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SOME EXTENSION ALGEBRAS FOR STANDARD MODULES
OVER KLR ALGEBRAS OF TYPE A

DOEKE BUURSMA, ALEXANDER KLESHCHEV, AND DAVID J. STEINBERG

ABSTRACT. Khovanov-Lauda-Rouquier algebras Ry of finite Lie type are affine
quasihereditary with standard modules A(7) labeled by Kostant partitions of 6.
Let A be the direct sum of all standard modules. It is known that the Yoneda
algebra & := Ext}}e(A7 A) carries a structure of an As-algebra which can be
used to reconstruct the category of standardly filtered Rg-modules. In this paper,
we explicitly describe &y in two special cases: (1) when 6 is a positive root in type
A, and (2) when 6 is of Lie type A>. In these cases, £ turns out to be torsion free
and intrinsically formal. We provide an example to show that the A-algebra &
is non-formal in general.

1. INTRODUCTION

Let Rpr be a Khovanov-Lauda-Rouquier (KLR) algebra of finite Lie type over
a field F corresponding to # € Q4 [7,16]. It is known that Ryp is affine quasi-
hereditary [1,4,9,10], and in particular it comes with a family of standard modules
{A(m)r | m € KP(6)}, where KP(#) is the set of Kostant partitions of #. KLR
algebras are defined over Z, so we have a Z-algebra Ry with Ryr = Ry ®z F. The
standard modules have natural integral forms A(7) with A(7m)p & A(7r) @z F. All
modules and algebras are explicitly graded, and we refer to these gradings as KLR
gradings.

Let A = @D cxp(p) Alm). The Yoneda algebra & := Extp (A, A) carries a
structure of an A-algebra [3], which can be used to reconstruct the category F(A)
of modules which admit a finite filtration by standard modules [5,6,12]. In view
of [1, Corollary 3.14] and [11, Theorem 4.28], understanding F(A) is relevant for
computing formal characters of the simple modules L(m)r of Rgr. The smallest
known example where the formal characters depend on the characteristic of F occurs
in Lie type As, see [18] (cf. [1, §2.6]).

We now assume that the Lie type is As, with simple roots {«a; | ¢ € Z} so that
the set of positive roots ®, is {a; + ;41 + -+ «; | ¢ < j}. There is a natural
lexicographic total order > on ®,. Let Q4 be the positive root lattice, and fix 6 €
Q4. If 0 =5 ki, we define the height of 6 as ht(0) := > k;. A Kostant partition
of 0 is a sequence ™ = (B7",...,B"") where m,...,my € Zsq, B1 > -+ > [ are
positive roots, and m81 + -+ + mB = 6.
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We consider the Yoneda algebra & as the Z-linear category whose objects are
KP(#), and the set of morphisms from p € KP(#) to o € KP(0) is

&o(p,0) := Exty, (A(p), A(0)).

The composition gf of g € E(o,7) and f € Ey(p, o) is obtained using the composi-
tion of lifts of g in Hompg, (P?, P7) and f in Hompg, (PY, P7), where PJ is a projective
resolution of A(w) for m € KP(6). The category & has a homological grading for
which the homogeneous components are £ (p, o) := Extf (A(p), A(0)), and a KLR
grading which is inherited from the KLR grading on the standard modules. We use
q to denote the KLR degree shift functor. Theorems A and B describe the category
&y (as a bigraded category) in two special cases: (1) when @ is an arbitrary positive
root, and (2) when @ is of type Ay, i.e. 6 is of the form ¢y + cova.

1.1. The case where 6 is a positive root. Let 0§ = o + g1+ -+ apr1 € P4
Set [ := b+ 2 — a = ht(#) and consider the polynomial algebra X := Z[zq,..., .
We consider X' to be graded with degx, = 2. Note that KP(6) is in bijection with
the set of subsets of [1,] — 1]: the subset associated to p = (f1,...,8,) € KP(0) is
D, := {di,...,dy—1} where d; := ht(f) + --- + ht(8;). For such D,, set dy := 0
and d, := [, and let J” be the ideal of X’ generated by all x, — x5 such that there is
1 <t <wwith di—1 < 7,5 < d;. Define XP := X /J°. If D, C D,, then J7 C J” so
we have a natural projection pg : X?—X”. We use the notation C' C,, D to indicate
that C C D with |D\ C| = m.

Theorem A. Let 0 = ag + agq1 + - + a1 € o be a positive root. We have

=mxP if D, Cpm Do,
sm,a)%{‘-’ I 00 S

0 otherwise.
If D, Cyy Dy Cp Dy with f € q7MAXP = E(p,0) and g € ¢~ "X =2 &(0o,T), then
the composition of g with f is given by p}(g9)f € g X 2 E(p, T).

1.2. The A, case. For a nonnegative integer k, let A; be the algebra of symmetric
polynomials in k£ variables. We impose a grading on Ap where linear symmetric
polynomials have degree 2. The space Ay is a free Z-module with basis {s) | A €
P (k)}, where Z(k) is the set of partitions with at most k parts, and sy is the Schur
polynomial corresponding to A [14, §1.3]. Letting V' be the free graded Z-module
with basis {vg, v1,vs,...} such that degv; := 2i, there is an isomorphism of graded
Z-modules

Vit Ap 5 g FEEDARY, S, ) T U AUN 41 A AU k-1 (1.1)
where /\kV is the kth exterior power of V. Define

—x =t A @ Ay = P Natas [ @97 (a(f) Al9)). (1.2)

Considering A,1p to be a subalgebra of A, ® Ay in the obvious way, we have that

Ag ® Ay is free as a Ay yp-module with basis {sy @ 1 | A € P(a,b)}, where F(a,b)

is the set of partitions with at most a nonzero parts, the first part being at most b,

see [13, PARTL.1.5] and [15, Proposition 2.6.8]. Moreover, [13, SCHUB.1.7] provides

an explicit algorithm for writing any element of A, ® Ay as a A,1p-linear combination
of the basis elements s, ® 1.
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Let c1,c2 € Z>p and 6 = cjo; + coan. Note that there is a bijection
[0, min{ecy, ca}] «— KP(0), r — (ag?™"
For p,0 € KP(0) with 7, > rg, let
w(p,0) = —(rp = o) (L4 (c1 = 7)) + (c2 — 7)),
Ap,) = 4“7 ey r, @ Aryry @ Ary @ Ay,
Ppo = P(rp—"To,7g).
If feA,—r,, we write
[P =1y ® f®1, @1, ., € Alp,0).
Then note that A(p, o) is a free right A(p, p)-module with basis {s{7 | A € P, ,}.

We make A(p, o) into a left A(o,0)-module via the composition of algebra homo-
morphisms:

€N (0,0) = Aeyr, @ Ay @ Ny @ Ay @ Aoy, g~ P N(p, 0);

the first map uses the embeddings Ac, r, —>Acy—r, @ Ap,—r, and A¢; A, ;. @
A¢y—r,, and the second map is a®b®c®d® e a ®bd ® ¢ ® e (which we think of
as identifying the two factors of A, ., ).

If p,o,7 € KP(0) with r, > 7, > 7., the tensor product A(co,T) @x(e,0) Alp, o) is
now a free right A(p, p)-module with basis

{s77 @K | p€ Por, A€ Ppo}
and we define a map of right A(p, p)-modules
O: A(J7 T) ®A(O’,O’) A(p, J) - A(p, T)v SZ’T ® S)\J = (S,u * sk)pﬂ—'

1—

Joa +a2)"ar ™), Ty p.

cQ—Tp

Let

—o— A(UvT) ®ZA(p7J) —>A(p,7’), g®f'_> ®(g®f)
Thus, to compute g ¢ f for some g € A(o,7) and f € A(p,0), the following steps
must be performed: (1) write g = >° 5 55" gy with g, € A(o,0), (2) for each

1€ Poyr, write £(gu)f = e, , SN hux with by x € A(p, p), (3) we have
gof= Z (Su * SA)p’Thu,A-

WEP G 1, NEPp &

Theorem B. Let ci,co € Z>¢ and 0 = ciaq + coan. We have

&' (p,o) = {

If rp > 1o > rp with f € Ap,o) =2 E(p,0) and g € Ao, 7) = &E(o,T), then the
composition of g with f is given by go f € Ap,7) = Eo(p,T).

A(p,O') ifm:Tp—T‘o—ZO,
0 otherwise.
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1.3. Formality. For 6 as in Theorem A or B, note that Extg,(A(p),A(0)) is
torsion-free as a Z-module. We do not know if this is true in general.

Also note that because Extg, (A(p), A(0)) is concentrated in homological degree
| X5\ X,| (in the case of Theorem A) or r, —r, (in the case of Theorem B), the An-
category structure of & must have m,, = 0 unless n = 2, so that & is intrinsically
formal, see [5, §3.3]. In Section 5, we show that intrinsic formality and even formality
does not occur in general:

Example C. If 0 = a1 + 2ag + as, then the Ay -category Eg is non-formal.

1.4. The structure of the paper. The proofs of Theorems A and B occupy Sec-
tions 3 and 4, respectively. In the preliminary Section 2, we review the definition of
the KLR algebra Ry and the standard modules A(m).

In §3.1 and §4.1, we record the relevant special cases of the projective resolution
PY of A(p) constructed in [2]. This resolution is finite and has the form P{ =
N P! Y Pl 3 A(p) with Pf = D.cx, ¢ Rol, for some explicit index set X,
integers s;, and idempotents 1,. The map d,, : P? 1 P} can be described as right
multiplication by an X1 x X,, matrix (di") for some dj,* € 1,Rpl,.

In §3.2 and §4.3, we use the isomorphism Homp, (Rgl,, A(c)) = 1,A(0) to de-
scribe the complex Hom%, (P, A(0)) in terms of familiar objects from commutative
algebra; in the case of Theorem A, these objects are polynomial rings and in the
case of Theorem B, they are rings of symmetric polynomials. It turns out that in
both cases, the complex Hom%, (PJ, A(0)) is isomorphic to a Koszul complex corre-
sponding to an explicit regular sequence, and we can therefore compute its homology
H(Homy, (PY, A(0))) =: E(p,0) as a bigraded Z-module.

It remains to describe the composition in the category &. This is done in §3.3
and §4.4, where we explicitly lift elements of Hom%, (PJ, A(0)) to Homy, (PY, PY).
The function composition map Hom, (P, PJ)®@Homy, (PY, P7) — Homy, (PY, PY)
induces a map on homology & (o, 7) ® E(p,0) — Ep(p, T) which is the composition
in the category &y.

In Section 5, we review the As-category structure on & following [3,5,6] and
provide details for Example C.

2. PRELIMINARIES

2.1. Basic notation. Throughout, we work over an arbitrary principal ideal do-
main k (since everything is defined over Z, one could just consider the case k = Z).
For r,s € Z, we use the segment notation [r,s] :={t € Z | r <t < s}, [r,s) :=
{teZ|r<t<s}, etc
Let ¢ be a variable, and Z((q)) be the ring of Laurent series. For n € Z>q, we
define

n

= L1
T T
and if 0 < m <n,

)< == =" D], Il = wRe - P,

[n} o [n]!(i)
My [l —mly,

We denote by &, the symmetric group on d letters considered as a Coxeter group
with generators {s, := (r,r+1) | 1 <r < d} and the corresponding length function
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¢. The longest element of &4 is denoted wy or wg 4. By definition, &4 acts on [1,d]
on the left. For a set I the d-tuples from I? are written as words ¢ = i; - - - ig. The
group &4 acts on I¢ via place permutations: w - 4 = w=1(1) """ bw—1(d)-

Given a composition g = (uq,...,pux) of d, we have the corresponding standard
parabolic subgroup &, := G, x --- x §,, < &;. We denote by Z* the set of the
shortest coset representatives for G4/6,,.

