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Abstract—In this paper, we investigate secure transmission
in a massive multiple-input multiple-output system adopting
low-resolution digital-to-analog converters (DACs). Artificial
noise (AN) is deliberately transmitted simultaneously with the
confidential signals to degrade the eavesdropper’s channel qual-
ity. By applying the Bussgang theorem, a DAC quantization
model is developed which facilitates the analysis of the asymp-
totic achievable secrecy rate. Interestingly, for a fixed power
allocation factor ¢, low-resolution DACs typically result in a
secrecy rate loss, but in certain cases, they provide superior
performance, e.g., at low signal-to-noise ratio (SNR). Specifi-
cally, we derive a closed-form SNR threshold which determines
whether low-resolution or high-resolution DACs are preferable
for improving the secrecy rate. Furthermore, a closed-form
expression for the optimal ¢ is derived. With AN generated in the
null-space of the user channel and the optimal ¢, low-resolution
DACs inevitably cause secrecy rate loss. On the other hand,
for random AN with the optimal ¢, the secrecy rate is hardly
affected by the DAC resolution because the negative impact of
the quantization noise can be compensated by reducing the AN
power. All the derived analytical results are verified by numerical
simulations.

Index Terms—Physical layer security, massive multiple-input
multiple-output (MIMO), digital-to-analog converter (DAC),
artificial noise (AN).

I. INTRODUCTION
ECRECY plays an important role in wireless commu-
nications since it is difficult for a broadcast channel
to shield transmit signals from unintended recipients. Tra-
ditionally, secure transmission relies on key-based crypto-
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graphic methods implemented at the network and application
layers [1]. However, these cryptographic measures are based
on the assumption that it is computationally infeasible for
the encrypted message to be deciphered within a reasonable
amount of time. Consequently, they inevitably become more
vulnerable as the computational capability of the adversary
grows. In the past decade, physical layer security, as a
complement to existing cryptographic methods, has gained
increasing attention [2]-[4]. With appropriate designs, phys-
ical layer techniques enable secure communication over a
wireless medium without the help of encryption keys [5]-[7].
In addition, they can be used to augment already existing
security measures at higher layers, leading to a multilayer
secure transmission [8].

The classical three-terminal security model, known as the
wiretap channel, was originally proposed in [9], consisting
of a transmitter (Alice), an intended receiver (Bob), and
an unauthorized receiver (Eve) referred to as an eaves-
dropper. This concept has been extended to multi-antenna
networks [10], [11], while beamforming techniques have been
utilized in multiple-input multiple-output (MIMO) systems
to improve secrecy [12]. When the instantaneous channel
state information (CSI) of the eavesdropper is known at
the transmitter, it has been demonstrated in [13] that the
generalized singular value decomposition (GSVD) precoding
scheme can achieve the secrecy capacity in the high signal-to-
noise ratio (SNR) limit. The study in [14] showed that secret
communication is possible if the eavesdropper’s channel is
more noisy than the user channel. When the eavesdropper
happens to have a better channel than the legitimate user
(e.g., if the eavesdropper is much closer to the transmitter),
artificial noise (AN) has been proposed in [15] and [16] to
help degrade the channel quality of the eavesdropper. The AN
is usually designed to be orthogonal to the channel of the
intended receivers, thus causing no additional interference to
the legitimate users [17], [18]. In order to further combat the
uncertainty of channel information at the transmitter, robust
beamforming design for physical layer security with the aid
of AN has been studied in [19].

Recently, massive MIMO has become a candidate
technology for next-generation wireless communication
systems [20]-[23] and its application to guarantee communi-
cation security has attracted significant attention. In massive
MIMO, hundreds, or even thousands, of antennas are equipped
at the base station (BS) [24]-[26] and the corresponding
spatial-wideband effect has been studied in [27]. For instance,
downlink secure transmission at the physical layer in a
multi-cell MIMO network has been investigated in [28] and
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the impact of a massive MIMO relay on secrecy has been
studied in [29]. Zhu ef al. [30] have derived two tight lower
bounds for the ergodic secrecy rate considering a maximal-
ratio-combining (MRC) precoder. In order to strike a balance
between complexity and performance, linear precoders based
on matrix polynomials have been proposed in [31] and a
phase-only zero-forcing (ZF) AN scheme has been presented
in [32]. Yan et al. [33] proposed a pilot-based channel training
scheme for a full-duplex receiver to enhance the physical layer
security. As demonstrated in [34], AN can also be injected into
the downlink training signals to prevent the eavesdropper from
obtaining accurate CSI for the eavesdropping link.

Despite the promising performance gain brought by massive
MIMO, it suffers from a challenging issue of high cost and
power consumption due to the fact that each antenna requires
a separate radio-frequency (RF) chain for signal processing.
One potential approach to reducing the required cost and
power is to use digital-to-analog converters (DACs) with
lower resolution for downlink transmissions [35]. A number
of authors have considered various direct nonlinear precoding
schemes that constrain the transmit signals to match the
DAC resolution. For example, a novel precoding technique
using 1-bit DACs has been presented in [36] and a nonlin-
ear beamforming algorithm has been proposed in [37]. Also,
perturbation methods minimizing the probability of error at
the receivers have been studied in [38]. An alternative simpler
approach is to quantize the output of standard linear precoders,
which is referred to as quantized linear precoding [39]-[41].
Although it is generally difficult to analytically characterize
the performance degradation due to nonlinear quantization,
the well-known Bussgang theorem can be applied to develop
an equivalent linear model [42], [43]. This model decom-
poses the quantized signal into a linearly distorted version
of the signal together with an uncorrelated quantization noise
source [44]. It is noteworthy that the DAC quantization noise
shares some similarities with the AN injected by the BS
as both are transmitted along with the information-carrying
signals and produce interference at the eavesdropper. In other
words, the DAC quantization noise can be regarded, in some
sense, as a special type of AN. Hence, it can also decrease
the received signal-to-interference-and-noise ratio (SINR) at
the eavesdropper, while unavoidably interfering with legit-
imate users at the same time. While common sense dic-
tates that low-resolution DAC quantization degrades system
performance in conventional massive MIMO systems, it is
interesting to consider the possibility that DAC quantiza-
tion could enhance secrecy capacity in some scenarios. To
the best of our knowledge, only few of the existing works
(e.g., [91-[19], [28]-[34]) have investigated secure massive
MIMO communications using low-resolution DACs.

