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IRREDUCIBLE RESTRICTIONS OF REPRESENTATIONS OF

SYMMETRIC AND ALTERNATING GROUPS IN SMALL

CHARACTERISTICS

ALEXANDER KLESHCHEV, LUCIA MOROTTI, AND PHAM HUU TIEP

Abstract. Building on reduction theorems and dimension bounds for symmetric
groups obtained in our earlier work, we classify the irreducible restrictions of rep-
resentations of the symmetric and alternating groups to proper subgroups. Such a
classification is known when the characteristic of the ground field is greater than 3,
but the small characteristics cases require a substantially more delicate analysis and
new ideas. Our results fit into the Aschbacher-Scott program on maximal subgroups
of finite classical groups.

1. Introduction

Let F be an algebraically closed field of characteristic p ≥ 0. In this paper we
consider the following

Problem 1. Let H be the symmetric group Sn or the alternating group An. Classify
the pairs (G,V ), where G is a subgroup of H and V is an FH-module of dimension
greater than 1 such that the restriction V ↓G is irreducible.

A major application of Problem 1 is to the Aschbacher-Scott program on maximal
subgroups of finite classical groups, see [1,7,25,44,51] for more details on this. We
point out that for the purposes of these applications, Problem 1 needs to be solved
for all almost quasi-simple groups H and G, but we do not make any additional
assumptions on G.

For p = 0, Problem 1 has been solved in [50]. For p ≥ 5 andH = Sn (resp. H = An),
Problem 1 has been solved in [8] (resp. [36]). But the small characteristics cases p = 2
and 3 require a substantially more delicate analysis as well as new ideas, and remained
open for a long time. The first major difficulty is that the submodule structure of
certain permutation modules over symmetric groups gets very complicated, making
the proof of reduction theorems in [8] and [36] much harder for p = 2 or 3. The
task of proving new reduction theorems has now been accomplished in [32,34], which
allows one to mostly reduce the problem to doubly transitive subgroups of Sn. The
second major difficulty is that the techniques employed in [8] for dealing with doubly
transitive subgroups are also inefficient for small p. So in this paper we develop

2010 Mathematics Subject Classification. 20C20, 20C30, 20C33, 20D06, 20B35.
The first author was supported by the NSF grant DMS-1700905 and the DFG Mercator program

through the University of Stuttgart. The second author was supported by the DFG grant MO 3377/1-1
and the DFG Mercator program through the University of Stuttgart. The third author was supported
by the NSF (grants DMS-1839351 and DMS-1840702), and the Joshua Barlaz Chair in Mathematics.
This work was also supported by the NSF grant DMS-1440140 and Simons Foundation while all three
authors were in residence at the MSRI during the Spring 2018 semester.

The authors are grateful to the referee for careful reading and helpful comments on the paper.
1

http://arxiv.org/abs/1903.09854v3


2 ALEXANDER KLESHCHEV, LUCIA MOROTTI, AND PHAM HUU TIEP

a new approach, which iteratively pitches the dimension bounds against the shape
of the labeling partition λ of the FSn-module Dλ in question, relying particularly on
dimension bounds obtained recently in [33] and internal structure of doubly transitive
subgroups. This allows us to finally extend the above results to all characteristics.

From now on we assume that p > 0. We point out that it is the positive character-
istic case that is important for the Aschbacher-Scott program, and that the charac-
teristic 0 case is equivalent to p > n. For the reader’s convenience, we will formulate
our main results for all characteristics, although they are only new for p = 2, 3.

Recall that the irreducible FSn-modules are labeled by the set Pp(n) of p-regular

partitions of n. If λ ∈ Pp(n), we denote by Dλ the corresponding irreducible FSn-
module.

The Mullineux involution

Pp(n) → Pp(n), λ 7→ λM

is defined from DλM ∼= Dλ ⊗ sgn, where sgn is the 1-dimensional sign representation.
Of course the Mullineux involution is trivial when p = 2, while for odd p it has several
explicit combinatorial descriptions, see [5,13,29,49].

We denote by PA
p (n) the set of all p-regular partitions of n such that Dλ↓An

is

reducible. The set of partitions PA
p (n) is well understood—if p = 2 it is described

explicitly in [4] (see Lemma 2.9 below), while for p > 2 these are exactly the partitions
which are fixed by the Mullineux involution.

If λ ∈ PA
p (n) we have

Dλ↓An
∼= Eλ

+ ⊕ Eλ
−

for irreducible FAn-modules Eλ
+ 6∼= Eλ

−. If λ 6∈ PA
2 (n), we denote

Eλ := Dλ↓An
.

Now,

{Eλ | λ ∈ Pp(n) \ P
A
p (n)} ∪ {Eλ

± | λ ∈ P
A
p (n)}

is a complete set of irreducible FAn-modules, and the only non-trivial isomorphisms
among these are Eλ ∼= EλM for p > 2 and λ ∈ Pp(n) \PA

p (n). For λ ∈ Pp(n), we will

interpret the notation Eλ
(±) as E

λ
± if λ ∈ PA

p (n) and as Eλ otherwise.

We set I := Z/pZ identified with {0, 1, . . . , p−1}. A node is an element (r, s) ∈ Z2
>0

(pictorially, the x-axis goes down and the y-axis goes to the right). We always identify
a partition λ = (λ1 ≥ λ2 ≥ . . .) with its Young diagram {(r, s) ∈ Z2

>0 | s ≤ λr}.
Given a node A = (r, s), we define its residue resA := s− r (mod p) ∈ I. Let i ∈ I

and λ ∈ P(n). A node A ∈ λ (resp. B 6∈ λ) is called removable (resp. addable) for
λ if λ \ {A} (resp. λ ∪ {B}) is a Young diagram of a partition. A removable (resp.
addable) node is called i-removable (resp. i-addable) if it has residue i.

Labeling the i-addable nodes of λ by + and the i-removable nodes of λ by −, the
i-signature of λ is the sequence of pluses and minuses obtained by going along the rim
of the Young diagram from bottom left to top right and reading off all the signs. The
reduced i-signature of λ is obtained from the i-signature by successively erasing all
neighbouring pairs of the form −+. The nodes corresponding to −’s in the reduced
i-signature are called i-normal for λ (or normal nodes of residue i).

A partition λ ∈ Pp(n) is called Jantzen-Seitz (or JS) if its top removable node
is its only normal node. Equivalently, writing λ in the form λ = (la11 , . . . , l

am
m ) with
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l1 > · · · > lm and a1, . . . , am > 0, λ is JS of and only if p divides lk − lk+1 + ak + ak+1

for all 1 ≤ k < m. It is known that the restriction Dλ↓Sn−1
is irreducible if and only

if λ is JS, see [24,27].
Define the partition

βn :=

{

(n/2 + 1, n/2 − 1) if n is even,
((n+ 1)/2, (n − 1)/2) if n is odd.

(1.1)

When p = 2, the irreducible FSn-module Dβn is called the basic spin module,

cf. [57]. The irreducible FAn-module Eβn

(±) is also called basic spin. Basic spin modules

often play a special role, see for example [35, Theorem 3.9] and [32, Theorem A(vi)].
In particular, in Theorems A,A′,B,B′ below, we exclude the basic spin case, and then
consider it separately in Theorems C and C′.

For m ≤ n we identify Sm as the subgroup of Sn permuting the first m letters. We
also have standard subgroups

Sm1,...,mt
∼= Sm1 × · · · × Smt ≤ Sm1+···+mt ≤ Sn and Am1,...,mt := Sm1,...,mt ∩ An.

whenever m1 + · · · +mt ≤ n.
Before stating the main results, in Table I we list the dimensions of the modules

which give rise to special cases of irreducible restrictions and indicate when such
modules split upon restriction to An. This table is obtained using [21, Table 1],
Lemma 2.6, [3, Lemma 2.2], [4], [8, Lemma 1.21], [20, Theorems 24.1, 24.15, Tables]
and [36, Lemma 1.8]. In the table we will always assume n ≥ 5.

λ Assumptions on p and n dimDλ λ ∈ PA
p (n)

βn p = 2 2⌊(n−1)/2⌋ iff n 6≡ 2 (mod 4)
(n− 1, 1) p ∤ n n− 1 no
(n− 1, 1) p | n n− 2 no

(n− 2, 2)
p > 2, n 6≡ 1, 2 (mod p)
or p = 2, n ≡ 3 (mod 4)

(n2 − 3n)/2 no

(n− 2, 2)
p > 2, n ≡ 1 (mod p)
or p = 2, n ≡ 1 (mod 4)

(n2 − 3n− 2)/2 iff p = 2 and n = 5

(n− 2, 2)
p > 2, n ≡ 2 (mod p)
or p = 2, n ≡ 2 (mod 4)

(n2 − 5n+ 2)/2 no

(n− 2, 2) p = 2, n ≡ 0 (mod 4) (n2 − 5n+ 4)/2 no
(n− 2, 12) p > 2, p ∤ n (n2 − 3n+ 2)/2 iff n = 5
(n− 2, 12) p > 2, p | n (n2 − 5n+ 6)/2 iff p = 3 and n = 6

(5, 3) p = 5 21 no
(6, 3) p = 5 21 no
(32, 2) p > 5 42 yes
(33) p > 5 42 yes

(6, 5, 1) p = 2 288 yes
(7, 5, 1) p = 2 288 yes
(21, 2, 1) p 6= 2, 3, 7, 23 3520 no
(21, 2, 1) p = 7 3267 no
(21, 2, 1) p = 23 3269 no
(21, 13) p > 3 1771 no
(22, 13) p = 5 1771 no

Table I: Certain special modules and their dimensions
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Doubly transitive subgroups G occupy a central place in the solution of Problem 1.
Mortimer [47] studied the problem for the heart D(n−1,1) of the natural module of
Sn and listed the results in [47, Table I], although leaving two unsettled instances.
These instances can now be completely analyzed, using [18, Satz D.2.5] for Ree groups
and [14] for Co3. We record the updated version of [47, Table I] (with n ≥ 5) in Table

II below, where the last column describes the conditions on p (if needed) forD(n−1,1)↓G
to be irreducible.

We point out for the purposes of Theorems B and B′ that, except the third line
marked with (†), all listed groups are almost simple. Moreover, not all subgroups
G satisfying Cm

r ✂ G ≤ AGLm(r) are doubly transitive, but the list of such doubly
transitive groups is known by Hering’s Theorem, see [40]. On the other hand, the
subgroups from all other lines are indeed doubly transitive.

G Degree n Transitivity Conditions on p

Sn n n
An n n− 2

(†) Cm
r ✂G ≤ AGLm(r),

r prime
rm 2 or 3 p 6= r

PSLd(q)✂G ≤ PΓLd(q),
d ≥ 3

qd − 1

q − 1
2 p ∤ q

A7
∼= G < GL4(2) 15 2 p 6= 2

Sp2m(2), m ≥ 3 2m−1(2m ± 1) 2 p 6= 2
SL2(q)✂G ≤ ΣL2(q),

2|q q + 1 3

PSL2(q)✂G ≤ PΣL2(q),
2 ∤ q

q + 1 2 p 6= 2

PSL2(q)✂G ≤ PΓL2(q),
G 6≤ PΣL2(q), 2 ∤ q

q + 1 3

2B2(q)✂G ≤ Aut(2B2(q)),
q > 2

q2 + 1 2 p ∤ (q + 1 +
√
2q)

PSU3(q)✂G ≤ PΓU3(q),
q > 2

q3 + 1 2 p ∤ (q + 1)

2G2(q)✂G ≤ Aut(2G2(q)) q3 + 1 2 p ∤ (q + 1)(q + 1 +
√
3q)

M24 24 5 p 6= 2
M23 23 4 p 6= 2
M22 22 3 p 6= 2
M12 12 5
M11 11 4
M11 12 3 p 6= 3

PSL2(11) 11 2 p 6= 3
HS 176 2 p 6= 2, 3
Co3 276 2 p 6= 2, 3

Table II: Irreducibility of D(n−1,1) over doubly transitive subgroups

Remark 1.2. In [32, Theorem B], we have discovered a new exceptional family of

imprimitive subgroups G for which D(n−1,1)↓G is irreducible in characteristic 2. Let
p = 2, n be even, and G ≤ Sn/2 ≀ S2. Let B := Sn/2 × Sn/2 be the base subgroup
of Sn/2 ≀ S2, and G1 (resp. G2) be the projection of G ∩ B onto the first (resp.
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second) factor Sn/2 of B. Then D(n−1,1)↓G is irreducible if and only if n ≡ 2 (mod 4) ,
G is transitive on {1, 2 . . . , n}, G1, G2 are 2-transitive subgroups of Sn/2 over which

D(n/2−1,1) is irreducible, and (D(n/2−1,1)
⊠ D(n/2))↓G∩B 6∼= (D(n/2)

⊠D(n/2−1,1))G∩B .
We refer the reader to [32, Section 7], especially [32, Example 7.24], for more on this.

For future reference, in Table III, we now list some additional “non-serial” (in the
sense that they exist only in a finite number of degrees n) examples of irreducible
restrictions of FSn-modules Dλ to subgroups G < Sn. In all the cases G acts (at
least) 2-transitively on {1, 2, . . . , n} or {1, . . . , n − 1} as indicated in the table, and
when {1, . . . , n − 1} is indicated we have that G fixes n. The fact that the cases
listed in Table III do yield irreducible restrictions Dλ↓G is part of the statements of
Theorems A and C.

Case λ or λM G n 2-transitive on p

(S1) (n− 2, 2)

SL3(2)
PΓL2(8)
M11

M11

M12

M23

M24

7
9
11
12
12
23
24

{1, . . . , n}

p = 5
p 6= 2, 7
p 6= 3, 5
p = 2
p 6= 5
p 6= 2, 3
p 6= 2

(S2) (n− 2, 2)

M11

M12

M23

M24

12
13
24
25

{1, . . . , n− 1}
p = 2
p = 11
p = 11
p = 23

(S3) (n− 2, 12)

S5
M11

M11

M12

M22,Aut(M22)
M23

M24

6
11
12
12
22
23
24

{1, . . . , n}

p = 3
p 6= 2, 11
p 6= 2, 3
p 6= 2
p 6= 2
p 6= 2
p 6= 2

(S4) (n− 2, 12)

M11

M11

M12

M22,Aut(M22)
M23

M24

12
13
13
23
24
25

{1, . . . , n− 1}

p = 3
p = 13
p = 13
p = 23
p = 3
p = 5

(S5) (14, 12) C4
2 ⋊ A7 16 {1, . . . , 16} p 6= 2

(S6) (15, 12) C4
2 ⋊ A7 17 {1, . . . , 16} p = 17

(S7) (5, 3) AGL3(2) 8 {1, . . . , 8} p = 5
(S8) (6, 3) AGL3(2) 9 {1, . . . , 8} p = 5
(S9) (21, 2, 1) M24 24 {1, . . . , 24} p 6= 2, 3
(S10) (21, 13) M24 24 {1, . . . , 24} p 6= 2, 3
(S11) (22, 13) M24 25 {1, . . . , 24} p = 5
(S12) (3, 2) C5 ⋊ C4 5 {1, . . . , 5} p = 2
(S13) (4, 2) S5 6 {1, . . . , 6} p = 2
(S14) (6, 4) S6,M10,Aut(A6) 10 {1, . . . , 10} p = 2

Table III: Non-serial examples of irreducible restrictions from Sn
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Note that in the cases (S12)-(S14), we have (λ, p) = (βn, 2), i.e. these cases are
concerned with restrictions of basic spin modules.

For future reference, in Table IV, we now list some “non-serial” examples of irre-
ducible restrictions of FAn-modules Eλ

± with λ ∈ PA
p (n) to subgroups G < An. In

all but the case (A17), G acts (at least) 2-transitively on {1, 2, . . . ,m} as indicated in
the table (and fixes n if m = n − 1). The two additional conditions in Table IV are
as follows:

(♠) only one of E
(5,4)
± , namely the one whose Brauer character takes

value −1 at elements of order 9 in SL2(8), is irreducible over G.

(♠♠)
soc (G) acts on {1, 2, . . . , 6} and {7, 8, . . . , 12} via two inequivalent
2-transitive actions.

Case λ G n 2-transitive on p
Additional
conditions

(A1) (6, 5, 1) M12 12 {1, . . . , 12} p = 2
(A2) (7, 5, 1) M12 13 {1, . . . , 12} p = 2
(A3) (4, 12) A5 6 {1, . . . , 6} p = 3
(A4) (33) PΓL2(8) 9 {1, . . . , 9} p > 5
(A5) (32, 2) AGL3(2) 8 {1, . . . , 8} p > 5
(A6) (33) AGL3(2) 9 {1, . . . , 8} p > 5
(A7) (3, 2) C5 ⋊ C2 5 {1, . . . , 5} p = 2
(A8) (5, 4) ASL2(3),C

2
3 ⋊ Q8 9 {1, . . . , 9} p = 2

(A9) (5, 4) SL2(8), PΓL2(8) 9 {1, . . . , 9} p = 2 (♠)
(A10) (6, 4) M10 10 {1, . . . , 10} p = 2
(A11) (6, 5) M11 11 {1, . . . , 11} p = 2
(A12) (7, 5) M11,M12 12 {1, . . . , 12} p = 2
(A13) (4, 3) A5 7 {1, . . . , 6} p = 2
(A14) (5, 3) A5, S5 8 {1, . . . , 6} p = 2
(A15) (6, 5) M10 11 {1, . . . , 10} p = 2
(A16) (7, 5) S6,M10,Aut(A6) 12 {1, . . . , 10} p = 2
(A17) (7, 5) S6,M10,Aut(A6) 12 p = 2 (♠♠)
(A18) (7, 5) M11 12 {1, . . . , 11} p = 2

Table IV: Non-serial examples of irreducible restrictions from An

Note that in the cases (A7)-(A18), we have (λ, p) = (βn, 2), i.e. these cases are
concerned with restrictions of basic spin modules.

We now describe the main results of the paper. In all theorems, the subgroups
G are listed up to Sn-conjugation. We note that Sn-conjugate subgroups of An need
not be An-conjugate, and it may happen, as it does in case (A9) listed in Table IV,
that one conjugate acts irreducibly while the other does not on an FAn-module; such
instances are specified explicitly in our results. The case of the basic spin module1,
excluded in Theorems A and A′, will be considered separately in Theorems C and C′.

1As pointed out by the anonymous referee, incidentally, the phenomenon of spin modules in char-
acteristic 2 giving rise to long chains of subgroups with irreducible restriction has also been observed
in the context of symplectic groups over algebraically closed fields of characteristic 2 in [9].
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Theorem A. Let n ≥ 5, G < Sn, and λ ∈ Pp(n) be such that dimDλ > 1. Exclude

the basic spin case (p, λ) = (2, βn). Then Dλ↓G is irreducible if and only if one of the
following holds:

(i) λ 6∈ PA
p (n) and G = An.

(ii) λ or λM equals (n − 1, 1), G is 2-transitive, and (G,n, p) is as in Table II.
(iii) p = 2, n ≡ 2 (mod 4) , λ = (n − 1, 1), and G ≤ Sn/2 ≀ S2 is as in Remark 1.2.

(iv) p 6= 2, λ or λM equals (n−2, 12), n = 2m for some m ≥ 3 and G = AGLm(2) < Sn
via its natural action on the points of Fm

2 .
(v) λ is JS and G = Sn−1.
(vi) λ is JS, λ 6∈ PA

p (n), and G = An−1.

(vii) n ≡ 0 (mod p) , λ or λM equals (n − 1, 1), G is a 2-transitive subgroup of Sn−1,
and (G,n − 1, p) is as described in Table II.

(viii) p 6= 2, λ or λM equals (n− 2, 12), n = 2m + 1 ≡ 0 (mod p) for some m ≥ 2, and
G = AGLm(2) < Sn−1 embedded via its natural action on the points of Fm

2 .
(ix) (λ,G, n, p) is as in one of the cases (S1)-(S11) in Table III.

Theorem A′. Let n ≥ 5, G < An, and V be a non-trivial irreducible FAn-module. If
p = 2 assume that V is not basic spin. Then V ↓G is irreducible if and only if one of
the following holds:

(i) V ∼= Eλ with λ 6∈ PA
p (n) and (λ,G, n, p) is as in Theorem A.

(ii) V ∼= Eλ
± with λ ∈ PA

p (n) and one of the following holds:
(a) G = An−1 and λ is JS or it has exactly two normal nodes, both of residue

different from 0.
(b) G = An−2 or An−2,2 and λ is JS.
(c) (λ,G, n, p) is as in one of the cases (A1)-(A6) in Table IV.

A group G is called almost quasisimple if S ✂ G/Z(G) ≤ Aut(S) for some non-
abelian simple group S. In a number of applications, irreducible restrictions to qua-
sisimple subgroups G are of most interest. In the next two theorems we deal just with
this important special case.

Theorem B. Let n ≥ 5, G < Sn be an almost quasisimple subgroup, and λ ∈ Pp(n)

be such that dimDλ > 1. Exclude the basic spin case (p, λ) = (2, βn). Then Dλ↓G is
irreducible if and only if one of the following holds:

(i) λ 6∈ PA
p (n) and G = An.

(ii) λ or λM equals (n− 1, 1), G is 2-transitive, and (G,n, p) is as described in Table
II, excluding the third line marked with (†).

(iii) λ is JS and G = Sn−1.
(iv) λ is JS, λ 6∈ PA

p (n) with λ 6= βn if p = 2 and n ≡ 2 (mod 4) , and G = An−1.

(v) n ≡ 0 (mod p) , λ or λM equals (n− 1, 1), G a 2-transitive subgroup of Sn−1, and
(G,n− 1, p) is as described in Table II, excluding the third line marked with (†).

(vi) (λ,G, n, p) is as in one of the cases (S1)-(S4) or (S9)-(S11) in Table III.

Theorem B′. Let n ≥ 5, H = An, G < H be almost quasisimple, and V be a non-
trivial irreducible FAn-module. If p = 2 assume that V is not basic spin. Then V ↓G
is irreducible if and only if one of the following holds:

(i) V ∼= Eλ with λ 6∈ PA
p (n) and (λ,G, n, p) is as in Theorem B.
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(ii) V ∼= Eλ
± with λ ∈ PA

p (n) and one of the following holds:
(a) G = An−1 and λ is JS or it has exactly two normal nodes, both of residue

different from 0.
(b) G = An−2 or An−2,2 and λ is JS.
(c) (λ,G, n, p) is as in one of the cases (A1)-(A4) in Table IV.

For basic spin modules in characteristic 2 we have the following two results.