2.2. Symmetric polynomials and the nil-Hecke algebra. We impose a grading
on the polynomial algebra X := k[x1, ..., x4] such that deg(z,) = 2. The symmetric
group &4 acts by automorphisms on Xy via (w- f)(w1,...,7q) := f(Tya),- - Tw(d))-
The symmetric polynomial algebra Ay := X dG 4 has a basis consisting of Schur poly-
nomials

{sx | Ae Z2(d)],
where Z(d) is the set of partitions with at most d nonzero parts, see [14, §1.3].

For a composition p = (p1,...,pur) of d, the algebra of u-partially symmetric
polynomials is A, := XdG *. We often write Ay, ., for A, and identify it with
Ay ®---® Ay, For a,b € Zxg, let P(a,b) be the set of partitions with at most a
nonzero parts, each part being at most b. The following is known:

Proposition 2.1. The algebra A, is free as a Ag-module, and in the case where
w=(a,b) with a +b=d, a basis is given by

{sx®1| X € P(a,b)}.

Proof. The freeness assertion is [13, PARTL.1.5], which, when combined with [15,
Proposition 2.6.8], gives the basis assertion. O

For an integer r with 1 < r < d and a reduced decomposition w = s, --- s, € Gq,
the Demazure operators on X,; are defined as follows:

id)( —S
Opi=—"2—"" and Oy =0 - Op,.
Tr41 — Ty

Note that 0,, does not depend on the choice of reduced decomposition and is a degree
—20(w) element of Endy Xj.
For integers 7,4, > 0 with r + i + j < d, define

Ur;i,j € 6y (2.2)
to be the permutation which maps the interval [r+ 1,7 +i] increasingly onto [r+ 1+
j,r 4+ 1+ j], and the interval [r +1i+ 1,7 4+ ¢ + j] increasingly onto [r + 1,7 + j|, and
fixes all other elements of [1,d]. For example, we have Uy.11 = sp41 = (r+1 7+ 2).
Recalling (1.2), we have:
Proposition 2.3. [8, Proposition 2.9] Let a,b € Z>o with f € A, and g € Ay.
Then Oy, ,(f ®g) = fxg.

Proof. Since we use different conventions from [8], we provide a translation for the
reader’s convenience. For w € G,y, let 9, := (—1)5(“’)81”. If kK € Z>o, recalling

(1.1), let ;= (—1)(2)7/€ and note that v, (sx) = U, +k—1AUryth—2/A- - -AV), € AV
for any A = (A1,..., ) € Z(k). By [8, Proposition 2.9], we have 9y,  (f ®g) =

(Vo) "ty @ ) (f ® g), so
Ot © 9) = (~1) 3, (F o g)
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= (=1 (vhpy) " 'm(vL @ 1) (f ® g)
— (1)) () (e @ W) (F @ 9)
f*g. O

Define
d
Ty = To,d = Hl‘:_l e Xy
r=1

The following is well-known and easy to check:
Lemma 2.4. We have Oy, (fxo) = f for all f € Ag.

The nil-Hecke algebra N'H4 is given by generators 7,...,7Tq_1, Z1,...,2q subject
only to the relations
TrTt = TtLr, Tr2 =0, TrTr41Tr = Tr41TrTr41, TrTs = TsTy (‘T - 3’ > 1)7
TrLy = Tpi1Tr — L, ToZpp1 = T + 1, Trxs = xs7 (s # 17+ 1).
For a reduced decomposition w = s, ---s,, € &4, we have a well-defined element
Ty = Tpy * - Try,- 1t is well-known that {walfl . ..a;fld | we &y, ki,...,kqg € Z>p} is

a basis of N'H4. In particular, we identify X; as a subalgebra of N'H,.
Theorem 2.5. [7, Theorem 2.9] The center of NHg is equal to Ag.

We consider X; as an N'H g-module with 7, acting by 9,, and x,- acting by multipli-
cation with x,.. Then we have the following easy to check and well-known properties:

Lemma 2.6. Let d € Z>q, f € Xy, and w € S4. Then in N'H4, we have
Two fTw = TweOw-1(f)  and  Tuw [Tw, = Ow(f)Tw,-
Define the following elements of N'H:
€d = T0,dTw,, and el = Twg 4 %0,d- (2.7)
Lemmas 2.4 and 2.6 yield:

Lemma 2.8. In N'H4, the elements eq and €, are idempotents. Moreover,
(1) TwofTw, = 0 for any f € Xy with deg f < d(d —1), and
(il) TweZ0Twe = Tuwg -

2.3. KLR Algebras. From now on, we set I := Z. If i,j5 € I with |i — j| = 1 we
set g5 := j —14 € {1,—1}. We identify I with the set of vertices of the Dynkin
diagram of type Ao, and denote by (c; ;)i jer the corresponding Cartan matrix so
that ¢c;; =2ifi=j, ¢;; = —11if [i — j| = 1, and ¢;; = 0 otherwise. We use the
notation @)y, ®,, ht, etc. introduced in Section 1.

For § € Q4 of height d, we define I? := {i =iy ---ig € I?| oy, + - + a;, = 0}.
Let Z((q)) - I’ :== @;c;0 Z((q)) - . For 1 < k < t, suppose ), € Q are such that
01+ -+ 0; = 0, and set dy := ht(6). If i* € 1% then the concatenation 3' - - -’
is considered as an element of I¢. Set 3'---4* =: iy ---i4. Then the quantum shuffle
product is

ito-oiti= > g M. (i'df) € Z((g) - 1, (2.9)
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where e(w) := Zn<m,w(n)>w(m) Cirsim- 1f ax € Z((q)) - I, we define aj 0 --- 0 a; €
Z((q)) - I? extending (2.9) by linearity.

The KLR algebra [7,16] corresponding to 6 as above is the unital k-algebra Ry
(with identity denoted 1y) with generators

{11 ‘ 1€ Ie}u{yla"'uyd}u {¢17~--ﬂ/}d—1}
and defining relations

YrYs = YsYr; (Rl)
1;1; = 6;1; and Z 1; = 1p; (R2)
iel?

yrli = 11lyr and wrlz = 1sr-iwr; (R3)

(Vrte = Ys,(y¥r)Li = Gipinys (1 — Ot0) 1i; (R4)
0 it iy = iT+17

7/)7%17: = 3 Ciryirg (yT’ - yr-i-l)li if ’ir - Z‘T’-H‘ = 17 (R5)
1; otherwise;

wrws = wswr if ‘T - 3’ > 1; (RG)

if |iy — ips1| = 1 and 4y = ippo,

iryirg1 Li
(¢r+17/)r¢r+1 - 7/)r¢7‘+17/)r)1i = {E i (R?)

0 otherwise.

The right-hand sides of relations (R4) and (R7), when they are nonzero, will be
referred to as error terms. The algebra Ry is graded with deg1; = 0; deg(ys) = 2;
deg(¥rl;) = —Cipipys-

We will use the Khovanov-Lauda [7] diagrammatic notation for elements of Ry.
In particular, for ¢ =41 ---ig € Ie, 1<r<dand1<s<d, we denote

g i1 cip_1 ir dpglipqa o cig i1 rig—1 is ig41 v cig

1; = || , o Lty = || >< y o Liys = || |

For each element w € &,,, fix a reduced expression w = s, - - - s,, which determines
an element 1, = ¥, - - -1,,. This element depends on the reduced expression of w.
Theorem 2.10. [7, Theorem 2.5/, [16, Theorem 3.7] Let 0 € Q4+ and d = ht(6).
Then the following sets are k-bases of Ry:

(Yt i Jw e Sy, ka,.. . ka € Lso, 4 € 19,
(b, fw e &4, Ky kg € Lo, i€ T9).

We identify the polynomial algebra

yd = ]k[ylw"vyd] (211)

with the subalgebra of Ry generated by {y1,...,yq} according to Theorem 2.10.
The following lemma often simplifies calculations in Ry.

Lemma 2.12. Let iy,...,4 € I be distinct, 0 := a;, +---+ 0y, t =141---79 € 17,
and w,w' € &;. In Ry, we have byl = Uy l; unless there are rys € [1,1] such
that |i, —is| =1, r < s, w(r) > w(s), and w'w(r) < w'w(s).
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Proof. As iy,...,14; are distinct, the braid relation (R7) holds without error term in
Ry. Moreover, so long as there is no pair r, s as in the statement, the only quadratic
relations we need to use are of the form %213‘ = 1. Therefore 1,1, 1; simplifies
directly to 15 as claimed. O

2.4. Parabolic subalgebras and divided power idempotents. Let 61,...,0; €
Q1 and set 6 := 61 + --- 4 ;. Let

lo,,...00 = Z L4t € Ry.
ilelf .. itelb
Then we have an algebra embedding
Loy,..0,  Boy ® -+ & Rg, =1y, 0, Ro,+-+0,10,,..0, (2.13)

obtained by horizontal concatenation of the Khovanov-Lauda diagrams. For r; €
Ry,,...,m € Ry, we often write

r10-or =1y 9,(r1 ®-- @ry).
For example,
lpo-oly=1u.  (@rel”, . . itel®). (2.14)
We fix for the moment ¢ € I, d € Z>¢ and take § = do;. Then we have an

isomorphism ¢ : NHy — Rga,, Tr = Yr, Ts — 5. Recalling (2.7) and Lemma 2.8,
the following element is an idempotent in Rgq,:

Liw = p(eg).
Now let 8 € Q1 be arbitrary. We define Igiv to be the set of all expressions of the
form ’L'gdl) .- 'Z'gdr) with dy,...,d,. € ZZO, i1,...,4 € I and dlail + 4 drOéiT = 0.

We refer to such expressions as divided power words. We identify I¢ with the subset
of Id(’iV which consists of all divided power words as above with all d = 1. We use
the same notation for concatenation of divided power words as for concatenation of

words. For 4 = z'gdl) ) e I, we define

iiay = [di)io) - [dr](s), and di=ifteil e 1, (2.15)
and the corresponding divided power idempotent is

L = Lian g = Lyan 0+ 0 Lyan € Ry,
We have the following generalization of (2.14):
lpo-oly =15 (el ... delf).

Lemma 2.16. In the algebra Rgq,, if r1+ - +1¢ = d then 1,61) i) Ywg g = Ywo g
and 1i(7"1)...i(7‘t)1i(d) = 12‘(11) .
Proof. Write 1y, , = (Tl)wo,r1 0- -0y, . )3y for some u € &4 and use Lemma 2.8. [

To be used as part of the Khovanov-Lauda diagrammatics, we denote
Yuwg g = (W),  Yod =: (W), Ly = =:GD)
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For example, if d = 3, we have

1i3wwo = u = ) 1i3y0 = = ) 1i(3) = .

More generally, we denote

Lo = (D) -+ ()

2.5. Modules over Ry. Let 8 € Q. We denote by Ry—Mod the category of
graded left Rg-modules. The morphisms in this category are all homogeneous degree
zero Rp-homomorphisms, which we denote hompg,(—,—). For V' € Ry-Mod, let
¢V denote its grading shift by d, so if Vj, is the degree m component of V, then
(V) = Vy—g. More generally, for a Laurent series a = a(q) = >, aaq? € Z((q))
with non-negative coefficients, we set aV := @d(qu)EB‘ld. For U,V € Ry—Mod, we
set Homp, (U, V) := @ 4oz, Hompg, (U, V)4, where

Hompg, (U, V)4 := hompg, (¢’U, V) = homg, (U, ¢~ V).

We define Ext (U, V) and Endg, (U) similarly from ext}; (U,V) and endg, (U).
For a free k-module V of finite rank we denote the rank of V' by dim V. A graded
k-module V' = D, ., Vi is called Laurentian if the graded components V;, are free
of finite rank for all m € Z and V,,, = 0 for m <« 0. For example Ry itself is
Laurentian by Theorem 2.10. The graded rank of a Laurentian k-module V is

dim, V := )~ (dim V;,,)g™ € Z((q)).
MmeEZ

Recall that the ground ring k is assumed to be a PID. The following standard
result often allows us to reduce to the case where k is a field.

