IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 19, NO. 4, APRIL 2020

2427

Supervised and Semi-Supervised Learning for
MIMO Blind Detection With Low-Resolution ADCs

Ly V. Nguyen, Student Member, IEEE, Duy Trong Ngo*’

, Member, IEEE., Nghi H. Tran 7. Senior Member, IEEE,

A. Lee Swindlehurst™, Fellow, IEEE, and Duy H. N. Nguyen"f . Senior Member, IEEE

Abstract—The use of low-resolution analog-to-digital convert-
ers (ADCs) is considered to be an effective technique to reduce the
power consumption and hardware complexity of wireless trans-
ceivers. However, in systems with low-resolution ADCs, obtaining
channel state information (CSI) is difficult due to significant
distortions in the received signals. The primary motivation of
this paper is to show that learning techniques can mitigate
the impact of CSI unavailability. We study the blind detection
problem in multiple-input-multiple-output (MIMO) systems with
low-resolution ADCs using learning approaches. Two methods,
which employ a sequence of pilot symbol vectors as the initial
training data, are proposed. The first method exploits the use of
a cyclic redundancy check (CRC) to obtain more training data,
which helps improve the detection accuracy. The second method
is based on the perspective that the to-be-decoded data can itself
assist the learning process, so no further training information is
required except the pilot sequence. For the case of 1-bit ADCs,
we provide a performance analysis of the vector error rate for the
proposed methods. Based on the analytical results, a criterion for
designing transmitted signals is also presented. Simulation results
show that the proposed methods outperform existing techniques
and are also more robust.

Index Terms—MIMO, low-resolution ADCs, blind detection,
non-coherent detection, learning techniques.

I. INTRODUCTION

IRELESS spectrum is limited and the currently used
spectrum, 700 MHz — 2.6 GHz, is not sufficient to
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support the demand of future wireless users [1]. Recently,
massive MIMO and millimeter-wave (mmWave) communi-
cations have attracted great attention and have been consid-
ered promising solutions for this challenge [2]-[5]. While
massive MIMO communications enhance the throughput by
using tens to hundreds of antenna elements [6]-[8], mmWave
technologies utilize higher frequencies, 30 GHz — 300 GHz,
where available bandwidths are capable of providing very high
communication speed (e.g., on the order of Gbps) [9], [10].

Although massive MIMO and mmWave technologies
are being deployed for next generation wireless networks,
they still appear to face many technical challenges. More
specifically, in massive MIMO systems, a large number of RF
chains are required, resulting in significant increases in hard-
ware complexity, system cost and power consumption [11].
For mmWave systems, the sampling rate has to be sufficiently
high to satisfy the Nyquist theorem, which will lead to
high power consumption by the analog-to-digital converters
(ADCs) [12], [13]. In addition, a massive number of active
antennas and a high sampling rate demand prohibitively
high bandwidth on the fronthaul link between the baseband
processing unit and the RF chains. For example, a receiver
that is equipped with 100 antennas, where each antenna
employs two separate ADCs for the in-phase and quadrature
components, and where each ADC samples at a rate of 5 GS/s
with 10-bit precision would produce 10 Terabit/s of data,
which is much higher than the rates of the common public
radio interface in today’s fiber-optical fronthaul links [14].

A promising solution for the these issues is to use low-
resolution ADCs (i.e., 1-3 bits precision) since the power
consumption of the ADCs increases exponentially with the
number of bits per sample and linearly with the sampling
rate [12], [13]. In the extreme case of 1-bit ADCs, auto-
matic gain controls are not required since the quantization
requires only a single comparator for each of the in-phase and
quadrature channels, and many other RF components such
as mixers, frequency synthesizers and local oscillators can
also be eliminated in some system architectures [15], [16].
However, channel estimation and data detection are sig-
nificantly more challenging when low-resolution ADCs are
employed due to their strong nonlinear behavior. Numer-
ous detection methods have been proposed in the literature
[17]-[25] to deal with such nonlinearities. Maximum-
likelihood (ML) detection approaches are studied in [17]-[19].
The ML detection problem was relaxed to a convex opti-
mization program in [18], [20] for it to be solvable by
low-complexity algorithms. A zero-forcing (ZF) detector was
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introduced in [17] and minimum mean squared error (MMSE)
detectors were proposed in [21], [22]. Several other tech-
niques such as Generalized Approximate Message Passing
(GAMP) and sphere decoding were employed in [23] and [24],
respectively. Bayes inference and the GAMP algorithm were
studied in [25] to develop a joint channel-and-data estimation
method.

All of the detection techniques mentioned above are coher-
ent, which means they require Channnel State Information
(CSI). However, obtaining CSI in MIMO systems with low-
resolution ADC:s is difficult due to the significant distortions of
the received signals. Different approaches have been proposed
to estimate CSI in the presence of low-resolution ADCs. ML
channel estimators for 1-bit ADCs are presented in [20] and
[26], where the work in [26] focused on sparse broadband
channels. The least-squares approach was studied for different
scenarios in [18], [22], [27]. The Bussgang decomposition was
applied in [28], [29] to form the MMSE channel estimator. The
mmWave MIMO channel estimation problem was formulated
as a compressed-sensing problem in [30]-[33] by exploiting
the sparsity of such channels. Although much progress has
been made, the channel estimation accuracy is still severely
limited due to the coarse quantization effect of the low-
resolution ADCs [34]. Longer pilot sequences have been
proposed to compensate for the quantization errors, but this
often requires sequences that are many times longer than the
number of co-channel users [30], [33], [35].

Recently, there are several results on blind detection for
MIMO systems with low-resolution ADCs reported in [34],
[36], [37]. The common approach of these papers was to
use a training sequence to learn the nonlinear input-output
relations of the system and then perform data detection based
on the learned results. Hence, information about the channel
is not required. For systems with perfect ADCs, there are
also several recent results on blind detection using learning
approaches. For example, the blind detection problem was
addressed as a clustering problem, which was solved by
a deep neural network, the Expectation-Maximization (EM)
method, and the K-means clustering technique in [38], [39]
and [40], respectively. Some other works have employed the
autoencoder model for end-to-end learning [41], [42].

The authors of [34], [36] proposed three supervised learning
methods, referred to as empirical-Maximum-Likelihood Detec-
tion (eMLD), Minimum-Mean-Distance Detection (MMD),
and Minimum-Center-Distance Detection (MCD). These blind
detection methods are simple and easy to implement, but
their efficiency is heavily dependent on the training sequence.
When the length of the training sequence is short, the learned
results do not correctly describe the input-output relations of
the system. Based on this observation, we propose in this
paper two efficient learning methods to resolve the problem of
short training sequences. Since MCD outperforms eMLD and
MMD, and the complexity of MCD is also lower than that of
eMLD and MMD, we compare our proposed methods to MCD
only. Preliminary results on the proposed learning methods
were reported in [37]. In this paper, we provide a complete
analysis of the proposed methods and make the following
contributions:
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» We propose two learning methods that are capable of
achieving more precise input-output relations compared
to [36] given the same training sequence, and hence
will improve the detection accuracy. The first method
exploits the use of the cyclic redundancy check (CRC)
to acquire more ftraining data. In the second method,
no CRC is required, but the to-be-decoded data is self-
classified into groups, which help improve the learned
results. This method is based on the K-means clustering
technique. However, unlike the detection method in [40],
which is specifically designed to work with Space Shift
Keying modulation and only one transmit antenna is
active in each time slot; our method is applicable for more
common modulation schemes, such as BPSK or QPSK,
and all transmit antennas are active in each time slot
which enables spatial multiplexing gains. In addition,
the proposed method takes into account the symmetrical
structure of the transmitted signal space to help improve
the learned results.

