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qualitatively distinct outcomes appear to have their basis in different immune responses. Adult 45 

Xenopus laevis, for instance, are refractory to ranavirus infections while larvae often succumb, and this 46 

is due to their distinct immune responses [13,14]. The much more effective adult response to infection 47 

involves rapid, substantial CD8+ cellular responses, whereas tadpoles’ responses are dramatically 48 

less effective and slower. Larval X. laevis produce type I and type III interferon responses, which are 49 

effective at reducing viral replication, but are eventually overwhelmed by the virus [15,16]. However, 50 

while there has been great progress in elucidating the components of the immune system that interact 51 

with and help control ranavirus, many questions remain.  52 

In particular, the dynamics of viral population growth are largely unknown outside of cell 53 

culture experiments. What are the dynamics of the virus population within the host? Does the host’s 54 

immune system effectively control the virus population, outside of the Xenopus model system? Does 55 

the immune response lead to viral clearance or can persistent infections remain? Does this outcome 56 

depend on the initial exposure dose? We propose that mathematical models of the within-host 57 

dynamics of ranaviruses, which provide a quantitative understanding of the host-virus interaction, 58 

will help answer these questions and will provide a means for integrating the numerous factors that 59 

appear to be important for the outcome of ranavirus infections. There are several additional 60 

advantages of using a mechanistic, model-based approach. First, parameterized disease models yield 61 

quantitative insights that can be validated by collecting new data. Second, we can simulate 62 

parameterized models under novel scenarios to predict how the system might behave. Third, we can 63 

use models to identify which novel sources of data would best inform our understanding under 64 

different scenarios. Thus, our approach offers a rigorous method to generate new hypotheses and 65 

guide future studies to understand the interactions between ranaviruses and host immune defenses. 66 

To this end we set out to develop several versions of a mechanistic, within-host model that 67 

embodied hypotheses about the growth of frog virus 3 (FV3) and the host’s immune response to the 68 

infection. We then fit these models to a time series of FV3 titers within bullfrog (Lithobates catesbeianus) 69 

tadpoles that were experimentally infected with FV3. We used a model-comparison approach to 70 

determine the most parsimonious model(s) that could describe the observed viral titer through time 71 

and the effects of viral exposure dose. The salient features of these dynamics are: 1) a clear rise and 72 

then slower decline in viral titers over time, suggesting viral clearance by the host’s immune response 73 

and motivating our model-fitting exercise, 2) an earlier and higher peak in viral titers with higher 74 

exposure dose, and 3) low-level infections remaining detectable for seven weeks. We then use these 75 

models to generate testable hypotheses and guide future studies to understand the interactions 76 

between ranaviruses and host immune defenses. 77 

2. Materials and Methods  78 

Our goal is to test a set of hypotheses about how ranaviral populations grow within their larval 79 

amphibian hosts and how the virus interacts with the larval host’s immune system. Our strategy is 80 

to develop mechanistic within-host growth models with various assumptions that correspond to 81 

our hypotheses. We then attempt to fit these models to serially-collected data on within-host titers, 82 

and we use a model-comparison approach to determine the most parsimonious model structure, 83 

and therefore the most parsimonious support for our hypotheses. 84 

2.1 Experimental assessment of within-host ranaviral dynamics 85 

Details of the experiment can be found in Brunner et al. [17], but the essential details are that 86 

tadpoles (Gosner [18] stages 25–28) were exposed in 400 mL water baths for 24 h to one of three 87 

doses of the ranavirus FV3: a high dose (10𝟓 plaque-forming units [pfu] mL−𝟏; n=150), medium-88 

dose (10𝟑 pfu mL−𝟏; n=150), or a low, but unknown dose (n=90 in ‘mock’ exposure to inadvertently 89 

contaminated cell culture media). The tadpoles were assigned to be euthanized and sampled on 90 

days 2, 4, 6, 8, 14, 21, 28, 35, 42, and 49 post exposure (n=15 high-dose, n=15 low-dose, and n=9 91 