Lemma 2.17. If o : V — W is a degree 0 homomorphism of Laurentian k-modules
such that the induced map @ : V/JV — W/JW is an isomorphism of k/J-vector
spaces for every mazimal ideal J, then ¢ is an isomorphism.

We say that an Rg-module V' is Laurentian if it is so as a k-module. Recalling
(2.15), for a Laurentian Rp-module V and i € Igiv, by [7, §2.5], we have
1
dimg(1;V) = - dimg (1;V), (2.18)
by

which explains the usage of the term “divided power word” for ¢ € [ deiv' If Vis
a Laurentian Rg-module then each 1;V is a Laurentian k-module, and so we can
define the formal character of V' as follows:

chy Vi= " (dim, 1;V) - i € Z((g)) - I°.
iel?
Note that chy(q?V) = ¢ ch, (V).
For 0y,...,0, € Q4+ and 6 := 01 + - - - + 6;, recalling (2.13), we have a functor
Indgh.”’gt = R01€1,...,€t ®R91®'“®R9t — (Rgl K& Rgt)*MOd — Ryp—Mod .

For Vi € Ry,—Mod,...,V; € Ry,—Mod, we denote by Vi X --- X V; the k-module
V1 ® -+ ®V;, considered naturally as an (Rg, ® - -+ ® Rp,)-module, and set

Vio---oV,:=Indg, . g Vi®--- BV,
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By Theorem 2.10, setting dj, := ht(6;), we have
ViewoVi= P du®Vi@- 0V (2.19)

If Vi4,...,V, are Laurentian, then by [7, Lemma 2.20], recalling (2.9), we have
chy(Vi o+ 0 Vi) = chig(Vi) o -+ - o chy (V). (2.20)
For v1 € V4,..., v € V4, we denote
vio-rovpi=1lg 9 @V Q@ - QuE€Vio---0V,.
Ifiterf, ... it elf,
Ro, 1100 Rg 1y = Rylyt . (2.21)

Since Rglyg, .. g, is a free right Ry, ®---® Rp,-module of finite rank by Theorem 2.10,
we get the following well-known properties:

it is easy to check that

Proposition 2.22. The functor Indg, . g, is ezact and sends finitely generated pro-
jectives to finitely generated projectives.

Let again 61,...,0; € Q; and @ = 61 + --- + ;. Suppose (CF,d;) is a chain
complexes of Ry, -modules for 1 <k <t. Let (Cio---0Cl), := @p1+,,,+pt:n C;l o
-e-0 Cztw and for x; € C;l,...,xt € Cztw define

t

d(z10---oxy) 1= Z(—l)p“ﬁ'””tlﬂl 0---0xp_10dp(Ty) O L1 00Ty
=1

Then (Clo---0Cl,d) is a chain complex of Ry-modules. Proposition 2.22 and [17,

Lemma 2.7.3] immediately imply the following.

Lemma 2.23. If C¥ is a projective resolution of M, € Ry, ~Mod for 1 < k < t,
then Clo---oCl is a projective resolution of My o---o My € Rg—Mod.

2.6. Standard modules. The algebra Ry is affine quasihereditary in the sense
of [9]. In particular, it comes with an important class of standard modules, which
we now describe explicitly following [1].

Fix B =+ +a; € &, of height [ := j—i+1, and set ig =i (i+1)---j € I’
We define the Rg-module A(f3) to be a cyclic Rg-module generated by a vector vg
of degree 0 with defining relations

o liug = (5i,,-51}5 for all 7 € I5;

o Yug=0foralll <r <l

o yvg =ysvg forall 1 <7 s <1
The module A(3) can be considered as an (Rg, k[x])-bimodule with the right action
given by vgx := yjvg. Diagrammatically, we represent

ig
Uﬁx:Y:ylvﬁ{:Y::ylvﬁzy7
ig ig

ig
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b = == =N =0

ig ig
The following lemma is easy to check.
Lemma 2.24. Let § € ®,. Then there is an isomorphism of right k[z]-modules
klz] = A(B), 1+ vg.

For m € Z>g and 3 € &, the R,,3-module A(5)°™ is cyclicly generated by vg™.
As explained in [1, §3.2], N'H,, acts on A(S)°™ on the right so that

o o(r—1 o(m— ° o(s—1 o(m—s—1
Uﬁmiﬂr = UB(T ) o (’L)Bl‘) O’L)B(m T), UBmTS _ Uﬁ(s ) ° (prl,z(vﬂ o Uﬁ)) O’Uﬁ(m s )’

where w;; is the longest element of 2D Diagrammatically, we represent

Ugm _ Y Y . 'Y’
iﬁ 7',5 7',5

(UBOUB)TI :quﬁw”(vﬁovﬁ) = ('\$

B

Let < be the lexicographic total order on @, i.e. for 8 = o; +---+a; € &4 and
B =ay+ -+ ay € Py, we have § < ' if and only if either ¢ < i’ or ¢ = i’ and

Jj <j'. Given 0 € Q4, a Kostant partition of 6 is a sequence m = (8{", ..., 5{"") such
that mq,...,my € Z~g, B1 > --- > B¢ are positive roots, and m15y + -+ - +m 8¢ = 6.
We denote by KP () the set of all Kostant partitions of . For = = (57",..., ") €
KP(6),

A(ﬂ') _ q(7r;1)+-"+(”ét)A(ﬁl)om1 6.---0 A(ﬁt)omt (225)

can now be considered as an (Rg, N H,, ® - -+ @ N'Hyp, )-bimodule. Recalling (2.7),
we define the corresponding standard module as
A(r) = A(m)(em, @ -+ @ em,).
Setting
Ar = Aot (2.26)
by Theorem 2.5, A(r) is naturally an (Ry, A)-bimodule. In fact, by [11, Theorem
2.17], the bimodule structure yields the isomorphism

Endpg, (A(m))P = Ar. (2.27)
The module A(7) is cyclic as a left Rg-module with standard generator
U 1= (v o0 ) (emy ® - @ ey ). (2.28)

Noting that A(m) = A(B{"*) o--- o A(B]"), by [1, Lemma 3.10], we have an isomor-
phism of Rg-modules
A ~ ! !
A(r) = ma]y - Iy L Ar). (2.29)
If k is a field, the modules {A(7) | 7 € KP(6)} are the standard modules for an
affine quasihereditary structure on the algebra Ry, see [1,9]. If k = Z or Z,, they

can be thought of as integral forms of the standard modules, see [11, §4].
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For p € KP(0), suppose we have a projective resolution of A(p) of the form
P=... % P? & PP 28 A(p) with Pf = D.cx, 1°* Rol, for some index set X,
integers s;, and idempotents 1,. The map d,, : P? 1 P} can be described as
right multiplication by an X,+1 X X,, matrix D,, = (d3)") for some d3* € 1,Ryl,.
Using the isomorphism Hompg,(¢"Rgl,, A(0)) — ¢ "1,A(0) and recalling (2.27),
we obtain:

Lemma 2.30. There is an isomorphism of complexes of (right) A,-modules
Homy, (PY, A(0)) = T.* (A(0)),

where T.Pf(a) —... ¢ Tlpf(a) £ TOPf(O') with T,f'p(a) = D.ex, ¢ *1:A(0) and

d" given by left multiplication with the X, 11 x X,, matriz D,,.

This yields an isomorphism &(p, o) = H (TS 'p(a)) of A,-modules. One can also
use the resolutions P, PZ, and P] to describe the composition map Ey(o,7) @
E(p,0) — Eo(p,7). Indeed, let Hom} (PJ, PJ) denote the homological degree m
homomorphisms. Then Hom¥, (PJ, PJ) is a complex with respect to the differential
0 given by

() :=dp — (=1)"¢d (2.31)
for ¢ € Hom%, (P, PJ). We have an isomorphism
H(Hom%, (PY, P))) = &(p,0) (2.32)
induced by the maps
Hom?;, (P2, PY) — Homp, (PL, A(0)), ¢ (—1)"% " ey (¢l )- (2.33)

Now the composition map &} (o, 7)@EF (p, o) — 5™ (p, 7) is induced from the com-
position of homomorphisms Hom%, (PJ, PJ) @ HomY, (PY, PJ) — Hom}gm(P.p , P7).

3. THE CASE WHERE 6 IS A ROOT

Throughout the section, § = g + -+ - + aps1 (with a < b+ 1) is a positive root of
height [ = b+ 2 —a. There is a bijection from KP(6) to the set of all subsets of [a, b]

m = (71,...,my) — Cr := {max(supp m2), max(supp 73), . . . , max(supp my,) },
where, for a root a = a; + -+ + «j, we let suppa := [i,j]. For m,7 € KP(0),
if C; D Cy, we say that 7 is a refinement of m and write 7 D 7. If, in addition,
|C:\Cx| = n, we write 7 2, m and say that 7 is an n-refinement of w. If C:\Cr = {i}
for some i € [a,b], we write ref’(7) := 7. For example, we have ref'((0)) = (a;j+1 +
ct 1, Qg e+ ay).

If 7= (m,...,7) € KP(0), the elements of
g7 .— g(bt(71),... bt (7)) (3.1)
are called T-shuffles. Set
dy = ht(r) + - - + ht(7,) (0<wv<t).
We say that integers r,s € [1,] are T-equivalent if there is some v € [1,t] with
dy—1 < r,s <d,. Recalling (2.26) and (2.27), we have

A =Kk[z1,..., 2] = Endpg, (A(7))°P.
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We have a surjection

pr V=AY g if dyoy <7 <ody, (3-2)
so that pr(y») = pr(ys) if and only if r and s are 7-equivalent. If, in addition,
T 2w = (m,...,m), then p, factors as pr = plIp,, where the surjection p is

defined as follows: for each m € [0, u], we have ht(my) + - - - + ht(m;,) = d,,, for some
U € [0, t]; now

e Ar—>Ar, o gy i Vg <7< Uy, (3.3)
3.1. The resolution SZ. In this subsection, we fix p = (p1,...,pt) € KP(). For
a=0o; +ajp1+ -ty € P, let

Ja =i +1)---j €I eq:=1j, €Rq.

Then set
Jop:=Jp " Jp € Ie, e, =15, € Ry. (3.4)
For m,7 € KP(#), let w(7,7) € &; be the unique permutation with
’LU(T, ﬂ') ' j7r = j7'> (35)

so that ety (rx) = Vw(rmer. If 7= ref'(r), we set
s(t,m) = (—1)IC=Nl@dl,

For n € Z>, we set
Sh = @ q"Rger.
T2np
The boundary map S” 41 S# is defined to be right multiplication with the matrix

1 D)
dn = (d;" )72, ,1p, Where d;" = {S(T’ merbu(rmen T2,

T2np

. (3.6)
0 otherwise.

We define the augmentation map by
gp: Sh = Rope, = A(p), he, — ho,,
where v, is the standard generator for A(p), see (2.28).

Lemma 3.7. The following is a projective resolution of A(p):

0—>S{’_t—>---—>5p+1%Sﬁ—>---—>5{]’i>A(p)—>0.

n

Proof. Given a complex C,, we denote by C, the same complex but with all the
boundary maps negated. If v € [1,¢], we let

glw) _ {Sﬁ””) if t — v is odd,

Sfp”) if t — v is even.