» The proposed learning methods are applicable for detec-
tion with 1-bit or few-bit ADCs. We show via simulations
that the proposed methods are more robust than MCD in
terms of the training sequence length. Particularly, for
extremely short training sequences, the performance of
MCD is degraded significantly while that of our pro-
posed methods is more stable. For example, in a system
with 2 transmit antennas, 16 receive antennas, and BPSK
modulation, the gain in bit error rate (BER) produced
by the proposed methods can be up to 7-8 dB for
BERs between 1072 and 10~°. Even for moderately long
training sequences, the gain of our proposed methods is
still considerable, between 3-dB and 4-dB.

+ We provide performance analyses of the vector error rate
(VER) for the case of 1-bit ADCs at both low and high
signal-to-noise ratios (SNRs). Assuming perfectly learned
input-output relations, we first approximate the pairwise
VER at low SNR by using the Bussgang decomposition
and use this approximation to derive an upper bound on
the VER. The asymptotic VER performance at infinite
SNR for Rayleigh fading channels is then analyzed.
Simulation results confirm the accuracy of our analyses
at both low and high SNRs.

» Finally, based on the performance analysis, we propose
a criterion for designing transmitted signals when only a
portion of all possible signals are used for transmission.

Notation: Upper-case and lower-case boldface letters denote
matrices and column vectors, respectively. The notation 1 is
a vector where every element is equal to one. E[-] represents
expectation and P[] is the probability of some event. I[-] rep-
resents the indicator function, which equals 1 if the argument
event is true and equals 0 otherwise. Depending on the context,
the operator | - | is used to denote the absolute value of a real
number, or the cardinality of a set. The transpose and conjugate
transpose are denoted by [T and []¥, respectively. The
operator mod(a, b) calculates a modulo b. The notations Var[-]
and Cov[-, -] denote the variance and covariance, respectively.

The integral ®(a) = ﬁfffx’ e~"/2d¢ is the cumulative
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TABLE I
LIST OF IMPORTANT NOTATIONS

Definition

number of transmit antennas
number of receive antennas
length of block-fading interval (length in symbols)
length of training sequence (length in symbols)
length of data sequence (length in symbols)
constellation of data symbols

size of constellation M, ie., M = |[M)|

noise power

signal-to-noise ratio

step size of quantizer

number of resolution bits of quantizer

quantizer of b-bit resolution

a threshold of quantizer, { € {1,...,2* — 1}
number of possible transmitted symbol vectors

set of label indices, ie., X = {1,..., K}
transmitted symbol vector (or label) k
set of possible labels, ie., ¥ = {%1,..

Cn
R R N Lt CELEEH

XK}

dmin(A) | minimum pairwise Hamming distance among the labels in A’

Vi representative vector k
Ry set of representative vectors, i.e., Y = {F1,---, ¥}

Fha the first one-half of the set X'

Ao the first one-fourth of the set X
L number of repetitions for each label in the training sequence

Lcre length of the CRC (in bits)

Lgata length of each data segment encoded by the CRC (in bits)

distribution function of the standard normal random vari-
able. The notation R{-} and 3{-} respectively denotes the
real and imaginary parts of the complex argument. If R{-},
${-} or ®(-) are applied to a matrix or vector, they are applied
separately to every element of that matrix or vector. Finally,
Table I lists important notations used in this paper.

II. SYSTEM MODEL

The MIMO system we consider, as illustrated in Fig. 1,
has N, transmit antennas and NN, receive antennas, where it
is assumed that N; > N,. Let x[n] = [z1[n],...,zx[n]]T €
CM: be the transmitted signal vector at time slot n, where
z;[n] is the symbol transmitted at the i transmit antenna.
Each symbol x;[n] is drawn from a constellation M with a
constellation size of M = | M| under the power constraint
E[|z;[n]|?] = 1. The channel is assumed to be block-fading,
and each block-fading interval lasts for T;, time slots. Hence,
the channel H = [h, ] € CV~*M remains constant over
T time slots. For the analysis and simulations, we assume
a Rayleigh fading channel with independent and identically

Block diagram of a MIMO communication system with low resolution ADC at the receiver.

distributed (i.i.d.) elements and hn, ~ CAN(0,1), but the
proposed algorithms are applicable to any channel model. The
system model in each block-fading interval is

r[n] = Hx[n| + z[n], (1)
where r[n] = [ri[n],...,7n.[n]]T € C™ is the analog
received signal vector, and z[n] = [z1[n], ..., zn[n]]T € CM

is the noise vector. The noise elements are assumed to be
iid. with z;[n] ~ CN(0, Ng). CSI is unavailable at both the
transmitter and receiver sides, i.e., H is unknown. The signal-
to-noise ratio (SNR) is defined as p = N,/Np.

The considered system employs an ADC that performs b-bit
uniform scalar quantization, b € {1,2,3,...}. The b-bit ADC
model is characterized by a set of 2 — 1 thresholds denoted
as {71,...,79s_1 }. Without loss of generality, we can assume
—00o=Tp <71 <...<Too_1 < Tgs = 00. Let A be the step
size, so the threshold of a uniform quantizer is given as

n=(-2""1+DA, forle £L={1,...,2°—1}. (2

Let @p(.) denote the element-wise quantizer, so that the
quantization output is defined as

it == if?‘e(ﬁ_l,ﬂ] Wi[he!E[.:}

Q) ={ " 2

(2 — )7 ifr € (rp_1,720].

3

It should be noted that this mid-rise uniform quantizer satisfies
Qs(—7) = —Qp(r), Vr. The step size A is chosen to minimize
the distortion between the quantized and non-quantized sig-
nals. The optimal value of A depends on the distribution of the
input signals [43]. For standard Gaussian signals, the optimal
step size AS®™ can be found numerically as in [44]. For
non-standard complex Gaussian signals with variance o2 # 1,
the optimal step size for each real/imaginary signal component
can be computed as Aqy = +/02/2A55“. Hence, the opti-
mal step size in our system is Aoy = /(Ny + No) /2455,
The variance of the analog received signals N+ Ny is assumed
to be known at the receiver.

