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HOMOMORPHISMS BETWEEN STANDARD MODULES OVER

FINITE TYPE KLR ALGEBRAS

ALEXANDER S. KLESHCHEV AND DAVID J. STEINBERG

Abstract. Khovanov-Lauda-Rouquier algebras of finite Lie type come with
families of standard modules, which under the Khovanov-Lauda-Rouquier cate-
gorification correspond to PBW-bases of the positive part of the corresponding
quantized enveloping algebra. We show that there are no non-zero homomor-
phisms between distinct standard modules and all non-zero endomorphisms of
a standard module are injective. We obtain applications to the extensions be-
tween standard modules and modular representation theory of KLR algebras.

1. Introduction

Khovanov-Lauda-Rouquier algebras of finite Lie type possess affine quasi-
hereditary structures [BKM, Ka, KLM, KlL, KX,Kl2]. In particular, they
come with important families of modules which are called standard. Under the
Khovanov-Lauda-Rouquier categorification [KL1,R], standard modules corre-
spond to PBW-monomials in the positive part of the corresponding quantized
enveloping algebra, see [BKM,Ka].

Affine quasihereditary structures are parametrized by convex orders on the sets
of positive roots of the corresponding root systems. In this paper we work with
an arbitrary convex order and an arbitrary finite Lie type. When working with
the KLR algebra Hα for any α ∈ Q+, the standard modules ∆(λ) are labeled
by λ ∈ KP(α), where KP(α) is the set of Kostant partitions of α. With these
conventions, our main result is as follows:

Theorem A. Let α ∈ Q+ and λ, µ ∈ KP(α). If λ 6= µ, then

HomHα(∆(λ),∆(µ)) = 0.

When λ 6≤ µ, it is clear that HomHα(∆(λ),∆(µ)) = 0, but for λ < µ, we found
this fact surprising. Theorem A is proved in Section 3.

The case λ = µ is also well-understood. In fact, the endomorphism algebras of
the standard modules are naturally isomorphic to certain algebras of symmetric
functions, see Theorem 2.17. Now, Theorem A can be complemented by the
following (folklore) observation and compared to the main result of [BCGM]:

Theorem B. Let α ∈ Q+ and λ ∈ KP(α). Then every non-zero Hα-endomorphism
of ∆(λ) is injective.

For reader’s convenience, we prove Theorem B in Section 2.3.
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Theorem A turns out to have some applications to modular representation
theory of KLR algebras, which are pursued in Section 4. Note that KLR algebras
are defined over an arbitrary ground ring k, and when we wish to emphasize
this fact, we use the notation Hα,k. Using the p-modular system (F,R,K) with
F = Z/pZ, R = Zp and K = Qp, we can reduce modulo p any irreducible Hα,K-
module. An important problem is to determine when these reductions remain
irreducible, see [KlR,W]. This problem can be reduced to homological questions
involving standard modules.

In Section 4, we show that standard modules have universal R-forms ∆(λ)R
such that ∆(λ)R ⊗R k ∼= ∆(λ)k for any field k. Then an application of the
Universal Coefficient Theorem and Theorem A yields:

Theorem C. Let α ∈ Q+ and λ, µ ∈ KP(α). Then the R-module

Ext1Hα,R
(∆(λ)R,∆(µ)R)

is torsion-free. Moreover,

dimq Ext1Hα,F
(∆(λ)F ,∆(µ)F ) = dimq Ext

1
Hα,K

(∆(λ)K ,∆(µ)K)

if and only if Ext2Hα,R
(∆(λ)R,∆(µ)R) is torsion-free.

As a final application, using a universal extension procedure, we construct
R-forms Q(λ)R of the projective indecomposable modules P (λ)K , and prove:

Theorem D. Let α ∈ Q+. Then reductions modulo p of all irreducible Hα,K-
modules are irreducible if and only if one of the following equivalent conditions
holds:

(i) Q(λ)R ⊗R F is a projective Hα,F -module for all λ ∈ KP(α);

(ii) Ext1Hα,F
(Q(λ)R ⊗R F,∆(µ)F ) = 0 for all λ, µ ∈ KP(α);

(iii) Ext2Hα,R
(Q(λ)R,∆(µ)R) is torsion-free for all λ, µ ∈ KP(α).

2. Preliminaries

2.1. KLR algebras. We follow closely the set up of [BKM]. In particular, R is
an irreducible root system with simple roots {αi | i ∈ I} and the corresponding
set of positive roots R+. Denote by Q the root lattice and by Q+ ⊂ Q the set
of Z≥0-linear combinations of simple roots, and write ht(α) =

∑

i∈I ci for α =
∑

i∈I ciαi ∈ Q
+. The standard symmetric bilinear formQ×Q→ Z, (α, β) 7→ α·β

is normalized so that di := (αi · αi)/2 is equal to 1 for the short simple roots αi.
We also set dβ := (β · β)/2 for all β ∈ R+. The Cartan matrix is C = (ci,j)i,j∈I
with ci,j := (αi · αj)/di.

Fix a commutative unital ring k and an element α ∈ Q+ of height n. The
symmetric group Sn with simple transpositions sr := (r r+1) acts on the set
Iα = {i = i1 · · · in ∈ I

n |
∑n

j=1 αij = α} by place permutations. Choose signs
ǫi,j for all i, j ∈ I with cij < 0 so that ǫi,jǫj,i = −1. With this data, Khovanov-
Lauda [KL1,KL2] and Rouquier [R] define the graded k-algebra Hα with unit
1α, called the KLR algebra, given by generators

{1i | i ∈ I
α} ∪ {x1, . . . , xn} ∪ {τ1, . . . , τn−1}

subject only to the following relations
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• xrxs = xsxr;
• 1i1j = δi,j1i and

∑

i∈Iα 1i = 1α;
• xr1i = 1ixr and τr1i = 1sr·iτr;
• (xtτr − τrxsr(t))1i = δir ,ir+1(δt,r+1 − δt,r)1i;

• τ2r 1i =







0 if ir = ir+1,

εir ,ir+1

(

xr
−cir,ir+1 − xr+1

−cir+1,ir
)

1i if cir ,ir+1 < 0,
1i otherwise;

• τrτs = τsτr if |r − s| > 1;
• (τr+1τrτr+1 − τrτr+1τr)1i =







∑

r+s=−1−cir,ir+1

εir ,ir+1x
r
rx
s
r+21i if cir ,ir+1 < 0 and ir = ir+2,

0 otherwise.

The KLR algebra is graded with deg 1i = 0, deg(xr1i) = 2dir and deg(τr1i) =
−αir · αir+1 .

For each element w ∈ Sn, fix a reduced expression w = sr1 · · · srl which deter-
mines an element τw = τr1 · · · τrl ∈ Hα.

Theorem 2.1. (Basis Theorem) [KL1, Theorem 2.5] The sets

{τwx
a1
1 · · · x

an
n 1i} and {xa11 · · · x

an
n τw1i}, (2.2)

with w running over Sn, ar running over Z≥0, and i running over Iα, are k-bases
for Hα.

It follows that Hα is Noetherian if k is Noetherian. It also follows that for any
1 ≤ r ≤ n, the subalgebra k[xr] ⊆ Hα, generated by xr, is isomorphic to the
polynomial algebra k[x]—this fact will be often used without further comment.
Moreover, for each i ∈ Iα, the subalgebra P(i) ⊆ 1iRα1i generated by {xr1i |
1 ≤ r ≤ n} is isomorphic to a polynomial algebra in n variables. By defining
P :=

⊕

i∈Iα P(i), we obtain a linear action of Sn on P given by

w · xa11 · · · x
an
n 1i = xa1

w(1)
· · · xan

w(n)
1w·i,

for any w ∈ Sn, i ∈ I
α and a1, . . . , an ∈ Z≥0. Setting Λ(α) := PSn , we have:

Theorem 2.3. [KL1, Theorem 2.9] Λ(α) is the center of Hα.

If H is a Noetherian graded k-algebra, we denote by H-mod the category of
finitely generated graded left H-modules. The morphisms in this category are
all homogeneous degree zero H-homomorphisms, which we denote homH(−,−).
For V ∈ H-mod, let qdV denote its grading shift by d, so if Vm is the degree m
component of V , then (qdV )m = Vm−d. More generally, for a Laurent polynomial
a = a(q) =

∑

d adq
d ∈ Z[q, q−1] with non-negative coefficients, we set aV :=

⊕

d(q
dV )⊕ad .

For U, V ∈ H-mod, we set HomH(U, V ) :=
⊕

d∈Z HomH(U, V )d, where

HomH(U, V )d := homH(q
dU, V ) = homH(U, q

−dV ).

We define extmH(U, V ) and ExtmH(U, V ) similarly. Since U is finitely generated,
HomH(U, V ) can be identified in the obvious way with the set of all H-module
homomorphisms ignoring the gradings. A similar result holds for ExtmH(U, V ),
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since U has a resolution by finitely generated projective modules. We use ∼= to
denote an isomorphism in H-mod and ≃ an isomorphism up to a degree shift.