On the other hand, although the effect of hardware impair-
ments on secure massive MIMO systems has been analyzed
in [45], only ideal converters with infinite resolution were
considered. In this paper, we investigate secure transmission in
a multiuser massive MIMO downlink network equipped with
low-resolution DACs at the BS. We assume that there exists a
multi-antenna eavesdropper that intends to eavesdrop the infor-
mation transmitted from the BS to multiple legitimate users.
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The eavesdropper is passive in order to conceal its presence.
We assume for simplicity that perfect CSI is available at the
BS since there are already a number of studies, i.e., [46]-[49],
focusing on the problem of channel estimation. We consider
two popular AN methods for injecting AN at the BS in order
to prevent the unintended receiver from eavesdropping. One
method is based on AN which lies in the null-space spanned by
the channels of all the desired users, while the other assumes
random AN. We also study the impact of low-resolution DACs
on the achievable secrecy rate. The main contributions of this
work are summarized as follows:

1) For the case of low-resolution DAC quantization in secure
massive MIMO, we derive tight lower bounds for the secrecy
rate of the system using different types of AN methods. We
observe that lower-resolution DACs provide superior secrecy
performance under certain circumstances, e.g., at low SNR.
This is explained by the fact that the quantization noise
degrades the eavesdropper’s capacity more significantly than
that of the users. Specifically, we derive a closed-from expres-
sion for a threshold SNR 7, such that if the transmit SNR -
satisfies vy < 7p, lower-resolution DACs enhance the secrecy
rate, while if 49 > p, higher-resolution DACs are preferred.

2) It is found that secure transmission with low-resolution
DACs depends heavily on the power allocation factor
¢ < (0, 1], which denotes the proportion of power used for
confidential signals, with the remainder of the power allocated
for AN. Generally, the secrecy rate first increases with ¢ but
then subsequently decreases. A closed-form expression for
an approximate optimal ¢* is obtained. We observe that ¢*
increases with a decreasing DAC resolution. This suggests that
less power can be utilized to generate AN for DACs with a
lower resolution.

3) For the null-space AN method with the optimal ¢*,
we observe that low-resolution DACs lead to secrecy rate
loss for all SNR values. On the other hand, for the random
AN method, the secrecy rate with ¢* is insensitive to the
DAC resolution. This is because the DAC quantization noise
behaves the same as random AN at both the intended user
and eavesdropper. As the quantization noise increases, we can
maintain the same secrecy rate by reducing the power of the
random AN with an increasing ¢.

4) If extremely low-resolution DACs, i.e., 1-bit DACs,
are employed at the BS, the advantage of null-space AN
over random AN becomes marginal, while the null-space AN
also suffers from a much higher computational complexity
especially in massive MIMO. In this scenario, the null-space
AN method is not cost-efficient and random AN is preferred.

The rest of this paper is structured as follows. The DAC
quantization model, channel model, and two AN design meth-
ods are introduced in Section II. We derive a tight lower
bound for the achievable secrecy rate in Section III assuming
low-resolution DACs. Section IV analyzes the effect of vari-
ous system parameters on secure communication. Simulation
results are presented in Section V, and conclusions are drawn
in Section VL.

Notation: AT, A*, and AY represent the transpose,
conjugate, and conjugate transpose of A, respectively.
a ~ CN(0,X) denotes a circularly symmetric complex

Authonzed licensed use limited to: Access paid by The UC Irvine Libranes. Downloaded on May 19,2020 at 20:39:46 UTC from IEEE Xplore. Restrictions apply.



XU et al.:

SECURE MASSIVE MIMO COMMUNICATION WITH LOW-RESOLUTION DACs

el
. V 1 o e
s Low-resolution ﬂ
DAC '

3267

ha

Input data v 2
Low-resolution
—
Precoder DAC ﬂ
AN :
4’ - -

Fig. 1. Block diagram of the secure multiuser massive MIMO system.

Gaussian vector with zero mean and covariance matrix X.
tr{A} denotes the trace of A and diag(A) is a matrix that
retains only the diagonal entries of A. E{-} is the expectation

operator. ||-||2 denotes the Euclidean norm. - denotes
almost sure convergence. [z]t = max{0,z} chooses the

maximum between 0 and x.

II. SYSTEM MODEL

In this section, we investigate a multiuser massive
MIMO security network employing low-resolution DACs. The
DAC quantization model and two AN design methods are
introduced.

A. Quantization Model for Low-Resolution DACs

It is in general difficult to accurately characterize the quan-
tization error of an arbitrary low-resolution DAC. Fortunately,
an equivalent linear representation has been widely adopted
by using the Bussgang theorem [42]. This model has been
verified to be accurate enough for most DAC quantization
levels in practice [50]. In this model, the quantized data is
decomposed into two uncorrelated parts as

Opa(x) =

where Opa (-) denotes the quantization operation, x denotes
the input data vector to the DAC, F represents the equiva-
lent linear transformation matrix, and nps ~ CN(0,Cpa)
denotes the Gaussian quantization noise. It was shown in [50]
that

Fx +npa, ey

=Vi-plL @
and
Cpa = p E {diag (xx")}, 3)

where p € (0, 1) is a distortion factor that depends on the DAC
resolution bpya, which represents the number of quantized bits
for the DAC.

