreasing AN power.
Assuming that there is no AN, i.e.,φ=1,̄Cin (23) achieves
the maximum which is given by

C̄=log2 1+
α

(1−α)β̃ρ
. (25)

Note thatC̄does not grow without an upper bound even if
AN is not present due to the low-resolution DAC quantization.
To a certain extent, the quantization noise acts as a type of
AN which helps to degrade the eavesdropper’s capacity by
producing unavoidable interference. In this case,C̄becomes a
monotonically decreasing function w.r.t.β∈(0,1−α)because
β̄=1>1−αby substitutingφ=1into (24).

C. Lower Bound for the Achievable Secrecy Rate

ApplyingLemma 1and using (19), (20), and (23), a lower
bound for the achievable secrecy rate of each user is obtained
as follows

RΨsec= R
Ψ−C̄

+
, (26)

whereΨ∈{N,R}. Using the results derived above, expres-
sions forRNsecandR

R
secare respectively obtained as in (27)

and (28) at the top of this page, where we defineν 1−α−β,
μ 1−φ+̃ρ,andζ αβ(1−φ)2for notational simplicity.
These closed-form expressions allow us to gain insight into
the impact of the various system parameters, as detailed in
the next sections.

IV. SECRECYRAT EANALYSIS

In this section, we analyze the impact of various parameters,
includingα,β,ρ,andφ, on the secrecy rate in massive MIMO
systems using low-resolution DACs.

A. Impact of Antenna and User Loading Ratios

We first analyze the impact of the antenna ratioαdefined in
(11). In (26),C̄increases monotonically withαas indicated
before whileRΨis independent ofα. As a consequence,RΨsec
is monotonically decreasing w.r.t.α. Thus, a threshold value,
ᾱ, may exist such that no positive secrecy rate can be achieved
whenα>ᾱ, regardless of the values of other parameters. In
other words, secure transmission cannot be achieved if the
eavesdropper possesses enough antennas.
Since AN is injected to enhance the secrecy rate, we con-
sider the special case that almost all the power is allocated to
generate AN, i.e.,φ→ 0. By settingRΨsec=0in (27) and
(28),̄αis obtained as

ᾱN =
(1−β)γ0

(ρ+1)γ0+1−βγ0ρ(2−ρ)
(29)

and

ᾱR =
(1−β)γ0

2γ0+1−βγ0ρ(2−ρ)
. (30)

Sinceρ∈(0,1),wehavēαN > ᾱR, which implies that
the null-space based AN can tolerate a larger number of
eavesdropper antennas than the random AN at the expense
of higher computational complexity and the need for CSI.
Interestingly, it can be observed thatᾱN → ᾱR when
ρ→ 1. This is because the null-space based AN tends to be
randomly distributed in the signal space after low-resolution
DAC quantization. Note that bothᾱN andᾱR decrease with
β. Next, we focus on the extreme condition whenβreduces
to near0:

lim
β→0
ᾱN =

γ0
(ρ+1)γ0+1

(31)

and

lim
β→0
ᾱR =

γ0
2γ0+1

. (32)
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Under this circumstance,lim
β→0
ᾱR is independent ofρbecause

the DAC quantization does not statistically change the ran-
domness of the random AN. By increasingγ0, bothlim

β→0
ᾱN

andlim
β→0
ᾱR grow accordingly, thus improving the robustness

for both AN design methods. In all cases, however, the two
thresholds are ultimately bounded above bylim

β→0
ᾱN < 1

ρ+1

andlim
β→0
ᾱR <1

2, respectively.

One can also study the impact of user loading ratioβ
defined in (12). We take the derivative ofRΨsecw.r.t.βand

obtain that
∂RΨsec
∂β <0. Hence, by combining the observations

from (23), it is reasonable to expect that the secrecy rate
will be enhanced with a smallerβ. Furthermore, adding more
antennas at the BS can offer a larger beamforming gain,
or alternatively, a smaller number of users leads to higher
per-user transmit power.

