A Truthful Mechanism For Mobility Management
In Unmanned Aerial Vehicles Networks

Baocheng Geng
Department of EECS
Syracuse University
Syracuse, USA
bageng @syr.edu

Abstract—We study the task allocation strategy in a UAV
swarm sensing platform for performing location estimation. In
particular, we design a reverse auction mechanism where the
fusion center (FC) selects a subset of UAVs, and instructs them
to move to particular positions to take measurements regarding a
target. Based on the measurements, the FC estimates the location
of the target and reimburses the UAVs for their participation in
performing the sensing tasks. The auction mechanism addresses
participatory concerns of the UAVs that arise due to energy
consumption, while ensuring that the UAVs truthfully report their
participation costs. Our mechanism maximizes the utility of the
FC to achieve desired sensing objectives and numerical results
are provided for illustration.

I. INTRODUCTION

Unmanned aerial vehicles (UAVs) are widely being used in
target localization due to their flexibility of movement and the
ability to fly over dangerous and inaccessible areas [1], [2].
Embedded with global positioning system (GPS) and different
kinds of electronic sensors, UAVs can move to desired regions
of interest (Rol) and take measurements regarding the target.
Since a single UAV has limited coverage, battery capacity
and processing ability, it is advantageous to deploy a swarm
of UAVs to work together. Multi-UAV-localization is gaining
fast popularity. For example, a multiple-UAV cooperative path
planning technique was proposed to solve problems of target
tracking and obstacle avoidance [3]. The authors developed
a UAV swarm network using low cost sensors which can
perform distributed cooperative localization [4].

However, most of the literature assumes voluntary participa-
tion of UAVs in sensing tasks without addressing their selfish
concerns. Since a UAV consumes power/energy to take mea-
surements [5], it requires incentives to be motivated to perform
the sensing tasks and provide its sensing measurements. This
concern becomes more relevant when UAVs in the network
belong to different organizations or individuals.

There has been some work on incentive mechanism design
in networked UAV-collaborative systems. In [6], the authors
considered the selfish concerns of UAVs and analyzed their
strategic behavior in trajectory planning and coalition for-
mation. A decentralized planning algorithm that relies on
an auction scheme was developed to plan finite look-ahead
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paths for multiple UAVs [7]. However, these auction-based
mechanism designs for swarms of UAVs rely heavily on
the participant’s truthful revelation of their bids. The bids,
representing the UAVs’ personal information while performing
the sensing task, reflect their costs of participation. In such
a scenario, if the auction mechanism is not truthful (or, in
other words, strategy-proof), some UAVs might intentionally
falsify their bids in order to gain undue advantages. Untruthful
mechanisms suffer from low economic efficiency and are
prone to market manipulations [8].

The authors of [9]-[11] have developed incentive mech-
anisms that ensure truthful revelation of bids, but without
formulating the mobility strategy of the participants. There-
fore, these mechanisms are not applicable to the scenario of
UAV swarm sensing, where the most prominent feature is the
ability of UAVs to move to specified locations. When the
mobility of UAVs is considered, the problem is much more
challenging as we not only need to select a group of UAVs
to take measurements regarding the target, but we also need
to determine where the selected UAVs should move to. As a
UAV moves closer to the target, the quality of the measurement
becomes better. Therefore, the trade-off between the quality
improvement of the measurement and the energy consumption
due to movement must be considered. The problem is further
complicated by the fact that participants may intentionally
falsify the bids in order to gain additional advantages.

The contribution of this work is to design an auction-based
mobility management mechanism for UAVs that ensures truth-
ful revelation of participation costs, which, to the best of our
knowledge, has not been addressed in the literature. We study
target localization using the received power measurements
from the UAVs. Initially each UAV sends a bid representing
its cost per unit energy to the FC. After the FC receives these
bids, to maximize its own benefit, it selects a subset of UAVs
to take measurements and at the same time, determines the
positions they should move to. Finally, the FC estimates the
position of the target and makes payments to the UAVs. Our
mechanism is optimal in the following sense: i) the FC’s utility
is maximized; ii) each UAV has non-negative expected utility,
making their participation in the mechanism rational; and iii)
the UAVs do not benefit from falsifying their bids to the FC,
i.e. incentive-compatibility condition is satisfied.
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II. PROBLEM SETUP

In this section, we present our system model considering
the problem of localizing a single target. For simplicity of
notation, we assume that the swarm of UAVs, the target and
the FC are of the same height so the problem can be formulated
in 2D space (our system model can be easily extended to 3D
space). There are N UAVs s1, s, ..., sy uniformly deployed
in the region of interest (Rol). The location of the it UAV is
denoted as [; : (x;,y;), which is assumed to be known to the
FC. The target is located at an unknown position I; : (x4, y:)
and it emits power that attenuates as a function of distance.
The FC, located at lf. : (zfc,y¢c), collects measurements
from UAVs and makes an inference about the target’s location.
We consider the Rol to be divided into a grid consisting of
7=1,2,...,J cells.