VN y 1
Low-resolution ﬂ Wesy o
L J DAC Danne; " 2

B. Secure Massive MIMO Transmission

In the considered massive MIMO downlink network as
illustrated in Fig. 1, K single-antenna users are served by
an N-antenna BS, where each transmit antenna employs
a pair of low-resolution DACs for processing the in-phase
and quadrature signals. Meanwhile, a passive eavesdropper
equipped with M antennas strives to eavesdrop the information
sent to the users. In order to protect the confidential data from
eavesdropping, the BS injects AN into the information-bearing
signals. Before transmission, the signal vector s € CX*1 with
E{ssf} = Ik is precoded by a matrix W € CV*K with
tr{ WWH} = K, while the AN vector z ~ CN(0,Iy_g) is
multiplied by an AN shaping matrix V e CV*(V—K) with
tr{VVH} = N — K. The weighted data vector at the BS
before transmission is expressed as

x-q,,‘ W +1,} N ég{PVz

2 FWs+/1Ve, )

where P denotes the total transmit power and ¢ €
(0,1] is a power allocation factor. For notational simplicity,
we define

2 9P
PEF (5)
and
a (1—9)P
1= N_-K ©)

Applying the quantization model in (1), the transmit vector
after DAC quantization is given by

V1—pX+npa, 7

where nps ~ CN(0,Cps) represents the quantization
noise which is uncorrelated with x. By substituting (4)
into (3), the quantization noise covariance matrix Cpy is
obtained as

Cpa = p|p diag (WW7) +g diag (VV7) |. (8

Xq = Opa(x) =
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Then, from (4) and (7), the received vector at the K users
can be expressed as

y=Hxs+n
— /1= p(\/;THWS + \/EHVZ) +Hnps +n, (9)

where n ~ CN(0,021x) represents the thermal additive
white Gaussian noise (AWGN) at the users, and H € CK*V
denotes the channel matrix between the BS and K users.
In this work, we assume that long-term power control is
employed to compensate for the large-scale fading of the
different users. Furthermore, the entries of H are modeled
as independent and identically distributed (i.i.d.) complex
Gaussian random variables with zero mean and unit variance.
Similarly, the received vector at the eavesdropper is

Ye = Hexq + e
= V1= 5(VPHoWs + /GHoVz) + Henpa + 1,
(10)

where n, ~ CN(0,021,) represents the thermal AWGN
at the eavesdropper, and H, € CM*¥N denotes the channel
matrix between the BS and the eavesdropper, whose entries
are also modeled as i.i.d. complex Gaussian random vari-
ables with zero mean and unit variance. To guarantee secure
communication in the worst case, we assume that o2 is
sufficiently small at the eavesdropper and can be ignored in
the sequel [16], [30], [31].

C. AN Design Methods

In this paper, we consider two common methods to generate
the AN shaping matrix V. Let v;, Vi e {1,2,...,N — K},
denote the ith column of V satisfying the constraint ||v;||%2=1.

1) Null-Space Artificial Noise: For downlink data transmis-
sion, AN is added to the transmit signals at the BS to degrade
the decoding ability of the eavesdropper. However, it can
simultaneously interfere with the legitimate users as well. In
order to avoid any potential leakage of the AN to the intended
users, the AN is often designed to lie in the null-space of the
channel matrix H, i.e., HV = 0, assuming H is available
at the transmitter. However, taking low-resolution DACs into
account, the AN no longer perfectly lies in the channel
null-space after quantization and thus additional interference
still exists.

2) Random Artificial Noise: For massive MIMO commu-
nication, the computational complexity of the null-space of
H becomes prohibitively large with a large dimension N.
Therefore, a much simpler but effective method to design V
was introduced in [30]. In this method, the columns of V are
generated as mutually independent random vectors satisfying
|vi[? =1, ¥ i € {1,2,...,N — K}. The random AN is
inevitably leaked to the intended users but it offers much
lower computational complexity compared to the null-space
based AN.

Note that for both AN design methods, the columns of
V asymptotically form an incomplete orthogonal basis with
large N due to the strong law of large numbers [30]. In the
following, we refer to the above two AN design methods by
using superscripts, A/ and R, respectively.

IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 67, NO. 5, MAY 2019

III. ACHIEVABLE ERGODIC SECRECY RATE

Given the expressions of the received signals at both the
users and eavesdropper, we derive the achievable secrecy rate
per user in this section, under the assumption of large numbers
of antennas and users but with fixed ratios given as:

as ﬂ;;r—f (11)
and
K
BE N (12)

where (3 denotes the user loading ratio [44]. To start, we first
recall the following lemma from [30, Lemma 1].

Lemma 1: The achievable ergodic secrecy rate for the kth
user is given by

Rsec s = [Rr — Cil™, (13)

where [z]t = max{0,z}, R represents the achievable
ergodic rate of the kth user, and C} denotes the ergodic
capacity between the BS and the eavesdropper seeking to
decode the information of the kth user.

In the following, we derive a lower bound for R, and an
upper bound for Cj assuming low-resolution DACs, which
then provides us a lower bound for the achievable ergodic
secrecy rate.

A. Achievable Ergodic Rate of Each User

From (9), the received signal of user k, i.e., yg, can be
expressed as

yr = v/1— p(y/phi Ws + /ghj Vz) + hinpa + ng, (14)

where hT denotes the kth row of H and n; is the kth
element of n. We also express W = [wy, Wa,..., Wg]
where w, € CV*1 Wk € {1,2,...,K}, is the kth column
of W. Then, the signal-to-interference-quantization-and-noise
ratio (SIQNR) of the kth user, ~x, can be expressed as (15) at
the top of next page, where Sy, is the power of the desired sig-

nal and I represents the power of the inter-user interference.
Variables @ and A; denote the interference power caused by
DAC quantization and AN, respectively. Then, by imposing the
worst-case assumption of Gaussian distributed interference and
applying Shannon’s formula, a lower bound for the achievable
ergodic rate of user k£ can be evaluated as

Ry = IE:{ logy (1 + ) }

In order to characterize the user rate performance, we derive
the asymptotic behavior of +; with both AN and DAC quan-
tization in the following lemma.

Lemma 2: Under the assumption of N — oo with fixed a
and [3, the SIQNR of each user almost surely converges to

(1-p) (1)
pyo+1

(16)

w2 2V, (17)
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for null-space AN and This assumption is reasonable because the quantization noise
X dominates the rate performance compared to the multiuser
’YR a.s. (I—-p) (3 — 1) [oal} N ’YR (18) interference, especially for low-resolution DACs. Using (10)
k - 1

pro+(1—p)1—-9)p0+1

for random AN, where v = ;"} represents the average
transmit SNR. "
Proof: See Appendix A. |

Since convergence is preserved for continuous functions
according to the Continuous Mapping Theorem [51], we apply
Lemma 2 to (16) and thus the asymptotic achievable rates of
each user for both the AN design methods are respectively
obtained as

(1) (§ 1) 7
pyo+1

RN =log, | 1+ (19)

and
(1) (1) v
pro+(1—p)(1—¢)r+1

RR =log, [ 1+ (20)

From (19) and (20), it can be observed that both RV and RR
increase with decreasing /3, which implies that the achievable
rate increases with more BS antennas or fewer users. In
addition, lower-resolution DACs cause higher quantization
distortion with larger p, which leads to more severe user rate
loss. As ¢ increases, both RN and R® grow since more signal
power is allocated to the users. By comparing (19) and (20)
with the same parameter values, it can be easily verified
that RV > RR, as expected. This is because random AN
causes additional interference to the legitimate receivers while
the more complicated null-space based AN mitigates inter-
ference leakage to the users except for the leakage due to the
DAC quantization noise. Considering extremely low-resolution
DACs with p — 1, we have R® — RN and thus random AN
achieves almost the same rate performance as the null-space
based AN. Under this condition, hardly any of the AN lies
in the null-space of the user’s channel matrix after DAC
quantization and the performance of null-space based AN
tends to that of random AN.

