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Channel Estimation in One-Bit Massive MIMO
Systems: Angular Versus Unstructured Models

Shilpa Rao

Abstract—Millimeter wave (mmWave) massive MIMO cellular
systems will be characterized by increased bandwidths and the
ability to handle a large number of users. To cope with the power
consumption problem due to an increased number of receive anten-
nas, the idea of equipping one-bit ADCs at the base station has been
proposed. The goal of this paper is to establish performance bounds
on the channel estimation of one-bit mmWave massive MIMO
receivers for different types of channel models. The Cramér-Rao
bound (CRB) is a lower bound on the performance of unbiased
estimators and sets a benchmark for the design of channel esti-
mators. We consider both a structured channel model for a single
user where the channel is composed of a superposition of multipaths
characterized by path delays and directions-of-arrival (DOAs), and
an unstructured channel model where the channel is a generic
FIR filter. The Fisher information matrix (FIM) for these channel
models are derived in closed form. The CRB is also extended to a
dictionary-based channel model, where the path delays and DOAs
are selected from small perturbations on a discrete grid, and a
sparsity constraint applies to the vector of path loss components.
We also derive the Bayesian CRB when the array response is
imperfectly known and is affected by perturbations in the sensor
pattern or position. The CRBs are evaluated numerically and the
effects of various system parameters on the CRB are studied. The
dependencies between channel parameters and the effect of array
perturbations are also investigated.

Index Terms—Massive multiple input multiple-output, wide-
band channel estimation, one-bit analog-to-digital converters,
Cramér-Rao bounds, array calibration.

1. INTRODUCTION

ILLIMETER wave (mmWave) massive multiple-input

multiple-output (MIMO) is a promising area for next-
generation wireless communication systems. These systems
employ arrays with many antennas, of the order of a hundred
or more, at the base station (BS) and operate in the 30-300
GHz frequency range. Furthermore, the rising user demands
for capacity can be met through higher bandwidths and spatial
multiplexing. Massive MIMO is also capable of concentrating
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energy in very selective directions, thus significantly increasing
the energy efficiency. However, at mmWave, the benefits of
massive MIMO are limited by the low SNR per antenna a
result of increased propagation losses, diminished scattering,
atmospheric absorption and higher noise bandwidths.

Channel estimation, which is key for exploiting the potential
gains offered by mmWave massive MIMO, is challenging due to
the aforementioned limitations. Traditional channel models that
assume Rayleigh fading are not suitable for mmWave systems
because the scattering environment of mmWave channels is not
dense, but rather sparse with line-of-sight (LOS) and a few
reflected propagation paths contributing to the effective chan-
nel [1], [2]. Hence, much of the work in mmWave has focused on
direction-of-arrival (DOA)-based channel estimation. Previous
works in mmWave channel estimation exploit the sparsity [3]
of these channels in the delay and angle domains [4]-[11].
The authors of [1] focus on pilot-aided mmWave DOA-based
channel estimation, channel subspace estimation is studied in [9]
and mmWave channel estimation with hybrid architectures is
considered in [12] and [13].

The large bandwidths at mmWave limit the performance of
analog-to-digital converters (ADCs) at the receiver. It has been
shown that the power consumption of ADCs increases drasti-
cally with increasing quantization resolution and sampling rate
requirements [14], [15]. One-bit ADCs are cost-effective, con-
sume less power and do not require automatic gain control [16],
[17]. Moreover, it has been shown that one-bit ADCs suffer from
a low power penalty (approximately w/2) at low SNRs [18].
Therefore, one-bit quantization is pertinent to mmWave massive
MIMO systems since they suffer from low SNR per antenna.
Prior work focuses on channel estimation using the Bussgang
decomposition with a Rayleigh fading channel model [19],
quantization design with non-zero threshold and channel estima-
tion [20], throughput analysis [21], blind and semi-blind channel
estimation with time division duplexing [21] in one-bit massive
MIMO systems. The authors of [22] provide a blind sparse chan-
nel estimation algorithm based on a maximum likelihood (ML)
formulation. In [5], approximate message passing algorithms to
exploit the joint sparsity of the broadband channel in the angle
and delay domains with few-bit ADCs are proposed. However, in
the above-mentioned DOA-based channel models, it is assumed
that the inter-element time delay between antennas in the array
is small compared to the inverse signal bandwidth. For mmWave
massive MIMO systems, this assumption will typically not be
true. This effect, sometimes referred to as (beam) “squint”,
has been observed to cause a serious mismatch in the array
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response, and if ignored can significantly degrade performance
[23]-{26].

In this paper, we focus on Cramér-Rao performance bounds
for channel estimation in one-bit mmWave massive MIMO
systems. We will explore both deterministic and Bayesian
Cramér-Rao bounds (CRBs) depending on whether or not prior
information about the parameters is available. In the Bayesian
setting, the a priori information is taken into account in the
computation of the joint probability density function (pdf). Mis-
specified Cramér-Rao bounds (MCRBs), when the assumed data
model is different from the true model, can also be derived [27].
In [28], a lower bound on the Fisher information matrix (FIM)
for the exponential family of distributions is derived and the
ML estimator based on the “pessimistic” CRB for the DOA
parameter is derived in [29]. In [30] and [31], the CRB for the
channel parameterized by DOAs and path gains is derived when
the channel and the array responses are frequency flat. In our
work, we will take into account the channel estimation error for
DOA-based models when the array response does not exactly
match the assumed array model, similar to the array perturbation
studies of [32]-[34]. In particular, we are interested in the level
of array calibration accuracy needed for DOA-based methods
to maintain their advantage compared with less parsimonious
unstructured models.