Using (2.21) and the fact that the resolutions EEP *) and SEp ") are isomorphic, it is
easy to note that
SP — §£P1) 6.---0 §£Pt) ~ SEPl) 6.0 Sgpt)

so by Lemma 2.23, we have reduced to the case t = 1, i.e. p= (p1) = (0).
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To complete the proof, we show that SSQ) = P,, where P, is a resolution of A(6)
constructed in [1, §4.5] (see also [2]) and which we now recall. For 7 € KP(6), put

i7" = a%a#0x (g + 1)%a+1€0n ... poegCn (h 4 1)p0eCn ... (g + 1)%at1€0r glectn ¢ IO,

For n € Z>o, set Py := @5, 9 ¢"Rolir. If m,7 € KP(0) with 7 = ref'(m), let

u(r, ) € 6; be determined from u(7,7) - ¢" = 4", and define the matrix

12'7' w(T.m 11W ‘f 2 5
On = () o 10y, where O = | ST i buga i M 2
() 0 otherwise.
Right multiplication with 9,, defines a map P,+1 — P,. By [1, Theorem 4.12] (see
also [2, Theorem A]), noting that Py = S(()e), we have that

O—>Pb+1_a—>-~—>Pn+1%Pn—w--—)PoﬂA(H)—)O

is a projective resolution of A(6).
For m € KP(0), let w(m) € &; be the unique permutation with w(w) - i™ = jr so
that exty,(x) = Yuy(r)lir. We have the map

SV = D ¢"Roer = P d"Rolin = Pu,
772'”(6) Wgn(e)
(hrex)ron @) = (hrextbu(m)lin)zo, )
To check that this yields an isomorphism of complexes, let 7 := refi(ﬂ) for some
i € la,b] \ Cr, and check the following using Lemma 2.12:
L eT¢’LU(T)¢u(T,7T) = eT¢w(T,7r)¢w(7r)a
i eﬂww(w)zbw(ﬂ)*l = Cr;
® LinVuy(m)—1Yuw(r) = Lir. a
3.2. The k-module &(p,o). Throughout this subsection, we fix p,o € KP(#).
Recall the word j, € I? and the idempotent e, from (3.4). Writing 5, = j1j2 - - - /i,
for i € [a,b+ 1], there exists a unique r € [1,!] such that j, = i, and we denote
re(1) =1
We have the standard module A(o) with generator v, € e,A(0), see (2.28). As
in §2.6, we consider A(o) as an (Rg, Ay )-bimodule. Recalling Lemma 2.30, we write

T (o) := T.Sf(A(J)), so that Tf (o) = Do, , 7 "exA(0). Recall (3.2) and (3.1).

Lemma 3.8. In A(o), we have:
(1) Yrve = Vopo(yr); in particular, y,v, = ysvs if 7 and s are o-equivalent;
(i) v, = 0 whenever w € &, is not a o-shuffle.

Moreover, A(o) is free as a right Ay-module with basis {¢,v, | W € 27}.

Proof. Use Lemma 2.24 and (2.19). O
Recalling (3.5), we now get:

Lemma 3.9. Let m,0 € KP(0). If 0 2 7, then exA(o) = 0. If o D, m, then there
is an isomorphism of right As-modules

q"Ao — eWA(U)v [ pr(w,a)vof'
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Proof. If o is a refinement of 7, then every pair of o-equivalent integers is also -
equivalent, so w(m, o) is a o-shuffle and the result follows from Lemma 3.8 since in
this case we have deg(Yy(r 0 €0) = n.

On the other hand, if o 2 7, then there is some ¢ € C with i ¢ C,. It follows
that r, (i) and r,(i) + 1 are o-equivalent but w(m,o)(ry(i)) > w(mw, o)(rs(i) + 1), so
w(m, o) is not a o-shuffle, and e;A(c) = 0 by Lemma 3.8(ii). O
Corollary 3.10. We have:

(i) If o 2 p, then T (o) = 0.

(ii) If 0 Dy, p, then as right Ay-modules,

T;L)(O') = @ q_nww(w,a)vo : AU = @ qm_2nAo-
02T Onp o2 Onp
In particular, T} (o) =0 for n > m and
TP (0) = q "esA(0) =5 - Ay = g7 Ap.

Proof. If o is not a refinement of p, then it cannot be a refinement of any = DO p,
which implies (i). Let 0 2, p. Recall that Ty (0) = @5, ,¢ "exA(0). Let 7 2p p.
If o 2 7, then e;A(o) = 0. Otherwise exA(0) = Yy (r,0)Vo - Ao O

Lemma 3.11. Let m € KP(#). Suppose that o D ref'(r) for some i € [a,b]. Then
Vo(refi(m),m) Pw(m,0) €0 = Vureti(m),0) Yro (@) — Yro (i+1))€o-

Proof. Let 7 = ref’(7). We have that i and i + 1 are the only adjacent elements of
[a,b+1] with r-(7) > r;(i+1) and r (i) < rz(i+1). Since o0 O 7 = ref’(7), we have
r4(i) > re(i + 1). Now we compute:
qbw(r,w)ww(ﬂ,a) €o = qbw(r,w)srﬂ(i)wgﬂ(i)wsrﬂ(i)w(w,a) €o

= Yu(rm)s, iy Yre(i+1) = Yra()) Vs, yw(m,0)€o

= ww(r,w)srﬂ(i)ws,.w(i)w(w,a) (yrg(i) - yrg(i-i—l))ea

= ¢w(7—,cr) (yrg(i) - yrg(i—l—l))ecra
where the first equality is obtained using the fact that the braid relations (R7) hold
without error term in Ry, the second comes by applying a non-trivial quadratic

relation (R5) on strands colored i and i 4 1, the third is obtained using the relation
(R4), and the last comes from Lemma 2.12. O

The proof of Theorem 3.12 amounts to showing that T¢ (o) is isomorphic to a
certain Koszul complex (see [17, §4.5]) which we now define. Suppose o 2O, p,
and write Cy \ Cp = {i1,...,0m} with 91 < .-+ < ip. Let N be the free right
A,-module of graded rank mq~2, that is, N := ¢~ 2A®™. For k € [1,m], we denote
et == (0,...,0,1,0,...,0) € N (with “1” in the kth entry). Recalling (3.2), define

2 = 5(ref™ (0), P)Po (Ury (i) — Yro(int1)) € Ao (K=1,...,m),
Z = (21,-.-,2m) = €121+ + €nzm € N.

Note that Z is a homogeneous degree 0 element of N. We consider the Koszul
complex ¢™A\*N associated to the regular sequence Z for the ring A,:

04— ¢"AN"N ¢— - «— ¢"N"™'N +— ¢"A\"N +— -+ «— ¢"N\'N «— 0
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ZNa+—a
where A" N is the nth exterior power of the free A;-module N. Note that A" N has
a Ag-basis {ex, A Neg, |1 <k <--- <k, <m}.

Let o 2, p. By Corollary 3.10(ii), the mth component of Hom%, (S¢, A(o)) is the
last nonzero component and it can be identified with Hompg, (¢" Rges, A(c)). Thus,
every element of the mth component is a cocycle, so there is a surjective map

[_] : HomRe(quGem A(o)) — 5571(/)7 o) = Hm(Hom;%(;(va A(U)))7 w = [90]7
where [p] is the cohomology class of ¢. Moreover, by Lemma 3.9, we have an
isomorphism

€:q "Ny — Homp, (¢" Roeq, A(0)), [+ (eq = vaf).
We consider A, to be a A,-module via the homomorphism pj : A,—A,, see (3.3).

Theorem 3.12. Let p,o € KP(0). If o 2 p, then E(p,0) = 0. If 0 Dy, p, then
Eo(p,o) = EF(p, o) and there is an isomorphism of Ay-modules Ey(p, o) — ¢~ ™A,
which makes the following diagram of As-modules commute:

¢""A; —5— Homp, (¢ Rocs, A(0))

i |-

Proof. If o 2 p, then E(p,o) = 0 by Lemma 2.30 and Corollary 3.10(i).

Assume now that o 2, p and write C, \ C, = {i1 < -+ <in}. lf 0 D7 Dy, p,
we set B(w) := {k € [1,m] | iy € Cr}. Note that |B(mw)| = n. We define a map
O, : T (0) = ¢"A\"N of Ag-modules by defining it on the Ag-basis {Yy(r »)Vs |
o D7 Dy, p}of TS(a), see Corollary 3.10. If B(w) = {k; < --- < ky}, then define

®n(¢w(7r,cr)vo’) =€y N Neg,.

It is easy to see that ©,, is an isomorphism of (graded) A,-modules. To show that
©,, defines an isomorphism of complexes TZ () — ¢™A* N, we must verify that the
following square commutes:

dp—
TSH(") ———— T7 (o)

i@n-u l@n
m n+1 Z/\f m n

where d,, is the matrix defined in (3.6). We check this using an arbitrary basis
element 1y (x 5)vs € T (0). We have

Ont1(dnVuiroyvo) = Y (1, m)Oni1 (Yu(rimyPu(no)lo)

oOTOT

f— Z S(refik (71')’ W)@n+1(¢w(refik (71)77r)¢w(ﬂ70')v0')
ke[1,m]\B(n)

= > (D)PPRO, L (P et (r).0) Vo) 2
ke[1,m]\B(w)
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= Z (_1)B(W)ﬂ[17k)(6kl /\/\Ek/\/\ekn)zk

ke[1,m]\B(w)
:Z/\(ek1 /\---/\ekn)
=ZAN Gn(ww(w,a)va)

where the second equality follows by noting that k ~— ref’ (7) defines a bijection
from [1,m] \ B(m) to the set of 1-refinements of © which are refined by o, the third
by Lemma 3.11 and the observation that s(ref’ (7),7) = (—1)BMNLE) 5(refis(p), p),
and the remaining equalities follow from the definitions.

Since ¢™/\°N is a Koszul complex corresponding to a regular sequence, we now
have that £ (p,0) = H™"(¢"™A\*N) = 0 unless n = m. The proof is complete in view
of Lemma 2.30 upon noting that the kernel of pJ : A,—A, is the ideal generated by

(215, 2m), SO P, induces an isomorphism
m(, mA\® q—on ~ —m
H"(@"N°N) = ——— — ¢ "A,. O
(215 2m)

3.3. The category &. Throughout this subsection, we use Theorem 3.12 to iden-
tify Eg(p,0) = &' (p,0) with ¢~ A, whenever o 2., p € KP(0).
Let 0 DO, p € KP(#). For any f € ¢~™), and 7 D o, set
~ m(m+1) N
7= (-1 (o) - f.

We define an element of Hom;, (S¢, SJ) by

@g,a : Sypn+k = @ qm+kR€e7r — @ queer = Slg
7r2m+k:p T2k0
(hﬂeﬂ)ﬂngrkp — (hrf;ger)rgka' (313)
Recalling the differential (2.31) on Homg, (S¢, S7), we have:
Lemma 3.14. Let 0 Oy, p € KP(0). If f € ¢7™A, = &) (p,0) and feq ™y are

N

such that p,(f) = f, then

(i) 5((,02;0) =0, and

(ii) the isomorphism (2.32) sends the cohomology class of gpgp to f.
Proof. We prove (i) by checking that the following diagram either commutes (if m
is even) or anticommutes (if m is odd) whenever 7 D1 m Dy o:

T,

T
T Rye, ——" ¢FTMRye,

f-f;,oi }-f,,",a

k1 K k
¢"t'Roe, —————— ¢"Rye,.

T,

Modulo the signs, this is checked by the computation:

Tzz)w('r,ﬂ) (w(ﬂ-7 J) ’ f)eﬂ = (w(Tv 7T)’LU(7T, J) ’ f)¢w(7’,7r)e7r = (’LU(T, J) ’ f)¢w(r,w)ewa

and the signs are taken care of by

m(m+1) m(m+1)
(—1) ™ Mg () = (—1)m(=1) "7 M g ).
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To prove (ii), first note that the restriction of gpgp to Sf, has image in S and
can therefore be realized as

¢£,0|an : Sﬁl = @ quﬁew — Ryes = 58

TOmp
m(m+1)

(hxex)rdmp — hgf;)”oeg =(-1)" 2 hgfea.
By Corollary 3.10(ii), we identify Hompg,(Sh, A(o)) with Hompg,(¢" Rges, A(0)).
Then the image of cpg,g under the map (2.33) is

m(m+1)

()77 (@) olsn) = (€5 = vof) € Homp, (¢" Ryeq, A(0)).
An application of Theorem 3.12 completes the proof. O

Lemma 3.15. Let 7 2 0 2., p € KP(0). If f € ¢"™A, and f e q ™Y, are such

N

that p,(f) = f, then we also have p,(w(r,0) - f) = f.