‘mock’ tadpoles per time point), although some died and were sampled before their assigned date. 92 

Viral titers in liver and kidney samples were measured with a quantitative real-time PCR assay [19]. 93 
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In our analysis, we do not include individuals that died before their pre-determined sampling date, 94 

because we wanted to focus on how the immune system was functioning against the virus, and we 95 

assume that individuals that died due to virus had overwhelmed immune systems. However, in the 96 

supplement we demonstrate that our results are robust, and that including the dead individuals 97 

does not change the rank-order of our models or our general conclusions about the system.  98 

2.2 Mechanistic models of within-host dynamics 99 

We fit models to these time-series data that embodied two assumptions about viral replication and 100 

two about the host’s immune response. First, we fit models with exponential viral growth (𝑽′ = 𝝓𝑽) 101 

or with logistic growth [𝑽′ = 𝝓𝑽 (𝟏 − 𝑽𝑲)]. In these differential equations, 𝑽′ represents 
𝒅𝑽(𝒕)𝒅𝒕 , where 102 𝑽 is the density of virus within the host, 𝝓 is the per capita replication rate of the virus, and 𝑲 is 103 

the viral carrying capacity. In some models, 𝑲 can be viewed as the viral titer above which the 104 

virus kills the host [5]; however, because we are modeling mean-field dynamics, we do not 105 

explicitly account for virus-induced host mortality. 106 

We then layer on possible immune system dynamics. From previous experimental work, we know 107 

that larval amphibians (at least Xenopus) show interferon type I and type III responses to FV3, 108 

although the latter appears more effective [15,16]. While we lack detailed knowledge of the immune 109 

response to FV3, especially in non-model amphibian species, we begin with the reasonable 110 

assumption that the production of the immune components, 𝒁, responds to viral infection 111 

following the Michaelis-Menten form of enzymatic activity [20,21]: 112 

𝒁′ = 𝝍𝒁 ( 𝑽𝑽 + 𝜸) . (𝟏) 113 

In this case, the engagement of the immune component ramps up to a maximum, 𝝍𝒁, as the virus 114 

population increases. The rate of immune component production is mediated by 𝜸, which is the 115 

half-saturation constant. In this formulation the density of immune components never returns to 116 

pre-infection levels. We therefore also considered a second formulation 117 

𝒁′ = (𝑵𝒁 − 𝜹𝒁) + 𝝍𝒁 ( 𝑽𝑽 + 𝜸) . (𝟐) 118 

Here, 𝑵𝒁 is the constant rate of production of the immune components, and 𝜹 is the per-capita 119 

background loss of the immune components. Moreover, we define 𝑵𝒁 = 𝜹𝒁(𝟎), such that, when no 120 

virus is present, the immune system stabilizes to a homeostatic level of immune component density 121 

equal to 𝒁(𝟎). In other words, we assume a balance of the immune components’ production and 122 

loss at equilibrium, when no virus is present. This means that there is a constant background level 123 

of immune components (𝒁(𝟎)) in a host, and when virus infects the host, the production of immune 124 

components ramps up until virus is cleared. 125 

Finally, we assume a mass-action attack rate of the immune system against the virus, which is a 126 

Type I Hollings’ functional response, such that our most complex model becomes: 127 

𝑽′  = 𝝓𝑽 (𝟏 − 𝑽𝑲) − 𝜷𝑽𝒁 (𝟑. 𝟏)  128 

𝒁′  = (𝑵𝒁 − 𝜹𝒁) + 𝝍𝒁 ( 𝑽𝑽 + 𝜸) . (𝟑. 𝟐) 129 

We therefore model immune component production in response to virus infection as a 130 

fundamentally different process compared to the function of the immune component that limits 131 

viral population growth. We futher note that all of our models are nested, and Table 1 shows all 132 
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model formulations that we fit to our data set. We divide the models into two classes, A and B, 133 

which are differentiated by the assumptions about the immune system’s production dynamics. 134 