B. Ergodic Capacity of Eavesdropper

Without loss of generality, suppose that the data of user
k is of interest to the eavesdropper. In order to characterize
the achievable secrecy rate, we assume the worst case that
the eavesdropper has perfect knowledge of all the data chan-
nels and is able to cancel all inter-user interference before
attempting to decode the message of user k [16], [30], [31].

and under the assumption of large N and K, the ergodic
capacity of the eavesdropper can be evaluated as [52]

Cy = ]E{ log (1+ (1 — p)pw! HY X~ THowy) } 1)
where X is defined as

X2 (1-pqH VVFHY + H.CpaHY. (22)

Since analysis of the eavesdropper’s capacity in (21) appears
less tractable, as an alternative, we derive a tight upper bound
for Cy, as given in the following theorem.

Theorem 1: For N — oo and a + 3 < 1, an upper bound
for the ergodic capacity of the eavesdropper is given by

$6(1=6+5)
(1-1%) @-9+20-0)(1-9)p+(1-a)?
(23)

x| 1+

where j = -
Proof: See Appendix B. |

From Theorem I, we have the following observations.

1) The expression for the eavesdropper’s capacity in (21)
only exists if X in (22) is invertible. When p — 0,
we have X — qH.,VVHHE since Cpy — 0 from (8).
In this case, X is invertible if N — K > M since the
columns of the tall matrix, V, form an orthogonal basis
for asymptotically large N and the elements of H, are
ii.d. complex Gaussian distributed. Similarly for p — 1,
X — He. [p diag(WWH) + ¢ diag(VVH)| HY is invertible
if N > M. Combining the above two conditions, we see that
X is invertible when N — K > M regardless of the value of
p € (0,1). This results in the same constraint, i.e., a+ 3 < 1,
as in Theorem 1, and is a common condition for massive
MIMO systems with a large N.

2) From (23), it is obvious that C' is monotonically increas-
ing with . This implies that the BS can reduce the amount of
private information leaked to the eavesdropper by deploying
more transmit antennas, while the eavesdropper can improve
its wiretapping capability by employing more receive antennas.

3) Given a, p, and ¢, the effect of 3 on C is generally not
monotonic. By characterizing the derivative of C' with respect
to (w.r.t.) 3, we find that C' decreases for 3 € (0, 3), while it
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(1-p) (3-1) 6 a6 (5 -1)

RN = |log, | 1+ ot 1 — log, 1+W ()]
1—p) (1) blL—1

RR = |log, [ 1+ i (ﬁ ) ") o (14— (’3 )‘u (28)

pro+(1—p)(1—-9¢)p+1

T TP —¢

increases when 3 € (3,1 — «), where

S o1 — ¢)?
(1-a)[(1~¢) + 4" +a(l —¢)2
This can be explained as follows. When /3 is small, the transmit
power allocated to each user decreases significantly with
increasing 3 and thus the eavesdropper’s capacity decreases
accordingly. As 3 continues increasing, the impact of the
reduced power per user becomes less significant. When /3
approaches 1 — a, X becomes ill-conditioned and the eaves-
dropper’s capacity improves. In addition, it is noted that /3 can
be larger than 1 — o for large values of p and ¢. Under this
condition, C' decreases monotonically for 3 € (0,1 — ).

4) The parameter p € (0,c0) represents the influence of
the low-resolution DACs on the capacity of the eavesdropper.
By characterizing the derivative of C' w.r.t. 5, we find that
%% < 0, Vp. It implies that C' decreases with 5, and hence
with p. Since p increases with decreasing DAC resolution bpy,
a smaller bpy leads to a lower C due to the increasing power
of the quantization noise. This implies that the utilization of
low-resolution DACs makes some contribution to protecting
the legitimate users from eavesdropping, although it concur-
rently decreases the achievable user rate. )

5) It is found that C' increases with ¢, i.e., %% > 0, as the
eavesdropper’s capacity increases with decreasing AN power.
Assuming that there is no AN, i.e., = 1, C in (23) achieves
the maximum which is given by

(24)

C =log, [1 + (25)

e
(- )b
Note that C' does not grow without an upper bound even if
AN is not present due to the low-resolution DAC quantization.
To a certain extent, the quantization noise acts as a type of
AN which helps to degrade the eavesdropper’s capacity by
producing unavoidable interference. In this case, C' becomes a
monotonically decreasing function w.r.t. # € (0, 1—«) because
B =1>1— a by substituting ¢ = 1 into (24).

C. Lower Bound for the Achievable Secrecy Rate

Applying Lemma 1 and using (19), (20), and (23), a lower
bound for the achievable secrecy rate of each user is obtained
as follows

RY. =[RY-C]", (26)

where ¥ € {N,R}. Using the results derived above, expres-

sions for B . and }_?:ic are respectively obtained as in (27)

and (28) at the top of this page, where we define v = 1—a—f3,
p=1—¢+p, and ¢ = aB(1 — ¢)? for notational simplicity.
These closed-form expressions allow us to gain insight into
the impact of the various system parameters, as detailed in
the next sections.

I'V. SECRECY RATE ANALYSIS

In this section, we analyze the impact of various parameters,
including e, 3, p, and ¢, on the secrecy rate in massive MIMO
systems using low-resolution DACs.

