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IRREDUCIBLE RESTRICTIONS OF REPRESENTATIONS OF
SYMMETRIC AND ALTERNATING GROUPS IN SMALL
CHARACTERISTICS

ALEXANDER KLESHCHEV, LUCIA MOROTTI, AND PHAM HUU TIEP

ABSTRACT. Building on reduction theorems and dimension bounds for symmetric
groups obtained in our earlier work, we classify the irreducible restrictions of rep-
resentations of the symmetric and alternating groups to proper subgroups. Such a
classification is known when the characteristic of the ground field is greater than 3,
but the small characteristics cases require a substantially more delicate analysis and
new ideas. Our results fit into the Aschbacher-Scott program on maximal subgroups
of finite classical groups.

1. INTRODUCTION

Let F be an algebraically closed field of characteristic p > 0. In this paper we
consider the following

Problem 1. Let H be the symmetric group S, or the alternating group A,. Classify
the pairs (G,V'), where G is a subgroup of H and V is an FH-module of dimension
greater than 1 such that the restriction Vg is irreducible.

A major application of Problem 1 is to the Aschbacher-Scott program on maximal
subgroups of finite classical groups, see [1,7,25,44,51] for more details on this. We
point out that for the purposes of these applications, Problem 1 needs to be solved
for all almost quasi-simple groups H and G, but we do not make any additional
assumptions on G.

For p = 0, Problem 1 has been solved in [50]. Forp > 5and H =S,, (resp. H = A,,),
Problem 1 has been solved in [8] (resp. [36]). But the small characteristics cases p = 2
and 3 require a substantially more delicate analysis as well as new ideas, and remained
open for a long time. The first major difficulty is that the submodule structure of
certain permutation modules over symmetric groups gets very complicated, making
the proof of reduction theorems in [8] and [36] much harder for p = 2 or 3. The
task of proving new reduction theorems has now been accomplished in [32,34], which
allows one to mostly reduce the problem to doubly transitive subgroups of S,,. The
second major difficulty is that the techniques employed in [8] for dealing with doubly
transitive subgroups are also inefficient for small p. So in this paper we develop
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a new approach, which iteratively pitches the dimension bounds against the shape
of the labeling partition A of the FS,-module D* in question, relying particularly on
dimension bounds obtained recently in [33] and internal structure of doubly transitive
subgroups. This allows us to finally extend the above results to all characteristics.

From now on we assume that p > 0. We point out that it is the positive character-
istic case that is important for the Aschbacher-Scott program, and that the charac-
teristic O case is equivalent to p > n. For the reader’s convenience, we will formulate
our main results for all characteristics, although they are only new for p = 2, 3.

Recall that the irreducible FS,-modules are labeled by the set Z7,(n) of p-regular
partitions of n. If X € P,(n), we denote by D? the corresponding irreducible FS,,-
module.

The Mullineux involution

Pp(n) = Pp(n), A

is defined from D" = DA @ sgn, where sgn is the 1-dimensional sign representation.
Of course the Mullineux involution is trivial when p = 2, while for odd p it has several
explicit combinatorial descriptions, see [5,13,29,49].

We denote by L@I/}(n) the set of all p-regular partitions of n such that D*|, is
reducible. The set of partitions L@Z/,\(n) is well understood—if p = 2 it is described
explicitly in [4] (see Lemma 2.9 below), while for p > 2 these are exactly the partitions

which are fixed by the Mullineux involution.
If\e e@ﬁ‘(n) we have

DM a, = B} @ B
for irreducible FA,-modules E} % EA. If A\ ¢ 24 (n), we denote
E* .= D], .
Now,
{BX X e Zy(n)\ 2,/ (n)} U{EL | A € Z)(n)}
is a complete set of irreducible FA,,-modules, and the only non-trivial isomorphisms
among these are E* = EA" for p > 2 and A € Z,(n) \ @If‘(n). For A € Zp(n), we will
interpret the notation E(Ai) as B} if \ € L@I/}(n) and as E* otherwise.

We set I := Z/pZ identified with {0,1,...,p—1}. A node is an element (r,s) € Z2
(pictorially, the z-axis goes down and the y-axis goes to the right). We always identify
a partition A = (A > Xy > ...) with its Young diagram {(r,s) € Z%, | s < A, }.

Given a node A = (r,s), we define its residue res A := s —r (mod p) € I. Let i € I
and A € Z(n). A node A € X (resp. B ¢ \) is called removable (resp. addable) for
A if A\ {A} (resp. AU{B}) is a Young diagram of a partition. A removable (resp.
addable) node is called i-removable (resp. i-addable) if it has residue i.

Labeling the i-addable nodes of A by + and the i-removable nodes of A by —, the
i-signature of \ is the sequence of pluses and minuses obtained by going along the rim
of the Young diagram from bottom left to top right and reading off all the signs. The
reduced i-signature of A is obtained from the i-signature by successively erasing all
neighbouring pairs of the form —+. The nodes corresponding to —’s in the reduced
i-signature are called i-normal for A (or normal nodes of residue i).

A partition A € Zp(n) is called Jantzen-Seitz (or JS) if its top removable node
is its only normal node. Equivalently, writing A in the form A = (I{*,...,%") with
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lh > >lpand ay,...,a, >0, Ais JS of and only if p divides Iy — lp+1 + ax + ag+1
for all 1 < k < m. It is known that the restriction D>‘¢Sn7 , is irreducible if and only
if X is JS, see [24,27].

Define the partition

_J n/2+1,n/2-1) if n is even,
on { (n+1)/2,(n —1)/2) if nis odd. (1.1)

When p = 2, the irreducible FS,-module DA is called the basic spin module,
cf. [57]. The irreducible FA,-module E(ﬁj’;) is also called basic spin. Basic spin modules

often play a special role, see for example [35, Theorem 3.9] and [32, Theorem A(vi)].
In particular, in Theorems A,A’,B,B’ below, we exclude the basic spin case, and then
consider it separately in Theorems C and C'.

For m < n we identify S,,, as the subgroup of S,, permuting the first m letters. We
also have standard subgroups

Sml,...7mt = Sm1 X oo X Smt < Sm1+---+mt < Sn and Am1,...,mt = Sm1,...,mt ﬂAn

whenever my + -+ - +my < n.

Before stating the main results, in Table I we list the dimensions of the modules
which give rise to special cases of irreducible restrictions and indicate when such
modules split upon restriction to A,. This table is obtained using [21, Table 1],
Lemma 2.6, [3, Lemma 2.2], [4], [8, Lemma 1.21], [20, Theorems 24.1, 24.15, Tables]
and [36, Lemma 1.8]. In the table we will always assume n > 5.

| A | Assumptions on p and n_| dim DX | e 22 (n) |
B p=2 2l(n=1)/2] iff n # 2 (mod 4)
(n—1,1) pin n—1 no
(n—1,1) pln n—2 no
=22 | 00 7 L ey | no
(n—2,2) gfpi’ ;:71];(?(()21531 o | (W= 3n=2)/2|ifip=2amdn=5
(n-22) | D22 RS2E0CN @) o
(n—2,2) p=2, n=0 (mod 4) (n? —5n+4)/2 no
(n—2,1%) p>2 pin (n? —3n+2)/2 iff n=>5
(n —2,12) p>2,pln (n?—5n+6)/2 |if p=3 andn==6
(5,3) p=>5 21 no
(6,3) p=>5 21 no
(32,2) p>5 42 yes
(3%) p>5 42 yes
(6,5,1) p=2 288 yes
7,5,1) =2 783 ves
21,2,1) »Z£23,7.23 3520 1o
21,2,1) p=7 3267 1o
(21,2,1) » =23 3269 10
(21,13) p>3 1771 no
(22,13) p=>5 1771 no

TABLE I: CERTAIN SPECIAL MODULES AND THEIR DIMENSIONS
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Doubly transitive subgroups G occupy a central place in the solution of Problem 1.
Mortimer [47] studied the problem for the heart D=L of the natural module of
S, and listed the results in [47, Table I], although leaving two unsettled instances.
These instances can now be completely analyzed, using [18, Satz D.2.5] for Ree groups
and [14] for Coz. We record the updated version of [47, Table I] (with n > 5) in Table
IT below, where the last column describes the conditions on p (if needed) for D=1
to be irreducible.

We point out for the purposes of Theorems B and B’ that, except the third line
marked with (1), all listed groups are almost simple. Moreover, not all subgroups
G satisfying C'" < G < AGL,,(r) are doubly transitive, but the list of such doubly
transitive groups is known by Hering’s Theorem, see [40]. On the other hand, the
subgroups from all other lines are indeed doubly transitive.

| G | Degree n | Transitivity | Conditions on p |
S, n n
A, n n—2
Cr <G < AGL,, (1), m
(1) r prime r 2or3 pET
PSL4(q) <G < PTLa(q), 71
a(q) 20 a(q) q 9 pla
= q—1
Ar =2 G < GL4(2) 15 2 p#£2
Sp?m(2)a m >3 2m—1(2m:|:1) 2 p7é2
L J4GE <YL
SLa(q) _§|q_ 2(q), g+ 1 3
PSLQ(Q)QGSPFLQ(Q), q+1 3
G £ PXLa(q), 21¢
’By(q) <G < Aut(®B ,
PSU <G < PTU.
2G1(q) 4G < Auwt(®Ga(q)) ¢ +1 2 p1g+1)(g+1++39)
M24 24 5 p;& 2
M23 23 4 p;é 2
Moo 22 3 p#£2
Mo 12 5
My 11 4
M11 12 3 p;é 3
PSLs(11) 11 2 p#£3
HS 176 2 p#2,3
Cos 276 2 p#£2,3

TABLE II: IRREDUCIBILITY OF D("~11) OVER DOUBLY TRANSITIVE SUBGROUPS

Remark 1.2. In [32, Theorem B], we have discovered a new exceptional family of
imprimitive subgroups G for which D(”_Ll)iG is irreducible in characteristic 2. Let
p =2, nbeeven, and G < S, 51S2. Let B := S, 5 X S, /5 be the base subgroup
of S;/21S2, and G1 (resp. Ga) be the projection of G'N B onto the first (resp.
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second) factor S, /5 of B. Then D=L | - is irreducible if and only if n = 2 (mod 4),
G is transitive on {1,2...,n}, G1,Gy are 2-transitive subgroups of S, /2 over which
D/2=1L1) s irreducible, and (D/2-L0D & DO/2)Y| o p 2 (D2 K DO/2=1D) o0 p.
We refer the reader to [32, Section 7|, especially [32, Example 7.24], for more on this.

For future reference, in Table III, we now list some additional “non-serial” (in the
sense that they exist only in a finite number of degrees n) examples of irreducible
restrictions of FS,-modules D* to subgroups G < S,. In all the cases G acts (at
least) 2-transitively on {1,2,...,n} or {1,...,n — 1} as indicated in the table, and
when {1,...,n — 1} is indicated we have that G fixes n. The fact that the cases
listed in Table IIT do yield irreducible restrictions D)‘ic is part of the statements of
Theorems A and C.

| Case | Aor \ | G | n | 2-transitive on | P |
SL3(2) 7 p= )
PT'Ly(8) 9 p#£2,7
M11 11 P }é 3,5
S1) | (n—2,2) M, 12 {1,...,n} p=2
M2 12 pP#5D
M23 23 P 75 2,3
Moy 24 p#2
M11 12 p= 2
Mlg 13 p= 11
(S2) | (n—2,2) M g1 | (Loon=13 | DT
M24 25 p= 23
S5 6 p= 3
M11 11 p;é 2,11
M11 12 P }é 2,3
(83) (n—2,12) M12 12 {1,...,”} p§£2
MQQ,Aut(MQQ) 22 p;ﬁ 2
Ma3 23 p#F2
Moy 24 pF2
My 12 p=
M11 13 p= 13
Mlg 13 p= 13
(S4) | (n—2,12) Mas. Aut(M) | 23 (=1 | DT
Mos 24 D=
Moy 25 p=
(S5) (14,12) C% x Az 16 {1,...,16} pF£2
(S6) | (15,12) C3 x A7 17 {1,...,16} p=17
S [ (5.3) AGL3(2) 8 {1,....8 =
S8) | (6,3) AGL3(2) 9 (1,....8} p=5
(S9) (21,2,1) Moy 24 {1,...,24} p#2,3
(510) (21,13) Moy 24 {1,...,24} p#£2,3
(S11) (22,13) Moy 25 {1,...,24} p=2>5
(512) (3,2) Cs x Cy 5 {1,...,5} p=2
(S13) (4,2) Ss 6 {1,...,6} p=2
(814) (6, 4) Sﬁ, ]\/[10, Aut(Aﬁ) 10 {1, ey 10} p = 2

TABLE III: NON-SERIAL EXAMPLES OF IRREDUCIBLE RESTRICTIONS FROM S,,
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Note that in the cases (S12)-(S14), we have (\,p) = (Bn,2), i.e. these cases are
concerned with restrictions of basic spin modules.

For future reference, in Table IV, we now list some “non-serial” examples of irre-
ducible restrictions of FA,-modules E} with \ € @ﬁ(n) to subgroups G < A,. In
all but the case (A17), G acts (at least) 2-transitively on {1,2,...,m} as indicated in
the table (and fixes n if m = n — 1). The two additional conditions in Table IV are
as follows:

(W) only one of Ef ’4), namely the one whose Brauer character takes

value —1 at elements of order 9 in SLy(8), is irreducible over G.

soc (G) acts on {1,2,...,6} and {7,8,...,12} via two inequivalent

(A4) 2-transitive actions.
Case A G n | 2-transitive on P Adlel.onal
conditions

(A1) | (6,5,1) Mo 12 {1,...,12} p=2

(A2) | (7,5,1) Mo 13 {1,...,12} p=2

(A3) | (4,1?) As 6 {1,...,6} p=3

(A4) (3%) PT'Ly(8) 9 {1,...,9} p>5H

(A5) | (32%,2) AGL3(2) 8 {1,...,8} p>5

(A6) (3%) AGL3(2) 9 {1,...,8} p>5H

(A?) (3,2) C5 X CQ 5 {1,,5} p:2

(A8) (5,4) | ASL2(3),C2x Qs | 9 {1,...,9} p=2

(A9) (5,4) SL2(8), PTLy(8) | 9 {1,...,9} p=2 (M)
(A10) | (6,4) Mg 10 {1,...,10} p=2

(A11) | (6,5) My 11 {1,...,11} p=2

(A12) (7,5) M117M12 12 {1,,12} p:2

(A13) | (4,3) As 7 {1,...,6} p=2

(A14) | (5,3) As, S5 8 {1,...,6} p=2

(A15) | (6,5) Mg 11 {1,...,10} p=2

(Alﬁ) (7, 5) Sg,Mlo,Aut(Ag) 12 {1, ,10} P = 2

(AT7) | (7,5) | Se, Mo, Aut(Ae) | 12 p=2] (a8
(A18) | (7,5) My 12 {1,...,11} p=2

TABLE IV: NON-SERIAL EXAMPLES OF IRREDUCIBLE RESTRICTIONS FROM A,,

Note that in the cases (A7)-(A18), we have (\,p) = (Bp,2), i.e. these cases are
concerned with restrictions of basic spin modules.

We now describe the main results of the paper. In all theorems, the subgroups
G are listed up to S,-conjugation. We note that S,-conjugate subgroups of A,, need
not be A,-conjugate, and it may happen, as it does in case (A9) listed in Table IV,
that one conjugate acts irreducibly while the other does not on an FA,-module; such
instances are specified explicitly in our results. The case of the basic spin module!,
excluded in Theorems A and A’, will be considered separately in Theorems C and C’.

Ias pointed out by the anonymous referee, incidentally, the phenomenon of spin modules in char-
acteristic 2 giving rise to long chains of subgroups with irreducible restriction has also been observed
in the context of symplectic groups over algebraically closed fields of characteristic 2 in [9].
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Theorem A. Let n > 5, G < S, and A\ € Py(n) be such that dim D* > 1. Exclude
the basic spin case (p,\) = (2, B,). Then D*| s is irreducible if and only if one of the
following holds:
(i) A& 20 (n) and G = A,.
(i) X or N equals (n —1,1), G is 2-transitive, and (G,n,p) is as in Table II.
(ii)) p=2,n=2 (mod 4), A = (n — 1,1), and G <S,,/5 1Sz is as in Remark 1.2.
(iv) p# 2, X or \ equals (n—2,1%), n = 2™ for some m > 3 and G = AGL,,(2) < S,
via its natural action on the points of F3'.
(v) Ais JS and G =Sp_1.
(vi) Xis JS, A& P (n), and G = A,_1.
(vii) n =0 (mod p), A or \" equals (n — 1,1), G is a 2-transitive subgroup of S,_1,
and (G,n — 1,p) is as described in Table II.
(viii) p # 2, X or X" equals (n —2,12), n =2™ +1=0 (mod p) for some m > 2, and
G = AGL,,(2) < S,—1 embedded via its natural action on the points of F5'.
(ix) (N\,G,n,p) is as in one of the cases (S1)-(S11) in Table III.

Theorem A’. Letn>5, G < A,, and V be a non-trivial irreducible FA,,-module. If
p = 2 assume that V is not basic spin. Then Vg is irreducible if and only if one of
the following holds:
(i) V = E* with \ ¢ L@ﬁ(n) and (\,G,n,p) is as in Theorem A.
(ii) V = E} with \ € ‘@5(”) and one of the following holds:
(a) G = Ap—1 and X is JS or it has exactly two normal nodes, both of residue
different from 0.
(b) G=A,_2 or Ap_22 and X is JS.
(¢c) (N\,G,n,p) is as in one of the cases (A1)-(A6) in Table IV.

A group G is called almost quasisimple if S < G/Z(G) < Aut(S) for some non-
abelian simple group S. In a number of applications, irreducible restrictions to qua-
sisimple subgroups G are of most interest. In the next two theorems we deal just with
this important special case.

Theorem B. Let n > 5, G <'S,, be an almost quasisimple subgroup, and A € Zp(n)
be such that dim D* > 1. Exclude the basic spin case (p,\) = (2,8,). Then D | is
irreducible if and only if one of the following holds:
(i) A & L@I/j(n) and G = A,,.
(i) X or \ equals (n —1,1), G is 2-transitive, and (G,n,p) is as described in Table
II, excluding the third line marked with (7).
(iii) A is JS and G =S, _1.
(iv) Nis JS, A & L@ﬁ(n) with A # By, if p=2 and n =2 (mod 4) , and G = A,_1.
(v) n=0 (mod p), X or \ equals (n—1,1), G a 2-transitive subgroup of Sp_1, and
(G,n—1,p) is as described in Table II, excluding the third line marked with (7).
(vi) (\,G,n,p) is as in one of the cases (S1)-(S4) or (S9)-(S11) in Table III.

Theorem B'. Letn > 5, H =A,, G < H be almost quasisimple, and V be a non-
trivial irreducible FA,-module. If p = 2 assume that V is not basic spin. Then Vg
1s irreducible if and only if one of the following holds:

(i) V = E* with \ ¢ L@I/j(n) and (\,G,n,p) is as in Theorem B.



8 ALEXANDER KLESHCHEV, LUCIA MOROTTI, AND PHAM HUU TIEP

(i) V = E} with A € L@ﬁ(n) and one of the following holds:
(a) G = Ap—1 and X is JS or it has exactly two normal nodes, both of residue
different from 0.
(b) G=A,_2 or Ay_22 and X is JS.
(¢) (\,G,n,p) is as in one of the cases (A1)-(A4) in Table IV.

For basic spin modules in characteristic 2 we have the following two results.