Theorem C. Let n ≥ 5, p = 2, and G < Sn be a proper subgroup of Sn such that
Dβn↓G is irreducible. Then one of the following happens:

(i) G ≤ Sn−k × Sk with n− k and k odd. In fact,

Dβn↓Sn−k×Sk
∼= Dβn−k ⊠Dβk

is indeed irreducible.
(ii) G ≤ Sa ≀ Sb with n = ab, a, b ∈ Z>1 and a is odd. Moreover if b > 2 then

G 6≤ Sa × · · · × Sa. In fact,

Dβn↓Sa≀Sb ∼= Dβa ≀Dβb

is indeed irreducible.
(iii) G is primitive, in which case Dβn↓G is irreducible if and only if one of the

following happens:
(a) n ≡ 2 (mod 4) and G = An;
(b) (G,n) is as in one of the cases (S12)-(S14) in Table III.

Moreover, if G is almost quasi-simple then Dβn↓G is irreducible if and only if one of
the following holds:

(1) n is even and G = Sn−1.
(2) G is primitive, and one of the following holds:

(a) n ≡ 2 (mod 4) and G = An;
(b) (G,n) is as in one of the cases (S13),(S14) in Table III.

For restrictions of basic spin modules for An we have the following analogous result:

Theorem C′. Let n ≥ 5, p = 2 and G < An. If Eβn

(±)↓G is irreducible then one of the

following holds:

(i) G ≤ An−k,k for some 1 ≤ k < n, and either n ≡ 0 (mod 4) and k is odd, or

n 6≡ 2 (mod 4) and k ≡ 2 (mod 4) . Moreover, in all of these cases Eβn
± ↓An−k,k

is indeed irreducible.
(ii) G ≤ (Sa ≀Sb)∩An for a, b > 1 with n = ab, and either a is odd or a ≡ 2 (mod 4)

and b = 2. Moreover, in all of these cases Eλ
(±)↓(Sa≀Sb)∩An

is indeed irreducible.

(iii) G is primitive, in which case Eβn

(±)↓G is irreducible if and only if (G,n) is as in

one of the cases (A7)-(A12) in Table IV.

Moreover, if G is almost quasi-simple then Eβn

(±)↓G is irreducible if and only if one of

the following holds:

(1) n 6≡ 2 (mod 4) and one of the following happens:
(a) 4|n and G = An−3,2,1 or An−2,1,1.
(b) G = An−2,2.
(c) n ≡ 0, 3 (mod 4) and G = An−1.
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(d) (G,n) is as in one of the cases (A9), (A11)-(A18) in Table IV.
(2) (G,n) = (M10, 10) (case (A10) of Table IV).

Remark 1.3. We point out that [32, Theorem C] contains an inaccuracy: since
M12 < A12 and β12 ∈ PA

2 (12), the restriction Dβ12↓M12
is reducible, and so this case

does not appear in Theorem C above. However, it does appear in Theorem C′(iii) and
(1)(d) as part of the case (A12).

There is a similar inaccuracy in [8, Main Theorem]: let G =M11 ≤ S11 and p = 5.

Then D(9,2)↓G is reducible by case (iii) of [8, Main Theorem] and so D(10,2)↓G is also
reducible.

We point out that the results proved in [32, 34] that reduce the problem mostly
to the treatment of doubly transitive groups do not depend on the Classification of
Finite Simple Groups (CFSG). However, the main results of this paper depend on
CFSG as follows: (i) our treatment of doubly transitive subgroups relies on their
explicit list, see [10], which is a consequence of CFSG, and (ii) the treatment of “non-
generic” situation in Section 3 uses the list of simple subgroups of Sn of large order
(Proposition 3.1) which also relies on CFSG.

We now describe the key ingredients of our proof and the organization of the paper.
We will exploit various dimension bounds for irreducible representations of symmetric
groups, especially new lower bounds obtained in [33], see Theorems 2.21 and 2.22.
Further dimension bounds and branching results are collected in the preliminary Sec-
tion 2.

Reduction theorems established in [32,34] allow us to assume in many situations
that the subgroup G is primitive or even doubly transitive. Those subgroups tend to
have a relatively large order, and we contrast order bounds with dimension bounds
in Section 3, particularly to resolve the “non-generic” situation where the module is
either basic spin or not extendible to Sn.

In Sections 4–7 we deal with doubly transitive subgroups G ≤ Sn. Given the
well-known solution of Problem 1 in the case (G,H) = (An,Sn), we will assume
that G 6≥ An. Such subgroups G are subdivided into the following four families,
corresponding to the structure of the socle soc (G) and its action on {1, 2, . . . , n}:

(A) soc (G) is elementary abelian subgroup;
(B) soc (G) ∼= PSLm(q) (is non-abelian simple) acting on n = (qm − 1)/(q − 1)

1-dimensional subspaces of Fm
q ;

(C) G ∼= Sp2m(2), m ≥ 3, acting on n = 2m−1(2m + (−1)δ) quadratic forms on
F2m
2 of the given Witt defect δ ∈ {0, 1};

(D) all other doubly transitive subgroups; the subgroups from this class will be
called small doubly transitive subgroups.

The small doubly transitive subgroups of (D) are handled in Section 4, largely
relying on the aforementioned results on dimension bounds, branching rules to Young
subgroups, and available information about modular representations of H and G.

In Section 5, we handle the family (A) of affine permutation subgroups. Here, the
key technical result is Proposition 5.11 that identifies the Sn-modules that have no
(nonzero) invariants over soc (G) ∼= Cm

r , whose proof in turn relies on representation
theory of affine general linear group AGLm(r) and the new branching recognition
result Proposition 2.17.



10 ALEXANDER KLESHCHEV, LUCIA MOROTTI, AND PHAM HUU TIEP

The families (B) and (C) are handled in Sections 6 and 7, respectively. We note
that these large doubly transitive groups are the main reason why the methods of [8]
and [36] break down when one tries to employ them in small characteristics p = 2, 3.

The heart of the proof is to show that if the irreducible FSn-module Dλ remains
irreducible over such a subgroup G from the families (B) and (C) , then the longest
part λ1 = n− ℓ of λ is very large, in fact, ℓ ≤ 3 most of the time. We will do this in
a sequence of steps.

First, using the obvious bound dimV ≤ |G|1/2 for any irreducible G-module V and
Lemma 2.3, we show in Propositions 6.7 and 7.9 that

dimDλ ≤ n
1
2
log2 n+1.

Then an application of Proposition 2.23 implies that

ℓ = O(log n). (1.4)

Next, we choose some L such that 2ℓ ≤ L < n. Considering G ∩ Sn−L and using
Theorem 2.11 and Propositions 6.7(iii) and 7.9(ii), we prove that

dimDλ = nO(k) (1.5)

for some k = O(log ℓ). On the other hand, Theorem 2.21 yields a lower bound

dimDλ > O(nℓ/(ℓ!)2). (1.6)

Given (1.4), we can show that (1.6) contradicts (1.5), unless ℓ is small. An itera-
tive application of this argument will allow us to show that ℓ ≤ 3. The remaining
possibilities for λ are ruled out using more precise information about Dλ.

Finally, the main theorems are proved in Section 8. First, we use the main results
of [32,34] to reduce to subgroups doubly transitive on {1, . . . , n} or doubly transitive
on {1, . . . , n − 1} and fixing n. The results of the previous sections then allow us to
complete the proofs of Theorems A, A′. The proof of Theorem B requires a delicate
argument to rule out the possibility of Theorem A(iii) for almost quasisimple groups.
The proof of Theorem C′ combines classifications of irreducible restrictions to maximal
imprimitive subgroups (from [34]) and to primitive subgroups (obtained in Sections 4–
7). After that we need to handle the case when soc (G) ∼= Am has only orbits of length
1 and m on {1, 2, . . . , n}.

2. Preliminary results

2.1. Generalities. Throughout the paper we work over a fixed algebraically closed
ground field F of characteristic p > 0. Let G,H be arbitrary finite groups, V, V ′ be
FG-modules, and W be an FH-module. The following notation is used throughout
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the paper:

V ↓H or V ↓GH the restriction of V from G to H (if H ≤ G);

indGW or indGH W the induction of W from H to G (if H ≤ G);

V ⊠W
the outer tensor product of V and W (this is a module
over G×H);

V ⊗ V ′ the inner tensor product of V and V ′ (this is a module
over G);

V G the space of G-invariant vectors in V ;
FG the trivial FG-module;
IrrF(G) a complete set of irreducible FG-modules;
IBrp(G) the set of irreducible p-Brauer characters of G;
bp(G) the maximal dimension of an irreducible FG-module;
b(G) the maximal dimension of an irreducible CG-module;

d(G)
the minimal degree of a non-linear irreducible complex
character of G (if such exists);

P (G) the smallest index of a (proper) maximal subgroup of G;
Pp(n) the set of p-regular partitions of n;
PA

p (n) the set of λ ∈ Pp(n) such that Dλ↓An
is reducible;

h(λ) the number of nonzero parts in the partition λ.

Let 0 ≤ ℓ < n. We denote

P
(ℓ)(n) := {λ ⊢ n | λ1 ≥ n− ℓ},

L
(ℓ)(n) := {λ ∈ Pp(n) | λ or λM belongs to P

(ℓ)(n) ∩ Pp(n)}.
Given a partition µ = (µ1, µ2, . . . ) of ℓ with µ1 ≤ n− ℓ, we have a partition

(n− ℓ, µ) := (n− ℓ, µ1, µ2, . . . ) (2.1)

of n. Every partition λ of n can be written in the form λ = (ℓ, µ) for a (possibly
empty) partition µ of n− ℓ.

For λ, λ1, . . . , λs ∈ Pp(n), we denote

JDλK := {Dλ,Dλ ⊗ sgn} and JDλ1
, . . . ,Dλs

K := JDλ1
K ∪ · · · ∪ JDλs

K.

Special roles will be played by the sets

Tn := JD(n)K, Nn := JD(n−1,1)K, NTn := Nn ∪ Tn.

The following simple observations turn out to be very useful:

Lemma 2.2. We have:

(i) If G ≤ Sn, then n ≥ P (G). If G is not primitive on {1, . . . , n} then n > P (G).
(ii) If G is a simple group, then P (G) > d(G).

Proof. (i) follows by considering point stabilizers. (ii) comes on observing that indGH CG

contains some non-trivial irreducible components for any H < G. �

Note that bp(G) ≤ b(G). We will need the following bound:

Lemma 2.3. [52, Theorem 2.2] Let G = SLm(q) or Sp2m(q) with m ≥ 2. If B is a
Borel subgroup of G, then b(G) ≤ [G : B].
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2.2. Representations of symmetric and alternating groups. Recall the nota-
tion and the facts on representation theory of symmetric and alternating groups intro-
duced in Section 1. In addition, we will denote by Mλ the permutation module and
by Sλ the Specht module over the symmetric group Sn corresponding to a partition
λ of n, see [20]. Occasionally, we will need the corresponding Specht module over C,
which we denote Sλ

C. Thus S
λ is a reduction modulo p of Sλ

C.

Lemma 2.4. Suppose that G ≤ Sn. If Sλ↓G is irreducible then so is Sλ
C↓G.

Proof. This follows on observing that reduction modulo p and restriction to a subgroup
commute. �

Lemma 2.5. Let p = 3 and n ≡ 0 (mod 3) . If G < Sn and D(n−2,2)↓G is irreducible
then n ≤ 24.

Proof. The assumptions imply that D(n−2,2) ∼= S(n−2,2). By Lemma 2.4, if D(n−2,2)↓G
is irreducible then so is S

(n−2,2)
C ↓G. The result now follows from [50, Theorem 1]. �

We next record some known results on dimensions of special irreducible modules
for p = 2 and 3.

Lemma 2.6. We have:

(i) If p = 2, then

dimD(n−2,2) =















(n2 − 5n+ 4)/2 if n ≡ 0 (mod 4) ,
(n2 − 3n− 2)/2 if n ≡ 1 (mod 4) ,
(n2 − 5n+ 2)/2 if n ≡ 2 (mod 4) ,
(n2 − 3n)/2 if n ≡ 3 (mod 4) .

(ii) If p = 3 then

dimD(n−2,2) =







(n2 − 3n)/2 if n ≡ 0 (mod 3) ,
(n2 − 3n− 2)/2 if n ≡ 1 (mod 3) ,
(n2 − 5n+ 2)/2 if n ≡ 2 (mod 3) .

(iii) If p = 3 then

dimD(n−2,12) =

{

(n2 − 5n+ 6)/2 if 3 | n,
(n2 − 3n+ 2)/2 if 3 ∤ n.

Proof. This is well known and follows easily from [20, 24.15, 24.1]. �

The following results will be needed to study irreducible restrictions to M24:

Lemma 2.7. Let n = 24, p = 3, and λ ∈ P(4)(24) \ P(1)(24). Then the dimension
of Dλ and the decomposition of [Sλ] in the Grothendieck group are as follows

(i) dimD(22,2) = 252 and [S(22,2)] = [D(22,2)].

(ii) dimD(22,12) = 231 and [S(22,12)] = [D(22,12)] + [D(23,1)].

(iii) dimD(21,3) = 1726 and [S(21,3)] = [D(21,3)] + [D(23,1)].

(iv) dimD(21,2,1) = 1540 and [S(21,2,1)] = [D(21,2,1)]+[D(21,3)]+[D(22,12)]+[D(23,1)]+

[D(24)].
(v) dimD(20,4) = 6854 and [S(20,4)] = [D(20,4)] + [D(21,3)] + [D(23,1)].

(vi) dimD(20,3,1) = 26082 and [S(20,3,1)] = [D(20,3,1)].
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(vii) dimD(20,22) = 7315 and [S(20,22)] = [D(20,22)]+[D(20,4)]+[D(21,3)]+[D(21,2,1)]+

2[D(23,1)] + [D(24)].

(viii) dimD(20,2,12) = 26334 and [S(20,2,12)] = [D(20,2,12)].

Proof. (i), (iii), (v) follow from [20, 24.15].
(ii) follows from [20, 24.1].
(iv), (vii) follow from [21, Appendix].
(vi), (viii) follow from Carter’s Criterion, see [22]. �

Lemma 2.8. Let n = 24, p = 2, and λ ∈ P(4)(24) \ P(1)(24). Then the dimension
of Dλ and the decomposition of [Sλ] in the Grothendieck group are as follows

(i) dimD(22,2) = 230 and [S(22,2)] = [D(22,2)] + [D(23,1)].

(ii) dimD(21,3) = 1496 and [S(21,3)] = [D(21,3)] + [D(22,2)] + [D(23,1)].

(iii) dimD(21,2,1) = 3520 and [S(21,2,1)] = [D(21,2,1)].

(iv) dimD(20,4) = 7084 and [S(20,4)] = [D(20,4)] + [D(21,3)] + [D(23,1)].

(v) dimD(20,3,1) = 17248 and [S(20,3,1)] = [D(20,3,1)] + [D(20,4)] + [D(21,3)] +

[D(22,2)] + [D(23,1)] + 2[D(24)].

Proof. (i), (ii), (iv) follow from [20, 24.15].
(iii) follows from Carter’s Criterion, see [22].
(v) follow from [19, Theorem 7.1]. �

For partitions µ1 = (µ11, . . . , µ
1
h1
), . . . , µk = (µk1 , . . . , µ

k
hk
), we define the composition

(µ1, . . . , µk) := (µ11, . . . , µ
1
h1
, . . . , µk1 , . . . , µ

k
hk
).

Recalling (1.1), for a partition λ = (λ1, . . . , λh) of n, we now define its double dbl(λ) :=
(βλ1 , . . . , βλh

).

Lemma 2.9. [4, Theorem 1.1] We have

P
A
2 (n) := P2(n) ∩ {dbl(λ) | λ ∈ P2(n), λr 6≡ 2 (mod 4) for all r}.

We record for future reference:

Lemma 2.10. Let n ≥ 5 and λ = (λ1, λ2, . . . ) ∈ PA
p (n). Then

λ1 ≤
{

(n+ 2)/2 if p = 2,
(n+ p+ 1)/2 if p ≥ 3.

Proof. For p ≥ 3 this is [37, Proposition 4.3(i)], and for p = 2 this follows from
Lemma 2.9. �

To analyze restriction to large doubly transitive subgroups, we will need to know
that the trivial submodule FSn−m appears in the restriction Dλ↓Sn−m

for some reason-

ably small m. Recall the notation (2.1).

Theorem 2.11. Let ℓ, L be integers satisfying 0 ≤ 2ℓ ≤ L < n, and λ = (n − ℓ, µ) ∈
Pp(n). Then Dλ↓Sn−L

contains a trivial submodule.

Proof. We will apply branching rules from [28] without further reference. We use
induction on ℓ = |µ|, the theorem clearly holding if ℓ = 0 since in that case Dλ =

D(n) = FSn . Let ℓ > 0.
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If λ has a good node below the first row then there exists ν ∈ Pp(ℓ− 1) such that

(n−ℓ, ν) = (n−1−(ℓ−1), ν) is a p-regular partition of n−1 and D(n−ℓ,ν) ⊆ Dλ↓Sn−1
.

By the inductive assumption, D(n−ℓ,ν)↓Sn−L
contains a trivial submodule.

Assume now that λ has no good node below the first row. Then n − ℓ = λ1 >
λ2 = µ1, (n− 1− ℓ, µ) is p-regular and Dλ↓Sn−1

∼= D(n−1−ℓ,µ). If A is the second top

removable node of λ then A is normal in (n−1−ℓ, µ). So (n−1−ℓ, µ) has a good node
below the first row. In particular there exists ν ∈ Pp(ℓ− 1) such that (n− 1− ℓ, ν) =

(n− 2− (ℓ− 1), ν) is a p-regular partition of n− 2 and D(n−1−ℓ,ν) ⊆ Dλ↓Sn−2
. By the

inductive assumption, D(n−1−ℓ,ν)↓Sn−L
contains a trivial submodule. �

In the following lemma we use functors ei : FSn-mod → FSn−1-mod for which we
refer the reader to [31]. The integer εi(λ) is defined as max{k | ekiDλ 6= 0}.

Lemma 2.12. Let λ ∈ Pp(n) with εi(λ) = 2. Let A and B be the i-normal nodes in

λ with A below B. If λB is p-regular and the socle of (eiD
λ)/DλA is isomorphic to

DλB then eiD
λ ∼= DλA |DλB |DλA .

Proof. This follows by self-duality of eiD
λ, together with [30, Theorem 1.4]. �

We will need the following strengthening of Theorem 2.11 for the partition (n−2, 2):

Lemma 2.13. If n ≥ 5, then D(n−2,2)↓Sn−3
contains a trivial submodule, provided

p = 3 and n ≡ 0, 1 (mod 3) , or p = 2 and n ≡ 0, 1, 3 (mod 4) .

Proof. We will use branching rules from [28] without further reference. Assume first
that p = 3 and n ≡ 0, 1 (mod 3) , or that p = 2 and n ≡ 1, 3 (mod 4) . Then

D(n−2,1) ⊆ D(n−2,2)↓Sn−3
and so we can conclude using Theorem 2.11. Assume now

that p = 2 and n ≡ 0 (mod 4) , in which case n ≥ 6. Then D(n−2,2)↓Sn−1
∼= D(n−3,2).

By [54], we have in the Grothendieck group

[D(n−3,2)↓Sn−2
] = 2[D(n−2)] + 2[D(n−3,1)] + [D(n−4,2)]

(omitting the last summand if n = 6). From Lemma 2.12 it follows that there exists

M ⊆ D(n−2,2)↓Sn−2
with M ∼ D(n−3,1)|D(n−2). Considering block structure it then

follows that D(n−3) ⊆M↓Sn−3
⊆ D(n−2,2)↓Sn−3

. �

To conclude the subsection, we record for future reference the following recognition
result for basic spin modules:

Lemma 2.14. Let p = 2, n ≥ 5, and let H = An or Sn. Suppose that V is an
irreducible FH-module in which a 3-cycle t acts with exactly two eigenvalues. Then V
is a basic spin module.

Proof. In the case H = Sn, the statement is [57, Theorem 8.1]. Suppose H = An.
If V extends to Sn, then we are done by the previous case. If V does not extend to
Sn, then we can find an irreducible FSn-module W such that W↓G ∼= V ⊕ V g for any
g ∈ Sn rH. Certainly we can choose such a g to be (a 2-cycle) centralizing t. Thus
t has the same eigenvalues on V g as on V , and so t acts quadratically on W . By the
Sn-case, W is basic spin, and so is V . �
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2.3. Branching recognition results. We begin by recording the following well-
known branching recognition result for the modules in NTn.

Lemma 2.15. [39, Proposition 2.3] Let n ≥ 6 and D be an irreducible FSn-module.
Suppose that all composition factors of the restriction D↓Sn−1

belong to NTn−1. Then

D ∈ NTn, unless n = 6, p = 3 and D ∈ JD(4,2)K, or n = 6, p = 5 and D ∈ JD(4,12)K.

Define

u :=

{

4 if p = 3,
3 otherwise.

Lemma 2.16. Let n ≥ 2u and D be an irreducible FSn-module. If all composition
factors of D↓Su,u are of the form Dµ

⊠Dν with Dµ ∈ Tu or Dν ∈ Tu, then D
λ ∈ NTn.

Proof. If D 6∈ NTn then by Lemma 2.15, the restriction D↓S2u has a composition factor
not in NT2u. So it is enough to prove the lemma for n = 2u, which is an easy explicit
check. �

Proposition 2.17. Let s ≥ 2, m1, . . . ,ms ≥ u and m1 + · · · + ms ≤ n, and D be
an irreducible FSn-module such that all composition factors of D↓Sm1,...,ms

are of the

form Dµ1
⊠ · · · ⊠Dµs

with at most one t such that Dµt 6∈ Tmt . Then D ∈ NTn.

Proof. By assumption, restricting further to the subgroups Su ≤ Sm1 and Su ≤ Sm2 ,
we deduce that all composition factors of D↓Su,u are of the form Dµ

⊠Dν withDµ ∈ Tu

or Dν ∈ Tu. So the proposition follows from Lemma 2.16. �

We need another special branching recognition result.

Lemma 2.18. Let p = 3, n ≥ 8 and Dλ be an irreducible FSn-module. If all compo-

sition factors of Dλ↓Sn−1
belong to NTn−1 ∪ JD(n−3,12)K then Dλ ∈ NTn ∪ JD(n−2,12)K.

Proof. Note that

NTm ∪ JD(m−2,12)K = {D(m),D(⌈m/2⌉,⌊m/2⌋) ,D(m−1,1),D(⌈(m−1)/2⌉,⌊(m−1)/2⌋,1) ,

D(m−2,12),D(⌈(m−2)/2⌉,⌊(m−2)/2⌋,2)}
for m ≥ 7, see for example [3, Lemma 2.2]. Throughout the proof we will be using
branching rules from [28] without further referring to them.

