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HOMOMORPHISMS BETWEEN STANDARD MODULES OVER
FINITE TYPE KLR ALGEBRAS

ALEXANDER S. KLESHCHEV AND DAVID J. STEINBERG

ABSTRACT. Khovanov-Lauda-Rouquier algebras of finite Lie type come with
families of standard modules, which under the Khovanov-Lauda-Rouquier cate-
gorification correspond to PBW-bases of the positive part of the corresponding
quantized enveloping algebra. We show that there are no non-zero homomor-
phisms between distinct standard modules and all non-zero endomorphisms of
a standard module are injective. We obtain applications to the extensions be-
tween standard modules and modular representation theory of KLR algebras.

1. INTRODUCTION

Khovanov-Lauda-Rouquier algebras of finite Lie type possess affine quasi-
hereditary structures [BKM, Ka, KLM, KIL, KX, K12]. In particular, they
come with important families of modules which are called standard. Under the
Khovanov-Lauda-Rouquier categorification [KL1, R], standard modules corre-
spond to PBW-monomials in the positive part of the corresponding quantized
enveloping algebra, see [ BKM, Kal].

Affine quasihereditary structures are parametrized by convex orders on the sets
of positive roots of the corresponding root systems. In this paper we work with
an arbitrary convex order and an arbitrary finite Lie type. When working with
the KLR algebra H, for any o € Q", the standard modules A()) are labeled
by A € KP(«a), where KP(a) is the set of Kostant partitions of a. With these
conventions, our main result is as follows:

Theorem A. Let a € QT and \,u € KP(«). If X # p, then
Homp, (A(N), A(u)) = 0.

When X £ p, it is clear that Homp, (A(X), A(u)) = 0, but for A < p, we found
this fact surprising. Theorem A is proved in Section 3.

The case A = p is also well-understood. In fact, the endomorphism algebras of
the standard modules are naturally isomorphic to certain algebras of symmetric
functions, see Theorem 2.17. Now, Theorem A can be complemented by the
following (folklore) observation and compared to the main result of [BCGM]:

Theorem B. Let o € QT and A € KP(«). Then every non-zero H,-endomorphism
of A(N) is injective.

For reader’s convenience, we prove Theorem B in Section 2.3.
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Theorem A turns out to have some applications to modular representation
theory of KLR algebras, which are pursued in Section 4. Note that KLR algebras
are defined over an arbitrary ground ring k, and when we wish to emphasize
this fact, we use the notation H, ;. Using the p-modular system (F, R, K') with
F=17Z/pZ, R =17, and K = Q,, we can reduce modulo p any irreducible H, -
module. An important problem is to determine when these reductions remain
irreducible, see [KIR, W]. This problem can be reduced to homological questions
involving standard modules.

In Section 4, we show that standard modules have universal R-forms A(\)g
such that A(N)r ®r k = A(MN)g for any field k. Then an application of the
Universal Coefficient Theorem and Theorem A yields:

Theorem C. Let a € Q1 and A\, n € KP(a). Then the R-module
Exty (AR, A(u)r)

1s torsion-free. Moreover,
dimg Extyy, (AN r, A(u)r) = dimg Exty, (AN K, Alp)k)
if and only if Ext%,a (AR, A(p)R) is torsion-free.

As a final application, using a universal extension procedure, we construct
R-forms Q(\)g of the projective indecomposable modules P(\) g, and prove:

Theorem D. Let a € Q. Then reductions modulo p of all irreducible Hy f -
modules are irreducible if and only if one of the following equivalent conditions
holds:
(i) QN r ®r F is a projective Hq, p-module for all A € KP(a);
(ii) Ext}{a’F (QNr®r F,A(p)r) =0 for all X\, p € KP(a);
(iii) Ext%{a’R(Q()\)R, A(p)R) is torsion-free for all A\, u € KP(«).

2. PRELIMINARIES

2.1. KLR algebras. We follow closely the set up of [BKM]. In particular, R is
an irreducible root system with simple roots {«; | i € I'} and the corresponding
set of positive roots RT. Denote by  the root lattice and by QT C @ the set
of Z>g-linear combinations of simple roots, and write ht(a)) = > .., ¢; for a =
> ier iy € Q. The standard symmetric bilinear form QxQ — Z, (o, 8) — a3
is normalized so that d; := («; - ;) /2 is equal to 1 for the short simple roots «;.
We also set dg := (8- 3)/2 for all § € RT. The Cartan matrix is C' = (¢; ;)i jer
with Cij = (Oéi . Oéj)/dz

Fix a commutative unital ring k& and an element o € Q" of height n. The
symmetric group S, with simple transpositions s, := (r r+1) acts on the set
I*={i=dy-1, € I"| Z?:l a;; = a} by place permutations. Choose signs
€;,; for all 4,5 € I with ¢;; < 0 so that ¢; je;; = —1. With this data, Khovanov-
Lauda [KL1,KL2] and Rouquier [R] define the graded k-algebra H, with unit
1a, called the KLR algebra, given by generators

{12' ’ 7€ IQ}U{xl,...,xn}U{Tl,...,Tn_l}

subject only to the following relations
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® TyrTs = Tsly;
o 1;1; =6;51; and ) ;0 1 = 1o
o z,.1; =1;z, and 7,1; = 15 473
L4 ($t7—r - Trxsr(t))li = 5ir,ir.+1 (5t,r+1 - 515,7‘)11:;
0 lf ir = Z‘7“-|-17
° TE 12' = Eipyirt1 (xr_ci"’iﬂrl — xr+1_cir+1'“)1i if Ciriry1 < O,
1; otherwise;

o 7.7y = TsTy if |7‘ - 8| > 1;
o (7—7"—1—17—7“7—7"—1—1 - TrTr+lTr)1i =
Z 5ir,i7-+1x:xi+21i if Cipyipy1 < 0 and i, = Tr42,
7"+3:_1_Cir,i7-+1
0 otherwise.
The KLR algebra is graded with deg1; = 0, deg(z,1;) = 2d;, and deg(r,.1;) =
—Oéir . air+1-
For each element w € Sy, fix a reduced expression w = s,, - - - 5,, which deter-
mines an element 7, = 7, - - 7,, € H,.

Theorem 2.1. (Basis Theorem) [KL1, Theorem 2.5] The sets
{rwz{* - 2on ;3 and  {2f' - 281,15}, (2.2)

with w running over Sy, a, running over Z>q, and t© running over 1, are k-bases
for Hy.

It follows that H, is Noetherian if k£ is Noetherian. It also follows that for any
1 < r < n, the subalgebra k[z,] C H,, generated by x,, is isomorphic to the
polynomial algebra k[z]—this fact will be often used without further comment.
Moreover, for each ¢ € I%, the subalgebra P(i) C 1;R,1; generated by {z,1; |
1 < r < n} is isomorphic to a polynomial algebra in n variables. By defining
P := @;c1o P(i), we obtain a linear action of S,, on P given by

an

. ai oo an 1. — ai oo
w Ty rtly = Toin

(1)
for any w € Sy, 4 € I* and ay,...,a, € Z>g. Setting A(a) := P, we have:

Theorem 2.3. [KL1, Theorem 2.9] A(«) is the center of Hy.

)1w-i7

If H is a Noetherian graded k-algebra, we denote by H-mod the category of
finitely generated graded left H-modules. The morphisms in this category are
all homogeneous degree zero H-homomorphisms, which we denote homg(—, —).
For V € H-mod, let ¢?V denote its grading shift by d, so if V}, is the degree m
component of V', then (qu)m = V,n_q- More generally, for a Laurent polynomial
a = alq) = Y ga4q? € Zlg,q7!] with non-negative coefficients, we set aV :=

@d(qu)®ad.
For U,V € H-mod, we set Homp (U, V) := @ o, Hompy (U, V)4, where

Homy (U, V)q := hompy (¢?U, V) = homy (U, ¢ %V).