The real and imaginary parts of each received sym-
bol are applied to two separate ADCs. Hence, if y[n] =
[y1 [n],...,er[n]]T € CM is the quantized version of the
received signal vector r[n], then y[n] = Qu(r[n]) in which
R{yi[n]} = Qp(R{ri[n]}) and S{yi[n]} = Qo(S{r:[n]}) for
all £ Ne=A1,..., 0}
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I11. BLIND DETECTION PROBLEM

This section describes the blind detection problem for the
block-fading channel. The first 7} time slots of each block
fading interval contain the training symbol sequence while the
remaining Ty = T}, — T time slots comprise the data symbol
sequence. Let X = {X;,X,...,Xx} denote the set of all
possible transmitted symbol vectors with K = M™ and let
K ={1,2,...,K}. Hereafter, a possible transmitted symbol
vector is called a label. We first revisit the MCD method
presented in [36], which serves as a baseline for our work.
The input-output relations to be learned in the MCD method
are {E[y|x = Xx|,k € K}, in which E[y[x = Xi] represents
the centroid of the received quantized signal given that the
label X, is transmitted. The MCD data detection is given by

f(yln]) = argmin [vln] ~Ely=x]|, @

where y|[n] is the received data symbol vector at time slot n
with n € {T{+1,...,T}}. Thus, the MCD approach identifies
the index of the transmitted label as the one whose centroid
is closest to the received vector. Denote ¥ = E[y|x = Xi]:
each y; is called a representative vector for the label Xg.
There are K representative vectors Y = {¥1,¥2,...,Vk }-
Thus, the MCD method has to learn ) in order to perform the
detection task. We now present two MCD training methods
from [34], [36], [37] that help the receiver empirically learn Y.

A. Full-Space Training Method

Since the transmitted signal space X' contains K labels,
a straightforward method to help the receiver learn ) is using
a training sequence that contains all the labels, where each
label is repeated a number of times. Hence, the training symbol
matrix can be represented as X, = [X;, X, ..., X ], where
Xk = [Xk, . .., Xk] € CV*It consists of L, labels X, k € K.
Using this training method, the representative vector ¥ can
be learned empirically as

. T
=1 §Y[(k — 1)L+ 1], (5)

where Y, = [y[1],...,y[T{]] = Qs(HX +Z,). The length of
the training sequence is 7y = K L. This training method has
been employed in [36], [37].

B. Subspace Training Method

It is worth noting that the training sequence does not need

to cover all the labels for the receiver to learn )V when M
satisfies either of the following two conditions:

o Condition 1: —z € M, Yz € M.

o Condition 2: ax € M, Vz € M and Va € {—1,7,—j}.
Although Condition 2 implies Condition 1 when a = —1,
i.e., any M satisfying Condition 2 will also satisfy Condition
1, we maintain these as two separate conditions for conve-
nience in our later derivations. Examples of M for Condition
1 are BPSK, 8-QAM and for Condition 2 are QPSK, 16-QAM.

IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 19, NO. 4, APRIL 2020

If Condition 1 is satisfied, —X; € A for all X; € X. The
set of all labels can be written as

X = {Xhay —Xhal}, (6)

where éf'ha = LS /2}. Without loss of generality, it is

assumed that X, g/, = —Xx with & € {1,...,K/2}. If

Condition 2 is satisfied, then ax; € X for all X € X and
a € {—1,7,—7}- The set of all labels can be written as

X = {Xfoa _A’fm ijO) _ijo}: (7)
where X, = {Xi1,...,%x sa}. It is then assumed that
Xpik/a = Xk Xpiry2 = JXk, and Xpy35/4 = —jXi for
ke {1,...,K/4}. The subscripts ‘ha’ and ‘fo’ here stand for
‘half” and ‘fourth’, indicating the first one-half and the first
one-fourth of the set of all possible labels, respectively.

The work in [34] showed that if the transmitter employs
QAM modulation and the quantization function satisfies
Qv(—r) = —Qu(r) ¥r € R, then the length of the training
sequence can be reduced to 7y = K L/4. In Proposition 1
below, we generalize this result for any modulation scheme.

Proposition 1: Given any constellation M, if the quantizer
Qu(.) is symmetric, ie., Qp(—7) = —Qb(r) ¥Vr € R,
the length of the training sequence T; can be reduced to

%K L, if Condition 1 holds,
Ti={1% ®)
ZK L, if Condition 2 holds.
Proof: For any two labels X, and X, = —Xg,, we have
p(y|x = Xx,) = Ply = Qs(Hxx, + 2)]
= Ply = Qu(—Hxy, —z)]
= P[-y = Qo(Hxy, +2)]
= p(—y|x = X, ). (&)
Therefore, ¥, = —¥, since
i = E[ylx =%i,] =) yp(ylx = Xi,)
= Zyp(_Y|X =, ikl)
==Y yp(yIx = %x,) (10)
— _]E[Y|K = Xkl] = _Ykll (1 l)

where (10) is obtained by setting y = —y and (11) holds
because the sample spaces of y and y are the same. Hence,
the representative vectors satisfy Vi, x/2 = —¥r with k €
{1,...,K/2} if Condition 1 holds. This means the training
sequence only needs to cover Ap, to help the receiver learn
all K representative vectors in ). Similarly, when Condition
2 holds, we can also show that ¥, /4 = — ¥k, Yrtr/2 =
J¥k, and Yxi3x/4a = —j¥i with k € {1,...,K/4}, and so
the training sequence only needs to contain Xg,. It should be
noted that the proof for Condition 2 requires that Qy(jc) =
JQs(c), Ve € C, which is satisfied by the quantizer being used.

|
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IV. PROPOSED LEARNING METHODS

The MCD detection method is simple but it has a primary
drawback — its detection accuracy heavily depends on the
length of the training sequence. If the training sequence cannot
provide accurate representative vectors in (5), then detection
errors will appear in (4). In fact, a short training sequence
often results in poor estimation of the representative vectors.
In order to improve the detection accuracy without lengthening
the training sequence, our idea is to use the training sequence
as an initial guide for the learning process, and then find more
precise representative vectors by exploiting other information.

A. Proposed Supervised Learning Method

In practical communications systems, error control mecha-
nisms such as the CRC can be used to determine whether a
segment of data is correctly decoded or not. This approach
has been exploited to mitigate the effect of imperfect CSI on
the ML detection for low-resolution ADCs [45], [46]. An error
correcting code was also used to update the weights in a neural
network as the channel changes, assuming perfect ADCs [47].

In the proposed method, should the CRC be available, it can
be exploited for blind detection as follows: Data detection is
first performed by the MCD using the training sequence, then
the correctly decoded data confirmed by the CRC is used to
augment the training set. As a result, the representative vectors
obtained from the training sequence in (5) can be refined and
the incorrectly decoded data can be re-evaluated by the MCD
data detection. The process of CRC checking, updating the
representative vectors, and data detection is repeated until no
further correctly decoded segment is found.

In the system considered, we assume the use of the CRC
for multiple data segments as illustrated in Fig. 2. Suppose
there are S segments in one block-fading interval, and each
segment contains a data segment and a CRC block. Let Lcgc
and Ly denote the length of the CRC and the length of each
data segment in bits, respectively. Thus, we have

S x (Ldala + chc) met Td * Nl * 10g2{M) (12)

We also assume that Lgaa + Lere is a multiple of Nilog, M.
This means the number of bits in a segment is a multiple of the
number bits in a transmitted vector. The decoding algorithm of
this proposed method is presented in Algorithm 1. The detailed
explanation of Algorithm 1 is as follows.