Case 1. h(λ) ≥ 4. Then from [2, Lemma 4.7] that Dλ↓S6 contains a composition

factor D(2,2,1,1). Hence Dλ↓Sn−1
has a composition factor of the form Dµ with h(µ) ≥

4. In particular Dµ 6∈ NTn−1 ∪ JD(n−3,12)K.
Case 2. h(λ) = 3 and λ3 ≥ 3. Then n ≥ 10 and by [2, Lemma 4.13], Dλ

S10
contains

a composition factor D(4,32). So if n > 10 then Dλ↓Sn−1
contains a composition factor

Dµ with µ3 ≥ 3, in particular Dµ 6∈ NTn−1 ∪ JD(n−3,12)K. If n = 10 then λ = (4, 32)

and λM = (7, 2, 1), so D(5,22) 6∈ NT9 ∪ JD(7,1,1)K is a composition factor of Dλ↓S9 since

(5, 22) = (6, 2, 1)M .
Case 3. h(λ) = 3, λ3 ≤ 2 and λ1 − λ2 ≥ 3. We may assume that λ2 ≥ 2, since

otherwise λ = (n−2, 12). But thenD(λ1−1,λ2,λ3) 6∈ NTn−1∪JD(n−3,12)K is a composition
factor of Dλ↓Sn−1

.

Case 4. h(λ) = 3, λ3 ≤ 2 and λ1 − λ2 ≤ 2. We may assume that λ1 − λ2 = 2,

since otherwise Dλ ∈ NTn ∪ JD(n−2,12)K. If n > 8 then λ2 ≥ 3 > λ3, so D
(λ1,λ2−1,λ3) 6∈



16 ALEXANDER KLESHCHEV, LUCIA MOROTTI, AND PHAM HUU TIEP

NTn−1∪ JD(n−3,12)K is a composition factor of Dλ↓Sn−1
. If n = 8 then λ = (4, 2, 2) and

D(4,2,1) 6∈ NT7 ∪ JD(5,1,1)K is a composition factor of Dλ↓S7 .
Case 5. h(λ) = 2 and λ1 − λ2 ≥ 3. We may assume that λ2 ≥ 2, in which case

D(λ1−1,λ2) 6∈ NTn−1 ∪ JD(n−3,12)K is a composition factor of Dλ↓Sn−1
.

Case 6. h(λ) = 2 and λ1 − λ2 ≤ 2. We may assume that λ1 − λ2 = 2. Since n ≥ 8

we have that λ2 ≥ 3 and so D(λ1,λ2−1) 6∈ NTn−1 ∪ JD(n−3,12)K is a composition factor
of Dλ↓Sn−1

. �

Corollary 2.19. Let p = 3, n = 2m for m ≥ 4, and D be an irreducible FSn-module.
Suppose that all composition factors Dµ

⊠ Dν of the restriction D↓Sn/2×Sn/2
satisfy

one of the following three conditions:

(1) Dµ ∼= Dν ∈ Nn/2,

(2) Dµ ∈ Tn/2,D
ν ∈ NTn/2 ∪ JD(n/2−2,1,1)K,

(3) Dν ∈ Tn/2,D
µ ∈ NTn/2 ∪ JD(n/2−2,1,1)K.

Then D ∈ NTn ∪ JD(n−2,1,1)K.

Proof. By assumption, all composition factors ofD↓Sn/2
belong to NTn/2∪JD(n/2−2,12)K,

and the result follows from Lemma 2.18. �

2.4. Dimension bounds. Recall the notation (2.1). We begin by recording James’

lower bounds for dimD(n−ℓ,µ) with ℓ ≤ 4:

Lemma 2.20. [21, Appendix] Let 1 ≤ ℓ ≤ 4, µ ∈ Pp(ℓ), and n be such that
(n− ℓ, µ) ∈ Pp(n) with µ ⊢ ℓ. Then

dimD(n−ℓ,µ) ≥















n− 2 if ℓ = 1,
(n2 − 5n + 2)/2 if ℓ = 2,
(n3 − 9n2 + 14n)/6 if ℓ = 3.
(n4 − 14n3 + 47n2 − 34n)/24 if ℓ = 4.

Set

δp :=

{

0 if p 6= 2,
1 if p = 2.

For integers ℓ ≥ 0 and n we define the rational numbers

Cp
ℓ (n) := pℓ

(

n/p− δp
ℓ

)

=
1

ℓ!

ℓ−1
∏

i=0

(n− (δp + i)p)

=

{

n(n−p)(n−2p)···(n−(ℓ−1)p)
ℓ! if p > 2,

(n−p)(n−2p)···(n−ℓp)
ℓ! if p = 2.

The following result substantially develops [21] (the upper bound dimDλ ≤ nℓ is
trivial, since Dλ is contained in the permutation module Mλ, which has dimension at
most n!/(n − ℓ)! ≤ nℓ).

Theorem 2.21. [33, Theorem A] Let ℓ ≥ 4, n ≥ p(δp + ℓ− 2), and λ = (n− ℓ, µ) ∈
Pp(n) for some µ ∈ Pp(ℓ). Then

nℓ ≥ dimDλ ≥ Cp
ℓ (n).
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While Theorem 2.21 requires that n is relatively large compared to ℓ, we also have
the following universal lower bounds which strengthens [16, Theorem 5.1]:

Theorem 2.22. [33, Theorems B, C] Let λ = (λ1, λ2, . . . ) ∈ Pp(n), and k :=
max{λ1, λM1}.
(i) If p = 2, then dimDλ ≥ 2n−k.
(ii) If p > 2 let λM = (λM1, λ

M

2, . . . ), and let m be minimal such that Dλ↓Sn−m
contains

a 1-dimensional submodule. Put k := max{λ1, λM1} and t := max{n − k,m}.
Then

dimDλ ≥ 2 · 3(t−2)/3.

In particular, for all p and n ≥ 5, we have dimDλ ≥ 2(n−k)/2.

The following technical result will be used to study irreducible restrictions to doubly
transitive subgroups G with soc (G) ∼= PSL(m, q) and Sp2m(2) in Sections 6 and 7.

Proposition 2.23. Let n ≥ 324, p = 2 or 3, and define ℓ from max(λ1, λ
M

1) = n − ℓ.
If

dimDλ ≤ n
1
2
log2 n+1

then ℓ ≤ 0.7 log2 n+ 1.4.

Proof. Set L(n) := 1
2 log2 n+1. We need to show that ℓ ≤ 1.4L(n). As 1.4L(324) > 7,

we may assume that ℓ > 7. Replacing λ by λM if necessary, we may assume that
λ = (n − ℓ, µ) for a partition µ of ℓ. By Theorem 2.22 and the assumption, we now
have

2ℓ/2 ≤ dimDλ ≤ nL(n),

and so

ℓ ≤ 2L(n) log2 n = (log2 n+ 2) log2 n =: L1(n). (2.24)

As n ≥ 324, we certainly have that ℓ ≤ L1(n) <
1
3n + 2, whence n ≥ p(δp + ℓ − 2),

and Theorem 2.21 applies to give

dimDλ ≥ Cp
ℓ (n) >

(n+ 3− 3ℓ)ℓ

ℓ!
>

(

2(n+ 3)

ℓ
− 6

)ℓ

, (2.25)

where we have used ℓ! < (ℓ/2)ℓ for ℓ ≥ 6 to get the last inequality.
If ℓ > cL(n) for some c > 0, we get

nL(n) >

(

2(n+ 3)

ℓ
− 6

)cL(n)

,

and so

ℓ > f(n, c) :=
2(n+ 3)

n1/c + 6
.

We have therefore shown that

If f(n, c) ≥ ℓ for some c > 0, then ℓ ≤ cL(n). (2.26)

We will use this implication repeatedly to prove ℓ ≤ 1.4L(n).
First we take c = 16. By the assumption on n and (2.24), f(n, 16) > L1(n) ≥ ℓ.

Hence, (2.26) implies that

ℓ ≤ L2(n) := 16L(n) = 8 log2 n+ 16.
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Next we take c = 9 and note that f(n, 9) > L2(n) ≥ ℓ for n ≥ 324 (this is the only
place where smaller n would not work). Applying (2.26), we deduce that

ℓ ≤ L3(n) := 9L(n) = 4.5 log2 n+ 9.

Now take c = 2.8 and note that f(n, 2.8) > L3(n) ≥ ℓ for n ≥ 324. Applying (2.26),
we now obtain

ℓ ≤ L4(n) := 2.8L(n) = 1.4 log2 n+ 2.8.

Next we take c = 1.6 and note that f(n, 1.6) > L4(n) ≥ ℓ for n ≥ 324. Using (2.26),
we deduce that

ℓ ≤ L5(n) := 1.6L(n) = 0.8 log2 n+ 1.6.

Finally, we take c = 1.4 and note that f(n, 1.4) > L5(n) ≥ ℓ for n ≥ 324. Again using
(2.26), we conclude that ℓ ≤ 1.4L(n), as stated. �

We now establish some dimension recognition results for modules in L (ℓ)(n) for
small ℓ.

Lemma 2.27. If n ≥ 17 and dimEµ
(±)

< (n2 − 5n + 2)/2, then µ ∈ L (1)(n).

Proof. The statement follows from [17, Lemma 6.1]. �

The following proposition extends [8, Lemma 1.20]:

Proposition 2.28. The following lower bounds hold.

(i) Let n ≥ 13, and assume in addition that n ≥ 23 if p = 2. Then for λ ∈ Pp(n),

we have either λ ∈ L (2)(n) or

dimDλ ≥ (n3 − 9n2 + 14n)/6.

(ii) Suppose that p ≥ 3 and n ≥ 17. Then for λ ∈ Pp(n), we have either λ ∈ L (3)(n)
or

dimDλ ≥ (n4 − 14n3 + 47n2 − 34n)/24.

Proof. By Lemma 2.20, if λ ∈ L (3)(n)rL (2)(n), then dimDλ ≥ (n3 − 9n2 +14n)/6.
Now assume that λ /∈ L (3)(n), and in addition Dλ is not basic spin if p = 2. Then
dimDλ ≥ (n4 − 14n3 + 47n2 − 34n)/24 by [48, (6.2)]. In the case where Dλ is basic
spin and n ≥ 23, one can check directly that dimDλ ≥ (n3 − 9n2 + 14n)/6. �

Remark 2.29. The statement of Proposition 2.28(i) does not hold for p = 2 and
n = 22, a counterexample given by the basic spin module Dβ22 . However, a similar
argument shows that for n ≥ 17 we have either λ ∈ L (2)(n) or dimDλ > 2(n3−9n2+
14n)/25.

3. Order bounds and dimension bounds

3.1. Subgroups of large order. First we extend Propositions 6.1 and 6.2 of [26],
following mostly the arguments given therein.

Proposition 3.1. Let S < An be a non-abelian simple subgroup such that

|Aut(S)| ≥ 2n/2−4. (3.2)

Then one of the following happens:

(i) S ∼= Am with m < n. Moreover, if m ≥ 12, then S is intransitive, and each of
its orbits on {1, 2, . . . , n} has length 1 or m.
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(ii) S ∼= PSLm(q) with (m, q) = (2,≤ 37), (3,≤ 5), (4, 3), (5, 2), or (6, 2).
(iii) S ∼= SU3(3) or SU4(2) ∼= PSp4(3).
(iv) S ∼= Sp6(2).
(v) S ∼=M11, M12, M22, M23, or M24.

Proof. (a) First we consider the case S ∼= Am. Note that m < n as S 6= An. Assume
furthermore that m ≥ 12 and S has an orbit of length k 6= 1,m on {1, 2, . . . , n}. As

in [26], it follows that n ≥ k ≥ m(m−1)/2. Now one can check that 2m(m−1)/4−4 > m!
for m ≥ 12, a contradiction.

For the remaining cases, recall from Lemma 2.2 that

n ≥ P (S) > d(S).

Now, if S is one of the 26 sporadic simple groups and not listed in (v), then using
the exact value of P (S) given in [11] (or of d(S), if P (S) was not listed therein) one
can check that (3.2) cannot hold.

(b) Assume now that S is a classical group. Then |Aut(S)| and P (S) are listed in
Tables 5.1.A and 5.2.A of [25].

First suppose that S = PSLm(q). Then |Aut(S)| < qm
2
. If m ≥ 4 (and S 6∼= A8),

then P (S) = (qm − 1)/(q − 1), and one can check that (3.2) can hold only when
(m, q) = (4, 3), (5, 2), or (6, 2). If (m, q) = (3,≥ 7) or (2,≥ 41), then again P (S) =
(qm − 1)/(q − 1) and one checks that (3.2) is violated.

Next suppose that S = PSUm(q). Then we again have |Aut(S)| < qm
2
. If m ≥ 5,

then P (S) > q2m−3 and one checks that (3.2) cannot hold. If (m, q) = (4,≥ 3) then
P (S) = (q + 1)(q3 + 1). If m = 3, then P (S) = q3 + 1 for q ≥ 7 or q = 4, and 50 if
q = 5. In all these cases, (3.2) is violated.

Suppose now that S = PSp2m(q) with m ≥ 2, or Ω2m+1(q) with m ≥ 3. If

m ≥ 3, then |Aut(S)| < qm(2m+1)+1/2 whereas P (S) ≥ qm−1(qm − 1), and so (3.2)
can possibly hold only when (m, q) = (3, 2). Similarly, if (m, q) = (2,≥ 4), then
P (S) = (q4 − 1)/(q − 1), and (3.2) cannot hold.

Suppose S = PΩ±
2m(q) with m ≥ 4. If m > 4 or if S 6∼= PΩ+

8 (q), then |Aut(S)| <
qm(2m−1)+1 whereas P (S) > q2m−2, and so (3.2) is impossible. Similarly, (3.2) rules
out the remaining case S = PΩ+

8 (q).

(c) Finally, assume that S is an exceptional group of Lie type. The cases S = F4(2),
2F4(2)

′, 3D4(2), G2(3), G2(4), or
2B2(8) can be ruled out directly using [11]. In all

other cases, we can use the Landazuri-Seitz-Zalesskii lower bound on d(S) as recorded
in [25, Table 5.3.A] to check that (3.2) cannot hold. �

The following known lemma follows from the O’Nan-Scott theorem, see e.g. [41]:

Lemma 3.3. Suppose G < Sn is a primitive subgroup with an abelian minimal normal
subgroup S. Then n = rm is a power of some prime r, and G is a subgroup of the
affine group AGL(V ) = AGLm(r) in its action on the points of V = Fm

r .

Proposition 3.4. Let G < Sn be a primitive subgroup, not containing An and such
that

|G| ≥ 2n/2−4. (3.5)

Then one of the following happens:

(i) soc (G) is elementary abelian of order n = rk, with (r, k) = (2, ≤ 6), (3, ≤ 3),
or (5, 2).
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(ii) S ≤ G ≤ Aut(S) for a non-abelian simple group S. Furthermore, either S ∼= Am

with m ≤ 11, or S satisfies Proposition 3.1(ii)–(v).
(iii) soc (G) = S × S for a non-abelian simple group S ≤ Aa, 5 ≤ a ≤ 9, and n = a2.

Proof. We apply the O’Nan-Scott theorem in the version given in [41]. First suppose
that soc (G) ∼= Ck

r , so that n = rk for a prime r. Then Lemma 3.3 shows that

G ≤ AGLk(r) and so |G| < rk
2+k. A direct computation shows that (3.5) can hold

only in the cases listed in (i).
Next assume that soc (G) = S is non-abelian simple. Then S ≤ G ≤ Aut(S) and S

is transitive on {1, 2, . . . , n}. Now we can apply Proposition 3.1 to arrive at (ii).
In the remaining cases, soc (G) = Sk for a non-abelian simple group S and k ≥ 2,

and G is of type III(a), III(b), or III(c) in the notation of [41]. Suppose G is of type
III(b), so that n = ab with a ≥ 5, b ≥ 2, and G ≤ Sa ≀ Sb. In this case, b ≤ log5 n and

(a!)b · b! ≤ (aa)bbb ≤ nabb ≤ n
√
n · (log5 n)log5 n.

Now if n ≥ 318, then

2n/2−4 > n
√
n · (log5 n)log5 n,

violating (3.5). The cases where n = ab ≤ 317 can now be checked directly to show
that b = 2 and 5 ≤ a ≤ 9. This implies that k = 2, S ≤ Aa, and we arrive at (iii).

Suppose G is of type III(a). Then n = |S|k−1 and G ≤ Sk · (Sk × Out(S)). Since
|S| ≥ 60, we can check that

2|S|
k−1/2−4 > |S|k+1 · k!. (3.6)

As |Out(S)| < |S|, (3.5) cannot hold.
Finally, assume that G is of type III(c). Then n = |S|k and

G ≤ Aut(Sk) ∼= Sk · (Out(S)k ⋊ Sk).

Now (3.6) implies that

2n/2−4 ≥ 2|S|
k/2−4 > (|S|k+1 · k!)2 > |S|2k · k! > |G|,

a contradiction. �

3.2. Irreducible restrictions for some special modules and groups. Now we
prove main results of this section.

Theorem 3.7. Let p = 2 or 3, H = An or Sn with n ≥ 5, and V be an irreducible
FH-module. Let G < H be a primitive subgroup not containing An, with S := soc (G),
such that V ↓G is irreducible. Assume in addition that either V is a basic spin module
in characteristic 2, or H = An and V does not extend to Sn. Then one of the following
happens:

(i) S is elementary abelian of order n = rk, with (r, k) = (2,≤ 6), (3,≤ 3), or (5, 2).
(ii) S ∈ {M11,M12,M22,M23,M24}, and G is doubly transitive.
(iii) H = A9, p = 2, SL2(8) ✂ G ≤ SL2(8) ⋊ C3, V is the basic spin module of

dimension 8 whose Brauer character takes value −1 on elements of order 9 of S.
(iv) n = 10, p = 2, S ∼= A6, G 6≤ PGU2(9), V is basic spin of dimension 16.
(v) H = A6, p = 3, G ∼= A5, dimV = 3.
(vi) n = 6, p = 2, S ∼= A5, V is basic spin of dimension 4.

Moreover, in the cases described in (iii)-(vi) the restriction V ↓G is indeed irreducible.
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Proof. (a) Applying Lemma 2.27 and Proposition 2.28(i) we deduce

dimV ≥
{

(n2 − 5n + 2)/2, if n ≥ 17,
(n3 − 9n2 + 14n)/12, if n ≥ 23.

(3.8)

(b) Let λ be a p-regular partition of n such that V is an irreducible constituent of

Dλ↓H . Note that λ = λM if p = 3. If p = 2 and V is basic spin then dimV ≥ 2(n−4)/2.
If V does not extend to Sn, then by Lemma 2.10,

λ1 ≤
{

(n+ 2)/2 if p = 2,
(n+ 4)/2 if p = 3.

By Theorems 2.22 and 2.22, we have in all cases

dimV ≥
{

2(n−8)/4, if p = 3,

2(n−4)/2, if p = 2.
(3.9)

Since V ↓G is irreducible, it follows that |G| > dim(V )2 ≥ 2n/2−4, and so one of the
conclusions of Proposition 3.4 must hold. The case (i) of Proposition 3.4 leads to the
exception (i) of the theorem.

(c) Suppose we are in the case (iii) of Proposition 3.4. As mentioned in the proof
of Proposition 3.4, we have that G ≤ Aut(S2) ∼= Aut(S)2 ⋊ C2, and so

dimV ≤ bp(Aut(S)
2 ⋊ C2) ≤ 2bp(Aut(S))

2.

Checking bp(Aut(S)) using [14], we see that

dimV ≤























2 · 1892, a = 9,
2 · 802, a = 8,
2 · 202, a = 7,
2 · 162, a = 6,
2 · 62, a = 5.

As n = a2, this contradicts (3.9) when 7 ≤ a ≤ 9 and (3.8) when a = 5, 6.

(d) Finally, we consider the case (ii) of Proposition 3.4, so that S✂G ≤ Aut(S), and
either S ∼= Am with m ≤ 11, or S satisfies Proposition 3.1(ii)–(v). As G is primitive,
S = soc (G) is transitive on {1, 2, . . . , n}. Also n ≥ P (S) by Lemma 2.2.

(d1) Assume S = Sp6(2), so that G = S and n ≥ P (S) = 28 [11]. On the other
hand, dimV ≤ b(G) = 512, contradicting (3.8).

(d2) S = SU3(3). The argument is similar to (d1) but using P (S) = 28 and
b(G) ≤ 64.

(d3) S = SU4(2). The argument is similar to (d1) but using P (S) = 27 and
b(G) ≤ 80.

(d4) Suppose S = PSL2(q) with q = rf ≤ 37 for a prime r, so that Aut(S) ∼=
PGL2(q)⋊ Cf .

(d4.1) If q ≥ 16, then n ≥ P (S) = q+1 ≥ 17, see [25, Table 5.2.A], and by [42] we
have

dimV ≤ b(G) ≤ fb(PGL2(q)) = f(q + 1) ≤ q(q + 1)/4 < (n2 − 5n+ 2)/2,

which contradicts (3.8).
(d4.2) If q = 13 (resp. 11) then n ≥ 14 (resp. n ≥ 11), and dimV ≤ b(G) = q + 1.

In any of these two cases, we see that n = 14 (resp. n ∈ {11, 12}). Furthermore,
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since V has dimension ≤ q + 1, it extends to Sn (see [14]) and is not basic spin, a
contradiction.

(d4.3) Suppose S = PSL2(9) ∼= A6. As S 6= An, we have n ∈ {10, 15} or n ≥ 20,
and dimV ≤ bp(Aut(S)) ≤ 16, see [11] and [14]. It follows from (3.8) that n ∈
{10, 15}. In this case, any irreducible FAn-module of dimension ≤ 16 extends to Sn,
a contradiction. On the other hand, the basic spin modules of H are of dimension 16,
and their Brauer characters take value −2 at elements x ∈ G of order 3 and value 1
at elements y ∈ G of order 5 (see [14]), hence they are irreducible over G whenever
G 6≤ S · 22 ∼= PGU2(9), leading to the exception (iv).

(d4.4) Suppose S = SL2(8). Here, n = 9 or n ≥ 28, and dimV ≤ b(G) ≤ 27.
It follows from (3.8) that n = 9. In this case, the only irreducible FA9-modules of
dimension ≤ 28 that do not extend to S9 are the two 2-modular basic spin modules of
dimension 8, and one can check that exactly one of them is irreducible over G (namely
the one whose Brauer character takes value −1 on elements of order 9 in S), leading
to the exception (iii).