A. Impact of Antenna and User Loading Ratios

We first analyze the impact of the antenna ratio o defined in
(11). In (26), C increases monotonically with « as indicated
before while RY is independent of a. As a consequence, ﬁ:fec
is monotonically decreasing w.r.t. .. Thus, a threshold value,
@, may exist such that no positive secrecy rate can be achieved
when o > @, regardless of the values of other parameters. In
other words, secure transmission cannot be achieved if the
eavesdropper possesses enough antennas.

Since AN is injected to enhance the secrecy rate, we con-
sider the special case that almost all the power is allocated to
generate AN, i.e., ¢ — 0. By setting ﬁ;pec = 0 in (27) and
(28), @ is obtained as

&N — (1—F)

= 2
(p+1)y+1—PBvp(2—p) @9
and
R (1—B)
= . 30
270 + 1= Brop(2 —p) G0

Since p € (0,1), we have @V > &, which implies that

the null-space based AN can tolerate a larger number of
eavesdropper antennas than the random AN at the expense
of higher computational complexity and the need for CSIL
Interestingly, it can be observed that aV — a® when
p — 1. This is because the null-space based AN tends to be
randomly distributed in the signal space after low-resolution
DAC quantization. Note that both aV and a® decrease with
(3. Next, we focus on the extreme condition when (3 reduces
to near 0:

. Y0
lim =— - 31
B—0 (pt+1)y+1 @D

and
lima® = —1° 32
B—0 2% +1 (32)
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R

Under this circumstance, ém% @' is independent of p because

the DAC quantization does not statistically change the ran-
domness of the random AN. By increasing ~yp, both ]'Lm aV

and hm ar grow accordingly, thus improving the robustness

for both AN design methods. In all cases, however, the two

thresholds are ultimately bounded above by éﬂ:% aN < L

1
and J%in}) ak < 1, respectively.

One can also study the impact of user loadmg ratio 3
defined in (12) We take the derivative of ﬂsec w.r.t. 3 and

obtain that —gﬁﬂ < 0. Hence, by combining the observations
from (23), it is reasonable to expect that the secrecy rate
will be enhanced with a smaller 5. Furthermore, adding more
antennas at the BS can offer a larger beamforming gain,
or alternatively, a smaller number of users leads to higher
per-user transmit power.

B. Impact of DAC Distortion Parameter

Since both RY and C decrease with increasing p due to
the low-resolution DAC quantization, the impact of p on the
secrecy rate, ﬁsec, is unclear. According to (26) and assuming
a positive secrecy rate, we have

T v ~
—6&9" = @ — % (33)
ap ap ap

On one hand, < 0 is independent of g since we assume
a near-Zero thermal noise power at the eavesdropper. On the
other hand, Qg < 0 and decreases with large 4o because
the quantization noise dominates the thermal noise at high
SNRs. Thus, we conclude that there exists a 7y € (0,00)
which guarantees that a—%fff- > 0 for 90 € (0,%y) and

a—%f‘"- < 0 for 7o € (3 ,00). Interestingly, lower-resolution

DACs can achieve higher secrecy rate at low SNR, because
the eavesdropper’s capacity C decreases faster than RY does
with an increasing p. On the other hand, at high SNR,
higher-resolution DACs are advantageous compared to those
with lower-resolution. .

For the null-space AN method, the expression for %ﬂ is
given below:

ORN.
op

(% - 1) é(70 +1)70
In2(p70+1) [P0 + (1 = p) (5~ 1) d20 +1]
ap (3-1) [+aB)u? +(]
n 20— AA(+aB)u? v +aBu>—C +ad (1) 4

(34)
a 1 a¥g+tVp+ eV 35)
- In2 N ’
where (34) utilizes %% = gé = Tﬁ)" Obviously, the sign of
RN,

—5=== depends on the values of the parameters a, B, p, and ¢.
We have focused on the impact of vy and regard the derivative
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asa quadratlc (j@uatlon w.r.t "}'0 as in (35). In general, we have
that &V > 0, a" < 0,and &V > 0. This implies that a solution
for F?é‘f exists by forcing (35) to zero. Solving the quadratic
yields

_ —N — VN — gaN N
F}/D\f: 2aN ’

Ifv < F?N , lower-resolution DACs can be used to enhance the
secrecy rate since quantization noise degrades the eavesdrop-
per’s capacity more pronouncedly than the user rate. While
for vo > *‘yﬁ"f , the infinite-resolution DACs achieve the best
performance. Since the expressions for av s Al s &N , and il
are generally complicated, we consider a special case with
p — 0, which means that ideal DACs with infinite resolution
are assumed. Under this condition, the related parameters are
obtained as

N = u(1-P)é [v(l —¢)+ad (% - 1)] ’

W = 20762(1-B) + ag*y (3—1) 2(1-4)%, (38)
& = ap(v + 2ap), (39)

N =1n2 v(1—¢) [”(1 ‘?6+a¢] {(%—1)m+1].
(40)

By substituting (37)-(40) into (36), the threshold f‘)ﬁf forp—0
is obtained. Although the threshold relies on p in general,
the obtained F‘ré‘f can approximately be applied to all values
of p € (0,1), which is verified by the simulation results in
Section V.

For the random AN design method, similar manipulations
can be conducted and the threshold SNR %R is obtained as

(36)

(37)

follows

R —bR — v bR? _ 4qR¢R

% = SR : @1
where

R (1= 86 |1 = 8+ b (5-1))|
+ag(l—9)(v + 2ap) K——l) ¢+1—¢] . (42)

— 2022(1 - ) + ad®y (3 - 1) C2(1- 4%

+2a¢(1 — ¢)(v + 2a3), (43)
CR = aqb(v =+ 20:,8) (44)
dR = n2v(1-¢) [V(l ?6 + aé] (1 = @)r+1]

x [(%—l)qﬁ’er(l—é)’erl]- 45)

Similarly, a®™, bR, cR, and d® are obtained under the assump-
tion of p — 0 and f‘yEF is also insensitive to the value of p.