B. Impact of DAC Distortion Parameter

Since bothRΨ andC̄decrease with increasingρdue to
the low-resolution DAC quantization, the impact ofρon the
secrecy rate,RΨsec, is unclear. According to (26) and assuming
a positive secrecy rate, we have

∂RΨsec
∂ρ

=
∂RΨ

∂ρ
−
∂̄C

∂ρ
. (33)

On one hand,∂C̄
∂ρ <0is independent ofγ0since we assume

a near-zero thermal noise power at the eavesdropper. On the

other hand,∂R
Ψ

∂ρ <0and decreases with largeγ0because
the quantization noise dominates the thermal noise at high
SNRs. Thus, we conclude that there exists aγ̄Ψ0 ∈(0,∞)

which guarantees that
∂RΨsec
∂ρ > 0forγ0 ∈ (0,̄γ

Ψ
0)and

∂RΨsec
∂ρ <0forγ0∈(̄γ

Ψ
0,∞). Interestingly, lower-resolution

DACs can achieve higher secrecy rate at low SNR, because
the eavesdropper’s capacitȳCdecreases faster thanRΨ does
with an increasing ρ. On the other hand, at high SNR,
higher-resolution DACs are advantageous compared to those
with lower-resolution.
For the null-space AN method, the expression for

∂RΨsec
∂ρ is

given below:

∂RNsec
∂ρ

=−

1
β−1φ(γ0+1)γ0

ln 2(ργ0+1) ργ0+(1−ρ)
1
β−1φγ0+1

+
αφ 1

β−1 (ν+αβ)μ2+ζ

ln 2(1−ρ)2[(ν+αβ)μ2−ζ](ν+αβ)μ2−ζ+αφ 1
β−1μ

(34)

1

ln 2

aNγ20+b
Nγ0+c

N

dN
, (35)

where (34) utilizes∂μ
∂ρ=

∂̃ρ
∂ρ=

1
(1−ρ)2. Obviously, the sign of

∂RNsec
∂ρ depends on the values of the parametersα,β,ρ,andφ.
We have focused on the impact ofγ0and regard the derivative

as a quadratic equation w.r.tγ0as in (35). In general, we have
thatdN >0,aN <0,andcN >0. This implies that a solution
for̄γN0 exists by forcing (35) to zero. Solving the quadratic
yields

γ̄N0 =
−bN − bN

2
−4aNcN

2aN
. (36)

Ifγ0<γ̄
N
0, lower-resolution DACs can be used to enhance the

secrecy rate since quantization noise degrades the eavesdrop-
per’s capacity more pronouncedly than the user rate. While
forγ0> γ̄

N
0, the infinite-resolution DACs achieve the best

performance. Since the expressions foraN,bN,cN,anddN

are generally complicated, we consider a special case with
ρ→ 0, which means that ideal DACs with infinite resolution
are assumed. Under this condition, the related parameters are
obtained as

aN =−ν(1−φ)φ ν(1−φ)+αφ
1

β
−1 , (37)

bN =2α2φ2(1−β)+αφ3ν
1

β
−1−ν2(1−φ)2φ, (38)

cN =αφ(ν+2αβ), (39)

dN =ln2ν(1−φ)
ν(1−φ)β

1−β
+αφ

1

β
−1 φγ0+1.

(40)

By substituting (37)-(40) into (36), the thresholdγ̄N0 forρ→0
is obtained. Although the threshold relies onρin general,
the obtained̄γN0 can approximately be applied to all values
ofρ∈(0,1), which is verified by the simulation results in
Section V.
For the random AN design method, similar manipulations
can be conducted and the threshold SNRγ̄R0 is obtained as
follows

γ̄R0 =
−bR− bR

2
−4aRcR

2aR
, (41)

where

aR =−ν(1−φ)φ ν(1−φ)+αφ
1

β
−1

+αφ(1−φ)(ν+2αβ)
1

β
−1 φ+1−φ, (42)

bR =2α2φ2(1−β)+αφ3ν
1

β
−1 −ν2(1−φ)2φ

+2αφ(1−φ)(ν+2αβ), (43)

cR =αφ(ν+2αβ), (44)

dR =ln2ν(1−φ)
ν(1−φ)β

1−β
+αφ [(1−φ)γ0+1]

×
1

β
−1 φγ0+(1−φ)γ0+1 . (45)

Similarly,aR,bR,cR,anddR are obtained under the assump-
tion ofρ→0and̄γR0 is also insensitive to the value ofρ.