(d4.5) Suppose S = PSL2(7) ∼= SL3(2). Here, n ∈ {7, 8, 14} or n ≥ 21, and
dimV ≤ b(G) ≤ 8. It follows from (3.8) that n ∈ {7, 8}. In these cases, the only
irreducible FAn-modules of dimension ≤ 8 that do not extend to Sn are the 2-modular
basic spin modules of dimension 4, which restrict reducibly to G. Likewise, the basic
spin modules of Sn are reducible over G (as can be seen by checking the value of the
Brauer characters at elements of order 3 in G, see [14]).

(d4.6) Suppose S = PSL2(5) ∼= A5. As S 6= An, we have n ∈ {6, 10} or n ≥ 15,
and dimV ≤ b(G) ≤ 6, see [11]. It follows that n = 6. In this case, the irreducible
FA6-modules of dimension ≤ 6 that do not extend to S6 are the 3-modular modules of
dimension 3, and they restrict irreducibly to G, yielding the exception (v). Next, the
basic spin modules of H = A6 or S6 are of dimension 4, and their Brauer character
takes value 1 at elements of order 3 in G, whence they are irreducible over G, leading
to the exception (vi).

(d5) Suppose S = SL3(q) with q ≤ 5. The case q = 2 is treated in (d4.5).
(d5.1) If q = 5, then n ≥ P (S) = 31 and

dimV ≤ b(G) ≤ 310 < (n2 − 5n+ 2)/2,

contradicting (3.8).
(d5.2) If q = 4, then n ≥ P (S) = 21 and

dimV ≤ b(G) ≤ b(PGL3(4) · C2
2) ≤ 420 < (n3 − 9n2 + 14n)/12.

This contradicts (3.8) unless n ≤ 22. As n divides |S|, we conclude that n = 21,
whence G ≤ PGL3(4)⋊C2 and so b(G) ≤ 128 < (n2 − 5n+2)/2, again contradicting
(3.8).

(d5.3) If q = 3, then n ≥ P (S) = 13, and

dimV ≤ b(G) ≤ 52 < (n2 − 5n + 2)/2.

This contradicts (3.8) unless n ≤ 16. Inspecting the list of maximal subgroups of
S [11], we conclude that n = 13, whence G = S and dimV ≤ bp(S) ≤ 27. But then
V extends to S13 and is not basic spin.

(d6) Suppose S = PSL4(3). Then n ≥ P (S) = 40, and

dimV ≤ b(Aut(S)) ≤ 4b(S) = 4160 < (n3 − 9n2 + 14n)/12,

violating (3.8).
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(d7) Suppose S = SL5(2). Then n ≥ P (S) = 31, and

dimV ≤ bp(Aut(S)) ≤ 1024 < (n3 − 9n2 + 14n)/12,

violating (3.8).
(d8) Suppose S = SL6(2). Then P (S) = 63 [25, Table 5.2.A] and b(G) ≤ 66960

[14]. Hence n ≤ 72 by (3.9). Note that if K is a proper subgroup of S, then either
[S : K] ≥ 651, or K is contained in a maximal subgroup M ∼= C5

2 ⋊ SL5(2) of index
63 in S, see [14]. Hence, if we take K = StabS(1) in the action of S on {1, 2, . . . , n}
(so that [S : K] = n), then we must have that n = [S :M ] = 63, and in fact S acts on
n points {1, 2, . . . , n} via its action on 63 lines or 63 hyperplanes of F6

2. None of these
actions can be extended to Aut(S), so we have that G = S. If p = 2, then (3.9) implies
that dimV > 229 > b(G), a contradiction. Suppose p = 3. Then λ1 ≤ (n + 4)/2 by
Lemma 2.10, whence λ1 ≤ 33. On the other hand, Proposition 2.28(ii) implies that

λ ∈ L (3)(n), and so λ1 ≥ 60, a contradiction.

(e) Suppose that S ∼= Am with m ≤ 11. The case m = 5 and 6 are considered in
(d4.6) and (d4.3), respectively.

(e1) Let m = 11. As S 6= An, we have n ≥ 55 and dimV ≤ b(S11) = 2310, see [11].
This contradicts (3.8).

(e2) Let m = 10. This case is treated similarly to (e1) observing that n ≥ 45 and
dimV ≤ b(S10) = 768.

(e3) Let m = 9. This case is treated similarly to (e1) observing that n ≥ 36 and
dimV ≤ b(S9) = 216.

(e4) Let m = 8. As S 6= An, we have n = 15 or n ≥ 28, and dimV ≤ b(S8) = 90,
see [11]. It follows from (3.8) that n = 15 and G = S. Now, the only irreducible
FA15-modules of dimension ≤ 90 that does not extend to S15 are the two basic spin
modules of dimension 64. If ϕ is the Brauer character of any of these two modules
and g ∈ S is a 3-cycle, then g becomes a disjoint product of five 3-cycles in the doubly
transitive embedding S →֒ A15, and so ϕ(g) = −2. However, the unique irreducible
2-Brauer character of S of degree 64 takes value 4 at g, and so ϕ↓G is reducible.

(e4) Let m = 7. As S 6= An, we have n = 15 or n ≥ 21, and dimV ≤ b(S7) = 35,
see [11]. It follows from (3.8) that n = 15. Now, all irreducible FA15-modules of
dimension ≤ 35 extend to S15 and are not basic spin.

(f) Let S be a Mathieu group. Suppose that the conclusion (ii) of the current
theorem does not hold. Then, if S = M24, we have by [11] that n ≥ 276 and
dimV ≤ b(G) = 10395, contradicting (3.8). If S =M23, we have by [11] that n ≥ 253
and dimV ≤ b(G) = 2024, again contradicting (3.8). The same argument applies to
S = M22, where we have n ≥ 77 and dimV ≤ b(Aut(S)) = 560, to S = M12, for
which we have n ≥ 66 and dimV ≤ b(Aut(S)) = 176, and to S = M11, for which we
have n ≥ 55 and dimV ≤ b(G) = 55. �

Note that cases (i) and (ii) of Theorem 3.7 will be settled in Theorem 5.13 and
Theorem 4.1.

Proposition 3.10. Let p = 2 or 3, λ ∈ Pp(n), H = An or Sn, and V be an

irreducible constituent of Dλ↓H , with dimV > 1. Suppose that G < H is a doubly
transitive subgroup such that S := soc (G) < An is one of the following simple groups:

(a) Am with 5 ≤ m ≤ 7;
(b) PSL2(q) with 7 ≤ q ≤ 9;
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(c) PSL3(q) with 2 ≤ q ≤ 4;
(d) SL4(2) ∼= A8.

Then V ↓G is irreducible if and only if one of the following happens:

(i) λ ∈ L (1)(n); furthermore, (G,n, p) fulfills the conditions set in Table II.
(ii) S ∼= A5

∼= SL2(4) ∼= PSL2(5), n = 6, p = 3, λ = λM = (4, 12), and (G,H,dim V ) =
(A5,A6, 3) or (S5,S6, 6).

(iii) S ∼= A6
∼= PSL2(9), n = 10, p = 2, V = D(6,4)↓H of dimension 16, and

G ≤ Aut(S) but G 6≤ PSU2(9) = S · 22.
(iv) S = SL2(8), G = S or G = Aut(S) ∼= PΓL2(8), H = A9, p = 2, dimV = 8, and

V is the only one of Eβ9
± whose Brauer character takes value −1 at elements of

order 9 in SL2(8).
(v) S = SL2(8), G = Aut(S) ∼= PΓL2(8), n = 9, p = 3, dimV = 27, and λ or λM

equals (7, 2).

Proof. The ‘if-part’ in (i) follows [47], and in (ii)–(v) from [14]. Conversely, suppose

V ↓G is irreducible. We may assume that λ 6∈ L (1)(n) again by [47].
If S = A5

∼= PSL2(5) then n = 6, and by [14], dimV ≤ 4 if p = 2 and dimV ≤ 6

if p = 3. As λ /∈ L (1)(n), we deduce that p = 3, dimDλ = 6, and arrive at (ii).
If S = A6

∼= PSL2(9) then n = 10, and by [14], dimV ≤ 16 if p = 2 and dimV ≤ 9
if p = 3. As λ /∈ L (1)(n), we deduce that p = 2, dimV = 16, and arrive at (iii).

If S = A7, then n = 15 and G = S, and by [14], dimDλ ≤ 2(dim V ) ≤ 40, whence
λ ∈ L (1)(n), a contradiction.

If S = A8
∼= SL4(2) then n = 15, G = S, and by [14], dimV ≤ 64, hence p = 2

and dimV = 64. Note that IBr2(G) contains a unique character of degree 64, which
takes value 4 at an element of class 3A in A8, which belongs to class 3D in A15, in the
notation of [14]. However, any character in IBr2(A15) of degree 64 takes value −2 at
class 3D, and IBr2(S15) contains no character of degree 64, a contradiction.

If S = SL3(2) ∼= PSL2(7) then n = 7 or 8, and by [14], dimDλ = dimV ≤ 8. If

p = 3, then we conclude using [14] that λ ∈ L (1)(n), a contradiction. Let p = 2.

Since dimV ≤ 8 and λ /∈ L (1)(n), we deduce that (H,dimV ) is either (An, 4) or
(Sn, 8). Checking the degrees of characters in IBr2(G) we see that dimV = 8. Now,
any irreducible 2-Brauer character of degree 8 of H takes value −4 or 2 at elements of
order 3, whereas any irreducible 2-Brauer character of degree 8 of G takes value −1
at elements of order 3, a contradiction.

If S = SL2(8) then n = 9 or 28, S ✂ G ≤ Aut(S) ∼= PΓL2(8) ∼= S ⋊ C3, and
by [14], dimV ≤ 12 if p = 2 and dimV ≤ 27 if p = 3. In particular, if n = 28, then

λ ∈ L (1)(n) a contradiction. If n = 9 then, by [14], remembering that λ /∈ L (1)(n),
we can check that (iv) occurs if p = 2 and (v) occurs if p = 3.

If S = SL3(3) then n = 13, G = S, and by [14], dimV ≤ 27, whence λ ∈ L (1)(n),
a contradiction.

If S = PSL3(4) then n = 21, G ≤ PGL3(4) ⋊ C2, and by [14], we have dimV ≤
2·64 = 128 < (n2−5n+2)/2, whence λ ∈ L (1)(n) by Lemma 2.27, a contradiction. �

We will also need the following extension of Theorem 3.7 to some subgroups of Sn
that are not primitive:
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Proposition 3.11. Let p = 2, H = An or Sn, and let G < H be an almost simple
subgroup with S = soc (G) that is not primitive in H. Assume in addition that (S, n)
satisfies one of the following conditions:

(i) S ∼= Am and (m,n) is (5,≤ 10), (6,≤ 14), (7,≤ 16) or (8,≤ 19). Moreover, if
m = 7 or 8, then some orbit of S on Ω := {1, 2, . . . , n} has length > m.

(ii) S ∼= PSL2(q) and (q, n) is (7,≤ 12), (8,≤ 14), (11,≤ 14), (13,≤ 15) or (16,≤
17).

(iii) (S, n) is (SL3(3),≤ 17) or (PSL3(4), 21).
(iv) S ∼=Mt with t = 11, 12, 22, 23, or 24.

Then V ↓G is irreducible for a basic spin FH-module V if and only if one of the
following holds:

(a) H = S6 and G = S5 fixes one letter.
(b) S5 ∼= G = A5,2 < H = A7 or S5 ∼= G = A5,2,1 < H = A8.
(c) H = A7 or A8, and S = A6.
(d) H = A7 or A8, and S = A5 acts 2-transitively on {1, 2, . . . , 6}.
(e) H = A11, and G =M10 < A10 acts 2-transitively on {1, 2, . . . , 10}.
(f) H = A12 and G ∈ {S6,M10,Aut(A6)} acts 2-transitively on {1, 2, . . . , 10}.
(g) H = A12, G ∈ {S6,M10,Aut(A6)}, and S acts on {1, 2, . . . , 6} and {7, 8, . . . , 12}

via two inequivalent 2-transitive actions.
(h) H = A12 and G =M11 < A11.

Proof. We will prove the ‘only-if-part’. The ‘if-part’ is then an easy explicit check.
Set Ω := {1, 2, . . . , n}. Let U be an irreducible summand of V ↓S . If U is trivial,
then S acts trivially on V by Clifford’s theorem, contradicting the faithfulness of the
FH-module V . Thus we have

dimU = 2a, dimV ≥ 2(n−4)/2 (3.12)

for some a ∈ Z≥1. Since G is not primitive, we have by Lemma 2.2(i):

n ≥ P (S) + 1. (3.13)

First, we consider the case (iv). Then (3.12) implies by [14] that dimU = 16 and
t = 11 or 12. If t = 11, then G = S, V = U , dimV = 16, and n ≥ 12 by (3.13). It
follows that H = A12 and G < A11, leading to (h). If t = 12, then dimV ≤ 32 since
G/S →֒ Out(S) ≤ C2, whereas n ≥ 13 by (3.13). It follows that H = A13, dimV = 32,

G = Aut(M12) ≤ A13 ∩ S12 = A12. The latter implies that V = Eβ13
± is irreducible

over A12, a contradiction.

Next suppose we are in the case (iii). If S = PSL3(4), then P (S) = 21, violating
(3.13). If S = SL3(3), then n ≥ 14 by (3.13), whereas dimU = 16 by [14], and so
dimV ≤ 32, a contradiction.

Consider now the case (ii). Then q 6= 16 because of (3.13), and q 6= 11, 13 by (3.12)
and [14]. If q = 8, then S ≤ G ≤ Aut(S) and so dimV ∈ {2, 4, 8} by [14]. On the
other hand, n ≥ 10 by (3.13), and this is impossible since dimV ≥ dimEβ10 = 16.
Thus q = 7, in which case dimV = 8 by [14] and n ≥ 8 by (3.13). The condition
dimV = 8 implies that H ∈ {S8,A9}. If H = S8, then the Brauer character of V
can take values −4 or 2 at elements of order 3, whereas any ψ ∈ IBr2(G) of degree 8
takes value −1 at elements of order 3, a contradiction. Thus H = A9. Note that if
we embed S = PSL2(7) in H via a transitive embedding S < A7 (so fixing two more



26 ALEXANDER KLESHCHEV, LUCIA MOROTTI, AND PHAM HUU TIEP

points) or a transitive embedding S < A8, then any element g ∈ S of order 3 will fix
3 points, and so the Brauer character of V takes value 2 at g, again a contradiction.

Finally, suppose we are in the case (i).
Assume first that S = A8. Then dimV = 4, 8, or 64 by [14]. Since S is not

primitive on Ω and has an orbit of length > 8 on Ω, we have by [11] that n ≥ 16,
whence H = A16, dimV = 64, and G = S is a 2-transitive subgroup of A15. In this
embedding, a 3-cycle g ∈ S will have 1 fixed point on Ω, so the Brauer character
of V takes value −2 at g. But any ψ ∈ IBr2(S) of degree 64 takes value 4 at g, a
contradiction.

Next let S = A7. Then dimV = 4 or 8 by [14]. As S is not primitive on Ω and has
an orbit of length > 7 on Ω, we have by [11] that n ≥ 16, contradicting (3.12).

Now let S = A6. Then dimV = 4, 8, or 16 by [14], and n ≥ 7 by (3.13). It follows
that H = An with 7 ≤ n ≤ 12, or H = Sn with 7 ≤ n ≤ 10.

Assume first that some S-orbit on Ω has length l > 6. As S is not primitive, we
must then have that l = 10, H = An with n = 11 or 12, and dimV = 16. In either
case, we may assume that S acts 2-transitively on {1, 2, . . . , 10} and fixes 11, and
also 12 if n = 12. In the 2-transitive embedding A6 →֒ S10, elements of S of order 3
acts with one fixed point and elements of order 5 act fixed-point-freely; furthermore
a point stabilizer in S is just NS(Q) for Q ∈ Syl3(S). The embedding extends to
Aut(A6), with the image of M10 = S · 23 (in the notation of [11] and [14]) contained
in A10. Using the class fusion information, it is easy to check in [14] that Eβ10 is
irreducible over S6 ∼= S · 21, M10, and Aut(S), but splits into a direct sum of two
simple summands over S and S · 22 ∼= PGU2(9). Also,

Eβ12
± ↓A11

∼= Eβ11
± , Eβ11

± ↓A10
∼= Eβ10 .

Hence, if n = 11, then G fixes 11 and is contained in the natural A10, and so G ∼=M10,
leading to (e). Note that we can extend the embedding Aut(S) →֒ A10 to Aut(S) →֒
A12 uniquely by demanding the involution (1, 2) ∈ S6 to interchange 11 and 12. This
leads to (f) when n = 12.

Now we consider the case where all orbits of S = A6 on Ω have length 1 or 6,
and there is more than one orbit of length 6. Then n = 12 and H = A12. Let
π1, π2 : S → A6 be induced by the action of S on its two orbits on Ω, and let ψi

denote the Brauer characters afforded by Eβ6↓πi(S). Then ψi ∈ IBr2(S) and has

degree 4; also, ψ2
i contains FS (with multiplicity 4). As G is irreducible on V and

V ↓A6×A6
∼= Eβ6 ⊠ Eβ6 , we see that ψ1 6= ψ2. In this case, ψ1ψ2 = ν1 + ν2, with

νi ∈ IBr2(S) of degree 8, and StabAut(S)(ν1) = S · 22. So as long as π1 and π2 are
inequivalent and G 6≤ S · 22, V ↓G is irreducible, leading to (g). (Note that such an
action exists: for instance, we can embed S6 in A6,6, with two inequivalent actions of
S6 on the first and the last six letters.)

Finally, we consider the case where S = A6 has exactly one orbit {1, 2, . . . , 6} of
length 6 and fixes each of 7, . . . , n; in particular, G ≤ S6,n−6. If H = Sn and n ≥ 8,

then it follows that Dβn is irreducible over S6,n−6, contradicting [32, Proposition 2.15].
The case H = S7 is also impossible by dimension consideration. Suppose H = An

and let n2 ≥ n3 ≥ . . . ≥ nh ≥ 1 denote the lengths of G-orbits on {7, . . . , n}. Then
G ≤ Aν for ν := (6, n2, . . . , nh). Since G/S ≤ C2

2, ni ∈ {1, 2, 4}. As V is irreducible
over Aν , we see by [34, Proposition 6.3] that ν = (6, 1), (6, 1, 1), or (6, 2), and arrive
at (c).



IRREDUCIBLE RESTRICTIONS IN SMALL CHARACTERISTICS 27

Finally, let S = A5. Then dimV = 2 or 4 by [14], and n ≥ 6 by (3.13). It follows
that H = An with 6 ≤ n ≤ 8, or H = S6.

If H = S6, then G ≤ S5 as G is not primitive, and we arrive at (a).
Suppose H = An but some S-orbit has length l > 5. As S is not primitive and

n ≤ 8, we have that l = 6, n = 7 or 8, and S has one orbit Ω′ := {1, 2, . . . , 6} and fixes
the remaining letters. In this action, elements of order 3 in S act fixed-point-freely on
Ω′. Using this class fusion information, we can check in [14] that V ↓S is irreducible
(of dimension 4), giving rise to (d).

Finally, assume H = An and S = A5 has only orbits of length 5 and 1 on Ω. Then
we may assume that S has one orbit {1, 2, . . . , 5} and fixes each of 6, . . . , n. Again let
n2 ≥ n3 ≥ . . . ≥ nh ≥ 1 denote the lengths of G-orbits on {6, . . . , n}. Then G ≤ Aν

for ν := (5, n2, . . . , nh). Since G/S ≤ C2, ni ∈ {1, 2}. As V is irreducible over Aν , we
see by [34, Proposition 6.3] that ν = (5, 2, 1), or (5, 2), and arrive at (b). �

4. The small doubly transitive groups

Recall that we call a doubly transitive subgroup G < Sn small, if S = soc (G) is
non-abelian, S 6∼= An, S 6∼= PSLm(q) when n = (qm − 1)/(q − 1), and S 6∼= Sp2m(2)
when n = 2m−1(2m ± 1).

All small 2-transitive subgroups are handled in the following theorem:

Theorem 4.1. Let p = 2 or 3, H = An or Sn, and W be an irreducible summand
of Dλ↓H for some λ ∈ Pp(n) \ L (1)(n). Let G < H be a small doubly transitive
subgroup. Then W↓G is irreducible if and only if one of the following cases occurs.

(i) G =M11, An ≤ H ≤ Sn, and one of the following happens:
(a) p = 2, n = 11 or 12, λ = (n− 2, 2), and W = Dλ↓H has dimension 44;
(b) p = 3, n = 11, λ or λM is (9, 12), and W = Dλ↓H has dimension 45.

(ii) G =M11, p = 2, H = An, n = 11 or 12, and W = Eβn
± has dimension 16.

(iii) G =M12, p = 2, n = 12, and one of the following happens:
(a) A12 ≤ H ≤ S12, λ = (10, 2), and W = Dλ↓H has dimension 44;

(b) H = A12, λ = β12, and W = Eβ12
± has dimension 16;

(c) H = A12, λ = (6, 5, 1), and W = Eλ
± has dimension 144.

(iv) G =M12, p = 3, n = 12, A12 ≤ H ≤ S12, and one of the following happens:
(a) λ or λM is (10, 12), and W = Dλ↓H has dimension 45;
(b) λ or λM is (10, 2), and W = Dλ↓H has dimension 54.

(v) M22 ≤ G ≤ Aut(M22), p = 3, n = 22, A22 ≤ H ≤ S22, λ or λM is (20, 12), and
W = Dλ↓H has dimension 210.

(vi) G = M23, p = 3, n = 23, A23 ≤ H ≤ S23, λ or λM is (21, 12), and W = Dλ↓H
has dimension 231.

(vii) G =M24, p = 3, n = 24, A24 ≤ H ≤ S24, and one of the following happens:
(a) λ or λM is (22, 12), and W = Dλ↓H has dimension 231;
(b) λ or λM is (22, 2), and W = Dλ↓H has dimension 252.

Proof. If S := soc (G) is a not a Mathieu group or Co3, then the arguments in [8,
Section 5], but using Lemma 2.27 instead of [8, Lemma 1.18(i)], show that Dλ↓G is
reducible. We now consider the remaining possibilities for S. Replacing λ by λM if
necessary, we will assume that λ1 ≥ λM1.

Case 1: G =M11 in transitive representations of degrees n = 11 and 12.
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By comparing the traces in these transitive representations [14], one can see that
the classes 2a, 3a, 4a, 5a, 8ab, 11a of G belong to classes 2b, 3c, 4b, 5b, 8a, 11a in A11,
and 2c, 3d, 4d, 5b, 8b, 11a in A12.