Let u = [uy,us,...,ur,] denote the vector of decoded
indices where u, € K with n € {1,2,...,Ty} is the
decoded index of received signal y[n]. Here, we can set
up = |[(n—1)/Ly +1 for 1 < n < T (line 1) due
to the training sequence and we can initialize u, = 0 for
T, < n < T (line 2). Let ¢ = [e1,cp,...,cr,] denote the
vector of binary values where ¢, = 1 if the CRC confirms
a correct detection of y[n], otherwise ¢, = 0. Note that

Algorithm 1 Supervised Learning Decoding
18etu,=|(n—1)/L+1land e, =1forl <n<T
2 Initialize u, =0 and ¢, =0 for T} < n < T};
3SetC=2,5=1{12,...,5}, iter =0, and

done = false;
4 Find ) using (13) with the above inital setting;

s while done = false do

6 | foreach s € S do

7 foreach y[n] € Y, do

$ | Setun, = f(y[n]):

9 end

10 if CRC confirms the correct detection of Y, then
11 SetC=CU{s};

12 foreach y[n] € Y, do

13 | Seten=1;

14 end

15 end

16 Update ) using (13);

17 | end

18 | Set iter = iter +1;

19 | Set § =S8\C, then set C = @;

20 | if & =@ or iter = iterma Or no change in u then
21 | done = true;

22 | end

23 end

cn = 0 does not imply an incorrect detection of y[n]. Instead,
it implies that the CRC cannot confirm a correct detection of
y[n]. Since the first 7; time slots are for the training sequence,
we can set ¢, = 1 for 1 < n < T} (line 1) and initialize
en = 0 for T} < n < T, (line 2). Let s denote the index of
the segments, s € {1,2,...,5}, and let Y, denote the s
received data segment. After the detection of each segment,
the representative vector ¥ can be refined as (line 16):
Ye = Z:h:l (]I[un = k] + cny(n, k) y[n]
Yot (un = K] + cally(n, k) # 0])
where I is the indicator function, and «(n, k) is a function of
n and k defined as follows:

(13)

e Condition 1: y(n,k) = —I[u, = k] with
B k-f—E ].fkg%,
. k—E ifk)E =
2 2°
« Condition 2:
Yet Ki =400, 50 Ky = $E T8, K=
{K+11 {SK}':HE”Cz_ gfé ' 2]:' ?
=3 1-"7T s 4__{T+11-_3K}1
ikaKll,letklzk—i—%, zzk-l—%,k;g:k-i—%,
ifkeK:Q,let.’_ﬂlzk—%,]_ﬁgzkﬁ—?,kgzk—l—g,
ifkexjg,le(%1233-!—},%2:;6—?,}%:.{3—7,
ifk€K4,letk1:k—T,kgzk—TK,kgzk—%,

v(n, k) = —l[up = k1] —jl[up=ko]+jllun="Fks]. (15)

Intuitively, the representative vector ¥, in (13) is updated
by using received vectors whose decoded indices are k& and
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ones that are decoded correctly (confirmed by the CRC) with
decoded indices & for condition 1 or %, ko, k3 for condition 2.

The refined representative vectors are then used to perform
data detection on the next segment (back to lines 7-9). In the
first iteration, the next segment is Y.y, which has not been
decoded before. In the subsequent iterations, the next segment
is one that has not been successfully decoded. Iterations here
are accounted for by the while loop. The process of CRC
checking, updating the representative vectors and data detec-
tion is repeated until all segments are decoded correctly or no
change in u is found or a maximum number of iterations is
reached (line 20).

B. Proposed Semi-Supervised Learning Method

In this part we propose a semi-supervised learning method.
This proposed method is based on the K-means clustering
technique [48]. The idea is to use the training sequence as an
initial guidance to find coarse estimates of the representative
vectors. Based on these coarse estimates, the received data
vectors are then self-classified iteratively.

The K-means clustering technique aims to partition data into
a number of clusters. However, in this communication context,
the decoding task is not just to partition the received data into
clusters but also to assign labels to the clusters, which can
be done by using the training sequence. In addition, we take
into account the constraints ¥4, /o = —yx. k=1,..., K/2,
if Condition 1 holds; and the constraints ¥y x4 = —¥k.
Vrik/2 = 3Vks Yes3k/a = —3¥k k=1,..., K/4, if Condi-
tion 2 holds. These constraints can be adopted because clusters
are formed based on their centroids, which are also referred
to as the representative vectors {¥} in this paper.

First, we introduce a set of binary variables 3, x € {0,1}
to indicate which of the K labels that the received vector y|[n]
belongs to. Specifically, if a received vector y[n] belongs to
label k, then B, x = 1 and (,; = 0 VI # k. We have the
following optimization problems:

o Condition I:

Iy K
minimize J =Y Y Bnilly[n] — ¥xl®

{Bn b {Fe} ki
subject to ¥, xk = —¥k, k=1,...,K/2. (16)

The objective function in (16) is called the distortion
measure [48]. This problem can be rewritten as

minimize J; (17
{n‘gn,k}s{y'k}
where
Th %
(Br kY[ =5 k1”4 B o2 [y ]+ 7 11%) -
n=1 k=1

(18)

Problem (17) can be solved iteratively in which each
iteration finds {3, x } based on fixed {y} and vice versa.
If {yx} are fixed, J; is a linear function of {3, x}.
It can be seen that the solutions {3, x} are independent

of n, so they can be found separately. With any n €
{T} +1,..., T}, the optimization problem for {f, x} is

K
minimize » _ fn k/ly[n] — &/, (19)
{5n,k] k=1

whose solution is found by setting 3, = 1 for the k
associated with the minimum value of ||y[n] — ¥x||%. The
solutions {/3, x} can be written as

(20)

[ 1 if k= argminy, [ly[n] — yi||2,
6n,k e -
0 otherwise.

It should be noted that 3, = 1 whenever n < T
and £ = |[(n — 1)/L] + 1 because the labels of the
received training vectors are known at the receiver. When
the {3, x} are fixed, J; becomes a quadratic function of
{¥«r}. Hence the solutions {¥} can be found by finding
the derivative of .J; with respect to ¥:

9y 2 CH
ayk _Z)Bn k +yk )+!8'n. k—i—— (Y[n] +Y.'c )1

(21)
when being set to 0 yields
n.k — Pn K n
oo Zn k=Bl K
Zn (ﬁ“sk + ﬁn,k-i—%) 2

Equation (22) says that the representative vector ¥, with
k < K /2, is calculated by using the received vectors that
not only belong to cluster & but also to cluster k£ 4 K /2.
Condition 2:

T K
LY .. o= e e2
S 3N Bukllyln] — gl

n=1k=1
subject to jrk+§ = —V&
Yk+ K = j¥k
Yk+3*‘ = —j¥Vk
k=1,...,K/4. (23)

The optimization problem (23) can also be rewritten as

inimize J. 24
{rﬁn::ll,k }5{5?’3 z ( )

where

Th %
=Y (Bukllyln] — 9xl* + Bu e eIy [] 45

n=1k=1
By & IYT0] = 55k ]|+ By ey 2t 1Y [n] + 555117
(25)

Applying the same technique as in Condition 1 to this
problem, we can find 3, ; from (20) and

Yo (J’Sﬂ‘k - Bn,k+§ _jﬁgn,k+§ +jf3n,k+¥ ) y[n]

n (ﬁ“rk+ﬁﬂ,k+% +f8n,k+% +ﬁn,k+¥)
K
i

Ye =

2

Ei="1y00.s (26)
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Algorithm 2 Semi-Supervised Learning Decoding

1 Initialize done = false, iter = 0;
2 Find ) using the training sequence;
3 while done = false do

4 | iter = iter + 1;

5 | Perform (20);

6 | if Condition 1 holds then

7 Perform (22);

8 Setyﬂ%:—y;ﬁ withk=1,...,K/2;

9 | end

10 | if Condition 2 holds then

11 Perform (26);

2 Set Vi ke = —Vk» Vit & = Ik Yy 3£ = —j¥ks
with k=1,...,K/4;

13 | end

14 | if convergent or iter = iterpa then

15 | done = true;

16 | end

17 end

Equation (26) also points out that the representative
vector ¥, with & < K/4, is found by using the received
vectors that not only belong to cluster k& but also to
clusters k + K /4, k + K/2 and k + 3K /4.