C. Impact of the Power Allocation Factor

The above analysis was conducted assuming a fixed ¢. Now,
we investigate the effect of this power allocation factor on
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the secrecy rate. Since % >0 and BC > 0 as indicated

dRY

above, the sign of —gﬁﬂ e

determined.
Take the secrecy rate in (27) with the null-space AN for
instance. The derivative of R, . w.rt. ¢ is calculated as

ORY,
¢

W cannot be immediately

B (1-p)(& ~ Do
2o+ 1+ (1= (3 — Dod]
o (1) [ — 208(1 - 6) ~ a1~ 6)2(u— )

2 [(+aB)u2—(] [w+aB)u2—C +ad (5-1) ]
(46)

where we use the fact that 5’1 —1. For small ¢ we have

%e‘gﬂ > 0 while for large ¢ we have —TFE"‘ < 0. Thus, there

exists an optlmal qz‘,: i.e., ¢*, that achleves the highest secrecy
rate. By forcing —TFE"‘ = 0, the optimal ¢* is directly obtained.
Since the expression in (46) is generally intractable, we resort
to the numerical bisection method to determine ¢*. In addition,
we derive a closed-form expression for an approximate ¢* in
the following. We assume that a3 < 1, which generally holds
in massive MIMO networks with large antenna arrays at the
BS. Then, gN in (46) approximately becomes

&
oRY, (1-p)(% — 1o

9% 1n2 [mU +1+(1-p)(5 - lhod)]

o (3-1)#5

- . @
In2 vpu? [V,u + ag (3_ ),u]
N
Setting Lg;fi = 0, the optimal ¢* is obtained as
V—\/Vz—l—(ap—l—%—v) (1—,8—%)
oV = C)

(1-p)(1-8-%)

For random AN, a similar analysis can be conducted. Under
the same assumption o3 < 1, the optimal ¢** is given by
(49) at the bottom of next page.

Due to the constraint that ¢ € (0,1], we set ¢* = 1 if
the obtained ¢* in (48) and (49) is larger than 1. Under this
condition, the secrecy rate increases monotonically with ¢ &
(0, 1]. In Section V, we will show that both qu * in (48) and
#™* in (49), shown at the bottom of the next page, are accurate
for various combinations of system parameters.

V. SIMULATION RESULTS

In this section, we verify the tightness of the derived bounds
and the obtained insights via numerical simulation. We use the
typical values for the distortion parameter p in [53] for each
DAC using bpya bits for quantization. For perfect DACs with
bpa — oo, we set p — 0.
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Fig. 2. Eavesdropper’s capacity and the corresponding upper bounds versus
B (N =100, M =7, and ¢ = 0.7).
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Fig. 3. Eavesdropper’s capacity and our derived upper bound versus power
allocation factor ¢ (N = 100, K = 10, and M = 5).

A. Ergodic Capacity of Eavesdropper

We first study the tightness of the derived upper bound
for the eavesdropper’s capacity. Fig. 2 compares the eaves-
dropper’s capacity in (21) and the upper bound in (23), for
DAC resolutions bps = 1,2, and oco. In general, our derived
upper bound is tight for 3 ranging from 0.1 to 0.9. Clearly,
the low-resolution DACs result in a capacity loss due to the
interference caused by the quantization noise. As accurately
predicted by our analysis in (24), the eavesdropper achieves
the lowest capacity for 3 = 0.7354 and 3 = 0.8133 with
bpa = oo and bps = 2, respectively. These two points
are denoted by markers x in the figure. For bpy = 1,
we have 3 = 0.9059 according to (24) and thus C decreases
monotonically for 5 € (0.1,0.9).

Fig. 3 shows the capacity of the eavesdropper for ¢ ranging
from O to 1. Obviously, C increases monotonically with ¢. The
lower the AN power, the higher the eavesdropper’s capacity
will be due to the power reduction in the interference. In
addition, we see that low-resolution DACs help to degrade
the channel quality of the eavesdropper regardless of the
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Fig. 4. Ergodic secrecy rate and lower bound versus SNR with null-space
AN (N =128, K =8, M = 16, and ¢ = 0.8).

value of ¢. Assuming the eavesdropper is able to perfectly
cancel the inter-user interference and the thermal noise is
negligibly small, the capacity approaches infinity with ¢ — 1
and bpa = oo since there is no remaining interference. Thus,
AN is necessary for conventional secure communication when
perfect DACs are available. However, this is not the case for
low-resolution DACs since the quantization noise can protect
the confidential information from eavesdropping. Under the
assumption of ¢ — 1, the capacity converges to 2.2985
and 0.9407, instead of infinity, for bpy = 2 and bpsy = 1,
respectively.

B. Achievable Ergodic Secrecy Rate

In the following, we verify the accuracy of the derived
lower bound for the achievable secrecy rate. Fig. 4 shows
the ergodic secrecy rate and its lower bound in (27) with
the null-space AN method. The dotted markers correspond
to the simulation results while the solid lines correspond to
the lower bound. We observe that the derived bound is tight
for «p ranging from 0 dB to 20 dB. With infinite-resolution
DAC:s, the secrecy rate increases proportionally with vy while
the low-resolution DAC quantization causes significant rate
loss at high SNR. From (36), the SNR threshold is computed
as 7Y = 5.6838 dB with p — 0, ie., bpa — oo. When
Yo < *TN , lower-resolution DACs can provide higher secrecy
rate since the achievable rate of each user decreases more
slowly than the eavesdropper’s capacity as the DAC resolution
decreases. At low SNR, thermal noise dominates at the users
and the DAC quantization affects the eavesdropper’s capaci
more pronouncedly. On the other hand, when ~y > ﬂ{)‘?,r
infinite-resolution DACs achieve the highest secrecy rate. In
addition, we observe that the obtained f‘)ﬁf can also be applied
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Fig. 5. Ergodic secrecy rate and lower bound versus SNR with random AN
(N =128, K =8 M =6, and ¢ = 0.7).

to low-resolution DACs with bpy = 3 and bpy = 2 as
indicated before, although technically f‘yf}v depends on the
quantization distortion parameter p. This makes the DAC
resolution allocation much simpler and appealing in practice
since only one F‘m"f needs to be calculated.

Fig. 5 illustrates the ergodic secrecy rate and the derived
lower bound in (28) with random AN. The secrecy rate
increases with SNR but saturates eventually at high SNR, even
if infinite-resolution DACs are adopted. This is because the
random AN degrades the achievable rate of the legitimate
users while the null-space AN only causes interference to
the eavesdropper. From (41), 7% is calculated as 6.1303 dB.
In order to enhance the secrecy rate, increasing the DAC
resolution is recommended if «p > 6.1303 dB but not if
70 < 6.1303 dB. In both Fig. 4 and Fig. 5, a fixed ¢ is assumed
since it is in general difficult to optimize ¢ analytically. In
order to alleviate the performance degradation of fixed power
allocation, we present an approximate ¢* in (48) and (49) for
the null-space AN and the random AN methods, respectively.
Corresponding simulations are illustrated in Fig. 8 and Fig. 10
in the next subsection.