Let p = 2. According to [14], any ϕ ∈ IBr2(G) has degree 1, 10, 16, or 44; and the
degrees of characters in IBrp(H) are also known. Hence we need to consider only the

cases where dimDλ = 32 or 44. In the latter case, Dλ↓A11
is irreducible and is obtained

by reducing S
(9,2)
C modulo 2 (and restricting to A11). Using the above class fusion,

we see that the case dimDλ = 44 does give rise to an example (and λ = (n − 2, 2)).
If dimDλ = 32 (and so λ = (6, 5), respectively (7, 5)), then its restriction to An is a
direct sum of two simple modules of dimension 16, both of which are irreducible over
G, giving rise to another example with (dimV,H) = (16,An).

Let p = 3. Using [14] as above, when n = 11 we see that dimV = 45 and
λ = (n − 2, 12) (up to tensoring with sgn), yielding another example. There is no
example when n = 12, since ϕ ∈ IBr3(A12) of degree 45 takes value 3 at the class 8b
of A12, whereas ψ ∈ IBr3(M11) of degree 45 takes value −1 at the class 8a of M11.

Case 2: G =M12 in permutation representations of degree n = 12.
Let p = 2. Using the character degrees of G and H as listed in [14], we need to

consider only the cases where dimDλ = 32, 44 and 288. We can embed M11 into G as
a 2-transitive subgroup of G < S12. Now the first two cases, with (λ,H) = ((7, 5),A12)
and ((10, 2),A12 or S12), give rise to examples, since V ↓H is irreducible by the results
of Case 1. Next, by restricting ψ ∈ IBr2(A12) to G, we see that conjugacy classes
3A, 3B, and 5A of G as listed in [14] correspond to the classes 3D, 3C, and 5B in
A12. It follows that the last case, with (λ,dim V,H) = ((6, 5, 1), 144,A12), gives rise
to another example.

Let p = 3. Using [14] as above, we see that dimV = 45 or 54, and λ = (10, 12)
or (10, 2), respectively (up to tensoring with sgn). In both cases, Dλ is obtained by
reducing Sλ

C modulo 3. Since χ := Sλ
C↓G is irreducible by [8, Main Theorem (iii), (iv)],

and χ(mod 3) is irreducible by [14], both cases give rise to examples.

Case 3: M22 ≤ G ≤ Aut(M22) in permutation representations of degree n = 22.
Let p = 2. According to [14], any ϕ ∈ IBr2(G) has degree ≤ 140 < (n2− 5n+2)/2.

By Lemma 2.27, this contradicts the assumption λ /∈ L (1)(n).
Let p = 3. By [14], any ϕ ∈ IBr3(G) has degree ≤ 231 < (n3 − 9n2 + 14n)/12.

Hence dimDλ < (n3 − 9n2 + 14n)/6 and so λ ∈ L (2)(n) r L (1)(n) by Proposition
2.28(i). By Lemma 2.6 and by checking the possible dimensions of V in [14], we see
that dimDλ = 210, and that without any loss we may assume that Dλ is obtained by

reducing S
(n−2,12)
C modulo p. As χ := S

(n−2,12)
C ↓S is irreducible by [8, Main Theorem

(iv)], and χ(mod 3) is irreducible by [14], both cases G = S and G = Aut(S) give
rise to examples.

Case 4: G =M23 in permutation representations of degree n = 23.
First we consider the case where V does not extend to Sn. As in part (b) of the

proof of Theorem 3.7, we have that λ1 ≤ (n + 2)/2 if p = 2 and λ1 ≤ (n + 4)/2 if
p = 3. Now, if p = 2 then λ1 ≤ 12, whence dimV = (dimDλ)/2 ≥ 210 by Theorem
2.22(i), whereas b2(G) = 896 [14], a contradiction. If p = 3, then λ1 ≤ 13 and so
dimV = (dimDλ)/2 ≥ 2783 by Proposition 2.28(ii), contrary to b3(G) = 1035 [14].

Now we consider the case where V = Dλ↓H . Then

dimDλ ≤ bp(G) ≤ 1035 < (n3 − 9n2 + 14n)/6,
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whence λ ∈ L (2)(n)r L (1)(n) by Proposition 2.28(i), and so λ1 ≥ n− 2.

Consider the case Dλ = D(n−2,2). If p = 2, then Dλ is obtained by reducing Sλ
C

modulo p. Furthermore, χ := Sλ
C↓G is irreducible by [8, Main Theorem (iii)], but

χ(mod 2) is reducible by [14], ruling out this case. If p = 3, then dimDλ = 208.

Since λ /∈ L (1)(n), Dλ is irreducible over An by Lemma 2.27. Since no ϕ ∈ IBrp(G)
has degree 208 [14], there are no examples in this case either.

Suppose now that p = 3 and Dλ = D(n−2,12). Then Dλ is obtained by reducing
Sλ
C modulo p. Furthermore, ψ := Sλ

C↓G is irreducible by [8, Main Theorem (iv)], and
ψ(mod 3) irreducible by [14], we obtain another example.

Case 5: G =M24 in permutation representations of degree n = 24.
According to [14], bp(G) ≤ 10395.

Case 5.1: V = Dλ↓H or dimV < 10395/2. In this case we have that dimDλ ≤
10395. This implies by [8, Lemma 1.23] that either λ ∈ L (4)(n)r L (1)(n), or p = 2
and λ = (13, 11). In the latter case, Dλ is a basic spin module of dimension 2048.
Since no ϕ ∈ IBr2(G) has degree 2048 or 1024, this case is ruled out.

Let p = 2. Then dimDµ for µ ∈ L (4)(n) r L (1)(n) is determined by Lemma 2.8,
and neither dimDµ nor (dimDµ)/2 matches ϕ(1) for any ϕ ∈ IBr2(G) [14]. In fact,

D(23,1) is also reducible over G. Thus we have no example for p = 2.
Let p = 3. Then dimDµ for µ ∈ L (4)(n)rL (1)(n) is determined by Lemma 2.7, and

using [14] we see that dimDµ or (dimDµ)/2 can match ϕ(1) for some ϕ ∈ IBr3(G) only
when µ = (22, 2), (22, 12), or (21, 2, 1). If λ = (22, 2), then Dλ is obtained by reducing
Sλ
C modulo p. Furthermore, ψ := Sλ

C↓G is irreducible by [8, Main Theorem (iii)],

and ψ(mod 3) irreducible by [14], giving rise to an example. Next, α := S
(22,12)
C ↓G

is irreducible by [8, Main Theorem (iii)], and α(mod 3) = β22 + β231, where βi is
an irreducible 3-Brauer character of G of degree i ∈ {22, 231}. On the other hand,

[S(22,12)] = [D(22,12)]+[D(23,1)] by Lemma 2.7(ii), with D(23,1)↓G = β23. It follows that

D(22,12)↓G = β231, leading to another example. Finally, by Lemma 2.10, D(21,2,1)↓A24

is irreducible (of dimension 1540 by Lemma 2.8), ruling out the case λ = (21, 2, 1).

Case 5.2: V does not extend to S24 and dimV > 10395/2.
Since dimV ≤ bp(G) ≤ 10395 and b2(G) = 1792, we must have that p = 3, and

10395 < dimDλ ≤ 2 · 10395. Consider the Young subgroup S22,2 ∼= S22 × S2 < S24.
Note that the second factor S2 is generated by a transposition t, which acts semisimply
on Dλ and has both 1 and −1 as eigenvalues. The two corresponding t-eigenspaces are
invariant under S22. Thus the restriction of Dλ to a natural subgroup S22 contains a
simple submodule Dµ of dimension at most (dimDλ)/2 ≤ 10395. By [8, Lemma 1.23]

applied to Dµ, we have µ ∈ L (4)(22). By the Frobenius reciprocity, Dλ is a quotient

of indS24
S22

(Dµ), and so λ ∈ L (6)(24), i.e. λ1 ≥ 18. But this implies by Lemma 2.10

that Dλ is irreducible over A24, contrary to our assumption.

Case 6: G = Co3 in permutation representations of degree n = 276.
According to [14], any ϕ ∈ IBr2(G) has degree ≤ 131584 < (n3 − 9n2 + 14n)/12.

Hence λ ∈ L (2)(n) r L (1)(n) by Proposition 2.28(i). It follows by Lemma 2.6 that
dimDλ = 37400 if p = 2, 37401 or 37674 if p = 3. Since no ϕ ∈ IBrp(G) has such

degree (or half of it, in case Dλ↓An
is reducible) by [14], there are no examples. �
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5. Affine permutation groups

In this section we consider restrictions to subgroups G of Sn having regular normal
elementary abelian r-subgroups, whose structure is explained in Lemma 3.3. Note that
any irreducible r-modular representation of a finite group G with nontrivial normal
r-subgroup R must be trivial on R. Therefore, if an FrSn-module V is irreducible
over such G and n ≥ 5, then dimV = 1. Henceforth we may restrict ourselves to
Sn-modules in characteristic p 6= r.

5.1. Invariants in modules over wreath products. Throughout this subsection,
we assume that r is a prime different from p. For m ∈ Z≥1, we denote

Hm := GLm(r), Vm := Fm
r , Gm := AGLm(r) = Vm ⋊Hm.

We also denote by Xm the set of linear characters Vm → F×, and X×
m ⊂ Xm be

the subset of all non-trivial linear characters. Note that Xm is an abelian group via
(ξ + η)(v) := ξ(v)η(v) for ξ, η ∈ Xm and v ∈ Vm. In fact, Xm can be identified with
Fm
r . In particular, for any ξ ∈ Xm, we have

rξ = 0. (5.1)

Lemma 5.2. Let r > 2 and assume that m > 1 if r = 3. There exist ξ1, . . . , ξr ∈ X×
m

not all equal to each other and such that ξ1 + · · ·+ ξr = 0.

Proof. Checked easily identifying Xm with Fm
r . �

A key role in the study of the restriction of irreducible modules Dλ from Srm to
Gm embedded via its natural action on the points of Vm is played by the analysis of
the invariant space (Dλ)Vm . For this, it is convenient to embed Vm into some wreath
product subgroup of Srm.

We will now assume that m ≥ 2 and denote n := rm. We have Vm ≤ Gm ≤ Sn
via the natural action of Gm on n = rm points of Vm. Consider the corresponding
embedding ϕm : Vm →֒Sn—this comes from the regular action of Vm on itself. We
consider subgroups of Vm as subgroups of Sn via the embedding ϕm.

Let e1, . . . , em be the standard basis of Vm = Fm
r , and a ∈ Fr. We denote

Vm(a) := {b1e1 + · · · + bm−1em−1 + aem | b1, . . . , bm−1 ∈ Fr} ⊆ Vm,

A := {bem | b ∈ Fr} ≤ Vm,

n′ := rm−1 = n/r.

We identify Vm−1 with Vm(0) and A with (Fr,+). Note that Vm = Vm−1 ×A.
For each a ∈ A = Fr, let S

a ∼= Sn′ be the symmetric group on Vm(a). We have a
natural embedding

P :=×a∈AS
a ∼= S×r

n′ →֒ Sn

as a parabolic subgroup. Note that Vm−1 acts on each Vm(a) regularly, so Vm−1 is
embedded into P diagonally via ×a∈A ϕm−1. The group A acts on the components
S

a of P via conjugation:

bSab−1 = S
a+b (a, b ∈ A).

Let

W := 〈P,A〉 = P ⋊A ∼= Sn′ ≀A ≤ Sn. (5.3)

As Vm−1 is a subgroup of P , we have that Vm = Vm−1×A is a subgroup ofW = P⋊A.
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We now describe irreducible FW -modules. For this we consider the p-regular A-
multipartitions, i.e. tuples µ = (µa)a∈A such that µa ∈ Pp(n

′) for all a ∈ A. To
any such µ, we associate the FP -module ⊠a∈ADµa

. Elements of ⊠a∈ADµa
are linear

combinations of pure tensors of the form ⊗a∈Ada with da ∈ Dµa for all a ∈ A. Define

M(µ) := indWP (⊠a∈AD
µa
).

Elements ofM(µ) are linear combinations of elements of the form b⊗(⊗a∈Ada), where
b ∈ A and da ∈ Dµa for all a ∈ A. Recalling that Vm = Vm−1 ×A and considering FA
as a left regular FA-module, we have

M(µ)↓Vm
=M(µ)↓Vm−1×A

∼= (⊗a∈AD
µa↓Vm−1

)⊠ FA. (5.4)

We say that a p-regular A-multipartition µ = (µa)a∈A is constant (with value µ)
if there exists µ ∈ Pp(n

′) such that µa = µ for all a ∈ A. Let µ = (µ)a∈A be a
constant A-multipartition with value µ. For any linear character α : A→ F, we define
a FW -module Mα(µ) by extending the P -action on ⊠a∈ADµ to W = P ⋊ A-module
via

b(⊗a∈Ada) = α(b)(⊗a∈Ada+b) (b ∈ A).

The following result follows from Clifford theory:

Lemma 5.5. If M is an irreducible FW -module then it is isomorphic to a module of
one of the following two types:

(1) Mα(µ) for some µ ∈ Pp(n
′) and some linear character α : A→ F;

(2) M(µ) for some non-constant p-regular A-multipartition µ.

Conversely, all modules of the forms (1) and (2) are irreducible, and the only isomor-
phisms between them are M(µ) ∼=M(ν) if there exists b ∈ A such that νa = µa+b for
all a ∈ A.

In the next two lemmas, we study Vm-invariants in irreducible FW -modules.

Lemma 5.6. Let M be an irreducible FW -module of the form M =Mα(µ) for some
µ ∈ Pp(n

′). Then MVm = 0 if and only if α 6= 0 and one of the following conditions
holds:

(i) Dµ ∈ Tn′.
(ii) Dµ ∈ Nn′ and either r = 2, or r = 3 and m = 2.

Proof. The ‘if’-part is an explicit check. For the ‘only-if’-part, if α = 0, pick a non-zero
d ∈ Dµ

ξ for some ξ ∈ Xm−1. Then, using (5.1), it is easy to see that⊗a∈Ad ∈MVm\{0}.
Now let α 6= 0. Suppose we are given the following data:

(a) characters {ξa ∈ Xm−1 | a ∈ A} with
∑

a∈A ξa = 0;
(b) non-zero vectors {da ∈ Dµ

ξa
| a ∈ A}, not all proportional to each other.

Then it is easy to see that
∑

b∈A
α(b)(⊗a∈Ada+b) ∈MVm \ {0}.

In view of (i), we may assume that Dµ 6∈ Tn′ . So dimDµ ≥ 2. If Dµ
ξ = 0 for

all ξ ∈ X×
m−1, then Dµ

0 = Dµ, and we can take ξa = 0 for all a to satisfy (a) and

pick vectors da ∈ Dµ
0 , not all proportional to each other, to satisfy (b). Thus we

may assume that Dµ
ξ 6= 0 for some ξ ∈ X×

m−1, in which case we have Dµ
ξ 6= 0 for all

ξ ∈ X×
m−1. Now, we use Lemma 5.2 to find characters ξa ∈ X×

m−1 satisfying (a), and
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by taking any non-zero da ∈ Dµ
ξa

we also satisfy (b). Lemma 5.2 is applicable unless
r = 2, or r = 3 and m = 2, so these cases need to be considered separately. In the
case r = 3 and m = 2 there is actually nothing to check in view of the exception (ii)
since for S3 all irreducible modules are in NT3.

Let r = 2. If there is ξ ∈ Xm−1 with dimDµ
ξ ≥ 2, we set ξa := ξ for all a to satisfy

(a), cf. (5.1). Then pick linearly independent vectors x1, x2 ∈ Dµ
ξ and set da := x1

for a ∈ A1 and da = x2 for a ∈ A2, where A = A1 ⊔ A2 for some non-empty sets
A1, A2. The vectors da satisfy (b). Thus we may assume that dimDµ

ξ ≤ 1 for all

χ ∈ Xm−1, i.e. dimDµ ≤ n′. Using [21, Theorem 6(ii)], we deduce that Dµ ∈ Nn′ ,
which is exception (ii). �

Lemma 5.7. Let M be an irreducible FW -module of the form M = M(µ) for some
non-constant p-regular A-multipartition µ. Then MVm = 0 if and only one of the
following two conditions holds:

(i) there exists b ∈ A such that (Dµb
)Vm−1 = 0 and Dµa ∈ Tn′ for all a 6= b.

(ii) r = 2, m = 3, p > 3, and there exists b ∈ A such that Dµb ∈ N4 and µ
a = (2, 2)

for a 6= b.

Proof. We denote by N the FVm−1-module ⊗a∈ADµa↓Vm−1
. By (5.4), we have

MVm ∼= NVm−1 ⊠ (FA)A ∼= NVm−1 .

This gives the ‘if’-part, for if there exists b ∈ A such that (Dµb
)Vm−1 = 0 andDµa ∈ Tn′

for all a 6= b, then N ∼= Dµb↓Vm−1
, and so NVm−1 = 0.

For the ‘only-if-part’, assume first that r 6= 2. If there is at most one b ∈ A with

Dµb 6∈ Tn the result easily follows. Suppose there are b 6= c in A such that Dµb
,Dµc 6∈

Tn′ . Then Dµb

ξ and Dµc

ξ are non-zero for all ξ ∈ X×
m−1. For each a ∈ A \ {b, c}, take

da ∈ Dµa

ξa
for some ξa ∈ Xm−1. Now, there exist ξb, ξc ∈ X×

m−1 such that
∑

a∈A ξa = 0.

Pick non-zero db ∈ Dµb

ξb
and dc ∈ Dµc

ξc
. Then ⊗a∈Ada is a non-zero Vm−1-invariant

vector of N .
Now, let r = 2. Note that NVm−1 6= 0 if and only if there is a character ξ ∈ Xm−1

such that Dµ0

ξ and Dµ1

ξ are non-zero. This is not the case exactly when (Dµ0
)Vm−1 =

Dµ0
and (Dµ1

)Vm−1 = 0, or (Dµ0
)Vm−1 = 0 and (Dµ1

)Vm−1 = Dµ1
. But the equality

(Dµ)Vm−1 = Dµ holds if and only if Dµ ∈ Tn′ , or m = 3, p > 3, and Dµ = D(2,2), cf.
for example [8, Lemma 5.5]. �

5.2. Invariants in modules over symmetric groups. Recall that we are consid-
ering the embeddings Vm ≤ Gm ≤ Sn for n = rm and assuming that p 6= r.

Lemma 5.8. If D ∈ Nn, then D
Vm = 0.

Proof. Since the action of Sn on D is faithful, D affords a non-trivial character of Vm,
hence D affords all n−1 non-trivial characters of Vm, hence the trivial character does
not appear by dimensions. �

Lemma 5.9. Let p = 3 and r = 2.

(i) Let m = 3, i.e. n = 8. Then (Dλ)V3 = 0 if and only if Dλ ∈ N8 ∪
JD(6,1,1),D(5,3)K.

(ii) Let m = 4, i.e. n = 16. Then (Dλ)V4 = 0 if and only if Dλ ∈ N16∪JD(14,1,1)K.
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Proof. (i) In [14], any nontrivial element t in V3 is of class 2A. If ϕ is the Brauer
character of an irreducible 3-modular module D of S8, then DVm = 0 if and only if
ϕ(t) = −ϕ(1)/7. Now inspecting the 3-Brauer character table in [14] of S8, we see
that there are exactly six possibilities for such ϕ, two for each dimension 7, 21, and
28. These correspond, respectively, to modules in N8, JD(6,1,1)K, and JD(5,3)K.

(ii) We apply the same argument as in the case m = 3. Now t ∈ V4 r {1} is of
class 2C, and the condition is ϕ(t) = −ϕ(1)/15. It follows by checking the 3-Brauer
character table of S16 in [14] that there are exactly four possibilities for such ϕ, two of
dimension 15 and two of dimension 105. These correspond, respectively, to modules
in N16 and JD(14,1,1)K. �

Lemma 5.10. Let p = 2, r = 3, and m = 2, i.e. n = 9. Then (Dλ)V2 = 0 if and only

if Dλ ∼= N9 ∪D(5,4).

Proof. (i) In [14], the elements in V2 r {1} are of class 3B. So, arguing as in the
proof of Lemma 5.9, we get exactly two 2-modular modules W of S9 with W V2 = 0, of
dimensions 8 and 16. These correspond, respectively, to modules in N9 and D

(5,4). �

Now we can prove our key technical result which develops [36, Proposition 4.6]:

Proposition 5.11. Let p = 2 or 3 and m ≥ 2. Then (Dλ)Vm = 0 if and only if one
of the following happens:

(i) Dλ ∈ Nn;

(ii) r = 2, p = 3, Dλ ∈ JD(n−2,1,1),D(5,3)K;

(iii) r = 3, p = 2, Dλ ∼= D(5,4).

Proof. It follows from [8, Lemma 5.6] that in the case r = 2 and p = 0, we have

(S
(n−2,1,1)
C )Vm = 0. Reducing modulo 3, we deduce (D(n−2,1,1))Vm = 0. The rest of

the “if” part follows from Lemmas 5.8, 5.9, 5.10.
For the “only-if” part, recall that Vm ≤W = P ⋊A ≤ Sn, cf. (5.3). By Lemmas 5.6

and 5.7, we have (Dλ)Vm = 0 only if all composition factors of Dλ
P are of the form

⊠a∈ADµa
satisfying one of the following conditions:

(C1) there is b ∈ A such that Dµa ∈ Tn′ for all a 6= b, and either (Dµb
)Vm−1 = 0 or

Dµb ∈ Tn′ ;
(C2) µ

a = µb for all a, b ∈ A, Dµa ∈ Nn′ for all a ∈ A, and either r = 2, or r = 3
and m = 2;

Assume first that p = 2. Then r 6= 2. If (r,m) 6= (3, 2), the restriction Dλ
P only has

composition factors ⊠a∈ADµa
satisfying (C1). By Proposition 2.17, Dλ ∈ NTn. In the

exceptional case (r,m) = (3, 2) use Lemma 5.10.
Now, let p = 3. Then r 6= 3. If r 6= 2, the restriction Dλ

P only has composition

factors ⊠a∈ADµa
satisfying (C1). By Proposition 2.17, Dλ ∈ NTn. Let r = 2. By

Lemma 5.9, we may assume that m ≥ 5. Then, by induction on m, we may assume
that all composition factors Dµ

⊠Dν of Dλ
Sn/2×Sn/2

satisfy one of the following three

conditions:

(1) Dµ ∼= Dν ∈ Nn/2,

(2) Dµ ∈ Tn/2,D
ν ∈ NTn/2 ∪ JD(n/2−2,1,1)K,

(3) Dν ∈ NTn/2,D
µ ∈ Nn/2 ∪ JD(n/2−2,1,1)K.
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By Corollary 2.19, Dλ ∈ NTn ∪ JD(n−2,1,1)K. �

Remark 5.12. One can ask what could be an analogue of Proposition 5.11 in the
case m = 1, that is, which irreducible modules Dλ of Sr in characteristic p 6= r have no
invariants on the cyclic subgroup Cr < Sr. Until now, this question has been resolved
only in the case p = 0 (see [58]), and in the case r/2 < p < r (see [55, Lemma 3.2]).