The decoding algorithm for this semi-supervised learning
method is presented in Algorithm 2. Coarse estimation of
the representative vectors is first obtained by using the train-
ing sequence (line 2). Then clustering is applied on all of
the received data vectors (line 5). Depending on whether
Condition 1 or Condition 2 is satisfied, the representative
vectors are updated (lines 7-8 or lines 11-12). The process of
clustering the received data vectors and updating the represen-
tative vectors is repeated until convergence or the number of
iterations exceeds a maximum value (line 15). Convergence
is achieved if the solutions {f3,:} are the same for two
successive iterations. Convergence of algorithm 2 is assured
because after each iteration, the value of the objective function
does not increase. However, the point of convergence is not
guaranteed to be a global optimum.

V. PERFORMANCE ANALYSIS WITH ONE-BIT ADCs

This section presents a performance analysis of the proposed
methods for the case of 1-bit ADCs. The analysis is applicable
for any blind detection scheme for MIMO receivers with low-
resolution ADCs and for Rayleigh fading channels, indepen-
dent of the channel realization. We assume that all symbol
vectors in A are a priori equally likely to be transmitted. The
objective is to characterize the VER. Since the performance
of our proposed methods for 1-bit ADCs is independent of the
step size A, we choose A = 2 so that the quantization function
becomes the sign(-) function, where sign(a) = +1ifa > 0
and sign(a) = —1 if a < 0. If a is a complex number, then
sign(a) = sign(R{a}) + 7 sign(S{a}). The operator sign(.)
of a matrix or vector is applied separately to every element of
that matrix or vector.

A. VER Analysis at Low SNRs

Here, we present an approximate pairwise VER at low SNRs
for the Rayleigh fading channel. First, using the Bussgang
decomposition, the system model y = @Q(r) can be rewritten
as y = Fr + e [49] where e is the quantization distortion and

F= \/Edjag{zr)_%.
m™

The term X, = HH + N1 is the covariance matrix of r. Let
A =FH and w = Fz + e, then the system model becomes

27

y=Ax+w, (28)

where A = /2/wdiag(2,)"*H and the effective noise
w = [wy,ws,...,wy]T is modeled as Gaussian [49] with
zero mean and covariance matrix

s = %[arcsiﬂ (Cﬁag(zr)_%zf djag(z"")_%)

~ diag(%,) %, diag(S,) ¥ +No diag(S,) 1].
(29)

Note that the operation arcsin(.) of a matrix is applied
element-wise on that matrix. The representative vector y; now
becomes ¥ = AXg.

In the low SNR regime, the approximation ¥, =~ X,
holds [49], where ¥, = Nyl is the covariance matrix of z.
This approximation leads to A ~ /2/(Np7m)H and ¥,, = L.
Let v = [v1,...,on]T = ¥r — Jr, where v; =
v/2/(Nom)hT (%), — %4s) with h; being the i column of
H. Since H is comprised of i.i.d. Gaussian random variables
CN(0,1), v; is also Gaussian of zero mean with variance

2
T = Mo %k — X [I3-

Denote Pk, .x,, as the pairwise vector error probability
of confusing X; with X;» when X; is transmitted and when
Xy and X are the only two hypotheses [50]. The follow-
ing proposition establishes the relationship between Py, .x,,
and ng’-

Proposition 2: Pg, _.x,, at low SNR can be approximated
as

(30)

- W @(,/N,/(l T 2/0,%_,5,)). 31)

Proof: Please refer to Appendix A. |
The result in Proposition 2 clearly shows the dependency of
the pairwise VER on the Euclidean distance between the two
symbol vectors X and X;-. We now proceed to obtain an upper
bound on the VER, denoted as P;’e’, at low SNR assuming
a priori equally likely X;,...,Xg. The VER is defined as

K
P Z]P[f( + Xp, X = Xg]

k=1

where X is the detected symbol vector and P[X # X, X = Xj]
is the probability that X; was transmitted but the detected
symbol vector is not Xj.
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Proposition 3: PJ°" at low SNR is upper-bounded as

1 K K
253 [1_@(,/N,/(1+2/agk,)]]. (32)

k=1k'#k
Proof: The bound on P is obtained via the union bound

PPVBI‘ S

K K
B3 Pahdy i) Z [% # Xk | x = %]
k=1 k:
1 KX
S E Z Z P}T{k—rﬁk:
k=1 k'#k
and the application of Proposition 2. |

The probability P[X # X | X = Xj] is invariant to X, for the
case of PSK modulation. Without loss of generality, we assume
that X; was transmitted, so that the VER simplifies to

PF< i [1 - @(,/N,/u E 2/0%k))] .

k#1

We note that this result is valid for low SNRs. In the following
analysis, we characterize the VER at a very high SNR,
ie., p— oo.

(33)

B. VER Analysis as p — oo

Here we evaluate the VER as the SNR tends to infinity. Let
gk = [9k.1,-- -, gr,v]T = HXg, then

PR{yi} = +1 | x = %] = 8(v/2p/N: R{grs}), (34)
P[S{yi} = +1 | x =Xx] = ®(v/2p/N: S{gk}). (35)

The true representative vectors are

yr =Ely | x = %] = 28(/2p/Nigk) — (1 +j1) (36)

which becomes sign(gx) as p — oo. It is possible for a given
realization of H that more than one symbol vector will lead
to the same representative vector: sign(g,) = sign(gx) with
k # K/, and in such cases a detection error will occur regard-
less of the detection scheme. In the following, we analyze
the probability that sign(gg) = sign(gy). Our analysis is
applicable for the cases of BPSK and QPSK modulation.

To facilitate the analysis, we convert the notation into the
real domain as follows:

Xk = [Ik 1=I§2v-- I?th]T = R} S{ET,
gk = [gkflagk,%"':gk,?Nr] a= [ER{gk}T:U{gk} ] .

We first consider BPSK modulation,
In this case, 3{Xz} =0

Theorem I: Given d = ||X} — X}v|[o as the Hamming
distance between the two labels, then

ie, M = {£1}.