Proof. Since 7 O o O p, we have that r and w(r,0)(r) are p-equivalent for any
r € [1,1], so pp(w(T,0) - yr) = pp(yr). This implies the result. O
Lemma 3.16. Let 7 D, 0 O, p € KP(). If f € ¢7™A,, and g € g™ Ay, then there
ezist f € 7"V, § € ¢V, and pm € ¢~ ™Y with py(f) = f, poe(9) = g,
and pp(pm) =15 (9)f, such that

g f p3(9)f
(pg,r(pg,a = (10[)77' :
Proof. Choose any two lifts f € ¢ ™Y, and g € ¢") of f and g, respectively.
By Lemma 3.15, since 7 O o, we have that w(r,0) - f is also a lift of f, and so
p5(9)f == g(w(r,0) - f) € ¢ty s a lift of Py (9)f. By (3.13), it suffices to show
that for any m O 7 we have (p5(9)f)7 . = 95.- A;U. Modulo the signs, this holds by
the following computation:

w(m, ) - (§lw(r,0) - f) = (wlm,T) -

= (w(ﬂ', T) ’

)(w(m, 7)w(r,0) - f)
)(w(ﬂ', U) : f)a

o &

and if m D 7, the signs are taken care of by

(—1) GOk () ) (1) Mk O

We combine Lemmas 3.16 and 3.14 to obtain the following theorem.

Theorem 3.17. Let 7 D, 0 D p € KP(0). The composition in the category Ey is
given by
551(0-7 T) @ gén(pvo-) B 5gl+n(p7 T)
Al Al
¢ Ay @ q_mAp - q—(m+n)Ap
9 f———— pJ(9)f.



EXT ALGEBRAS FOR STANDARD MODULES 19

4. THE Ay CASE
Throughout this section, we use a special notation
a:=a1, fi=a, v:=a1 + ag,
so that «, 8, are now the positive roots of the root system of type A;. We fix
0 :=aa+bp

with a,b € Z>¢. There is a bijection

o : [0,min{a,b}] == KP(0), s — o(s) := (8°7°,7%,a%7%).
The standard Ry-modules are

A(s) == A(o(s)) (0 < s < min{a,b}).

We denote the standard generator of A(s) by vs := vy(s), see (2.28). Recall that

Endg,(A(5))P = Ags) = Ap—ss,as = Mps D As @ Ny,
see (2.27).

4.1. The resolution P]. Let 0 < r < min{a,b}. We recall the resolution of A(r)
defined in [2]. For n € [0,7], recalling (2.2), we define:

jrn — 2b—r1r—n2r1n+a—r c IG
Gy =207 (g (M) (a=r) < O

Ern ‘= 1i7a,n € R07

Soni=n(r—n+1) = <a;7"> - <b;7”> S —1),

Tyrn = Ub—n—l;l,r—l—n = (b +rb+r—1,...,0— n) € Gatp,
dr,n = er,n—l—lqﬁxr’ner,n € Ry,
Pl = ¢*""Ryey .

Note that the right multiplication with d,.,, yields the degree zero Ryp-homomorphism
— dyy 2 Py — P,. Define u, € Gz, by

r—=1  ifjisodd
L > ) 4.1
UT(Z) {27" _ % if 7 is even. ( )
Let

gr: Pg—=»A(r), zero = (Vwg,_, © Yu, © Yuwg o, )Vr- (4.2)
By [2, Theorem A] and Lemma 2.23, we have:

Lemma 4.3. The following sequence is a projective resolution of A(r):

_'drn
0— Pl — - — Pl —" P — .. — P} =5 A(r) — 0.
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4.2. Weight spaces of standard modules. The following lemmas are useful for
finding bases for certain weight spaces of the standard modules A(s). The first of
them concerns the nil-Hecke algebra and is well-known and easy to check. Recall
the notation from §2.2 and the (Req,, N'H.)-bimodule structure on A(a$) from §2.6.

Lemma 4.4. Leti € I and c € Z>o. The map
BX > Aaf), £ 0l fruy
is an injective map of right A.-modules with image A(af).
Recalling (4.1), we have:
Lemma 4.5. The map
0N = Al), frr s f
is an injective map of right As-modules with image 1o A(Y).

Diagrammatically, the map in the lemma is given by

Proof. In view of Lemma 2.17, we may assume that k is a field. Let M be the free
graded k-module with basis 2(2"), where the degree of the basis element w € 2(2°)
is set to equal to the degree of ¥y, 1(19)s in Rya1s5. Lemma 2.24 and (2.19) show

that the map & : q(g)M@)k Xy = A(), we f — Y5’ f is an isomorphism of right
Xs-modules.
Let ¢ be the map in the statement. Then ¢ is the composition of the inclusion

q_z(g)As%q(g)M ®k Xs, [ — us @ f with £, so ¢ is injective. It is now enough
to show that ¢(f) € 11()9 A(7°) and that dimg(1;s)9 A(Y*)) = q_2(;) dimg(As).
For the first claim, note that y, 057 Is a nonzero element of smallest possible degree

in 11s9s A(7®), so recalling (2.7), we have
L9 Pu 05" fes = Yu,v5° o,
— T,Z)usvf,sfxoTlTsflwo
= quUS/STlfﬂfoTslfle + wusvf/sal(fxo)Ts;1wO

= u,v5°01 (f:l?o)Ts;le

= wusvffsawo (fxO)
= wusvs/s )
where the first equality comes from Lemma 2.16 and (2.7), the third comes from

the relations in N'Hs, the fourth follows because deg (v, v5°11) = deg(¢u,v5°) —2 <
deg(1u,v5°), and the last holds by Lemma 2.4.
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As for graded dimension, we have

. . 1
dimg (15090 A(Y)) = ——5 dimy(11:2:A (7))

(Is)’
2(3)
_1 ('[ I ) (dimg &7)*

(1s]4)”
= q_2(;) dimg As.
where the first equality follows from (2.29) and (2.18), the second from (2.25), (2.20),
and Lemma 2.24, and the last from an elementary computation. O
4.3. The k-module &(r, s). In this subsection we fix r, s € [0, min{a, b}]. Recalling
Lemma 2.30, we write T, (s) := TS (A(s)). The terms of this complex are of the
form
15 (s) =q "r"ernA(s) (n=0,...,7).
If r>sand 0 <n<r—s, we define
wp(r,s) =—(r—s) 1+ (a—r)+b—7)+(r—s—n+1)(r—s—n),
K, = qwn(ns)Ab—r,r—s,s,r—s—n,n,a—ra
Wp, = Ub—r;s,r—s—nUb—n;r—s,sUb—r+s;r—s,r—s—nUb—r;r—s,sUb;s,r—s—n-

The diagram for 1; vy, 15, , is the top part of the diagram below. Observe that
As(s) = Mp—s,5,a—s € Ky in a natural way, so we may consider K, as a A, (,)-module.
Recalling (4.1), we have

Lemma 4.6. Suppose 0 < n <r.
(i) If n>r —s, then T (s) = 0.
(ii) If n <r —s, then the map

=, K, — q_s“”A( )
f — wwn( ob=s o wu.sv’?{s © nga_s) f (Two,b,s 1 Tw(),afs)

is an injective degree zero map of Ay(s)-modules with image T} (s).

d)wn
ob s os oa—s
S’U,Y 0 Vg

)

( : : f :(
Wo

T Q1 Twy 4,
illil ||||||Iw‘”’ e

Proof. (i) The condition n > r — s is equivalent to the condition a —r +n > a — s,
which easily implies, by (2.20), that 1;_  A(s) = 0 hence e,,A(s) = 0.

(ii) Tt is straightforward to check that =,, is homogeneous and A, (s)-equivariant.
Define

Diagrammatically, =, is given by

2b—r 1r—s—n 18 25 gr—s

a—s a—s ~

ga : (]—( 2 )Ar—s—n,n,a—r — q_( 2 )Xa—s — A(O&a_s)
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55 : q_(bgs)Ab—r,r—s — q_(bgs)xb—s % A(/Bb_s)
& a2 GIAy 510w ARY)

where the isomorphisms are from Lemmas 4.4 and 4.5. Let d = (r — s)(r —s—n) —
s(r—s—mn)— s(r —s) and define

' A(ﬁb_s) ® 199 A(Y?) @ A(a?™F) — q_dljr’nA(s), TRYR 2>y, (xoyoz).

Since w, € 2(=52%0=5) (2.19) shows that ¢ is injective. Observing that =, =
£(6p ® &y ® £q), we see that Z,, is injective with image in 15, A(s).

Now we prove that im=,, C e,,A(s) by showing that e,,=,(f) =

[1]

have, using the relations in Ry,

n(f). We

En(f) =
( :
Wo
ob—7 qr—s—n
Wo
To
2b—r 1r—n bl 1 1e-r
Wo Wo wWo wo Wo
: : f : : :
zo ) (%o (o) (o) (Zo)
w1

where the first equality follows from Lemma 2.16, the second follows because f
is symmetric in the variables as indicated by the vertical dotted lines, hence, by
Theorem 2.5, commutes with the parabolic subalgebra NHy_, @ NH,_s @ NHs ®
NH,—sn QNH, @ NHq_r, and the last equality is straightforward. Now we have
ernZn(f) = Zn(f) by Lemma 2.16.

To complete the proof, in view of Lemma 2.17, we assume that k is a field and
check that dim, K;,, = dimg ¢~®""e, ,A(s). For brevity, we denote [M] := dimg M.
Let z=(r—s)s+(r—s—n)s+ (r—s)(r —s—mn). We have

.86 =[] [7] [0 ] tewae) (3]
=" [ e s e a0 (s

s s|_
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wn (1,8)+s [T‘—?’L]! [T]!

—gq n (738)+8rn '+ + ! [ o] [As] [Xars)],
[r—mn—s] [r—s],

where the first equality follows from (2.20), then second from (2.18), and the last

from Lemmas 4.4 and 4.5. Thus,

e e, nA(S)] = : q'_sr’"' ' — 1 s
e A AT M

_ wn(r,s) [Xb—s] [Xa—s]

CA R | A R

= ¢ Ay ) [Ay— s [A) [Ar—s—n] [An] [A—r],

where the first equality is (2.18), the second is by the above computation, and the
last is by an elementary computation. O

Because of Lemma 4.6(i), we assume for the rest of the subsection that » > s. We
use Lemma 4.6(ii) to understand the complex T, (s) and compute its cohomology.
First, we re-express the coboundary map of Ty (s). For 0 < n < r — s, set

r—Ss

9n ‘= H($b+r—s—n - $b—7’+k) € Xa—i—b—s-
k=1

If f € K, observe that fg, € Ay—rr—ssr—s—n—1,1n,a—r 50 by Proposition 2.3, we
have a map

on t Kn = Kny1, £ 004, o p10.,(f0n)
Recalling the isomorphisms Z,, : K, — T7(s) from Lemma 4.6(ii), we have:
Lemma 4.7. If 0 < n <r — s, then the following diagram commutes:

[
Kn+1 — Kn

dr,n'*
Thia(s) < Ti(s).

In particular, the maps 6, make Ko into a complex isomorphic to T, (s).

Proof. There exist polynomials h; € kiyp—ri1,...,¥—s] and k; € klyp4r—y] such
that [1;-7 (Yosr—n — Yo—rti) = Zj hjk;. Let f € K,, and note that

dr,nEn(f) = er,n—i—lwxr,ner,ngn(f) = er,n—l—lwxr,ngn(f)
since imZ,, C T} (s) = ¢ *""e; ,A(s) by Lemma 4.6. We compute e 419z, En(f):

(D (I D N : (1e=r)
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by the relation (R7) and

Lemma 2.16
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wo

wo

1r—s—n

ob—r

by the relation (R7)

wo

wo

by several applications of

the relation (R5)

%) below)

see (

(

1n

1r—s—n

2b—r

Wo

Wo
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2b—7‘ 1r—s—n 15—1 28 or—s 1 1 qe-r

repeat the argument from
the previous step several
times

(see (x*) below)

by the relation (R7)

by Lemma 2.6 and the re-
lation (R7).