We always work in the category Hα-mod, in particular all Hα-modules are
assumed to be finitely generated graded. Also, until Section 4, we assume that
k is a field. Let q be a variable, and Z((q)) be the ring of Laurent series. The
quantum integers [n] = (qn − q−n)/(q − q−1) and expressions like 1/(1 − q2)
are always interpreted as elements of Z((q)). Note that the graded dimension
dimq 1iHα is always an element of Z((q)). So for any V ∈ Hα-mod, its formal
character chq V :=

∑

i∈Iα(dimq 1iV ) · i is an element of
⊕

i∈Iα Z((q)) · i. Note

also that chq (q
dV ) = qdchq (V ), where the first qd means the degree shift as

introduced in the previous paragraph. We refer to 1iV as the i-weight space of
V and to its vectors as vectors of weight i.

There is an anti-automorphism ι : Hα → Hα which fixes all the generators.
Given V ∈ Hα-mod, we denote V ⊛ := Homk(V, k) viewed as a left Hα-module via
ι. Note that in general V ⊛ is not finitely generated as an Hα-module, but we will
apply⊛ only to finite dimensional modules. In that case, we have chq V

⊛ = chq V ,
where the bar means the bar-involution, i.e. the automorphism of Z[q, q−1] that
swaps q and q−1 extended to

⊕

i∈Iα Z[q, q−1] · i.
Let β1, . . . , βm ∈ Q

+ and α = β1+ · · ·+βm. Consider the set of concatenations

Iβ1,...,βm := {i1 · · · im | i1 ∈ Iβ1 , . . . , im ∈ Iβm} ⊆ Iα.

There is a natural (non-unital) algebra embedding Hβ1⊗· · ·⊗Hβm → Hα, which
sends the unit 1β1 ⊗ · · · ⊗ 1βm to the idempotent

1β1,...,βm :=
∑

i∈Iβ1,...,βm

1i ∈ Hα. (2.4)

We have an exact induction functor

Indαβ1,...,βm = Hα1β1,...,βm ⊗Hβ1
⊗···⊗Hβm

− : (Hβ1 ⊗ · · · ⊗Hβm)-mod→ Hα-mod .

For V1 ∈ Hβ1-mod, . . . , Vm ∈ Hβm-mod, we denote

V1 ◦ · · · ◦ Vm := Indαβ1,...,βmV1 ⊠ · · ·⊠ Vm.

2.2. Standard modules. The KLR algebras Hα are known to be affine quasi-
hereditary in the sense of [Kl2], see [Ka,BKM,KlL]. Central to this theory is
the notion of standard modules, whose definition depends on a choice of a certain
partial order. We first fix a convex order on R+, i.e. a total order such that
whenever γ, β, and γ + β all belong to R+, γ ≤ β implies γ ≤ γ + β ≤ β. A
Kostant partition of α ∈ Q+ is a tuple λ = (λ1, . . . , λr) of positive roots with
λ1 ≥ λ2 ≥ · · · ≥ λr such that λ1 + · · · + λr = α. Let KP(α) denote the set
of all Kostant partitions of α and for λ as above define λ′m = λr−m+1. Now,
we have a bilexicographical partial order on KP(α), also denoted by ≤, i.e. if
λ = (λ1, . . . , λr), µ = (µ1, . . . , µs) ∈ KP(α) then λ < µ if and only if the following
two conditions are satisfied:

• λ1 = µ1, . . . , λl−1 = µl−1 and λl < µl for some l;
• λ′1 = µ′1, . . . , λ

′
m−1 = µ′m−1 and λ′m > µ′m for some m.

To every λ ∈ KP(α), McNamara [M] (cf. [KlR, Theorem 7.2]) associates
an absolutely irreducible finite dimensional ⊛-self-dual Hα-module L(λ) so that
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{L(λ) | λ ∈ KP(α)} is a complete irredundant set of irreducible Hα-modules, up
to isomorphism and degree shift. Since L(λ) is ⊛-self-dual, its formal character
is bar-invariant. The key special case is where λ = (α) for α ∈ R+, in which case
L(λ) = L(α) is called a cuspidal irreducible module. For m ∈ Z>0, we write (αm)
for the Kostant partition (α, . . . , α) ∈ KP(mα), where α appears m times. The
cuspidal modules have the following nice property:

Lemma 2.5. [M, Lemma 3.4] (cf. [KlR, Lemma 6.6]). For any α ∈ R+ and
m ∈ Z>0, we have L(αm) ≃ L(α)◦m.

If λ = (λ1, . . . , λr) ∈ KP(α) the reduced standard module is defined to be

∆̄(λ) := qs(λ)L(λ1) ◦ · · · ◦ L(λm) (2.6)

for a specific degree shift s(λ), whose description will not be important. By [M,
Theorem 3.1] (cf. [KlR, 7.2, 7.4]), the Hα-module ∆̄(λ) has simple head L(λ),
and in the Grothendieck group of finite dimensional graded Hα-modules, we have

[∆̄(λ)] = [L(λ)] +
∑

µ<λ

dλ,µ[L(µ)] (2.7)

for some coefficients dλ,µ ∈ Z[q, q−1], called the decomposition numbers. The
decomposition numbers depend on the characteristic of the ground field k.

Let P (λ) denote a projective cover of L(λ) in Hα-mod. For V ∈ Hα-mod we
define the (graded) composition multiplicity [V : L(λ)]q := dimq Hom(P (λ), V ) ∈
Z((q)). The standard module ∆(λ) is defined as the largest quotient of P (λ) all
of whose composition factors are of the form L(µ) with µ ≤ λ, see [Ka, Corollary
4.13], [BKM, Corollary 3.16], [Kl2, (4.2)]. We note that while the irreducible
modules L(λ) are all finite dimensional, the standard modules ∆(λ) are always
infinite dimensional. The standard modules have the usual nice properties:

Theorem 2.8. [BKM, §3] Let α ∈ Q+ and λ, µ ∈ KP(α).

(i) ∆(λ) has a simple head L(λ), and [∆(λ) : L(µ)]q 6= 0 implies µ ≤ λ.
(ii) We have HomHα(∆(λ),∆(µ)) = 0 unless λ ≤ µ.
(iii) For m ≥ 1, we have ExtmHα

(∆(λ),∆(µ)) = 0 unless λ < µ.
(iv) The module P (λ) has a finite filtration P (λ) = P0 ⊃ P1 ⊃ · · · ⊃ PN = 0

with P0/P1
∼= ∆(λ) and Pr/Pr+1 ≃ ∆(µ(r)) for µ(r) > λ, r = 1, 2, . . . .

(v) Denoting the graded multiplicities of the factors in a ∆-filtration of P (λ)
by (P (λ) : ∆(µ))q, we have (P (λ) : ∆(µ))q = dµ,λ(q).

To construct the standard modules more explicitly, let us first assume that
α ∈ R+ and explain how to construct the cuspidal standard module ∆(α). Put

qα = qα·α/2. By [BKM, Lemma 3.2], there exists unique (up to isomorphism)
indecomposable Hα-modules, ∆m(α), with ∆0(α) = 0, such that there are short
exact sequences

0→ q2(m−1)
α L(α)→ ∆m(α)→ ∆m−1(α)→ 0,

0→ q2α∆m−1(α)→ ∆m(α)→ L(α)→ 0.

This yields an inverse system · · · → ∆2(α) → ∆1(α) → ∆0(α), and we have
∆(α) ∼= lim

←−
∆m(α), see [BKM, Corollary 3.16].
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Let m ∈ Z>0. An explicit endomorphism em ∈ EndHmα(∆(α)◦m)op is defined
in [BKM, Section 3.2], and then

∆(αm) ∼= qm(m−1)/2
α ∆(α)◦mem. (2.9)

Finally, for an arbitrary α ∈ Q+ and λ ∈ KP(α), gather together the equal parts
of λ to write λ = (λm1

1 , . . . , λms
s ), with λ1 > · · · > λs. Then by [BKM, (3.5)],

∆(λ) ∼= ∆(λm1
1 ) ◦ · · · ◦∆(λms

s ). (2.10)

Thus, cuspidal standard modules are building blocks for arbitrary standard
modules. We will need some of their additional properties. Let α ∈ R+. If
λ ∈ KP(α) is minimal such that λ > (α), then by [BKM, Lemma 2.6], λ = (β, γ)
for positive roots β > α > γ. In this case, (β, γ) is called a minimal pair
for α and we write mp(α) for the set of all such. The following result proved
in [BKM, §§3.1,4.3] describes some of the important properties of ∆(α).

Theorem 2.11. Let α ∈ R+. Then:

(i) [∆(α) : L(α)]q = 1/(1 − q2α) and [∆(α) : L(λ)]q = 0 for λ 6= (α).
(ii) Let Cα be the category of all modules in Hα-mod all of whose composition

factors are ≃ L(α). Any V ∈ Cα is a finite direct sum of copies of the
indecomposable modules ≃ ∆m(α) and ≃ ∆(α). Moreover, ∆(α) is a
projective cover of L(α) in Cα. In particular, ExtdHα

(∆(α), V ) = 0 for
d ≥ 1 and V ∈ Cα.

(iii) EndHα(∆(α)) ∼= k[x] for x in degree 2dα.
(iv) There is a short exact sequence 0→ q2α∆(α)→ ∆(α)→ L(α)→ 0.
(v) For (β, γ) ∈ mp(α) there is a short exact sequence

0→ q−β·γ∆(β) ◦∆(γ)
ϕ
−→ ∆(γ) ◦∆(β)→ [pβ,γ + 1]∆(α)→ 0,

where pβ,γ is the largest integer p such that β − pγ is a root.

Corollary 2.12. Let α ∈ R+. The dimensions of the graded components ∆(α)d
are 0 for d≪ 0 and are bounded above by some N > 0 independent of d.