5.3. Irreducible restrictions to affine permutation groups. Let G ≤ Sn be a
primitive subgroup with a regular normal abelian subgroup; or more generally, let
G ≤ Sn be any subgroup with a regular normal elementary abelian subgroup. Then,
up to conjugacy, G is a subgroup of the group AGLm(r) of all affine transformations
of the affine space Vm = Fm

r for a prime r. The group AGLm(r) acts naturally on
n = rm points of Vm, which yields an embedding G ≤ Sn. Moreover, AGLm(r) ∼=
Vm ⋊GLm(r), and G = Vm ⋊H for H ≤ GLm(r).

The following theorem is the main result of the section. It develops [36, Corollary
4.7].

Theorem 5.13. Let p = 2 or 3, n ≥ 5, H = Sn or An, and let M be an irreducible
FH-module of dimension greater than 1. Let G < H be a subgroup that contains a
regular normal, elementary abelian subgroup. Then M↓G is irreducible if and only if
one of the following happens:

(i) M↓An
∼= E(n−1,1) and G is 2-transitive;

(ii) M↓An
∼= E(n−2,12), and of the following holds:

(a) p = 3, G = AGLm(2) with n = 2m;
(b) p = 3, G = C4

2 ⋊ A7 with n = 16;

(iii) p = 2, H = A9, G = ASL2(3) or C2
3 ⋊Q8, and M ∼= E

(5,4)
± .

(iv) p = 2, H = A5, G = C5 ⋊ C2, and M ∼= E
(3,2)
± .

Proof. Let λ ∈ Pp(n) be such that M = Dλ if H = Sn, or M = Eλ
(±) if H = An.

Recall that n = rm and G = Vm ⋊ G0 ≤ AGLm(r). Assume M↓G is irreducible.
By Clifford theory, MVm = 0, and so p 6= r. In particular, p ∤ n, and so D(n−1,1) is a
reduction modulo p of the natural (n−1)-dimensional representation in characteristic

0, hence D(n−1,1)↓G is irreducible only if G is 2-transitive, in which case it is indeed
always irreducible by [47]. This gives case (i), and from now on we assume that

E↓An
6∼= E(n−1,1).

We now exclude the case m = 1. In this case |G| ≤ |AGL(1, r)| = r(r − 1). In
particular if M↓G is irreducible then dimM < r = n. If H = Sn, or H = An and M
lifts to Sn, then by [21, Theorem 6(i)] for r ≥ 7 we have Dλ ∈ NTn, which was excluded
in the previous paragraph. The special case r = 5 is checked using [23]. On the other
hand, if H = An andM ∼= Eλ

± note first that G ≤ AGL(1, r)∩Ar
∼= Cr⋊C(r−1)/2, and

the dimension of an irreducible F(Cr ⋊ C(r−1)/2)-module is at most (r− 1)/2. On the

other hand, from [37, Proposition 4.1], we have that dimEλ
± ≥ 2(r−6)/2. If r ≥ 11 we

have that 2(r−6)/2 > (r − 1)/2. So we only need to consider the cases r = 5 and 7. In
these cases using modular character tables it can be checked that if dimEλ

± ≤ (r−1)/2
then r = 5, p = 2 and λ = (3, 2), in which case the restriction is indeed irreducible.
This corresponds to the special case (iv).

As M↓G is irreducible, so is M↓AGLm(r)∩H . It easily follows that M↓Vm
is a direct

summand of N↓Vm
for some irreducible FAGLm(r)-module N . As mentioned above,
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we haveMVm = 0. If H = Sn, or H = An andM lifts to Sn, then (Dλ)Vm =MVm = 0.
On the other hand, if H = An and M = Eλ

±, note first that any non-trivial element

g ∈ Vm has cycle type (rn/r) and n/r > 1 since we have already excluded the case
m = 1. So gσ is in the same An-conjugacy class as g for any σ ∈ Sn. It follows that
the Brauer characters of Eλ

+↓Vm
and of Eλ

−↓Vm
coincide and hence Eλ

+↓Vm
∼= Eλ

−↓Vm

as p ∤ r. So in this case we can still conclude that (Dλ)Vm = 0. By Proposition 5.11
we may now assume that one of the following happens:

(1) r = 2, p = 3, Dλ ∈ JD(n−2,1,1),D(5,3)K;

(2) r = 3, p = 2, Dλ ∼= D(5,4).

Case 1.1: r = 2, p = 3, and Dλ ∈ JD(n−2,1,1)K. By [20, Theorem 24.1] that if

2 < p ∤ n then D(n−2,1,1) is reduction modulo p of the Specht module S
(n−2,1,1)
C in

characteristic 0. Here p = 3 ∤ n = 2m, so (by tensoring with sgn if necessary) we

may assume that Dλ is reduction modulo 3 of S
(n−2,1,1)
C . Moreover, it is easy to see

that Dλ↓An
is irreducible. Hence S

(n−2,1,1)
C ↓G is irreducible. Note that m ≥ 3 as

n = 2m ≥ 5. By [50], the only proper subgroup of AGLm(2) that contains Vm and

is irreducible on S(n−2,12) is K := V4 ⋊ A7 < A16. Furthermore, the only complex
irreducible character of degree 7 of GL3(2) remains irreducible modulo 3, cf. [23], so
the arguments on pp. 179–180 of [8] show that Dλ↓K is indeed irreducible. We have
shown that either G = AGLm(2) with m ≥ 3, or G = K and m = 4, as stated in (ii).

Case 1.2. r = 2, p = 3, Dλ ∈ JD(5,3)K. By [20, Tables], we have dimD(5,3) = 28.

Furthermore, D(5,3) is irreducible over A8, so it suffices to show that Dλ↓AGL3(2) is

reducible. Since Dλ affords all 7 non-trivial linear characters of V3, it follows that
Dλ↓G = indGG1

(U), where U is a 4-dimensional module of G1 = V3 ⋊ S4. Now V3 acts
via scalars on U , and the degree of any irreducible FS4-representation is at most 3,
whence U , and so Dλ↓G, is reducible.

Case 2: r = 3, p = 2, Dλ ∼= D(5,4). By [20, Tables], we have dimD(5,4) = 16. First
we consider the case H = S9. Then it suffices to show that Dλ↓G is reducible for
G = AGL2(3). This group G is the 7th maximal subgroup of S9 as listed in [14]. We
can pick two elements x ∈ V2 r {1} and y ∈ G r V2, which belong to classes 3A and
3C in G (in the notation of [14]) and which both induce fixed-point-free permutations
in S9. Thus both x and y belong to class 3B of S9. The only irreducible 2-Brauer
character of G of degree 16 takes value 1 at y, whereas the character of Dλ takes value
−2 at y, cf. [14]. Hence we conclude that Dλ↓G is reducible. (An alternate way is

to note that Dλ is reduction modulo 2 of the basic spin module of a double cover Ŝ9,
and the latter is reducible over the inverse image of G in Ŝ9 by [26, Theorem 1.1].)

Now let H = A9. Then D(5,4)↓A9
splits. Each of E

(5,4)
± affords 8 non-trivial linear

characters of V2, which are permuted transitively by AGL2(3)∩A9 = ASL2(3). More-
over, the only proper subgroup of SL2(3) that acts transitively on these 8 characters
is Q8. It follows that G = ASL2(3) or V2 ⋊Q8, in which case the restriction is indeed
irreducible, giving the case (iii). �

6. Doubly transitive groups with socle PSLm(q)

Throughout the section: q = rf is a power of a prime r, m ≥ 2, W := Fm
q with

standard basis e1, . . . , em, and P(W ) is the set of 1-dimensional subspaces of W . Also,
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unless otherwise stated,

n := |P(W )| = (qm − 1)/(q − 1),

and G < Sn with S := soc (G) = PSLm(q) acting naturally on P(W ).

6.1. Bounding the partition λ for groups with socle PSLm(q). With the nota-
tion as above, we have:

Lemma 6.1. We have S ✂G ≤ PGLm(q)⋊ Cf ≤ Aut(S).

Proof. Note that N := NSn(S) is doubly transitive with non-abelian simple normal
subgroup S. By [10, Proposition 5.2], soc (N) = S. Now CSn(S) ∩ S = 1, hence
soc (N) = S implies that CSn(S) = 1. So S ✂G ≤ N ≤ Aut(S). The group Aut(S) is
described in [15, Theorem 2.5.12]. If m = 2, we have Aut(S) = PGLm(q) ⋊ Cf , and
we are done. If m ≥ 3, the inverse-transpose automorphism of S does not stabilize its
action on P(W ), so we have G ≤ PGLm(q)⋊ Cf . �

By Lemma 6.1, we have G ≤ PGLm(q) ⋊ Cf where PGLm(q) ⋊ Cf acts naturally

on P(W ). For 1 ≤ k ≤ m− 1, let Wk := 〈e1, e2, . . . , ek〉Fq ⊆W , and denote by P̃k the
subgroup of PGLm(q) ⋊ Cf consisting of all elements that fix every point of P(Wk).

(If k > 1, then P̃k is the image in PGLm(q) ⋊ Cf of the subgroup of GLm(q) ⋊ Cf

that acts via scalars on Wk.) Also, let Pk := P̃k ∩G. By construction, Pk fixes all

Lk := (qk − 1)/(q − 1)

1-dimensional subspaces of 〈e1, e2, . . . , ek〉Fq . Thus:

Lemma 6.2. The subgroup Pk is contained in a natural subgroup Sn−Lk
of Sn.

Lemma 6.3. Let λ = (n − ℓ, . . . ) ∈ Pp(n). For an integer 1 ≤ k ≤ m− 1 such that

(qk − 1)/(q − 1) ≥ 2ℓ, we have (Dλ)Pk 6= 0. In particular, if Dλ↓G is irreducible then
dimDλ ≤ [G : Pk].

Proof. The first statement follows from Lemma 6.2 and Theorem 2.11. The second
one then follows from the Frobenius Reciprocity. �

Setting
Pk ✂Rk := StabG(〈e1, . . . , ek〉Fq ),

we have that

PGLk(q) ∼= (Rk ∩ S)/(Pk ∩ S)✂Rk/Pk ≤ PGLk(q)⋊ Cf . (6.4)

(Indeed, one can find an element of SLn(q) that fixes Wk and has any prescribed
determinant in its action on Wk.) Since both G and S act transitively on the set
Pk(W ) of k-subspaces of W , we have

[G : Rk] = [S : S ∩Rk] = |Pk(W )| =
k
∏

i=1

qn−i+1 − 1

qi − 1
. (6.5)

Lemma 6.6. Let λ = (n − ℓ, . . . ) ∈ Pp(n) and Dλ↓G be irreducible. For an integer

1 ≤ k ≤ m− 1 such that (Dλ)Pk 6= 0, we have

dimDλ ≤ [G : Rk]bp(Rk/Pk) =
[G : Pk]

[Rk : Pk]
bp(Rk/Pk) = bp(Rk/Pk)

k
∏

i=1

qn−i+1 − 1

qi − 1
.

The assumption (Dλ)Pk 6= 0 is guaranteed if (qk − 1)/(q − 1) ≥ 2ℓ.
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Proof. Note that Rk acts on (Dλ)Pk and the Rk-module (Dλ)Pk contains a simple
submodule X of dimension at most bp(Rk/Pk). By the Frobenius reciprocity, we have

dimDλ ≤ [G : Rk] dimX ≤ [G : Rk]bp(Rk/Pk),

and it remains to use (6.5) and Lemma 6.3. �

Proposition 6.7. Let V an irreducible FG-module. Then:

(i) dimV ≤ |G|1/2 ≤ |Aut(S)|1/2.
(ii) dimV ≤ n(m+1)/2 < n

1
2
log2 n+1.

(iii) Suppose that V = Dλ↓G for λ = (n − ℓ, . . .) ∈ Pp(n), and that there exists an

integer 1 ≤ k ≤ m− 1 such that (qk − 1)/(q − 1) ≥ 2ℓ. Then dimV < qmk.

Proof. (i) Follows from Lemma 6.1.

(ii) Note that n > 2m−1, so m ≤ 1 + log2 n, which implies the second inequality.
Let H := PGLm(q). By Lemma 6.1, G ≤ H⋊Cf . If m = 2, then b(H) = q+1. Since

f2 ≤ 2f + 1 ≤ q + 1, we deduce that dimV ≤ fb(H) ≤ (q + 1)3/2, as stated.
Let m ≥ 3. Using Lemma 2.3, and the estimate (qi − 1)(qm−i − 1) < qm − 1 for

1 ≤ i ≤ m− 1, we get

b(H) ≤ b(S) · [H : S] ≤ b(SLm(q)) · [H : S]

≤ (q − 1)(q2 − 1)(q3 − 1) . . . (qm − 1)

(q − 1)m
· gcd(m, q − 1)

≤ (qm − 1)(m+1)/2

(q − 1)m
· gcd(m, q − 1).

Also, f ≤ 2f − 1 ≤ q − 1. So for m ≥ 5 we have

dimV ≤ b(G) ≤ fb(H) ≤ (qm − 1)(m+1)/2

(q − 1)m
· f · gcd(m, q − 1) ≤

(

qm − 1

q − 1

)(m+1)/2

,

as stated. For m = 3, 4, using [42] one can drop the factor of f in the above estimates
for b(H) and b(G), whence the statement follows again.

(iii) First we consider the case k = 1. Then note that R1 = P1 and S∩R1 = S∩P1.
It follows from (6.5) and Lemma 6.3 that

dimV ≤ [G : R1] = [S : S ∩R1] = [S : S ∩ P1].

Now let k ≥ 2. As recorded in (6.5), Y := (S ∩ Rk)/(S ∩ Pk) ∼= PGLk(q). Clearly,

|Y | > q2 > f2, whence bp(Y ) ≤ |Y |1/2 < |Y |/f . Again using (6.5), we obtain

bp(Rk/Pk) ≤ f · bp(Y ) < |Y |.
Combining with Lemma 6.3 and (6.5), we get

dimV < [G : Rk] · |Y | = [S : S ∩Rk] · |(S ∩Rk)/(S ∩ Pk)| = [S : S ∩ Pk].

Thus in both cases we have

dimV ≤ [S : S ∩ Pk] ≤ qk(k−1)/2
m
∏

i=m−k+1

(qi − 1) < qmk,

which completes the proof. �
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Proposition 6.8. Let n ≥ 324, m ≥ 4, p = 2 or 3, λ ∈ Pp(n) such that Dλ↓G is
irreducible, and define ℓ from n− ℓ = max(λ1, λ

M

1). Then ℓ ≤ 4 if 2 ≤ q ≤ 5 and ℓ ≤ 3
if q ≥ 7.

Proof. We may assume that ℓ ≥ 4, for otherwise there is nothing to prove. Replacing
λ by λM if necessary, we may assume that λ1 = n− ℓ. By Propositions 6.7(ii) and 2.23,
we have

ℓ ≤ L(n) := 0.7 log2 n+ 1.4. (6.9)

So n ≥ p(δp + ℓ− 2), and by Theorem 2.21, we have

dimDλ ≥ Cp
ℓ (n) >

(n+ 3− 3ℓ)ℓ

ℓ!
. (6.10)

Claim 1: If 1 ≤ k ≤ m− 1 and (qk − 1)/(q − 1) ≥ 2ℓ then qmk > (n+3−3ℓ)ℓ

ℓ! .

Indeed, by Proposition 6.7(iii), dimDλ < qmk, and the claim follows from (6.10).

Claim 2: If k := ⌈logq(2ℓ− 1)⌉+ 1, then qmk > (n+3−3ℓ)ℓ

ℓ! .
To prove Claim 2, it suffices to verify that the given k satisfies the assumptions of
Claim 1. Clearly k ≥ 1, and (qk − 1)/(q− 1) ≥ 2ℓ is easy. Note that (2L(n)− 1)2 < n

by our assumption on n, so from (6.9), we have 2ℓ − 1 < n1/2, and hence, using also

m ≥ 4, we get q2(2ℓ− 1) < qm/2n1/2 < qm. Now k ≤ m− 1 follows from

qk < qlogq(2ℓ−1)+2 = q2(2ℓ− 1) < qm.

Suppose ℓ ≥ 12. Then for k as in Claim 2, we have

ℓ/k >
ℓ

log2(2ℓ− 1) + 2
> 1.83. (6.11)

On the other hand, n = (qm − 1)/(q − 1) implies that m < logq n+ 1 < 4
3 logq n, i.e.

n > q3m/4. (6.12)

Also, for n ≥ 324 we have (L(n)/1.87)4.27 < n, and so from (6.9) we get

1.87n

ℓ
> n0.765. (6.13)

We also have
n+ 3− 3ℓ > n+ 3− 3L(n) > 14.8n/15.8 (6.14)

for n ≥ 324. Using Claim 2 and (6.11)–(6.14), and ℓ! < (ℓ/2)ℓ (which certainly holds
for ℓ ≥ 12), we arrive at a contradiction:

qmk >
(n+ 3− 3ℓ)ℓ

ℓ!
>

(

14.8n/15.8

ℓ/2

)ℓ

>

(

1.87n

ℓ

)ℓ

> n0.765ℓ > n1.39k > qmk.

Suppose 8 ≤ ℓ ≤ 11. If q ≥ 3, we take k as in Claim 2. If q = 2 then k = 5
satisfies the assumptions of Claim 1—indeed, n = (2m − 1) ≥ 324 implies m ≥ 9, and
25 − 1 > 2ℓ. As we have k ≤ 5 for all q, using Claims 1 and 2 for q = 2 and q ≥ 3,
respectively, we get

q5m ≥ qmk >
(n+ 3− 3ℓ)ℓ

ℓ!
. (6.15)

If ℓ = 10 or 11, then

(n+ 3− 3ℓ)ℓ

ℓ!
≥ (n− 27)10

10!
> n7 > q7(m−1),
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hence 5m > 7(m− 1), a contradiction. If ℓ = 9, then

(n+ 3− 3ℓ)ℓ

ℓ!
=

(n − 24)9

9!
> n20/3 > q20(m−1)/3,

hence 5m > 20(m − 1)/3, a contradiction since m ≥ 4. Let ℓ = 8. Then for q ≥ 3 we
have k = ⌈logq(15)⌉ + 1 ≤ 4. So by Claim 2, we have

q4m ≥ qmk >
(n− 21)8

8!
> n6 > q6(m−1),

a contradiction. For q = 2, we have m ≥ 9, k = 5, and we again get a contradiction:

q5m = qmk >
(n− 21)8

8!
> n6 > q6(m−1).

Suppose ℓ = 7. If q ≥ 3, choose k as in Claim 2. If q = 2, then choose k = 4. In
both cases we have k ≤ 4. Now we get a contradiction using Claims 1 and 2:

q4m ≥ qmk >
(n− 18)7

7!
> n16/3 > q16(m−1)/3.

Suppose 5 ≤ ℓ ≤ 6. If q ≥ 3 take k = 3 and apply Claim 1 to get a contradiction:

q3m ≥ qmk >
(n− 12)5

5!
> n4 > q4(m−1).

If q = 2 take k = 4 and apply Claim 1 to get a contradiction:

24m = qmk >
(n − 12)5

5!
> (n + 1)4 > 24m.

If q ≥ 7 and ℓ = 4 take k = 2 and apply Claim 1 to get a contradiction:

q2m = qmk >
(n− 9)4

4!
> n8/3 > q8(m−1)/3.

�

6.2. Ruling out the remaining Dλ for groups with socle PSLm(q). Proposi-
tion 6.8 rules out irreducible restrictions Dλ↓G in the generic case where n ≥ 324,
m ≥ 4, and ℓ not too small. In this subsection we deal with the remaining cases.

Lemma 6.16. Let p = 2 or 3, λ ∈ Pp(n), m ≥ 5, and q = 2. If Dλ↓G is irreducible

then λ ∈ L (1)(n).

Proof. By Lemma 6.1, we have G = S = SLm(2). Set V := Dλ and suppose V ↓G
is irreducible. Write n − ℓ = max(λ1, λ

M

1). Replacing λ by λM if necessary, we may
assume that λ1 = n− ℓ. We need to prove that ℓ ≤ 1.

Claim 1: ℓ ≤ 5.
If m ≥ 9, then n = 2m − 1 ≥ 511 and so ℓ ≤ 4 by Proposition 6.8. Let m = 8.
By [14], b(G) = 361416600 < 228.5. As dimV ≥ 2ℓ/2 by Theorem 2.22, we have that
ℓ ≤ 56 < n/4. By Theorem 2.21,

dimV >

(

2(n+ 3)

ℓ
− 6

)ℓ

=

(

516

ℓ
− 6

)ℓ

> b(G),
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for 6 ≤ ℓ ≤ 56, which contradicts the irreducibility of V ↓G. Let m = 7. By [14],
b(G) = 2731008 < 221.5, whence ℓ ≤ 42 < n/3 by Theorem 2.22. By Theorem 2.21,

dimV >

(

2(n+ 3)

ℓ
− 6

)ℓ

=

(

262

ℓ
− 6

)ℓ

> b(G),

for 6 ≤ ℓ ≤ 42, which contradicts the irreducibility of V ↓G. Let m = 6. By [14] for
p = 3 and [43] for p = 2,

max(b2(G), b3(G)) = max(32768, 29295) = 32768 < (n3 − 9n2 + 14n)/6,

whence ℓ ≤ 2 by Proposition 2.28(i). The case m = 5 is treated similarly, using the
bound dimV ≤ 1024 coming from [14].

Claim 1: ℓ ≤ 2.
By Claim 1, we may assume that ℓ ≤ 5, so we can take k = 4 in Lemma 6.6 to get

dimV ≤ [G : P4]

[R4 : P4]
bp(R4/P4) =

[G : P4]

[R4 : P4]
bp(SL4(2)) <

(2m − 1)4

20160
· 64 =

n4

315
.

If ℓ = 4 or 5, then dimV ≥ min{(n − 9)4/24, (n − 12)5/120} by Theorem 2.21, a
contradiction since n ≥ 31. So ℓ ≤ 3. Taking k = 3 in Lemma 6.6, we get

dimV ≤ [G : P3]

[R3 : P3]
bp(SL3(2)) <

(2m − 1)3

21
=
n3

21
<
n3 − 9n2 + 14n

6
,

since n ≥ 31. By Proposition 2.28(i), this implies that ℓ ≤ 2.