Theorem C. Let n > 5, p = 2, and G < S, be a proper subgroup of S, such that
DPn | is irreducible. Then one of the following happens:

(i) G <Sp_k X S withn —k and k odd. In fact,
DB”\LS o~ Dfn—k g DBk

n—k XSk
is indeed irreducible.
(i) G < Sq 1Sy with n = ab, a,b € Z~1 and a is odd. Moreover if b > 2 then
G LS, x -+ xS, In fact,
DB”‘LS@ZS() =~ pha ) Dby

is indeed irreducible.
(iii) G is primitive, in which case DPr | is irreducible if and only if one of the
following happens:
(a) n=2 (mod 4) and G = Ay;
(b) (G,n) is as in one of the cases (S12)-(S14) in Table III.
Moreover, if G is almost quasi-simple then DP» | is irreducible if and only if one of
the following holds:
(1) n is even and G = Sp_1.
(2) G is primitive, and one of the following holds:
(a) n=2 (mod 4) and G = Ay;
(b) (G,n) is as in one of the cases (S13),(S14) in Table III.

For restrictions of basic spin modules for A,, we have the following analogous result:

Theorem C'. Letn >5,p=2 and G < A,. If E(B:Z)\LG 1s irreducible then one of the
following holds:

(i) G < Ak for some 1 < k < n, and either n = 0 (mod 4) and k is odd, or
n # 2 (mod 4) and k = 2 (mod 4). Moreover, in all of these cases EiniAn,k .
is indeed irreducible.

(il) G < (Sa1Sp) NA, for a,b > 1 with n = ab, and either a is odd or a = 2 (mod 4)
and b = 2. Moreover, in all of these cases E(/\i)i(sazsb)ﬂAn 15 1ndeed trreducible.

iii) G is primitive, in which case EPn da is irreducible if and only if (G,n) is as in

(H)¥G

one of the cases (A7)-(A12) in Table IV.
Moreover, if G is almost quasi-simple then E(ﬁﬁ)ic is 1rreducible if and only if one of
the following holds:
(1) n # 2 (mod 4) and one of the following happens:

(a) 4ln and G = Ay—321 or Ap—211.

(b) G=A,_22.

(¢) n=0,3 (mod 4) and G = A,_1.
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(d) (G,n) is as in one of the cases (A9), (A11)-(A18) in Table IV.
(2) (G,n) = (M, 10) (case (A10) of Table IV).

Remark 1.3. We point out that [32, Theorem C] contains an inaccuracy: since
Mis < A1z and 19 € @9(12), the restriction D512¢M12 is reducible, and so this case
does not appear in Theorem C above. However, it does appear in Theorem C’(iii) and
(1)(d) as part of the case (A12).

There is a similar inaccuracy in [8, Main Theorem]: let G = My; < Sq; and p = 5.
Then D2 | is reducible by case (iii) of [8, Main Theorem| and so D(1%?) |, is also
reducible.

We point out that the results proved in [32,34] that reduce the problem mostly
to the treatment of doubly transitive groups do not depend on the Classification of
Finite Simple Groups (CFSG). However, the main results of this paper depend on
CFSG as follows: (i) our treatment of doubly transitive subgroups relies on their
explicit list, see [10], which is a consequence of CFSG, and (ii) the treatment of “non-
generic” situation in Section 3 uses the list of simple subgroups of S,, of large order
(Proposition 3.1) which also relies on CFSG.

We now describe the key ingredients of our proof and the organization of the paper.
We will exploit various dimension bounds for irreducible representations of symmetric
groups, especially new lower bounds obtained in [33], see Theorems 2.21 and 2.22.
Further dimension bounds and branching results are collected in the preliminary Sec-
tion 2.

Reduction theorems established in [32,34] allow us to assume in many situations
that the subgroup G is primitive or even doubly transitive. Those subgroups tend to
have a relatively large order, and we contrast order bounds with dimension bounds
in Section 3, particularly to resolve the “non-generic” situation where the module is
either basic spin or not extendible to S,,.

In Sections 4-7 we deal with doubly transitive subgroups G < S,,. Given the

well-known solution of Problem 1 in the case (G,H) = (A,,S,), we will assume
that G # A,. Such subgroups G are subdivided into the following four families,
corresponding to the structure of the socle soc (G) and its action on {1,2,...,n}:

(A) soc(G) is elementary abelian subgroup;

(B) soc(G) = PSL,,(q) (is non-abelian simple) acting on n = (¢ —1)/(q — 1)
1-dimensional subspaces of F{;

(C) G = Spon(2), m > 3, acting on n = 2™~ (2™ + (—~1)%) quadratic forms on
2™ of the given Witt defect § € {0,1};

(D) all other doubly transitive subgroups; the subgroups from this class will be
called small doubly transitive subgroups.

The small doubly transitive subgroups of (D) are handled in Section 4, largely
relying on the aforementioned results on dimension bounds, branching rules to Young
subgroups, and available information about modular representations of H and G.

In Section 5, we handle the family (A) of affine permutation subgroups. Here, the
key technical result is Proposition 5.11 that identifies the S,-modules that have no
(nonzero) invariants over soc (G) = C", whose proof in turn relies on representation
theory of affine general linear group AGL,,(r) and the new branching recognition
result Proposition 2.17.
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The families (B) and (C) are handled in Sections 6 and 7, respectively. We note
that these large doubly transitive groups are the main reason why the methods of [8]
and [36] break down when one tries to employ them in small characteristics p = 2, 3.

The heart of the proof is to show that if the irreducible FS,-module D* remains
irreducible over such a subgroup G from the families (B) and (C) , then the longest
part Ay =n — £ of A is very large, in fact, £ < 3 most of the time. We will do this in
a sequence of steps.

First, using the obvious bound dim V < |G|"/? for any irreducible G-module V and
Lemma 2.3, we show in Propositions 6.7 and 7.9 that

dim D)\ < n%logQ n+1‘
Then an application of Proposition 2.23 implies that
¢ = O(logn). (1.4)

Next, we choose some L such that 2¢ < L < n. Considering G NS,,_, and using
Theorem 2.11 and Propositions 6.7(iii) and 7.9(ii), we prove that

dim D* = nO%) (1.5)
for some k = O(log ¢). On the other hand, Theorem 2.21 yields a lower bound
dim D* > O(nf/(€!)?). (1.6)

Given (1.4), we can show that (1.6) contradicts (1.5), unless ¢ is small. An itera-
tive application of this argument will allow us to show that £ < 3. The remaining
possibilities for A are ruled out using more precise information about D*.

Finally, the main theorems are proved in Section 8. First, we use the main results
of [32,34] to reduce to subgroups doubly transitive on {1,...,n} or doubly transitive
on {1,...,n — 1} and fixing n. The results of the previous sections then allow us to
complete the proofs of Theorems A, A’. The proof of Theorem B requires a delicate
argument to rule out the possibility of Theorem A(iii) for almost quasisimple groups.
The proof of Theorem C’ combines classifications of irreducible restrictions to maximal
imprimitive subgroups (from [34]) and to primitive subgroups (obtained in Sections 4
7). After that we need to handle the case when soc (G) = A, has only orbits of length
1 and mon {1,2,...,n}.

2. PRELIMINARY RESULTS

2.1. Generalities. Throughout the paper we work over a fixed algebraically closed
ground field F of characteristic p > 0. Let G, H be arbitrary finite groups, V,V’ be
FG-modules, and W be an FH-module. The following notation is used throughout
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the paper:

Vigor VI% the restriction of V from G to H (if H < G);
ind® W or ind%; W the induction of W from H to G (if H < G);
VEW the outer tensor product of V' and W (this is a module

over G x H);
y the inner tensor product of V and V’ (this is a module
VeV
over G);
I the space of G-invariant vectors in V;
Fg the trivial FG-module;
Irrp(G) a complete set of irreducible FG-modules;
IBr,(G) the set of irreducible p-Brauer characters of G;
b,(G) the maximal dimension of an irreducible FG-module;
b(G) the maximal dimension of an irreducible CG-module;
d(G) the minimal degree of a non-linear irreducible complex
character of G (if such exists);
P(G) the smallest index of a (proper) maximal subgroup of G;
Pp(n) the set of p-regular partitions of n;
P (n) the set of A € Z,(n) such that D*|, is reducible;
h(\) the number of nonzero parts in the partition .

Let 0 < /¢ < n. We denote
POn) = {AbFn| M\ >n—10},
ZO(n) :={\ e P,(n) | A or \ belongs to 2 (n) N 2,(n)}.
Given a partition u = (u1, 2, ...) of £ with 3 < n — ¢, we have a partition
(n—4Lpu):=n—~0pu,pe,...) (2.1)

of n. Every partition A\ of n can be written in the form A = (¢, u) for a (possibly
empty) partition p of n — £.
For A, AL, .. A% € Z,(n), we denote

[DY] := {D* D*®sgn} and [D,....DY]:=[D"]U---U[D].
Special roles will be played by the sets
T, := [DW], N, :=[D" D] NT, :=N,UT,.

The following simple observations turn out to be very useful:

Lemma 2.2. We have:
(i) If G < S,,, thenn > P(G). If G is not primitive on {1,...,n} thenn > P(QG).
(ii) If G is a simple group, then P(G) > d(G).

Proof. (i) follows by considering point stabilizers. (ii) comes on observing that ind§ Cg
contains some non-trivial irreducible components for any H < G. O

Note that b,(G) < b(G). We will need the following bound:

Lemma 2.3. [52, Theorem 2.2] Let G = SL,,(q) or Spam(q) with m > 2. If B is a
Borel subgroup of G, then b(G) < [G : B.
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2.2. Representations of symmetric and alternating groups. Recall the nota-
tion and the facts on representation theory of symmetric and alternating groups intro-
duced in Section 1. In addition, we will denote by M?* the permutation module and
by S* the Specht module over the symmetric group S,, corresponding to a partition
A of n, see [20]. Occasionally, we will need the corresponding Specht module over C,
which we denote S(é. Thus S* is a reduction modulo p of S(é.

Lemma 2.4. Suppose that G < S,,. If S>‘¢G 1s irreducible then so is S(C\i(;.

Proof. This follows on observing that reduction modulo p and restriction to a subgroup
commute. (]

Lemma 2.5. Let p=3 and n =0 (mod 3). If G < S,, and D22 |, is irreducible
then n < 24.

Proof. The assumptions imply that D(*=22) = §("=22) By Lemma 2.4, if D("_Q’Q)LG
is irreducible then so is S(én_m)ig. The result now follows from [50, Theorem 1]. O

We next record some known results on dimensions of special irreducible modules
for p = 2 and 3.

Lemma 2.6. We have:
(i) If p =2, then

(n? —5n+4)/2 ifn=0 (mod 4),
. n—29) ) (n*—=3n—2)/2 ifn=1 (mod4),
dim D02 = (n2 —5n+2)/2 ifn=2 (mod4),
(n? —3n)/2 ifn=3 (mod 4).

(ii) If p =3 then

(n? —3n)/2 ifn=0 (mod 3),
dim D™=22) = { (n?2 —=3n—2)/2 ifn=1 (mod 3),
(n?—5n+2)/2 ifn=2 (mod 3).

(iii) If p =3 then

2 .
. m—212) _ [ (n®=5n+6)/2 if3|n,
dim D { (n2 —3n+2)/2 if3tn.

Proof. This is well known and follows easily from [20, 24.15, 24.1]. O
The following results will be needed to study irreducible restrictions to May:

Lemma 2.7. Let n =24, p =3, and A € 2W(24) \ 221 (24). Then the dimension
of D* and the decomposition of [S] in the Grothendieck group are as follows

(i) dim D??? =252 and [S®2?] = [D(22)].

(ii) dim D®21*) = 231 and [$(221%)] = [D(22.1%)] 4 [D<231]

(i) dim D®3) = 1726 and [S213)] = [D<213 |+ D3],

(iv) dim D@L2D = 1540 and [S?12V)] = [DRL2D]4[DRL)]4 [ D214 [DE3 D] 4
[DEY].

(v) dim D@9 = 6854 and [SCOY] = [DR0A] 4 [DELI)] 4 [DE3:1)],

(vi) dim D@03 = 26082 and [SZ03D)] = [DE03.D)],
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(vii) dim D92 = 7315 and [$(202°)] = [D(20:2%)] 4| D204 | [ DEL3)] 4 [ D121 4
Q[D(23’1)] + [D(24)].
(vii) dim D921 = 26334 and [S(2021%)] = [D(202.1%)],

Proof. (i), (iii), (v) follow from [20, 24.15].
(ii) follows from [20, 24.1].
(iv), (vii) follow from [21, Appendix].
(vi), (viii) follow from Carter’s Criterion, see [22]. O

Lemma 2.8. Let n =24, p=2, and A € 2W(24) \ 221)(24). Then the dimension
of D* and the decomposition of [S*] in the Grothendieck group are as follows

(1) dim D?22) =230 and [S(?*?)] = [D(*2:2)] 4 [D(E3.1)],

(ii) dim D@Y3) = 1496 and [S?13)] = [DE13)] 4+ [DE22)] 4 [DZ31)],
(i) dim D@L2D = 3520 and [S@121)] = [DERL21)].

(iv) dim D20Y = 7084 and [S?0%)] = [D(204)] 4 [D(

v) dim D@03 = 17248 and [$03V)] = [DE0

[ D22, 2)] [ (2371)] + 2[D<24)].

Proof. (i), (ii), (iv) follow from [20, 24.15].
(iii) follows from Carter’s Criterion, see [22].
(v) follow from [19, Theorem 7.1]. O

(21,3) ] + [D(23’1)].
)] [D(20’4)] + [D(21’3)] +

For partitions p! = (pi, ... ,p}Ll), cpb =k ,,u’flk), we define the composition

(uh,...,p1F) = (,u%,...,,u}lll,...,,ulf,...,,uﬁk).
Recalling (1.1), for a partition A = (A, ..., Ay) of n, we now define its double dbl(\) :=
(/8A17"'75>\h)'

Lemma 2.9. [4, Theorem 1.1] We have
PR (n) == Py(n) N {dbI(\) | A € Po(n), A\, # 2 (mod 4) for all r}.
We record for future reference:

Lemma 2.10. Letn >5 and A = (A, Ag,...) € L@ﬁ(n). Then

(n+2)/2 ifp=2,
Alﬁ{ (n+p+1)/2 ifp>3.

Proof. For p > 3 this is [37, Proposition 4.3(i)], and for p = 2 this follows from
Lemma 2.9. O

To analyze restriction to large doubly transitive subgroups, we will need to know
that the trivial submodule Fs_ appears in the restriction D*|g for some reason-
ably small m. Recall the notation (2.1).

Theorem 2.11. Let ¢, L be integers satisfying 0 <20 < L <n, and A = (n —{,u) €
Pp(n). Then DMs . contains a trivial submodule.

Proof. We will apply branching rules from [28] without further reference. We use
induction on ¢ = ||, the theorem clearly holding if £ = 0 since in that case D* =
D™ =TFg . Let £ > 0.
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If X has a good node below the first row then there exists v € &,(¢ — 1) such that
(n—{,v) = (n—1—(£—1),v) is a p-regular partition of n—1 and D=6¥) C DM, ..
By the inductive assumption, D"t )LS% , contains a trivial submodule.

Assume now that A has no good node below the first row. Then n — ¢ = Ay >
Ao = p1, (n—1— 4, p) is p-regular and D)‘¢Sn71 o~ p=1=tp) Tf A is the second top
removable node of A then A is normal in (n—1—¢, ). So (n—1—/, 1) has a good node
below the first row. In particular there exists v € &2,(¢ — 1) such that (n—1—¢,v) =
(n—2— (£ —1),v) is a p-regular partition of n — 2 and D(*~1=6¥) C D*|s, . By the

inductive assumption, D"~ 1= )¢Sn7 , contains a trivial submodule. O

In the following lemma we use functors e; : FS,,-mod — FS,_1-mod for which we
refer the reader to [31]. The integer £;()\) is defined as max{k | e¥D* # 0}.

Lemma 2.12. Let A € Zy(n) with €;(\) = 2. Let A and B be the i-normal nodes in
A\ with A below B. If Ap is p-reqular and the socle of (e;D*)/D*4 is isomorphic to
D?B then e;D* = DM |DAB| DM,

Proof. This follows by self-duality of e;D*, together with [30, Theorem 1.4]. O

We will need the following strengthening of Theorem 2.11 for the partition (n—2,2):

Lemma 2.13. If n > 5, then D("_m)is%3 contains a trivial submodule, provided
p=3andn=0,1 (mod 3), orp=2 and n=0,1,3 (mod 4) .

Proof. We will use branching rules from [28] without further reference. Assume first
that p = 3 and n = 0,1 (mod 3), or that p = 2 and n = 1,3 (mod 4). Then
D=21) D("_272)¢5n73 and so we can conclude using Theorem 2.11. Assume now
that p = 2 and n = 0 (mod 4), in which case n > 6. Then D("_m)is%1 >~ p(n=3.2),
By [54], we have in the Grothendieck group

[D(n—372)\l/s — 2[D(n—2)] + 2[D(n—3,1)] + [D(n—472)]

_—

(omitting the last summand if n = 6). From Lemma 2.12 it follows that there exists
M C D("_272)¢Sn72 with M ~ D("_3’1)|D("_2). Considering block structure it then
follows that D("=3) C M|g . C D22 g . O

To conclude the subsection, we record for future reference the following recognition
result for basic spin modules:

Lemma 2.14. Let p = 2, n > 5, and let H = A,, or S,,. Suppose that V is an
irreducible FH -module in which a 3-cycle t acts with exactly two eigenvalues. Then V
s a basic spin module.

Proof. In the case H = S,,, the statement is [57, Theorem 8.1]. Suppose H = A,,.
If V extends to S,,, then we are done by the previous case. If V' does not extend to
Sy, then we can find an irreducible FS,-module W such that W, =V & V9 for any
g € Sy~ H. Certainly we can choose such a g to be (a 2-cycle) centralizing ¢. Thus
t has the same eigenvalues on V¥ as on V, and so t acts quadratically on W. By the
S,-case, W is basic spin, and so is V. O
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2.3. Branching recognition results. We begin by recording the following well-
known branching recognition result for the modules in NT,,.

Lemma 2.15. [39, Proposition 2.3] Let n > 6 and D be an irreducible FS,,-module.
Suppose that all composition factors of the restriction D]s _ belong to NT,,_1. Then

D €NT,,, unlessn =6, p=3 and D € [D*?], orn=6, p=>5 and D € [[D(4’12)]].

Define
. 4 if p=3,
"1 3 otherwise.

Lemma 2.16. Let n > 2u and D be an irreducible FS, -module. If all composition
factors of Dls, , are of the form D" X D" with D" € T, or D" € Ty, then D* € NT,,.

Proof. 1f D ¢ NT,, then by Lemma 2.15, the restriction D]g, has a composition factor
not in NTg,. So it is enough to prove the lemma for n = 2u, which is an easy explicit
check. O

Proposition 2.17. Let s > 2, mq,...,ms > v and m1 + --- + ms < n, and D be
an irreducible S, -module such that all composition factors of D¢5m1 .m, are of the

form DM K- DM with at most one t such that D' & Tp,. Then D € NT,,.

Proof. By assumption, restricting further to the subgroups S, < S,,,, and S, < S,,,,,
we deduce that all composition factors of D]g  are of the form DX D" with D* € T,
or D¥ € T,. So the proposition follows from Lemma 2.16. a

We need another special branching recognition result.

Lemma 2.18. Let p =3, n > 8 and D* be an irreducible FS,-module. If all compo-
sition factors of D)‘¢Sn71 belong to NT,,_; U [[D("_3’12)]] then D* € NT,, U [[D(”_2712)]].

Proof. Note that
NT,, U [[D(m—2712)]] — {D(m)7 pm/2Llm/2))  pim=11) p([(m=1)/2],[(m=1)/2},1)
D(m—2712)’ DU m=2)/21,1(m=2)/2},2)}

for m > 7, see for example [3, Lemma 2.2]. Throughout the proof we will be using
branching rules from [28] without further referring to them.