8Ub+7‘—s—n—1;1,n (fgn)

( wo ) ( wo )
() To obtain this equality, we attempt to move the portion of dashed strand in
the previous diagram to the left by applying a special case of relation (R7):

Ve Vehir1ls = Yehah 1 + 15 (if 4410 =40 + 1 and 4 = i440) (4.8)

several times. In all except the last application, the error term 1; causes the rest
of the diagram to become 0, so we only keep the term ¢y 11941;. In the last
application, because of the defining relations in A(s), the term ¥ 1141; causes
the rest of the diagram to become 0, so we only keep the error term 1;, which yields
the desired diagram.

(%) To obtain this equality, we again attempt to move the portion of dashed
strand in the previous diagram to the left by applying the relation (4.8) several




26 DOEKE BUURSMA, ALEXANDER KLESHCHEV, AND DAVID J. STEINBERG

times. In the first application, the error term 1; yields the desired diagram, so we
wish to show that the term 1)1 1941; causes the rest of the diagram to become
0. Since f is symmetric in the variables xpy1,...,Tp1r—s—n, the error term in any
application of the relation (4.8) other than the first causes the rest of the diagram to
become 0. However, after the last application of the relation, the term 1115
also causes the rest of the diagram to become 0 because of the defining relations in

A(s).
The expression represented by the last diagram above is Z,,11(d,(f)), which com-
pletes the proof of the lemma. O

Given an interval (c,d] and a polynomial in d — ¢ variables, we denote

f@ea) = f(@et1, -, 2a)-

For example, if 0 < m < d— ¢ then we have the mth elementary symmetric function

Bn(@ieq) = D>, Tipor Ty

e<i < <im <d

Now, for 0 < k < r — s, we define

—s—k

Rl = (_1)T ° (ET—S—k(z(b—r,b—s}) - ET—S—k‘(z(b,b-H“—s]))‘
These elements are considered as elements of the algebra
A" = Ab—r,r—s,s,r—s,a—r- (49)

Note that since A™ C Ap_y s sr—s—nna-r €ach K, is naturally a (right) A™*-

module. We use this to interpret the right-hand side of the lemma below as an
element of K, 41.

Lemma 4.10. For 0 < n < r — s and a symmetric polynomial f in n variables, we

have
r—s—1

6n(f(£(b+r—s—n,b+r—s})) = Z <xlg—|—r—s—n * f(z(b—l—r—s—n,b—l—r—s})) Zk-
k=0

Proof. For brevity, write f = f(Z(y4r—s—nptr_s))- We observe

r—s r—s
In = H(xb-l—r—s—n — Tp—yi) = Z(_l)r_s_kxlbg-i—r—s—nET—S—k(g(b—r,b—s])7
k=1 k=0
so that
r—s
sk k
5n(f) = Z(_l)r * 8Ub+7“75—n—1;1,n (‘Tb—l—r—s—nf)ET—S—k(g(b—r,b—s})' (411)
k=0
Next, using the identity
r—s—1
xz—::—s—n == (_1)T_S_kxllf+r—s—nET—S—k(z(b,b—l—r—s])7
k=0
(4.11) becomes
r—s—1
k
5n(f) = anJrr'fsfnfl;l,n (‘Tb-l-T—s—’nf)Zk?
k=0

and the result follows from Proposition 2.3. O
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The proof of Theorem 4.13 below amounts to showing that T¢ (o) & K, is iso-
morphic to a certain Koszul complex which we now define. Let N be the free right
A"*-module of graded rank Z’,;;‘a_l ¢?*=20=s) For k=0,...,7r —s—1, we have the
basis element ¢, := 1 € ¢2F2("=)A™s C N. We set

Z = (Zo, oo yzr—s—l) =€z + -+ €r—s—12r—s—1 € N.
Note that Z is a homogeneous degree 0 element of N. We consider the Koszul com-
plex q‘*’o("’s)/\'N associated to the regular sequence Z for the algebra A™* (see [17,
§4.5]), which has the form
R qwo(r,s)/\n-‘rlN - qwo(r,s)/\nN “ ...
ZANa<+—a
where \"N is the nth exterior power of the free A™5-module N. Note that A" N
has basis {€;; A--- A€, |0<i3 <--- <i, <r—s}. Recall (1.2).
By Lemmas 2.30 and 4.6(i), the complex Homy, (P, A(s)) is zero in degrees

larger than r — s, so every element of the r — s component is a cocycle and there is
a surjective map

[=] : Hompg, (¢° = Roerr—s, A(s)) =& " (r,8) = H'™*(Homp, (Py, A(s))), ¢ = [¢],

where [¢] is the cohomology class of ¢. Moreover, by Lemma 4.6(ii), we have an
isomorphism

§: K — Hong (qu,rsteenT_s’ A(S)), fr (er—s,s — Usf)-
For r,s € Z>o with min{a, b} > r > s, we define
A(T, 8) = qwris(T’S)Ab—r,r—s,s,a—r-
Note that there is a surjection
Prs: g IS SN (rs), 1@ @30 f1® fs N @ fafa® 5@ f5, (412)

obtained by identifying the two A,_s components. Since Ay5) = Ap—s5a—s C A",
we consider A”™® to be a right Ay(s-module, and we consider A(r, s) to be a right
A, (s-module via the composition of algebra homomorphisms

AO’(S) — A"® p;'; Ab—r,r—s,s,a—r = q—wrfs(r,s)A(rj 3)
and then degree shift. Note that p; s is a A,(,)-homomorphism.
Theorem 4.13. Let 0 < r,s < min{a,b}. If r < s, then &(r,s) = 0. If
r > s, then Ep(r,s) = E;7°(r,s) and there is an isomorphism of right A,)-modules
E)7%(r,s) — A(r,s) such that the following diagram of right Ag(s)-modules com-
mutes:
qu’S(T_S)AnS z ? Hong(qsr’risReer,r—s;A(S))

me l[_]
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Proof. If r < s, then &(r,s) = 0 by Lemmas 2.30 and 4.6(i), so assume r > s. For
0<n<r-sand A € Z(n,r—s—n),let sy := s\(Z(ppr_s—nptr—s) € Kn.- By
Proposition 2.1, {s) | A € Z(n,r —s —n)} is a basis of K,, as an A™*-module, so
there exists an isomorphism ©,, : K, — qu(T’s)/\"N of A™*-modules such that

On(sx) = €ex, Aex, o141 Ao s A€ gn—t
We claim that the maps O,, define an isomorphism of complexes between K, and

qo(rs) A°*N. We must verify that the following square commutes:

on
Kppg ¢4—m K,
J,en+l l@n
qwo(r,s)/\n-l-lN ZN— qwo(r,s)/\nN.

Fix some A = (A\,...,\p) € ZP(n,r —s—mn) and set X := { A\, A1 +1,..., 01 +
n — 1}. We then have by Lemma 4.10 and (1.2):

Oni1(Gn(s2) = D (=D)FOPIe A A A Aen, no1)z
ke[0,r—s)\X
= Y (&Aex, A Aextn—1)z
kel0,r—s)\ X
=Z NOy(sy).

Since Z is a regular sequence, we have & (r,s) = H"(¢**™)A\*N) = 0 unless
n =r —s. We complete the proof using Lemmas 2.30 and 4.7 and the observation
that by the fundamental theorem of elementary symmetric polynomials, the kernel of

Prs: q“r==mS) AT A(r, s) is the ideal generated by (2o, ...,z —s_1), SO prs induces
an isomorphism of A™*-modules (and therefore of A, )-modules)
H 3 (q0MINN) = ¢ == "DA™S /(2,0 2 go1) — A(r, ). O

4.4. The category &y. Throughout this subsection, we use Theorem 4.13 to iden-
tify £, %(r, s) with A(r,s) = q“T*S(T’S)Ab_r,T_S,S7a_r whenever min{a, b} >r > s> 0.

In this subsection, we will need to consider not only partially symmetric polyno-
mials in the variables  but also partially symmetric polynomials in the variables y.
This will be important since elements of )V, will be considered as elements of Ry,
cf. (2.11). For any d we have an isomorphism

ly—z * Va = Xd, Yr = Ty
We will use the notation AY := YSm= for the symmetric polynomials in y1, ..., ¥m.
More generally, given a composition u = (u1,...,ux) of d, we have the algebra of
p-partially symmetric polynomials A?j = yf“. We often write A;)jh---,uk for A?j and
identify it with A?jl ®--® A?jk. The isomorphism ¢,_,, restricts to the isomorphism
Ly—a A?j = A,
For integers r, s, ¢t with min{a,b} > r > s >t > 0, define the following:
A(Tv 8) = qwris(T78)Ag}—r,r—s,s,s,r—s,a—r < ya"'b’

A c— gwr—t(rt)—4(r—s)(s—t
A(T’ S’t) T qw (= alr=e)ls )Agj r,r—s,s—t,t,t,s—t,r—s,a—r < y‘H‘b'
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Recalling (4.9), there is a surjection

Brs: A(r,8) g =A™ [0 fr@ 30 f1@ 5@ fo Ly—a ([1® f2® f3f1@ f5@ fs).
Recalling (4.12), let
qQr,s = Pr,s}sr,s : A(T, 3) — A(T7 S)’
Let again min{a,b} >r>s>¢t>0,and 0 <n <r —s. Set
D(T787n) = H (yl - y]) € ya—i—bu

1€(b+s—n,b+s]
j€(b—r,b—s]

Ub—n;ms € 6a+b7

u(s,n) :

(T § n) = Ub—r;r—s725—nUb+s—n;n,r—s S 6a+b7
( ) = Ub—s;t7s—tUb;s—t7tUb—s+t;s—t7s—t € 6a+b7
x(r, S, t) = Ub—r;r—&s—tUb—i—t;s—t,r—s € Ga-‘rb-

Let min{a,b} > r > s >n > 0. For any fe f&(r, s), set

f;},s = (_1)(r7;+1)+n(r_8)er,r—s+n7/)v(r,s,n)D(ry S, ’I’L)(U(S, n) : f)es,n
) ( 17‘75+n ) 1a—r

D(r,s,n)(u(s,n) - f)
Qwuu(—)

Define

T S
(107Jf7s D P = @ qsr'mRGenm — @qss'nRge&n =: F)S7
m=0 n=0
(hmeT m):n—O = (hT—s—l-nqufges,n)iL:()-
We think of gpr s as an element of Homp, *(Py, Py). Recalling the differential (2.31)
on Hom%, (P, Py), we have:

Lemma 4.14. Suppose 0 < s < r < min{a,b} and let f € A(r,s) = Ey(r,s). If
f € A(r,s) is such that q, s(f) = f, then

(1) 5(90”) =0, and

(i) the isomorphism (2.32) sends the cohomology class of 4,01]23 to f.

Proof. We prove (i) by checking that the following diagram either commutes (if r — s
is even) or anticommutes (if 7 — s is odd) whenever 0 <n < r — s.