C. Impact of the Power Allocation Factor

The above analysis was conducted assuming a fixedφ.Now,
we investigate the effect of this power allocation factor on
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the secrecy rate. Since∂R
Ψ

∂φ >0and
∂C̄
∂φ >0as indicated

above, the sign of
∂RΨsec
∂φ =

∂RΨ

∂φ −
∂C̄
∂φcannot be immediately

determined.
Take the secrecy rate in (27) with the null-space AN for

instance. The derivative ofRNsecw.r.t.φis calculated as

∂RNsec
∂φ

=
(1−ρ)(1β−1)γ0

ln 2ργ0+1+(1−ρ)(
1
β−1)γ0φ

−
α 1
β−1

(ν+αβ)μ2

1−ρ −2αβμφ(1−φ)−αβ(1−φ)2(μ−φ)

ln 2 [(ν+αβ)μ2−ζ](ν+αβ)μ2−ζ+αφ 1
β−1μ

,

(46)

where we use the fact that ∂μ
∂φ=−1.Forsmallφwe have

∂RNsec
∂φ >0while for largeφwe have

∂RNsec
∂φ <0. Thus, there

exists an optimalφ,i.e.,φ∗, that achieves the highest secrecy

rate. By forcing
∂RNsec
∂φ =0, the optimalφ

∗is directly obtained.
Since the expression in (46) is generally intractable, we resort
to the numerical bisection method to determineφ∗. In addition,
we derive a closed-form expression for an approximateφ∗in
the following. We assume thatαβ 1, which generally holds
in massive MIMO networks with large antenna arrays at the

BS. Then,
∂RNsec
∂φ in (46) approximately becomes

∂RNsec
∂φ

=
(1−ρ)(1β−1)γ0

ln 2ργ0+1+(1−ρ)(
1
β−1)γ0φ

−
α 1
β−1

νμ2

1−ρ

ln 2νμ2 νμ2+αφ 1
β−1μ

. (47)

Setting
∂RNsec
∂φ =0, the optimalφ

∗is obtained as

φN∗ =

ν− ν2+ αρ+ α
γ0
−ν 1−β−αβ

(1−ρ)1−β−αβ

.(48)

For random AN, a similar analysis can be conducted. Under
the same assumptionαβ 1, the optimalφR∗ is given by
(49) at the bottom of next page.
Due to the constraint thatφ∈(0,1],wesetφ∗=1if

the obtainedφ∗in (48) and (49) is larger than1. Under this
condition, the secrecy rate increases monotonically withφ∈
(0,1]. In Section V, we will show that bothφN∗ in (48) and
φR∗ in (49), shown at the bottom of the next page, are accurate
for various combinations of system parameters.

V. SIMULATIONRESULTS

In this section, we verify the tightness of the derived bounds
and the obtained insights via numerical simulation. We use the
typical values for the distortion parameterρin [53] for each
DAC usingbDA bits for quantization. For perfect DACs with
bDA→∞,wesetρ→0.

Fig. 2. Eavesdropper’s capacity and the corresponding upper bounds versus
β(N= 100,M =7,andφ=0.7).

Fig. 3. Eavesdropper’s capacity andour derived upper bound versus power
allocation factorφ(N= 100,K=10,andM =5).

A. Ergodic Capacity of Eavesdropper

We first study the tightness of the derived upper bound
for the eavesdropper’s capacity. Fig. 2 compares the eaves-
dropper’s capacity in (21) and the upper bound in (23), for
DAC resolutionsbDA =1,2,and∞. In general, our derived
upper bound is tight forβranging from0.1to0.9. Clearly,
the low-resolution DACs result in a capacity loss due to the
interference caused by the quantization noise. As accurately
predicted by our analysis in (24), the eavesdropper achieves
the lowest capacity forβ̄=0.7354andβ̄=0.8133with
bDA = ∞ andbDA =2, respectively. These two points
are denoted by markers× in the figure. ForbDA =1,
we haveβ̄=0.9059according to (24) and thusC̄decreases
monotonically forβ∈(0.1,0.9).
Fig. 3 shows the capacity of the eavesdropper forφranging
from0to1. Obviously,̄Cincreases monotonically withφ.The
lower the AN power, the higher the eavesdropper’s capacity
will be due to the power reduction in the interference. In
addition, we see that low-resolution DACs help to degrade
the channel quality of the eavesdropper regardless of the
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Fig. 4. Ergodic secrecy rate and lower bound versus SNR with null-space
AN (N=128,K=8,M =16,andφ=0.8).