Our analysis focuses on a one-bit mmWave single-input-
multiple-output (SIMO) pilot-based single-carrier transmission
system where a single transmitter is equipped with one antenna
and the base station employs an antenna array. We consider chan-
nel models that are either “structured” (DOA-based, arbitrary
delays) or “unstructured” (FIR, uniformly-spaced delays), and
compare the resulting CRBs for the channel estimates. Under the
structured channel model, we assume that the channel is param-
eterized by the multipath fading coefficient, the DOA, and the
delay associated with each of the paths. We also take into account
perturbations to the array response, as mentioned above. The
channel is modeled as having a finite duration impulse response
composed of a discrete number of arbitrary delays. To simplify
the analysis, we do not assume any Doppler spread is present, so
the angle and delay parameters are assumed to be time-invariant
over the channel estimation period. We also take into account the
squint effect mentioned above, where for wideband signals the
time delay from one end of the array to the other cannot simply
be represented as a phase shift. Incorporating these temporal
shifts is important because the end-to-end delay for the antenna
array is of the same order as the symbol duration.

For the unstructured model, the channel is represented as an
FIR filter. While this model has a much larger number of param-
eters than the structured case when the number of multipaths
arrivals at each delay is not large, the model depends linearly on
the parameters, and thus it is easier to estimate. The interesting
issue to be addressed is whether or not the increased difficulty
in estimating the structured channel is worth the potential gain
in estimation performance.

We also consider a dictionary-based channel model used in
the compressive sensing literature [6], [10], [22]. The dictionary
is based on a discrete set of DOAs and path delays obtained
from a grid, where the grid size is greater than the number
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of antennas. This formulation is commonly used in mmWave
channel estimation since compressive sensing based algorithms
which exploit the underlying sparse multipath structure can be
used. We consider a “dictionary mismatched” channel model,
where the multipath DOAs and delays are matched to the nearest
grid point and the difference between the dictionary and the true
source parameters, or the grid mismatch, are parameters to be
estimated.

We derive the FIM for the parameters of interest assuming
that the “length” of the channel (i.e., the number of discrete
multipaths in the structured case, or the maximum length of
the FIR filter in the unstructured case) and the noise variance
are known. For the structured model, these parameters are the
path loss components, DOAs, path delays and the array per-
turbation parameters. The perturbations are modeled as com-
plex Gaussian with a known covariance matrix. The FIM is
derived for the specific case of uniform linear arrays (ULAs),
a root-raised-cosine shaping function, and sensor position and
pattern perturbations. For the unstructured channel model, the
parameters are simply the path loss components, whereas for
the dictionary-based channel, the parameters are the path loss
components, the grid mismatch error parameters and the array
perturbation parameters.

A number of numerical experiments are performed to evaluate
the CRBs, and a comparison of the structured, unstructured
and dictionary-based channels as a function of the SNR is
performed. The effects of perturbation, bandwidth, the channel
delay-tap length, and the number of receive antennas on the
CRBs of the one-bit quantized system are also studied. We also
include comparisons with the CRB obtained when there is no
quantization error. The numerical results provide insight into
the relative impact of the various factors that influence of the
channel estimate, including the precision of the array calibration,
the model parsimony, the one-bit quantization, size of the array,
SNR, bandwidth, etc.

Notation: Boldface lowercase a denotes a vector and boldface
uppercase A denotes a matrix. A7 is the transpose of A. The
ith element of a and the (i, j)th entry of A are represented
by a; and [A];; respectively. The Hadamard (element-wise)
product is represented by @, the Kronecker product by ® and
the convolution operation by @. The operation vec(-) denotes
the vectorization operation, i.e. the stacking of the columns of a
matrix one below the other. Real and imaginary parts are given
by Re(-) and Im(-) respectively. E[-] is the expectation operator.
The ith row and jth column of the matrix A are given by A (%)
and A7) respectively. A = B and A > B mean that A — B
is positive semidefinite and positive definite respectively. The
cumulative distribution function (cdf) of the standard normal
distribution is given by ®(z), and its derivate ®'(x) is the pdf
of the standard normal distribution.

II. MMWAVE CHANNEL MODEL

We consider an uplink mmWave MIMO system with a single-
antenna user terminal and M receive antennas at the base
station. We assume that the wireless communication channel
is linear and its properties change slowly with respect to the
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signal duration. The communication system block diagram is
illustrated in Fig. 1. The received baseband signal at the mth
antenna is given by

n® = VP [ b5t~ ) +ulufe), )

where P; is the transmit signal power, h],(¢) is the impulse
response of the channel from the transmitter to antenna m at
time ¢ and w/, (¢) is the corresponding noise.

The source signal is assumed to be band-limited to
[—B/2, B/2],and w}, () is a complex circularly symmetric and
temporally white Gaussian process with power spectral density
Np. The source signal s(¢) is encoded as a digital signal with
a common pulse period 7', where the complex valued symbols
{s[k]} are modulated by a pulse shape function g'(t) as

oo
s(t)= Y slklg'(t — kTe).
k=—co
The received signal in (1) is assumed to be fractionally sampled
by the filter g"(¢) by a factor of P, and can be equivalently
represented in sampled time as

i [1+ 2] =VE Y b [1+ 5] sl -1
J

=

p

= 2
+wm [n+ 5], @)
where p=0,1,...,P—1, hy[l+&] is the equivalent
discrete-time channel and wp, [n+ &] is the discrete-time
noise, given by

wlie = [ [ o (E+E)ne)

B (8" — t')g (¢')dt'dt”

s a]

Wi [n + %} = [m g (t"wl, ((n + %) b= t") dt".
We will absorb the effects of the transmit and receive filters,
g'(t) and ¢"(t), into g(¢) = ¢"(t) ® g'(t). We assume that the
convolutive channel is frequency selective with maximum delay
length of L symbol periods, so that the FIR assumption means
that at most L consecutive symbols play a role in the received
signal, i.e. hy, [l + %] is zero outside the interval [0, L —1].
Generally, oversampling w.r.t. the Nyquist rate results in noise
correlation [35]. However, if the receive filter g”(¢) is chosen