We define ext’}(U, V') and Ext’f(U, V) similarly. Since U is finitely generated,
Hompyg (U, V) can be identified in the obvious way with the set of all H-module
homomorphisms ignoring the gradings. A similar result holds for Extp (U, V),
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since U has a resolution by finitely generated projective modules. We use = to
denote an isomorphism in H-mod and ~ an isomorphism up to a degree shift.

We always work in the category H,-mod, in particular all H,-modules are
assumed to be finitely generated graded. Also, until Section 4, we assume that
k is a field. Let ¢ be a variable, and Z((q)) be the ring of Laurent series. The
quantum integers [n] = (¢" — ¢~ ")/(¢ — ¢~ ') and expressions like 1/(1 — ¢?)
are always interpreted as elements of Z((q)). Note that the graded dimension
dim, 1,H, is always an element of Z((q)). So for any V € H,-mod, its formal
character chg V := Y, ja(dimg 1;V) - 4 is an element of ;0 Z((q)) - 4. Note
also that ch, (¢?V) = g¢%ch, (V), where the first ¢ means the degree shift as
introduced in the previous paragraph. We refer to 1;V as the i-weight space of
V and to its vectors as wvectors of weight .

There is an anti-automorphism ¢ : H, — H, which fixes all the generators.
Given V € H,-mod, we denote V® := Homy (V, k) viewed as a left H,-module via
t. Note that in general V® is not finitely generated as an H,-module, but we will
apply ® only to finite dimensional modules. In that case, we have ch, V® = m,
where the bar means the bar-involution, i.e. the automorphism of Z[q, ¢~ !] that
swaps g and ¢~ ! extended to DPicre Zlg, g1 i

Let B1,...,8m € Q" and a = 1+ - -+ B3,,. Consider the set of concatenations

[Prefm = (g e 1P g e TP} C I

There is a natural (non-unital) algebra embedding Hg, ®---® Hg,, — H,, which
sends the unit 13, ® --- ® 1g, to the idempotent

1y = Y. 1€ Ha. (2.4)

We have an exact induction functor
Ind§, s, = Halp....0, @Hg 0-0H, = (Hp ® - @ Hp, }-mod — Ho-mod.
For Vi € Hg,-mod,...,V,, € Hg, -mod, we denote

Vio---0oV,, = Indgl’mﬁmvl X XV,

2.2. Standard modules. The KLR algebras H, are known to be affine quasi-
hereditary in the sense of [K12], see [Ka, BKM, KIL|. Central to this theory is
the notion of standard modules, whose definition depends on a choice of a certain
partial order. We first fix a conver order on R™, i.e. a total order such that
whenever ~y, 8, and v + 3 all belong to R™, v < 8 implies v < v+ 3 < 3. A
Kostant partition of o € QT is a tuple A = (A1,..., ) of positive roots with
A1 > Ay > -+ > A\ such that Ay + -+ + A\, = a. Let KP(«) denote the set
of all Kostant partitions of o and for A as above define X/, = A\,_,+1. Now,
we have a bilexicographical partial order on KP(«), also denoted by <, i.e. if
A=A, M) = (1, .-+, pts) € KP(a) then A < g if and only if the following
two conditions are satisfied:
® A\ = p1,..., 1 = py—1 and N\ < g for some [;

o N =y, .. N,y =ph,_1 and N, > pul, for some m.

To every A € KP(a), McNamara [M] (cf. [KIR, Theorem 7.2]) associates
an absolutely irreducible finite dimensional ®-self-dual H,-module L(\) so that
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{L(A\) | A € KP(«)} is a complete irredundant set of irreducible H,-modules, up
to isomorphism and degree shift. Since L()\) is ®-self-dual, its formal character
is bar-invariant. The key special case is where A = () for « € R, in which case
L(X\) = L(«) is called a cuspidal irreducible module. For m € Z~q, we write (™)
for the Kostant partition («,...,a) € KP(ma), where a appears m times. The
cuspidal modules have the following nice property:

Lemma 2.5. [M, Lemma 3.4] (¢f. [KIR, Lemma 6.6]). For any o € R and
m € Zsq, we have L(a™) ~ L(a)°™.

If A= (A1,...,Ar) € KP(a) the reduced standard module is defined to be
AN == ¢NL)o--0L(\y) (2.6)
for a specific degree shift s()\), whose description will not be important. By [M,

Theorem 3.1] (cf. [KIR, 7.2, 7.4]), the H,-module A()) has simple head L(\),
and in the Grothendieck group of finite dimensional graded H,-modules, we have

AW = 2O+ 3 dulL()] (2.7)
p<A

for some coefficients d , € Z[q,q" Y], called the decomposition numbers. The

decomposition numbers depend on the characteristic of the ground field k.

Let P(\) denote a projective cover of L(\) in Hy-mod. For V € H,-mod we
define the (graded) composition multiplicity [V : L())], := dim; Hom(P(X),V) €
Z((q)). The standard module A(\) is defined as the largest quotient of P()\) all
of whose composition factors are of the form L(p) with u < A, see [Ka, Corollary
4.13], [BKM, Corollary 3.16], [K12, (4.2)]. We note that while the irreducible
modules L(A) are all finite dimensional, the standard modules A(\) are always
infinite dimensional. The standard modules have the usual nice properties:

Theorem 2.8. [BKM, §3] Let o € Q1 and A\, u € KP(«).
(i) A(X) has a simple head L(\), and [A(X) : L(p)]q # 0 implies pn < A.

(ii) We have Homp, (A(N), A(pn)) = 0 unless A < p.

(iii) For m > 1, we have Extpy (A(X),A(u)) = 0 unless A < pu.

(iv) The module P(\) has a finite filtration P(A\) =Py D P D --- D> Py =0
with Py/Py =2 A(N) and P, /Pryq ~ A(u™) for p >\, r=1,2,....

(v) Denoting the graded multiplicities of the factors in a A-filtration of P(\)
by (P(A) : A(p))q, we have (P(X) : A(n))q = dyu(q)-

To construct the standard modules more explicitly, let us first assume that
a € RT and explain how to construct the cuspidal standard module A(a). Put
ga = ¢**/?. By [BKM, Lemma 3.2], there exists unique (up to isomorphism)
indecomposable H,-modules, A,,(«), with Ag(a) = 0, such that there are short
exact sequences

0— @™ VL(a) = Apn(a) = Ap_1(a) = 0,
0— ¢2An_1(a) = Ap(a) = L(a) — 0.

This yields an inverse system --- — Ag(a) — Aj(a) — Ag(w), and we have
A(a) = lim Apy (), see [BKM, Corollary 3.16].
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Let m € Zso. An explicit endomorphism e,, € Endg,, (A(«)°™)°P is defined
in [BKM, Section 3.2, and then

A(a™) = gD A(a)™e,,. (2.9)

Finally, for an arbitrary a € Q" and A € KP(«a), gather together the equal parts
of A to write A = (A7, ..., AT*), with Ay > --- > As. Then by [BKM, (3.5)],

AN = AN 00 A(AT). (2.10)

Thus, cuspidal standard modules are building blocks for arbitrary standard
modules. We will need some of their additional properties. Let o € RT. If
A € KP(«) is minimal such that A > («), then by [BKM, Lemma 2.6], A = (53,7)
for positive roots 5 > «a > ~. In this case, (8,7) is called a minimal pair
for a and we write mp(«) for the set of all such. The following result proved
in [BKM, §§3.1,4.3] describes some of the important properties of A(«).

Theorem 2.11. Let o € R™. Then:

(i) [A(e) : L(a)]g = 1/(1 = ¢2) and [A(a) : L(N)], = 0 for X # ().

(ii) Let C,, be the category of all modules in Hy-mod all of whose composition
factors are ~ L(a). Any V € C, is a finite direct sum of copies of the
indecomposable modules ~ Ap,(a) and ~ A(a). Moreover, A(«) is a
projective cover of L(a) in C,. In particular, Ext%a (A(e), V) =0 for
d>1andV € C,.

(iii) Endg, (A(a)) = k[z] for z in degree 2d,,.