value ofφ. Assuming the eavesdropper is able to perfectly
cancel the inter-user interference and the thermal noise is
negligibly small, the capacity approaches infinity withφ→1
andbDA=∞ since there is no remaining interference. Thus,
AN is necessary for conventional secure communication when
perfect DACs are available. However, this is not the case for
low-resolution DACs since the quantization noise can protect
the confidential information from eavesdropping. Under the
assumption ofφ→ 1, the capacity converges to2.2985
and0.9407, instead of infinity, forbDA =2andbDA =1,
respectively.

B. Achievable Ergodic Secrecy Rate

In the following, we verify the accuracy of the derived
lower bound for the achievable secrecy rate. Fig. 4 shows
the ergodic secrecy rate and its lower bound in (27) with
the null-space AN method. The dotted markers correspond
to the simulation results while the solid lines correspond to
the lower bound. We observe that the derived bound is tight
forγ0ranging from0dB to 20 dB. With infinite-resolution
DACs, the secrecy rate increases proportionally withγ0while
the low-resolution DAC quantization causes significant rate
loss at high SNR. From (36), the SNR threshold is computed
asγ̄N0 =5.6838dB withρ→ 0, i.e.,bDA → ∞. When
γ0<γ̄

N
0, lower-resolution DACs can provide higher secrecy

rate since the achievable rate of each user decreases more
slowly than the eavesdropper’s capacity as the DAC resolution
decreases. At low SNR, thermal noise dominates at the users
and the DAC quantization affects the eavesdropper’s capacity
more pronouncedly. On the other hand, when γ0 > γ̄

N
0,

infinite-resolution DACs achieve the highest secrecy rate. In
addition, we observe that the obtained̄γN0 can also be applied

Fig. 5. Ergodic secrecy rate and lower bound versus SNR with random AN
(N= 128,K=8,M =6,andφ=0.7).

to low-resolution DACs withbDA =3 andbDA =2 as
indicated before, although technicallyγ̄N0 depends on the
quantization distortion parameterρ. This makes the DAC
resolution allocation much simpler and appealing in practice
since only onēγN0 needs to be calculated.
Fig. 5 illustrates the ergodic secrecy rate and the derived
lower bound in (28) with random AN. The secrecy rate
increases with SNR but saturates eventually at high SNR, even
if infinite-resolution DACs areadopted. This is because the
random AN degrades the achievable rate of the legitimate
users while the null-space AN only causes interference to
the eavesdropper. From (41),̄γR0 is calculated as6.1303dB.
In order to enhance the secrecy rate, increasing the DAC
resolution is recommended ifγ0 > 6.1303dB but not if
γ0≤6.1303dB.InbothFig.4andFig.5,afixedφis assumed
since it is in general difficult to optimizeφanalytically. In
order to alleviate the performance degradation of fixed power
allocation, we present an approximateφ∗in (48) and (49) for
the null-space AN and the random AN methods, respectively.
Corresponding simulations are illustrated in Fig. 8 and Fig. 10
in the next subsection.
Fig. 6 depictsᾱin (29) and (30) for null-space and random
AN, respectively. As indicated in Section IV.A, a positive
secrecy rate can be achieved only ifα<ᾱ. It is observed
from Fig. 6 that̄αdecreases monotonically withβ.Givena
fixedN, the transmit power of each user decreases with an
increasing number of usersK, i.e., increasingβ, and thus
fewer antennas are required at the eavesdropper to decode
the information. Note that even withβ→ 0, a threshold
ᾱ <1exists, which implies that the eavesdropper is still
able to successfully wiretap as long as it employs enough
antennas. Comparing null-space and random AN, we find that

φR∗ =

(1 +γ0)(ν−α)− α(1 +γ0)
1
β+1 (ν−α)+1γ0 1−β−

α
β

(1−ρ)1−β−αβ+γ0(ν−α)
. (49)

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on May 19,2020 at 20:39:46 UTC from IEEE Xplore.  Restrictions apply. 