Case 1. h(A\) > 4. Then from [2, Lemma 4.7] that D)‘¢56 contains a composition
factor D(>211) Hence D)‘¢Sn71 has a composition factor of the form D* with h(u) >
4. In particular D* & NT,,_; U [D(=31%)].

Case 2. h(A\) =3 and A3 > 3. Then n > 10 and by [2, Lemma 4.13], Dém contains
a composition factor D@3 So if n > 10 then D)‘isw1 contains a composition factor
DF with pg > 3, in particular D* & NT,_y U [D=31%)]. If n = 10 then A = (4, 3?)
and X = (7,2,1), so DG2*) & NTq U [D(T1D] is a composition factor of D*|s, since
(5,2%) = (6,2, ).

Case 3. h(A) = 3, A3 < 2 and A} — A2 > 3. We may assume that Ay > 2, since
otherwise A = (n—2,12). But then DA1=122%) & NT, _; U[D"31%)] is a composition
factor of D)\isn,l-

Case 4. h(A) = 3, A3 < 2 and A} — A2 < 2. We may assume that A} — Ay = 2,
since otherwise D* € NT,, U [[D(”_2712)]]. If n > 8 then Ay > 3 > A3, so DALA2—1LAs) ¢
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NT,_, U[D®31")] is a composition factor of D*g. . Ifn =8 then A = (4,2,2) and
D2 & NT; U [DGLV] s a composition factor of D*s..

Case 5. h(\) =2 and Ay — A2 > 3. We may assume that A\g > 2, in which case
DAi=LA2) @ w1, U [D™=31°)] is a composition factor of DMs .

Case 6. h(A) = 2 and A} — Ay < 2. We may assume that A\; — Ay = 2. Since n > 8
we have that Ay > 3 and so D(*1:A2=1) ¢ NT,,_1 U [[D("_3’12)]] is a composition factor
of DX|g, .. O
Corollary 2.19. Let p=3, n =2 for m > 4, and D be an irreducible FS,,-module.
Suppose that all composition factors D* X DY of the restriction Disn/zxsn/z satisfy
one of the following three conditions:

(1) DF = DY € Ny 9,

(2) DF €T, /9, D" € NT,, ;5 U [D®/2-2L1],

(3) DY €T, 5, D* € NT,, ;5 U [D®/2-2L1)]
Then D € NT,, U [D(*=2LD].

Proof. By assumption, all composition factors of D]g_ P belong to NT,, /QU[[D(”/ 2_2’12)]],
and the result follows from Lemma 2.18. (]

4. Dimension bounds. Recall the notation (2.1). We begin by recording James’
lower bounds for dim D44 with ¢ < 4:

Lemma 2.20. [21, Appendix] Let 1 < ¢ < 4, p € Zp(¢), and n be such that
(n—4L,p) € Pp(n) with pt L. Then

n—2 ift=1,

2 .
. (n—t,p1) (n®—5n+2)/2 if £ =2,
dim D = (n® —9n? + 14n) /6 if £ = 3.

(n* — 14n3 4 47n? — 34n) /24 if £ = 4.

Set
P 1 ifp=2.

For integers £ > 0 and n we define the rational numbers

CP(n) :=p (n/p . Z )

ng (6p +2)p

n(n—p)(n— 2pé) (n=({=1)p) if p>2,
=\ (p )(n—%)) (n—tp) if p=2.

The following result substantially develops [21] (the upper bound dim D* < nf is
trivial, since D* is contained in the permutation module M*, which has dimension at
most n!/(n — £)! < nf).

Theorem 2.21. [33, Theorem A] Let £ >4, n > p(§,+¢—2), and A= (n— L, pu) €
Pp(n) for some p € Pp(l). Then

n’ > dim D* > C7(n).
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While Theorem 2.21 requires that n is relatively large compared to £, we also have
the following universal lower bounds which strengthens [16, Theorem 5.1]:

Theorem 2.22. [33, Theorems B, C] Let A = (A1, A2,...) € Pp(n), and k =
max{A, A}

(i) If p = 2, then dim D* > 2n~F,

(ii) If p > 2 let N = (N, \Y,...), and let m be minimal such that D*|s _  contains
a 1-dimensional submodule. Put k := max{\, N[} and t := max{n — k,m}.
Then

dim D* > 2. 323,

In particular, for all p and n > 5, we have dim D> > 2(n—k)/2,

The following technical result will be used to study irreducible restrictions to doubly
transitive subgroups G with soc (G) = PSL(m,q) and Sp2,,,(2) in Sections 6 and 7.

Proposition 2.23. Let n > 324, p = 2 or 3, and define ¢ from max(A, A]) =n — £.
If

dim D* < pzlog2 1
then £ < 0.7logyn + 1.4.

Proof. Set L(n) := % logy n+1. We need to show that ¢ < 1.4L(n). As 1.4L(324) > 7,
we may assume that ¢ > 7. Replacing A\ by A" if necessary, we may assume that
A = (n— ¢, ) for a partition p of £. By Theorem 2.22 and the assumption, we now
have
2t/2 < dim D* < nL("),

and so

¢ <2L(n)logyn = (logyn + 2)logyn =: Li(n). (2.24)
As n > 324, we certainly have that ¢ < Li(n) < in + 2, whence n > p(3, + ¢ — 2),
and Theorem 2.21 applies to give

_ ¢ ¢
dim D* > CP(n) > (n+ 3@! 39 <2("; 3 _ 6> , (2.25)

where we have used ¢! < (£/2)* for £ > 6 to get the last inequality.
If £ > cL(n) for some ¢ > 0, we get

cL(n)
AL < <M _ 6> ,

/
and so ( )
2(n+ 3
> ,C) i= ————.
f(n,c) e 6
We have therefore shown that
If f(n,c) > ¢ for some ¢ > 0, then ¢ < cL(n). (2.26)

We will use this implication repeatedly to prove ¢ < 1.4L(n).
First we take ¢ = 16. By the assumption on n and (2.24), f(n,16) > Li(n) > /.
Hence, (2.26) implies that

¢ < Ls(n) :=16L(n) = 8logy n + 16.
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Next we take ¢ = 9 and note that f(n,9) > La(n) > ¢ for n > 324 (this is the only
place where smaller n would not work). Applying (2.26), we deduce that
¢ < L3(n) :=9L(n) = 4.5logyn + 9.

Now take ¢ = 2.8 and note that f(n,2.8) > Lsg(n) > ¢ for n > 324. Applying (2.26),
we now obtain

¢ < Ly(n) :=2.8L(n) = 1.4logyn + 2.8.
Next we take ¢ = 1.6 and note that f(n,1.6) > Ly4(n) > ¢ for n > 324. Using (2.26),
we deduce that

¢ < Ls(n) :=1.6L(n) = 0.81logy n + 1.6.
Finally, we take ¢ = 1.4 and note that f(n,1.4) > Ls(n) > ¢ for n > 324. Again using
(2.26), we conclude that ¢ < 1.4L(n), as stated. O

We now establish some dimension recognition results for modules in .Z®)(n) for
small /.

Lemma 2.27. Ifn > 17 and dimEé‘i) < (n® —5n+2)/2, then p € LM (n).

Proof. The statement follows from [17, Lemma 6.1]. O
The following proposition extends [8, Lemma 1.20]:

Proposition 2.28. The following lower bounds hold.
(i) Let n > 13, and assume in addition that n > 23 if p = 2. Then for X € P,(n),
we have either A € £ (n) or

dim D* > (n — 9n? + 14n)/6.

(ii) Suppose that p > 3 andn > 17. Then for X € P,(n), we have either A € £®)(n)
or
dim D* > (n* — 14n® 4 47n? — 34n)/24.
Proof. By Lemma 2.20, if A € £®)(n) ~ Z®(n), then dim D* > (n® — 9n? + 14n) /6.
Now assume that A\ ¢ .2(®)(n), and in addition D* is not basic spin if p = 2. Then
dim D* > (n* — 14n3 + 47n% — 34n)/24 by [48, (6.2)]. In the case where D* is basic
spin and n > 23, one can check directly that dim D* > (n® — 9n? + 14n)/6. O

Remark 2.29. The statement of Proposition 2.28(i) does not hold for p = 2 and
n = 22, a counterexample given by the basic spin module D?22. However, a similar
argument shows that for n > 17 we have either A € £ (n) or dim D* > 2(n? — 9n? +
14n)/25.

3. ORDER BOUNDS AND DIMENSION BOUNDS

3.1. Subgroups of large order. First we extend Propositions 6.1 and 6.2 of [26],
following mostly the arguments given therein.

Proposition 3.1. Let S < A, be a non-abelian simple subgroup such that
|Aut(S)| > 27/274, (3.2)
Then one of the following happens:

(i) S = A, with m < n. Moreover, if m > 12, then S is intransitive, and each of
its orbits on {1,2,...,n} has length 1 or m.
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(ii) S = PSLy(q) with (m,q) = (2,<37), (3,<5), (4,3), (5,2), or (6,2).
(111) S%SU:;( ) or SU4(2 %P5p4( )

(iv) S = Spg(2).

(v) 8= My, Mg, May, Moz, or Moy.

Proof. (a) First we consider the case S = A,,. Note that m < n as S # A,,. Assume
furthermore that m > 12 and S has an orbit of length k # 1,m on {1,2,...,n}. As
in [26], it follows that n > k > m(m—1)/2. Now one can check that 27(m=1/4=4 > |
for m > 12, a contradiction.

For the remaining cases, recall from Lemma 2.2 that

n > P(S) > d(S).
Now, if S is one of the 26 sporadic simple groups and not listed in (v), then using

the exact value of P(S) given in [11] (or of d(S), if P(S) was not listed therein) one
can check that (3.2) cannot hold.

(b) Assume now that S is a classical group. Then |Aut(S)| and P(S) are listed in
Tables 5.1.A and 5.2.A of [25].

First suppose that S = PSLy,(q). Then |Aut(S)| < ¢™°. If m > 4 (and S % Asg),
then P(S) = (¢™ — 1)/(¢ — 1), and one can check that (3.2) can hold only when
(m,q) = (4,3), (5,2), or (6,2). If (m,q) = (3,> 7) or (2,> 41), then again P(S) =
(g™ —1)/(¢ — 1) and one checks that (3.2) is violated.

Next suppose that S = PSU,,(q). Then we again have |Aut(S)| < ¢™". If m > 5,
then P(S) > ¢*™~3 and one checks that (3.2) cannot hold. If (m,q) = (4,> 3) then
P(S)=(¢+1)(¢® +1). Ifm =3, then P(S) =¢*+1for ¢ > 7or ¢ =4, and 50 if
g = 5. In all these cases, (3.2) is violated.

Suppose now that S = PSpaoy,(q) with m > 2, or Qo,41(q) with m > 3. If
m > 3, then |Aut(S)| < ¢™*™ D+ /2 whereas P(S) > ¢™ '(¢™ — 1), and so (3.2)
can possibly hold only when (m,q) = (3,2). Similarly, if (m,q) = (2,> 4), then
P(S)=(¢"* —1)/(g — 1), and (3.2) cannot hold.

Suppose S = PQZ, (q) with m > 4. If m > 4 or if S % PQJ(q), then |Aut(S)| <
g™+ whereas P(S) > ¢*™2, and so (3.2) is impossible. Similarly, (3.2) rules
out the remaining case S = PQJ ().

(c) Finally, assume that S is an exceptional group of Lie type. The cases S = Fy(2),
2F4(2)', 3D4(2), Go(3), G2(4), or 2B2(8) can be ruled out directly using [11]. In all
other cases, we can use the Landazuri-Seitz-Zalesskii lower bound on d(S) as recorded
in [25, Table 5.3.A] to check that (3.2) cannot hold. O

The following known lemma follows from the O’Nan-Scott theorem, see e.g. [41]:

Lemma 3.3. Suppose G < Sy, is a primitive subgroup with an abelian minimal normal
subgroup S. Then n = r™ is a power of some prime r, and G is a subgroup of the
affine group AGL(V') = AGLy,(r) in its action on the points of V =F}".

Proposition 3.4. Let G < S,, be a primitive subgroup, not containing A, and such
that
G| > 221, (3.5)
Then one of the following happens:
(i) soc (G) is elementary abelian of order n = r*, with (r,k) = (2, <6), (3, <3),
or (5,2).
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(ii) S < G < Aut(S) for a non-abelian simple group S. Furthermore, either S = A,
with m < 11, or S satisfies Proposition 3.1(ii)—(v).
(iii) soc(G) =S x S for a non-abelian simple group S < A,, 5 < a <9, and n = a?.

Proof. We apply the O’Nan-Scott theorem in the version given in [41]. First suppose
that soc (G) = CF, so that n = r* for a prime r. Then Lemma 3.3 shows that
G < AGLy(r) and so |G| < r¥***_ A direct computation shows that (3.5) can hold
only in the cases listed in (i).

Next assume that soc (G) = S is non-abelian simple. Then S < G < Aut(S) and S
is transitive on {1,2,...,n}. Now we can apply Proposition 3.1 to arrive at (ii).

In the remaining cases, soc (G) = S* for a non-abelian simple group S and k > 2,
and G is of type III(a), ITI(b), or III(c) in the notation of [41]. Suppose G is of type
I11(b), so that n = a® with a > 5, b > 2, and G < S, S. In this case, b < logs n and

(a)? - b < (a®)’b® < n’ < nV™ - (logs n)'es ™,
Now if n > 318, then
224 5 VL (logs n)1o8s ™,
violating (3.5). The cases where n = a” < 317 can now be checked directly to show
that b =2 and 5 < a < 9. This implies that k£ =2, § < A,, and we arrive at (iii).

Suppose G is of type ITI(a). Then n = |S|¥~! and G < S¥ - (Si x Out(S9)). Since
|S| > 60, we can check that

olSI* /2= o gkl . (3.6)

As [Out(5)| < |S], (3.5) cannot hold.
Finally, assume that G is of type I1I(c). Then n = |S|* and

G < Aut(S*) = S* . (Out(9)* x Sy).
Now (3.6) implies that
on/2=4 > 9lSI*/2=4 o (|GFHL k)2 S |S12K L kL > |G,
a contradiction. O

3.2. Irreducible restrictions for some special modules and groups. Now we
prove main results of this section.

Theorem 3.7. Let p =2 or 3, H = A, or S, withn > 5, and V be an irreducible
FH-module. Let G < H be a primitive subgroup not containing A,,, with S := soc (G),
such that V]g is irreducible. Assume in addition that either V is a basic spin module
in characteristic 2, or H = A,, and V does not extend to S,,. Then one of the following
happens:
(i) S is elementary abelian of order n = %, with (r,k) = (2,< 6), (3,< 3), or (5,2).
(i) S € {My1, M2, Moy, Maos, Moy}, and G is doubly transitive.
(i) H = Ag, p = 2, SL2(8) 9 G < SLy(8) x C3, V is the basic spin module of
dimension 8 whose Brauer character takes value —1 on elements of order 9 of S.
(iv) n=10, p=2, S 2 Ag, G £ PGU2(9), V is basic spin of dimension 16.
(v) H=A¢,p=3, G= A5, dimV = 3.
(vi) n=6, p=2, S = A5, V is basic spin of dimension 4.

Moreover, in the cases described in (iii)-(vi) the restriction V] is indeed irreducible.
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Proof. (a) Applying Lemma 2.27 and Proposition 2.28(i) we deduce

(n? —b5n+2)/2, if n > 17,

(n® —9n? + 14n)/12, if n > 23. (3.8)

dimV > {

(b) Let A be a p-regular partition of n such that V is an irreducible constituent of

D*| . Note that A = M if p = 3. If p = 2 and V is basic spin then dim V' > 2(r=4/2,
If V does not extend to S,,, then by Lemma 2.10,

(n+2)/2 itp=2,
Alg{ (n +4)/2 ifgz?,.

By Theorems 2.22 and 2.22, we have in all cases

2n=8)/4 1 if p = 3,

dim V2 { 2n=D/2 if p =2,

(3.9)

Since V] is irreducible, it follows that |G| > dim(V)? > 2"/2=4, and so one of the
conclusions of Proposition 3.4 must hold. The case (i) of Proposition 3.4 leads to the
exception (i) of the theorem.

(c) Suppose we are in the case (iii) of Proposition 3.4. As mentioned in the proof
of Proposition 3.4, we have that G < Aut(S?) = Aut(S)? x Cz, and so

dim V < b,(Aut(S)? x Ca) < 2b,(Aut(S))2.
Checking b,(Aut(S)) using [14], we see that

2.189%, a =09,
2.80%, a=S8,
dimV <<{ 2202, a=T,
2.16%, a =6,
2.62, a=05.

As n = a?, this contradicts (3.9) when 7 < a < 9 and (3.8) when a = 5, 6.

(d) Finally, we consider the case (ii) of Proposition 3.4, so that S<IG < Aut(S), and
either S = A,,, with m < 11, or S satisfies Proposition 3.1(ii)—(v). As G is primitive,
S = soc (G) is transitive on {1,2,...,n}. Also n > P(S) by Lemma 2.2.

(d1) Assume S = Spg(2), so that G = S and n > P(S) = 28 [11]. On the other
hand, dim V' < b(G) = 512, contradicting (3.8).

(d2) S = SU3(3). The argument is similar to (d1) but using P(S) = 28 and
b(G) < 64.

(d3) S = SU4(2). The argument is similar to (d1) but using P(S) = 27 and
b(G) < 80.

(d4) Suppose S = PSLy(q) with ¢ = r/ < 37 for a prime r, so that Aut(S) =
PGLQ(q) X Cf.

(d4.1) If ¢ > 16, then n > P(S) = ¢+ 1 > 17, see [25, Table 5.2.A], and by [42] we
have

dimV < b(G) < f6(PGLa(q)) = f(g+1) < q(g+1)/4 < (n* —5n+2)/2,

which contradicts (3.8).
(d4.2) If ¢ = 13 (resp. 11) then n > 14 (resp. n > 11), and dimV < b(G) =g+ 1.
In any of these two cases, we see that n = 14 (resp. n € {11,12}). Furthermore,
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since V' has dimension < ¢ + 1, it extends to S, (see [14]) and is not basic spin, a
contradiction.

(d4.3) Suppose S = PSL2(9) = Ag. As S # A, we have n € {10,15} or n > 20,
and dimV < by(Aut(S)) < 16, see [11] and [14]. It follows from (3.8) that n €
{10,15}. In this case, any irreducible FA,-module of dimension < 16 extends to Sy,
a contradiction. On the other hand, the basic spin modules of H are of dimension 16,
and their Brauer characters take value —2 at elements = € G of order 3 and value 1
at elements y € G of order 5 (see [14]), hence they are irreducible over G whenever
G £ 5 -29 = PGU3(9), leading to the exception (iv).

(d4.4) Suppose S = SLy(8). Here, n = 9 or n > 28, and dimV < b(G) < 27.
It follows from (3.8) that n = 9. In this case, the only irreducible FAg-modules of
dimension < 28 that do not extend to Sg are the two 2-modular basic spin modules of
dimension 8, and one can check that exactly one of them is irreducible over G (namely
the one whose Brauer character takes value —1 on elements of order 9 in 5), leading
to the exception (iii).

(d4.5) Suppose S = PSLy(7) = SL3(2). Here, n € {7,8,14} or n > 21, and
dimV < b(G) < 8. It follows from (3.8) that n € {7,8}. In these cases, the only
irreducible FA,,-modules of dimension < 8 that do not extend to S,, are the 2-modular
basic spin modules of dimension 4, which restrict reducibly to G. Likewise, the basic
spin modules of S,, are reducible over G (as can be seen by checking the value of the
Brauer characters at elements of order 3 in G, see [14]).