(iv) There is a short exact sequence 0 — q2A(a) — A(a) — L(a) — 0.

(v) For (8,v) € mp(«) there is a short exact sequence

0— g PTAB) o Aly) B A(y) 0 A(B) = [ps + 1A(a) =0,
where pg  is the largest integer p such that B — py is a root.

Corollary 2.12. Let o € RT. The dimensions of the graded components A(a)q
are 0 for d < 0 and are bounded above by some N > 0 independent of d.

Proof. By Theorem 2.11(i), we have dim,(A(a)) = ﬁg dimy(L(e)), which im-
plies the result since L(«) is finite dimensional. O

2.3. Endomorphisms of standard modules. We shall denote by x, the de-
gree 2d, endomorphism of A(«) which corresponds to z under the isomorphism
Endp, (A()) = k[z] in Theorem 2.11(iii). This determines x, uniquely up to a
scalar.

Lemma 2.13. Let o € RT. Then every non-zero Hy-endomorphism of A(«) is
injective, and every submodule of A(a) is equal to x5,(A(a)) = ¢2*A(a) for some
S € ZZO‘

Proof. Tt follows from the construction of x, in [BKM, Theorem 3.3| that x, is
injective and z4(A(a)) 2 ¢2A(a). This in particular implies the first statement.

Let V C A(a) be a submodule and f : V' — A(«) be the natural inclusion.
First, assume that V' is indecomposable. By Theorem 2.11(ii), up to degree shift,
V' is isomorphic to A(a) or Ay, («) for some m > 1. If V.~ A, () then A(a)/V
is infinite dimensional and has a simple head, so by Theorem 2.11(ii) again,
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A(a)/V ~ A(a). Then the short exact sequence 0 - V — A(a) — Aa)/V —
0 splits by projectivity in Theorem 2.11(ii), contradicting indecomposability of
A(a). If instead V ~ A(a), consider the composition

Ale) 2V L A).

This produces a graded endomorphism of A(a), so that V = 25 (A(«a)) for some
s > 0. Since there are inclusions A(a) D z,A(a) D #2A(a) D -, the general
case follows from the case when V' is indecomposable. O

Let again a« € RT. We next consider the standard modules of the form
A(a™). We have commuting endomorphisms X;,...,X,, € Endy,  (A(«)°™)
with X, = id°" Yoz, 0id®™ ". Moreover, in [BKM, Section 3.2], some ad-
ditional endomorphisms 0,...,0n—1 € Endg,,, (A(a)°™) are constructed, and
it is proved in [BKM, Lemmas 3.7-3.9] that the algebra Endg,,  (A(«)°™)°P is
isomorphic to the nilHecke algebra N H,,, with 0y,...,0,,—1 and (appropriately
scaled) Xj, ..., X,, corresponding to the standard generators of NH,,. The ele-
ment e, used in (2.9) is an explicit idempotent in N H,,. We denote by A, ,, the
algebra of symmetric functions k[X1,..., X, = Z(NH,,), with the variables
X, in degree 2d,. Note that dimgAa,,m = 1/T]7%, (1 — ¢27). It is known, see
e.g. [KLM, Theorem 4.4(iii)], that

emNHpyem = emAam = Aom. (2.14)
Theorem 2.15. Let o € R and m € Z~q. Then:
(i) For any A € KP(ma), we have [A(a™) : L(\)], = 5)\7(am)/Hﬁ1(1—qi’").
(ii) The module A(a™) is a projective cover of L(a™) in the category of all
modules in H,-mod all of whose composition factors are ~ L(a™).
(iii) Endg, (A(a)) = Agm.-
(iv) Every submodule of A(a™) is isomorphic to ¢?A(a™) for some d € Z>o,
and every non-zero Hp,qo-endomorphism of A(a™) is injective.

Proof. Part (i) is [BKM, Lemma 3.10], and part (ii) follows from [K12, Lemma
4.11], since (o) is minimal in KP(«) by convexity. By (i) and (ii), we have that
dimg Endg,,, (A(a™) = 1/TT7L, (1 - ¢2).

(iii) We have that NH,, = Endg,,  (A(«a)°™) acts naturally on A(«a)°™ on
the right, and so Ay, = Z(NH,y,) acts naturally on A(a™) = A(a)°™ey,. This
defines an embedding Aq,,», — Endg,, (A(a’™)). This embedding must be an
isomorphism by dimensions.

(iv) In view of Lemma 2.13, every non-zero f € k[Xi,...,Xn] € NH,, =
Endg,,, (A(«)®™)°P acts as an injective linear operator on A(«)°™. The result
now follows from (2.14) and (ii). O

Finally, we consider a general case. Let a € Q1 and A = (A[",...,\!™) €
KP(a) with Ay > -+ > A;. We have a natural embedding

A)\1,m1 - ®A)\57m5 - EndHa(A(/\))7 fi®--® fs= fio---o fs. (2'16)

Theorem 2.17. Let « € QT and A = (\[",..., A7) € KP(a) with A\y > -+ >
As. Then

EndHa (A()\)) = A)\l,ml R Q A)\S’ms
via (2.16), and every non-zero Hy-endomorphism of A(N) is injective.
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Proof. Tt is easy to see from Theorem 2.15(iv) that every non-zero endomorphism
in the image of the embedding (2.16) is injective. To see that there are no other
endomorphisms, we first use adjointness of End and Res to see that Endg_ (A(X))
is isomorphic to

Homp,, \ @-©Hn,\, (AR - BA(N), Res;, maaA(N)),

ml)\lv-"v

and then note that by the Mackey Theorem, as in [M, Lemma 3.3], we we have
Res® AN Z AN K- KAN). O

SmiAi,..msAs
3. PROOF OF THEOREM A

We give the proof of Theorem A based on the recent work of Kashiwara-Park
[KP]. Our original proof was different and relied on some unpleasant computation
for non-simply-laced types. For simply laced types however, our original proof is
very simple and elementary, and so we give it later in this section, too.

3.1. Proof of Theorem A modulo a hypothesis. The following hypothesis
concerns a key property of cuspidal standard modules and is probably true beyond
finite Lie types:

Hypothesis 3.1. Let a be a positive root of height n and 1 <7 <n. Then upon
restriction to the subalgebra k[x,| C H,, the module A(«) is free of finite rank.

The goal of this subsection is to prove Theorem A assuming the hypothesis.
In §3.2 the hypothesis will be proved using results of Kashiwara and Park, while
in §3.3 we will give a more elementary proof for simply laced types.

Lemma 3.2. Hypothesis 3.1 is equivalent to the property that x1,...,x, act by
injective linear operators on A(a).

Proof. The forward direction is clear. For the converse, assume that xz, acts
injectively on A(«). We construct a finite basis for 1;A(a) as a k[x,]-module for
every ¢ € I¢. Let m := deg(z,1;). For every a =0,1,...,m—1, let d, be minimal
with d, = a (mod m) and 1;A(a)g, # 0. Pick a linear basis of &7 ' 1;A(a)q,
and note that the k[z,]-module generated by the elements of this basis is free.
Factor out this k[z,]-submodule, and repeat. The process will stop after finitely
many steps, thanks to Corollary 2.12. (]

While Hypothesis 3.1 claims that every k[z,] acts freely on A(«), no k[z,, x|
does:

Lemma 3.3. Let « € R* be a root of height n > 1. Then, for every vector
v € Aa), and distinct r,s € {1,--- ,n}, there is a polynomial f € klz,y| such
that f(z,xs)v =0.

Proof. We may assume v is a homogenous weight vector. By Corollary 2.12, the
dimensions of the graded components of A(«a) are uniformly bounded. The result
follows, as the number of linearly independent degree d monomials in x,y grows
without bound. O

One can say more about the polynomial f in the lemma, see for example
Proposition 3.14.
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Now, let @ € QT be arbitrary of height n, and A = (A\; > --- > \)) € KP(a).
Setting Sx = Shyr;) X o+ X Spe(n) C Sn, integers 7,5 € {1,...,n} are called
A-equivalent, written r ~) s, if they belong to the same orbit of the action of S

on {1,...,n}. Finally, recalling the idempotents (2.4), we write 1) := 1), _»,.