1019

Yrn, [n + %
g"(t) e+l
: Sampling 1-bit
: Rbglrffi‘r’e : Quantizer

System block diagram.

to be a root-Nyquist pulse, the discrete-time noise wy,[n] is
white [36]. Consequently, the root-raised-cosine filter is chosen
for the transmit and receive filters in our analysis, so that

sinmt/T, cosmat/Ts
g(t) = e
wt/Te 1—4a?t?/T?

where « is the roll-off factor and the noise wy,[n] ~
CN(0,0?%), 02 = NoB. In our analysis, we assume that the
noise variance o2 is known, since the channel gains and o are
not separately identifiable when one-bit quantization is used,
which leads to a singular FIM [30], [31].

A. Unstructured Channel Model

In the unstructured case, the channel is modeled as a uniformly
sampled FIR filter characterized by the complex gains of each
path to the receiver. Let 3, ,,, be the complex path gain of the rth
path to the mth antenna so that the channel between the source
and antenna m is

R
() = Brimd(t — (10 + (r — DA)),
r=1
where 1 corresponds to the delay of the first multipath ar-
rival, and the value of A’ is determined by the minimum re-
solvable time difference between different paths. Under this
FIR model, the discrete channel can be expressed as h[k] =
[hi[k], ha[k], . .., har[K]]", where k = | + &, and

Br.1 Br. g(KT's — 10)
B2 Br,2 9(kTs — (0 + A'))
hk] =
i Bim Br.m g (kT — (0 + (R —1)A"))
ﬁEC:fo

(€))
The parameters of the unstructured model are comprised by /3,
the vector of all complex path gains, i.e. 3 = vec(/3), and we also
define B%° = Re (B) € RMEx1 and 8™ = Im (3) € RMEx1,

B. Structured Channel Model

The structured channel model is a geometric channel param-
eterized by path loss components, path delays and DOAs. The
response of the antenna array to a waveform arriving from direc-
tion @ is denoted by a(f, p) € CM>*1. The vector p represents

Authonized licensed use limited to: Access paid by The UC Irvine Libranies. Downloaded on May 19,2020 at 21:36:46 UTC from |IEEE Xplore. Restrictions apply.



1020

parameters on which the array response depends (e.g., antenna
positions, gain and phase response, etc.). We will assume these
parameters are a priori known to be Gaussian with some nominal
mean value p, and covariance 2.

Let the DOA of the rth multipath, measured clockwise with
respect to the y-axis, be #,,m = 1,2, ..., R, and assume that the
antenna elements are close enough together so that they share a
common complex path gain ~,. for the rth path. The path gain ~,
is an aggregate of the large-scale fading, namely the path loss and
shadowing, as well as the small scale fading. More specifically,

Br‘m = Yrdm (91"-. p)em(_jwcTr,m): 4

where w,. is the carrier frequency and g,,(@,, p) is the sensor
pattern of the mth sensor in the direction #,. The channel
between the source and the mth antenna is

R
h;n(t) — Z ’}"er(ar, P)GXP(_jwcTr,m)(s(t = 'rr,m)-
r=1
Incorporating the transmit and receive pulse shaping, the
discrete-time equivalent channel becomes hp,[k] =32,
'Ter(ﬁru p)g(kTs == Tr,m)exp(_jwcﬁ':m) and stacking the
discrete-time channels from all M antennas, we get

g(kTs = T‘l"_.].)
R g (kTs e Tr,ﬁ)
@ a(fy, p), (5)

g (kTs - Tr_.M’)

where @ is the Hadamard (element-wise) product and the term
exp(—jweTr,m) in (4) was absorbed into the expression for
the array response a(f,, p) by writing it in terms of the array
sensor coordinates. Note that (5) uses time delays rather than
phase shifts in the pulse shaping functions because the inverse
bandwidth of the signals at mmWave frequencies may approach
the inter-element delay between antennas in the array.

As an example of the array perturbation parameter p, consider
the case of sensor position and pattern perturbation. The array
response vector a(f,, p) can be written as

a(br,p) =
q1(6r, p)exp (_jQW(f‘:l (P) sin 6, + 11 {P) Ccos 67‘)/)\)

?

au (0r, p)exp (—52m(z 1 (p) sin O + ya (p) cos 0r) /1)

where (zm,(p), ym(p)) are the coordinates of the mth sensor.
In the presence of an antenna pattern perturbation only [34],
we have ¢in(0r, P) = gm.0(0r) + pm, Where g 0(6;) is the
nominal pattern, p,, is the complex perturbation and p stacks
both the real and imaginary parts of the complex perturbation
for all antennas, so that p € R?™*1, For sensor position per-
turbations only, the sensor coordinates can be modeled in a
recursive manner as in [32]. The following piecewise linear
model applies to flexible array structures: (z,,(p),ym(p)) =
(Tm-1+dsindm(p), Ym-1+ dcos om(p)), where ¢m(p) =
@m—1 + pm—1, with initial conditions ¢1 = 7/2, 1 = y1 =0,
and ¢ is the spacing between antenna elements. Thus, p,, is
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the incremental angular perturbation of the mth sensor and
pE RM’ —1x1_

A special case of the above modeling is a uniform linear
array operating with a nominal omnidirectional sensor pattern,
gm(fr) =1 and p =0. The path delay to the mth sensor
is given by 7 =7+ (m— 1)%5in€r, where ¢ is the
speed of light and 7. = 7.7 is the time delay of the rth
propagation path to the first antenna element. Let gi (7., 6) =

[9(KTs — 1), .., g(KTs — 7, — LELBWENT a(6,) = [,
e Bl o7 HR(M-1)sind | T where ) is the wavelength,
and ¥ = [y1,72,...,7r]T. The Ith delay-tap of the channel
can then be written as
h[k] =3 L[gk(Tlv el): gk(Tﬂ: 92)1 LA gk(TRa 63)1
GkEﬁMxR
® la(ﬂl) a(62) ...a(ﬁg)l'y. ©)
AECYM*R

In the derivation of the CRB, we use the following notation:
"¢ =Re(y) and y"™ = Im ().