Following the power attenuation model described in [12],

the ith UAV located at l; receives the signal power z; =
P
—02 +n; 2 a; + n;, where P, is the signal
14+ al|l; — L5

power emitted by the target and « is a scaling parameter.
n; represents the additive noise in the measurement and is
assumed to be independent Gaussian noise that follows the
normal distribution A/(0,02). We consider that each UAV
sends Z; to the FC by quantizing its measurement z; to m
bits, such that

0 —oco<z<m

R—-1 UR_1§Zi<OO,

where 71, ...,mr—1 are uniform quantization levels and R =
2™ is the number of quantization levels of each UAV. Given
the target location [; and the ith UAV’s location l;, the
probability that Z; equals r is p(Z; = r|l;, ;) = Q(*) —
Q(™+L=%), where Q(-) is the complementary distribution
of the standard normal distribution. Assume that different
UAVs take measurements independently, the joint probabil-
ity density function (PDF) of the quantized measurements
Z=(Zy,...,2ZN) is

p(Z|li, 1) = Hp Zilli, L) €y
The energy consumption of a UAV consists of two parts. One
part of energy consumption takes place when a UAV moves
from one cell to another, EM = ¢ x ||I} — ;]|,,, where I} and
l; are the initial position and the final position of the UAV,
respectively. ¢ is the energy needed for the UAV to move a
unit distance'. The other part is the energy needed to transmit
the m-bit measurement to the FC, EI = e x m x ||l; — lfc||§,
where ¢ is the energy needed in data transmission per bit per

unit distance square?.

'"When the sensing nodes are static, their energy consumption due to
movement, EiM for : = 1,..., N, is fixed to be 0, which can be treated
as a special case of our UAV-sensing model that allows mobility.

2In experiments conducted in [5], the energy consumption for short distance
communication is negligible compared to UAV movement. More generally,
EZT in our model represents the energy needed for data processing including
signal reception, quantization and transmission.

A. Location estimation and information gain

After the FC collects measurements from a subset of UAVs,
it uses an importance sampling based particle filter approach to
estimate the location of the target. A particle filter is based on
Monte-Carlo simulations and it represents the target’s posterior
distribution p(l;|Z) using a group of particles t; and the
associated weights wg [13]:

N
~ > wid(l —t) 2
s=1

where a total of Ny particles t5,s € {1,2,..., N} are gener-
ated according to the prior distribution of the target’s location;
the weight of each particle w; is updated in proportion to the
likelihood function (1); and §(-) is the Dirac delta function.
When N is large enough, the representation of (2) is very
close to the posterior distribution of the target’s location.
Next, we introduce measures that characterize the FC’s
estimation performance and the information gain from each
of the UAV. The Cramer-Rao Lower Bound (CRLB) gives
the theoretical performance limit for Bayesian estimation [14].
Suppose I, is the estimator of the target’s location [, then the
CRLB can be expressed as E{[l;—1,][l;—1,]T} > F~', where
F is the inverse of the CRLB and is known as the Fisher
information (FI) matrix. It is desirable to minimize F~' to
reduce the estimation error. However, calculating 7! requires
a lot of computation and authors in [15] provide a surrogate
approach that maximizes the trace of the FI matrix /. Further-
more, the FI matrix can be decomposed into two parts: the FI
obtained from the UAVs’ measurements and the FI from the
prior information of the target’s location: F = FP 4 FF,
It was shown that since each UAV takes its measurement
independently, the FI matrix from the measurements of a total
of N UAVs can be written as: F© = Zfil flt FPp(1,)dl,,
where p(l;) is the prior knowledge of the target’s location dis-

P 2
tribution, and FP = [, gy (PGHet ) e is the FI

matrix of the N UAV [16]. We use I = ¢r ( I f}’p(lt)dzt),
where tr(-) is the matrix trace, to represent the information
contribution of the i UAV in estimating the location of the
target. The larger I is, the more information the ith yav
contributes towards the estimation of the target’s location. Let
I¥ = tr(FF) be the information from the prior knowledge

of the target, and the total information gain can be written as
I=tr(F)=1 IP +17.