Fig. 6 depicts & in (29) and (30) for null-space and random
AN, respectively. As indicated in Section IV.A, a positive
secrecy rate can be achieved only if o < &. It is observed
from Fig. 6 that & decreases monotonically with 3. Given a
fixed N, the transmit power of each user decreases with an
increasing number of users K, i.e., increasing 3, and thus
fewer antennas are required at the eavesdropper to decode
the information. Note that even with 3 — 0, a threshold
@ < 1 exists, which implies that the eavesdropper is still
able to successfully wiretap as long as it employs enough
antennas. Comparing null-space and random AN, we find that

(,?E’R* —_

1+ —a) = fatt+m) [(1+1) 0 —a)+ 2 (1-5-3)]

(1=p)[1-B-%+%0@—a)

(49)
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Fig. 6. Threshold ratio & for positive secrecy rate versus 3 (yo = 10 dB).
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Fig. 7. Ergodic secrecy rate versus ¢ with null-space AN (N = 128, K =8,
and M = 16).

aV > a® for 70 = 10 dB. This implies that higher hardware
cost is required at the eavesdropper to resist null-space AN
than random AN.

C. Optimal Power Allocation

In the following, the accuracy of the obtained closed-form
expressions for the approximately optimal ¢ are verified. For
null-space AN, Fig. 7 shows the ergodic secrecy rate with ¢
ranging from 0 to 1. We consider 1-3 bit DACs compared
with the infinite-resolution case. Interestingly, the infinite-
resolution DACs achieve the highest secrecy rate when ¢
is small while the lower-resolution DACs provide better rate
performance for large ¢. On one hand, a high DAC resolution
is needed when most of the transmit power is allocated to
generate AN. On the other hand, lower-resolution DACs can
achieve higher secrecy rates when most of the power is used
to transmit information signals. In fact, DAC quantization
noise serves as a kind of AN to improve communication
security. The markers x in the figure denote the optimal
¢* obtained by numerical methods while the circles rep-
resent the qu * in (48). We can see that the two match
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Fig. 8. Ergodic secrecy rate with the optimal ¢* versus SNR for null-space
AN method (N = 128, K = 8, and M = 16).
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Fig. 9. Ergodic secrecy rate versus ¢ with random AN (N = 128, K =8,
and M = 16).

exactly. Specifically when 79 = 0 dB, we have N =
0.5117,0.3841,0.3552,0.3452 for bpy = 1,2, 3, oo, respec-
tively. For v = 5 dB, #N* = 0.5687,0.4247,0.3926, 0.3808
for bpa = 1,2,3, 00, respectively. For the same value of
70, the optimal ¢* increases with decreasing DAC resolution.
This implies that more power should be allocated to the
transmit signals with lower-resolution DACs. Furthermore,
Fig. 8 shows the secrecy rate with the optimal ¢*. Comparing
Fig. 4 with a fixed ¢ = 0.8, we see that low-resolution DACs
inevitably degrade the secrecy rate regardless of the SNR. If
the optimal ¢* is achievable, higher-resolution DACs always
provide more secure transmission.

For random AN, Fig. 9 shows the achievable secrecy rate
versus ¢ using low-resolution DACs. The optimal ¢* obtained
by numerical methods is denoted by x while the derived
#™* in (49) is denoted by circles. For the case that 9 = 0
dB, we have ¢™* = 0.6103,0.4402, 0.4024, 0.3885 while for
70 = 5 dB, we have ¢™* = 0.8243,0.5960, 0.5435, 0.5247,
for bpa = 1,2, 3, oo, respectively. Unlike the results of the
null-space AN method shown in Fig. 7, the highest secrecy
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Fig. 10. Ergodic secrecy rate with the optimal ¢* versus SNR for random
AN method (N = 128, K = 8, and M = 12).

rates with the optimal ¢* are approximately equal for bpy =
1,2,3, and oo, ie., ESEC = 1.6346 and 0.9113 for 79 = 5
and 0 dB, respectively. For various DAC resolutions, the same
peak secrecy rate can be achieved as long as the optimal ¢*
is used. In other words, the impact of low-resolution DACs
on secure transmission is insignificant. This is because the
DAC quantization noise acts as random AN at both the users
and eavesdropper. Although the quantization noise increases
with a lower bpa , the same maximum secrecy rate can still be
achieved by increasing ¢ to reduce the AN power. Compare
Fig. 7 and Fig. 9 and take 9 = 0 dB for instance. When
infinite-resolution DACs are deployed and using the optimal

*, the highest secrecy rate is E,f\g = 1.4788 with null-space
AN, which is much larger than }_%Zic = 0.9113 with random
AN. When 1-bit DACs are considered, we have ﬁgc =
1.1217, which is closer to ﬂ:ﬁc = 0.9113. This implies that
random AN becomes cost-efficient when low-resolution DACs
are adopted. The advantage of null-space AN is marginal in
this case. The achievable secrecy rates are displayed in Fig. 10
when the optimal ¢* is used. As observed from Fig. 9,
the secrecy rates are generally not degraded by low-resolution
DACs, except at high SNR with bpsy = 1. Hence, using DAC
resolutions beyond 1 bit is not beneficial in terms of secrecy
rate. This implies that low-resolution DACs can provide almost
the same secure performance as infinite resolution DACs with
random AN. For the scenario in Fig. 10 where 1-bit DACs
are employed and o > 9.8 dB, the secrecy rate increases
monotonically with ¢  (0,1] and therefore ¢* = 1, which is
different from the cases with low SNR shown in Fig. 9. Under
this condition, at least a two-bit DAC is needed at the BS to
achieve the same secrecy rate as that in the infinite resolution
case.