Note: Although the path delays, 7. ,,,, are functions of p (in the
case of position perturbation, for example), we do not consider
this effect in the derivation of the FIM since the derivative of T
with respect to p is negligible.

C. Dictionary Based Channel Model

In mmWave transmission, the propagation channel is often de-
scribed using a sparse scattering model. The underlying channel
is still parameterized by DOAs, path delays and complex path
gains as in the structured model, but the DOAs and delays are
assumed to lie on a fixed grid, and the channel estimation is
formulated as a sparse recovery problem. This approach lever-
ages tools available in compressive sensing to design efficient
algorithms for determining the channel. A grid mismatch occurs
if a particular DOA is not present in the possible DOA set.
In our analysis, we model the true DOA as a perturbation to
the nearest DOA in the grid. Let the uniform grid of DOAs
consist of N, points with N, > M, so that the DOA dictionary
isthesetd € {0,2n/N,,...,27(Ngy — 1)/Ng}. Then, a Taylor
interpolation of a(#, p) around the nearest DOA in the grid, ',
yields

da(0, p)
96 lo—g

Here, we have used ¢ to denote the grid mismatch between
the nearest DOA grid point and the DOA of the corresponding
multipath, rather than the multipath DOA as in the structured
channel.

Similarly, the uniform delay grid is the set 7’ € {0,
(L]Vld) L e (L_”(}ir\;d_l)n } and a Taylor interpolation similar
to (7) can be performed to obtain

a(d' +6,p)=a(@,p)+6 (7

9g(kTs — 1)

gkTe —7' —7)=g(kTe — ') + 7 5

(8)
T=7"
Here, we have used 7 to denote the grid mismatch between
the nearest delay grid point and the delay of the corresponding

multipath. Having taken into account the dictionary errors, the
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discrete-time channel h[k] for the dictionary-based channel
model is given by

h[k] == (GD(kTS-;T) ®AD(9:p)) s (9)

where A p (0, p) € CM>*Ne and G p (KT, 7) € RP*N4 are the
angular and delay domain perturbed dictionary matrices, respec-
tively, and @ and T are the vectors of grid mismatch errors to be
estimated. The columns of G p (KT, 7) are of the form [g(kT, —
™ —71),...,9((k + E22)Ts — 7' — 7)]”, and the columns of
A (0, p) are of the form a(#' + 6, p). The complex unknown
vector y is a sparse N, Nz x 1 vector that carries the path gains
from the corresponding DOAs and delays in the dictionary. The
sparse formulation implies that «y only has R < N, N4 non-zero
elements. In our analysis of the CRB for this model, and unlike
the structured and unstructured models described above, we
assume that the locations of the non-zero elements in -y, and
therefore the nearest angle and delay grid points are known a
priori. The benefit of this a priori information will depend on the
resolution of the grid, and the ability of dictionary-based meth-
ods to correctly identify the correct grid points. The assumption
should be a reasonable one for dictionaries whose grids are not
too finely spaced.

D. System Model

Gathering the received signals at the M antennas from (2) in
y and the noise in w,

y[n+2] :mgh[z+g} o=t +w [n+2],

where h [l + &] corresponds to (6) for the structured channel,
(3) for the unstructured channel and (9) for the dictionary based
channel model. We collect samples from N source symbol
periods, where the coherence time of the channel is greater than
NT., and sample the received signal at each antenna at P times
the symbol rate. We collect the M P x N spatial and temporal
samples of the received signal in the matrix Y to get

y[0] y[1] y[N —1]
y_ | v v+ yIV-1+3]
VIES] yli+ B2 ... yIN -1+
(10)
h[o] h[1] h[L —1]
. h[%]  h[1+ 3] h[L -1+ 3]

Lh{Z5] hi1+ &3] h[L -1+ 5] )

HEC)'WPKL

1021

s[0] s[1] s[N —1]

s[—1] s[0] s[N — 2]
+W.

s[—L-—l—l] 3[—L.-£—2] S[N‘— L]

N s

o
SeCLxN

Vectorizing (10) and taking the real and imaginary parts sepa-
rately, we have

_ | Re(vec(Y)) [
- llm(vec(Y))] =Sh+w, (11)
where,
- [ Re (ST ® \/’P:IMP) —Im (ST ® \/P;IMP)
_Im (ST @ \/pt-IMp) Re (gT ® \/pt-IM’P)
€ RIMNPX2LMP
N Re (vec(H)) 2L M Px1
= "Im(vec(H))‘| =8 ’
_ [Re(vec(W)) .
e -Im(vec(w))] e RZMNPx1.

We note that w ~ A(0, %I). The per-antenna SNR at the
receiver is defined as

=

-1 P-1
E [|hm[l +p/P]*] .

p=0

X

SNR = —
)

Q
Il
=}

As in [19], we define the quantization operation as Q(-) =
1 . . - -
?5 (sign(-))), where the sign operation is performed separately

or the real and imaginary parts, so the quantized output x is
x=Q(y) = 2(Sh+w).

A distinction between the unstructured, structured and dictio-
nary based models is that in the structured model and the
dictionary based model, the channel parameters are estimated,
whereas in the unstructured model, the channel h is estimated.