Lemma 3.4. Leta € Q1, n = ht(a), and A Z p be elements of KP(a). Ifw € S,

satisfies 11,1, # 0 then there exists some 1 < r < n such that r ~\ r +1, but
w(r) %u wi(r+1).

Proof. Write A\ = (A\y > -+ > N) and g = (g1 > -+ > py). The assumption
1 \Twl, # 0 implies that i* = w-i* for some ¢ € TMM and ¢4 € [H1-km  Write
it =47 -4 with i) € I’ for all a, and 4" = 4}’ - - -4, with i} € I* for all b.
Assume for a contradiction that for every 1 < r < n we have r ~) r 4+ 1 implies
that w™(r) ~, w™'(r +1). Then there is a partition {1,...,1} = | |i", 4, such
that up = ZaeAb Ag for all b=1,...,m. By convexity, cf. [ BKM, Lemma 2.4],
we have min{\, | a € Ay} < pp < max{\, | @ € Ap}. This implies A > pu. O

Theorem 3.5. Let a € QT and \,n € KP(«). If X # p, then
Hom, (AN, Au)) = 0.

Proof. Let n =ht(a) and write A= (\y > - > N) and p= (g1 > -+ > ). It
suffices to prove that

Homp, (A(A1) o -0 A(N), A1) o+ 0 A(m)) = 0.

If not, let ¢ be a nonzero homomorphism. By Theorem 2.8(ii), we may assume
that A < p. Using Lemma 3.3, pick a generator v € A(A;) o---0A()\;) such that
v = 1v and for any r ~) r + 1, there is a non-zero polynomail f € k[z,y] with
f(zr,zr41)v = 0. Then f(zy, zr41)p(v) = 0 as well.

Denote by S* the set of shortest length coset representatives for S,,/S,,. Then,
we can write (v) = >, cqu Tw ® vy for some vy, € A1) ® -+ - @ A(py,). Since
p(v) = 1xp(v) and 1,v, = vy, we have that 1y7,1, # 0 whenever v,, # 0. In
particular, if u € S* is an element of maximal length such that v, # 0, then by
Lemma 3.4, 7 ~) r + 1 and u=*(r) £, u=(r + 1) for some 1 <r < n.

Now, we have:

f@r, xri1)(v) = far, Tri1) Z Tw & Uy
weSH
= f($r7$r+1)7—u ® Uy + Z f(xn:ﬂr—l—l)'rw & Uy
wH#u
=Ty ® f(xufl(r)vxufl(r-l—l))vu + (*)7
where () is a sum of elements of the form 7, ® v, with v/, € A1) ®- - @ A,
and w € S*\ {u}. The last equality follows because in H,, for all 1 <t < n and
w € Sy, we have that x47, = Ty -1() + (¥%), where (x*) is a linear combination
of elements of the form 7, with y € S,, being Bruhat smaller than w.
Since u=(r) #, u=l(r + 1), there are distinct integers a,b € {1,...,m} and
integers 1 < ¢ < ht(u,) and 1 < d < ht(up) such that for any pure tensor
v=0'@ @™ e A(u) @ ® A(um), and s,t € Zxg, we have

xi,l(r)xifl(rﬂ)v =@ @@zt e. - @u™
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By Hypothesis 3.1, f(2y-1(), Ty-1(r41))0u # 0. Hence f(x,, 2, 41)p(v) # 0 giving
a contradiction. O

3.2. Proof of the Hypothesis using Kashiwara-Park Lemma. We begin
with a key lemma which follows immediately from the results of [KP]:

Lemma 3.6. Let « € RT, n = ht(a) and i € I. Define

pmzzz( I :c)l

el “relln)ir=i
Then p; o A(a) # 0.
Proof. This follows from [KP, Definition 2.2(b)] and [KP, Proposition 3.5]. O

Theorem 3.7. Let « € R™ have height n. Then, z™v # 0 for all 1 < r < n,
m € Zx>o, and nonzero v € A(a). In particular, Hypothesis 3.1 holds.

Proof. The ‘in particular’ statement follows from Lemma 3.2.

We may assume that v is a weight vector of some weight 2. Let ¢ = ¢,. The
element p; , defined in Lemma 3.6 is central by Theorem 2.3. By Lemma 3.6 and
Theorem 2.17, the multiplication with p; o on A(a) is injective, so multiplication
with pj, is also injective. But pj’;, involves x,1;, so 0 # pji,v = ha;"v for some
h € H,, and the theorem follows. O

3.3. Elementary proof of the Hypothesis for simply laced types. Through-
out this subsection, we assume that the root system R is of (finite) ADE type.

Let @ = aja1 + -+ aqoq € Q1 and n = ht(a). Pick a permutation (i1, ...,%;) of

(1,...,1) with a;; > 0, and define ¢ := z'tllil 17” € I“. Then the stabalizer of ¢

in .S, is the standard parabolic subgroup 5; := Sai1 X oo X Sail- Let S* be a set

of coset representatives for S,,/S;. Then by Theorem 2.3, the element

2=z = Z (xw(l) + .+ xw(ail))lw.i (38)
weS?
is central of degree 2 in H,. For any 1 < r < n, note that
e =2~ O ((Tw@) = 20) + + Tuiay,) — 20) L. (3.9)
weS?
Let H!, be the subalgebra of H, generated by
{LileeI*tu{n |1<r<n}U{z, —z,41 |1 <r<n}
For the reader’s convenience, we reprove a lemma from [BK, Lemma 3.1]:

Lemma 3.10. Let a, , and z be as above. Then:
(1) {(x1 —x2)™ - (Tp—1 — xp)"™ ' Twli | My € Z>p,w € Syt € I} is a
basis for HY,.
(ii) If ai, - 1 # 0 in k, then there is an algebra isomorphism

H, = H!, ®k[z]. (3.11)
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Proof. In view of the basis (2.2), part (i) follows on checking that the span of the
given monomials is closed under multiplication, which follows from the defining
relations. For (ii), note using (3.9) that the natural multiplication map k[z] ®
H! — H, is surjective. It remains to observe that the two algebras have the
same graded dimension. O

Let @ now be a positive root. Then one can always find an index i; with
a;, - 1 # 0, so in this case we always have (3.11) for an appropriate choice of 3.
We always assume that this choice has been made. Following [BK], we can now
present another useful description of the cuspidal standard module A(«). Denote
by L'(«) the restriction of the cuspidal irreducible module L(«) from H, to HY,.

Lemma 3.12. Let o € RT.
(i) L'(«) is an irreducible H. -module.
(i) A(e) = Hy @pr, L'(cv).
(iii) The element z acts on A(«) freely.

Proof. Note that z acts as zero on L(«), which implies (i) in view of (3.11).
Moreover, it is now easy to see that H, ®ps L'(«) has a filtration with the
subfactors isomorphic to qzdL(a) for d = 0,1,.... Furthermore, by Frobenius
Reciprocity and (i), the module H, ®p L'(«) has simple head L(a). Now (ii)
follows from Theorem 2.11(ii). Finally, (iii) follows from (ii) and (3.11). O

Using the description of A(«) from Lemma 3.12(ii), we can now establish
Hypothesis 3.1:

Theorem 3.13. Let « € R™ and {v1,...,un} be a k-basis of L'(«). Then
the k[z,]-module A(a) is free with basis {1 ® v1,...,1 ® vy}. In particular,
Hypothesis 3.1 holds for simply laced types.

Proof. By (3.9), we can write x, = a%_z + (%), where (x) is an element of H/,. For
each 1 < m < N, we have

b

1

21 @uv,) = <a_> 22 @ vy 4 (),
k

where (xx) is a linear combination of terms of the form 2¢ ® v; with ¢ < b. So

{1®wv1,...,1®@vy} is a basis of the free k[z,]-module A(a). O

The following strengthening of Lemma 3.3 is not needed for the proof of The-
orem A, but we include it for completeness.