Now we consider the case ℓ = 2. If λ = (n − 2, 12) then p = 3. Using Lemma

2.6(iii) one can show that Dλ = ∧2(D(n−1,1)). Thus SLm(2) admits a non-trivial
(irreducible) module V ↓G whose exterior square is irreducible. This is impossible by
[45, Proposition 3.4]. (An alternative argument is to note that G is not 3-homogeneous
and then apply [32, Theorem A].)

Finally, let λ = (n− 2, 2). By Lemma 6.2, P2 ≤ Sn−3, and by Lemma 2.13 we have
V P2 6= 0, so by Lemma 6.6, we obtain

dimV ≤ [G : P2]

[R2 : P2]
b(SL2(2)) <

2(2m − 1)2

6
=
n2

3
<

(n2 − 5n+ 2)

2
,

since n ≥ 31. This contradicts Lemma 2.27. �

Lemma 6.17. Let p = 2 or 3, λ ∈ Pp(n), m ≥ 4, and q = 3. If Dλ↓G is irreducible

then λ ∈ L (1)(n).

Proof. By Lemma 6.1, we have PSLm(3)✂G ≤ PGLm(3). Set V := Dλ and suppose
V ↓G is irreducible. Write n − ℓ = max(λ1, λ

M

1). Replacing λ by λM if necessary, we
may assume that λ1 = n− ℓ. We need to prove that ℓ ≤ 1.

If m ≥ 6, then n ≥ 364 and so ℓ ≤ 4 by Proposition 6.8. If m = 5, by [14], we have
b(G) ≤ 98010 < (n3 − 9n2 + 14n)/6, hence ℓ ≤ 2 by Proposition 2.28(i). The same
argument applies in the case m = 4 where b(G) ≤ 2080. Thus, we have ℓ ≤ 4 in all
cases.

By [14], bp(SL3(3)) ≤ 27. So by Lemma 6.6, we obtain

dimV ≤ 27(3m − 1)(3m−1 − 1)(3m−2 − 1)

(33 − 1)(32 − 1)(3 − 1)
<

(3m − 1)3

416
=
n3

52
<
n3 − 9n2 + 14n

6
,
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since n ≥ 40. This in turn implies by Proposition 2.28(i) that ℓ ≤ 2. We can take
k = 2 in Lemma 6.6, and, using bp(R2/P2) = bp(PGL2(3)) = bp(S4) ≤ 3, to get

dimV ≤ 3(3m − 1)(3m−1 − 1)

(32 − 1)(3 − 1)
<
n2

4
<

(n2 − 5n+ 2)

2
,

and so ℓ = 1 by Lemma 2.27. �

Lemma 6.18. Let p = 2 or 3, λ ∈ Pp(n), m ≥ 4, and q = 4. If Dλ↓G is irreducible

then λ ∈ L (1)(n).

Proof. By Lemma 6.1, we have PSLm(4) ✂ G ≤ PGLm(4) ⋊ C2. Set V := Dλ and
suppose V ↓G is irreducible. Write n−ℓ = max(λ1, λ

M

1). Replacing λ by λM if necessary,
we may assume that λ1 = n− ℓ. We need to prove that ℓ ≤ 1.

If m ≥ 5, then n ≥ 341 and so ℓ ≤ 4 by Proposition 6.8. If m = 4 then by [14],
we have dimV ≤ 2 · 7140 < (n3 − 9n2 + 14n)/6, whence ℓ ≤ 2 by Proposition 2.28(i).
Thus we always have ℓ ≤ 4, and we can take k = 3 in Lemma 6.6. Note using (6.4)
that R3/P3 ≤ PGL3(4) ⋊ C2, so bp(R3/P3) ≤ 2bp(PGL3(4)) = 128 by [14], and by
Lemma 6.6,

dimV ≤ 128(4m − 1)(4m−1 − 1)(4m−2 − 1)

(43 − 1)(42 − 1)(4 − 1)
<

2(4m − 1)3

2835
=

2n3

105
<
n3 − 9n2 + 14n

6

since n ≥ 85. By Proposition 2.28(i), we have ℓ ≤ 2. So we can take k = 2 in
Lemma 6.6. Note that R3/P3 ≤ S5 as F2

4 contains 5 lines, whence bp(R3/P3) ≤
bp(S5) ≤ 6, and by Lemma 6.6,

dimV ≤ 6(4m − 1)(4m−1 − 1)

(42 − 1)(4 − 1)
<

3n2

10
<

(n2 − 5n+ 2)

2
.

Now ℓ = 1 by Lemma 2.27. �

Lemma 6.19. Let p = 2 or 3, λ ∈ Pp(n), m ≥ 4, and q ≥ 5. If Dλ↓G is irreducible

then λ ∈ L (1)(n).

Proof. By Lemma 6.1, we have PSLm(q)✂G ≤ PGLm(q)⋊Cf . Note that f < q/2.6

as q ≥ 5. Set V := Dλ and suppose V ↓G is irreducible. Write n − ℓ = max(λ1, λ
M

1).
Replacing λ by λM if necessary, we may assume that λ1 = n − ℓ. We need to prove
that ℓ ≤ 1.

We claim that ℓ ≤ 3. If m = 4 then |G| ≤ f · |PGL4(q)| < q15f < q16/2.6, and

dimV ≤ |G|1/2 < q8√
2.6

<
q9

8
<
n3

8
<
n3 − 9n2 + 14n

6
,

hence ℓ ≤ 2 by Proposition 2.28(i). Let m ≥ 5. Then n ≥ 781, and we have ℓ ≤ 4 by

Proposition 6.8, so we may assume that ℓ = 4. We show that dimV < (n−9)4

24 , which
contradicts Theorem 2.21. If m = 5 then

dimV ≤
√

|G| ≤
√

f · |PGL5(q)| <
√

q24f <
√

q25/2.6 <
q12.5√
2.6

<
n25/8√
2.6

<
(n− 9)4

24
.

If m ≥ 6, Proposition 6.7(iii) with k = 3 yields

dimV < q3m ≤ q3.6(m−1) < n3.6 <
(n− 9)4

24
.
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As ℓ ≤ 3, we can take k = 2 in Lemma 6.1. Note using (6.4) that R2/P2 ≤
PGL2(q)⋊ Cf , so

bp(R2/P2) ≤ fbp(PGL2(q)) ≤ f(q + 1),

and by Lemma 6.6,

dimV ≤ f(q + 1)
(qm − 1)(qm−1 − 1)

(q2 − 1)(q − 1)
=
f(qm − 1)(qm−1 − 1)

(q − 1)2

<
n2f

q
<
n2

2.6
<
n2 − 5n+ 2

2

since n ≥ 156. We conclude that ℓ = 1 by by Lemma 2.27. �

Lemma 6.20. Let p = 2 or 3, λ ∈ Pp(n), and (m, q) = (3, q ≥ 5) or (2, q ≥ 11). If

Dλ↓G is irreducible then λ ∈ L (1)(n).

Proof. By Lemma 6.1, we have PSLm(q)✂G ≤ PGLm(q)⋊ Cf . Note that f ≤ 3q/8

as q ≥ 5. Set V := Dλ and suppose V ↓G is irreducible. Write n − ℓ = max(λ1, λ
M

1).
Replacing λ by λM if necessary, we may assume that λ1 = n − ℓ. We need to prove
that ℓ ≤ 1.

If m = 3 then n = q2 + q + 1, and

dimV ≤ b(G) ≤ fb(PGL3(q)) ≤ f(q + 1)(q2 + q + 1) < 3n2/8 < (n2 − 5n+ 2)/2,

hence ℓ = 1 by Lemma 2.27.
Let m = 2, so n = q + 1. If q ≥ 16, we have that

dimV ≤ b(G) ≤ fb(PGL2(q)) ≤ f(q + 1) < 3n(n− 1)/8 < (n2 − 5n + 2)/2,

hence ℓ = 1 by Lemma 2.27. If q = 13 or 11, then dimV ≤ b(G) = q + 1 = n, and we
conclude that ℓ = 1 using [14]. �

Now we can prove the main result of this section:

Theorem 6.21. Let p = 2 or 3, and λ ∈ Pp(n) such that dimDλ > 1. Suppose
that G < Sn is a doubly transitive subgroup with S = soc (G) = PSLm(q) acting on
n = (qm− 1)/(q− 1) 1-subspaces of Fm

q , and either m ≥ 3, or m = 2 and q ≥ 4. Then

Dλ↓G is irreducible if and only if one of the following holds:

(i) λ ∈ L (1)(n). Furthermore, p ∤ q if m ≥ 3, and G 6≤ PΣL2(q) if m = p = 2 ∤ q.
(ii) m = 2, and one of (ii), (iii), (v) of Proposition 3.10 occurs.

Proof. Define ℓ from n − ℓ = max(λ1, λ
M

1). Then ℓ ≥ 1. Recall the notation (2.1).
Replacing λ by λM if necessary, we may assume that λ = (n− ℓ, µ) for a partition µ of
ℓ. If (m, q) are as listed in Proposition 3.10, then we are done. Otherwise we apply
Lemmas 6.16–6.19 when m ≥ 4 and Lemma 6.20 when 2 ≤ m ≤ 3 to conclude that
ℓ = 1, in which case the theorem follows from the main result of [47]. �

7. Doubly transitive groups Sp2m(2)

Throughout the section: δ ∈ {0, 1} , m ≥ 3, W is a 2m-dimensional vector space
over F2 with symplectic form (·, ·) and symplectic basis (e1, . . . , em, f1, . . . , fm), Ωδ is
the set of the quadratic forms of Witt defect δ on W associated with (·, ·),

n = n(δ) := |Ωδ| = 2m−1(2m + (−1)δ),

and G = Sp(W ) ∼= Sp2m(2) is embedded into Sn via its doubly transitive action on
Ωδ. For 1 ≤ k ≤ m we put Wk := 〈e1, . . . , ek〉F2 .
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7.1. Bounding Dλ for Sp2m(2). We follow [12, §7.7] and [8, §5]. Let Ω be the set
of all quadratic forms on W which satisfy Q(v + w) − Q(v) − Q(w) = (v,w) for all
v,w ∈ W . The group G acts on Ω via g ·Q(w) = Q(g−1w) for g ∈ G,Q ∈ Ω, w ∈ W .
Let Q0 ∈ Ω be the quadratic form defined by Q0

(
∑m

i=1(aiei + bifi)
)

=
∑m

i=1 aibi.
Then Ω = {Qv | v ∈W}, where Qv(−) := Q0(−) + (v,−). For δ ∈ {0, 1}, we set

Ωδ = {Qv | Q0(v) = δ}. (7.1)

By [12, Theorem 7.7A], Ω0 and Ω1 are the G-orbits on Ω, and the G-action on both
of them is doubly transitive. Note that Q0 = Q0 ∈ Ω0, also fix Q1 := Qem+fm ∈ Ω1.

Let 1 ≤ k ≤ m− 1. We define certain subgroups P δ
k ✂Rδ

k ≤ G. First, let

P δ
k := StabG(Qδ, e1, . . . , ek) = StabO(Qδ)(e1, . . . , ek) (7.2)

be the subgroup of G that fixes Qδ and each of k vectors e1, . . . , ek. Also set

Rδ
k := StabO(Qδ)(Wk). (7.3)

Note that P δ
k ✂Rδ

k and

Rδ
k/P

δ
k
∼= SLk(2). (7.4)

Lemma 7.5. Let 1 ≤ k ≤ m− 1. Then P δ
k fixes 2k quadratic forms in Ωδ, so P δ

k is
contained in a natural subgroup Sn−2k in Sn.

Proof. Note that P δ
k fixes each of the 2k forms {Qv+δ(em+fm) | v ∈Wk} in Ωδ. �

Lemma 7.6. Let λ = (n − ℓ, µ) ∈ Pp(n) for a partition µ of ℓ. For an integer

1 ≤ k ≤ m − 1 such that 2k−1 ≥ ℓ, we have (Dλ)P
δ
k 6= 0. In particular, if Dλ↓G is

irreducible then dimDλ ≤ [G : P δ
k ].

Proof. The first statement follows from Lemma 7.5 and Theorem 2.11. The second
one then follows from the Frobenius Reciprocity. �

Lemma 7.7. Let λ = (n− ℓ, µ) ∈ Pp(n) with µ ⊢ ℓ and Dλ↓G be irreducible. For an

integer 1 ≤ k ≤ m− 1 such that (Dλ)P
δ
k 6= 0, we have

dimDλ ≤ [G : Rδ
k]bp(SLk(2)) =

[G : P δ
k ]

|SLk(2)|
bp(SLk(2)).

The assumption (Dλ)P
δ
k 6= 0 is guaranteed if 2k−1 ≥ ℓ.

Proof. Note that Rδ
k acts on (Dλ)P

δ
k and the Rδ

k-module (Dλ)P
δ
k contains a simple

submodule X of dimension at most bp(Rk/Pk). By the Frobenius reciprocity, we have

dimDλ ≤ [G : Rδ
k] dimX ≤ [G : Rδ

k]bp(Rk/Pk) =
[G : P δ

k ]

[Rδ
k : P δ

k ]
bp(R

δ
k/P

δ
k ),

and it remains to use (7.4) and Lemma 7.6. �

Lemma 7.8. For 1 ≤ k ≤ m− 1, we have

[G : P δ
k ] = 2m−1+k(k−1)/2(2m−k + (−1)δ)

m
∏

i=m−k+1

(22i − 1) < 2(4m−k)(k+1)/2.
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Proof. Let ε := + if δ = 0 and ε := − if δ = 1. We have

dimV ≤ [G : P δ
k ] = [G : O(Qδ)] [O(Qδ) : P

δ
k ]

= 2m−1(2m + (−1)δ) [Oε
2m(2) : (GLk(2) ×Oε

2m−2k(2))]2′ |GLk(2)|

= 2m−1(2m + (−1)δ)(2m − (−1)δ)(2m−k + (−1)δ)

m−1
∏

i=m−k+1

(22i − 1) · 2k(k−1)/2

= 2m−1+k(k−1)/2(2m−k + (−1)δ)

m
∏

i=m−k+1

(22i − 1) < 2(4m−k)(k+1)/2,

as required. �

Proposition 7.9. Let V be an irreducible FG-module.

(i) If m ≥ 4 then dimV < (
√
3/2) · 2m(m+1/2) < n

1
4
log2 n+1.52.

(ii) Suppose that V = Dλ↓G for λ = (n − ℓ, . . .) ∈ Pp(n), and that there exists an

integer 1 ≤ k ≤ m− 1 such that 2k−1 ≥ ℓ. Then dimV < 2(4m−k)(k+1)/2.

Proof. (i) Note that n > 22m−2, so m < 1
2 log2 n+ 1. As m ≥ 4, we have n ≥ 28, and

dimV ≤ |G|1/2 < (3 · 2m(2m+1)−2)1/2 = (
√
3/2) · 2m(m+1/2)

< (
√
3/2) · 2(1+ 1

2
log2 n)(

3
2
+ 1

2
log2 n) =

√
6 · 2(log2 n)·( 14 log2 n+

5
4
)

=
√
6 · n 1

4
log2 n+

5
4 < n

1
4
log2 n+1.52.

(ii) Follows from Lemmas 7.6 and 7.8. �

Proposition 7.10. Let m ≥ 3, p = 2 or 3, λ ∈ Pp(n) such that Dλ↓G is irreducible.
Determine ℓ from n− ℓ = max(λ1, λ

M

1). Then ℓ ≤ 2 if m = 3, 4, and ℓ ≤ 3 if m ≥ 5.

Proof. Replacing λ by λM if necessary, we may assume that λ = (n−ℓ, µ) for a partition
µ of ℓ. Let m = 4. By [14], bp(Sp8(2)) ≤ 216. So

dimDλ ≤ 216 < (n3 − 9n2 + 14)/6,

hence ℓ ≤ 2 by Proposition 2.28(i). The same argument applies to the case m = 3.
So we may assume that m ≥ 5, hence n ≥ 496, and ℓ ≥ 4.

By Proposition 7.9(i), we have that dimV < nL(n) with

L(n) :=
1

4
log2 n+ 1.52 <

1

2
log2 n+ 1.

So by Proposition 2.23, we get

ℓ ≤ L′(n) := 0.7 log2 n+ 1.4 < n/p+ 2− δp. (7.11)

Now Theorem 2.21 applies to give dimDλ ≥ Cp
ℓ (n), hence

nL(n) > dimDλ ≥ Cp
ℓ (n) =

1

ℓ!

ℓ−1
∏

i=0

(n− (δp + i)p). (7.12)

Assume that ℓ = 4. By Lemmas 7.7 and 7.8 with k = 3, we have

dimV ≤ [G : P δ
3 ]

|SL3(2)|
bp(SL3(2)) <

28m−6

168
· 8 =

28m−6

21
.
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On the other hand, (7.12) implies

dimV ≥ (n− 9)4

24
≥ (2m−1(2m − 1)− 9)4

24
>

28m−6

21
as m ≥ 5, a contradiction. So we may assume that ℓ ≥ 5.

Assume that ℓ = 5. By Lemma 7.7 with k = 4, we have

dimV ≤ [G : P δ
4 ]

|SL4(2)|
bp(SL4(2)) <

n5

20160
· 64 =

n5

315
,

where we have used Lemma 7.8 to get [G : P δ
4 ] < 210m−10 < n5. On the other hand,

(7.12) implies

dimV ≥ (n− 12)5

120
>

n5

315
as n ≥ 496, a contradiction.

Now we may assume that ℓ ≥ 6. In particular, ℓ! < (ℓ/2)ℓ, and by (7.12), we get

nL(n) > dimDλ >
(n+ 3− 3ℓ)ℓ

ℓ!
>

(

2(n+ 3)

ℓ
− 6

)ℓ

. (7.13)

If ℓ ≥ 1.3L(n), then

nL(n) >

(

2(n+ 3)

ℓ
− 6

)1.3L(n)

and so, since n ≥ 496,

ℓ ≥ 2(n + 3)

n1/1.3 + 6
> L′(n),

contradicting (7.11). So

ℓ < 1.3L(n) < 0.33 log2 n+ 2. (7.14)

Now ℓ ≥ 6 implies m ≥ 7 and n ≥ 8128. In this case, (7.14) implies that

ℓ <
√
n/16. (7.15)

As n < 22m, we get ℓ < 2m−4 and so for

k := ⌈log2 ℓ⌉+ 1 (7.16)

we have 1 < k < m− 2 and 2k−1 ≥ ℓ. By Proposition 7.9(ii), we now conclude that

dimDλ < 2(4m−k)(k+1)/2. (7.17)

If ℓ ≥ 14 then (7.16) implies that k+1 < log2 ℓ+3 < ℓ/2. As n > 22m−2 and k ≥ 4,
we then have from (7.17) that

dimDλ < 2(2m−2)(k+1) < nk+1 < nℓ/2.

On the other hand, using (7.15) and (7.13), we obtain

dimDλ >

(

2(n + 3)

ℓ
− 6

)ℓ

> (32
√
n− 6)ℓ > nℓ/2,

a contradiction.
If 9 ≤ ℓ ≤ 13 then k = 5 by (7.16). Using (7.13) and (7.17) we get

(n− 36)9

13!
< dimDλ < 212m−15 < n6,

which is a contradiction since n ≥ 8128.
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If 6 ≤ ℓ ≤ 8 then k = 4 by (7.16). Again using (7.13) and (7.17), we obtain

min

{

(n− 15)6

6!
,
(n− 21)7

8!

}

< dimV < 210m−10 < n5,

a contradiction. The proof of the claim is complete. �

7.2. Ruling out the remaining Dλ for Sp2m(2).

Proposition 7.18. Let p = 3, n ≥ 28, and λ = (n − a, a) with a = 2 or 3. Then
Dλ↓G is reducible.

Proof. Note that n = 2m−1(2m+(−1)δ) 6≡ 2 (mod 3) . In particular, by Lemma 2.5, if
λ = (n−2, 2) we may assume that n ≡ 1 (mod 3) . We will use the following notation
from [32]:

Sk := S(n−k,k), Mk :=M (n−k,k), ik(G) := dimMG
k ,

E(λ) := EndF(D
λ), I(G) := indSnG FG.

If λ = (n − 2, 2) and n ≡ 1 (mod 3) , or λ = (n − 3, 3) and n ≡ 0 (mod 3) , then
by [46, Lemma 6.8], there exists a homomorphism ζ :M3 → E(λ) with [im ζ : D3] 6= 0.
If λ = (n − 3, 3) and n ≡ 1 (mod 3) , then by [46, Lemma 6.12], there exists a
homomorphism ζ : M3 → E(λ) with [im ζ : D3] 6= 0 or there exists a homomorphism
ζ ′ :M4 → E(λ) with [im ζ ′ : D4] 6= 0.

From [32, Corollary 2.31], (S∗
1)

G = 0. Further if n ≡ 1 (mod 3) then by [32,
Corollary 7.5], we have (S∗

2)
G = 0. By [8, Lemmas 5.11, 5.12], we have i2(G) = 1,

i3(G) = 2 and i4(G) > 2. It then follows by [32, Lemmas 3.3, 3.4] that there exists a
homomorphism ψ : I(G) → M3 with [imψ : D3] 6= 0. If n ≡ 1 (mod 3) then by [46,
Lemma 3.5] there exists a homomorphism ψ′ : I(G) →M4 with [imψ′ : D4] 6= 0.

Therefore, [im (ζ ◦ ψ) : D3] 6= 0 or [im (ζ ′ ◦ ψ′) : D4] 6= 0. The proposition then
follows from [32, Lemma 2.18]. �

Lemma 7.19. Let p = 2, n ≥ 28, and λ = (n− a, a) with a = 2 or 3. Then Dλ↓G is
reducible.