ITI. CRAMER- RAa0o BOUND

In this section, we derive the CRB for parameters of
the spatially structured and unstructured channel models.
For the spatially structured channel model, the parameter
vector consists of both deterministic and stochastic
components. The deterministic components are, namely,
the DOAs, path delays and complex path gains. When
considering sensor position perturbations only, we have
p € RM~1x1_and for pattern perturbations only, we have p =
[Re(pl): Re(p2), ..., Re(pm), Im(p1), Im(p2), . .. 1Im(pM)]
€ R2Mx1 The full list of parameters is © =
[6, T,vRe, 4™, p| under the structured and dictionary-based
channel models, and © = [3™°, 3"™] for the unstructured
model. Assuming independent observations, the log-likelihood
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for the spatially structured and unstructured models, I(x; @),
can be derived in a manner similar to [19], to obtain

2ZMNP

(0)= Y hd (%zkuk),

k=1

where 1z, is the kth element of x, u;, = (s““-))T h, s(*) is the
kth row of S, and ®(x) is the cumulative distribution function
of the standard normal distribution.

Assuming that the regularity condition of the log-likelihood
holds, the FIM has the following form [37]:

J=Jp+Jp,

where Jp and Jp are the information matrices obtained from
the data and the a priori information, respectively. The (7, j)th
elements of Jp and J p are given by

52
i Ex,p [mf(x, 8):|

62
[Jel;; =E [7(.0—9 ' (p—p )} ;
J TP 90,00 2 0

[']D];:,j =

where (2 is the covariance matrix of p. Since only p is random,
the matrix J p is given by

Jp = blkdiag{diag(0p), 2"},

where blkdiag{-} is a block-diagonal matrix where the argu-
ments form the diagonal blocks, and D = 4R, D = 2M R and
D = 4R, for the structured, unstructured and dictionary based
channel models respectively.

The expectation with respect to the joint distribution of x
and p in Jp is difficult to compute. Instead, we follow the
approach in [32], [34]. If the perturbations are small, Jp can
be approximated to order O(1) around pg, in which case

2

[l ~ —Ex [8—3():; @)] ‘

12
90,00, =2

=Po
Then, the CRB for the ith parameter of an unbiased estimator
with E [C:)] = © is given by the (¢, 7) element of the inverse of

the FIM, where the FIM is computed at the “true” values of ©®
and p. That is,

var(©;) > [J71(©)]

i

The approximation in (12) is sufficiently accurate for values of
p commonly encountered in real calibrated systems (see [34]
for more details).

A. Unstructured Channel
For the unstructured channel model, the FIM is given by

J He |] Re glm
§ lJTz l ﬁJ :3 ] € R2ZMRx2MR (13)
gepe T
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with

Jgre = E |Vgrel(x; ©)(V grel(x; ©))7] € RMAME,
Jgim = E [V ginl(x; ©)(V ginl(x; @) € RMAME,

J gregim = E [Vﬁnel(x; O)(V gieal(x; @))T] c RMRxMR

(14)
The expressions for the Jacobians as follows:
oh 0oh dh

Dpgr. = Re’ ggRe’" "' ggRe |°

9875 9815 OBRrim
Oh[k]
oBTs, 9(kTs — (10 + (r — 1A")),
Dﬁlm = jDﬁRe,

where e,,, is the unit vector with a 1 at the mth index.

B. Structured and Dictionary Based Channels

The regularity condition for the pdf of x can be easily verified.
For the structured and the grid mismatched dictionary based
channel models, Jp is block-partitioned and symmetric and is
given by

i Jﬂ Jﬂ'r Jﬂ‘fne Jﬂ.r[m Jﬂp T
Jg‘r ‘]T ‘]T'}’Re ‘]T’}'Im ‘]Tp
IJp=1[JT JT Jore J.meim J Re
D= GyRe: SCpyle i f B e | P15 |
T T T
‘]ﬂ’rlm JT"}'Im ‘]‘TRE-TIm J.-r[m J.-r[mp
T T T T
L Jﬂp er J'r“*p ']‘r‘“‘p Jp |

(15)
where the expression for each matrix block is provided in
Appendix B. Let uy = (s*))Th, (-)(%) be the ith row of the
argument and (-) (%) be the ith column of the argument. Denoting
the Jacobian of h with respect to 8 by Dg, we show in Appendix
A that Jg can be written as

dl(x; ©) dl(x; ©)
96, 06,

[J6], ,=E ] = (D,‘;”)T ST &, S DY,

(16)

where ®p is [@plek =2
(@'(Luy))?

(L) (1-0(Luy))

sions for the other sub-matrices of (15) in terms of Dg, D,

D,,re and D.im. For instance, the sub-matrix Jg is given by

a diagonal matrix with

. In a similar manner, we can derive expres-

Jor = (Dg)' ST &, S D,

The expressions for the Jacobian matrices are derived in Ap-
pendix B, and are evaluated at the nominal perturbation value

Po-

IV. SIMULATION RESULTS

We consider a ULA with half-wavelength spacing between
antenna elements, i.e. § = 0.54, A =¢/f. with the carrier
frequency f. = 60 GHz. The source signal s[n],n = —L +
1,..., N —1, is taken to be a randomly generated quadrature
phase shift keying (QPSK) sequence. We choose r to be the
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raised cosine filter with roll-off factor o = 0.8. For wideband
systems, the channel bandwidths can be as high as 1 GHz [38].
For this reason, in our simulations the null-to-null bandwidth
is set to 1 GHz, the symbol duration 7, = 1 ns, and the re-
ceived signal is oversampled at the sampling frequency f. =
P x null — to — null bandwidth. The oversampling factor is
P = 3 in all plots except Fig. 7.