Proposition 3.14. Let « € R and n = ht(a). For any 1 < r,s < n, there is
d € Z~qo such that (x, — x,)¢ annihilates A(a).

Proof. Pick d such that (z, — z,)¢ annihilates L(«). Since A(a) = Ho ®p7 L' (cv)
is spanned by vectors of the form 2" ®v' with m € Z>o and v € L'(«), it suffices
to note that (z, — z,)4(z™ ®@v') = 2™ @ (x, — x5)% = 0. O
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4. REDUCTION MODULO p

4.1. Changing scalars. In this subsection we develop a usual formalism of mod-
ular representation theory for KLR algebras. There will be nothing surprising
here, but we need to exercise care since we work with infinite dimensional algebras
and often with infinite dimensional modules.

From now on, we will work with different ground rings, so our notation needs
to become more elaborate. Recall that the KLR algebra H, is defined over an
arbitrary commutative unital ring k, and to emphasize which k& we are working
with, we will use the notation H,j or H,.. In all our notation we will now
use the corresponding index. For example, if k is a field, we now denote the
irreducible cuspidal modules over H, j by L(c)y.

Let p be a fixed prime number, and F := Z/pZ be the prime field of char-
acteristic p. We will use the p-modular system (F,R,K) with R = Z, and
K = Q. Oftentimes (when we can avoid lifting idempotents) we could get away
with R = 7Z, K any field of characteristic zero, and F any field of characteristic p.

Recall from Section 2 that for a left Noetherian graded algebra H, we denote by
H-mod the category of finitely generated graded H-modules, for which we have
the groups extt, (V,W) and Ext% (V,W). To deal with change of scalars in Ext
groups, we will use the following version of the Universal Coefficient Theorem:

Theorem 4.1. (Universal Coefficient Theorem) Let Vg, Wr be modules in
H, g-mod, free as R-modules, and k be an R-algebra. Then for all j € Z>q there
is an exact sequence of (graded) k-modules

0— Ext}'{a VR, Wg) ®pk — Ext}'{a (Vi ®r k, Wr ®r k)

ok
— Tor{’ (Exty! (Va, Wr), k) = 0.
In particular,

Ext}'{ayR(VR, Wgr) ®@p K = Extjl'{a,K(VR @r K,Wr ®r K).

Proof. This is known. Apply HomHa’R(—,WR) to a free resolution of Vg to
get a complex C, of free (graded) R-modules with finitely many generators in
every graded degree. Now follow the proof of [Rot, Theorem 8.22]. The second
statement follows from the first since K is a flat R-module. O

We need another standard result, whose proof is omitted.
Lemma 4.2. Let k= K or F, Vg, Wr € H, r-mod be free as R-modules, and
O—)WRéERl)VR—)O
be the extension corresponding to a class & € Ext}{a R(VR, Wg). Identifying
Ext}{a VR, WR) ®p k with a subgroup of Ext}{a (VR ®@r k,Wr ®r k), we have
that y y
0—>WR®Rk‘L®—I>k ER®R]€7T®—I>k Ve®rk —0
is the extension corresponding to a class £ ® 1y € Ext}{a R(VR, Wr) ®r k.

Let k = K or I, and V}, be an H, j-module. We say that an H, r-module
Vg is an R-form of Vj if every graded component of Vg is free of finite rank
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as an R-module and, identifying H, gr ®g k with H, j, we have Vg @p k =V},
as H, p-modules. If k& = K, by a full lattice in Vx we mean an R-submodule
VR of Vi such that every graded component V; g of Vg is a finite rank free R-
module which generates the graded component V; - as a K-module. If Vg is an
H, g-invariant full lattice in Vi, it is an R-form of V. Now we can see that
every Vi € H, g-mod has an R-form: pick H, k-generators vy, ..., v, and define
VR:=Hapr-vi+- -+ Hor- v1.

The projective indecomposable modules over H, r have projective R-forms.
Indeed, any P(\)F is of the form H, pey p for some degree zero idempotent ey p.
By the Basis Theorem, the degree zero component H, ro of H, r is defined
over R; more precisely, we have H, o = Hy ro ®gr k for k = K or F. Since
H, ry is finite dimensional, by the classical theorem on lifting idempotents [CR,
(6.7)], there exists an idempotent ey p € Hy g such that ey p = ey g ® 1p, and
P(A\) g := Hq gey g is an R-form of P(\)p. The notation P(\)g will be reserved
only for this specific R-form of P(A)p. Note that, while the H, r-module P()\)g
is indecomposable, it is not in general true that P(\)r ®r K = P(\)g, see
Lemma 4.8 for more information.

Let Vi € H, k-mod and Vg be an R-form of Vg. The H, p-module Vg ®g F
is called a reduction modulo p of Vi. Reduction modulo p in general depends on
the choice of V. However, as usual, we have:

Lemma 4.3. If Vg € H, g-mod and Vg is an R-form of Vi, then for any
A € KP(«a), we have

[VR RprF: L()\)F]q = dimq HomHa,K (P()\)R ®pr K, VK).
In particular, the composition multiplicities (Vg @ F' : L(X)F], are independent
of the choice of an R-form Vg.

Proof. We have [Vg ®@g F : L(A\)r|q = dimg Homgpg, ..(P(A\)r, VR ®r F). By the
Universal Coefficient Theorem,

HOII]HQ’F(P()\)F, VR QR F) = HOII]HC“R(P()\)R, VR) QR F.

Moreover, note that Homp, ,(P(A)g,Vg) is R-free of (graded) rank equal to
dim, Homp, (P(A)R,Vr) ®r k for k = F or K. Now, by the Universal Coeffi-
cient Theorem again, we have that

dim, Homp, ,(P(\)g,Vr) ®r K = dim, Homp, (P(M\)r ®r K,Vr ®r K),
which completes the proof, since Vi @p K = V. O

Our main interest is in reduction modulo p of the irreducible H, g-modules
L(N)g. Pick a non-zero homogeneous vector v € L(\)g and define L(\)g =
Hyr-v. Then L(A\)g is an H, g-invariant full lattice in L(\)g, and reducing
modulo p, we get an H, p-module L(A\)r ®r F. In general, L(A\)r ®pr F' is not
L(X\)p, although this happens ‘often’, for example for cuspidal modules:

Lemma 4.4. [Kl1, Proposition 3.20] Let « € RT. Then L(a)p @r F = L(a) .

To generalize this lemma to irreducible modules of the form L(a™), we need to
observe that induction and restriction commute with extension of scalars. More
precisely, for 81,...,8n € QT, @ = f1 + -+ + Bm, and any ground ring k, we



14 ALEXANDER S. KLESHCHEV AND DAVID J. STEINBERG

denote by Hp, . g,..r the algebra Hpg, . ®, - -- ®j, Hg,, i identified as usual with a
(non-unital) subalgebra 1g, 3. .xHak1g,. . gk © Ha k-

Lemma 4.5. Let Vg € Hp, . p,..g-mod and Wi € H,r-mod. Then for any
R-algebra k, there are natural isomorphisms of H, j-modules
(Indg, 5, Vr) ®@rk=Indj 5 (VR ®grk)
and of Hg, . g,..k-modules
(Res3, 5, Wr) ®rk =Ress, 5 (Wr®rk).
Let € Rt and m € Z~q. If k is a field, by Lemma 2.5, we have L(a™

)k
L(a)y™. By Lemma 4.5, L(a™)g := (L(a)g)°™ satisfies L(a™)r ®r k ~ L(a™)
for kK = K or F. Taking into account Lemma 4.3, we get:

~

Lemma 4.6. Let o € R™ and m € Z~q. Then reduction modulo p of L(a™)f is
L(a™)F.

It was conjectured in [KIR, Conjecture 7.3] that reduction modulo p of L(\)g
is always L(\)r, but counterexamples are given in [W] (see also [BKM, Example
2.16]). Still, it is important to understand when we have L(\)gr ®p F' = L(\)p:

Problem 4.7. Let a € Q.