B. Auction-based mobility management

p(lt|2)

We describe our auction mechanism and formulate the
optimization problem for the FC in this subsection. At the
beginning of our mechanism, each UAV (bidder) sends a
bid v; to the FC (auctioneer), where v; represents bidder i’s
valuation of cost per unit energy. Afterwards, the FC selects a
subset of UAVs to take measurements regarding the target and
reimburses them for their energy consumption in performing
the sensing task. Because of the selfishness of the UAVs, the
UAVs’ utilities in participating in the sensing task should be
nonnegative, i.e., the payments are no smaller than their costs
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due to energy consumption. We assume that the UAVs always
choose to participate when their utilities are nonnegative with
the UAVs competing to sell their measurements to the FC.

Before the bidders report their bids, only UAV ¢ knows its
true bid, and for other bidders and the FC who are uncertain
about v;, v; follows a PDF f;(v;) : [ai,,b;] — R™, where
a; and b; are bidder i’s lowest and highest bid, respectively.
Let v = (v1,vs,...,un) denote the vector that contains bids
from all the UAVs. Suppose that the bid of each UAV is
statistically independent of each other. Therefore, the FC’s
uncertainty about v can be expressed as the joint PDF
f?(v) = Ilj=1. n fx(vk). For bidder 4, the joint PDF of
all other bidders’ bid v_; = (v1,...,v;—1,Vi41,...,VN) Can
be written as f?;(v—i) = [Tp=1, i-1,i11.....n Fo(vk)-

We consider the FC to derive a benefit from estimating
the location of the target and its valuation per unit Fisher
information gain is considered to be vrpco. We assume that
vrc 18 known to all the bidders. In our mechanism, the FC is
assumed to instruct the selected UAVs to move to the center of
particular cells. The location of the j th cel’s center is denoted
as o;. Based on the analysis of Section IL.A, the FI matrix
provided by the ith

ith is: FD —
W cell is: FY = [,

UAV when it moves to the center of
L (st
v p(Zi|oj, lt) 8lt

Ig = tr(Fi? ) be the information gain of the measurement
taken by the i UAV when it moves to the jth cell.

Given the UAVs’ bid vector that represents their energy
cost v = (vq,vs,...,vn), the FC’s objective is to select a
subset of UAVs and determine which cells these UAVs should
move to, so as to maximize its expected utility in estimating
the target’s location. After the selected UAVs move to the
instructed cells, they take measurements regarding the target
and send the quantized measurements to the FC. Finally, the
FC makes payments to the UAVs for their participation in the
sensing task.

Now we formulate the auction-based mobility manage-
ment problem. The outcome of the auction mechanism can
be described by a pair of functions (p,q) where q(v) =
[q11, q12, -, Q175 -+ 5GN1, qN2, - - -, qN ) such that g;;(v) €
{0,1} is the decision variable that represents whether or not
the FC selects the " UAV and instructs it to move to the jth
cell; and p(v) = [py, ..., pn] such that p;(v) is the payment
FC makes to the i UAV. We allow for the possibility that
the FC might have to pay something to a UAV even if that
UAV is not selected.

The utility functions of the FC and the UAVs are their
expected gains minus their expected incurred costs. Let V =
[a1,b1] X -+ X [an,bn]| represent the set of all possible
combinations of the UAVs’ bid vector. The expected utility
of the FC can be expressed as:

U (p,q,v)
= / %FG(ZZQU(”)IS'HP)—Zpi(v)]fv(v)d’v 3)

The ith UAV only knows its own cost v;, without knowing the

bids of other UAVs. Therefore, its expected utility U; (v, v—;)
is averaged over all possible combinations of v_;:

Uz‘(vi/v—i):/[pi(vz’,U—i)—viEi(Ui,U—i)]fﬁi(’v—i)d'v—i “4)

v_;e€V_,;

In the above equation, E;(v), which is short for F;(g;;(v)),
is the expected energy consumption of the i UAV when it
moves to all possible J cells in the Rol:

J J J
Ei(v) =) Ejai(v)+ Y Eifqi(v) £ Eiygii(v)  (5)
=1 =1 =1

where Eg =exmX |oj — lfc||§ is the energy needed to

transmit quantized measurements to the FC when the ith yav
is at the center of cell j, and E}Y = ¢ x |lo; — ]|, is the
energy needed for the i UAV to move to the jth cell from
its initial position. In (5), we define E;; = E; + E} to be
the total energy consumption when the i UAV moves to the
jth cell and transmits its measurement to the FC.