A comparison of the CRBs of the different channel models is
accomplished by translating the CRB of the parameters © into
the CRB of the channel by the following transformation [39]

CRB(h) = Veh J! VZh,

where Vg (-) is the Jacobian with respect to ©. The parameters
for the structured channel model are selected as follows. The
angles of arrival of the multipaths are assumed to be distributed
independently and uniformly in [0, 27). The R complex gains
of the multipaths -, are a. The path delays 7,7 =1,2,..., R,
are chosen to be integer multiples of the sampling interval 1/ f.
For the first few simulations, we ignore the effect of array pertur-
bations. Similarly, for the unstructured channel, the elements of
the spatial signatures B, ,,m=1,2,... M, r=1,2,..., R,
are also assumed to be generated independently and identically
from a complex normal distribution with unit variance, and
Af=ir,

Finally, for the dictionary matrix in (9), we have selected
N, =2M and N4 = 2L — 1. The angular and delay domain
mismatch errors, 8 and 7, are generated independently and uni-
formly in [ 55—, 55~] and [—%, %], respectively.
The square root of the trace of the CRB matrix for each of the
parameters is computed and averaged over 50 realizations of the
channel.

A. Performance vs. SNR

Fig. 2(a) shows the square root of the trace of the channel
estimate CRB as a function of the SNR for a single line-of-sight
path (R = 1) to the receiver and a single tap channel (L =1)
with M = 32 receive antennas and pilot length N = 20. This
is the frequency-flat fading case with the unstructured model
corresponding to the Rayleigh fading case.

The increase in the bound at high SNR in Fig. 2(a) is com-
monly observed in one-bit sampled systems, and is due to the
loss of information in the channel gain as the amplitude of the
received signal grows, and the FIM becomes rank deficient. This
illustrates the benefit behind dithering (stochastic resonance),
where adding noise (lowering the SNR) can improve estimation
performance with coarsely sampled data. We also observe that at
low-moderate SNRs, which is common in mmWave, the gap due
to the quantization error between the unquantized and one-bit
bounds is about 1.96 dB as expected [40]. At higher SNRs,
however, the gap is much higher since the FIM becomes increas-
ingly ill-conditioned due to reduced identifiability of the channel
gains. The CRBs for the unstructured one-bit and unquantized
channels are higher than the other CRBs since they reflect the es-
timation error for a total of 64 real-valued parameters compared
to only 3 structured and dictionary based channel parameters
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Fig. 2. (a) CRB(h) with 32 antennas and a single LOS path to the receiver.
The dashed lines correspond to the CRBs of unquantized (ideal) systems whereas
solid lines are used to plot the CRBs of one-bit cases. (b) CRB(8) and CRB(~)
of the structured channel with 32 antennas and a single LOS path to the
receiver. The CRB is plotted for different values of the channel delay-tap length.
(c) CRB(h) of unstructured channels with 32 antennas for L = 10, L = 40
and L = 60.

(2 real-valued path gains and one DOA). Furthermore, the dic-
tionary based CRB is lower than the unstructured and structured
counterparts. This is because approximate knowledge of the
DOAs and delays is available and the CRB reflects the estimation
error for the grid mismatch. Fig. 2(a) provides a very interesting
observation concerning the structured vs. unstructured models
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and one-bit quantization. Note that the channel estimation lower
bound for the structured model under one-bit quantization is
significantly lower than the bound for the unstructured model
without quantization (perfect resolution), provided that the SNR
is below 10 dB, which would be the typical case for mmWave
systems. Thus, the gain in parsimony provided by the structured
model more than compensates for the loss due to the coarse
quantization, and this provides a strong argument for the use
of the structured model when the propagation environment is
relatively simple.

When the channel is strongly frequency selective (large delay
spread L), the received signal power is spread evenly over time,
the guantization noise becomes circularly symmetric, and the
resulting amplitude distortion caused by the quantization is
reduced (see [41] for details). This is evident in the CRB results
shown in Figs. 2(b) and (c). Fig. 2(b) illustrates the CRBs of -y
and @ for different channel lengths L = 10, L = 30 and L = 60.
The number of pilots is set at N = 80 in all cases. It is seen
that as the number of channel taps increases, the degradation in
performance due to quantization at higher SNRs also decreases.
For the same number of pilots, no effect on the CRB is observed
at low-to-moderate SNRs. The performance of the ideal system
is insensitive to L, and therefore, the dashed curves correspond-
ing to the ideal system overlap. A final observation regarding
Fig. 2(b) is that the CRB result for 8 is not inconsistent with the
CRB results in [30] and [31], but rather our definition of SNR
is different from theirs and, as a result, we are plotting the CRB
over a wider SNR range. A similar effect is seen Fig. 2(c) where
the CRB of the unstructured channel is plotted as a function of
the SNR for different values of L. Here, a single multipath is
considered with the number of pilots fixed to N = 80. Since the
size of the 3 grows linearly with R and L, the CRB is normalized
by MR. Thus, the effect of quantization error from one-bit
ADC:s in longer frequency-selective channels is less severe at
high SNRs.