_'d'r,'rfs+n
gt Ry €rntltr—s > ¢°rmt" Ry Eror—s+n

J/_'f”n,«l»l l_fn
Ss,n+1 _'ds,n Ss,n
q> Rees,n+1 q Rees,n-
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We compute +d, ,—sip fn:

ob—T 15771.71)( or )( 1r—stn+l ) 19-7

2b—7‘ lsfn 27“ ( 1r—s+n ) lafr

( D(r,s,n)(u(s,n) - f)
( ob—s ) ( 15—n ) ( 28 ) ( 1 ) 1a—s

ob—T 1571171)(

by Lemma 2.16

( D(r,s,n)(u(s,n) - f)
( ob—s ) (1s—n ) ( 25 ) ( 1 ) ( 1a—s )

2b—r 1sfn71 27‘ 1r73+n+1 1a7r
o — by several applications of the re-
= — lations (R5) and (R4), and by
Lemma 2.5
u(s,n) - f
( ob—s ) ( 15—n ) ( 28 ) ( 1 ) ( 10—s )
2b—7‘ 15—71—1 27‘ 1r—s+n+1 1a.—'r
by Lemma 2.5 and the relation
= D(r,s,n+ 1)(u(s,n+1) - f) (R4)
217—5 15—n ) 25 1" 1a—s
2b—r 1sfn71 27‘ 1r73+n+1 1a7r
= [E(:Li’ﬁjr%s@(s’wr L == by Lemma 2.16.
2b73 ( 15—n ) 10—s

The last diagram represents + fn+1ds,n. The signs are taken care of by
(—1)(T_;+1)+(n+1)(7’—5) — (_1)7"—3(_1)(T_;+1)+n(r—s)'

Es(eryT—SfAr(*],s):

To prove (ii), recalling (4.2), we compute (—1)

(r—s)(r—s+1)
2

2b7r

a
23
[ V)
3

17=s 10-="

SN

(
% 2v—s ) (1° ) (2 ) 1e-e

wo wo wo wo

3
\X
\

—

)
),
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[ I J byl 2.16
= ( wo wo wo wo ) Yy Lemma <.

2b7r s s 17=s a—r

<
by Lemma 2.5, the relation (R4), and the

= defining relations of A(s).

¢ pr.s(f)

C_wo ) | T w )

The last diagram represents Z,_s(pr,s(f)), where E,_; is as in Lemma 4.6(ii). Thus,

the image of gofi s under the map (2.33) is

N

(er,r—s — Er—s(}sr,s(f))) S Hong (qsr’risRGQT,r—‘s; A(S))
The proof is complete upon an application of Theorem 4.13. O
For f € A(r,s) and § € A(s,t), define
-4 A(S, t) ®A(Ta 5) - A(Ta t)a §®f = 8z(r,s,t) (D(Ta S, S_t)g(w(sa t) f)) : (415)
Lemma 4.16. Let 0 <t < s <r < min{a,b}. Iff e f&(r, s) and g € f\(s,t), then
g _ 95f
905,15907’78 - Sor,t .
Proof. Let y(s,t,n) := Up_st—n s—+ € &4 and note that
u(t,n) " ty(s, t,n)u(s,s —t +n) = w(s,t) (4.17)

and
D(r,s,s —t+mn)D(s,t,n) = D(r,t,n)D(r,s,s — t). (4.18)

We compute f374"g0:

217—7* 1t—n ( or ) ( 1r—ttn ) ja—r

asd

D(r,s,s —t+n)(u(s,s —t+n) - f)
21775 1t7n 28 1s—t+'n 1a—s

D(s,t,n)(u(t,n) - g)

)
C 2"t ) @z (2 @) C 1t )

by (R4), Lemma 2.16, and
Theorem 2.5

D(r,s,s —t+mn)D(s,t,n)(u(t,n)-g)(y(s,t,n)u(s,s —t+mn)-a) )

( ob—t ) (lt—n) ( ot ) ( 1 ) ( 1e—t )
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by (4.17), (4.18), and the
relation (R7)

D(r,t,n)D(r, s, s — t)u(t,n) - (Gg(w(s,t) - f)) )
( ob—t ) (lt—n) ( ot ) ( 1 ) ( 1e—t )

ob—r ( or )( r—ttn ) Qa—r
_ \\\\ % by Lemma 2.6.

D(r,t,n)(u(t,n) - Op(s.4)(D(r,s,s —t)g(w(s,t) - f))) )
( ob—t ) (lt—n) ( ot ) ( 1 ) ( 1e—t )

The last diagram represents (g f )™ O
Lemma 4.19. Let 0 <t < s <r < min{a,b}, A € Z(r—s,s), and p € P(s—1,t),

and set f:=105,01010101 € A(r,s) and§:=105,212121®1 € A(s,t).
Then

§of =10 (s\*s)®1@10101€ A(r 1)
Proof. We use the notation A¢ for the conjugate of a partition A. For a partition k =
(K1y-- vy ks—t) € P(s—t,r—s),let k= (r—s—kKs—t,...,r—s—k1)° € P(r—s,s—t).
We have f = w(s,t)f and
D(r,s,s—t)= > (-D)f1e9s2101010s.@1®1c Ars,t)
KEP (s—t,r—s)
by [14, 1.4 Example 5], so that
gof=" Y (D)0, (1@ (sz5)) @5, ®1@ 1@ s, ®1® 1)
KEP (s—t,r—s)
= Y ()P ((sesn) *5) ©10 1@ (sex 1) @ 1
KEP(s—t,r—s)
=1®(sx*5,)®1R1® (g0 *1) ®1
=1®(saxs,)®1®1I®1®I1. O
We consider A(r, s) as a right A(r,r) module via the natural algebra embedding
A(Ta T) = Ab—r,r,a—r(_>Ab—r7r—s78,a—r = q—wr—s(ﬁS)A(T’ 3)-
If f € A_s, we write
o= Ir, , @ FR1IA, ®1p, ., € A(r,s).
By Proposition 2.1, A(r, s) is a free right A(r,r)-module with basis
{sY? | Xxe P(r—s,s)}.

We also make A(r, s) into a left A(s, s)-module via the composition of algebra ho-
momorphisms:

A(S, 3) = Ab—s,s,a—s;)Ab—r,r—s,s,r—s,a—r =A™ E) q—wrfs(r,s)A(n 3)7 (420)

the first map being the natural embedding. (This is similar to the definition of
the right A,(s)-module structure on A(r,s) used in the previous subsection; in fact

A(s, s) can be identified with Endg,(A(s)) = A(f()s), see the proof of Theorem 4.22.)
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If 0 <t < s <r <min{a,b}, then the tensor product A(s,t) ®(s ) A(r,s) is now
a free right A(r,r)-module with basis

{s/‘i’t®s§’8 |pe P(s—tit),Ae P(r—s,s)} (4.21)
and we define a map of right A(r,r)-modules
O : A(s,t) @p(s,5) A1, 5) — A(r, 1), sfjt ® 8;’8 = (S x sy

Let
—o—:A(s,t) @k A(r,s) = A(r,t), g f — O(g R f).

Theorem 4.22. Let 0 <t < s < r < min{a,b}. The composition in the category
&y is given by
Ep(s,t) @ E(r,s) — Ep(r,t)
2l 2l
A(s,t) @ A(r,s) —— A(r,t)
gRf ———— go f.

Proof. According to Lemmas 4.14 and 4.16, the composition of g € A(s,t) with
f € A(r,s) is given by qr,t(géf), where § € f&(s,t) and f € f&(r, s) are such that
qS,t(g) =g and qr,s(f) =

First suppose r = s. Since D(s,s,s —t) = 1 and z(s, s,t) = 1, (4.15) shows that
qs,t(g@f) = gf € A(s,t). Thus, the composition map A(s,t) ® A(s,s) — A(s,s)
coincides with the right A(s, s)-module structure of A(s,t).

Now suppose s = t. Since D(r,s,0) = 1 and w(s,s) = z(r,s,s) =1, (4.15) shows
that g4 f = §f, so that qm(géf) = p(g9)f € A(r,s) where ¢ is the composition in
(4.20). Thus, the composition map A(s,s) @ A(r,s) — A(r, s) coincides with the left
A(s, s)-module structure of A(r,s).

Associativity in & implies that the composition map A(s,t) @ A(r,s) — A(r,t) is
A(s, s)-balanced and A(r,r)-equivariant, and is therefore completely determined by
the image of the basis elements in (4.21). Lemma 4.19 now completes the proof. [

5. NON-FORMALITY OF THE A,, STRUCTURE

We provide an example to show that the Ay,-category structure on & is, in gen-
eral, non-formal. First, we recall some basic definitions and an important theorem,
see [5,6].

A (k-linear) Ao -category A consists of a class of objects ob(A), a Z-graded k-
module A*(p, o) for every pair of objects p,o € ob(A), and for each n € Z~( and
objects m,...,m, € ob(A), a degree 2 — n k-linear map

m207...77rn : A.(Tfn_l, 7Tn) ® A.(Tfn_Q, 7T1’L—1) ®-® “4.(7-[-07 7'['1) — A.(’]T(), 7Tn)7
such that for each n € Z~(, we have
Z (_1)r+stmr+1+t(1®r Xmg X 1®t) = 0, (*n)
r+s+t=n
where m,, := @ﬂ07___77rn€0b(v4) mn” 7" An Aso-functor F from B = (B, My, My, .. .)
to A = (A,mq,ma,...) consists of a function F' : ob(B) — ob(A), and for each
n € Zxq and objects m, ..., T, € ob(A), a degree 1 —n map

Ero-omm B (my—1, 1) @ B (Tp—2,Tp—1) @ - - @ B* (7o, m1) = A*(F(m0), F (7)),
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such that for each n € Z~(, we have

Z (=)™ Fp (19T @ M @1%7) = Z (=1)*mp (I, ®---@F;,), (%%,)
r+s+t=n 11+-+ig=n

where s := Z?;ll(k;—j)(ij —1)and I, := @, cobay Fn """ The composition
GF of two Ax-functors F' : B — A and G : C — B is given on objects by (F'G)(w) =
F(G(m)) for m € ob(C) with

(FG)ni= Y. (-1)°F(Gi, ® - Gy),
11+-+ig=n
where s is as above. The identity functor 14 on A is the A -functor F': 4 — A
with F(r) = m for each © € ob(A), F{"" = id 4e(, ) for each p,o € ob(A), and
F, =0 for n > 1. An isomorphism of A.,-categories is an A.-functor F': B — A
such that there exists an Ay-functor G : A — B such that GF = 1z and FG = 14.
When we speak of the homology HA of an A,-category A = (A, my,ma,...),

we mean the homology with respect to mq. It is a graded category with the same
object class as A. In fact, we have:
Theorem 5.1. [3, Theorem 1] Let (A, mi,ma,...) be an Ay category and HA
its homology. If each morphism space in HA is a free graded k-module, then HA
carries the structure of an Ax-category HA = (HA, My, Ms, ...) such that

(i) M1 =0 and M2 = [mg],

(ii) there exists an Aoo-functor F : HA — A such that F(m) = 7 for each

m € ob(A) and [Fy] =idga.

Moreover, the As-category structure on HA satisfying (i) and (ii) is unique up to
(non-unique) isomorphism of A -categories.

Such an As.-category structure on H.A is called a minimal model of A. An Aso-
category A is called formal if its minimal model can be chosen so that M, = 0
for n # 2. A graded category B is intrinsically formal if every A,,-category A =
(A, my1,ma,...) whose homology is isomorphic to B as a graded category is formal.
For example, the graded category & in the situation of either Theorems A or B is
intrinsically formal because by homological degree consideration, there is no way to
impose an A.-category structure on & with M, # 0 for any n # 2.

Kadeishvili’s original proof is constructive and yields an inductive algorithm for

producing a minimal model in the special case where A is a differential-graded
algebra, i.e., m, = 0 for n > 2:
Algorithm 5.2. [3, Proof of Theorem 1] Let A = (A, m1,mg,...) be an Ano-
category with my = 0 for £ > 2 and HA its homology. The following algorithm
produces an A..-category structure (HA, My, Ms, ...) and an Ay -functor F' : HA —
A which satisfies the conditions in Theorem 5.1.

Step 1: Let M; = 0 and take F!"" : &(u,v) — Ho(p,v) to be a cycle-choosing
homomorphism of k-modules. Set n := 2.
Step 2: Since my = 0 for k > 2, we may rewrite (xx,) as

miF, = Fy M, — U, (5.3)
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where
n—1 n—1n—2
Upi=myy (- "N E@F, ) =Y Y (=) E,_ (19" e My 1¥).
i=1 s=2 t=0

We will also use the restriction to HA(m,—1,7,) ® - -+ @ HA(mg, 71):
Ure-m™ . HA(mp—1,m) @ « -+ @ HA(mo, m1) — A(mo, 70)-

One can check that m U, = 0. Thus, since M}, F}, have been defined for
k < n, we take M, to be the (well-defined) homology class [U,] of U,,.