(d4.6) Suppose S = PSLa(5) = As. As S # A, we have n € {6,10} or n > 15,
and dimV < b(G) < 6, see [11]. It follows that n = 6. In this case, the irreducible
FAg-modules of dimension < 6 that do not extend to Sg are the 3-modular modules of
dimension 3, and they restrict irreducibly to G, yielding the exception (v). Next, the
basic spin modules of H = Ag or Sg are of dimension 4, and their Brauer character
takes value 1 at elements of order 3 in G, whence they are irreducible over G, leading
to the exception (vi).

(d5) Suppose S = SL3(q) with ¢ <5. The case ¢ = 2 is treated in (d4.5).

(d5.1) If ¢ = 5, then n > P(S) = 31 and

dimV < b(G) <310 < (n® —5n +2)/2,
contradicting (3.8).
(d5.2) If ¢ = 4, then n > P(S) = 21 and
dimV < b(G) < b(PGL3(4) - C3) < 420 < (n® — 9n? + 14n)/12.
This contradicts (3.8) unless n < 22. As n divides |S|, we conclude that n = 21,
whence G < PGL3(4) x Cy and so b(G) < 128 < (n? — 5n +2)/2, again contradicting
(3.8).
(d5.3) If ¢ = 3, then n > P(S) = 13, and
dimV < b(G) <52 < (n? —5n +2)/2.
This contradicts (3.8) unless n < 16. Inspecting the list of maximal subgroups of
S [11], we conclude that n = 13, whence G = S and dim V' < b,(S) < 27. But then
V extends to Si3 and is not basic spin.
(d6) Suppose S = PSL4(3). Then n > P(S) = 40, and
dim V < b(Aut(S)) < 4b(S) = 4160 < (n® — 9n? + 14n) /12,
violating (3.8).
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(d7) Suppose S = SL5(2). Then n > P(S) = 31, and
dim V' < by(Aut(S)) < 1024 < (n® — 9n? + 14n) /12,

violating (3.8).

(d8) Suppose S = SLg(2). Then P(S) = 63 [25, Table 5.2.A] and b(G) < 66960
[14]. Hence n < 72 by (3.9). Note that if K is a proper subgroup of S, then either
[S: K] > 651, or K is contained in a maximal subgroup M = C3 x SL5(2) of index
63 in S, see [14]. Hence, if we take K = Stabg(1l) in the action of S on {1,2,...,n}
(so that [S : K| = n), then we must have that n = [S : M] = 63, and in fact S acts on
n points {1,2,...,n} via its action on 63 lines or 63 hyperplanes of Fg. None of these
actions can be extended to Aut(.S), so we have that G = S. If p = 2, then (3.9) implies
that dim V' > 2% > b(@), a contradiction. Suppose p = 3. Then \; < (n +4)/2 by
Lemma 2.10, whence A; < 33. On the other hand, Proposition 2.28(ii) implies that
A€ 2B (n), and so \; > 60, a contradiction.

(e) Suppose that S = A, with m < 11. The case m = 5 and 6 are considered in
(d4.6) and (d4.3), respectively.

(el) Let m =11. As S # A,,, we have n > 55 and dim V' < b(S;1) = 2310, see [11].
This contradicts (3.8).

(e2) Let m = 10. This case is treated similarly to (el) observing that n > 45 and
dim V' < b(S19) = 768.

(e3) Let m = 9. This case is treated similarly to (el) observing that n > 36 and
dimV < b(Sg) = 216.

(e4) Let m = 8. As S # A,,, we have n = 15 or n > 28, and dim V' < b(Sg) = 90,
see [11]. It follows from (3.8) that n = 15 and G = S. Now, the only irreducible
FA15-modules of dimension < 90 that does not extend to S5 are the two basic spin
modules of dimension 64. If ¢ is the Brauer character of any of these two modules
and g € S is a 3-cycle, then g becomes a disjoint product of five 3-cycles in the doubly
transitive embedding S < Ajs, and so ¢(g) = —2. However, the unique irreducible
2-Brauer character of S of degree 64 takes value 4 at g, and so ¢l is reducible.

(ed) Let m = 7. As S # A,,, we have n = 15 or n > 21, and dim'V' < b(S7) = 35,
see [11]. It follows from (3.8) that n = 15. Now, all irreducible FA;5-modules of
dimension < 35 extend to S15 and are not basic spin.

(f) Let S be a Mathieu group. Suppose that the conclusion (ii) of the current
theorem does not hold. Then, if S = My, we have by [11] that n > 276 and
dimV < b(G) = 10395, contradicting (3.8). If S = Mag, we have by [11] that n > 253
and dimV' < b(G) = 2024, again contradicting (3.8). The same argument applies to
S = Mpyo, where we have n > 77 and dim V' < b(Aut(S)) = 560, to S = Mo, for
which we have n > 66 and dim V' < b(Aut(S)) = 176, and to S = M, for which we
have n > 55 and dim V' < b(G) = 55. O

Note that cases (i) and (ii) of Theorem 3.7 will be settled in Theorem 5.13 and
Theorem 4.1.

Proposition 3.10. Let p = 2 or 3, A\ € Pp(n), H = A, or Sy, and V be an
irreducible constituent of DMy, with dimV > 1. Suppose that G < H is a doubly
transitive subgroup such that S := soc (G) < Ay, is one of the following simple groups:
(a) Ay, with 5 <m < 7;

(b) PSLs(q) with7<q<9;
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(c) PSL3(q) with2 < q<4;
(d) SLi(2) = As.

Then Vg is irreducible if and only if one of the following happens:

(1) A € LW (n); furthermore, (G, n,p) fulfills the conditions set in Table II.

(ii) S =2 A; 2 SLy(4) 2 PSLy(5),n=6,p=3, A== (4,12), and (G, H,dim V) =
(A5, Aﬁ, 3) or (55, 567 6)

(iii)) S =2 Ag = PSLy(9), n = 10, p = 2, V = D(6’4)¢H of dimension 16, and
G < Aut(S) but G £ PSU2(9) = S - 2.

(iv) S =8Ly(8), G=S or G=Aut(S) = PI'Ly(8), H =Ag, p=2, dimV = 8, and
V' is the only one of Eig whose Brauer character takes value —1 at elements of
order 9 in SLa(8).

(v) S = SLy(8), G = Aut(S) & PT'Ly(8), n =9, p=3, dimV = 27, and X\ or \"
equals (7,2).

Proof. The ‘if-part’ in (i) follows [47], and in (ii)—(v) from [14]. Conversely, suppose
Vg is irreducible. We may assume that \ ¢ 2 (n) again by [47].

If S =As = PSLy(5) then n = 6, and by [14], dimV <4 if p =2 and dimV < 6
if p=3. As A ¢ £ (n), we deduce that p = 3, dim D* = 6, and arrive at (ii).

If S = Ag = PSL(9) then n = 10, and by [14], dimV <16 if p =2 and dimV <9
if p=3. As A ¢ .ZW(n), we deduce that p =2, dimV = 16, and arrive at (iii).

If S = Az, then n = 15 and G = S, and by [14], dim D* < 2(dim V') < 40, whence
X e ZMW(n), a contradiction.

If S =Ag = SLy(2) then n = 15, G = S, and by [14], dimV < 64, hence p = 2
and dim V' = 64. Note that IBry(G) contains a unique character of degree 64, which
takes value 4 at an element of class 34 in Ag, which belongs to class 3D in A;s, in the
notation of [14]. However, any character in IBra(A15) of degree 64 takes value —2 at
class 3D, and IBry(S15) contains no character of degree 64, a contradiction.

If S = SL3(2) = PSLy(7) then n = 7 or 8, and by [14], dim D* = dimV < 8. If
p = 3, then we conclude using [14] that A € £ (n), a contradiction. Let p = 2.
Since dimV < 8 and X ¢ .2 (n), we deduce that (H,dimV) is either (A,,4) or
(Sp,8). Checking the degrees of characters in IBry(G) we see that dim V' = 8. Now,
any irreducible 2-Brauer character of degree 8 of H takes value —4 or 2 at elements of
order 3, whereas any irreducible 2-Brauer character of degree 8 of GG takes value —1
at elements of order 3, a contradiction.

If S = SLy(8) thenn = 9 or 28, S IG < Aut(S) = PT'Ly(8) = S x C3, and
by [14], dimV < 12 if p = 2 and dim V' < 27 if p = 3. In particular, if n = 28, then
A € 2W(n) a contradiction. If n = 9 then, by [14], remembering that A ¢ .21 (n),
we can check that (iv) occurs if p = 2 and (v) occurs if p = 3.

If S = SL3(3) then n =13, G = S, and by [14], dim V' < 27, whence A € £ (n),
a contradiction.

If S = PSL3(4) then n = 21, G < PGL3(4) x Cq, and by [14], we have dimV <
2-64 = 128 < (n?—5n+2)/2, whence A € £ (n) by Lemma 2.27, a contradiction. [

We will also need the following extension of Theorem 3.7 to some subgroups of S,
that are not primitive:
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Proposition 3.11. Let p =2, H = A, or S,, and let G < H be an almost simple
subgroup with S = soc (G) that is not primitive in H. Assume in addition that (S,n)
satisfies one of the following conditions:
(i) S = Ay, and (m,n) is (5,< 10), (6,< 14), (7,< 16) or (8,< 19). Moreover, if
m =T or 8, then some orbit of S on Q:={1,2,...,n} has length > m.
(ii) S = PSLy(q) and (q,n) is (7,< 12), (8,< 14), (11,< 14), (13,< 15) or (16, <
17).
(iii) (S,n) is (SL3(3), < 17) or (PSL3(4),21).
(iv) S = M, with t = 11, 12, 22, 23, or 24.
Then Vg is irreducible for a basic spin FH-module V if and only if one of the
following holds:

(a) H =S¢ and G = Ss fizes one letter.

(b) S5§G:A572<H:A7 OTS5§G:A57271<H:A8.

(¢) H=A7 or Ag, and S = Ag.

(d) H = A7 or As, and S = As acts 2-transitively on {1,2,...,6}.

(e) H =A11, and G = Myy < Ayg acts 2-transitively on {1,2,...,10}.

(f) H = A2 and G € {S¢, Mg, Aut(Ag)} acts 2-transitively on {1,2,...,10}.

(g) H = A1, G € {Sg, M1o, Aut(Ag)}, and S acts on {1,2,...,6} and {7,8,...,12}

via two inequivalent 2-transitive actions.
(h) H=A5 and G = My < Aq;.

Proof. We will prove the ‘only-if-part’. The ‘if-part’ is then an easy explicit check.
Set Q := {1,2,...,n}. Let U be an irreducible summand of V]g. If U is trivial,
then S acts trivially on V by Clifford’s theorem, contradicting the faithfulness of the
FH-module V. Thus we have

dimU =27, dimV > 2(n=4/2 (3.12)
for some a € Z>;. Since G is not primitive, we have by Lemma 2.2(i):
n > P(S)+ 1. (3.13)

First, we consider the case (iv). Then (3.12) implies by [14] that dimU = 16 and
t=11or 12. If t =11, then G =S, V =U, dimV = 16, and n > 12 by (3.13). It
follows that H = Aj2 and G < A11, leading to (h). If ¢ = 12, then dim V' < 32 since
G/S < Out(S) < Cy, whereas n > 13 by (3.13). It follows that H = Aj3, dim V' = 32,
G = Aut(Mi2) < A13 N Si2 = Ajg. The latter implies that V = Eim is irreducible
over Aqs, a contradiction.

Next suppose we are in the case (iii). If S = PSL3(4), then P(S) = 21, violating
(3.13). If S = SL3(3), then n > 14 by (3.13), whereas dimU = 16 by [14], and so
dim V' < 32, a contradiction.

Consider now the case (ii). Then g # 16 because of (3.13), and ¢ # 11,13 by (3.12)
and [14]. If ¢ = 8, then S < G < Aut(S) and so dimV € {2,4,8} by [14]. On the
other hand, n > 10 by (3.13), and this is impossible since dimV > dim E%10 = 16.
Thus ¢ = 7, in which case dimV = 8 by [14] and n > 8 by (3.13). The condition
dimV = 8 implies that H € {Sg,Ag}. If H = Sg, then the Brauer character of V'
can take values —4 or 2 at elements of order 3, whereas any ¢ € IBry(G) of degree 8
takes value —1 at elements of order 3, a contradiction. Thus H = Ag. Note that if
we embed S = PSLs(7) in H via a transitive embedding S < A7 (so fixing two more
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points) or a transitive embedding S < Ag, then any element g € S of order 3 will fix
3 points, and so the Brauer character of V' takes value 2 at g, again a contradiction.

Finally, suppose we are in the case (i).

Assume first that S = Ag. Then dimV = 4, 8, or 64 by [14]. Since S is not
primitive on © and has an orbit of length > 8 on €, we have by [11] that n > 16,
whence H = Ajg, dimV = 64, and G = S is a 2-transitive subgroup of Ais. In this
embedding, a 3-cycle g € S will have 1 fixed point on €2, so the Brauer character
of V takes value —2 at ¢g. But any ¢ € IBry(S) of degree 64 takes value 4 at g, a
contradiction.

Next let S = A7. Then dimV =4 or 8 by [14]. As S is not primitive on  and has
an orbit of length > 7 on , we have by [11] that n > 16, contradicting (3.12).

Now let S = Ag. Then dimV =4, 8, or 16 by [14], and n > 7 by (3.13). It follows
that H = A, with 7<n <12, or H =S5, with 7 <n < 10.

Assume first that some S-orbit on Q has length [ > 6. As S is not primitive, we
must then have that | = 10, H = A, with n = 11 or 12, and dim V' = 16. In either
case, we may assume that S acts 2-transitively on {1,2,...,10} and fixes 11, and
also 12 if n = 12. In the 2-transitive embedding Ag < S1g, elements of S of order 3
acts with one fixed point and elements of order 5 act fixed-point-freely; furthermore
a point stabilizer in S is just Ng(Q) for @ € Syl3(S). The embedding extends to
Aut(Ag), with the image of My = S - 23 (in the notation of [11] and [14]) contained
in Ajg. Using the class fusion information, it is easy to check in [14] that EA10 is
irreducible over S¢ = S - 2, Mg, and Aut(S), but splits into a direct sum of two
simple summands over S and S - 25 = PGU(9). Also,

Ef:miAn o Eiu’ Ef:niAm ~ Eﬁlo‘

Hence, if n = 11, then G fixes 11 and is contained in the natural A, and so G = My,
leading to (e). Note that we can extend the embedding Aut(S) < Ajg to Aut(S) <
Ai2 uniquely by demanding the involution (1,2) € Sg to interchange 11 and 12. This
leads to (f) when n = 12.

Now we consider the case where all orbits of S = Ag on ) have length 1 or 6,
and there is more than one orbit of length 6. Then n = 12 and H = Ais. Let
w1, T S — Ag be induced by the action of S on its two orbits on 2, and let ;
denote the Brauer characters afforded by Eﬁ%m(s)- Then 1; € IBrs(S) and has
degree 4; also, ¥? contains Fg (with multiplicity 4). As G is irreducible on V' and
Viagxas = Efs X FB we see that 1) # 1. In this case, ¥1¢s = vy + 1o, with
v; € IBry(S) of degree 8, and Stabaug(s)(v1) = S - 22. So as long as m; and my are
inequivalent and G € S - 29, V| is irreducible, leading to (g). (Note that such an
action exists: for instance, we can embed Sg in Ag ¢, with two inequivalent actions of
Se on the first and the last six letters.)

Finally, we consider the case where S = Ag has exactly one orbit {1,2,...,6} of
length 6 and fixes each of 7,...,n; in particular, G < S¢ ,—6. If H =S,, and n > 8,
then it follows that D?» is irreducible over S6,n—6, contradicting [32, Proposition 2.15].
The case H = S; is also impossible by dimension consideration. Suppose H = A,
and let ng > ng > ... > np > 1 denote the lengths of G-orbits on {7,...,n}. Then
G < A, for v := (6,n9,...,n). Since G/S < C3, n; € {1,2,4}. As V is irreducible
over A,, we see by [34, Proposition 6.3] that v = (6,1), (6,1,1), or (6,2), and arrive
at (c).
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Finally, let S = As. Then dimV = 2 or 4 by [14], and n > 6 by (3.13). It follows
that H = A,, with 6 <n <8, or H = Sg.

If H = Sg, then G < S5 as G is not primitive, and we arrive at (a).

Suppose H = A, but some S-orbit has length [ > 5. As S is not primitive and
n < 8, we have that [ = 6, n = 7 or 8, and S has one orbit ' := {1,2,...,6} and fixes
the remaining letters. In this action, elements of order 3 in S act fixed-point-freely on
QY. Using this class fusion information, we can check in [14] that Vg is irreducible
(of dimension 4), giving rise to (d).

Finally, assume H = A,, and S = Aj has only orbits of length 5 and 1 on 2. Then
we may assume that S has one orbit {1,2,...,5} and fixes each of 6,...,n. Again let
ny > mn3 > ... > np > 1 denote the lengths of G-orbits on {6,...,n}. Then G < A,
for v := (5,n9,...,np). Since G/S < Cq, n; € {1,2}. As V is irreducible over A,, we
see by [34, Proposition 6.3] that v = (5,2, 1), or (5,2), and arrive at (b). O

4. THE SMALL DOUBLY TRANSITIVE GROUPS

Recall that we call a doubly transitive subgroup G < S,, small, if S = soc (G) is
non-abelian, S 2 A,, S % PSL,,(q) when n = (¢" —1)/(¢ — 1), and S 2 Span(2)
when n = 2m~1(2m 4+ 1).

All small 2-transitive subgroups are handled in the following theorem:

Theorem 4.1. Let p =2 or 3, H = A, or S, and W be an irreducible summand
of DMy for some A € P,(n)\ LMV (n). Let G < H be a small doubly transitive
subgroup. Then Wl is irreducible if and only if one of the following cases occurs.
(i) G = My, A, < H <S,,, and one of the following happens:
(a) p=2,n=11 or 12, A= (n —2,2), and W = D |y has dimension 44;
(b) p=3,n=11, X or \" is (9,1%), and W = D*|; has dimension 45.
(i) G=Mn,p=2, H=A,, n=11 or 12, and W = Ei" has dimension 16.
(iii) G = M2, p =2, n =12, and one of the following happens:
(a) Ajg < H < Sy9, A= (10,2), and W = D>, has dimension 44;
b) H = A2, A= P12, and W = Ei” has dimension 16;
¢) H=~Ap, \=(6,5,1), and W = E} has dimension 144.
(iv) G = Mja, p=3, n =12, A3 < H < Sy, and one of the following happens:
(a) A or X" is (10,1%), and W = D*|y has dimension 45;
(b) X or N is (10,2), and W = D*|; has dimension 54.
(v) My < G < Aut(May), p =3, n =22, Agg < H < Sgo, A or X" is (20,12), and
W = D*|y has dimension 210.
(vi) G = Mys, p=3, n =23, Agg < H < Soz, A or N is (21,1%), and W = DM
has dimension 231.
(vil) G = Moy, p =3, n =24, Ayy < H < Soy, and one of the following happens:
(a) X or X' is (22,1%), and W = D]y has dimension 231;
(b) X or N is (22,2), and W = D*|; has dimension 252.
Proof. If S := soc(G) is a not a Mathieu group or Cos, then the arguments in [8,
Section 5], but using Lemma 2.27 instead of [8, Lemma 1.18(i)], show that D*| is

reducible. We now consider the remaining possibilities for S. Replacing A by A" if
necessary, we will assume that A\; > All.