B. Performance vs Number of Antennas

The effect of increasing the number of antennas on the CRB
is studied next. In Fig. 3(a), we plot the CRB normalized by the
number of receive antennas (,/Tr(CRB(h))/M) for the structured
channel case, for varying values of M at different SNRs and
delay tap lengths. The number of pilots is fixed to N = 60 and
the number of multipaths is R = 4. As expected, increasing
the number of antennas reduces the average estimation error
in each channel coefficient. In [41], it was found that, for a
given SNR, the number of antennas in one-bit systems with an
unstructured channel model should increase by approximately
2.5 times to meet the achievable rate of an otherwise equivalent
ideal unquantized system. At SNR = —5 dB, fewer than twice
the number of antennas are required for the one-bit system
to achieve the same channel estimation performance as the
unquantized system. For example, the one-bit CRB at M = 80
is equal to the unquantized CRB at M = 50. At 5 dB SNR,
it is seen that the number of antennas should be increased by
slightly more than a factor of two; the one-bit CRB at M = 110
is equal to the unquantized CRB at M = 50. At 5 dB SNR,
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Fig. 3. (a) CRB(h) of the structured channels as a function of the
number of receive antennas. For the case with L = 45, the SNR is 5
dB, and for the N = 100 case- L. = 15 and SNR = 5 dB. For the other
plots, L =15. (b). CRB(h) of the unstructured channels as a function
of the number of receive antennas for different values of L and SNRs.
The constrained CRB is also illustrated for SNR =5 dB and L = 15.
(c) CRB(8) of the structured channels as a function of the number of receive
antennas. As in (a), for the case of L = 45, the SNR is fixed to 5 dB. The final
plot with N = 100 corresponds to L = 15 and SNR = 5 dB. The dotted line
indicates the scaled angular resolution of the dictionary based channel model.
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even the highly frequency-selective channel (L = 45) has the
same CRB as a channel with L = 15 as seen by the overlapping
blue and black curves. At higher SNRs, it can be expected that
one-bit systems are advantageous for highly frequency-selective
channels.

We also plot the CRB as a function of M for unstructured
channels in Fig. 3(b). Since the number of parameters for the
unstructured channel scales with M (more specifically, the
number of parameters is 2M R), the CRB is normalized by M R,
and N = 80. As expected, increasing the number of antennas
reduces the average estimation error in each channel coefficient.
Atlow SNRs, the number of antennas needed by one-bit systems
has to again increase by almost two times to cope with the loss
due to quantization distortion. For instance, at SNR = 0 dB, the
one-bit system with M = 100 achieves the same CRB as the
unquantized system with M = 50. As the SNR is increased, it
is found that the number of antennas should be increased even
more to meet the CRB of the unquantized system.

Fig. 3(c) shows the CRB for @ as a function of the number of
antennas. The figure also shows the grid spacing of the dictionary
based channel model scaled appropriately. At SNR = —5 dB,
the number of antennas should be increased by less than 1.5
times to achieve the unquantized CRB, significantly less than
for the channel itself in Fig. 3(a). The one-bit CRB at M =
110 is equal to the unquantized CRB at M = 90. At 5 dB, the
factor increases to 1.5, still fewer than for the channel. Upon
examining equation (V), it can be seen that the Jacobian scales
linearly with M, and thus, the CRB reduces with a factor of M2,
Comparing Figs. 3(a) and (c) with (b), it is seen that, to match
the CRB of the unquantized systems, the unstructured models
require almost 2.5 — 3 times the number of antennas, whereas
the structured models typically require much less than twice
the number of antennas. Thus, this example illustrates another
advantage of using the structured model together with one-bit
quantization: fewer additional antennas are needed to achieve
the same performance as an ideal unquantized system than in
the case of an unstructured channel model. Note that in this
example, the structured model provides DOA estimates that are
well beyond the resolution of the grid used in the dictionary-
based model, especially for larger array sizes.

C. Effect of Array Calibration Errors

We now consider the effect of array perturbations on the
CRB. First, we assume a gain pattern perturbation only with
Q = 02 I. Here, M = 64, the number of pilots is N = 50,
the channel length L = 5 and the number of multipaths R = 5.
Fig. 4 shows the CRB of the structured channel for a standard
deviation of p, o, = 0.1. At o, = 0.1, the structured model
is an appropriate model to assess the channel performance at
lower SNRs but the CRB degrades faster. On the other hand,
the unstructured channel is a more suitable model when the
perturbations are large and unknown. Fig. 4 amplifies the result
of Fig. 2(a), showing that the structured model with one-bit
quantization achieves better channel estimation performance
than the ideal unstructured model up to about 10 dB SNR even
when there are array perturbations at the level of 0, = 0.1. Thus,
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for low-to-moderate SNRs where mmWave systems operate,
structured models that have even imprecise calibration and use
only one-bit quantization perform better than using unstructured
models with perfect quantization.

We also study the effect of position perturbation on the CRB.
The CRBs of « and # as a function of the standard deviation,
op. are plotted in Fig. 5(a) and (b), respectively, for two different
values of the SNR, 5 dB and 10 dB. It is seen in Fig. 5(a) that
for small values of o, increasing the SNR is advantageous
since the CRB is lower at SNR = 10 dB than at SNR =5
dB. However, more interestingly, increasing the perturbation
causes the CRB to degrade rapidly at SNR = 10 dB due to the
near-singularity of the FIM. The same effect was observed in
Fig. 4. Similarly, the CRB of @ also degrades for SNR = 10 dB
with an increasing perturbation in Fig. 5(b). The gap between the
one-bit and unquantized CRBs is greater for SNR. = 10 dB and
it becomes more pronounced upon increasing the perturbation.

D. Effect of Bandwidth and Oversampling

Fig. 6(a) and (b) show the CRBs of y and @, and T respectively,
as a function of the signal bandwidth for M = 32 and M =64
in the structured channel model. The delay spread is fixed to
0.2 ps and the SNR is 0 dB. The number of pilots is NV = 60 and
itis assumed that R = 4 multipaths are present. The null-to-null
bandwidth is varied from 1 MHz to 1 GHz and the oversampling
factor is kept at P = 3. Since the delay spread is kept constant,
the channel length increases with the bandwidth, making the
channel more frequency-selective. For both -y and 8, increasing
the BW from 1 MHz to 1 GHz decreases the CRB by almost an
order of magnitude. Therefore, for a given number of estimation
parameters, abroadband system exhibits a lower estimation error
for structured channel parameters than a narrowband system.
Similarly, increasing the bandwidth also provides better reso-
lution for the estimation of the delay parameters T as seen in
Fig. 6(b).