3274 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 67, NO. 5, MAY 2019

Fig. 6. Threshold ratioᾱfor positive secrecy rate versusβ(γ0=10dB).

Fig. 7. Ergodic secrecy rate versusφwith null-space AN (N=128,K=8,
andM =16).

ᾱN >ᾱR forγ0=10dB. This implies that higher hardware
cost is required at the eavesdropper to resist null-space AN
than random AN.

C. Optimal Power Allocation

In the following, the accuracyof the obtained closed-form
expressions for the approximately optimalφare verified. For
null-space AN, Fig. 7 shows the ergodic secrecy rate withφ
ranging from0to1. We consider 1-3 bit DACs compared
with the infinite-resolution case. Interestingly, the infinite-
resolution DACs achieve the highest secrecy rate whenφ
is small while the lower-resolution DACs provide better rate
performance for largeφ. On one hand, a high DAC resolution
is needed when most of the transmit power is allocated to
generate AN. On the other hand, lower-resolution DACs can
achieve higher secrecy rates when most of the power is used
to transmit information signals. In fact, DAC quantization
noise serves as a kind of AN to improve communication
security. The markers× in the figure denote the optimal
φ∗ obtained by numerical methods while the circles rep-
resent theφN∗ in (48). We can see that the two match

Fig. 8. Ergodic secrecy rate with the optimalφ∗versus SNR for null-space
AN method (N= 128,K=8,andM =16).

Fig. 9. Ergodic secrecy rate versusφwith random AN (N=128,K=8,
andM =16).

exactly. Specifically whenγ0 =0 dB, we haveφ
N∗ =

0.5117,0.3841,0.3552,0.3452forbDA =1,2,3,∞, respec-
tively. Forγ0=5dB,φ

N∗ =0.5687,0.4247,0.3926,0.3808
forbDA =1,2,3,∞, respectively. For the same value of
γ0, the optimalφ

∗increases with decreasing DAC resolution.
This implies that more power should be allocated to the
transmit signals with lower-resolution DACs. Furthermore,
Fig. 8 shows the secrecy rate with the optimalφ∗. Comparing
Fig. 4 with a fixedφ=0.8, we see that low-resolution DACs
inevitably degrade the secrecy rate regardless of the SNR. If
the optimalφ∗is achievable, higher-resolution DACs always
provide more secure transmission.
For random AN, Fig. 9 shows the achievable secrecy rate
versusφusing low-resolution DACs. The optimalφ∗obtained
by numerical methods is denoted by× while the derived
φR∗ in (49) is denoted by circles. For the case thatγ0=0
dB, we haveφR∗ =0.6103,0.4402,0.4024,0.3885while for
γ0=5dB, we haveφ

R∗ =0.8243,0.5960,0.5435,0.5247,
forbDA =1,2,3,∞, respectively. Unlike the results of the
null-space AN method shown in Fig. 7, the highest secrecy
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Fig. 10. Ergodic secrecy rate with the optimalφ∗versus SNR for random
AN method (N=128,K=8,andM =12).

rates with the optimalφ∗are approximately equal forbDA=
1,2,3,and∞, i.e.,RRsec=1.6346and0.9113forγ0=5
and0dB, respectively. For various DAC resolutions, the same
peak secrecy rate can be achieved as long as the optimalφ∗