(i) If A € KP(«), determine when L(A\)p @ F = L(\)F.

(ii) We say that James’ Conjecture has positive solution (for «) if the iso-
morphism in (i) holds for all A € KP(«a). Determine the minimal lower
bound p, on p = char F' so that James’ Conjecture has positive solution
for all p > p,.

At least, we always have:

Lemma 4.8. Let a € QT and )\ € KP(«). Then in the Grothendieck group of
finite dimensional H, p-modules we have

(LR @k Fl = [LOA)F]+ Y axulL(1)F) (4.9)
pn<A
for some bar-invariant Laurent polynomials ay ,, € Z[q, q"']. Moreover,
P\r®r K 2 PNk & aun Pk
B>

Proof. Let k = K or F and consider the reduced standard module A(\)g, see
(2.6). In view of (2.7), we can write

[L(A)] := [AN)] + Z S A ()]
p<A

for some ff u € Z[q,q"']. Using Lemmas 4.5, 4.4 and induction on the bilexico-
graphical order on KP(\), we now deduce that the equation (4.9) holds for some,
not necessarily bar-invariant, coefficients ay , € Z|q, ¢~ ']. Then we also have

chy (LR ®r F) = chy (LA F) + D axuchy (L(1)F).
p<A
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Since reduction modulo p preserves formal characters, the left hand side is bar-
invariant. Moreover, every ch, (L(p)r) is bar-invariant. This implies that the
coefficients ay , are also bar-invariant, since by [KL1, Theorem 3.17], the formal
characters {chy L(v)r | v € KP(a)} are linearly independent.

Finally, for any u € KP()), we have

apx = dimg Homp, . (P(\)r ®r K, L(1) k),
thanks to by Lemma 4.3. This implies the second statement. O

Remark 4.10. For £ = K and F', denote by dkw the corresponding decom-
position numbers, see (2.7), and consider the decomposition matrices Dk .=
(di,u))\MGKP(a)' Setting A := (axu)auckp(a), We have DF = DXA. So the
matrix A plays the role of the adjustment matriz in the classical James’ Con-
jecture [J]. Note that James’ Conjecture has positive solution in the sense of
Problem 4.7 if and only if A is the identity matrix.

4.2. Integral forms of standard modules. Our next goal is to construct some
special R-forms of standard modules. We call an H, r-module A(A)g a universal
R-form of a standard module if it is an R form for both A(A\)x and A(\)p. We
show how to construct these for all A.

By Theorem 2.8(i), for any field k, the standard module A(a™); has simple
head L(a™)k. Pick a homogeneous generator v € A(a™)k and consider the
R-form A(a™)gr := Hpar - v of A(a™)k. Further, for any o € Q1 and \ =
(AT, .. A) € KP(«) with A; > -+ > X, we define the following R-form of
A(N) g (cf. Lemma 4.5):

AN = AOT )0 0 AN p.

Let 1()\),R = Limiar,...msAs;R- Then, for an appropriate set SO of coset repre-
sentatives in a symmetric group, we have that {7,1\ g | w € SN} is a basis of
Ha r1()),g considered as a right 1() pHa r1()) g-module. So

A(MNg = @ Twly,r @ AN )R @ - @ AN R
weSM)

In particular, choosing v; € A(N") x with AN )r = Hpa, r-ve forall 1 <t <
and setting v := 1) g ® v1 ® - - - ® vg, we have

A()\)R = Ha,R -V (4.11)
Now we show that A(\)g is a universal R-form:

Lemma 4.12. Let « € Q%1, and A € KP(a). Then AAN)r Qr F = A(\)p.

Proof. In view of (2.10) and Lemma 4.5, we may assume that A is of the form
(8™) for a positive root B so that a = mf. By Lemma 4.3, we have for any
e KP(a):

[A(B™)r @R F : L(p)F|q = dimg Homp, . (P(p)r ®r K, A(8")K)-

By convexity, (™) is a minimal element of KP(«). So Lemma 4.8 implies that
all composition factors of A(f™)g ®r F are ~ L(™)p. Moreover,

[AB™)r @R F - L(B™)Flg = [AB™)k : L(B™) kg = [AB™)F - L(B™)Flg-
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By construction, A(8™)g is cyclic, hence so is A(™)r@rF. So, A(f™)r@rF
is a module with simple head and belongs to the category of all modules in
H, p-mod with composition factors ~ L(3™)p. Since (™) is minimal in KP(«),
we have that A(S™)p is the projective cover of L(S™)p in this category, see
[K12, Lemma 4.11]. So there is a surjective homomorphism from A(8™)p onto
A(S™)r®p F. This has to be an isomorphism since we have proved that the two
modules have the same composition multiplicities. O

From now on, the notation A(\)p is reserved for a universal R-form. We begin
with a rather obvious consequence of what we have proved so far:

Proposition 4.13. Let o € QT and \, u € KP(a).

(i) If X # p, then Hompy, (A(N)r, A(p)r) = 0.
(ii) For any R-algebra k, we have

Endp, »(A(Nr) ®r k = Endy, x(A(Nr @R F).
(i) If X £ u, then Extfq R(A()\)R,A(M)R) =0 forall j >1.

Proof. By the Universal Coefficient Theorem, for any j > 0 we can embed
Ext] R(A(/\)R,A( )r) ®r F into Extj F(A( Ve, A(p)r). So (i) follows from
)

Theorem A, and (iii) follows from Theorem 2. 8(iii). Now (ii) also follows from the
Universal Coefficient Theorem, since Ext} i, o(AN)r, A(N)r) = 0 by (iii), which
makes the Tori-term trivial. O

It turns out that torsion in the Ext groups between A(\)g’s bears some im-
portance for Problem 4.7, see Remark 4.17. So we try to make progress in un-
derstanding this torsion. Given an R-module V, denote by VT°Ts its torsion
submodule. If all graded components V; of V' are finitely generated and trivial
for d <« 0, then the graded rank of V is defined as

rank, V := Z(rank Vi) ¢t € Z((q)).
d
Of especial importance for us will be the rank of the torsion in Ext-groups:

rank, Ext}, (AN g, A(u)r)™",
The following result was surprising for us:
Theorem 4.14. Let « € Q" and \, u € KP(«). Then the R-module
Extly (AR, A()r)
is torsion-free.

Proof. By Proposition 4.13, we may assume that A < p. By the Universal Coef-
ficient Theorem, there is an exact sequence

0— HOII]HC“R(A()\)R, A(M)R) Rr F — HOIIlHa’F(A()\)F, A(,U)F)
— Tor{z(Ext}{a’R(A(/\)R, A(p)r), F) — 0.

By Theorem A, the middle term vanishes, so the third term also vanishes, which
implies the theorem. U

We will need the following generalization:
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Corollary 4.15. Let @ € Q, u € KP(«a), and V be an H, g-module with a
finite A-filtration, all of whose subfactors are of the form ~ A(N)g for X # pu.
Then Ext}{a »(V.A(u)R) is torsion-free.

Proof. Apply induction on the length of the A-filtration, the induction base com-
ing from Theorem 4.14. If the filtration has length greater than 1, we have an
exact sequence 0 — V3 — V — V5 — 0, such that the inductive assumption
apples to V7, V. Then we get a long exact sequence

Homp, ,,(Vi, A(p)r) = Extyr , (Va, A(u)r)
— Ext}{a’R(V, A(p)g) — Ext}qa’R(Vl, A(p)R).