VI. CONCLUSIONS

In this paper, we investigate the physical layer security of
a multiuser massive MIMO system employing low-resolution
DACs at the transmitter, in the presence of a passive eaves-
dropper. A tight lower bound for the achievable secrecy rate
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of each user is derived. We find that the DAC quantization
noise can be regarded as additional AN provided by the BS
and may contribute to the secure transmission. Given a fixed
power allocation factor ¢, low-resolution DACs can achieve
superior secrecy performance under certain conditions, e.g.,
at low SNR or with large ¢. If the optimal ¢* can be obtained,
low-resolution DACs inevitably lead to secrecy rate loss with
the null-space AN design method. On the other hand, for
random AN, low-resolution DACs achieve the same secrecy
performance as high-resolution DACs at low SNR and thus
the former are cost-efficient in this scenario. Note that our
derived results directly apply for the system with multi-antenna
users if multiple data streams are transmitted to each user.
This is because in massive MIMO, an L-antenna user can be
equivalently regarded as L single-antenna users, due to the
asymptotic orthogonality among channel vectors. However,
the extension becomes more complicated if a single data
stream is transmitted. Interesting future work includes further
extending our current results to such a general secnario with
multi-antenna users.

APPENDIX A
PROOF OF LEMMA 2

In order to obtain the asymptotic expression for -,
we derive Sg, Ix, Qr, and Ap in (15) one by one.
Consider a typical ZF-precoder under the constraint that
tr{WWFH} =K, ie,

/ K _

It is well known that HH¥ ~ Wy (N, 1), where Wy, (n, X)
denotes an m x m Wishart matrix with n degrees of freedom
and ¥ is the covariance matrix of each column. Assuming
that K and N grow to infinity with a fixed ratio 8 = £,
we have [54]

(30)

Hy—1y 8.8 B
tr{(HIEL) 1) 22 2 (51)
Substituting (51) in (50) yields
a.s8. ]-
HW — (| K (B — 1) I.. (52)
Thus, S and I, converge to
a.8. ]-
Sk £ (1— p)sP (3 - 1) (53)
and
Iy == 0, (54
respectively.

As for i, the emphasis lies on the asymptotic character-
izations of Cpa in (8). For large N and K, Cps converges
to a scaled identity matrix as follows

a.s. P
Cpa — PEINa (55)
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where we use (5), (6), and the fact that
K

diag(WW#H) 22, ~Iv (56)
and
diag(VVH) 2=, N ;T K in. (57)

due to the strong law of large numbers. Then, by substitut-
ing (55) into (15), we have
P
Qx == Pﬁh{h;

= pP. (58)

Finally for Ay, the result depends on the AN shaping
matrix V. For the null-space AN method with HV = 0, it is
obvious that

AV =o. (59)

For the random AN method, Ak’R in (15) can be regarded as
a matrix comprised of one single element, i.e., AkjR ~ Wp
(N — K, (1— p)g), and it follows that

AR = tr {AF}
= (N -K)(1-p)g (60)
=(1-p0A-9)P, (61)
where (60) comes from the fact that tr{A} = mn for a
Wishart matrix A ~ Wy, (n, L) [54], and (61) uses (6).
Now, by substituting (53), (54), (58), (59), and (61)

into (15), the asymptotic SIQNRs for the null-space and ran-
dom AN methods are respectively obtained in (17) and (18).

APPENDIX B
PROOF OF THEOREM 1

To begin with, we demonstrate that X defined in (22) can
be approximated as a scaled Wishart matrix. Substituting (55)
into (22) yields

X 2% (1 - p)gH VVHHE + pEHer

N
= (L p)aHVVHI 4 pCHLV Vol[V Vo] "HY
(62)
P P
_ [(1 P+ pﬁ] HH 4 pr HHY,  (63)
— —

W1 WE

where (62) uses the fact that [V V][V Vo] = I, since
[V Vy] is a complete orthogonal basis with dimension N,
and (63) utilizes the definitions H; £ H.V and H, £ H. V.
From (63), X is statistically equivalent to a weighted sum of
two scaled Wishart matrices, i.e., X; ~ Wy (N — K,I)
and Xo ~ Wiy (K, I,y). Strictly speaking, X is not a Wishart
matrix and the exact distribution of X is intractable. How-
ever, X may be accurately approximated as a single scaled
Wishart matrix, X ~ Wy(n, Alps), where the parameters
n and A are chosen such that the first two moments of X
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and [(1 — p)g + p=| W1 + p2 Wy are identical [30], which
yields

P P
M= =K) A= pa+og| + Koy 4

and

2

X = (N - K) [(1 P+ p§]2 LK (pé) (69

Substituting (6) into (64) and (65), n and A are obtained as

[(1-p)1—¢) + 4

=N
Ll s T s s ey g T o
and

_Pl1-p)1-9)+p*+(1-p)?(1-¢)125%
‘=N T=0=-9+r D
respectively.

Next, we apply Jensen’s inequality which yields an upper
bound for the eavesdropper’s capacity:

Cx <logy [1+ (1 —p)p E{wy HI X "Howy }

- L

= log, _1 + ﬁ E{wlHIH,w) }] (68)
[ (1—p)pM

= log, |1+ ﬁ E {wak }:| (69)
[ (1—p)pM

=log, |1+ —()\(n £ )if)] , (70)

where (68) utilizes the property that A~ =% LT, fora
Wishart matrix A ~ Wy,(n,I,,) with n > m [39], (69) uses
the fact that - HZ H, — Iy ~=> Oy due to the Central Limit
Theorem, and (70) appli{’:s the weak law of large numbers

and E{wHwi} = £ 3 whHwy = Atr{WHEW} = 1.

k=1
Note that the derivation in (68) only holds for an invertible
X ~ Why(n, ALyr), which yields n — M > 0. By substitut-
ing (11), (12), and (66), we have

n—M

_ y1=2)(-p)1 - p)(1 —¢) + p?—aBp)?(1—¢)?
(1=B)(1 = p)(1 = ¢) +pI* + B(1 - p)*(1 - ¢)*

1-a)(1-8)(1-p)?*1-9¢)?*

B ([ s ey wrap ey g g
2
PN e
" l(”(l—p)u—@) (l—a)(l—ﬁ)] -

(71

Regardless of the values of p € (0,1) and ¢ € (0,1], (71)
holds if r{gﬁ < 1, which yields a + 3 < 1 with 8 €
(0,1) and e € (0, 1). Fortunately, this is a common condition
for massive MIMO systems with large N.

Finally by substituting (5), (66), and (67) into (70),
the upper bound in (23) is directly obtained.
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