is used. In other words, the impact of low-resolution DACs
on secure transmission is insignificant. This is because the
DAC quantization noise acts as random AN at both the users
and eavesdropper. Although the quantization noise increases
with a lowerbDA, the same maximum secrecy rate can still be
achieved by increasingφto reduce the AN power. Compare
Fig. 7 and Fig. 9 and takeγ0=0dB for instance. When
infinite-resolution DACs are deployed and using the optimal
φ∗, the highest secrecy rate isRNsec=1.4788with null-space
AN, which is much larger thanRRsec=0.9113with random
AN. When 1-bit DACs are considered, we haveRNsec =
1.1217, which is closer toRRsec=0.9113. This implies that
random AN becomes cost-efficient when low-resolution DACs
are adopted. The advantage of null-space AN is marginal in
this case. The achievable secrecy rates are displayed in Fig. 10
when the optimal φ∗ is used. As observed from Fig. 9,
the secrecy rates are generallynot degraded by low-resolution
DACs, except at high SNR withbDA=1. Hence, using DAC
resolutions beyond1bit is not beneficial in terms of secrecy
rate. This implies that low-resolution DACs can provide almost
the same secure performance as infinite resolution DACs with
random AN. For the scenario in Fig. 10 where 1-bit DACs
are employed andγ0>9.8dB, the secrecy rate increases
monotonically withφ∈(0,1]and thereforeφ∗=1,whichis
different from the cases with low SNR shown in Fig. 9. Under
this condition, at least a two-bit DAC is needed at the BS to
achieve the same secrecy rate as that in the infinite resolution
case.

VI. CONCLUSIONS

In this paper, we investigate the physical layer security of
a multiuser massive MIMO system employing low-resolution
DACs at the transmitter, in the presence of a passive eaves-
dropper. A tight lower bound for the achievable secrecy rate

of each user is derived. We find that the DAC quantization
noise can be regarded as additional AN provided by the BS
and may contribute to the secure transmission. Given a fixed
power allocation factorφ, low-resolution DACs can achieve
superior secrecy performance under certain conditions, e.g.,
at low SNR or with largeφ. If the optimalφ∗can be obtained,
low-resolution DACs inevitably lead to secrecy rate loss with
the null-space AN design method. On the other hand, for
random AN, low-resolution DACs achieve the same secrecy
performance as high-resolution DACs at low SNR and thus
the former are cost-efficient in this scenario. Note that our
derived results directly apply for the system with multi-antenna
users if multiple data streams are transmitted to each user.
This is because in massive MIMO, anL-antenna user can be
equivalently regarded asLsingle-antenna users, due to the
asymptotic orthogonality among channel vectors. However,
the extension becomes more complicated if a single data
stream is transmitted. Interesting future work includes further
extending our current results to such a general secnario with
multi-antenna users.

APPENDIXA
PROOF OFLEMMA2

In order to obtain the asymptotic expression forγk,
we derive Sk,Ik,Qk,andAk in (15) one by one.
Consider a typical ZF-precoder under the constraint that
tr{WWH}=K,i.e.,

W =
K

tr{(HHH)−1}
HH(HHH)−1. (50)

It is well known thatHHH ∼Wk(N,Ik),whereWm(n,Σ)
denotes anm×mWishart matrix withndegrees of freedom
andΣis the covariance matrix of each column. Assuming
thatK andN grow to infinity with a fixed ratioβ= K

N,
we have [54]

tr{(HHH)−1}
a.s.
−−→

β

1−β
. (51)

Substituting (51) in (50) yields

HW
a.s.
−−→ K

1

β
−1Ik. (52)

Thus,SkandIkconverge to

Sk
a.s.
−−→(1−ρ)φP

1

β
−1 (53)

and

Ik
a.s.
−−→0, (54)

respectively.
As forQk, the emphasis lies on the asymptotic character-
izations ofCDA in (8). For largeNandK,CDA converges
to a scaled identity matrix as follows

CDA
a.s.
−−→ρ

P

N
IN, (55)
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where we use (5), (6), and the fact that

diag(WWH)
a.s.
−−→

K

N
IN (56)

and

diag(VVH)
a.s.
−−→

N−K

N
IN, (57)

due to the strong law of large numbers. Then, by substitut-
ing (55) into (15), we have

Qk
a.s.
−−→ρ

P

N
hTkh

∗
k

= ρP. (58)

Finally forAk, the result depends on the AN shaping
matrixV. For the null-space AN method withHV=0,itis
obvious that

ANk =0. (59)

For the random AN method,ARk in (15) can be regarded as
a matrix comprised of one single element, i.e.,ARk ∼ W1
(N−K,(1−ρ)q), and it follows that

ARk =tr ARk

=(N−K)(1−ρ)q (60)

=(1−ρ)(1−φ)P, (61)

where (60) comes from the fact thattr{A}= mn for a
Wishart matrixA∼Wm(n,Im)[54], and (61) uses (6).
Now, by substituting (53), (54), (58), (59), and (61)

into (15), the asymptotic SIQNRs for the null-space and ran-
dom AN methods are respectively obtained in (17) and (18).