Step 3: Note that [F1 M, — U,] = [F1M,] — [U,] = M,, — M,, =0, so FAM,, — U,
is a boundary, and choose F;, such that mF,, = F1M,, — U,,. Increment n
and return to Step 2.

Let 6 € Q4. For each m € KP(6), fix a projective resolution P] of A(w). Consider
the differential-graded category Hgy whose objects are the Kostant partitions of 6
with morphism spaces Hp(p, o) := Hom¥, Q(P.p , PZ). We denote by

mi),o . H;(pa 0') — ’H(;(p, 0')
mg 7T Hi(0.7) © Hy(p.0) = Hi(p.7)

the differential and composition in Hg, respectively. Note that m7™ is precisely §

from (2.31). Being a differential-graded category, Hy is also an A,-category (see [5]),

so its homology & carries a structure of an A..-category according to Theorem 5.1.
For the rest of this section, we let 6 := a1 4+ 2a2 + a3 € @+ and set

= (g, a1 + a2 + ag) p:= (a9 + as, a1 + ag)
o= (a3, a0, a1 + az) 7 := (a3, (042)2,041)-

Note that there is one other Kostant partition, (ag + a3, ae, ), which will not play
a role in our construction. Recall the standard generators (2.28) of the standard
modules and the idempotents (2.7) in the nil-Hecke algebra. We define

U7 1= Vqgy O Vay O Vgy O Vg € A(T),
eri=e1 Qe ®e; € NH1 QNHy @ NHy,

so that v, = 0re;. We list the resolutions of the corresponding standard modules
from [1, Theorem A] and Lemma 2.23 below:

9 dr dg €r

0 — ¢°Rglazar —— qRplasg1 @ qRplaize —— Rplainzs ——— A(mw) — 0,
9 d’f dg €p

0 — ¢°Rglsaer —— qRplazor @ qRplgo12 —— Rplagia ——— A(p) — 0,
dg €o

00— qRylgo ————— Rylgos —>— A(o) — 0,

00— ¢ 'Rylgpe, T A1) — 0,

where a matrix label stands for right multiplication with that matrix, and

Ti=[—toloosr Ysihplor], df := [1/}31/}212123] , eni=[Un],

P3la123
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1
df = [—th1laza1r  Yslsana], dy = [Zi’lziﬂ ; € = [vp] ,
dg = [¢3l3212] , €0 = [Vo]

€Er = [1[)2117—] = ['[)7—7—2] .
One can easily check, using (2.19), that the complexes T7 (p), T¢ (o), T2 (7), and
TI(7) are, respectively, the top complexes in the four diagrams below. Moreover,

the diagrams define isomorphisms of complexes.

[(d5)2.1]

0 ¢+———— q_112132A(p)

12123A(p) «— 0

szHszvpf ZTf’_VwS"vapf
0 ¢ 1 lz2—21) gXy ——— 0,
1 [(dS)Q 1]
O+— q~ 13212A(0’) 12312A(0’) «— 0
ZTfHUUf ZTf'—Hﬂanf
0 ¢ LA lz2z1) gXy —— 0,
[(dg)1,1]
0 < 13221A(7‘) qlgzle(T) +— 0
ZT]‘.’—){}T fr2 ZTf'—ﬂ/Jsﬁr fro
(R q_2X4 [zaas] Xy 0,
dr dar
0+ q_112321A(7’) (—1 12231A(7’) b 12132A(7’) % q12123A(7’) — 0
ZTfHWTfm ZT(f,g)H(wzwlorfm,wzwlwgofm) 2Tf'->¢3¢2¢3¢107f7'2

0+—q X —mm X, 0 X,

[—(acg —z1) T4 —acg]

Thus, denoting Zj, := k[z1, ..., zx], we have

q2X4 +— 0

T4a—I3
r3—T1

Eo(m,p) =Ep(m,p) 2 q ' X/ (21 = x2) = ¢ 121, T 2

Eo(p,0) = E3(p,0) = q A3/ (21 = x0) —= ¢ 129, Ty > 21, T3 29

Eolo,7) = E}o,7) = q 72 /(13 = 14) == ¢ 223, Ty — 21,T0 — 20, T3 — 23
Eo(m,7) = EF(m,7) =2 q 72Xy /(w1 = 13 = 14) — ¢ 22, Ty — 21, T — 2.
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Example 5.4. There is an A, -category structure & = (&, My, M, . ..) satisfying
the conditions in Theorem 5.1 such that

T,0,0,T

E (o, T)®@EN(p.o)®EY(m, p) ——— EX(m,T)
2l 2l
0 2Z30q¢ ' 200 2 =
ct+m~+w b+n Z‘(2 Z%

282525 ® 2R @ 2Y s 2f .
22 — 21

Moreover, there is no As-category structure on & satisfying the conditions in The-
orem 5.1 with M3 = 0.

Proof. We apply Algorithm 5.2. We will need to examine the complexes T7 (o) and
TY(7). They are, respectively, the top complexes in the two diagrams below, and
the diagrams define isomorphisms of complexes.

(dg)
0+———— q_llglggA(O') (A 12123A( ) — 0

ZTf'—Wm/)l’vaf ZTwaswzwlvaf
0 RER ) X3 — 0
~1 i dg
0+ q 13221A(T) < 12321A(7’) ) 13212A(7’)  EE— q12312A(7‘) — 0
ZTf'—H?rfw ZT(f,g)H(dflﬁrfTwasfirgTz) ZTf'—HZJW:stTsz
00— ¢ 3% «—— ¢ X @ gt < 4, 0
[—(:Ez—:m) 14—13] [m—m]
To—T1

so that
g@(ﬂ' 0) 591( )%ng/(l‘l :iﬂg);)Zg, 1+ 21,T2 > 29
Eo(p,7) = EF(p,T) 2 q Xy /(21 = T2, 73 = 14) — ¢ 22,1 > 21, T3 > 20,

Instead of Fy, it will only be relevant to determine the restrictions F|" P Flp 7
F7'7, and F"". According to the algorithm, we are free to take for these any cycle-
choosing homomorphisms. We define

ar dar
0 — ¢*Rylagar —— qRplaos1 © qRelaize —— Rylajag — 0,

FT(',P za = a 0
1 (1) \[y‘ll%ﬂ O]N‘_wﬂlgl%lj

0 — ¢*Rylson 7 qRyl2321 @ qRg13212 7 Rylagis — 0,

0 — ¢*Rylsan *> qRyl2301 @ qRg13212 *> R912312 — 0,

PO a by .
Fy (2123) = y2y413221
y2y313212

0 —————— qRpl3zem B Rylza1s — 0,
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dU
0 — qRplzan1 — Rplsars — 0,

) b P
FYT (21 2925) := \[—/‘y%ygyilgz(z)l]

0—— q*1R9132(2)1 — 0,

d° dar
0 — ¢®>Rplsgor —— qRylasza1 ® qRyl3a1o —— Rylazis — 0,

) by .
Flp T(Ztllzé) T [—y;y2132(2)1:|

0 ——— q*1R9132(2>1 — 0.

Using the above, we now show that the following choices are in accordance with
the algorithm:
M§7p7a— — 0, F27T7p70 — 0, M;ﬁpv’r — 0’ F27Tvp77— — 0 (5‘5)

By our choices of F{"* and F/"?, we have Uy "’ = 0, so My’ = 0, and according

o (5.3), we may take F)"”% = 0. Since &(m, p) is concentrated in homological
7p77- j—

degree 1 and &(p, 7) is concentrated in homological degree 2, the image of Uy """ =
my T (FPT@F) is in H3 (7, 7), which is zero since PT has length 2. Thus My "
0 and according to (5.3), we may take Fy " = 0.

We now have

U37",P707T — m72T70—7T(F{77T ® F27T7p70) _ 7P7 (FP7UT ® F 7/’) _|_ F7T 0'7'(10"7’ ® M 0,0 )

— F27'r7p7T(M2vavT ® 17r7p)
— _mgvva(ngavT ® F{T7p)7

so we only need to make a choice for Fy'”". We have U§”" = mby@" (F)" @ F{7)
so that UY77 (282525 @ 2723) is given by

@ ar
0 — ¢*Rolsamn —— qRylagar ® qRylaois —— Rglagia —— 0

{ b+m c+n1

vy Yo Ya 32(2) 1]

0 —— 5 ¢ 'Ryl — O.

Thus

METT (s 6 AT ) = 7 (5:6)
and (FT M7 —USTT) (202525 ® 2°28) is given by the above diagram, except the
diagonal arrow is right multiplication with

[—y5 Tyt (45 — y§) 1ga)1) -
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We may now take F§'77 (22525 ® 21"2) to be:
2 dy dg
0 — q“Ryl3zoa1 —— qRylaza1 ® qRelzo1 —— Rylaziz —— 0

b+m c+n’y2 yl
V1Ys V2w 32021

0
0 ———— ¢ 'Rylype); — 0.

Now UJP77 (282525 @ 228 ® 21) is given by:
0 — ¢*Rylazn N qRploa31 © qRploise L N Rgloia3 — 0,

b+m (‘+n+wy2 yl
[ V1yz" Y, y2—y1 32(2)1]

0O ————— q71R9132(2)1 — 0,

so that M3 ”%" = [U;"”7] is as in the theorem statement.

For the second assertion, note that the existence of a second A..-category struc-
ture & = (&p, N1, Na,...) satisfying the conditions of Theorem 5.1 implies the ex-
istence of an isomorphism of A, -categories G : (Eg, My, M, ...) — (g, N1, Na,...)
with GG being the identity on each morphism space. Assume, toward a contradiction,
that such an isomorphism exists, and that N3 = 0.

Recall that we take M7 = Ny = 0, so (#x*9) applied to G reads G1 My = No(Gy ®
G1), and since G is the identity, we have My = Ns. Now since N3 = 0 by assump-
tion, (xx3) reads

GQ(M2®1—1®M2)+M3:M2(1®G2—G2®1). (57)
The restriction of (5.7) to & (o, 7) ® Ey(p, o) ® Ep(m, p) is
G72T7p7T(M2p,U,T ® 17'('7p) _ G72T,U,T(10',T ® Mﬂ',p,o') + Mﬂ',p,U,T

=My 7T (17T @ G3P7) — My T (GETT @ 1™P), (5.8)
so according to (5.5), (5.8) becomes
GEPT(ME™T @ 17P) + MPPOT = MPT (197 @ G3P), (5.9)

We have a formula for M£*”" given by (5.6). We define

0 — ¢*Rplogan A, qRp12231 @ qRgl2132 N R012123 — 0,

Fo (2028 =
1 1~2/- d)ly ym13221
2o ¢2¢1y2 Y5 13212

0 ————— qRplzm —> Rylza19 — 0,
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By our choices of F{"7 and F}"", we have that U, 77 (282525 ® 21"2%) is given by
2 a7 dg
0 — ¢"Rolasoar — qRolags1 ® qRploize — Rplaiogs — 0,

b+n c+m1

—V1yTYs " Yg Lg(2) J

0 —— 5 ¢ 'Ryl —— 0

so that M3 77 (282525 @ 27 28) = z4etmybn,
Denote the left- and right-hand sides of (5.9) by L and R, respectively. We apply
L and R to two elements: 21 ® 1® 1 and 23 ® 1 ® 1. Note that the map

G377 2y 0 g 21 = E)(p.0) @ Eb(m,p) — Eb(m,0) = 2y,

is a KLR degree 0 map, so we must have G3*?(1 ® 1) = 0. Thus, R(z1 ® 1 ®
1) = R(z» ®1®1) = 0. On the other hand, we have M;"”7"(z; ® 1 ® 1) = 1,
MPP7 T (2 ®1®1) =0, and MY77 (21 ® 1) = MJ”7 (22 ® 1) = 21, so by (5.9), we
have

OZR(21®1®1):L(2’1®1®1):G2(21®1)+1,
0=R(22®1®1)=L(2®1®1) =G(z ®1),

a clear contradiction. O
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