Case 1: G = My in transitive representations of degrees n = 11 and 12.
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By comparing the traces in these transitive representations [14], one can see that
the classes 2a, 3a, 4a, ba, 8ab, 11a of G belong to classes 2b, 3¢, 4b, 5b, 8a, 11a in Aqq,
and 2¢, 3d, 4d, 5b, 8b, 11a in Aqs.

Let p = 2. According to [14], any ¢ € IBro(G) has degree 1, 10, 16, or 44; and the
degrees of characters in IBr,(H) are also known. Hence we need to consider only the
cases where dim D* = 32 or 44. In the latter case, D)‘iA11 is irreducible and is obtained

by reducing S((c9’2) modulo 2 (and restricting to Aj1). Using the above class fusion,
we see that the case dim D* = 44 does give rise to an example (and A = (n — 2,2)).
If dim D* = 32 (and so A = (6,5), respectively (7,5)), then its restriction to A,, is a
direct sum of two simple modules of dimension 16, both of which are irreducible over
G, giving rise to another example with (dim V, H) = (16, A,,).

Let p = 3. Using [14] as above, when n = 11 we see that dimV = 45 and
A = (n —2,12) (up to tensoring with sgn), yielding another example. There is no
example when n = 12, since ¢ € IBrs(A;2) of degree 45 takes value 3 at the class 8b
of Ajg, whereas ¢ € IBr3(Mi;) of degree 45 takes value —1 at the class 8a of Mj;.

Case 2: G = Myo in permutation representations of degree n = 12.

Let p = 2. Using the character degrees of G and H as listed in [14], we need to
consider only the cases where dim D = 32, 44 and 288. We can embed M into GG as
a 2-transitive subgroup of G < S12. Now the first two cases, with (\, H) = ((7,5), A12)
and ((10,2), A2 or Si2), give rise to examples, since V| is irreducible by the results
of Case 1. Next, by restricting ¢ € IBry(A12) to G, we see that conjugacy classes
3A, 3B, and 5A of G as listed in [14] correspond to the classes 3D, 3C, and 5B in
Ai2. Tt follows that the last case, with (\,dimV, H) = ((6,5,1), 144, A13), gives rise
to another example.

Let p = 3. Using [14] as above, we see that dimV = 45 or 54, and A = (10, 1?)
or (10,2), respectively (up to tensoring with sgn). In both cases, D* is obtained by
reducing S modulo 3. Since x := Sl is irreducible by [8, Main Theorem (iii), (iv)],
and x(mod 3) is irreducible by [14], both cases give rise to examples.

Case 3: Moy < G < Aut(Mag) in permutation representations of degree n = 22.

Let p = 2. According to [14], any ¢ € IBry(G) has degree < 140 < (n? —5n +2)/2.
By Lemma 2.27, this contradicts the assumption A ¢ .21 (n).

Let p = 3. By [14], any ¢ € IBr3(G) has degree < 231 < (n® — 9n? + 14n)/12.
Hence dim D* < (n® — 9n? 4 14n)/6 and so A € £®(n) ~ £M(n) by Proposition
2.28(i). By Lemma 2.6 and by checking the possible dimensions of V' in [14], we see
that dim D* = 210, and that without any loss we may assume that D? is obtained by
reducing S((C"_Z’lz) modulo p. As x := S((Cn_z’lz)¢5 is irreducible by [8, Main Theorem
(iv)], and x(mod 3) is irreducible by [14], both cases G = S and G = Aut(S) give
rise to examples.

Case 4: G = Ma3 in permutation representations of degree n = 23.

First we consider the case where V' does not extend to S,,. As in part (b) of the
proof of Theorem 3.7, we have that \y < (n+2)/2if p =2 and \; < (n+4)/2 if
p = 3. Now, if p = 2 then A\; < 12, whence dim V = (dim D*)/2 > 2!° by Theorem
2.22(i), whereas ba(G) = 896 [14], a contradiction. If p = 3, then A; < 13 and so
dim V = (dim D*)/2 > 2783 by Proposition 2.28(ii), contrary to b3(G) = 1035 [14].

Now we consider the case where V = D*| ;. Then

dim D* < b,(G) <1035 < (n® — 9n? + 14n) /6,
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whence A € 2@ (n) . £1)(n) by Proposition 2.28(i), and so A\; > n — 2.

Consider the case D» = D("=22) If p = 2, then D* is obtained by reducing S(é
modulo p. Furthermore, y := S2l is irreducible by [8, Main Theorem (iii)], but
x(mod 2) is reducible by [14], ruling out this case. If p = 3, then dim D* = 208.
Since A ¢ .Z(1)(n), D* is irreducible over A, by Lemma 2.27. Since no ¢ € IBr,(G)
has degree 208 [14], there are no examples in this case either.

Suppose now that p = 3 and D* = D®=21%) " Then D?* is obtained by reducing
S2 modulo p. Furthermore, ¢ := S| is irreducible by [8, Main Theorem (iv)], and
1(mod 3) irreducible by [14], we obtain another example.

Case 5: G = My in permutation representations of degree n = 24.
According to [14], b,(G) < 10395.

Case 5.1: V = D*|;; or dimV < 10395/2. In this case we have that dim D* <
10395. This implies by [8, Lemma 1.23] that either A € Z®(n) . .M (n), or p = 2
and A\ = (13,11). In the latter case, D* is a basic spin module of dimension 2048.
Since no ¢ € IBra(G) has degree 2048 or 1024, this case is ruled out.

Let p = 2. Then dim D* for p € Z®(n) ~ ZW(n) is determined by Lemma 2.8,
and neither dim D* nor (dim D*)/2 matches ¢(1) for any ¢ € IBrao(G) [14]. In fact,
D@31 ig also reducible over G. Thus we have no example for p = 2.

Let p = 3. Then dim D* for p € 2™ (n)~.ZW (n) is determined by Lemma 2.7, and
using [14] we see that dim D* or (dim D*)/2 can match ¢(1) for some ¢ € IBr3(G) only
when p = (22,2), (22,12), or (21,2,1). If A = (22,2), then D* is obtained by reducing
S(é modulo p. Furthermore, ¢ = Séic is irreducible by [8, Main Theorem (iii)],

and 1 (mod 3) irreducible by [14], giving rise to an example. Next, o := 582’12)%;

is irreducible by [8, Main Theorem (iii)], and «(mod 3) = fag + [231, where §; is
an irreducible 3-Brauer character of G of degree i € {22,231}. On the other hand,
[5(22:1%)] = [D(21)] 1 [DE3D)] by Lemma 2.7(ii), with D@31 |, = By3. It follows that
D(22’12)¢G = f931, leading to another example. Finally, by Lemma 2.10, D(21’2’1)¢A24
is irreducible (of dimension 1540 by Lemma 2.8), ruling out the case A = (21,2, 1).

Case 5.2: V does not extend to Soq and dim'V > 10395/2.

Since dim V' < b,(G) < 10395 and by(G) = 1792, we must have that p = 3, and
10395 < dim D* < 2-10395. Consider the Young subgroup S22 = Sgo X Sg < So4.
Note that the second factor S, is generated by a transposition ¢, which acts semisimply
on D* and has both 1 and —1 as eigenvalues. The two corresponding t-eigenspaces are
invariant under Sgo. Thus the restriction of D* to a natural subgroup Ses contains a
simple submodule D* of dimension at most (dim D*)/2 < 10395. By [8, Lemma 1.23]
applied to D*, we have y € & (4)(22). By the Frobenius reciprocity, D* is a quotient
of indgzg(D“), and so A € £2)(24), i.e. A\; > 18. But this implies by Lemma 2.10

that D? is irreducible over Agy, contrary to our assumption.

Case 6: G = Cog in permutation representations of degree n = 276.

According to [14], any ¢ € IBry(G) has degree < 131584 < (n3 — 9n? + 14n)/12.
Hence A € Z®(n) ~ ZW(n) by Proposition 2.28(i). It follows by Lemma 2.6 that
dim D* = 37400 if p = 2, 37401 or 37674 if p = 3. Since no ¢ € IBr,(G) has such

degree (or half of it, in case D], is reducible) by [14], there are no examples. [
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5. AFFINE PERMUTATION GROUPS

In this section we consider restrictions to subgroups G of S,, having regular normal
elementary abelian r-subgroups, whose structure is explained in Lemma 3.3. Note that
any irreducible r-modular representation of a finite group G with nontrivial normal
r-subgroup R must be trivial on R. Therefore, if an F.S,,-module V is irreducible
over such G and n > 5, then dimV = 1. Henceforth we may restrict ourselves to
S,-modules in characteristic p # r.

5.1. Invariants in modules over wreath products. Throughout this subsection,
we assume that r is a prime different from p. For m € Z>1, we denote

Hy = GLp(r), Vi :=F", G = AGLy(r) = Vi x Hy,.

We also denote by X, the set of linear characters V,, — F* and X\ C X,, be
the subset of all non-trivial linear characters. Note that X, is an abelian group via
&+ n)(v) :=&()n(v) for §,n € X, and v € V,,,. In fact, X, can be identified with
F. In particular, for any & € X,,, we have

ré =0. (5.1)

Lemma 5.2. Let r > 2 and assume that m > 1 if r = 3. There exist &1,...,& € X5
not all equal to each other and such that & +---+ & = 0.

Proof. Checked easily identifying X,,, with F™. O

A key role in the study of the restriction of irreducible modules D* from S,= to
Gy, embedded via its natural action on the points of V,, is played by the analysis of
the invariant space (D*)V. For this, it is convenient to embed V}, into some wreath
product subgroup of S,m.

We will now assume that m > 2 and denote n := r™. We have V,,, < G,, < S,,
via the natural action of G, on n = r" points of V},. Consider the corresponding
embedding ¢, : V,,=>S,—this comes from the regular action of V,, on itself. We
consider subgroups of V,,, as subgroups of S,, via the embedding ¢,,.

Let ey, ..., ey be the standard basis of V,,, = F"*, and a € F,. We denote

Vm(a) = {blel + o+ bp—18m-1 + aey ‘ bi,. . bm—1 € Fr} C Vin,
A= {bem | bEF,} < Vi,

n' =rml=n/r

We identify V,,_1 with V,,,(0) and A with (F,,+). Note that V,, = V;,,—1 x A.
For each a € A =TF,, let &* = S,/ be the symmetric group on V,,(a). We have a
natural embedding
Pi=X,46"=S =S,
as a parabolic subgroup. Note that V;,_1 acts on each V,,(a) regularly, so V,,_1 is
embedded into P diagonally via X ,c4 ¢m-1. The group A acts on the components
& of P via conjugation:

bSt =&t (a,b € A).

Let
W:=(P,A)=PxA=S,1A<LS,. (5.3)
As V,,,_1 is a subgroup of P, we have that V,,, = V},,_1 X A is a subgroup of W = P x A.
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We now describe irreducible FW-modules. For this we consider the p-reqular A-
multipartitions, i.e. tuples p = (u*)gea such that pu® € Zpy(n') for all a € A. To
any such p, we associate the FP-module X,c4D**. Elements of M,c 4 D** are linear
combinations of pure tensors of the form ®,c4d, with d, € D#e for all @ € A. Define

M(p) = ind}¥ (e s D).

Elements of M (p) are linear combinations of elements of the form b® (®4c4d,), where
b€ Aand d, € D*e for all a € A. Recalling that V,,, = V,,_1 X A and considering FA
as a left regular FA-module, we have

M)y, = M(p)ly,, x4 = (®aeAD“a¢vm,1) XFA. (5.4)

We say that a p-regular A-multipartition g = (u%)qea is constant (with value p)
if there exists p € Z,(n') such that p* = p for all a € A. Let p = (p)qea be a
constant A-multipartition with value pu. For any linear character o : A — F, we define
a FW-module M, (u) by extending the P-action on M,c4D* to W = P x A-module
via

b(®a€Ada) = a(b)(®a€Ada+b) (b S A)
The following result follows from Clifford theory:

Lemma 5.5. If M is an irreducible FW -module then it is isomorphic to a module of
one of the following two types:

(1) My(p) for some p € Z,(n') and some linear character a: A — F;
(2) M(p) for some non-constant p-reqular A-multipartition p.

Conversely, all modules of the forms (1) and (2) are irreducible, and the only isomor-
phisms between them are M(p) = M (v) if there exists b € A such that v = p®*° for
alla € A.

In the next two lemmas, we study V,-invariants in irreducible FW-modules.

Lemma 5.6. Let M be an irreducible FW-module of the form M = M,(u) for some
pe Zy(n'). Then MVm =0 if and only if a« # 0 and one of the following conditions
holds:

(i) D* € T,y.

(ii) D" € Ny and either r =2, orr =3 and m = 2.
Proof. The ‘if’-part is an explicit check. For the ‘only-if’-part, if @ = 0, pick a non-zero
de Dé‘ for some ¢ € X,,_1. Then, using (5.1), it is easy to see that ®,cad € M\ {0}.
Now let a # 0. Suppose we are given the following data:

(a) characters {{, € X1 |a € A} with Y 4 & = 0;
(b) non-zero vectors {d, € Dga | a € A}, not all proportional to each other.
Then it is easy to see that
3" 0(b)(@ueadars) € MY\ {0).
beA
In view of (i), we may assume that D* ¢ T,,. So dim D* > 2. If D’g = 0 for

all £ € X |, then DJj = DM, and we can take &, = 0 for all a to satisfy (a) and
pick vectors d, € Dg , not all proportional to each other, to satisfy (b). Thus we
may assume that Dé‘ # 0 for some £ € X,*_,, in which case we have D’g # 0 for all

¢ e X ,. Now, we use Lemma 5.2 to find characters &, € X,:_; satisfying (a), and
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by taking any non-zero d, € D’ga we also satisfy (b). Lemma 5.2 is applicable unless
r=2,orr =3 and m = 2, so these cases need to be considered separately. In the
case r = 3 and m = 2 there is actually nothing to check in view of the exception (ii)
since for Sz all irreducible modules are in NTg.

Let r = 2. If there is £ € X,,,—1 with dim Dé‘ > 2, we set &, := £ for all a to satisfy

(a), cf. (5.1). Then pick linearly independent vectors xi,z2 € Dg and set d, 1= 1
for a € Ay and d, = x5 for a € Ay, where A = A; U Ay for some non-empty sets
A1, Ay. The vectors d, satisfy (b). Thus we may assume that dim Dg < 1 for all
X € Xim—1, i.e. dimD#* < n/. Using [21, Theorem 6(ii)], we deduce that D* € N,
which is exception (ii). O

Lemma 5.7. Let M be an irreducible FW -module of the form M = M(u) for some
non-constant p-reqular A-multipartition p. Then M"V™ = 0 if and only one of the
following two conditions holds:
(i) there exists b € A such that (D”b)vm*1 =0 and D** € T,y for all a # b.
(ii) » =2, m = 3, p > 3, and there exists b € A such that DM € Ny and ut = (2,2)
for a #b.

Proof. We denote by N the FV,,_i;-module ®QEAD“G¢VM71. By (5.4), we have
MY =2 NVm-1 ) (FA)A = NVt

This gives the ‘if-part, for if there exists b € A such that (D”b)v’"*1 =0and D* €T,y
for all a # b, then N = D*' |, and so NVn-1 = 0.

For the ‘only-if-part’, assume first that r» # 2. If there is at most one b € A with
DHe & T, the result easily follows. Suppose there are b # ¢ in A such that D”b, DK ¢
T,s. Then ng and Dgc are non-zero for all £ € X |. For each a € A\ {b,c}, take

d, € ng for some &, € X,;,—1. Now, there exist &, & € X%, such that >~ ., & = 0.

Pick non-zero d;, € Dé‘b * and d. € Dg: Then ®uead, is a non-zero V,,_i-invariant
vector of N.

Now, let 7 = 2. Note that NVm-1 #£ 0 if and only if there is a character ¢ € X,,_;
such that D’g * and D’g " are non-zero. This is not the case exactly when (D“O)Vm*1 =
D and (D*)Vm-1 = 0, or (D**)Vm=1 = 0 and (D*)Vm-1 = D' But the equality
(DH)Vm=1 = DH holds if and only if D* € Ty, or m =3, p > 3, and D* = D22 cf.
for example [8, Lemma 5.5]. O

5.2. Invariants in modules over symmetric groups. Recall that we are consid-
ering the embeddings V,,, < G,, < S,, for n = r™ and assuming that p # r.

Lemma 5.8. If D € N,,, then DV = 0.

Proof. Since the action of S,, on D is faithful, D affords a non-trivial character of V,,,
hence D affords all n — 1 non-trivial characters of V,,,, hence the trivial character does
not appear by dimensions. O

Lemma 5.9. Letp=3 and r = 2.
(i) Let m = 3, i.e. n = 8 Then (D) = 0 if and only if D* € Ng U
[[D(G,l,l)’D(S,S)]]'
(ii) Letm =4, i.e. n =16. Then (D*)V* = 0 if and only if D* € NygU[DI41D].
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Proof. (i) In [14], any nontrivial element ¢ in V3 is of class 2A. If ¢ is the Brauer
character of an irreducible 3-modular module D of Sg, then DY = 0 if and only if
o(t) = —¢(1)/7. Now inspecting the 3-Brauer character table in [14] of Sg, we see
that there are exactly six possibilities for such ¢, two for each dimension 7, 21, and
28. These correspond, respectively, to modules in Ng, [D(®11], and [DG)].

(i) We apply the same argument as in the case m = 3. Now t € Vj ~ {1} is of
class 2C, and the condition is p(t) = —¢(1)/15. It follows by checking the 3-Brauer
character table of S in [14] that there are exactly four possibilities for such ¢, two of
dimension 15 and two of dimension 105. These correspond, respectively, to modules
in Nyg and [DU4LD]. O

Lemma 5.10. Letp=2,r=3, and m =2, i.e. n=9. Then (D)‘)V2 =0 if and only
if D} = Ng U DY,

Proof. (i) In [14], the elements in Vo ~ {1} are of class 3B. So, arguing as in the
proof of Lemma 5.9, we get exactly two 2-modular modules W of Sg with W2 = 0, of
dimensions 8 and 16. These correspond, respectively, to modules in Ng and DGAY O

Now we can prove our key technical result which develops [36, Proposition 4.6]:

Proposition 5.11. Let p = 2 or 3 and m > 2. Then (D*)V» = 0 if and only if one
of the following happens:
(i) D* € N,;
(ii) r =2, p=3, D € [D"=2LD DG,
(iii) 7 =3, p=2, D} = DGY,

Proof. Tt follows from [8, Lemma 5.6] that in the case r = 2 and p = 0, we have
(S(gl_zl’l))v’" = 0. Reducing modulo 3, we deduce (D"~211)Vm = (. The rest of
the “if” part follows from Lemmas 5.8, 5.9, 5.10.

For the “only-if” part, recall that V,,, <W = Px A <SS, cf. (5.3). By Lemmas 5.6
and 5.7, we have (D*)Vm = 0 only if all composition factors of D are of the form
N,ca D" satisfying one of the following conditions:

(C1) there is b € A such that D** € T,y for all a # b, and either (D“b)Vm*1 =0or
D‘ub € T,

(Cp) u® = pb for all a,b € A, D** € N, for all @ € A, and either » = 2, or 7 = 3
and m = 2;

Assume first that p = 2. Then r # 2. If (r,m) # (3,2), the restriction D only has
composition factors M,e 4 D** satisfying (C1). By Proposition 2.17, D € NT,,. In the
exceptional case (r,m) = (3,2) use Lemma 5.10.