By Theorem A, the first term vanishes. By the inductive assumption, the second
and fourth terms are torsion-free. Hence so is the third term. O

While we have just proved that there is no torsion in Ext}ImR(A()\) rRyA(WR),
the following result reveals the importance of torsion in Ext?-groups.
Corollary 4.16. Let o € QT and \, u € KP(«). We have

dim, Extly,_, (A, A(w)r)
= dim, Exty (AN K, A(p)k) + ranky Exty (AN g, A(p)r)™.
In particular,
dim, Ext}qa’F(A()\)F,A(u)F) = dim, Ext}{a’K(A(A)K,A(u)K)
if and only if Ext%]ayR(A()\)R, A(p)R) is torsion-free.
Proof. By the Universal Coefficient Theorem, there is an exact sequence
0 — Exty (A(\r, A(n)r) ©r F — Bxty  (A\)r, Ap)r)
— Tor{%(Ext%IayR(A()\)R, A(p)r), F)—0
and an isomorphism
Exty (AR, A(u)r) ©r K = Exty (AN, A(p)k)-
The last isomorphism and Theorem 4.14 imply
dim, Ext}ImK(A()\)K,A(u)K) = rank, Ext}{a’R(A()\)R,A(u)R).
On the other hand,

rank, Exty;  (A(\g, A(p)r)™" = dim, Torf (Ext};  (A\r, A(n)r), F),

so the result now follows from the exactness of the first sequence. O

Remark 4.17. By Theorem 4.14, lack of torsion in EXt%]ayR(A(/\)R, A(u)r) is

equivalent to the fact that the extension groups Ext}; (A(X), A(u)) have the same
graded dimension in characteristic 0 and p. This is relevant for Problem 4.7. How-
ever, we do not understand the precise connection between Problem 4.7 and lack
of torsion in the groups Ext%a (AR, A(p)r). For example, we do not know

if such lack of torsion for all A\, i implies (or is equivalent to) James’ Conjecture
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having positive solution. In the next section we establish a different statement of

that nature. Set
Ar= P AWM
AeKP (o)

By the Universal Coefficient Theorem, all groups Extjﬁa’R(A(/\) rRyA(p)R) are

torsion free if and only if the dimension of the k-algebras Exty; (A, Ay) is the
same for k = K and k = I, and

Extyy, , (Ax, Ap) = Exty  (Ar, Ag) @rk

for k = K and F. We do not know if James’ Conjecture has positive solution
under the assumption that all groups Exty; (A(N g, A(u)Rr) are torsion-free.

4.3. Integral forms of projective modules in characteristic zero. Recall
that by lifting idempotents, we have constructed projective R-forms P(A)r of
the projective indecomposable modules P(\)p. Our next goal is to construct
some interesting R-forms of the projective modules P(\)x. As we cannot denote
them P(A)g, we will have to use the notation Q(\)g. We will construct Q(A)r
using the usual ‘universal extension procedure’ applied to universal R-forms of
the standard modules, but in our ‘infinite dimensional integral situation’ we need
to be rather careful. We begin with some lemmas.

Lemma 4.18. Let k be a field and V € H, -mod have the following properties:
(i) V is indecomposable;
(ii) V has a finite A-filtration with the top factor A(N)g;
(iii) Ext}{a’k (V,A(u)k) =0 for all p € KP(«).

Then V = P(\).

Proof. We have a short exact sequence 0 - M — P — V — 0, where P is a finite
direct sum of indecomposable projective modules. By [K12, Corollary 7.10(i)], M
has a finite A-filtration. Now, by property (iii), the short exact sequence splits.
Hence V is projective. As it is indecomposable, it must be of the form ¢%P(u).
By the property (ii), A = p and d = 0. O

For A € KP(a) and k € {F,K,R}, we denote by B, the endomorphism
algebra Endpy, , (A(M))°. Then A()); is naturally a right B p-module. We
will need to know that this B) j-module is finitely generated. In fact, we will
prove that it is finite rank free. First of all, this is known over a field:

Lemma 4.19. Let A € KP(«) and k be a field. Then:

(i) Baj is a commutative polynomial algebra in finitely many variables of
positive degrees.
(ii) Let Ny be the ideal in By j, spanned by all monomials of positive degree,
and M := A(N)gNag. Then AN)g/M = A(N)g, see the notation (2.6).
(i) Let vi,...,uvn € A(N)g be such that {vi + M, ..., oy + M} is a k-basis
of AN)g/M. Then {vi,...,on} is a basis of A(N)g as a By p-module.

Proof. For (i) see Theorem 2.17. For (ii) and (iii), see [K12, Proposition 5.7]. O

The following general lemma, whose proof is omitted, will help us to transfer
the result of Lemma 4.19 from K and F' to R:
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Lemma 4.20. Let Bg be an R-algebra and Vi be a Br-module. Assume that Br
and Vg are free as R-modules. If vy, ..., vn € Vg are such that {v1 @1, ..., oN®
1x} is a basis of VRRRrk as a BR@grk-module for k = K and F, then {vy,...,un}
s a basis of Vg as a Br-module.

Lemma 4.21. Let A € KP(«). As a By p-module, A(N)g is finite rank free.

Proof. Let A = (A["',...,AJ") for positive roots A\; > --- > ;. Choose v =
Loy,gk @01 @ -+ ®vs as in (4.11). There is a submodule M C A(M\)x with
ANk /M = A(N)k. Pick hy,...,hy € Hy g such that {hjo+M,... hyv+ M}
is an R-basis of A(A\) g = Hy g (v+M). By Lemma 4.19, {hjv®1y, ..., hyv®1;}
is a B) y-basis of A(A\)gr @r k for k = K or F. Now apply Proposition 4.13(ii)
and Lemma 4.20. O

Corollary 4.22. Let k € {F,K,R}, V € Hgj-mod, A € KP() and j € Zx>o.
Then Ext%{a (V,A(N)g) is finitely generated as a By -module.

&
Proof. Since H,}, is Noetherian, V' has a resolution by finite rank free modules
over H, . Applying Hompy, , (—, A(A)g) to this resolution, we get a complex with
terms being finite direct sums of modules ~ A(\)g, which are finite rank free over
B j, thanks to Lemmas 4.19 and 4.21. As B} j, is Noetherian, the cohomology
groups of the complex are finitely generated B p-modules. O

Remark 4.23. It is a more subtle issue to determine whether Extjﬁa (AN)E, V)
is finitely generated as a B) j-module. We do not know if this is always true.

Lemma 4.24. (Universal Extension Procedure) Let k € {F,K,R}, y €
KP(«a), and Vi, be an indecomposable H, j-module with a finite A-filtration, all
of whose subfactors are of the form ~ A(N)y for X 2 p. If k = R, assume in
addition that Vg ®@pr K is indecomposable. Let

r(q) := rank, Exty_, (Vi, A(u)x) € Zlg,q7"]

be the rank of Ext}{ayk(vk,A(u)k) as a B, -module. Then there exists an Hg -
module E(Vi, A(u)g) with the following properties:
(i) E(Vk, A(u)x) is indecomposable;
(ii) Extyy (Vi A(u)r) = 0;
(iii) there is a short exact sequence

0= @A)k = E(Vi, Alpw)r) = Vi = 0.
Proof. In this proof we drop H, j from the indices and write Ext! for Ext}{a o
etc. Also, when this does not cause a confusion, we drop k from the indices.
Let &,...,& be a minimal set of homogeneous generators of Ext!(V, A(u)) as
a By-module, and d, := deg(&) for s = 1,...,r, so that 7(q) = > _, q%. The
extension 0 — ¢~ A(u) — E; — V — 0, corresponding to &, yields the long
exact sequence

Hom (g~ A (), A()) —2+ Ext!(V, An)) % Ext!(Ey, A(u)) — 0.

We have used that Ext!(¢~®A(u), A(r)) = 0, see Proposition 4.13(iii). Note
that ¢~ A(u) = A(u) as Hy-modules but with degrees shifted down by d;.
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So we can consider the identity map id : ¢~ A(u) — A(u), which has degree
di. The connecting homomorphism ¢ maps this identity map to &. It fol-
lows that Ext'(E1, A(u)) is generated as a B,-module by the elements & =
P(&),...,& = ¥(&). Repeating the argument r» — 1 more times, we get an
extension

0= ¢ A& &g "A(u) =r(@)Ap) = E—=V =0
such that in the corresponding long exact sequence
Hom(E, A()) = Hom(r(g) A(r), Au))
25 Bxt!(V, A()) — Ext} (B, Au)) — 0,

for all s = 1,...,7, we have p(ms) = &, where 7 is the (degree ds) projection
onto the sth summand. In particular, ¢ is surjective, and Ext!(E, A(u)) = 0.