2N;

Ni—d 37)

d

P[sign(gx) = sign(gr)] = l% arctan

Proof: Please refer to Appendix B. |

As p — oo, the effect of the AWGN can be ignored. Thus,

P[yr = yx| = P[sign(gx) = sign(gx)]. An upper bound on
the VER is established in the following proposition.
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Proposition 4: With BPSK modulation, the asymptotic
VER at high SNR is upper-bounded as

2N;
N; Ny —d
P;ﬁfm_QZ(d)l;art = (38)
d=1
Proof: Please refer to Appendix C. |
Proposition 5: With BPSK modulation and N; = 2

the upper bound in (38) is tight.
Proof: For BPSK modulation and Ny = 2, let }"(éf =

[1,1,0,0], ¥ = [i,—1,0,0], &% = }-1,1,0,0l, F =
[~1,—1,0,0]. Herein, X} = —XJ and Xy = —Xx, resulting
in y1 = —y4 and y2 = —y3 as p — oco. Hence, events

¥i = ¥2 and y; = y3 are mutually exclusive while event
¥i = ¥a does not exist. This proposition thus follows as a
direct consequence of the proof for Proposition 4 given in

Appendix C. |
For the case of QPSK modulation, the Hamming distance
d = |XF — X}%||o between any two labels can be as large

as 2NV;. Following the same derivation as in Theorem 1 and
Proposition 4, an upper-bound for the asymptotic VER at high
SNR can be established by the following proposition.

Proposition 6: With QPSK modulation, the asymptotic
VER at high SNR is upper-bounded as

i 2 (th) [ 9N, —d
<93 T

2N,

S S (39)

C. Transmit Signal Design

Thus far it has been assumed that the transmitter uses all K
possible labels for transmission. However, as K grows large,
the training task for all the K labels becomes impractical,
since the block fading interval T} is finite. In this section,
we consider a system where the transmitter employs only a
subset of K labels among the K possible labels for both the
training and data transmission phases. The rest of the K — K
labels are unused. While using only K labels reduces the
transmission rate as compared to using all the K possible
labels, the VER can be improved. In many 5G networks,
e.g., Machine-to-Machine (M2M) communication systems,
the priority is on the reliability, not the rate [2]. In addition,
the reduction in training time with small K may help improve
the system throughput. }

The design problem is how to choose K labels among the
K labels. To address this problem, we rely on Proposition 4
and Proposition 6. These propositions reveal that the VER
at infinite SNR is inversely proportional to the Hamming
distances between the labels. Thus, we propose the following
criterion for choosing the transmit signals:

A* = argmax  min

i (40)
XCAR 1<ki1<k:<K

”Xkl 3 X-'CZHEH

where X = {xy,...,X3z} denote the set of K different
labels for transmission, and X® = {xF,... %} }. This design
criterion aims to maximize the minimum pairwise Hamming
distance among the K labels. Note that the proposed criterion
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Fig. 3. Effect of L; on MCD and the proposed methods with 1-bit ADCs, Ny = 16 and BPSK modulation.

Algorithm 3 Transmit Signal Design
1 Randomly generate N initial sets {X;,7 =1,...,N};

2fori=1:N do

3 | done = false;

4 | while done = false do

5 Let flag = 1;

6 Set X’:(Y\a:’iz{x’l,...,x}{_fz};
7 for ky=1: K do

8 for ko =1: K — K do

9 Let X; = (Xi\{xx, }) U {x}, }i
10 if duin(X;) > dmnin(X;) then
1 Set X; = X and flag = 0;
12 Exit both for loops:

13 end

14 end

15 end

16 if flag =1 then

17 | Set done = true and X} = A;;
18 end

19 | end

20 end

21 X% = argmaxy. Arin (A}*);

is also applicable for low SNRs because as shown in Proposi-
tion 3, the VER is inversely proportional to the Euclidean dis-
tance, which is analogous to the Hamming distance for BPSK
and QPSK, albeit with some scaling factor. It should be noted
that the proposed criterion does not rely on a specific channel
realization, so the design task can be carried out off-line.
Problem (40) can be solved by exhaustive search when ()
is not too large. When the exhaustive search is not possible,
we propose a simple greedy algorithm, whose pseudo-code can
be found in Algorithm 3. Here, dpin(A’) denotes the minimum
pairwise Hamming distance among the labels in X' and X"’
in line 6 denotes the set of labels, which is not used for
transmission. The principle of Algorithm 3 is as follows:

« Generate N initial sets {A]}—1, . ~, where each set A;
contains K different labels randomly chosen from A'®.

« For each initial set A, find x’ € X’ such that when an
element of A; is replaced by x’, the value of the objective
function in (40), i.e., the minimum Hamming distance,
is increased. This is repeated until no further increase
in the objective function is possible after evaluating all
replacements.

« Each initial set X; produces a corresponding solution A’*
as in line 17. The solution A™* of (40) is obtained by
selecting the X’} whose objective function value is largest
(line 21).

Note that the larger N is, the more likely Algorithm 3 will
find the optimal solution.

VI. SIMULATIONS AND RESULTS
A. Numerical Evaluation of the Proposed Methods

We use Monte Carlo simulations to numerically evaluate the
performance of our proposed methods. The simulation settings
are as follows. The number of transmit antennas IV, is set to
be 2 unless otherwise stated. The data phase contains Ty =
500 time slots. In the supervised learning method, we adopt
a 24-bit CRC as in the 3GPP Long Term Evolution (LTE)
standard [51]. The generator of the CRC in our simulation is
224 4 22 4 214 4 212 1 28 1+ 1, and the length of each data
segment is 16 bits. Thus, the length of each coded segment is
40 bits. This is the minimum length in the 3GPP LTE standard.
In all figures, “Sup.” and ‘Semi-sup.’ stand for the supervised
learning and semi-supervised learning methods, respectively.

We first study the effect of the training sequence length L,
on MCD and the two proposed methods (Fig. 3). We use BPSK
modulation with N; = 16 and 1-bit ADCs. Fig. 3a shows the
change of the BER as L, varies. An interesting observation
is that the performance of the proposed methods is much less
affected by L, than the MCD method. Hence, the length of
the training sequence can be reduced without causing much
degradation on the performances of the proposed methods.
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Fig. 4. Performance improvement for different iterations with 1-bit ADCs, BPSK modulation, Ny = 16 and L; = 3.

This is illustrated more clearly in Fig. 3b, where we carry
out the simulation for L; = 1 and L; = 3, still with BPSK
modulation, 1-bit ADCs and N, = 16. It can be seen from
Fig. 3b that, as L, is reduced from 3 to 1, the BER of MCD
is significantly degraded while the BERs of the proposed
methods experience only a small degradation at low SNRs
and do not change at higher SNRs. This leads to a significant
improvement for the proposed methods as compared to MCD,
for example, about a 7-dB gain at a BER of 10~ and 8-dB
at a BER of 10~° when L, = 1. Even for moderately long
training sequences, e.g., Ly = 3, the gain of our proposed
methods is still considerable, from 3-dB to 4-dB.

The results in Fig. 3 can be explained as follows. The
performance of MCD is susceptible to L, because its detec-
tion accuracy relies on the representative vectors estimated
only from the training sequence. Therefore, if L, is small,
the representative vectors are not estimated correctly and so
the performance can be degraded significantly. On the other
hand, the proposed methods are much less dependent on L,
because they use the training sequence only as the initial
guide for the detection task. Compared to the semi-supervised
learning method, the supervised learning method is slightly
more dependent on L, because it depends on detection results
from the training sequence.