Class A models are mostly distinguished by the fact that, at equilibrium, if the immune system 135 

response is strong enough, the virus is driven extinct (i.e., full viral clearance). For Class B models, 136 

the virus is not driven extinct, such that the virus persists at low levels within the hosts (Appendix 137 

A). 138 

On a less technical note, in some ways our models are not specific about how the immune system of 139 

the larval amphibian functions. For example, our model could equally represent a population of 140 

immune cells or a population of molecules generated by the immune system (e.g., interferon 141 

molecules) that act to control viral replication more or less indirectly. In other words, although we 142 

model a mass-action attack rate of the immune system against the virus, we do not necessarily 143 

mean that the virus and immune component must come into direct contact. This immune action 144 

could be indirect, for instance, by controlling apoptosis of virus-infected cells. 145 

2.3 Fitting the models to the experimental data 146 

We employ a Bayesian approach to inference to fit the suite of dynamical models to the time-series 147 

of within-host viral titers. Then we use Bayesian information criteria to compare the within-sample 148 

predictive accuracy of our models, while penalizing model complexity. In this way, we seek to 149 

understand the most parsimonious model structure that captures the main features of the time 150 

series. All model-fitting code is available on our open-source Bitbucket repository 151 

(https://bitbucket.org/jrmihalj/ranavirus-within-host-dynamics/src/master/). 152 

We use the open-source statistical programming language, Stan [22], to fit our differential equation 153 

models to the time-series data. Stan employs a Hamiltonian Monte Carlo (HMC) algorithm to 154 

sample from the model’s posterior. For each model, we sampled the posterior using three Markov 155 

chains, with a 2000 iteration warm-up, followed by 2000 iterations, for a total of 2000 samples 156 

recorded from each chain. We conducted various graphical and quantitative diagnoses of the chain 157 

behavior, including inspections for temporal auto-correlation, some of which are shown in the 158 

supplement. We assessed convergence with the Gelman-Rubin statistic, 𝑹̂ [23]. All models 159 

converged after 4000 iterations. 160 

Model dynamics are sensitive to parameter magnitudes. Therefore, in constructing our prior 161 

probability distributions for the parameters, we often restricted parameters to vague, but realistic 162 

ranges (see open-source model statements). All parameters were restricted to positive values, and 163 

for parameters that could take very large values (e.g., 𝑲) we set the parameter on a natural-164 

logarithmic scale. To allow for potential correlations in our model parameters, we assumed that the 165 

main model parameters (i.e., 𝝓, 𝜷, 𝑲, 𝜹, 𝝍) had prior probabilities that were zero-truncated, 166 

multivariate normal, with estimated means and an estimated covariance matrix (based on 167 

underlying correlations). We used Cholesky Factorization to estimate the correlation structure, 168 

assuming vague priors for the correlations (i.e., lkj_corr_cholesky(2)) [22]. Additional details on 169 

prior structures and model specification can be seen in our open-source code repository.  170 

Besides estimating the model parameters, we also had to estimate the initial conditions of the 171 

system: the initial viral titer, 𝑽(𝟎), and the initial immune component density, 𝒁(𝟎). Because we 172 

have three viral dosage treatments, we estimated three independent 𝑽(𝟎). We used a hierarchical 173 

prior structure, such that each treatment’s initial titer was drawn from a distribution with an 174 

estimated mean and variance (see model code). We further assumed that the initial immune 175 

component density, 𝒁(𝟎), did not vary among treatments. We therefore assumed that all larval 176 

amphibians start with the same average immune system component density that then responds to 177 

the invasion of the virus. Because the magnitude of 𝑽(𝟎) and 𝒁(𝟎) could be large, we again set 178 

these parameters on a natural-logarithmic scale. 179 

https://bitbucket.org/jrmihalj/ranavirus-within-host-dynamics/src/master/
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 213 

3. Results 214 

Figure 1. The fit of model B2 to the experimental data. Circles are data points representing the viral 215 