Proof. By Theorem 2.11(i), we have dimq(∆(α)) = 1
1−q2α

dimq(L(α)), which im-

plies the result since L(α) is finite dimensional. �

2.3. Endomorphisms of standard modules. We shall denote by xα the de-
gree 2dα endomorphism of ∆(α) which corresponds to x under the isomorphism
EndHα(∆(α)) ∼= k[x] in Theorem 2.11(iii). This determines xα uniquely up to a
scalar.

Lemma 2.13. Let α ∈ R+. Then every non-zero Hα-endomorphism of ∆(α) is
injective, and every submodule of ∆(α) is equal to xsα(∆(α)) ∼= q2sα ∆(α) for some
s ∈ Z≥0.

Proof. It follows from the construction of xα in [BKM, Theorem 3.3] that xα is
injective and xα(∆(α)) ∼= q2α∆(α). This in particular implies the first statement.

Let V ⊆ ∆(α) be a submodule and f : V → ∆(α) be the natural inclusion.
First, assume that V is indecomposable. By Theorem 2.11(ii), up to degree shift,
V is isomorphic to ∆(α) or ∆m(α) for some m ≥ 1. If V ≃ ∆m(α) then ∆(α)/V
is infinite dimensional and has a simple head, so by Theorem 2.11(ii) again,
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∆(α)/V ≃ ∆(α). Then the short exact sequence 0 → V → ∆(α) → ∆(α)/V →
0 splits by projectivity in Theorem 2.11(ii), contradicting indecomposability of
∆(α). If instead V ≃ ∆(α), consider the composition

∆(α)
∼
−→ V

f
−→ ∆(α).

This produces a graded endomorphism of ∆(α), so that V = xsα(∆(α)) for some
s ≥ 0. Since there are inclusions ∆(α) ⊃ xα∆(α) ⊃ x2α∆(α) ⊃ · · · , the general
case follows from the case when V is indecomposable. �

Let again α ∈ R+. We next consider the standard modules of the form
∆(αm). We have commuting endomorphisms X1, . . . ,Xm ∈ EndHmα(∆(α)◦m)

with Xr = id◦(r−1) ◦xα ◦ id
◦m−r. Moreover, in [BKM, Section 3.2], some ad-

ditional endomorphisms ∂1, . . . , ∂m−1 ∈ EndHmα(∆(α)◦m) are constructed, and
it is proved in [BKM, Lemmas 3.7-3.9] that the algebra EndHmα(∆(α)◦m)op is
isomorphic to the nilHecke algebra NHm, with ∂1, . . . , ∂m−1 and (appropriately
scaled) X1, . . . ,Xm corresponding to the standard generators of NHm. The ele-
ment em used in (2.9) is an explicit idempotent in NHm. We denote by Λα,m the
algebra of symmetric functions k[X1, . . . ,Xm]

Sm = Z(NHm), with the variables
Xr in degree 2dα. Note that dimq Λα,m = 1/

∏m
r=1(1 − q

2r
α ). It is known, see

e.g. [KLM, Theorem 4.4(iii)], that

emNHmem = emΛα,m ∼= Λα,m. (2.14)

Theorem 2.15. Let α ∈ R+ and m ∈ Z>0. Then:

(i) For any λ ∈ KP(mα), we have [∆(αm) : L(λ)]q = δλ,(αm)/
∏m
r=1(1−q

2r
α ).

(ii) The module ∆(αm) is a projective cover of L(αm) in the category of all
modules in Hα-mod all of whose composition factors are ≃ L(αm).

(iii) EndHα(∆(α)) ∼= Λα,m.

(iv) Every submodule of ∆(αm) is isomorphic to qd∆(αm) for some d ∈ Z≥0,
and every non-zero Hmα-endomorphism of ∆(αm) is injective.

Proof. Part (i) is [BKM, Lemma 3.10], and part (ii) follows from [Kl2, Lemma
4.11], since (αm) is minimal in KP(α) by convexity. By (i) and (ii), we have that
dimq EndHmα(∆(αm)) = 1/

∏m
r=1(1− q

2r
α ).

(iii) We have that NHm = EndHmα(∆(α)◦m)op acts naturally on ∆(α)◦m on
the right, and so Λα,m = Z(NHm) acts naturally on ∆(αm) = ∆(α)◦mem. This
defines an embedding Λα,m → EndHmα(∆(αm)). This embedding must be an
isomorphism by dimensions.

(iv) In view of Lemma 2.13, every non-zero f ∈ k[X1, . . . ,Xm] ⊆ NHm =
EndHmα(∆(α)◦m)op acts as an injective linear operator on ∆(α)◦m. The result
now follows from (2.14) and (ii). �

Finally, we consider a general case. Let α ∈ Q+ and λ = (λm1
1 , . . . , λms

s ) ∈
KP(α) with λ1 > · · · > λs. We have a natural embedding

Λλ1,m1 ⊗ · · · ⊗ Λλs,ms
→ EndHα(∆(λ)), f1 ⊗ · · · ⊗ fs 7→ f1 ◦ · · · ◦ fs. (2.16)

Theorem 2.17. Let α ∈ Q+ and λ = (λm1
1 , . . . , λms

s ) ∈ KP(α) with λ1 > · · · >
λs. Then

EndHα(∆(λ)) ∼= Λλ1,m1 ⊗ · · · ⊗ Λλs,ms

via (2.16), and every non-zero Hα-endomorphism of ∆(λ) is injective.



8 ALEXANDER S. KLESHCHEV AND DAVID J. STEINBERG

Proof. It is easy to see from Theorem 2.15(iv) that every non-zero endomorphism
in the image of the embedding (2.16) is injective. To see that there are no other
endomorphisms, we first use adjointness of End and Res to see that EndHα(∆(λ))
is isomorphic to

HomHm1λ1
⊗···⊗Hmsλs

(∆(λm1
1 )⊠ · · ·⊠∆(λms

s ),Resαm1λ1,...,msλs∆(λ)),

and then note that by the Mackey Theorem, as in [M, Lemma 3.3], we we have
Resαm1λ1,...,msλs∆(λ) ∼= ∆(λm1

1 )⊠ · · · ⊠∆(λms
s ). �

3. Proof of Theorem A

We give the proof of Theorem A based on the recent work of Kashiwara-Park
[KP]. Our original proof was different and relied on some unpleasant computation
for non-simply-laced types. For simply laced types however, our original proof is
very simple and elementary, and so we give it later in this section, too.

3.1. Proof of Theorem A modulo a hypothesis. The following hypothesis
concerns a key property of cuspidal standard modules and is probably true beyond
finite Lie types:

Hypothesis 3.1. Let α be a positive root of height n and 1 ≤ r ≤ n. Then upon
restriction to the subalgebra k[xr] ⊆ Hα, the module ∆(α) is free of finite rank.

The goal of this subsection is to prove Theorem A assuming the hypothesis.
In §3.2 the hypothesis will be proved using results of Kashiwara and Park, while
in §3.3 we will give a more elementary proof for simply laced types.

Lemma 3.2. Hypothesis 3.1 is equivalent to the property that x1, . . . , xn act by
injective linear operators on ∆(α).

Proof. The forward direction is clear. For the converse, assume that xr acts
injectively on ∆(α). We construct a finite basis for 1i∆(α) as a k[xr]-module for
every i ∈ Iα. Letm := deg(xr1i). For every a = 0, 1, . . . ,m−1, let da be minimal
with da ≡ a (mod m) and 1i∆(α)da 6= 0. Pick a linear basis of ⊕m−1

a=0 1i∆(α)da
and note that the k[xr]-module generated by the elements of this basis is free.
Factor out this k[xr]-submodule, and repeat. The process will stop after finitely
many steps, thanks to Corollary 2.12. �

While Hypothesis 3.1 claims that every k[xr] acts freely on ∆(α), no k[xr, xs]
does:

Lemma 3.3. Let α ∈ R+ be a root of height n > 1. Then, for every vector
v ∈ ∆(α), and distinct r, s ∈ {1, · · · , n}, there is a polynomial f ∈ k[x, y] such
that f(xr, xs)v = 0.

Proof. We may assume v is a homogenous weight vector. By Corollary 2.12, the
dimensions of the graded components of ∆(α) are uniformly bounded. The result
follows, as the number of linearly independent degree d monomials in x, y grows
without bound. �

One can say more about the polynomial f in the lemma, see for example
Proposition 3.14.
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Now, let α ∈ Q+ be arbitrary of height n, and λ = (λ1 ≥ · · · ≥ λl) ∈ KP(α).
Setting Sλ := Sht(λ1) × · · · × Sht(λl) ⊂ Sn, integers r, s ∈ {1, . . . , n} are called
λ-equivalent, written r ∼λ s, if they belong to the same orbit of the action of Sλ
on {1, . . . , n}. Finally, recalling the idempotents (2.4), we write 1λ := 1λ1,...,λl .

Lemma 3.4. Let α ∈ Q+, n = ht(α), and λ 6≥ µ be elements of KP(α). If w ∈ Sn
satisfies 1λτw1µ 6= 0 then there exists some 1 ≤ r < n such that r ∼λ r + 1, but
w−1(r) 6∼µ w

−1(r + 1).