Since the proposed methods work iteratively, we perform
simulations to evaluate the improvement in BER over the
iterations. Simulation results are shown in Fig. 4. For the
supervised learning method, Fig. 4a, it can be seen that
the BER converges after only 2 iterations. For the semi-
supervised learning method, Fig. 4b, there is considerable
improvement between the first and the second iterations, but
then the third and the fourth iterations give approximately
the same performance. It is therefore preferred to limit the
maximum number of iterations to 3 in the semi-supervised
learning method. It should be noted that the BER on the first
iteration of the semi-supervised learning method is actually
the BER of the MCD method because the first iteration can
only exploit the training sequence.

In Fig. 5, we compare the aforementioned blind detection
methods with several coherent detection methods. The sim-
ulation uses 1-bit ADCs, QPSK modulation, N, = 16 and
L, = 3. For coherent detection, CSI is first estimated by the
Bussgang Linear Minimum Mean Squared Error (BLMMSE)
method proposed in [28]. The length of the training sequence
in the blind detection methods is 12, so we also set the length
of the pilot sequence for the channel estimation to 12. The ZF
detection method is presented in [28]. The ML method for 1-
bit ADCs is provided in [17], [20]. A performance comparison
in terms of BER is given in Fig. 5a, which shows that the
proposed methods outperform the ZF and ML methods with
estimated CSL. It is also seen that the BER of our proposed
methods is quite close the BER of ML detection with perfect
CSI. Here, we observe a significant increase in the BER at high
SNRs for the ML method with estimated CSI. This observation
was also reported in [36]. In comparing the two proposed
methods in Fig. 5a and Fig. 3, should the CRC be available,
it is more beneficial to use the supervised learning method for
better BER performance.

Fig. 5b provides a comparison in terms of spectral efficiency
7, defined as the average number of information bits received
correctly per block-fading interval Ty,. We determine 7 for the
case without CRC as

n:%x(l—BER)thx]ogzM

and for the case with CRC as

Ldata Tcl
7 WS X T, x (1 —BER) x N; x log, M.
Fig. 5b indicates a proportional drop in the spectral efficiency
due to the use of CRC. Note that the supervised learning
method can only be applied in systems where the CRC is
available but the other methods can be used in any system
regardless of the CRC. Thus, should the CRC be eliminated for
improved spectral efficiency, the semi-supervised method pro-
vides better performance than MCD. It also performs slightly
better than conventional coherent detection with estimated
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Fig. 6. Performance of the proposed methods for different numbers of receive antennas Ny and ADC resolutions b with L; = 3.

CSI. The small performance gap observed in Fig. 5b is due to
the small difference in BER performance in the SNR region
between —12 to 12 dB, as shown in Fig. 5a. At high SNR,
while the proposed method performs much better than other
methods in terms of BER, its effect on the throughput 7 is
negligible since 1 — BER ~ 1.

To study the trade-off between N, and b, we evaluate the
proposed methods in three different scenarios: (i) N, = 4,
b = 4; (ii) N, = 80b = 2; and (iii) N, = 16,b = 1.
This is to ensure the same number of bits after the ADCs for
baseband processing. The number of label repetitions L, is set
to be 3. The simulation results are shown in Fig. 6, with BPSK
in Fig. 6a and QPSK in Fig. 6b. For BPSK modulation, the best
performance is achieved by scenario (iii) for all methods.
Hence, this suggests the use of more receive antennas and
fewer bits in the ADCs when BPSK modulation is employed.
However, for QPSK modulation, there is a trade-off between
scenarios (ii) and (iii). For low SNRs, the setting N, = 16 and
b = 1 gives better performance, but for high SNRs, the best

results are with N, = 8 and b = 2. The results in Fig. 6 also
show that the proposed methods outperform the MCD method
in all three scenarios.

It is observed in Figs. 3a, 5a, and 6b that the supervised
learning method outperforms the semi-supervised learning
method at high SNRs. In Fig. 6b, the benefit of the supervised
learning method is best observed for the case of N, = 8 and
b = 2 at SNR > 9 dB. Although the difference between the
two learning methods is quite subtle, the performance gain
of the supervised learning method can be useful for systems
operating at high SNRs.

B. Validation of Performance Analysis

This section presents a validation on the performance analy-
ses in Section V. Fig. 7 provides the analytical approximate
pairwise VER in (31) and the VER in (32). We use the
setting of N, = 2, N; = 16, and BPSK modulation. The two
labels used to examine the pairwise VER are X = [+1,+1]T
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Fig. 7. Validation of the analytical pairwise VER in (31) and the analytical

VER in (32) at low SNRs with N; = 2, N; = 16, and BPSK modulation.
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Fig. 8. Validation of the analytical VER at infinite SNR in Propositions 4,
5, and 6.
and X = [+1,—1]7. It can be seen that our approximate

pairwise VER is very close to the simulated pairwise VER
at low SNRs, typically with SNRs less than 0-dB. However,
as the SNR increases, our approximate pairwise VER tends to
diverge from the true pairwise VER because the approximation
¥, = 23, is inapplicable for high SNRs. The simulation
results also show that our analytical VER is quite close to
the true VER at low SNRs.

Validation of the high SNR expressions for the analytical
VER is given in Fig. 8 with N; = 8. The horizontal lines
represent the analytical upper bounds on the VER at infinite
SNR. For the case of BPSK and N, = 2, it can be seen that
the simulated VER approaches the horizontal solid line as the
SNR increases and then they match at very high SNRs. This
validates the result of Proposition 5 indicating that the bound
is tight in the case of BPSK and N, = 2. With BPSK and
N, = 3, the horizontal dashed line is just slightly higher than
the floor of the simulated VER. For QPSK modulation, there
is a small gap between the horizontal lines and the floors of
the simulated VER. These observations validate our analytical
upper-bound results in Proposition 4 and Proposition 6.

In Fig. 9, we provide a validation for the proposed transmit
signal design based on the minimum Hamming distance in

IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 19, NO. 4, APRIL 2020
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Fig. 9. Validation of the transmit signal design with Ny = 6, Ny = 16,

K = 4, and BPSK modulation.

Section V-C. With different selections of the label sets X, the
BER performance in Fig. 9 improves as dmin(X’) increases,
which validates our analysis. In this particular simulation
scenario (N, = 6, N, = 16, K = 4, and BPSK modulation),
the minimum Hamming distance of an optimal set can be
found to be 4. The proposed Algorithm 3 then helps select
an optimal set X* with dpin(A™*) = 4. Hence, the curves
with star markers in Fig. 9 also represent the BER obtained
by A™*.