Because the ith UAV’s bid is not known to the FC, it
may strategically lie about the bid in order to gain additional
benefits. For example, if the i vav reports a higher bid
than its true valuation, the payment it receives might be higher
because the FC thinks it has more cost per unit energy. Again,
a lower than truthful bid might result in better chances for a
UAV to be selected by the FC to take measurements. In the
case that an UAV falsifies its bid, i.e., it announces ¥; to be
its bid when the actual cost per unit energy is v;, its expected
utility U; would be:

Z/N{i('f]h'v—i):/ {pi(f)z‘, v_i) =i (03, v—i)} fi(v-i)dv_; (6)
v_; €V,

To ensure that the mechanism is truthful, i.e., a UAV does
not gain extra benefits from lying about its bid, we force
L{Z-(vi, ’U,Z‘) 2 Z/{l(f}“ U,Z').

Thus, the auction-based mobility management problem can
be formulated as the following optimization problem:

maximize UFC(p,q,v) @)
P.q

subject to the constraints: Ui (v, v—3) >0 (Ta), U (v, v—;) >
Ui(0i,v-) (T0), S, S0 qi5(v) < M/m(Te), qi5(v) €
{0,1} and Y7_, ¢i;(v) € {0,1} (7d), for i = {1,..., N},
i=A{1,....J ]]L Constraint (7a) ensures that each UAV has
a non-negative utility in performing the sensing task, i.e.
individual rationality (IR). (7b) is the incentive-compatibility
(IC) constraint which guarantees no UAV benefits from lying
about its true bid, and (7c) says that due to the communication
bandwidth being limited to M bits, a maximum of M/m
UAVs can transmit measurements to the FC. (7d) requires that
the decision variable has to be a Boolean value.

III. UAV MOBILITY MANAGEMENT

We solve the optimization problem (7) and construct the
UAV mobility strategy in this section. In particular, the opti-
mization problem is simplified via the following theorem.
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Theorem 1. The FC can determine the optimal set of UAVs
to sense the target and their optimal locations by solving:

maximize Y(q,v)f*(v)dv (8)

a vGV
subject to Z Z qij(v) < M/m, (8a)
g:5(v) € {0,1} and qu €{0,1}  (8b)

where Y(q,v) = vre{ (i, i 4 ()15 + 17)} -
S Eiw) (v + 58, Fiw) = [ fi(ui)dus, and the
payment to each UAV i is given by:

pi(v) = v B / E;(r;,v_;)dr; ©)
Proof: The main idea is to rewrite the IR constraint
(7a), the IC constraint (7b), and substitute them into the
optimization problem. Detailed proof will not be provided here
due to page limits. ]
Based on above results, we now present how the FC
can optimally select UAVs and determine their locations
(i.e., how to determine ¢(v)), and find the payments
of the UAVs (i.e., how to determine p(v)). Substitut-
ing (5) into Y(q,v) of Theorem 1, we have Y(q,v) =
N 'y D _ Fi (vi) P
Zi:l Zj:l q”(’u) [UFCIU E;; (U1,+ Tilo ))] + vpel”.
By defining:
Gij = vrcli] — Eij (Ui + 1;:((;):))) ;
the optimization problem obtained in Theorem 1 can be written
as:

(10)

f(v)dv (11)

max1mlze/ Z Z [Gijqij (v
veV

i=1 j=1

subject to the constraints (8a) and (8b). This problem can
be solved by choosing ¢;;(v) so that Zf\il Z}']:1 (Gijqi;(v)]
is maximized. First, we calculate the entire set {G;;|i €
{1,2,...,N}, j€{1,2,...,J}. Then, we rank elements in
this set in a decreasing order and select the highest M/m
entries with distinct ¢ indices. For each of these entries, if G,
is positive, we set the correspondmg ¢;; = 1. Note that to
maximize the term ZZ 1 7 i=11Gijqij(v)], we discard the
entries with negative values of Gj;. Algorithm 1 formally
provides the procedure for UAV mobility management.

The payment to each UAV ¢ is obtained via (9). Since
E;(r;,v_;) represents the expected energy consumption of the
th UAV when its bid is r; and all other UAVs’ bid vector is
v_;, it is possible that E;(r;, v_;) has different values when
r; € [v;,b;]. We calculate (9) using numerical methods and
the detailed procedure is presented in Algorithm 2.