Proof. Write λ = (λ1 ≥ · · · ≥ λl) and µ = (µ1 ≥ · · · ≥ µm). The assumption

1λτw1µ 6= 0 implies that iλ = w·iµ for some iλ ∈ Iλ1,...,λl and i
µ ∈ Iµ1,...,µm. Write

i
λ := i

λ
1 · · · i

λ
l with i

λ
a ∈ I

λa for all a, and i
µ := i

µ
1 · · · i

µ
m with i

µ
b ∈ I

µb for all b.
Assume for a contradiction that for every 1 ≤ r < n we have r ∼λ r + 1 implies
that w−1(r) ∼µ w

−1(r + 1). Then there is a partition {1, . . . , l} =
⊔m
b=1Ab such

that µb =
∑

a∈Ab
λa for all b = 1, . . . ,m. By convexity, cf. [BKM, Lemma 2.4],

we have min{λa | a ∈ Ab} ≤ µb ≤ max{λa | a ∈ Ab}. This implies λ ≥ µ. �

Theorem 3.5. Let α ∈ Q+ and λ, µ ∈ KP(α). If λ 6= µ, then

HomHα(∆(λ),∆(µ)) = 0.

Proof. Let n = ht(α) and write λ = (λ1 ≥ · · · ≥ λl) and µ = (µ1 ≥ · · · ≥ µm). It
suffices to prove that

HomHα(∆(λ1) ◦ · · · ◦∆(λl),∆(µ1) ◦ · · · ◦∆(µm)) = 0.

If not, let ϕ be a nonzero homomorphism. By Theorem 2.8(ii), we may assume
that λ < µ. Using Lemma 3.3, pick a generator v ∈ ∆(λ1) ◦ · · · ◦∆(λl) such that
v = 1λv and for any r ∼λ r + 1, there is a non-zero polynomail f ∈ k[x, y] with
f(xr, xr+1)v = 0. Then f(xr, xr+1)ϕ(v) = 0 as well.

Denote by Sµ the set of shortest length coset representatives for Sn/Sµ. Then,
we can write ϕ(v) =

∑

w∈Sµ τw ⊗ vw for some vw ∈ ∆(µ1) ⊗ · · · ⊗∆(µm). Since
ϕ(v) = 1λϕ(v) and 1µvw = vw, we have that 1λτw1µ 6= 0 whenever vw 6= 0. In
particular, if u ∈ Sµ is an element of maximal length such that vu 6= 0, then by
Lemma 3.4, r ∼λ r + 1 and u−1(r) 6∼µ u

−1(r + 1) for some 1 ≤ r < n.
Now, we have:

f(xr, xr+1)ϕ(v) = f(xr, xr+1)
∑

w∈Sµ

τw ⊗ vw

= f(xr, xr+1)τu ⊗ vu +
∑

w 6=u

f(xr, xr+1)τw ⊗ vw

= τu ⊗ f(xu−1(r), xu−1(r+1))vu + (∗),

where (∗) is a sum of elements of the form τw⊗v
′
w with v′w ∈ ∆(µ1)⊗· · ·⊗∆(µm)

and w ∈ Sµ \ {u}. The last equality follows because in Hα for all 1 ≤ t ≤ n and
w ∈ Sn, we have that xtτw = τwxw−1(t)+(∗∗), where (∗∗) is a linear combination
of elements of the form τy with y ∈ Sn being Bruhat smaller than w.

Since u−1(r) 6∼µ u
−1(r + 1), there are distinct integers a, b ∈ {1, . . . ,m} and

integers 1 ≤ c ≤ ht(µa) and 1 ≤ d ≤ ht(µb) such that for any pure tensor
v = v1 ⊗ · · · ⊗ vm ∈ ∆(µ1)⊗ · · · ⊗∆(µm), and s, t ∈ Z≥0, we have

xsu−1(r)x
t
u−1(r+1)v = v1 ⊗ · · · ⊗ xscv

a ⊗ · · · ⊗ xtdv
b ⊗ · · · ⊗ vm.
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By Hypothesis 3.1, f(xu−1(r), xu−1(r+1))vu 6= 0. Hence f(xr, xr+1)ϕ(v) 6= 0 giving
a contradiction. �

3.2. Proof of the Hypothesis using Kashiwara-Park Lemma. We begin
with a key lemma which follows immediately from the results of [KP]:

Lemma 3.6. Let α ∈ R+, n = ht(α) and i ∈ I. Define

pi,α :=
∑

i∈Iα

(

∏

r∈[1,n],ir=i

xr

)

1i.

Then pi,α∆(α) 6= 0.

Proof. This follows from [KP, Definition 2.2(b)] and [KP, Proposition 3.5]. �

Theorem 3.7. Let α ∈ R+ have height n. Then, xmr v 6= 0 for all 1 ≤ r ≤ n,
m ∈ Z≥0, and nonzero v ∈ ∆(α). In particular, Hypothesis 3.1 holds.

Proof. The ‘in particular’ statement follows from Lemma 3.2.
We may assume that v is a weight vector of some weight i. Let i = ir. The

element pi,α defined in Lemma 3.6 is central by Theorem 2.3. By Lemma 3.6 and
Theorem 2.17, the multiplication with pi,α on ∆(α) is injective, so multiplication
with pmi,α is also injective. But pmi,α involves xr1i, so 0 6= pmi,αv = hxmr v for some
h ∈ Hα, and the theorem follows. �

3.3. Elementary proof of the Hypothesis for simply laced types. Through-
out this subsection, we assume that the root system R is of (finite) ADE type.
Let α = a1α1 + · · ·+ alαl ∈ Q

+ and n = ht(α). Pick a permutation (i1, . . . , il) of

(1, . . . , l) with ai1 > 0, and define i := i
ai1
1 · · · i

ail
l ∈ I

α. Then the stabalizer of i

in Sn is the standard parabolic subgroup Si := Sai1 × · · · × Sail . Let S
i be a set

of coset representatives for Sn/Si. Then by Theorem 2.3, the element

z = zi :=
∑

w∈Si

(xw(1) + · · ·+ xw(ai1 ))1w·i (3.8)

is central of degree 2 in Hα. For any 1 ≤ r ≤ n, note that

ai1xr = z −
∑

w∈Si

((xw(1) − xr) + · · ·+ (xw(ai1 ) − xr))1w·i. (3.9)

Let H ′
α be the subalgebra of Hα generated by

{1i | i ∈ I
α} ∪ {τr | 1 ≤ r < n} ∪ {xr − xr+1 | 1 ≤ r < n}.

For the reader’s convenience, we reprove a lemma from [BK, Lemma 3.1]:

Lemma 3.10. Let α, i, and z be as above. Then:

(i) {(x1 − x2)
m1 · · · (xn−1 − xn)

mn−1τw1i | mr ∈ Z≥0, w ∈ Sn, i ∈ I
α} is a

basis for H ′
α.

(ii) If ai1 · 1k 6= 0 in k, then there is an algebra isomorphism

Hα
∼= H ′

α ⊗ k[z]. (3.11)
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Proof. In view of the basis (2.2), part (i) follows on checking that the span of the
given monomials is closed under multiplication, which follows from the defining
relations. For (ii), note using (3.9) that the natural multiplication map k[z] ⊗
H ′
α → Hα is surjective. It remains to observe that the two algebras have the

same graded dimension. �

Let α now be a positive root. Then one can always find an index i1 with
ai1 · 1k 6= 0, so in this case we always have (3.11) for an appropriate choice of i.
We always assume that this choice has been made. Following [BK], we can now
present another useful description of the cuspidal standard module ∆(α). Denote
by L′(α) the restriction of the cuspidal irreducible module L(α) from Hα to H ′

α.

Lemma 3.12. Let α ∈ R+.

(i) L′(α) is an irreducible H ′
α-module.

(ii) ∆(α) ∼= Hα ⊗H′

α
L′(α).

(iii) The element z acts on ∆(α) freely.

Proof. Note that z acts as zero on L(α), which implies (i) in view of (3.11).
Moreover, it is now easy to see that Hα ⊗H′

α
L′(α) has a filtration with the

subfactors isomorphic to q2dL(α) for d = 0, 1, . . . . Furthermore, by Frobenius
Reciprocity and (i), the module Hα ⊗H′

α
L′(α) has simple head L(α). Now (ii)

follows from Theorem 2.11(ii). Finally, (iii) follows from (ii) and (3.11). �

Using the description of ∆(α) from Lemma 3.12(ii), we can now establish
Hypothesis 3.1:

Theorem 3.13. Let α ∈ R+ and {v1, . . . , vN} be a k-basis of L′(α). Then
the k[xr]-module ∆(α) is free with basis {1 ⊗ v1, . . . , 1 ⊗ vN}. In particular,
Hypothesis 3.1 holds for simply laced types.

Proof. By (3.9), we can write xr =
1
ai
z + (∗), where (∗) is an element of H ′

α. For
each 1 ≤ m ≤ N , we have

xbr(1⊗ vm) =

(

1

ak

)b

zb ⊗ vm + (∗∗),

where (∗∗) is a linear combination of terms of the form zc ⊗ vt with c < b. So
{1⊗ v1, . . . , 1⊗ vN} is a basis of the free k[xr]-module ∆(α). �

The following strengthening of Lemma 3.3 is not needed for the proof of The-
orem A, but we include it for completeness.

Proposition 3.14. Let α ∈ R+ and n = ht(α). For any 1 ≤ r, s ≤ n, there is
d ∈ Z>0 such that (xr − xs)

d annihilates ∆(α).