APPENDIXB
PROOF OFTHEOREM1

To begin with, we demonstrate thatXdefined in (22) can
be approximated as a scaled Wishart matrix. Substituting (55)
into (22) yields

X
a.s.
−−→(1−ρ)qHeVV

HHHe +ρ
P

N
HeH

H
e

= (1−ρ)qHeVV
HHHe +ρ

P

N
He[VV0][VV0]

HHHe

(62)

= (1−ρ)q+ρ
P

N
H1H

H
1

W 1

+ρ
P

N
H2H

H
2

W 2

, (63)

where (62) uses the fact that[V V0][V V0]
H =IM since

[V V0]is a complete orthogonal basis with dimensionN,
and (63) utilizes the definitionsH1 HeVandH2 HeV0.
From (63),Xis statistically equivalent to a weighted sum of
two scaled Wishart matrices, i.e.,X1∼ WM(N−K,IM)
andX2∼WM(K,IM). Strictly speaking,Xis not a Wishart
matrix and the exact distribution ofX is intractable. How-
ever,X may be accurately approximated as a single scaled
Wishart matrix, X ∼ WM(η, λIM), where the parameters
ηandλare chosen such that the first two moments ofX

and(1−ρ)q+ρP
N W1+ρ

P
NW2are identical [30], which

yields

ηλ=(N−K)(1−ρ)q+ρ
P

N
+Kρ

P

N
(64)

and

ηλ2=(N−K)(1−ρ)q+ρ
P

N

2

+K ρ
P

N

2

.(65)

Substituting (6) into (64) and (65),ηandλare obtained as

η=N
[(1−ρ)(1−φ)+ρ]2

[(1−ρ)(1−φ)+ρ]2+(1−ρ)2(1−φ)2 K
N−K

(66)

and

λ=
P

N

[(1−ρ)(1−φ)+ρ]2+(1−ρ)2(1−φ)2 K
N−K

(1−ρ)(1−φ)+ρ
,(67)

respectively.
Next, we apply Jensen’s inequality which yields an upper
bound for the eavesdropper’s capacity:

Ck≤log2 1+(1−ρ)pE w
H
kH

H
eX

−1Hewk

=log2 1+
(1−ρ)p

λ(η−M)
E wHkH

H
eHewk (68)

=log2 1+
(1−ρ)pM

λ(η−M)
E wHkwk (69)

=log2 1+
(1−ρ)pM

λ(η−M)
, (70)

where (68) utilizes the property thatA−1
a.s.
−−→ 1

n−mIm for a
Wishart matrixA∼Wm(n,Im)withn>m[39], (69) uses
the fact that1MH

H
eHe−IN

a.s.
−−→0N due to the Central Limit

Theorem, and (70) applies the weak law of large numbers

andE{wHkwk}=
1
K

K

k=1

wHkwk =
1
Ktr{W

HW}=1.

Note that the derivation in (68) only holds for an invertible
X∼ WM(η, λIM), which yieldsη−M> 0. By substitut-
ing (11), (12), and (66), we have

η−M

=N
(1−α)(1−β)[(1−ρ)(1−φ)+ρ]2−αβ(−ρ)2(1−φ)2

(1−β)[(1−ρ)(1−φ)+ρ]2+β(1−ρ)2(1−φ)2

=N
(1−α)(1−β)(1−ρ)2(1−φ)2

(1−β)[(1−ρ)(1−φ)+ρ]2+β(1−ρ)2(1−φ)2

× 1+
ρ

(1−ρ)(1−φ)

2

−
αβ

(1−α)(1−β)
>0.

(71)

Regardless of the values ofρ∈(0,1)andφ∈(0,1], (71)
holds if αβ

(1−α)(1−β)<1, which yieldsα+β<1withβ∈

(0,1)andα∈(0,1). Fortunately, this is a common condition
for massive MIMO systems with largeN.
Finally by substituting (5), (66), and (67) into (70),
the upper bound in (23) is directly obtained.
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