The effect of oversampling on the CRB is shown in Fig. 7.
Here, the gap between the one-bit CRB and the unquantized
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CRB is plotted as a function of the oversampling factor. More
specifically, we plot Tr[CRB1_p;t(+)]/Tr[CRBL(-)] for 7,7+
and 6. The number of antennas is kept fixed at 32 and the
oversampling factor above the Nyquist rate is varied from 1
to 5. It is seen that performance loss from quantization is the
least at SNR = —20 dB and increases upon increasing the SNR.
However, the effect of oversampling is to reduce the loss beyond
the 2/ limit. At low SNRs, for example at —20 dB, increasing
the oversampling factor does not have any effect and the plots
for all parameters coincide. However, improvements would still
be possible at low SNRs if the analog filter prior to sampling is
optimized [42].

E. Effect of Path Separation and Number of Multipaths

A disadvantage of the structured channel model is that the FIM
becomes ill-conditioned when two multipaths arrive with similar
DOAs and path delays. Fig. 8 illustrates the CRB as a function
of the fractional path delay difference. In this setup, R = 2 and
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the two paths have different path gains but are configured to have
the same DOA under the structured model. It is seen that as the
path delays become closer, the structured model is not accurate
and the unstructured model is better suited for resolving the two
paths. When the paths are well separated in time, the structured
channel model yields better results. For the given example, it is
seen that the structured model only begins to break down when
the difference in path delays is on the order of 3 — 4% of the
symbol period, but this illustrates the necessity of choosing the
proper model order for the structured case, which is the key
drawback of this method.

Fig. 9(a) and (b) show the normalized CRB
(+/Tr(CRB(h))/R) as a function of the number of multipaths
for M =64, N =80 and L = 25. It is seen that the CRB
increases almost linearly on the log scale as the number of
parameters also increases linearly with R.

V. CONCLUSION

In this work, we considered performance bounds for channel
estimation in one-bit mmWave massive MIMO systems. Three
channel models were considered, namely, (1) the structured
channel where the scattering environment consists of a small
number of scatterers characterized by distinct path delays, direc-
tions of arrival and path gains to the receiver, (2) the unstructured
channel which is appropriate when the number of paths to the
receiver is large and estimation of the path parameters is too
difficult, and (3) the dictionary-based formulation with grid mis-
match which is useful for sparse mmWave multipath channels.
Closed-form expressions for the FIMs were derived when the
receiver uses a uniform linear antenna array and a root-raised
cosine filter. The derivation for the FIM for the structured and
dictionary based channels also included the effect of array cali-
bration errors, and the cases of gain pattern and antenna position
perturbations were considered as specific examples. A number
of numerical experiments were performed to evaluate the CRBs.
A comparison in the CRBs of the structured, unstructured and
dictionary-based channels as a function of the SNR indicated
that the structured CRB is lower than that of the unstructured
channel since fewer parameters contribute to the expression of
the CRB. The effects of perturbation, bandwidth, the channel
length, and the number of receive antennas on the CRBs of the
one-bit quantized system were also considered. It was found that
pertubation caused the CRB to degrade and approach that of an
unstructured model at high SNRs. However, at low-to-moderate
per-antenna SNRs, which is common in mmWave, the structured
one-bit channel models have better channel estimation perfor-
mance than the unquantized unstructured models. Furthermore,
increasing the bandwidth and the oversampling factor caused the
estimation error variance to decrease due to improved temporal
resolution. It is also seen that to achieve the same error variance
as an unquantized system, the one-bit structured system required
significantly less than twice the number of antennas.

One of the principal observations of our results is that a signif-
icantly lower channel estimation error can be achieved by using
a structured rather than an unstructured channel model, even
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when the underlying array calibration is not precisely known.
Thus, the extra computational cost required for the resulting
non-linear optimization is often well worth the effort. The study
of dependencies between the various system parameters can be
useful in the design of channel estimation for mmWave massive
MIMO with one-bit quantizers at the receiver.

APPENDIX A

For the structured channel,
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Other sub-matrices can be derived in a similar manner.

APPENDIX B

The Jacobian matrices are computed below.
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Itis sufficient to compute one of the blocks since the other blocks
can be computed in a recursive manner:
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If we further assume a uniform linear array, the algebra is
straightforward and, at the nominal array perturbation, we get
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The derivative of g(kTs — 7 — @ﬂ) with respect to 6, is
shown in (17) at the bottom of the next page. The derivatives
of the array steering vector can also be computed in a similar
manner. For the above uniform linear array, under nominal per-
turbation values (gm0 = 1, pr, = 0 for the pattern pertubation
when the perturbation is not a function of the DOA, and p,, =0
for the sensor position perturbation case), we have

da(fr,py) —j2mécosby
. A
[0, 1

, M —1]7 © a8, po)-

The Jacobian of h with respect to 7, D is
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The derivative of g (kTs — 7y, ) With respect to 74, is shown
in (17) at the top of this page. For a ULA, T = [ry,...,7g|T,
Tr,m = Tr + 0(m — 1) sin f, /c and the Jacobian can be derived
in a straightforward manner. We can derive Dyre, Dyim and D,
from the following expressions,
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index. There are 2M R perturbation parameters in the case
of pattern perturbation and M — 1 parameters in the case of
position perturbation. If we consider the pattern only pertur-
bations with the pattern perturbation independent of the DOA,
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Similarly, for nominal uniform linear arrays with position
perturbation only we have [32]
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M-m
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k=1

For arrays which are not uniform linear arrays, expressions for
the derivatives can be derived in a manner similar to (18).
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