Proof. Pick d such that (xr−xs)
d annihilates L(α). Since ∆(α) = Hα⊗H′

α
L′(α)

is spanned by vectors of the form zm⊗v′ with m ∈ Z≥0 and v
′ ∈ L′(α), it suffices

to note that (xr − xs)
d(zm ⊗ v′) = zm ⊗ (xr − xs)

dv′ = 0. �
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4. Reduction modulo p

4.1. Changing scalars. In this subsection we develop a usual formalism of mod-
ular representation theory for KLR algebras. There will be nothing surprising
here, but we need to exercise care since we work with infinite dimensional algebras
and often with infinite dimensional modules.

From now on, we will work with different ground rings, so our notation needs
to become more elaborate. Recall that the KLR algebra Hα is defined over an
arbitrary commutative unital ring k, and to emphasize which k we are working
with, we will use the notation Hα,k or Hα;k. In all our notation we will now
use the corresponding index. For example, if k is a field, we now denote the
irreducible cuspidal modules over Hα,k by L(α)k.

Let p be a fixed prime number, and F := Z/pZ be the prime field of char-
acteristic p. We will use the p-modular system (F,R,K) with R = Zp and
K = Qp. Oftentimes (when we can avoid lifting idempotents) we could get away
with R = Z, K any field of characteristic zero, and F any field of characteristic p.

Recall from Section 2 that for a left Noetherian graded algebraH, we denote by
H-mod the category of finitely generated graded H-modules, for which we have
the groups extiH(V,W ) and ExtiH(V,W ). To deal with change of scalars in Ext
groups, we will use the following version of the Universal Coefficient Theorem:

Theorem 4.1. (Universal Coefficient Theorem) Let VR,WR be modules in
Hα,R-mod, free as R-modules, and k be an R-algebra. Then for all j ∈ Z≥0 there
is an exact sequence of (graded) k-modules

0→ ExtjHα,R
(VR,WR)⊗R k → ExtjHα,k

(VR ⊗R k,WR ⊗R k)

→ TorR1
(

Extj+1
Hα,R

(VR,WR) , k
)

→ 0.

In particular,

ExtjHα,R
(VR,WR)⊗R K ∼= ExtjHα,K

(VR ⊗R K,WR ⊗R K).

Proof. This is known. Apply HomHα,R
(−,WR) to a free resolution of VR to

get a complex C• of free (graded) R-modules with finitely many generators in
every graded degree. Now follow the proof of [Rot, Theorem 8.22]. The second
statement follows from the first since K is a flat R-module. �

We need another standard result, whose proof is omitted.

Lemma 4.2. Let k = K or F , VR,WR ∈ Hα,R-mod be free as R-modules, and

0→ WR
ι
−→ ER

π
−→ VR → 0

be the extension corresponding to a class ξ ∈ Ext1Hα,R
(VR,WR). Identifying

Ext1Hα,R
(VR,WR) ⊗R k with a subgroup of Ext1Hα,k

(VR ⊗R k,WR ⊗R k), we have

that

0→WR ⊗R k
ι⊗idk−→ ER ⊗R k

π⊗idk−→ VR ⊗R k → 0

is the extension corresponding to a class ξ ⊗ 1k ∈ Ext1Hα,R
(VR,WR)⊗R k.

Let k = K or F , and Vk be an Hα,k-module. We say that an Hα,R-module
VR is an R-form of Vk if every graded component of VR is free of finite rank
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as an R-module and, identifying Hα,R ⊗R k with Hα,k, we have VR ⊗R k ∼= Vk
as Hα,k-modules. If k = K, by a full lattice in VK we mean an R-submodule
VR of VK such that every graded component Vd,R of VR is a finite rank free R-
module which generates the graded component Vd,K as a K-module. If VR is an
Hα,R-invariant full lattice in VK , it is an R-form of VK . Now we can see that
every VK ∈ Hα,K-mod has an R-form: pick Hα,K-generators v1, . . . , vr and define
VR := Hα,R · v1 + · · · +Hα,R · v1.

The projective indecomposable modules over Hα,F have projective R-forms.
Indeed, any P (λ)F is of the form Hα,F eλ,F for some degree zero idempotent eλ,F .
By the Basis Theorem, the degree zero component Hα,F,0 of Hα,F is defined
over R; more precisely, we have Hα,k,0 = Hα,R,0 ⊗R k for k = K or F . Since
Hα,F,0 is finite dimensional, by the classical theorem on lifting idempotents [CR,
(6.7)], there exists an idempotent eλ,R ∈ Hα,R,0 such that eλ,F = eλ,R ⊗ 1F , and
P (λ)R := Hα,Reλ,R is an R-form of P (λ)F . The notation P (λ)R will be reserved
only for this specific R-form of P (λ)F . Note that, while the Hα,R-module P (λ)R
is indecomposable, it is not in general true that P (λ)R ⊗R K ∼= P (λ)K , see
Lemma 4.8 for more information.

Let VK ∈ Hα,K-mod and VR be an R-form of VK . The Hα,F -module VR ⊗R F
is called a reduction modulo p of VK . Reduction modulo p in general depends on
the choice of VR. However, as usual, we have:

Lemma 4.3. If VK ∈ Hα,K-mod and VR is an R-form of VK , then for any
λ ∈ KP(α), we have

[VR ⊗R F : L(λ)F ]q = dimq HomHα,K
(P (λ)R ⊗R K,VK).

In particular, the composition multiplicities [VR ⊗R F : L(λ)F ]q are independent
of the choice of an R-form VR.

Proof. We have [VR ⊗R F : L(λ)F ]q = dimq HomHα,F
(P (λ)F , VR ⊗R F ). By the

Universal Coefficient Theorem,

HomHα,F
(P (λ)F , VR ⊗R F ) ∼= HomHα,R

(P (λ)R, VR)⊗R F.

Moreover, note that HomHα,R
(P (λ)R, VR) is R-free of (graded) rank equal to

dimq HomHα,R
(P (λ)R, VR) ⊗R k for k = F or K. Now, by the Universal Coeffi-

cient Theorem again, we have that

dimq HomHα,R
(P (λ)R, VR)⊗R K = dimq HomHα,K

(P (λ)R ⊗R K,VR ⊗R K),

which completes the proof, since VR ⊗R K ∼= VK . �

Our main interest is in reduction modulo p of the irreducible Hα,K-modules
L(λ)K . Pick a non-zero homogeneous vector v ∈ L(λ)K and define L(λ)R :=
Hα,R · v. Then L(λ)R is an Hα,R-invariant full lattice in L(λ)K , and reducing
modulo p, we get an Hα,F -module L(λ)R ⊗R F . In general, L(λ)R ⊗R F is not
L(λ)F , although this happens ‘often’, for example for cuspidal modules:

Lemma 4.4. [Kl1, Proposition 3.20] Let α ∈ R+. Then L(α)R ⊗R F ∼= L(α)F .

To generalize this lemma to irreducible modules of the form L(αm), we need to
observe that induction and restriction commute with extension of scalars. More
precisely, for β1, . . . , βm ∈ Q+, α = β1 + · · · + βm, and any ground ring k, we
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denote by Hβ1,...,βm;k the algebra Hβ1,k ⊗k · · · ⊗kHβm,k identified as usual with a
(non-unital) subalgebra 1β1,...,βm;kHα,k1β1,...,βm;k ⊆ Hα,k.

Lemma 4.5. Let VR ∈ Hβ1,...,βm;R-mod and WR ∈ Hα,R-mod. Then for any
R-algebra k, there are natural isomorphisms of Hα,k-modules

(Indαβ1,...,βmVR)⊗R k
∼= Indαβ1,...,βm(VR ⊗R k)

and of Hβ1,...,βm;k-modules

(Resαβ1,...,βmWR)⊗R k ∼= Resαβ1,...,βm(WR ⊗R k).

Let α ∈ R+ and m ∈ Z>0. If k is a field, by Lemma 2.5, we have L(αm)k ≃
L(α)◦mk . By Lemma 4.5, L(αm)R := (L(α)R)

◦m satisfies L(αm)R ⊗R k ≃ L(α
m)k

for k = K or F . Taking into account Lemma 4.3, we get:

Lemma 4.6. Let α ∈ R+ and m ∈ Z>0. Then reduction modulo p of L(αm)K is
L(αm)F .

It was conjectured in [KlR, Conjecture 7.3] that reduction modulo p of L(λ)K
is always L(λ)F , but counterexamples are given in [W] (see also [BKM, Example
2.16]). Still, it is important to understand when we have L(λ)R ⊗R F ∼= L(λ)F :

Problem 4.7. Let α ∈ Q+.

(i) If λ ∈ KP(α), determine when L(λ)R ⊗R F ∼= L(λ)F .
(ii) We say that James’ Conjecture has positive solution (for α) if the iso-

morphism in (i) holds for all λ ∈ KP(α). Determine the minimal lower
bound pα on p = charF so that James’ Conjecture has positive solution
for all p ≥ pα.

At least, we always have:

Lemma 4.8. Let α ∈ Q+ and λ ∈ KP(α). Then in the Grothendieck group of
finite dimensional Hα,F -modules we have

[L(λ)R ⊗R F ] = [L(λ)F ] +
∑

µ<λ

aλ,µ[L(µ)F ] (4.9)

for some bar-invariant Laurent polynomials aλ,µ ∈ Z[q, q−1]. Moreover,

P (λ)R ⊗R K ∼= P (λ)K ⊕
⊕

µ>λ

aµ,λP (µ)K .