Now, let p = 3. Then r # 3. If r # 2, the restriction DIAD only has composition
factors M, 4 D** satisfying (C1). By Proposition 2.17, D* € NT,,. Let r = 2. By
Lemma 5.9, we may assume that m > 5. Then, by induction on m, we may assume
that all composition factors D* X DY of Dén/gxsn/g satisfy one of the following three
conditions:

(1) DF = DY € Ny 9,
(2) DM € T, )9, D" €NT, ;o U [D/2=2L1],
(3) DY €NT,, )9, D" € N, jp U [D/272L1)].
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By Corollary 2.19, D* € NT,, U [D("~21.D]. 0

Remark 5.12. One can ask what could be an analogue of Proposition 5.11 in the
case m = 1, that is, which irreducible modules D of S, in characteristic p # r have no
invariants on the cyclic subgroup C, < S,. Until now, this question has been resolved
only in the case p = 0 (see [58]), and in the case r/2 < p < r (see [55, Lemma 3.2]).

5.3. Irreducible restrictions to affine permutation groups. Let G < S, be a
primitive subgroup with a regular normal abelian subgroup; or more generally, let
G <'S,, be any subgroup with a regular normal elementary abelian subgroup. Then,
up to conjugacy, G is a subgroup of the group AGL,,(r) of all affine transformations
of the affine space V,,, = F" for a prime r. The group AGL,,(r) acts naturally on
n = r"™ points of V,, which yields an embedding G < S,,. Moreover, AGL,(r) =
Vin X GLp(r), and G =V, x H for H < GLyy (7).

The following theorem is the main result of the section. It develops [36, Corollary
4.7].

Theorem 5.13. Letp =2 o0r3,n>5, H=S, or A,, and let M be an irreducible
FH-module of dimension greater than 1. Let G < H be a subgroup that contains a
reqular normal, elementary abelian subgroup. Then M| is trreducible if and only if
one of the following happens:
(i) Mlp, = E®=LY and G is 2-transitive;
(i) M, = E("_2’12), and of the following holds:
(a) p=3, G = AGL,,(2) with n =2™;
(b) p=3, G =Cj x A7 withn = 16;
(ifi) p=2, H = Ag, G = ASLy(3) or C2 x Qs, and M = EPY.
(iv) p=2, H=A;, G =Cs x Cy, and M = E?.

Proof. Let A € Z,(n) be such that M = D if H =S,,, or M = E(’\i) if H=A,.

Recall that n = ™ and G = V;;, x Gy < AGL,,(r). Assume M| is irreducible.
By Clifford theory, M"™ = 0, and so p # r. In particular, p { n, and so D(=L1) g o
reduction modulo p of the natural (n — 1)-dimensional representation in characteristic
0, hence D("_171)¢G is irreducible only if G is 2-transitive, in which case it is indeed
always irreducible by [47]. This gives case (i), and from now on we assume that
Elp, & EC7LY.

We now exclude the case m = 1. In this case |G| < |[AGL(1,r)] = r(r —1). In
particular if M| is irreducible then dim M < r=n. If H =S,,, or H = A, and M
lifts to S, then by [21, Theorem 6(i)] for 7 > 7 we have D* € NT,,, which was excluded
in the previous paragraph. The special case r = 5 is checked using [23]. On the other
hand, if H = A, and M = E2 note first that G < AGL(1,7)NA, = C,. x C(r—1)/2, and
the dimension of an irreducible F(C, x C(,_1)2)-module is at most (r —1)/2. On the
other hand, from [37, Proposition 4.1], we have that dim E} > 20=6)/2 If » > 11 we
have that 20"=6)/2 > ( — 1)/2. So we only need to consider the cases 7 = 5 and 7. In
these cases using modular character tables it can be checked that if dim E} < (r—1)/2
then r =5, p = 2 and A = (3,2), in which case the restriction is indeed irreducible.
This corresponds to the special case (iv).

As Mg is irreducible, so is M| g1, (mnm- It easily follows that My, is a direct
summand of N, for some irreducible FAGL,,(r)-module N. As mentioned above,
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we have MV» = 0. If H = S,,, or H = A,, and M lifts to S,, then (D*)V» = MVm = 0.
On the other hand, if H = A, and M = Ef‘_L, note first that any non-trivial element
g € V,, has cycle type (7‘"/ ") and n/r > 1 since we have already excluded the case
m = 1. So ¢° is in the same A,-conjugacy class as g for any o € S,,. It follows that
the Brauer characters of Eﬁ‘rivm and of EA 1y, coincide and hence Eﬁ‘rivm ~ pA v,
as ptr. So in this case we can still conclude that (D*)V» = 0. By Proposition 5.11
we may now assume that one of the following happens:

(1) r=2,p=3, D* € [D">LD, DO,

(2) r=3,p=2, D= DG,

Case 1.1: r = 2, p = 3, and D* € [D™2LD]. By [20, Theorem 24.1] that if

2 < p{ n then D(=2L1) ig reduction modulo p of the Specht module S((C"_2’1’1) in
characteristic 0. Here p = 3t n = 2™, so (by tensoring with sgn if necessary) we

may assume that D is reduction modulo 3 of S((cn_z’l’l)

that D’\iAn is irreducible. Hence S((Cn_2’1’1)¢(; is irreducible. Note that m > 3 as
n = 2™ > 5. By [50], the only proper subgroup of AGL,,(2) that contains V,,, and
is irreducible on S™=21%) is K = V, x A7 < Ajg. Furthermore, the only complex
irreducible character of degree 7 of GL3(2) remains irreducible modulo 3, cf. [23], so
the arguments on pp. 179-180 of [8] show that D* | is indeed irreducible. We have
shown that either G = AGL,,(2) with m > 3, or G = K and m = 4, as stated in (ii).

Case 1.2. 7 =2, p =3, D* € [D®?)]. By [20, Tables], we have dim D(>3) = 28,
Furthermore, D) is irreducible over Ag, so it suffices to show that D] AGLs(2) 18

. Moreover, it is easy to see

reducible. Since D* affords all 7 non-trivial linear characters of V3, it follows that
DA = indgl(U), where U is a 4-dimensional module of G1 = V3 x S4. Now V3 acts
via scalars on U, and the degree of any irreducible FS,-representation is at most 3,
whence U, and so D)‘Lg, is reducible.

Case 2: 7 =3, p=2, D* = DG4 By [20, Tables], we have dim DG4 = 16. First
we consider the case H = Sg. Then it suffices to show that D] is reducible for
G = AGLy(3). This group G is the 7" maximal subgroup of Sy as listed in [14]. We
can pick two elements x € V5 \ {1} and y € G \ V3, which belong to classes 34 and
3C in G (in the notation of [14]) and which both induce fixed-point-free permutations
in Sg. Thus both z and y belong to class 3B of Sg. The only irreducible 2-Brauer
character of G of degree 16 takes value 1 at y, whereas the character of D* takes value
—2 at y, cf. [14]. Hence we conclude that D*|, is reducible. (An alternate way is
to note that D? is reduction modulo 2 of the basic spin module of a double cover gg,
and the latter is reducible over the inverse image of G in Sy by [26, Theorem 1.1].)

Now let H = Ag. Then D(5’4)¢A9 splits. Each of Ef A affords 8 non-trivial linear
characters of Vo, which are permuted transitively by AGLo(3)NAg = ASLs(3). More-
over, the only proper subgroup of SLs(3) that acts transitively on these 8 characters
is Qg. It follows that G = ASL2(3) or V5 x Qg, in which case the restriction is indeed
irreducible, giving the case (iii). O

6. DOUBLY TRANSITIVE GROUPS WITH SOCLE PSL,,(q)

Throughout the section: ¢ = 7/ is a power of a prime r, m > 2, W := Fy" with
standard basis e1, ..., en,, and P(W) is the set of 1-dimensional subspaces of W. Also,
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unless otherwise stated,
n:=[PW)| = (¢" —1)/(¢—1),
and G < S, with S := soc (G) = PSL,,(q) acting naturally on P(W).

6.1. Bounding the partition )\ for groups with socle PSL,,(q). With the nota-
tion as above, we have:

Lemma 6.1. We have S <G < PGLy,(q) x Cp < Aut(S5).

Proof. Note that N := Ns_(S) is doubly transitive with non-abelian simple normal
subgroup S. By [10, Proposition 5.2], soc(N) = S. Now Cs (S) NS = 1, hence
soc (N) = S implies that Cs, (S) = 1. So S <IG < N < Aut(S). The group Aut(S) is
described in [15, Theorem 2.5.12]. If m = 2, we have Aut(S) = PGLy,(q) x Cy, and
we are done. If m > 3, the inverse-transpose automorphism of S does not stabilize its
action on P(W), so we have G < PGL,,(q) x Cy. O

By Lemma 6.1, we have G < PGLy,(q) x C; where PGL,,(q) x C¢ acts naturally
on P(W). For 1 <k <m—1,let Wy, := (e1,e2,...,ex)r, € W, and denote by Py, the
subgroup of PGL,,(q) x Cy consisting of all elements that fix every point of P(WW}).
(If k > 1, then P, is the image in PGLy,(g) x C; of the subgroup of GL,,(q) x C
that acts via scalars on Wy.) Also, let Py := P, NG. By construction, Pj fixes all

L= (¢"-1)/(¢g - 1)
1-dimensional subspaces of (e1,ea,...,ex)r,. Thus:
Lemma 6.2. The subgroup Py is contained in a natural subgroup Sy_r, of Sy.
Lemma 6.3. Let A = (n—/4,...) € Zy(n). For an integer 1 < k < m — 1 such that
(¢" —1)/(q — 1) > 2¢, we have (D)% #£ 0. In particular, if D is irreducible then
dim D* < [G : Py
Proof. The first statement follows from Lemma 6.2 and Theorem 2.11. The second
one then follows from the Frobenius Reciprocity. O
Setting
P, <Ry = Stab(;(<€1, - ,6k>[ﬁ‘q),

we have that

PGLk(q) = (R, N S)/(P, N S) ARy /P, < PGL(q) x Cy. (6.4)

(Indeed, one can find an element of SL,(q) that fixes Wy and has any prescribed
determinant in its action on Wj.) Since both G and S act transitively on the set
Py (W) of k-subspaces of W, we have

ko n—it+1
R =15 _ N p A
(G R] =[S : SN R = [Pe(W)) _E prom et (6.5)
Lemma 6.6. Let A = (n—{(,...) € Z,(n) and D*| be irreducible. For an integer
1 <k <m—1 such that (DM)P* #£ 0, we have

. k n—i _
dimD)‘ < [G : Rk]bp(Rk/Pk) = %bp(Rk/Pk) = [Jp(Rk/Pk) H %_111
=1

The assumption (DT 0 is guaranteed if (¢* —1)/(q — 1) > 2.
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Proof. Note that Ry acts on (DM)P* and the Rj-module (D*)"* contains a simple
submodule X of dimension at most b, (Rj/Py). By the Frobenius reciprocity, we have

dim D* < [G: R]dim X < [G : Ry]b,(Ry/Py),
and it remains to use (6.5) and Lemma 6.3. O

Proposition 6.7. Let V an irreducible FG-module. Then:
(i) dimV < |G|? < |Aut(S)["/2.
(i) dimV < n(m+1D/2 < pzlogantl,
(iii) Suppose that V.= DM for A = (n—£,...) € P,(n), and that there exists an
integer 1 < k < m — 1 such that (¢* —1)/(q — 1) > 2¢. Then dimV < ¢™*.

Proof. (i) Follows from Lemma 6.1.

(ii) Note that n > 2™~! so m < 1 + logy n, which implies the second inequality.
Let H := PGLy,(q). By Lemma 6.1, G < H x Cy. If m = 2, then b(H) = ¢+ 1. Since
f2 <2/ +1<q+1, we deduce that dimV < fb(H) < (q+ 1)%/2, as stated.

Let m > 3. Using Lemma 2.3, and the estimate (¢° — 1)(¢™* — 1) < ¢™ — 1 for
1<1<m—1, we get

b(H) < b(S) - [H : 8] < 6(SLin(q)) - [H : ]

(=@ -D(*—1)...(¢" 1)
< PR -ged(m, g — 1)
(qm _ 1)(m+1)/2 'ng(m7q B 1).

(¢—1)m
Also, f <2/ —1 < g—1. So for m > 5 we have

dimV < 6(G) < fo(H) < 4

9

m 1)(m+1)/2 g" —1 (m+1)/2
(g—1)m g—1 >

as stated. For m = 3,4, using [42] one can drop the factor of f in the above estimates
for b(H) and b(G), whence the statement follows again.

(iii) First we consider the case k = 1. Then note that Ry = P; and SNR; = SN P;.
It follows from (6.5) and Lemma 6.3 that

dmV <[G:Ri]=[S:SNR=1[S:5NPF.

Now let k > 2. As recorded in (6.5), Y := (SN R)/(SN P;) = PGLy(q). Clearly,
Y| > ¢® > f?, whence b,(Y) < |Y|'/2 < |Y|/f. Again using (6.5), we obtain

bp(Ri/Br) < [~ bp(Y) <[Y].

-f-gcd(m,q—ns(

Combining with Lemma 6.3 and (6.5), we get
dimV < [G : Rk] . ’Y’ = [S : SﬂRk] . ‘(SﬂRk)/(SﬂPk)‘ = [S : SﬂPk]

Thus in both cases we have

dimV < [S: SNP] <2 T (@8 -1) <™,
i=m—k+1

which completes the proof. O
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Proposition 6.8. Let n > 324, m >4, p =2 or 3, A\ € P,(n) such that D | is
irreducible, and define ¢ from n — ¢ = max(Ay, \Y). Then ¢ <4 if2<q<5andl{ <3
ifq>T.

Proof. We may assume that ¢ > 4, for otherwise there is nothing to prove. Replacing
A by M if necessary, we may assume that Ay = n —¢. By Propositions 6.7(ii) and 2.23,
we have

¢ < L(n):=0.Tlogyn + 1.4. (6.9)
So n > p(é, + £ — 2), and by Theorem 2.21, we have
(n+3—30)°

dim D* > C¥(n) > (6.10)

¢!

Claim 1: If 1 <k <m —1 and (¢* — 1)/(qg — 1) > 2¢ then ¢"* > M.

Indeed, by Proposition 6.7(iii), dim D* < ¢™*, and the claim follows from (6.10).
Claim 2: If k := [log,(2¢ — 1)] + 1, then ¢"* > (n+3 30"

To prove Claim 2, it suffices to Verlfy that the glven k; satisfies the assumptlons of
Claim 1. Clearly k > 1, and (¢¥ —1)/(q — 1) > 2/ is easy. Note that (2L(n) —1)2 <n
by our assumption on n, so from (6.9), we have 2 — 1 < n'/2, and hence, using also
m > 4, we get ¢?(20 — 1) < ¢"?nt? < g™ Now k < m — 1 follows from

qk < qlogq(2é—1)+2 _ q2(2€ . 1) <

Suppose ¢ > 12. Then for k£ as in Claim 2, we have

14
1.83. A1
€k > logy(2¢ — 1) 4 2 > 183 (6.11)

On the other hand, n = (¢"™ — 1)/(¢ — 1) implies that m < log,n +1 < glogq n, i.e.
n > ¢m/, (6.12)
Also, for n > 324 we have (L(n)/1.87)*2" < n, and so from (6.9) we get

1.
87n < 7,0-765

; (6.13)

We also have
n+3—30>n+3—3L(n)>14.8n/15.8 (6.14)

for n > 324. Using Claim 2 and (6.11)-(6.14), and ! < (¢/2)* (which certainly holds
for £ > 12), we arrive at a contradiction:

l )4
i . (n+3=30)° 14.8n/15.8 1.87n 0.765¢
g > 7 > 7 > | = >n

Suppose 8 < £ < 11. If ¢ > 3, we take k£ as in Claim 2. If ¢ = 2 then kK = 5
satisfies the assumptions of Claim 1—indeed, n = (2" — 1) > 324 implies m > 9, and
25 — 1 > 20. As we have k < 5 for all ¢, using Claims 1 and 2 for ¢ = 2 and ¢ > 3,
respectively, we get

1.39k > qu'

>n

(n+3—30)°

5m mk
>
> 2!

g =q (6.15)
If £=10 or 11, then
¢
(n+3—30) S
2! - 10!

—27)1°
(n ) snT> q7(m—1)7
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hence 5m > 7(m — 1), a contradiction. If £ =9, then

¢ 9
(n+3-30" (n—24) S p20/8 5 20(m=1)/3
14 9!
hence 5m > 20(m — 1)/3, a contradiction since m > 4. Let £ = 8. Then for ¢ > 3 we

have k = [log,(15)] + 1 < 4. So by Claim 2, we have

)

(n —21)8
8!

a contradiction. For ¢ = 2, we have m > 9, k = 5, and we again get a contradiction:
n—21)%
q5m:qu>( 8') >n6>q6(
Suppose £ = 7. If ¢ > 3, choose k as in Claim 2. If ¢ = 2, then choose kK = 4. In
both cases we have k < 4. Now we get a contradiction using Claims 1 and 2:

m—1)

4m>qu> >n6>q6( ’

m—l).

n —18)7
q4m > qu > ( ) > n16/3 > q16(m—1)/3‘

- 7!
Suppose 5 < £ < 6. If ¢ > 3 take k£ = 3 and apply Claim 1 to get a contradiction:
PRSI (n —5'12)5 St q4(m—1)‘
If ¢ = 2 take k = 4 and apply Claim 1 to get a contradiction:
2im — gmk > (n:,)#)s > (n+1)* > 2t
If ¢ > 7 and £ = 4 take kK = 2 and apply Claim 1 to get a contradiction:
q2m _ qu > (n ;'9)4 S 83 S qS(m—l)/3‘

O

6.2. Ruling out the remaining D for groups with socle PSL,,(q). Proposi-
tion 6.8 rules out irreducible restrictions D*| in the generic case where n > 324,
m > 4, and £ not too small. In this subsection we deal with the remaining cases.

Lemma 6.16. Let p =2 or 3, A € Z,(n), m > 5, and q = 2. If D*| is irreducible
then A € ZW(n).

Proof. By Lemma 6.1, we have G = S = SL,,(2). Set V := D* and suppose Vg
is irreducible. Write n — ¢ = max(A1, A). Replacing A by A" if necessary, we may
assume that A\; = n — £. We need to prove that £ < 1.

Claim 1: ¢ < 5.

If m > 9, then n = 2™ —1 > 511 and so £ < 4 by Proposition 6.8. Let m = 8.
By [14], b(G) = 361416600 < 2235, As dim V > 2%/2 by Theorem 2.22, we have that
¢ <56 < n/4. By Theorem 2.21,

dimV > <w - 6>Z = <¥ - 6>Z > b(G),
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for 6 < ¢ < 56, which contradicts the irreducibility of V|s. Let m = 7. By [14],
b(G) = 2731008 < 2215, whence £ < 42 < n/3 by Theorem 2.22. By Theorem 2.21,

dimV > <w - 6>é = <¥ —6>€ > b(@G),

for 6 < ¢ < 42, which contradicts the irreducibility of V|s. Let m = 6. By [14] for
p =3 and [43] for p = 2,

max(by(G), b3(G)) = max(32768,29295) = 32768 < (n> — 9n? + 14n)/6,

whence ¢ < 2 by Proposition 2.28(i). The case m = 5 is treated similarly, using the
bound dim V' < 1024 coming from [14].

Claim 1: ¢ < 2.
By Claim 1, we may assume that ¢ < 5, so we can take k = 4 in Lemma 6.6 to get
. [G . P4] [G . P4] (2m - 1)4 n4
dimV < ——=0,(Ry/P)) = ——5b,(5L4(2)) < ——— - 64 = ——.
V< o gy bR/ Pa) = T bn(S1a(2)) < s 315

If £ = 4 or 5, then dimV > min{(n — 9)*/24, (n — 12)5/120} by Theorem 2.21, a
contradiction since n > 31. So £ < 3. Taking k = 3 in Lemma 6.6, we get
(G : Ps] _ 2m -1 n® n®—9n?+14n

. < P — A4
dimV < Ry Py by(SL3(2)) 21 21 < 6 7

since n > 31. By Proposition 2.28(i), this implies that ¢ < 2.