IV. SIMULATION EXPERIMENTS

We evaluate the performance of our mechanism while
performing target localization. A swarm of UAVs is uniformly
deployed in the Rol of area d?> = 50 x 50 m?2. The prior

Algorithm 1 UAV Management: Movement Strategy

: PROCEDURE: Determine UAV movement strategy
2: Calculate G;; defined in (10), for ¢ = 1,2...,N and j =
1,2...,J.
3: Rank the list of Gyj,7 € {1,2...
decreasing order.
cfor K=1,2...,

-

,N},7€{1,2...,J} in the

4 M/m do

5: Select the largest G/

6: if G5 > 0 then

7: Set the corresponding g;/;» = 1.

8 end if

9 Delete all entries associated with the i’th UAV Gyj,5 €
{1,2...,

10: end for

11: Set all other entries of ¢;; = 0.

12: For each ¢,/ ;; = 1, the FC selects the %

to move to the 5’ th cell.

Time complexity: O(NJ)

J} from the list.

/"t UAV and instructs it

Algorithm 2 UAV Management: Payment Strategy

: PROCEDURE: Determine payment to the ith UAV.

. Initialize p; = 0, r; = b;.

: Choose stepsize e.

while r; > v; do
Calculate E;(r;, v—
from Algorithm 1.
Update p; = p; + eE(rs, v—;).
Update 7; = 1; — €

: end while

1 pi = pi +viEi(v).

10: The FC makes payment p; to the i uAv,

Time complexity: O (%% ])

DpE WS

;) based on q(r;,v_;), which is obtained

distribution about the target location, p(l;), is assumed to
be Gaussian with mean pu, = [-3 — 3]7 and covariance
3o = diaglo? oZ] where we select oy = 2.4. The source
power is Py = 1000 and the variance of the measurement noise
is selected as 02 = 1. Each UAV quantizes its measurement
to 4 bits using uniform quantizers, where the quantization
thresholds [, -+ ,nr—1] are selected to be the values which
evenly partition the interval [—a, 0++/Fp]. We assume that the
total bandwidth, i.e., the number of bits that can be transmitted,
is M = 12 bits. The FC’s value per information gain is
assumed to be vpo = 100. For UAV 1, the uncertainty of its
cost per unit energy is modeled using a uniform distribution
on [a;,b;], with a; = 5 and b; = 20. The FC is located
at (6,6), and the parameters in the energy cost function are
e =1073,¢ = 1071, N, = 5000 particles are drawn from
p(l¢) in order to estimate the location of the target. The result
is obtained by averaging over 5000 Monte Carlo trials.

In Fig. 1, we divide the Rol into 25 cells, and plot the
utility and mean square error (MSE) of the FC when the
total number of UAVs deployed varies and takes values from
N € {9,16,25,36,49,64}. We can see that as the number
of UAVs increases, the system performance increases since
the FC’s utility becomes larger and MSE becomes smaller.
This is because the competition among UAVs increases as
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Fig. 1. Utility and MSE of FC when different number of UAVs are deployed.
the number of UAVs becomes larger, in which case the FC
has a better chance to select more informative UAVs that
require less payments. We can also see that the plots converge
when there are a large number of UAVs. This is because
perfect competition is reached when the number of competitors
is large, which results in saturation of the market. Besides,
compared to the scenario where all sensing nodes are static,
our proposed mechanism, which allows the mobility of UAVs,
clearly improves the system performance.

In Fig. 2, we divide the Rol into different number of cells
J =19, 16,25, 36,49, 64}, and plot the utility and MSE of the
FC with respect to the number of cells. The number of UAVs
deployed in the Rol takes values from N € {16,25,36}. We
find that the FC has better performance, in terms of larger
utility and smaller MSE, as the number of cells in the Rol
increases. Since more computations are needed when there
are larger number of cells, there is a trade-off between the
computation effort and system performance. It can been seen
from Fig. 2 that both the FC’s utility and the MSE converge as
the number of cells increases. The convergence rate is faster
when we deploy a larger number of UAVs.
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Fig. 2. Utility and MSE of the FC when the Rol is divided into different

number of cells.

V. CONCLUSION

This work explored the UAV selection strategy for target
localization in a scenario where UAVs compete to sell infor-
mation to the FC. To maximize the expected utility for the

FC, we designed a reverse auction mechanism and derived
the g function that determines which subset of UAVs to select
and where they should move to, as well as the p function that
represents the payments that should be made to the UAVs. Our
mechanism guarantees individual rationality and incentive-
compatibility, and at the same time it achieves higher utility
and lower MSE than the situation where the sensing nodes are
kept static. We also showed that the accuracy of localization
improves as we divide the Rol into more cells and deploy a
larger number of UAVs. In the future, we will explore the non-
myopic UAV movement scheduling in target tracking, where
the movements of UAVs are pre-determined to anticipate the
trajectory of a mobile target in the next time slot.
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