Proof. Let k = K or F and consider the reduced standard module ∆̄(λ)k, see
(2.6). In view of (2.7), we can write

[L(λ)k] := [∆̄(λ)k] +
∑

µ<λ

fkλ,µ[∆̄(µ)k]

for some fkλ,µ ∈ Z[q, q−1]. Using Lemmas 4.5, 4.4 and induction on the bilexico-

graphical order on KP(λ), we now deduce that the equation (4.9) holds for some,
not necessarily bar-invariant, coefficients aλ,µ ∈ Z[q, q−1]. Then we also have

chq (L(λ)R ⊗R F ) = chq (L(λ)F ) +
∑

µ<λ

aλ,µchq (L(µ)F ).
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Since reduction modulo p preserves formal characters, the left hand side is bar-
invariant. Moreover, every chq (L(µ)F ) is bar-invariant. This implies that the
coefficients aλ,µ are also bar-invariant, since by [KL1, Theorem 3.17], the formal
characters {chq L(ν)F | ν ∈ KP(α)} are linearly independent.

Finally, for any µ ∈ KP(λ), we have

aµ,λ = dimq HomHα,K
(P (λ)R ⊗R K,L(µ)K),

thanks to by Lemma 4.3. This implies the second statement. �

Remark 4.10. For k = K and F , denote by dkλ,µ, the corresponding decom-

position numbers, see (2.7), and consider the decomposition matrices Dk :=
(dkλ,µ)λ,µ∈KP(α). Setting A := (aλ,µ)λ,µ∈KP(α), we have DF = DKA. So the
matrix A plays the role of the adjustment matrix in the classical James’ Con-
jecture [J]. Note that James’ Conjecture has positive solution in the sense of
Problem 4.7 if and only if A is the identity matrix.

4.2. Integral forms of standard modules. Our next goal is to construct some
special R-forms of standard modules. We call an Hα,R-module ∆(λ)R a universal
R-form of a standard module if it is an R form for both ∆(λ)K and ∆(λ)F . We
show how to construct these for all λ.

By Theorem 2.8(i), for any field k, the standard module ∆(αm)k has simple
head L(αm)k. Pick a homogeneous generator v ∈ ∆(αm)K and consider the
R-form ∆(αm)R := Hmα,R · v of ∆(αm)K . Further, for any α ∈ Q+ and λ =
(λm1

1 , . . . , λms
s ) ∈ KP(α) with λ1 > · · · > λs, we define the following R-form of

∆(λ)K (cf. Lemma 4.5):

∆(λ)R := ∆(λm1
1 )R ◦ · · · ◦∆(λms

s )R.

Let 1(λ),R := 1m1λ1,...,msλs;R. Then, for an appropriate set S(λ) of coset repre-

sentatives in a symmetric group, we have that {τw1(λ),R | w ∈ S
(λ)} is a basis of

Hα,R1(λ),R considered as a right 1(λ),RHα,R1(λ),R-module. So

∆(λ)R =
⊕

w∈S(λ)

τw1(λ),R ⊗∆(λm1
1 )R ⊗ · · · ⊗∆(λms

s )R.

In particular, choosing vt ∈ ∆(λmt
t )K with ∆(λmt

t )R = Hmtλt,R·vt for all 1 ≤ t ≤ s
and setting v := 1(λ),K ⊗ v1 ⊗ · · · ⊗ vs, we have

∆(λ)R = Hα,R · v (4.11)

Now we show that ∆(λ)R is a universal R-form:

Lemma 4.12. Let α ∈ Q+, and λ ∈ KP(α). Then ∆(λ)R ⊗R F ∼= ∆(λ)F .

Proof. In view of (2.10) and Lemma 4.5, we may assume that λ is of the form
(βm) for a positive root β so that α = mβ. By Lemma 4.3, we have for any
µ ∈ KP(α):

[∆(βm)R ⊗R F : L(µ)F ]q = dimq HomHα,K
(P (µ)R ⊗R K,∆(βm)K).

By convexity, (βm) is a minimal element of KP(α). So Lemma 4.8 implies that
all composition factors of ∆(βm)R ⊗R F are ≃ L(βm)F . Moreover,

[∆(βm)R ⊗R F : L(βm)F ]q = [∆(βm)K : L(βm)K ]q = [∆(βm)F : L(βm)F ]q.
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By construction, ∆(βm)R is cyclic, hence so is ∆(βm)R⊗RF . So, ∆(βm)R⊗RF
is a module with simple head and belongs to the category of all modules in
Hα,F -mod with composition factors ≃ L(βm)F . Since (β

m) is minimal in KP(α),
we have that ∆(βm)F is the projective cover of L(βm)F in this category, see
[Kl2, Lemma 4.11]. So there is a surjective homomorphism from ∆(βm)F onto
∆(βm)R⊗RF . This has to be an isomorphism since we have proved that the two
modules have the same composition multiplicities. �

From now on, the notation ∆(λ)R is reserved for a universal R-form. We begin
with a rather obvious consequence of what we have proved so far:

Proposition 4.13. Let α ∈ Q+ and λ, µ ∈ KP(α).

(i) If λ 6= µ, then HomHα,R
(∆(λ)R,∆(µ)R) = 0.

(ii) For any R-algebra k, we have

EndHα,R
(∆(λ)R)⊗R k = EndHα,k(∆(λ)R ⊗R k).

(iii) If λ 6< µ, then ExtjHα,R
(∆(λ)R,∆(µ)R) = 0 for all j ≥ 1.

Proof. By the Universal Coefficient Theorem, for any j ≥ 0, we can embed

ExtjHα,R
(∆(λ)R,∆(µ)R) ⊗R F into ExtjHα,F

(∆(λ)F ,∆(µ)F ). So (i) follows from

Theorem A, and (iii) follows from Theorem 2.8(iii). Now (ii) also follows from the
Universal Coefficient Theorem, since Ext1Hα,R

(∆(λ)R,∆(λ)R) = 0 by (iii), which

makes the Tor1-term trivial. �

It turns out that torsion in the Ext groups between ∆(λ)R’s bears some im-
portance for Problem 4.7, see Remark 4.17. So we try to make progress in un-
derstanding this torsion. Given an R-module V , denote by V Tors its torsion
submodule. If all graded components Vd of V are finitely generated and trivial
for d≪ 0, then the graded rank of V is defined as

rankq V :=
∑

d

(rankVd) q
d ∈ Z((q)).

Of especial importance for us will be the rank of the torsion in Ext-groups:

rankq ExtjHα,R
(∆(λ)R,∆(µ)R)

Tors.

The following result was surprising for us:

Theorem 4.14. Let α ∈ Q+ and λ, µ ∈ KP(α). Then the R-module

Ext1Hα,R
(∆(λ)R,∆(µ)R)

is torsion-free.

Proof. By Proposition 4.13, we may assume that λ < µ. By the Universal Coef-
ficient Theorem, there is an exact sequence

0→ HomHα,R
(∆(λ)R,∆(µ)R)⊗R F → HomHα,F

(∆(λ)F ,∆(µ)F )

→ TorR1 (Ext
1
Hα,R

(∆(λ)R,∆(µ)R), F )→ 0.

By Theorem A, the middle term vanishes, so the third term also vanishes, which
implies the theorem. �

We will need the following generalization:
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Corollary 4.15. Let α ∈ Q+, µ ∈ KP(α), and V be an Hα,R-module with a
finite ∆-filtration, all of whose subfactors are of the form ≃ ∆(λ)R for λ 6= µ.
Then Ext1Hα,R

(V,∆(µ)R) is torsion-free.

Proof. Apply induction on the length of the ∆-filtration, the induction base com-
ing from Theorem 4.14. If the filtration has length greater than 1, we have an
exact sequence 0 → V1 → V → V2 → 0, such that the inductive assumption
apples to V1, V2. Then we get a long exact sequence

HomHα,R
(V1,∆(µ)R)→ Ext1Hα,R

(V2,∆(µ)R)

→Ext1Hα,R
(V,∆(µ)R)→ Ext1Hα,R

(V1,∆(µ)R).

By Theorem A, the first term vanishes. By the inductive assumption, the second
and fourth terms are torsion-free. Hence so is the third term. �

While we have just proved that there is no torsion in Ext1Hα,R
(∆(λ)R,∆(µ)R),

the following result reveals the importance of torsion in Ext2-groups.

Corollary 4.16. Let α ∈ Q+ and λ, µ ∈ KP(α). We have

dimq Ext
1
Hα,F

(∆(λ)F ,∆(µ)F )

= dimq Ext
1
Hα,K

(∆(λ)K ,∆(µ)K) + rankq Ext2Hα,R
(∆(λ)R,∆(µ)R)

Tors.

In particular,

dimq Ext1Hα,F
(∆(λ)F ,∆(µ)F ) = dimq Ext

1
Hα,K

(∆(λ)K ,∆(µ)K)

if and only if Ext2Hα,R
(∆(λ)R,∆(µ)R) is torsion-free.

Proof. By the Universal Coefficient Theorem, there is an exact sequence

0→ Ext1Hα,R
(∆(λ)R,∆(µ)R)⊗R F → Ext1Hα,F

(∆(λ)F ,∆(µ)F )

→ TorR1 (Ext
2
Hα,R

(∆(λ)R,∆(µ)R), F )→ 0

and an isomorphism

Ext1Hα,R
(∆(λ)R,∆(µ)R)⊗R K ∼= Ext1Hα,K

(∆(λ)K ,∆(µ)K).