Now we consider the case £ = 2. If A = (n — 2,12) then p = 3. Using Lemma
2.6(iii) one can show that D* = A2(D"~LD). Thus SL,,(2) admits a non-trivial
(irreducible) module V], whose exterior square is irreducible. This is impossible by
[45, Proposition 3.4]. (An alternative argument is to note that G is not 3-homogeneous
and then apply [32, Theorem A].)

Finally, let A = (n —2,2). By Lemma 6.2, P, < S,,_3, and by Lemma 2.13 we have
VP2 £ 0, so by Lemma 6.6, we obtain

, (G : Py 22m —1)2 n?2  (n?-5n+2)
dmV < —=b(SL2) < ———5 = — < —n————2
Vs o, 0912 (2)) 6 3 2
since n > 31. This contradicts Lemma 2.27. O

Lemma 6.17. Letp=2 or 3, A € Zp(n), m >4, and g = 3. If D?* | is irreducible
then A € ZMW(n).

Proof. By Lemma 6.1, we have PSL,,(3) QG < PGL,,(3). Set V := D* and suppose
Vg is irreducible. Write n — ¢ = max(\1, A). Replacing A by A" if necessary, we
may assume that \;y = n — . We need to prove that ¢ < 1.

If m > 6, then n > 364 and so ¢ < 4 by Proposition 6.8. If m = 5, by [14], we have
b(G) < 98010 < (n® — 9n? + 14n)/6, hence ¢ < 2 by Proposition 2.28(i). The same
argument applies in the case m = 4 where b(G) < 2080. Thus, we have ¢ < 4 in all

cases.
By [14], b,(SL3(3)) < 27. So by Lemma 6.6, we obtain

273" )™ -nE™ -1 @™ -1° n? _ n3 —9n? + 14n
(33 -1)(32-1)(3—1) 416 52 6 ’

dimV <
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since n > 40. This in turn implies by Proposition 2.28(i) that ¢ < 2. We can take
k =2 in Lemma 6.6, and, using b,(R2/P) = b,(PGL2(3)) = by(S4) < 3, to get

, 33" —1)(3™ 1t —1) n?  (n®>-5n+2)
dimV < —_—<
mY s Tz o)) ~71° 2 ’
and so £ = 1 by Lemma 2.27. O

Lemma 6.18. Let p =2 or 3, A € Z,(n), m >4, and q = 4. If D*| is irreducible
then A € W (n).

Proof. By Lemma 6.1, we have PSL,,(4) <G < PGL,,(4) x C. Set V := D* and
suppose V| is irreducible. Write n—¢ = max (A1, A]). Replacing A by A" if necessary,
we may assume that A\; = n — £. We need to prove that ¢ < 1.

If m > 5, then n > 341 and so ¢ < 4 by Proposition 6.8. If m = 4 then by [14],
we have dim V' < 2- 7140 < (n® — 9n? + 14n) /6, whence ¢ < 2 by Proposition 2.28(i).
Thus we always have £ < 4, and we can take k = 3 in Lemma 6.6. Note using (6.4)
that Rg/Pg < PGL3(4) x Cq, s0 bp(Rg/Pg) < pr(PGL3(4)) = 128 by [14], and by
Lemma 6.6,

dimV < 128(4™ — 1)(4m=t — 1)(4m=2 - 1) - 2(4™ —1)3 _ 2n° - n3 —9n? + l4n
(43 —-1)(42-1)(4-1) 2835 105 6
since n > 85. By Proposition 2.28(i), we have ¢ < 2. So we can take k = 2 in
Lemma 6.6. Note that R3/P; < Sy as F3 contains 5 lines, whence b,(R3/P3) <
b,(S5) < 6, and by Lemma 6.6,
6(4m —1)(4mt —1)  3n?  (n®-5n+2)

. 3n®
dmV'< == ~10 © 2

Now ¢ =1 by Lemma 2.27. O

Lemma 6.19. Letp=2 or 3, A € Zp(n), m >4, and g > 5. If D?* | is irreducible
then A € W (n).

Proof. By Lemma 6.1, we have PSL;,(q) G < PGL,,(q) x Cy. Note that f < ¢/2.6
as ¢ > 5. Set V := D> and suppose V] is irreducible. Write n — ¢ = max(\, \}).
Replacing A by A" if necessary, we may assume that A\ = n — £. We need to prove
that ¢ < 1.
We claim that £ < 3. If m = 4 then |G| < f - |[PGL4(q)| < ¢*°f < ¢'9/2.6, and
dimV < |G|1/2 < q_8 < f < n_3 < n3_9n2—|—14n,

V2.6 8 8 6
hence ¢ < 2 by Proposition 2.28(i). Let m > 5. Then n > 781, and we have £ < 4 by

Proposition 6.8, so we may assume that £ = 4. We show that dim V' < (";f )4, which
contradicts Theorem 2.21. If m = 5 then

\/ 51 5= q12.5 n25/8 (Tl _ 9)4
dimV < /|G| < - |PGL < < 2.6 < < <

If m > 6, Proposition 6.7(iii) with £ = 3 yields

(n—9)"

dimV < ¢*™ < g36(m=1) 36 - 51
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As ¢ < 3, we can take k = 2 in Lemma 6.1. Note using (6.4) that Ro/P» <
PGL3(q) » Cy, so

bp(R2/P2) < fby(PGL2(q)) < f(q+1),
and by Lemma 6.6,

dimV < f(g+1) (@™ —D(g" ' -1 _ f(@™ =1 (g™t =1)

(> =1)(g—1) (¢ —1)2
o _m? o bn
q 2.6 2
since n > 156. We conclude that ¢ = 1 by by Lemma 2.27. O

Lemma 6.20. Let p =2 or 3, A € Zy(n), and (m,q) = (3,9 > 5) or (2,¢ > 11). If
D¢ is irreducible then A € £ (n).
Proof. By Lemma 6.1, we have PSL,,(q¢) 4G < PGLy,(q) % Cy. Note that f < 3¢/8
as ¢ > 5. Set V := D?* and suppose V] is irreducible. Write n — ¢ = max(\, AD).
Replacing A by A" if necessary, we may assume that A\ = n — £. We need to prove
that £ < 1.

If m=3thenn=¢>+q+1, and

dimV < b(G) < f6(PGL3(q)) < f(g+ 1)(¢* + ¢+ 1) < 3n?/8 < (n* — 5n +2)/2,
hence ¢ = 1 by Lemma 2.27.

Let m=2,s0n=q+ 1. If ¢ > 16, we have that

dimV < b(G) < f6(PGLa(q)) < flg+1) < 3n(n—1)/8 < (n® —5n +2)/2,

hence ¢ = 1 by Lemma 2.27. If ¢ = 13 or 11, then dim V < b(G) = ¢+ 1 = n, and we
conclude that ¢ = 1 using [14]. O

Now we can prove the main result of this section:

Theorem 6.21. Let p = 2 or 3, and A\ € Pp(n) such that dim D* > 1. Suppose
that G < Sy, is a doubly transitive subgroup with S = soc (G) = PSLy,(q) acting on
n = (q™—1)/(q—1) 1-subspaces of ', and either m > 3, orm =2 and q¢ > 4. Then
D)‘LG is 1rreducible if and only if one of the following holds:
(1) X € LW (n). FPurthermore, ptq if m >3, and G £ PXLo(q) if m=p=21q.
(ii) m =2, and one of (ii), (iii), (v) of Proposition 3.10 occurs.
Proof. Define ¢ from n — ¢ = max(A, A]). Then ¢ > 1. Recall the notation (2.1).
Replacing A by A" if necessary, we may assume that A\ = (n — ¢, u) for a partition u of
L. If (m,q) are as listed in Proposition 3.10, then we are done. Otherwise we apply
Lemmas 6.16-6.19 when m > 4 and Lemma 6.20 when 2 < m < 3 to conclude that
¢ =1, in which case the theorem follows from the main result of [47]. O

7. DOUBLY TRANSITIVE GROUPS Spa,(2)

Throughout the section: 6 € {0,1} , m > 3, W is a 2m-dimensional vector space
over Fy with symplectic form (-,-) and symplectic basis (e1,...,em, fi,-.., fm), Q0 is
the set of the quadratic forms of Witt defect 6 on W associated with (-, -),

n=n(8) :=|Q°| = 2" 12" + (-1)°),

and G = Sp(W) = Spay,(2) is embedded into S,, via its doubly transitive action on
Q°. For 1 < k < m we put Wy, := {e1,...,exr)F,.
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7.1. Bounding D* for Spy,,(2). We follow [12, §7.7] and [8, §5]. Let Q be the set
of all quadratic forms on W which satisfy Q(v + w) — Q(v) — Q(w) = (v, w) for all
v,w € W. The group G acts on Q via g- Q(w) = Q(g~'w) for g € G,Q € Q,w € W.
Let Qo € Q be the quadratic form defined by Qo( Y1, (ase; + bif;)) = Soity ab;.
Then Q = {Q" | v € W}, where QV(—) := Qo(—) + (v, —). For § € {0,1}, we set

Q0 ={Q" | Qo(v) = &}. (7.1)

By [12, Theorem 7.7A], Q° and Q! are the G-orbits on €, and the G-action on both
of them is doubly transitive. Note that Qy = Q° € Q°, also fix Q; := Q»t/m € Q.
Let 1 <k <m — 1. We define certain subgroups P,f < Ri < @. First, let

P]g := Stabg(Qs, €1, ..., ex) = StabO(Qa)(el, cees€k) (7.2)
be the subgroup of G that fixes Qs and each of k vectors eq,...,e,. Also set
R}, := Staboq,) (Wi). (7.3)

Note that P]f < Ri and
R}/P} = SLi(2). (7.4)

Lemma 7.5. Let 1 <k <m—1. Then P,g fizes 28 quadratic forms in Q°, so P,f 18
contained in a natural subgroup S,,_ox in Sy,.

Proof. Note that P} fixes each of the 2 forms {QV+9(em*Fm) | v € Wy} in Q7. O

Lemma 7.6. Let A = (n — {,pu) € Pp(n) for a partition p of €. For an integer
1 <k <m—1 such that 2571 > ¢, we have (D’\)Plg # 0. In particular, if DM g is
irreducible then dim D < [G : PY].

Proof. The first statement follows from Lemma 7.5 and Theorem 2.11. The second
one then follows from the Frobenius Reciprocity. (]
Lemma 7.7. Let A\ = (n— £, i) € P,(n) with p £ and D, be irreducible. For an
integer 1 < k <m — 1 such that (D/\)Plg # 0, we have

G : P

dim D* < [G : R}]b,(SLi(2)) = mbp(SLk(Q)).

The assumption (D’\)Pig # 0 is guaranteed if 28~ > 4.

Proof. Note that R? acts on (D) % and the R2-module (DM)F i contains a simple
submodule X of dimension at most b, (Rj/Py). By the Frobenius reciprocity, we have

. . G: P}
dim D* < [G : R}]dim X < [G : R}]b,(Ry/Py) = B%éf]jjbp(z%g/zﬂ,f),
(R« P
and it remains to use (7.4) and Lemma 7.6. O

Lemma 7.8. For1 <k <m—1, we have

[G . P]?] — 2m—1+k(k—l)/2(2m—k + (_1)6) H (22Z _ 1) < 2(4771—]6)(]@-‘1-1)/2‘
i=m—k+1
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Proof. Let e .=+ if § =0 and ¢ := — if § = 1. We have
dimV < [G: PY] =[G : 0(Qs)][0(Qs) : PY]
= 277127 4 (—1)°) [05(2) ¢ (GL(2) X 0%, _04(2))]r |G Lk (2)]

m—1
— 2m—1(2m + (_1)6)(2m _ (_1)6)(2m—k + (_1)6) H (22i _ 1) . 2k(k—1)/2
t=m—k+1
_ 2m—1+k(k—1)/2(2m—k + (_1)5) H (222' o 1) < 2(4m—k)(k+1)/2,
i=m—k+1
as required. O

Proposition 7.9. Let V be an irreducible FG-module.

(i) If m > 4 then dimV < (v/3/2) - 2m(m+1/2) < n 1 logant1.52
(ii) Suppose that V.= D . for X\ = (n —{,...) € Py(n), cmd that there exists an
integer 1 < k < m — 1 such that 2k=1'> ¢ Then dimV < o(4m—k)(k+1)/2

Proof. (i) Note that n > 22m=2 5o m < 1 5 logon + 1. As m >4, we have n > 28, and
dimV < |G'? < (3. 2CmHU=H)2 = (V/3)2) - gt/
< (V3/2) - 20+ 3 loszm) (53 los2m) — (/. 9llogam)-(§ logz nt-])

6 - ni log, n+% < Tli logy n+1.52

(ii) Follows from Lemmas 7.6 and 7.8. O

Proposition 7.10. Let m >3, p =2 or 3, A\ € P,(n) such that D*|; is irreducible.
Determine ¢ from n — ¢ = max(A1, ). Then £ <2 if m = 3,4, and £ < 3 if m > 5.

Proof. Replacing A by A" if necessary, we may assume that A = (n—¢, u) for a partition
pof £. Let m = 4. By [14], b,(Sps(2)) < 26, So

dim D* < 26 < (n® — 9n? 4 14)/6,

hence ¢ < 2 by Proposition 2.28(i). The same argument applies to the case m = 3.
So we may assume that m > 5, hence n > 496, and ¢ > 4.
By Proposition 7.9(i), we have that dim V' < n’( with

1 1
L(n) := 2 logyn +1.52 < 3 logy n + 1.

So by Proposition 2.23, we get
¢<L'(n):=0.7loggn+ 1.4 <n/p+2— 0. (7.11)
Now Theorem 2.21 applies to give dim D* > C’p (n) hence

n™ > dim D* > CP(n) K'Hn— (6, +i)p (7.12)
Assume that { = 4. By Lemmas 7.7 and 7.8 with £ = 3, we have
[G . Pé] 98m—6 98m—6
dimV < b,(SL -8 = .
m Vs o) @) < 5 21



IRREDUCIBLE RESTRICTIONS IN SMALL CHARACTERISTICS 45

On the other hand, (7.12) implies

_0\4 m—1/om __ _0\4 8m—6
(n—9) >(2 (2 1) —9) >2

24 24 21
as m > 5, a contradiction. So we may assume that ¢ > 5.

Assume that £ = 5. By Lemma 7.7 with k = 4, we have

. (G : P} n® n®
dimV < ——==b,(5L4(2)) < 64 = —
V< o2y 2 < 360 315°
where we have used Lemma 7.8 to get [G : PJ] < 2197710 < 5 On the other hand,
(7.12) implies

dimV >

. (n—12)% n®
>N
dim V> 55— > 315

as n > 496, a contradiction.
Now we may assume that £ > 6. In particular, ¢! < (£/2), and by (7.12), we get

_ap) !
nH® > dim DN > W > (M - 6) . (7.13)

If ¢ > 1.3L(n), then

9 1.3L(n)
AL S (@ _ 6)

and so, since n > 496,

> ﬁﬁiﬁ > L'(n).
contradicting (7.11). So
¢ < 1.3L(n) < 0.33logyn + 2. (7.14)
Now ¢ > 6 implies m > 7 and n > 8128. In this case, (7.14) implies that
¢ < \/n/16. (7.15)
As n < 22" we get £ < 2™~* and so for
k= [logy €] + 1 (7.16)
we have 1 < k < m — 2 and 2¥~! > ¢. By Proposition 7.9(ii), we now conclude that
dim D* < 2Um=k)(k+1)/2, (7.17)

If £ > 14 then (7.16) implies that k+1 < logy £+3 < £/2. Asn > 2?"~2 and k > 4,
we then have from (7.17) that
dim D)\ < 2(2m—2)(k+1) < nk-l—l < TLZ/2.
On the other hand, using (7.15) and (7.13), we obtain

2(n+3

14
dimD’\>< ; )—6> > (32v/n — 6)¢ > n'/?,

a contradiction.
If 9 < ¢ <13 then k =5 by (7.16). Using (7.13) and (7.17) we get
(n —36)°

13!
which is a contradiction since n > 8128.

< dim DN < 21215 S
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If 6 < ¢ <8 then k =4 by (7.16). Again using (7.13) and (7.17), we obtain

—15)6 —21)7
min{(n S ) } <dimV < 210m=10 « p5,

6! 8!

a contradiction. The proof of the claim is complete. O

7.2. Ruling out the remaining D for Sps,,(2).

Proposition 7.18. Let p = 3, n > 28, and A = (n — a,a) with a = 2 or 3. Then
D* | is reducible.

Proof. Note that n = 2™~1(2™ +(—1)%) # 2 (mod 3). In particular, by Lemma 2.5, if
A = (n—2,2) we may assume that n =1 (mod 3). We will use the following notation
from [32]:

S i= SRR A= MTRER) (@) = dim ME,
E(N) == Endg(D?), Z(G) := indZy Fg.

(

IfA=(n—-22)and n =1 (mod 3), or A = (n — 3,3) and n = 0 (mod 3), then
by [46, Lemma 6.8], there exists a homomorphism ¢ : M3 — £(A) with [im ¢ : D3] # 0.
If \ = (n—3,3) and n = 1 (mod 3), then by [46, Lemma 6.12], there exists a
homomorphism ¢ : M3 — E(X) with [im ( : D3] # 0 or there exists a homomorphism
¢+ My — E(N) with [im ¢’ : Dy] # 0.

From [32, Corollary 2.31], (S7)¢ = 0. Further if n = 1 (mod 3) then by [32,
Corollary 7.5], we have (S3)¢ = 0. By [8, Lemmas 5.11, 5.12], we have i(G) = 1,
i3(G) = 2 and i4(G) > 2. It then follows by [32, Lemmas 3.3, 3.4] that there exists a
homomorphism ¢ : Z(G) — Mg with [im : D3] # 0. If n =1 (mod 3) then by [46,
Lemma 3.5] there exists a homomorphism ¢/ : Z(G) — My with [im )’ : D4] # 0.

Therefore, [im (¢ o) : D3] # 0 or [im (¢’ 0 4’) : Dg] # 0. The proposition then
follows from [32, Lemma 2.18]. O

Lemma 7.19. Let p =2, n > 28, and A = (n — a,a) with a = 2 or 3. Then D] is
reducible.

Proof. Assume the contrary. Note that D* is a subquotient of the FS,-module
Sym*(U), where U denotes the FS,-permutation module on the set Q° of cardinal-
ity n = 2m71(2™ + (—1)%. Tt is shown on [47, p. 10] that the FG-module U contains
a subquotient B of dimension 2m + 1 > 7. Thus, in the Grothendieck group of FG-
modules we can write U = A+ B for a FG-module A of dimension n — (2m+ 1). Note
that dim A > 4(dim B) since m > 3. This implies that, in the following decomposition
in the Grothendieck group

Sym*(U) = Z Sym®*(A) ® Sym‘(B), (7.20)
=0

the summand Sym®(A) has the largest dimension. Now, by Proposition 2.28(i) we have
dim Sym®(A4) < (n—5)(n — 6)(n — 7)/6 < (n® — 9n* + 14n) /6 < dim D"~33)

as n > 28. Thus, when a = 3 every summand in (7.20) has dimension less than dim V/,
and so V] cannot be irreducible. Likewise,

dim Syn*(4) < (n = 6)(n — 7)/2 < (n* = 5n +2)/2 < dim D" ~>?)
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by Lemma 2.27. Thus, when a = 2 every summand in (7.20) has dimension less than
dim V', and so V] cannot be irreducible. O

We now prove the main result of the section:

Theorem 7.21. Let m >3, 0 =0 or 1, and let G = Span(2) < S, with G = Sp(W)
acting on the n = 2™~ 1(2™ +(—1)%) quadratic forms of Witt defect & on the symplectic
space W :=TF3™. Let p =2 or 3, and let A\ € P,(n) be such that dim D* > 1. Then
D* | is irreducible if and only if p=3 and X\ = (n —1,1) or (n — 1,1)™.