It remains to prove that F is indecomposable. We first prove this when &
is a field. In that case, if ¥ = E' & E”, then both E' and E” have finite A-
filtrations, see [K12, Corollary 7.10]. Since Ext!(A(u),A(N)) = 0 for X\ ¥ u,
there is a partition J' U J” = {1,...,7} such that there are submodules M’
©jeraBA() C ', M" 2 &g A(n) € E” and E'/M', M"/E" have A-
filtrations. Since Hom(A(u), V) = 0, we now deduce that V = E'/M' & E" /M".
As V is indecomposable, we may assume that E'/M’ = 0. Then some projection
7y lifts to a homomorphism E — A(u), which shows that this 7 is in the image
of x, and hence in the kernel of ¢, which is a contradiction.

Now let £ = R. Note that V' and F are free as R-modules since so are all
A(v)g’s. If ER is decomposable, then so is Er ® K, so it suffices to prove
that Fr ® K is indecomposable. In view of Corollary 4.15, the B, x-module
Ext!(Vg, A(p)r) ®r K = Ext' (Vg @r K,A(u)k) is minimally generated by
S, ® 1k, ..., & r ® 1. It follows, using Lemma 4.2, that Er ®gr K = Fk,
where Fi is constructed using the universal extension procedure starting with
the indecomposable module Vi := Vir ®r K as in the first part of the proof
of the lemma. By the field case established in the previous paragraph, Fg is
indecomposable. O

Let A € KP(«). For k € {R, K, F'}, we construct a module Q(\)j starting with
A(N)g, and repeatedly applying the universal extension procedure. To simplify
notation we drop some of the indices k if this does not lead to a confusion. Given
Laurent polynomials r9(q),71(q), ..., 7m(q) € Z[q,q™'] with non-negative coeffi-
cients and Kostant partitions A°, A\',... A™ € KP(«), we will use the notation

V =10(@)AN) [ 11(@)AN) |-+ | rm(@) A(N™)
to indicate that the H,-module V has a filtration V. =V5 D V3 D --- D V11 =
(0) such that Vi /Vii1 = rs(q)A(N) for s =0,1...,m.

If Extpy (A(X), A(w)) = 0 for all p € KP(a), we set Q(A)g := A(N). Other-
wise, let AI* € KP(«) be minimal with Extj; (A(X), A(AL®)) # 0. Note that this
AL might indeed depend on the ground ring k, hence the notation. Also notice
AE >N Let B\ AV, := E(A(N), A(AYF)), see Lemma 4.24. By construction
EAAYF) = AN | rie(@) A, where

r1.x(q) = rank, Ext}{a(A()\)yA()\l,k))
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as a Byix-module. This rank might depend on k, hence the notation. If
Extly, (B M), A() = 0
for all 4 € KP(a), we set Q(\)g := E(X, ALF),.. Otherwise, let A>F € KP(a) be
minimal with Exty; (E(X, AbF), A(A2%)) # 0. Note that A** > X and A»% #£ ALK,
Let E(\,AYF A2F) .= E(E(X, AYF), A(A2F)). By construction
BOWAF, 020, = AR | T a@AGN) | 7@ AN,
where
r2.k(q) = rank, Exty (E(X\AYF), A(ABF))

as a By2x-module. If Ext}{a(E()\, ALE AZEY A(p)) = 0 for all u € KP(a), we set
QU := B(A, AVE X2F).

Since on each step we will have to pick \* > X, which does not belong to

{AABE L NTLRY the process will stop after finitely many steps, and we will
obtain a module

BN A = AQ) [ Tra@AO) | | T s @A),

where
rek(q) = rankg Exty (B AMF, L XTERY AR, (4.25)
as a B/\t,k7k—module for all 1 <t < my, and such that
EXt}{a’k (E(A7 Al’k) s 7Amk7k)k7 A(lu’)k‘) =0
for all 4 € KP(a). We set Q(\)g := E(A, AVF o Ameok),
Theorem 4.26. Let a € QT and X € KP(«).
(i) For k=K or F, we have Q(\)i = P(\).

(ii) For k = K or F, the rank 1 ;(q) from (4.25) equals the decomposition
number dl;t,k’)\ forall 1 <t < my, and dﬁA =0forpg {MF|1<t<

(iii) mr = mg; setting m := mp, we may choose \VF = \LE  AmR —
N and then v g(q) = 1k (q) for all 1 <t < m.

(iv) QMR ®r K = P(Nk.

Proof. Part (i) follows from the construction and Lemma 4.18. Part (ii) follows
from part (i), the construction, and Theorem 2.8(v).

To show (iii) and (iv), we prove by induction on ¢ = 0, 1, ... that we can choose
AbE = \EK re r(q) = ¢,k (q) and
EOAYE N @p K2 BEOAVE N (4.27)

The induction base is simply the statement A(A)r ®p K = A(N)g. For the
induction step, assume that ¢ > 0 and the claim has been proved for all s < t.
Let §1.R, .-, &rr be a minimal set of generators of the By:.r gp-module

EXt}{ayR(E(A7 >‘17R7 SRR At_17R)R7 A(At7R)R)7
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so that r r(q) = deg(&1,r) + - - - + deg(&,r) is the rank of that module. Using
Corollary 4.15 and the Universal Coefficient Theorem, we deduce that A% can
be chosen to be Abf* and the Bji.r g-module

Ext! (AN g, AN ) @p K = Ext! (Va @ K, AN")K)

is minimally generated by {1 r ® 1k,...,& r ® 1k, so that ry x(q) = r¢r(q).
Finally (4.27) comes from Lemma 4.2. O

In view of Theorem 4.26(i), Q(\)r in general is not an R-form of Q(A\)p =
P(A\)p. For every A € KP(«), define the H, p-module X () := Q(\) g ® F.

Theorem 4.28. James’ Conjecture has positive solution for o if and only if one
of the following equivalent conditions holds:
(i) X(N) is projective;
(ii) () P(\)p for all A € KP(a);
(iii) ExtH LX), A(w)F) =0 for all A, n € KP(a);
(iv) ExtH A(QN)R, A(p)R) is torsion-free for all A, u € KP(a).

Proof. (i) and (ii) are equivalent by an argument involving formal characters and
Lemma 4.8. Furthermore, (i) and (iii) are equivalent by Lemma 4.18. Since since
Ext}{a Q) R, A(p)r) = 0 for all g, (iii) is equivalent to (vi) by the Universal
Coefficient Theorem. Finally, we prove that (ii) is equivalent to James’ Conjecture
having positive solution. If X(\) = P(\)p for all A, then they have the same
graded dimension, so the R-modules Q(\)r and P(A)g have the same graded
R-rank, whence the K-modules P(\) g = Q(A\)r®gr K and P(\)gr ®pr K have the
same graded dimension, therefore P(A\)r@r K = P(\) g for all A, see Lemma 4.8,
whence James’ Conjecture has positive solution.

Conversely, assume James’ Conjecture has positive solution. This means that
dff’)\ = dfz)\ for all pu, A\ € KP(«). By Theorem 4.26(ii), on every step of our
universal extension process, we are going to have the same rank of the Ext!-group
over K and F, so, by Theorem 4.26(iii), on every step of our universal extension
process, we are also going to have the same rank of the appropriate Ext'-groups
over R and F. Now, use Lemma 4.2 as in the proof of Theorem 4.26(iv) to show
that Q(\)gr ®r F = P(\)p. U

Remark 4.29. We conjecture that P(\)r has an X-filtration with the top quo-
tient X (\) and X(u) appearing a,(¢) times. On the level of Grothendieck

groups, this is true thanks to Lemma 4.8. But it seems not so obvious even that
X (X) is a quotient of P(A\)p
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