The last isomorphism and Theorem 4.14 imply

dimq Ext
1
Hα,K

(∆(λ)K ,∆(µ)K) = rankq Ext1Hα,R
(∆(λ)R,∆(µ)R).

On the other hand,

rankq Ext
2
Hα,R

(∆(λ)R,∆(µ)R)
Tors = dimq Tor

R
1 (Ext

2
Hα,R

(∆(λ)R,∆(µ)R), F ),

so the result now follows from the exactness of the first sequence. �

Remark 4.17. By Theorem 4.14, lack of torsion in Ext2Hα,R
(∆(λ)R,∆(µ)R) is

equivalent to the fact that the extension groups Ext1Hα
(∆(λ),∆(µ)) have the same

graded dimension in characteristic 0 and p. This is relevant for Problem 4.7. How-
ever, we do not understand the precise connection between Problem 4.7 and lack
of torsion in the groups Ext2Hα,R

(∆(λ)R,∆(µ)R). For example, we do not know

if such lack of torsion for all λ, µ implies (or is equivalent to) James’ Conjecture
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having positive solution. In the next section we establish a different statement of
that nature. Set

∆k :=
⊕

λ∈KP(α)

∆(λ)k.

By the Universal Coefficient Theorem, all groups ExtjHα,R
(∆(λ)R,∆(µ)R) are

torsion free if and only if the dimension of the k-algebras Ext•Hα,k
(∆k,∆k) is the

same for k = K and k = F , and

Ext•Hα,k
(∆k,∆k) ∼= Ext•Hα,R

(∆R,∆R)⊗R k

for k = K and F . We do not know if James’ Conjecture has positive solution

under the assumption that all groups ExtjHα,R
(∆(λ)R,∆(µ)R) are torsion-free.

4.3. Integral forms of projective modules in characteristic zero. Recall
that by lifting idempotents, we have constructed projective R-forms P (λ)R of
the projective indecomposable modules P (λ)F . Our next goal is to construct
some interesting R-forms of the projective modules P (λ)K . As we cannot denote
them P (λ)R, we will have to use the notation Q(λ)R. We will construct Q(λ)R
using the usual ‘universal extension procedure’ applied to universal R-forms of
the standard modules, but in our ‘infinite dimensional integral situation’ we need
to be rather careful. We begin with some lemmas.

Lemma 4.18. Let k be a field and V ∈ Hα,k-mod have the following properties:

(i) V is indecomposable;
(ii) V has a finite ∆-filtration with the top factor ∆(λ)k;
(iii) Ext1Hα,k

(V,∆(µ)k) = 0 for all µ ∈ KP(α).

Then V ∼= P (λ)k.

Proof. We have a short exact sequence 0→M → P → V → 0, where P is a finite
direct sum of indecomposable projective modules. By [Kl2, Corollary 7.10(i)], M
has a finite ∆-filtration. Now, by property (iii), the short exact sequence splits.
Hence V is projective. As it is indecomposable, it must be of the form qdP (µ).
By the property (ii), λ = µ and d = 0. �

For λ ∈ KP(α) and k ∈ {F,K,R}, we denote by Bλ,k the endomorphism
algebra EndHα,k

(∆(λ)k)
op. Then ∆(λ)k is naturally a right Bλ,k-module. We

will need to know that this Bλ,k-module is finitely generated. In fact, we will
prove that it is finite rank free. First of all, this is known over a field:

Lemma 4.19. Let λ ∈ KP(α) and k be a field. Then:

(i) Bλ,k is a commutative polynomial algebra in finitely many variables of
positive degrees.

(ii) Let Nλ,k be the ideal in Bλ,k spanned by all monomials of positive degree,
and M := ∆(λ)kNλ,k. Then ∆(λ)k/M ∼= ∆̄(λ)k, see the notation (2.6).

(iii) Let v1, . . . , vN ∈ ∆(λ)k be such that {v1 +M, . . . , vN +M} is a k-basis
of ∆(λ)k/M . Then {v1, . . . , vN} is a basis of ∆(λ)k as a Bλ,k-module.

Proof. For (i) see Theorem 2.17. For (ii) and (iii), see [Kl2, Proposition 5.7]. �

The following general lemma, whose proof is omitted, will help us to transfer
the result of Lemma 4.19 from K and F to R:
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Lemma 4.20. Let BR be an R-algebra and VR be a BR-module. Assume that BR
and VR are free as R-modules. If v1, . . . , vN ∈ VR are such that {v1⊗1k, . . . , vN⊗
1k} is a basis of VR⊗Rk as a BR⊗Rk-module for k = K and F , then {v1, . . . , vN}
is a basis of VR as a BR-module.

Lemma 4.21. Let λ ∈ KP(α). As a Bλ,R-module, ∆(λ)R is finite rank free.

Proof. Let λ = (λm1
1 , . . . , λms

s ) for positive roots λ1 > · · · > λs. Choose v =
1(λ),K ⊗ v1 ⊗ · · · ⊗ vs as in (4.11). There is a submodule M ⊂ ∆(λ)K with

∆(λ)K/M ∼= ∆̄(λ)K . Pick h1, . . . , hN ∈ Hα,R such that {h1v+M, . . . , hNv+M}
is an R-basis of ∆̄(λ)R = Hα,R ·(v+M). By Lemma 4.19, {h1v⊗1k, . . . , hNv⊗1k}
is a Bλ,k-basis of ∆(λ)R ⊗R k for k = K or F . Now apply Proposition 4.13(ii)
and Lemma 4.20. �

Corollary 4.22. Let k ∈ {F,K,R}, V ∈ Hα,k-mod, λ ∈ KP(α) and j ∈ Z≥0.

Then ExtjHα,k
(V,∆(λ)k) is finitely generated as a Bλ,k-module.

Proof. Since Hα,k is Noetherian, V has a resolution by finite rank free modules
over Hα,k. Applying HomHα,k

(−,∆(λ)k) to this resolution, we get a complex with
terms being finite direct sums of modules ≃ ∆(λ)k, which are finite rank free over
Bλ,k, thanks to Lemmas 4.19 and 4.21. As Bλ,k is Noetherian, the cohomology
groups of the complex are finitely generated Bλ,k-modules. �

Remark 4.23. It is a more subtle issue to determine whether ExtjHα,k
(∆(λ)k, V )

is finitely generated as a Bλ,k-module. We do not know if this is always true.

Lemma 4.24. (Universal Extension Procedure) Let k ∈ {F,K,R}, µ ∈
KP(α), and Vk be an indecomposable Hα,k-module with a finite ∆-filtration, all
of whose subfactors are of the form ≃ ∆(λ)k for λ 6≥ µ. If k = R, assume in
addition that VR ⊗R K is indecomposable. Let

r(q) := rankq Ext
1
Hα,k

(Vk,∆(µ)k) ∈ Z[q, q−1]

be the rank of Ext1Hα,k
(Vk,∆(µ)k) as a Bµ,k-module. Then there exists an Hα,k-

module E(Vk,∆(µ)k) with the following properties:

(i) E(Vk,∆(µ)k) is indecomposable;
(ii) Ext1Hα,k

(Vk,∆(µ)k) = 0;

(iii) there is a short exact sequence

0→ r(q)∆(µ)k → E(Vk,∆(µ)k)→ Vk → 0.

Proof. In this proof we drop Hα,k from the indices and write Ext1 for Ext1Hα,k
,

etc. Also, when this does not cause a confusion, we drop k from the indices.
Let ξ1, . . . , ξr be a minimal set of homogeneous generators of Ext1(V,∆(µ)) as
a Bµ-module, and ds := deg(ξs) for s = 1, . . . , r, so that r(q) =

∑

s q
ds . The

extension 0 → q−d1∆(µ) → E1 → V → 0, corresponding to ξ1, yields the long
exact sequence

Hom(q−d1∆(µ),∆(µ))
ϕ
−→ Ext1(V,∆(µ))

ψ
−→ Ext1(E1,∆(µ))→ 0.

We have used that Ext1(q−d1∆(µ),∆(µ)) = 0, see Proposition 4.13(iii). Note
that q−d1∆(µ) = ∆(µ) as Hα-modules but with degrees shifted down by d1.
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So we can consider the identity map id : q−d1∆(µ) → ∆(µ), which has degree
d1. The connecting homomorphism ϕ maps this identity map to ξ1. It fol-
lows that Ext1(E1,∆(µ)) is generated as a Bµ-module by the elements ξ̄2 :=
ψ(ξ2), . . . , ξ̄r := ψ(ξr). Repeating the argument r − 1 more times, we get an
extension

0→ q−d1∆(µ)⊕ · · · ⊕ q−dr∆(µ) = r(q)∆(µ)→ E → V → 0

such that in the corresponding long exact sequence

Hom(E,∆(µ))
χ
−→ Hom(r(q)∆(µ),∆(µ))

ϕ
−→Ext1(V,∆(µ))→ Ext1(E,∆(µ))→ 0,

for all s = 1, . . . , r, we have ϕ(πs) = ξs, where πs is the (degree ds) projection
onto the sth summand. In particular, ϕ is surjective, and Ext1(E,∆(µ)) = 0.