Proof. Assume that D’\ig is irreducible. By Proposition 7.10, we may assume that
A= (n—4p) with £ < 3 and pu F ¢. Next, by Proposition 7.18 and Lemma 7.19,
A 7& (’I’L—2,2), (n_373)

The cases where A = (n—3,2,1), or p =3 and A = (n—2,12), when G = Spa,,(2) <
S,, with m > 3, are ruled out by [32, Theorem A]. Indeed, it was shown in [8, Lemma
5.11] that G has (exactly) two orbits on the set of 3-element subsets of Q¢, and so
G is not 3-homogeneous. Also by [3, Lemma 2.2] we have that if p = 3 and n > 10
then (n—3,2, 1) = ((n—3)",3) and (n —2,1%)" = ((n —2)",2), so that in either case

h(AY) = 3.
This leaves only one possibility A = (n—1,1). Now we apply the main result of [47]
to see that D("~11) is irreducible over G if and only if p = 3. (]

8. PROOFS OF MAIN THEOREMS

8.1. Proof of Theorem A. For p > 5 this is [8, Main Theorem| (and Remark 1.3).
So we may assume that p = 2 or 3. Since the case (p,\) = (2,0,) is excluded,
by [32, Theorems A, B|, we may assume that one of the following happens:
(1)p=2,n=2(mod4), A = (n—11), and G < 5,505y is as in [32,
Theorem BJ;
(2) G is 2-transitive on {1,...,n};
(3) G <S,—1 and \is JS.
Since (1) is Theorem A(iii), we assume from now on that this case does not occur.
Suppose we are in the case (2). If A € 2 (n) then by [47] and the remarks pre-
ceding Table II, we arrive at Theorem A(ii). If G = A,, then, by definition of 22\ (n),

we arrive at Theorem A(i). So we may assume that G # A, and A ¢ £ (n). By the
classification of 2-transitive groups [10], we are in one of the following situations:

(A) soc (G) is an elementary abelian subgroup;
(B) soc(G) = PSL,,(q) (is non-abelian simple) acting on n = (¢ —1)/(q — 1)
1-dimensional subspaces of F{';
(C) G = Spon(2), m > 3, acting on n = 2™ (2™ + (—1)%) quadratic forms on
2™ of the given Witt defect § € {0,1};
(D) G is any of the other doubly transitive subgroups (which we call small).
We now apply Theorems 5.13, 6.21, 7.21, and 4.1 for the cases (A), (B), (C) and (D),
respectively.

Suppose we are in the case (3). If n = 5 then A is JS only if A = (5) and p = 2, or
M€ {(5),(3,2)} and p = 3, and in either case we have dim D* = 1. So we may assume
that n > 6. By [27], we have D)‘isni1 = DM, where p is obtained from A by removing
the top removable node of A. If G = S,,_; we arrive at Theorem A(v). Now we may
assume that G < S,,_1.
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We now apply [32, Theorems A, B] again with n — 1 in place of n and p in place
of A\ to arrive to the cases (1'),(2"),(3") parallel to the cases (1),(2),(3) above. For
example, by [35, Theorems 3.3, 3.6], p is not JS, so (3') is excluded. The case (1')
is also excluded, since p = (n — 2,1) implies A = (n — 1,1), but n — 1 = 2 (mod 4)
implies that n is odd, and so A is not JS. Thus, we are in the case (2'), i.e. G is
2-transitive on {1,2,...,n — 1}.

Suppose G = A,_1. Then D>‘¢A%1 = DA,
@ﬁ(n —1). If p = 2, since A # B, is JS, it can be easily seen from Lemma 2.9
that p ¢ 29 (n — 1) if and only if A ¢ 225 (n). If p # 2, since A is JS, we have
from [6, Theorem 5.10] that p & 20 (n — 1) if and only if A & P} (n). So D], | is
irreducible if and only if A is JS and A ¢ @ﬁ(n). We have arrived at Theorem A(vi).

Assume finally that A,,_1 # G < S,,_1. As n > 6, passing from \ to A" if necessary,
we may assume by Theorems 5.13, 6.21, 7.21, and 4.1 that u = (n — 2,1), (n — 3,2)
or (n — 3,12) (the last partition only for p = 3). Since y is obtained from A by
removing the top removable node it follows that A = (n—1,1), (n—2,2) or (n—2,12)
respectively. Note that (n — 1,1) and (n — 2,12) are JS if and only if n =0 (mod p),
while (n —2,2) is JS if and only if n = 2 (mod p). The result then easily follows in
this case by checking when the required congruences modulo p hold and when D"
is irreducible using Theorems 5.13, 6.21, 7.21, and 4.1.

is irreducible if and only if y &

8.2. Proof of Theorem A’. For p > 5 this is [36, Main Theorem]. So we may
assume that p = 2 or 3. If V lifts to S,, we arrive at Theorem A’(i). Otherwise
S e@;‘(n) From Lemma 2.10 it then follows that A\; < (n+4)/2. By [34, Theorem
A], we are in one of the following situations:

(1) G is primitive on {1,2,...,n};

(2) G < A1 and either X is JS or A has exactly two normal nodes, both of

residue different from 0.
(3) G <A, 22=S, 9 and \is JS.

Suppose we are in the case (1). By Theorem 3.7, we see that either G is an affine
group, which is subsequently ruled out by Theorem 5.13, or G is a Mathieu group, in
which case one can apply Theorem 4.1 to arrive at the case (Al) from Table IV, or
else the case (A3) from Table IV occurs.

Consider the case (2). Suppose first that A is JS. Then E}], . = ET for some

T E L@I/)\(n —1). As 7 can not be JS, applying [34, Theorem A] to n — 1 instead of
n, we deduce that either G is a subgroup of A,,_; primitive on {1,2,...,n — 1}, or
G < A,_2. The former case is considered as in the case (1) using Theorems 3.7, 4.1
and 5.13. The case G < A,,_9 is subsumed by the case (3) to be considered below.

Suppose now that A has exactly two normal nodes both of residue different from
0. From [36, Proposition 3.8] or the proofs of [34, Theorems B, 5.3] we have that
DM 2 E” withv e PZy(n—1)\ L@I/)\(n — 1) obtained by removing a good node
from . If p = 3 we also have that M is obtained from X by removing a good node. In
particular vy, ! < (n+4)/2 < (n —1) — 2 if n > 11, so by Theorem A we have that
G € {A—2,A,_1}. Using [34, Theorem A}, we arrive at Theorem A’(ii)(a). If n < 10
and p =2, A= (4,3,1) and v = (4,2,1), in which case we can conclude as above. If
n <10 and p = 3, A = (3,12) and v™ = (3,1). In this case E} = Ef’ﬂ)iAg), which
will be considered below when covering case (3).
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Consider the case (3). Using the isomorphism A,_32 = S,,_2, by [34, Theorem 5.4]
and [36, Theorem 3.6], we can write Ej‘EiAn%2 = D where p € Pp(n—2)\ P9 (n—2) is
obtained from \ by removing two good nodes. If p = 3 we also have that ;" is obtained
from A by removing two good nodes. In particular pq, 4} < (n+4)/2 < (n —2) — 2
if n > 13. In this case it follows from Theorem A that G € {A,_2,A,_3}. The
case G = A,_3 can be excluded, since EiiAwS,S is not irreducible by [34, Theorem

Al. So G € {A,—2,A,_22}, in which case E}lq is irreducible by [34, Theorem

C], and we arrive at Theorem A’(ii)(b). If n < 12 then p = 2, A = (5,3,1) and

i= (4,2,1) or p = 3 and (A a®) € {((4,12),(3,1)), (7,3,2), (5.3,2)}. If p = 2

and A = (5,3,1) or p = 3 and A = (7,3,2) we can conclude as above. If p = 3
()

and A = (4,1%) then Ei¢A42 >~ pGOY, Slnce dim E} = 3, we have that B} ] is

reducible if G is abelian or a 2-group. Further EiiAg, ~ pB1)I is is reducible,
under the identification of Azo = S3. Considering the submodule structure of Sy it
then follows that G € {A42,A4} and so we can again conclude by [34, Theorem C].

8.3. Proof of Theorem B. For the ‘if’ direction, by Theorem A, the cases listed in
Theorem B do give rise to irreducible restrictions D*|;.

For the ‘only-if’ direction, assume that D*|. is irreducible. By Schur’s Lemma,
Z(G) acts on D? via scalars, and so Z(G) < Z(S,) = 1 as S,, acts faithfully on D*.
Thus G is in fact almost simple, i.e. S<IG < Aut(S) for a non-abelian simple group S.
Inspecting the list of exceptions in Theorem A for almost simple groups, we conclude
that it is enough to show that such a group cannot occur in the case (iii) of Theorem A.

So assume for a contradiction that G is almost simple with socle S and satisfies the
conditions described in Remark 1.2. Recall that B =S, ,,/5 is the base subgroup of
Sn/2 1S2. As G is almost simple, we have S <G N B, and

2 divides |Out(S5)]. (8.1)

Let 71 (resp. mo) denote the permutation representations of odd degree n/2 of GN B,
induced by the projection of B onto the first (resp. second) factor S, s2 of B. By
assumption, m;(G N B) is 2-transitive, but the homomorphisms

GNB %S, - GL(D™?271Y)

for i = 1,2 give rise to non-isomorphic irreducible representations (of degree n/2 —1).
This implies that

71 and 72 induce two distinct 2-transitive permutation characters of G N B. (8.2)

We also note that both 71 and 79 are faithful. Indeed, if Ker(m;) # 1 for some i, then
Ker(m;) > soc (G) = S. Since G interchanges 7 and o, it follows that S < Ker(ms_;),
whence S acts trivially on {1,2,...,n}, a contradiction.

Now we can go over the list of 2-transitive permutation groups of odd degree n/2
with socle S, e.g. in [47, Table I]. Then (8.1) rules out the cases S = M1, Mos,
and 2Bs(q). If (S,n/2) = (Am, m > 5), then, since |Out(S)| = 2, we must have that
G =S, and GN B = A,,, which has a unique 2-transitive permutation character
of degree m, violating (8.2). Likewise, if (S,n/2) = (PSLy(11),11) or (A7,15), then
again |Out(S)| = 2, and G N B = S has a unique 2-transitive permutation character
of degree n/2, a contradiction.
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Consider the cases (S,n/2) = (PSLas(q),q+1) or (PSU3(q),q>+1). In these cases,
2|q as n/2 is odd. If S; and G denote the stabilizer of 1 in S, respectively in G N B,
then it is easy to see that S;1 = Ng(Q) and @ = O3(S1) < G;. As

[GNB:Gi]=n/2=[S: 5],

by Frattini argument we have G; = Ng, (Q). The same argument also applies to the
stabilizer of n/2+1 in GN B. Thus the 2-transitive representations of G N B induced
by m and w9 are in fact GN B-conjugate and so have the same character, contradicting
(8.2).

Finally, consider the case (S,n/2) = (PSL4(q),(¢* —1)/(q — 1)) with d > 3. In
this case, the 2-transitive permutation action m;(S) extends to PT'L4(q), but not to
the entire Aut(S) = PT'L4(q) x Co (where Cy is generated by the inverse-transpose
automorphism 7). As m;lg extends to GN B, GN B < PT'L;(q¢). We may assume
that the stabilizer S; of 1 in S is the stabilizer of a fixed one-dimensional subspace
in the natural module Fg for SLy(q). Then @ := O,(S7) is an elementary abelian
r-subgroup of order ¢?~!, if r is the prime dividing ¢. Note that PT'L4(q) preserves
the S-conjugacy classes of @), and so

[Gﬂ B: NGQB(Q)] = [S : Ns(Q)]

Arguing as in the previous case, we obtain that the stabilizer G; of 1 in G N B is
precisely Ngnp(Q). Thus the representation 71 of G N B is uniquely determined once
we fix (the S-conjugacy class of) @, whence it must be the restriction to G N B of
the usual action of PT'Ly(q) on 1-spaces of IE‘Z, with character say 1. Clearly, ¥(g) is
the number of g-invariant 1-spaces on Ff]l for all g € PT'L4(q). Note that S has only
one more 2-transitive representation that is not equivalent to 7/ g, namely the one on
hyperplanes of Fg, which extends to the usual action of PI"'L4(q) on hyperplanes of Fg,
with character say ¢'. Again, ¢/(g) is the number of g-invariant hyperplanes on Ff]l for
all g € PT'Ly(q). Now, ¢’ =7, and v is T-invariant by the proof of [56, Lemma 6.2].
It follows that ¢’ = 1). As the 2-transitive permutation character of G N B induced
by sy is either ¢} gnp or ¥, We see that m; and 79 induce the same permutation
character, again violating (8.2).

8.4. Proof of Theorem B’. Inspect the list of exceptions in Theorem A’ for almost
simple groups.

8.5. Proof of Theorem C. The first statement of the theorem and the ‘if’ part of
the second statement is [32, Theorem C], but see Remark 1.3. For the ‘only-if’ part
of the second statement, in view of part (iii) of the first statement, we may assume
that G is not primitive. By [57, Table III], D’ is obtained by reducing modulo 2 a
basic spin representation Be of S,. So Bele is irreducible. By [38, Theorem C] we
have that

G S {Sn—la An—h Sn—2> An—2,2}-

If DﬁniAW1 is irreducible then DﬁniAn and DﬁnfliAni1 must be irreducible, which is
impossible. The cases G = S, and A, _22 can be also ruled out, since by part (i)
of the first statement of the theorem, we have that D)‘¢SW2 , is reducible. Finally, if
G = S,,—1 we apply part (i) of the first statement of the theorem to arrive to part (1)
of the second statement.
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8.6. Proof of Theorem C’. For the first statement of the theorem, taking into
account [34, Propositions 6.3, 6.6, 6.7], which deal with irreducible restrictions of
basic spin modules to the subgroups of the from A, N (S,,_x X Si) and A, N (S4 2 Sp),
we may assume that G is primitive. If n = 2 (mod 4) then 3, ¢ 2)(n), so in
this case the first statement follows from Theorem C. So we may also assume that
n # 2 (mod 4), in which case £, € #5(n). By Theorems 3.7, 4.1 and 5.13, if Ei"LG
is irreducible then we are in one of the exceptional cases (AT7)-(A12) listed in Theorem
C'(iii). Conversely, the cases (A11),(A12) give rise to examples by Theorem 4.1; the
cases (A7),(A8) occur by Theorem 5.13; the case (A9) occurs by Theorem 3.7 (and
the case (A10) is covered by Theorem C since in this case n = 2 (mod 4) ).

For the second statement, the ‘if’ part follows from the first statement, and [34,
Proposition 6.3].

We finally prove the ‘only-if’ part of the second statement. In view of Theorem C,
we may assume that 8, € #5(n), i.e. n Z2 (mod 4). As in the proof of Theorem B,
we have that S <G < Aut(S) for a non-abelian simple group S. By the case (iii) of
the first statement, we may also assume that G is not primitive.

Since dim V = 2L(»=D/2=1 > 2(n=4)/2 " we have that |[Aut(S)| > |G| > 2"*. Now
we apply [26, Proposition 6.1] and consider the possible cases for G listed there. If
we are in one of the cases listed in Proposition 3.11, then we arrive at the exceptional
cases covered in part (1). So we may assume that S = A,,,, with m > 7 and each orbit
of Son Q:={1,2,...,n} having length 1 or m.

Let ©4,...,Q, be the S-orbits of length m so that S fixes b := n — am points in

Q =0\ (QU---UQ,).

Let m; denote the permutation action of S on €;, and also of G on €; in the case G
stabilizes ;. Let S(€;) = S,, and A(€);) = A,, denote the natural subgroups of S,
that act only on €;.

Restricting V' to [[;_; A(£;), we see that V|4 contains a submodule

U=eVhe...0V,® X,

where Vi,...,V, are basic spin modules of S. If a > 3, then, as S has at most two
non-isomorphic basic spin modules, we may assume V; = V5 and note that dim V; > 2.
The same holds if a = 2 and S has a unique basic spin module, i.e. m =2 (mod 4).
Thus in either case U has a proper submodule Symz(Vl)®V3®. ..®V,®X of dimension
greater than (dim U)/2. Hence V|4 has a nonzero subquotient of dimension less than
(dim V') /2, contradicting to the irreducibility of G on V. We deduce that a < 2, and
if @ = 2 then S has two basic spin modules, i.e. a = 2 implies m # 2 (mod 4).
Let ¢ denote the number of G-orbits on 2. Since |G/S| < 2 we have that

c>(a+1)/2] + [(b+1)/2].

By [34, Proposition 6.3], ¢ < 3, which implies that b < 4. If b = 4, then G must have
two orbits of length 2 on the set Q' of S-fixed points, contradicting [34, Proposition
6.3]. Suppose b = 3. Then G must have two orbits of length 2 and 1 on ', so [34,
Proposition 6.3(1)] implies that 4 | n, ¢ =3, m =n — 3, and also G = (A, h) = S,,,.
Since h does not centralize S, h must act non-trivially, in fact as an odd permutation
on 2. As G has three orbits of length n — 3, 2, and 1 on 2, we see that G = A,,_32 1.

Assume now that b = 2 and G fixes the two points of . Then ¢ = 3, and so
4|n by [34, Proposition 6.3(1)]. If m = n — 2, we have arrived at the second case of
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Theorem C’(1)(a). As 4|n, the restriction of V to A(Q; U Q) 22 A,,_o is EP"-2, which
extends to D»-2. Hence Vg contains a subquotient

DPr=2] o (8)xma(s) = Dy () © DI Ly
Note that all embedding A,, — S,, are S,,-conjugate. It follows that
X = Dﬁm\Lnl(S) = Dﬁm\sz(S)

as FS-modules, of dimension e > 4. Hence V|g contains subquotients Sym?(X) and
A%(X) of distinct dimensions, contradicting the irreducibility of G on V.

Consider the case b = 2 and Q' forms a G-orbit of length 2. Recall that a < 2. Now
if ¢ = 3, then 4|n by [34, Proposition 6.3(1)], n = 2m+2, G ='S,,,, and we can repeat
the above argument with Sym? / A% (X) to reach a contradiction. Suppose ¢ = a = 2.
Then G has orbits of length 2 and n — 2 = 2m on 2, whence 4|n as n # 2 (mod 4) by
assumption. Then we can again repeat the above argument with Sym? / A% (X). So
we must have a =1, n =m + 2, G = (S, h)S,,. Again, since [h, S] # 1, we must have
that h acts non-trivially on €; (and on Q'), and so G = A,,_2 2, and we have arrived
at the case (1)(b) of Theorem C'.

Now assume that b = 1. As G < A,,_; is irreducible on V| by [34, Proposition
6.3] we have n = 0,3 (mod 4). If ¢ = 3, then, since a < 2, we have that G has
three orbits of length m, m, and 1 on €2, but this contradicts [34, Proposition 6.3(1)].
Suppose ¢ = a = 2, so that n = 2m + 1 = 3 (mod 4). In this case, the restriction
of V to A(Q UQy) = A, is B~ which extends to D?»—1. Now we can repeat
the argument with Sym? / A% (X) to reach a contradiction. Thus a = 1, n = m + 1,
G = A, and we and we have arrived at the case (1)(c) of Theorem C'.

Finally, we consider the case b = 0. As n > m and a < 2, we must have that
a=2,n=2m =0 (mod4). By [34, Proposition 6.3] for ¢ = 2 (where G < A, »,)
and [34, Proposition 6.6] for ¢ = 1 (where G < S,;, 1 S2), we have m = 2 (mod 4),
which contradicts what was proved above.
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