Proof. Assume the contrary. Note that Dλ is a subquotient of the FSn-module
Syma(U), where U denotes the FSn-permutation module on the set Ωδ of cardinal-
ity n = 2m−1(2m + (−1)δ . It is shown on [47, p. 10] that the FG-module U contains
a subquotient B of dimension 2m + 1 ≥ 7. Thus, in the Grothendieck group of FG-
modules we can write U = A+B for a FG-module A of dimension n− (2m+1). Note
that dimA ≥ 4(dimB) since m ≥ 3. This implies that, in the following decomposition
in the Grothendieck group

Syma(U) =

a
∑

i=0

Syma−i(A)⊗ Symi(B), (7.20)

the summand Syma(A) has the largest dimension. Now, by Proposition 2.28(i) we have

dim Sym3(A) ≤ (n− 5)(n − 6)(n − 7)/6 < (n3 − 9n2 + 14n)/6 ≤ dimD(n−3,3)

as n ≥ 28. Thus, when a = 3 every summand in (7.20) has dimension less than dimV ,
and so V ↓G cannot be irreducible. Likewise,

dim Sym2(A) ≤ (n − 6)(n− 7)/2 < (n2 − 5n+ 2)/2 ≤ dimD(n−2,2)
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by Lemma 2.27. Thus, when a = 2 every summand in (7.20) has dimension less than
dimV , and so V ↓G cannot be irreducible. �

We now prove the main result of the section:

Theorem 7.21. Let m ≥ 3, δ = 0 or 1, and let G = Sp2m(2) < Sn with G = Sp(W )
acting on the n = 2m−1(2m+(−1)δ) quadratic forms of Witt defect δ on the symplectic
space W := F2m

2 . Let p = 2 or 3, and let λ ∈ Pp(n) be such that dimDλ > 1. Then

Dλ↓G is irreducible if and only if p = 3 and λ = (n− 1, 1) or (n− 1, 1)M.

Proof. Assume that Dλ↓G is irreducible. By Proposition 7.10, we may assume that
λ = (n − ℓ, µ) with ℓ ≤ 3 and µ ⊢ ℓ. Next, by Proposition 7.18 and Lemma 7.19,
λ 6= (n− 2, 2), (n− 3, 3).

The cases where λ = (n−3, 2, 1), or p = 3 and λ = (n−2, 12), when G = Sp2m(2) <
Sn with m ≥ 3, are ruled out by [32, Theorem A]. Indeed, it was shown in [8, Lemma
5.11] that G has (exactly) two orbits on the set of 3-element subsets of Ωε, and so
G is not 3-homogeneous. Also by [3, Lemma 2.2] we have that if p = 3 and n ≥ 10
then (n− 3, 2, 1)M = ((n− 3)M, 3) and (n− 2, 12)M = ((n− 2)M, 2), so that in either case
h(λM) = 3.

This leaves only one possibility λ = (n−1, 1). Now we apply the main result of [47]

to see that D(n−1,1) is irreducible over G if and only if p = 3. �

8. Proofs of Main Theorems

8.1. Proof of Theorem A. For p ≥ 5 this is [8, Main Theorem] (and Remark 1.3).
So we may assume that p = 2 or 3. Since the case (p, λ) = (2, βn) is excluded,
by [32, Theorems A, B], we may assume that one of the following happens:

(1) p = 2, n ≡ 2 (mod 4) , λ = (n − 1, 1), and G ≤ Sn/2 ≀ S2 is as in [32,
Theorem B];

(2) G is 2-transitive on {1, . . . , n};
(3) G ≤ Sn−1 and λ is JS.

Since (1) is Theorem A(iii), we assume from now on that this case does not occur.

Suppose we are in the case (2). If λ ∈ L (1)(n) then by [47] and the remarks pre-
ceding Table II, we arrive at Theorem A(ii). If G = An, then, by definition of PA

p (n),

we arrive at Theorem A(i). So we may assume that G 6= An and λ 6∈ L (1)(n). By the
classification of 2-transitive groups [10], we are in one of the following situations:

(A) soc (G) is an elementary abelian subgroup;
(B) soc (G) ∼= PSLm(q) (is non-abelian simple) acting on n = (qm − 1)/(q − 1)

1-dimensional subspaces of Fm
q ;

(C) G ∼= Sp2m(2), m ≥ 3, acting on n = 2m−1(2m + (−1)δ) quadratic forms on
F2m
2 of the given Witt defect δ ∈ {0, 1};

(D) G is any of the other doubly transitive subgroups (which we call small).

We now apply Theorems 5.13, 6.21, 7.21, and 4.1 for the cases (A), (B), (C) and (D),
respectively.

Suppose we are in the case (3). If n = 5 then λ is JS only if λ = (5) and p = 2, or
λ ∈ {(5), (3, 2)} and p = 3, and in either case we have dimDλ = 1. So we may assume
that n ≥ 6. By [27], we have Dλ↓Sn−1

∼= Dµ, where µ is obtained from λ by removing

the top removable node of λ. If G = Sn−1 we arrive at Theorem A(v). Now we may
assume that G < Sn−1.
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We now apply [32, Theorems A, B] again with n − 1 in place of n and µ in place
of λ to arrive to the cases (1’),(2’),(3’) parallel to the cases (1),(2),(3) above. For
example, by [35, Theorems 3.3, 3.6], µ is not JS, so (3’) is excluded. The case (1’)
is also excluded, since µ = (n − 2, 1) implies λ = (n − 1, 1), but n − 1 ≡ 2 (mod 4)
implies that n is odd, and so λ is not JS. Thus, we are in the case (2’), i.e. G is
2-transitive on {1, 2, . . . , n− 1}.

Suppose G = An−1. Then Dλ↓An−1
∼= Dµ↓An−1

is irreducible if and only if µ 6∈
PA

p (n − 1). If p = 2, since λ 6= βn is JS, it can be easily seen from Lemma 2.9

that µ 6∈ PA
2 (n − 1) if and only if λ 6∈ PA

2 (n). If p 6= 2, since λ is JS, we have
from [6, Theorem 5.10] that µ 6∈ PA

p (n− 1) if and only if λ 6∈ PA
p (n). So D

λ↓An−1
is

irreducible if and only if λ is JS and λ 6∈ PA
p (n). We have arrived at Theorem A(vi).

Assume finally that An−1 6= G < Sn−1. As n ≥ 6, passing from λ to λM if necessary,
we may assume by Theorems 5.13, 6.21, 7.21, and 4.1 that µ = (n − 2, 1), (n − 3, 2)
or (n − 3, 12) (the last partition only for p = 3). Since µ is obtained from λ by
removing the top removable node it follows that λ = (n−1, 1), (n−2, 2) or (n−2, 12)
respectively. Note that (n− 1, 1) and (n− 2, 12) are JS if and only if n ≡ 0 (mod p) ,
while (n − 2, 2) is JS if and only if n ≡ 2 (mod p) . The result then easily follows in
this case by checking when the required congruences modulo p hold and when Dµ↓G
is irreducible using Theorems 5.13, 6.21, 7.21, and 4.1.

8.2. Proof of Theorem A′. For p ≥ 5 this is [36, Main Theorem]. So we may
assume that p = 2 or 3. If V lifts to Sn, we arrive at Theorem A′(i). Otherwise
λ ∈ PA

p (n). From Lemma 2.10 it then follows that λ1 ≤ (n+ 4)/2. By [34, Theorem
A], we are in one of the following situations:

(1) G is primitive on {1, 2, . . . , n};
(2) G ≤ An−1 and either λ is JS or λ has exactly two normal nodes, both of

residue different from 0.
(3) G ≤ An−2,2

∼= Sn−2 and λ is JS.

Suppose we are in the case (1). By Theorem 3.7, we see that either G is an affine
group, which is subsequently ruled out by Theorem 5.13, or G is a Mathieu group, in
which case one can apply Theorem 4.1 to arrive at the case (A1) from Table IV, or
else the case (A3) from Table IV occurs.

Consider the case (2). Suppose first that λ is JS. Then Eλ
±↓An−1

∼= Eπ
± for some

π ∈ PA
p (n − 1). As π can not be JS, applying [34, Theorem A] to n − 1 instead of

n, we deduce that either G is a subgroup of An−1 primitive on {1, 2, . . . , n − 1}, or
G ≤ An−2. The former case is considered as in the case (1) using Theorems 3.7, 4.1
and 5.13. The case G ≤ An−2 is subsumed by the case (3) to be considered below.

Suppose now that λ has exactly two normal nodes both of residue different from
0. From [36, Proposition 3.8] or the proofs of [34, Theorems B, 5.3] we have that
Dλ↓An−1

∼= Eν with ν ∈ Pp(n − 1) \ PA
p (n − 1) obtained by removing a good node

from λ. If p = 3 we also have that νM is obtained from λ by removing a good node. In
particular ν1, ν

M

1 ≤ (n+ 4)/2 < (n − 1) − 2 if n ≥ 11, so by Theorem A we have that
G ∈ {An−2,An−1}. Using [34, Theorem A], we arrive at Theorem A′(ii)(a). If n ≤ 10
and p = 2, λ = (4, 3, 1) and ν = (4, 2, 1), in which case we can conclude as above. If

n ≤ 10 and p = 3, λ = (3, 12) and ν(M) = (3, 1). In this case Eλ
± ∼= E

(4,12)
± ↓A5

, which
will be considered below when covering case (3).
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Consider the case (3). Using the isomorphism An−2,2
∼= Sn−2, by [34, Theorem 5.4]

and [36, Theorem 3.6], we can write Eλ
±↓An−2,2

∼= Dµ where µ ∈ Pp(n−2)\PA
p (n−2) is

obtained from λ by removing two good nodes. If p = 3 we also have that µM is obtained
from λ by removing two good nodes. In particular µ1, µ

M

1 ≤ (n + 4)/2 < (n − 2) − 2
if n ≥ 13. In this case it follows from Theorem A that G ∈ {An−2,An−3}. The
case G = An−3 can be excluded, since Eλ

±↓An−3,3
is not irreducible by [34, Theorem

A]. So G ∈ {An−2,An−2,2}, in which case Eλ
±↓G is irreducible by [34, Theorem

C], and we arrive at Theorem A′(ii)(b). If n ≤ 12 then p = 2, λ = (5, 3, 1) and

µ = (4, 2, 1) or p = 3 and (λ, µ(M)) ∈ {((4, 12), (3, 1)), ((7, 3, 2), (5, 3, 2))}. If p = 2
and λ = (5, 3, 1) or p = 3 and λ = (7, 3, 2) we can conclude as above. If p = 3

and λ = (4, 12) then Eλ
±↓A4,2

∼= D(3,1)(M) . Since dimEλ
± = 3, we have that Eλ

±↓G is

reducible if G is abelian or a 2-group. Further Eλ
±↓A3,2

∼= D(3,1)(M)↓S3 is reducible,
under the identification of A3,2

∼= S3. Considering the submodule structure of S4 it
then follows that G ∈ {A4,2,A4} and so we can again conclude by [34, Theorem C].

8.3. Proof of Theorem B. For the ‘if’ direction, by Theorem A, the cases listed in
Theorem B do give rise to irreducible restrictions Dλ↓G.

For the ‘only-if’ direction, assume that Dλ↓G is irreducible. By Schur’s Lemma,
Z(G) acts on Dλ via scalars, and so Z(G) ≤ Z(Sn) = 1 as Sn acts faithfully on Dλ.
Thus G is in fact almost simple, i.e. S✂G ≤ Aut(S) for a non-abelian simple group S.
Inspecting the list of exceptions in Theorem A for almost simple groups, we conclude
that it is enough to show that such a group cannot occur in the case (iii) of Theorem A.

So assume for a contradiction that G is almost simple with socle S and satisfies the
conditions described in Remark 1.2. Recall that B = Sn/2,n/2 is the base subgroup of
Sn/2 ≀ S2. As G is almost simple, we have S ✂G ∩B, and

2 divides |Out(S)|. (8.1)

Let π1 (resp. π2) denote the permutation representations of odd degree n/2 of G∩B,
induced by the projection of B onto the first (resp. second) factor Sn/2 of B. By
assumption, πi(G ∩B) is 2-transitive, but the homomorphisms

G ∩B πi−→ Sn/2 → GL(D(n/2−1,1))

for i = 1, 2 give rise to non-isomorphic irreducible representations (of degree n/2− 1).
This implies that

π1 and π2 induce two distinct 2-transitive permutation characters of G ∩B. (8.2)

We also note that both π1 and π2 are faithful. Indeed, if Ker(πi) 6= 1 for some i, then
Ker(πi) ≥ soc (G) = S. Since G interchanges π1 and π2, it follows that S ≤ Ker(π3−i),
whence S acts trivially on {1, 2, . . . , n}, a contradiction.

Now we can go over the list of 2-transitive permutation groups of odd degree n/2
with socle S, e.g. in [47, Table I]. Then (8.1) rules out the cases S = M11, M23,
and 2B2(q). If (S, n/2) = (Am,m ≥ 5), then, since |Out(S)| = 2, we must have that
G ∼= Sm and G ∩ B = Am, which has a unique 2-transitive permutation character
of degree m, violating (8.2). Likewise, if (S, n/2) = (PSL2(11), 11) or (A7, 15), then
again |Out(S)| = 2, and G ∩ B = S has a unique 2-transitive permutation character
of degree n/2, a contradiction.
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Consider the cases (S, n/2) = (PSL2(q), q+1) or (PSU3(q), q
3+1). In these cases,

2|q as n/2 is odd. If S1 and G1 denote the stabilizer of 1 in S, respectively in G ∩B,
then it is easy to see that S1 = NS(Q) and Q = O2(S1)✂G1. As

[G ∩B : G1] = n/2 = [S : S1],

by Frattini argument we have G1 = NG1(Q). The same argument also applies to the
stabilizer of n/2+ 1 in G∩B. Thus the 2-transitive representations of G∩B induced
by π1 and π2 are in fact G∩B-conjugate and so have the same character, contradicting
(8.2).

Finally, consider the case (S, n/2) = (PSLd(q), (q
d − 1)/(q − 1)) with d ≥ 3. In

this case, the 2-transitive permutation action πi(S) extends to PΓLd(q), but not to
the entire Aut(S) ∼= PΓLd(q) ⋊ C2 (where C2 is generated by the inverse-transpose
automorphism τ). As πi↓S extends to G ∩ B, G ∩ B ≤ PΓLd(q). We may assume
that the stabilizer S1 of 1 in S is the stabilizer of a fixed one-dimensional subspace
in the natural module Fd

q for SLd(q). Then Q := Or(S1) is an elementary abelian

r-subgroup of order qd−1, if r is the prime dividing q. Note that PΓLd(q) preserves
the S-conjugacy classes of Q, and so

[G ∩B : NG∩B(Q)] = [S : NS(Q)].

Arguing as in the previous case, we obtain that the stabilizer G1 of 1 in G ∩ B is
precisely NG∩B(Q). Thus the representation π1 of G∩B is uniquely determined once
we fix (the S-conjugacy class of) Q, whence it must be the restriction to G ∩ B of
the usual action of PΓLd(q) on 1-spaces of Fd

q , with character say ψ. Clearly, ψ(g) is

the number of g-invariant 1-spaces on Fd
q for all g ∈ PΓLd(q). Note that S has only

one more 2-transitive representation that is not equivalent to π1↓S , namely the one on
hyperplanes of Fd

q , which extends to the usual action of PΓLd(q) on hyperplanes of Fd
q ,

with character say ψ′. Again, ψ′(g) is the number of g-invariant hyperplanes on Fd
q for

all g ∈ PΓLd(q). Now, ψ
′ = ψτ , and ψ is τ -invariant by the proof of [56, Lemma 6.2].

It follows that ψ′ = ψ. As the 2-transitive permutation character of G ∩ B induced
by π2 is either ψ↓G∩B or ψ′

G∩B , we see that π1 and π2 induce the same permutation
character, again violating (8.2).

8.4. Proof of Theorem B′. Inspect the list of exceptions in Theorem A′ for almost
simple groups.

8.5. Proof of Theorem C. The first statement of the theorem and the ‘if’ part of
the second statement is [32, Theorem C], but see Remark 1.3. For the ‘only-if’ part
of the second statement, in view of part (iii) of the first statement, we may assume
that G is not primitive. By [57, Table III], Dβn is obtained by reducing modulo 2 a

basic spin representation BC of Ŝn. So BC↓G is irreducible. By [38, Theorem C] we
have that

G ∈ {Sn−1,An−1,Sn−2,An−2,2}.
If Dβn↓An−1

is irreducible then Dβn↓An
and Dβn−1↓An−1

must be irreducible, which is

impossible. The cases G = Sn−2 and An−2,2 can be also ruled out, since by part (i)

of the first statement of the theorem, we have that Dλ↓Sn−2,2
is reducible. Finally, if

G = Sn−1 we apply part (i) of the first statement of the theorem to arrive to part (1)
of the second statement.
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8.6. Proof of Theorem C′. For the first statement of the theorem, taking into
account [34, Propositions 6.3, 6.6, 6.7], which deal with irreducible restrictions of
basic spin modules to the subgroups of the from An ∩ (Sn−k × Sk) and An ∩ (Sa ≀ Sb),
we may assume that G is primitive. If n ≡ 2 (mod 4) then βn 6∈ PA

2 (n), so in
this case the first statement follows from Theorem C. So we may also assume that

n 6≡ 2 (mod 4) , in which case βn ∈ PA
2 (n). By Theorems 3.7, 4.1 and 5.13, if Eβn

± ↓G
is irreducible then we are in one of the exceptional cases (A7)-(A12) listed in Theorem
C′(iii). Conversely, the cases (A11),(A12) give rise to examples by Theorem 4.1; the
cases (A7),(A8) occur by Theorem 5.13; the case (A9) occurs by Theorem 3.7 (and
the case (A10) is covered by Theorem C since in this case n ≡ 2 (mod 4) ).

For the second statement, the ‘if’ part follows from the first statement, and [34,
Proposition 6.3].

We finally prove the ‘only-if’ part of the second statement. In view of Theorem C,
we may assume that βn ∈ PA

2 (n), i.e. n 6≡ 2 (mod 4) . As in the proof of Theorem B,
we have that S ✂ G ≤ Aut(S) for a non-abelian simple group S. By the case (iii) of
the first statement, we may also assume that G is not primitive.

Since dimV = 2⌊(n−1)/2⌋−1 ≥ 2(n−4)/2, we have that |Aut(S)| ≥ |G| ≥ 2n−4. Now
we apply [26, Proposition 6.1] and consider the possible cases for G listed there. If
we are in one of the cases listed in Proposition 3.11, then we arrive at the exceptional
cases covered in part (1). So we may assume that S = Am, with m ≥ 7 and each orbit
of S on Ω := {1, 2, . . . , n} having length 1 or m.

Let Ω1, . . . ,Ωa be the S-orbits of length m so that S fixes b := n− am points in

Ω′ := Ω \ (Ω1 ∪ · · · ∪Ωa).

Let πi denote the permutation action of S on Ωi, and also of G on Ωi in the case G
stabilizes Ωi. Let S(Ωi) ∼= Sm and A(Ωi) ∼= Am denote the natural subgroups of Sn
that act only on Ωi.

Restricting V to
∏a

i=1 A(Ωi), we see that V ↓S contains a submodule

U := V1 ⊗ V2 ⊗ . . .⊗ Va ⊗X,

where V1, . . . , Va are basic spin modules of S. If a ≥ 3, then, as S has at most two
non-isomorphic basic spin modules, we may assume V1 ∼= V2 and note that dimVi ≥ 2.
The same holds if a = 2 and S has a unique basic spin module, i.e. m ≡ 2 (mod 4) .
Thus in either case U has a proper submodule Sym2(V1)⊗V3⊗. . .⊗Va⊗X of dimension
greater than (dimU)/2. Hence V ↓S has a nonzero subquotient of dimension less than
(dimV )/2, contradicting to the irreducibility of G on V . We deduce that a ≤ 2, and
if a = 2 then S has two basic spin modules, i.e. a = 2 implies m 6≡ 2 (mod 4) .

Let c denote the number of G-orbits on Ω. Since |G/S| ≤ 2 we have that

c ≥ ⌊(a+ 1)/2⌋ + ⌊(b+ 1)/2⌋.
By [34, Proposition 6.3], c ≤ 3, which implies that b ≤ 4. If b = 4, then G must have
two orbits of length 2 on the set Ω′ of S-fixed points, contradicting [34, Proposition
6.3]. Suppose b = 3. Then G must have two orbits of length 2 and 1 on Ω′, so [34,
Proposition 6.3(1)] implies that 4 | n, c = 3, m = n − 3, and also G = 〈Am, h〉 ∼= Sm.
Since h does not centralize S, h must act non-trivially, in fact as an odd permutation
on Ω1. As G has three orbits of length n− 3, 2, and 1 on Ω, we see that G = An−3,2,1.

Assume now that b = 2 and G fixes the two points of Ω′. Then c = 3, and so
4|n by [34, Proposition 6.3(1)]. If m = n − 2, we have arrived at the second case of
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Theorem C′(1)(a). As 4|n, the restriction of V to A(Ω1 ∪Ω2) ∼= An−2 is Eβn−2 , which
extends to Dβn−2 . Hence V ↓S contains a subquotient

Dβn−2↓π1(S)×π2(S)
∼= Dβm↓π1(S) ⊗Dβm↓π2(S).

Note that all embedding Am → Sm are Sm-conjugate. It follows that

X := Dβm↓π1(S)
∼= Dβm↓π2(S)

as FS-modules, of dimension e ≥ 4. Hence V ↓S contains subquotients Sym2(X) and
∧2(X) of distinct dimensions, contradicting the irreducibility of G on V .

Consider the case b = 2 and Ω′ forms a G-orbit of length 2. Recall that a ≤ 2. Now
if c = 3, then 4|n by [34, Proposition 6.3(1)], n = 2m+2, G ∼= Sm, and we can repeat
the above argument with Sym2 / ∧2 (X) to reach a contradiction. Suppose c = a = 2.
Then G has orbits of length 2 and n− 2 = 2m on Ω, whence 4|n as n 6≡ 2 (mod 4) by
assumption. Then we can again repeat the above argument with Sym2 / ∧2 (X). So
we must have a = 1, n = m+ 2, G = 〈S, h〉Sm. Again, since [h, S] 6= 1, we must have
that h acts non-trivially on Ω1 (and on Ω′), and so G = An−2,2, and we have arrived
at the case (1)(b) of Theorem C′.

Now assume that b = 1. As G ≤ An−1 is irreducible on V , by [34, Proposition
6.3] we have n ≡ 0, 3 (mod 4) . If c = 3, then, since a ≤ 2, we have that G has
three orbits of length m, m, and 1 on Ω, but this contradicts [34, Proposition 6.3(1)].
Suppose c = a = 2, so that n = 2m + 1 ≡ 3 (mod 4) . In this case, the restriction
of V to A(Ω1 ∪ Ω2) ∼= An−1 is Eβn−1 , which extends to Dβn−1 . Now we can repeat
the argument with Sym2 / ∧2 (X) to reach a contradiction. Thus a = 1, n = m + 1,
G = Am, and we and we have arrived at the case (1)(c) of Theorem C′.

Finally, we consider the case b = 0. As n > m and a ≤ 2, we must have that
a = 2, n = 2m ≡ 0 (mod 4) . By [34, Proposition 6.3] for c = 2 (where G ≤ Am,m)
and [34, Proposition 6.6] for c = 1 (where G ≤ Sm ≀ S2), we have m ≡ 2 (mod 4) ,
which contradicts what was proved above.
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