It remains to prove that E is indecomposable. We first prove this when k
is a field. In that case, if E = E′ ⊕ E′′, then both E′ and E′′ have finite ∆-
filtrations, see [Kl2, Corollary 7.10]. Since Ext1(∆(µ),∆(λ)) = 0 for λ 6> µ,
there is a partition J ′ ⊔ J ′′ = {1, . . . , r} such that there are submodules M ′ ∼=
⊕j∈J ′qdj∆(µ) ⊆ E′, M ′′ ∼= ⊕j∈J ′′qdj∆(µ) ⊆ E′′ and E′/M ′, M ′′/E′′ have ∆-
filtrations. Since Hom(∆(µ), V ) = 0, we now deduce that V ∼= E′/M ′ ⊕ E′′/M ′′.
As V is indecomposable, we may assume that E′/M ′ = 0. Then some projection
πs lifts to a homomorphism E → ∆(µ), which shows that this πs is in the image
of χ, and hence in the kernel of ϕ, which is a contradiction.

Now let k = R. Note that V and E are free as R-modules since so are all
∆(ν)R’s. If ER is decomposable, then so is ER ⊗ K, so it suffices to prove
that ER ⊗ K is indecomposable. In view of Corollary 4.15, the Bµ,K-module

Ext1(VR,∆(µ)R) ⊗R K ∼= Ext1(VR ⊗R K,∆(µ)K) is minimally generated by
ξ1,R ⊗ 1K , . . . , ξr,R ⊗ 1K . It follows, using Lemma 4.2, that ER ⊗R K ∼= EK ,
where EK is constructed using the universal extension procedure starting with
the indecomposable module VK := VR ⊗R K as in the first part of the proof
of the lemma. By the field case established in the previous paragraph, EK is
indecomposable. �

Let λ ∈ KP(α). For k ∈ {R,K,F}, we construct a module Q(λ)k starting with
∆(λ)k, and repeatedly applying the universal extension procedure. To simplify
notation we drop some of the indices k if this does not lead to a confusion. Given
Laurent polynomials r0(q), r1(q), . . . , rm(q) ∈ Z[q, q−1] with non-negative coeffi-
cients and Kostant partitions λ0, λ1, . . . , λm ∈ KP(α), we will use the notation

V = r0(q)∆(λ0) | r1(q)∆(λ1) | · · · | rm(q)∆(λm)

to indicate that the Hα-module V has a filtration V = V0 ⊇ V1 ⊇ · · · ⊇ Vm+1 =
(0) such that Vs/Vs+1

∼= rs(q)∆(λs) for s = 0, 1 . . . ,m.
If Ext1Hα

(∆(λ),∆(µ)) = 0 for all µ ∈ KP(α), we set Q(λ)k := ∆(λ)k. Other-

wise, let λ1,k ∈ KP(α) be minimal with Ext1Hα
(∆(λ),∆(λ1,k)) 6= 0. Note that this

λ1,k might indeed depend on the ground ring k, hence the notation. Also notice
λ1,k > λ. Let E(λ, λ1,k)k := E(∆(λ),∆(λ1,k)), see Lemma 4.24. By construction

E(λ, λ1,k)k = ∆(λ) | r1,k(q)∆(λ1,k), where

r1,k(q) = rankq Ext1Hα
(∆(λ),∆(λ1,k))
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as a Bλ1,k -module. This rank might depend on k, hence the notation. If

Ext1Hα
(E(λ, λ1,k),∆(µ)) = 0

for all µ ∈ KP(α), we set Q(λ)k := E(λ, λ1,k)k. Otherwise, let λ2,k ∈ KP(α) be
minimal with Ext1Hα

(E(λ, λ1,k),∆(λ2,k)) 6= 0. Note that λ2,k > λ and λ2,k 6= λ1,k.

Let E(λ, λ1,k, λ2,k)k := E(E(λ, λ1,k),∆(λ2,k)). By construction

E(λ, λ1,k, λ2,k)k = ∆(λ) | r1,k(q)∆(λ1,k) | r2,k(q)∆(λ2,k),

where
r2,k(q) = rankq Ext1Hα

(E(λ, λ1,k),∆(λ2,k))

as a Bλ2,k -module. If Ext1Hα
(E(λ, λ1,k, λ2,k),∆(µ)) = 0 for all µ ∈ KP(α), we set

Q(λ)k := E(λ, λ1,k, λ2,k).
Since on each step we will have to pick λt,k > λ, which does not belong to

{λ, λ1,k, . . . , λt−1,k}, the process will stop after finitely many steps, and we will
obtain a module

E(λ, λ1,k, . . . , λmk ,k)k = ∆(λ) | r1,k(q)∆(λ1,k) | · · · | rmk ,k(q)∆(λmk ,k),

where
rt,k(q) = rankq Ext

1
Hα,k

(E(λ, λ1,k, . . . , λt−1,k)k,∆(λt,k)k) (4.25)

as a Bλt,k,k-module for all 1 ≤ t ≤ mk, and such that

Ext1Hα,k
(E(λ, λ1,k, . . . , λmk ,k)k,∆(µ)k) = 0

for all µ ∈ KP(α). We set Q(λ)k := E(λ, λ1,k, . . . , λmk ,k)k.

Theorem 4.26. Let α ∈ Q+ and λ ∈ KP(α).

(i) For k = K or F , we have Q(λ)k ∼= P (λ)k.
(ii) For k = K or F , the rank rt,k(q) from (4.25) equals the decomposition

number dk
λt,k,λ

for all 1 ≤ t ≤ mk, and d
k
µ,λ = 0 for µ 6∈ {λt,k | 1 ≤ t ≤

mk}.
(iii) mR = mK ; setting m := mR, we may choose λ1,R = λ1,K , . . . , λm,R =

λm,K and then rt,R(q) = rt,K(q) for all 1 ≤ t ≤ m.
(iv) Q(λ)R ⊗R K ∼= P (λ)K .

Proof. Part (i) follows from the construction and Lemma 4.18. Part (ii) follows
from part (i), the construction, and Theorem 2.8(v).

To show (iii) and (iv), we prove by induction on t = 0, 1, . . . that we can choose
λt,R = λt,K , rt,R(q) = rt,K(q) and

E(λ, λ1,R, . . . , λt,R)R ⊗R K ∼= E(λ, λ1,K , . . . , λt,K)K . (4.27)

The induction base is simply the statement ∆(λ)R ⊗R K ∼= ∆(λ)K . For the
induction step, assume that t > 0 and the claim has been proved for all s < t.

Let ξ1,R, . . . , ξr,R be a minimal set of generators of the Bλt,R,R-module

Ext1Hα,R
(E(λ, λ1,R, . . . , λt−1,R)R,∆(λt,R)R),
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so that rt,R(q) = deg(ξ1,R) + · · · + deg(ξr,R) is the rank of that module. Using

Corollary 4.15 and the Universal Coefficient Theorem, we deduce that λt,K can
be chosen to be λt,R and the Bλt,R,K-module

Ext1(∆(λ)R,∆(λt,R)R)⊗R K ∼= Ext1(VR ⊗R K,∆(λt,R)K)

is minimally generated by ξ1,R ⊗ 1K , . . . , ξr,R ⊗ 1K , so that rt,K(q) = rt,R(q).
Finally (4.27) comes from Lemma 4.2. �

In view of Theorem 4.26(i), Q(λ)R in general is not an R-form of Q(λ)F ∼=
P (λ)F . For every λ ∈ KP(α), define the Hα,F -module X(λ) := Q(λ)R ⊗ F .

Theorem 4.28. James’ Conjecture has positive solution for α if and only if one
of the following equivalent conditions holds:

(i) X(λ) is projective;
(ii) X(λ) ∼= P (λ)F for all λ ∈ KP(α);
(iii) Ext1Hα,F

(X(λ),∆(µ)F ) = 0 for all λ, µ ∈ KP(α);

(iv) Ext2Hα,R
(Q(λ)R,∆(µ)R) is torsion-free for all λ, µ ∈ KP(α).

Proof. (i) and (ii) are equivalent by an argument involving formal characters and
Lemma 4.8. Furthermore, (i) and (iii) are equivalent by Lemma 4.18. Since since
Ext1Hα,R

(Q(λ)R,∆(µ)R) = 0 for all µ, (iii) is equivalent to (vi) by the Universal

Coefficient Theorem. Finally, we prove that (ii) is equivalent to James’ Conjecture
having positive solution. If X(λ) ∼= P (λ)F for all λ, then they have the same
graded dimension, so the R-modules Q(λ)R and P (λ)R have the same graded
R-rank, whence the K-modules P (λ)K ∼= Q(λ)R⊗RK and P (λ)R⊗RK have the
same graded dimension, therefore P (λ)R⊗RK ∼= P (λ)K for all λ, see Lemma 4.8,
whence James’ Conjecture has positive solution.

Conversely, assume James’ Conjecture has positive solution. This means that
dKµ,λ = dFµ,λ for all µ, λ ∈ KP(α). By Theorem 4.26(ii), on every step of our

universal extension process, we are going to have the same rank of the Ext1-group
over K and F , so, by Theorem 4.26(iii), on every step of our universal extension
process, we are also going to have the same rank of the appropriate Ext1-groups
over R and F . Now, use Lemma 4.2 as in the proof of Theorem 4.26(iv) to show
that Q(λ)R ⊗R F ∼= P (λ)F . �

Remark 4.29. We conjecture that P (λ)F has an X-filtration with the top quo-
tient X(λ) and X(µ) appearing aµ,λ(q) times. On the level of Grothendieck
groups, this is true thanks to Lemma 4.8. But it seems not so obvious even that
X(λ) is a quotient of P (λ)F .
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