As we increase K , the data rate also increases, but the
BER will degrade. Thus, there is a specific value for K
that provides the best compromise for the spectral efficiency.
Fig. 10 illustrates the change of spectral efficiency with respect
to K at different SNR values. The simulations are carried
out with N, = 8, N; = 16, QPSK modulation, L; = 3, and
K e {4,8,16,32,64,128}. The maximum number of time
slots for the block-fading interval is 7;, = 500. We assume
the availability of the CRC so that the supervised learning
method can be compared with other methods. The lengths of
the data segment for K < {4,8,64,128} and K  {16,32}
are 18 bits and 16 bits, respectively. This is to ensure that the
number of bits in a segment is a multiple of the number bits
in a transmitted vector. The length of the data block T} is also
set to be a multiple of (Lcre + Ldata)/ logs K. The spectral
efficiency is then computed as

J]l—lclata Td =
— 1—-BER) x1 K.
9 Lere +Laata Ta+Th Rk ) x log,

For each value of K, Algorithm 3 is applied to find the
solution A"™* of (40). We found that the symbol vectors of
A'* do not satisfy condition 2, and so the full-space training
method is used. The simulation results in Fig. 10 show
that increasing K does not necessarily improve the spectral
efficiency, due to the increased training overhead. There is
thus an optimal value of K = 32 in this scenario, that gives
the highest spectral efficiency. It is also seen that at low SNR
the spectral efficiencies of the proposed methods are higher
than that of MCD.
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VII. CONCLUSION

In this paper, we have proposed two new learning methods
for enhancing the performance of blind detection in MIMO
systems that employ low-resolution ADCs. The supervised
learning method exploits the use of CRC in practical systems
to gain more training data. The semi-supervised learning
method is based on the perspective that the to-be-decoded
data can itself help the detection task thanks to grouping
of received symbol vectors for the same transmitted signal.
Simulation results demonstrate the performance improvement
and robustness of our proposed methods over existing tech-
niques. Numerical results also show that the two proposed
learning methods require only a few iterations to converge.
We have also carried out a performance analysis for the
proposed methods by evaluating the VER in different SNR
regimes. In addition, a new criterion for the transmit signal
design problem has also been proposed.

APPENDIX A
PROOF OF PROPOSITION 2

We first express Py, _.x,, as follows:
Proosr =By = 913 2 Iy — ¥l | x = %]
= P||[v]} +2R{v7w} < 0]

N
= ]P’[Z (vl + 2R{vjwi}) < 0] @a1)
i=1
By letting &; = |v;|? + 2R{v}w;}. (41) becomes
N,
Pyx, =P[Y e <0]. (42)
i=1

In order to approximate the probability in (42), we need to
compute the mean and variance of £;. The mean of g; is

Eles] = E[|vi|* + 2R{vjw:}] =E
The variance of ¢; is given as

= Var [|v;[*]+Var [2R{v}w;}] +2 Cov (v:|*, 2R{v]w;}).
(44)

[lvil’] = op-  (43)
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The first term in the right-hand side of (44) is

Var [|vi[?] = E[jvi|*] —E[|uil?]” = ofp.  (45)
The second term in the right-hand side of (44) is
Var [2R{v]w;}]
= Var [U:wg] +Var [in;‘] +2Cov (U:wh 'in:) . (46)
Since Var [vjw;] = Var [viw}] = E[jvi|?] = 0%, and
Cov (U:wi, vw] ) = 0, we have
Var [2R{v}w;}] = 202 47)

The last term in the right-hand side of (44) is

Cov (|us]?, 2R{vjwi})
= E[|vi|22R{v]w; }| +E[Jv:*|E[2R{v;w:}] =0, (48)
since E[|vi|22R{v}w;}] = E[|vi|?(viw: + viw])] = 0 and
]E[Qi[?{ug‘wi}] = EI:‘U;%U;;] —|—]E[U,;w;-“] =0;
Substituting the results in (45), (47), and (48) into (44)
yields the variance of ¢; as

(49)

The variables {<;}:—1 ., are i.i.d. because of the i.i.d. ele-
ments in H. Hence, by the central limit theorem, the variable

f’l g; in (42) can be approximated by a Gaussian random
variable with mean N,oZ,, and variance N;(op, + 20%,,).

Finally, the probability in (42) can be approximated as

—N,-U_Ek; )
Py iz, =@
T (\/Nrw::k, +20%,)

= 1-8(\/Ne/(1 +2/0%)).

APPENDIX B
PROOF OF THEOREM 1

2 4 2
O—E‘i = Jkk: + 20’&&(.

(50)

For two labels X ancl xk, we can always find two disjoint
index sets I and Id such that :E:k ;= iIX . #0,Viel,and
IR, = —dp; Vi € La. We denote d= |Id| as the Hamming
distance between the two labels X} and X}*. Note that d < Nt

and II |i= — d for BPSK 31gnahng The two vectors g1
and g can now be expressed as:

gF =g +8a

g0 =8 —8a (51)
where g. and gy are the summations of the Ny — d and d

columns of H corresponding to the indices given in 7. and
T, respectively For Rayleigh fading with unit variance, g is
J'\I’ (0 dIer) and Ed is N(O, EIZNr)

The probab1hty that sign(g} 4 = mgn(gk ;) is given as

: ; 2 Ni—d
P[sign(gy;) = sign(gf ;)] = — arctan : T

(32)

This is obtained by applying a result in [20], which states that
if a ~ N(0,02) and b ~ N(0,07) then

P[sign(a + b) = sign(a — b)| = L arctan —%. (53)
™

Op

Due to the mdependence between the events mgn{gh) =
51gn(gk, ), fori =1,...,2N,, the result in (37) thus follows.
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APPENDIX C
PROOF OF PROPOSITION 4

Without loss of generality, we assume that X? =

[1%,,0%,]T was transmitted. Denote Ey, 1 < k < K, as the
event ¥1 = V. The detection error event E is then defined as
E = Jg>1 Ex. We want to find the VER given event E' and
subsequently prove that Py% = < %me P(Ex). We note
that E5, ..., Ex are not necessarily mutually exclusive nor
independent. However, we can combine Ej5,...,FEk into
larger events G, ..., Gy, that are mutually exclusive. Herein,
the rule for forming G; is as follows:

1) If E} is mutually exclusive with all other events, then
E, c Gy.

2) If a pair of events E}, and E,, intersect, i.e., By NEy,, #
@, but E; U Ey, is mutually exclusive with all other
events, then (Ey U Er,) C Ga.

3) Gs,...,Gy, are then formed in a similar fashion.
Certainly, if Ex C Gy, then Ex N Gy = @, for € # L.
This combining strategy effectively partitions E into mutually
exclusive events G1,...,Gr. The VER is calculated as:

1) If event Ex C G has occurred, the receiver would
erroneously pick the detected vector X} # X3 with a
probability of 1/2, i.e., VER = 1/2.

2) For any two events Ey, B, C G2 and Ex N By, # 9,
we consider the following three partitions of Ej U Ey,:

o If E; N ES, has occurred, VER = 1/2.

« If EY N E,, has occurred, VER = 1/2.

o If B, N E,, has occurred, the receiver would erro-
neously pick the detected vector as either X2 or X2
with a probability of 2/3, i.e., VER = 2/3.

We then have

%]P[Ek NES]+ %P[E}i N En]+ gp[Ek N Epl

[A

%P[Ek NES] + %]P’[Eg A Epn] + P[Ex N Eva]

1 1
= EP[E;:] + EIP[Em]- 54

3) The same principle of partitioning can be applied for
events in Gs,..., Gy to calculate the VER.

Therefore, Py is upper-bounded as

p—00
1 1
Po< Y SPIEd+ Y SPE]+...
E,.CGy EL.CG2
K
1
- QZP[E"]' (55)
E>1

The inequality presented in the proposition follows by com-
bining the result in Theorem 1 and noting that there are (")
labels with Hamming distance d from xJ.. If the error event F
is comprised of only mutual events Es, ..., Ex, the inequality
(55) becomes Py = Zf::? 1P[Ey]. Thus, the VER upper-
bound becomes tight in this case.
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