DNA copies from individual bullfrog tadpoles that were sampled on a given day. The median 216 

model fit (solid red line) and 95% Bayesian credibe interval (CI) of the fit (dashed red lines) are 217 

shown. Also, the median (dashed vertical line) and 95% CI (light red polygon) are shown for the 218 

time of the maximum viral titer predicted by the model.  219 

A full qualitative and statistical analysis of the experimental data can be found in [17]. For our 220 

purposes, it is important to note the clear rise and fall of viral titers over time in the medium and 221 

high dosage treatments, which suggested a possible immune response that was leading towards 222 

viral clearance, and which motivated our modeling-fitting and model comparison routine. 223 

Model B2, our best-fitting and most parsimonious model, fits to the experimental data very well 224 

(Figure 1). This model includes exponential growth of the virus population, and an assumption of 225 

homeostatic levels of immune components within the host, and the model’s parameter estimates are 226 

shown in Table 2. Importantly, model B2 captures key features of the data that the other models 227 

failed to capture. First, the model correctly predicts that higher initial viral doses lead to higher 228 

peaks of within-host titer. Second, the model also shows that with lower initial doses, the timing of 229 

the peak titer is delayed. In other words, it takes longer for the virus population to build up within 230 

the host. This is due, in part, to the exponential growth of the virus population and, in part, to the 231 

action of the immune system that inhibits viral replication. 232 

Our model-fitting and model comparison approach suggests strong differences between the 233 

appropriateness of our different model structures. Models B2 and B3 had indistinguishable model 234 

fits (Table 1, Figure S4), but model B3 included an additional parameter, assuming logistic growth 235 

of the virus population (i.e., a carrying capacity within the host). This is a classic case of over-fitting, 236 

however, because the within-sample prediction for the model with more parameters was 237 

indistinguishable from the simpler model. Therefore, we conclude that model B2 is more 238 

parsimonious. 239 

 240 
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Table 2. Parameter estimates (median and 95% credible intervals) from the most parsimonious model, B2.  244 

Parameter Description Units Estimate 

𝑉(0) low 

Initial viral densities (per dosage) 
Viral DNA copy 

(VC) 

0.12 (0.01 – 0.89) 

𝑉(0) medium 1.47 (0.24 – 11.55) 

𝑉(0) high 24.10 (5.31 – 146.85) 

𝑍(0)  Initial immune component denisty 
Immune component 

(IC) 
0.35 (0.04 – 4.43) 

𝜙 Viral replication rate day-1 2.39 (1.07 – 4.63) 

𝛽 Mass-action attack rate (IC)-1 day-1 1.75 (0.15 – 6.28) 

𝑁𝑍 

Rate of production that ensures 

return of immune system to 

homeostasis 

(IC) day-1 𝑁𝑍 = 𝛿𝑍(0) 

𝛿 
Rate of decline that ensures return 

of immune system to homeostasis 
day-1 1.29 (0.41 – 3.92) 

𝜓 
Immune component growth rate in 

response to virus 
day-1 0.99 (0.19 – 3.56) 

𝛾 Half saturation constant  VC 0.13 (0.02 – 1.02) 

We had trouble fitting model A1 to the data, because it fits so poorly to the low-dose treatment. 245 

Therefore, the model ends up predicting a more or less linear decline in virus load across time, with 246 

high variance (Figure S1). This linear effect allowed the model to fit very well to the data from the 247 

low dose treatment, increasing its overall likelihood and improving its LOO-IC value. However, 248 

this parameterized version of the model fails to capture basic features of the data set. In contrast, 249 

model A2 fits to the data reasonably well (Figure S2). However, this model predicts the same peak 250 

titer across dosage treatments, leading to a very poor fit to the data from the low-dose treatment. 251 

Model B1 also has a decent fit to the data (Figure S3). However, with this model’s estimated 252 

parameters, the dynamics show damped oscillations towards the endemic equilibrium. This pattern 253 

does not seem biologically realistic, as the data do not show any clear oscillations. 254 

We do note that we had difficulty identifying the attack rate parameter 𝛃 using model B2. This is 255 

likely because of the strong effects of viral replication rate 𝛟 and the growth rate of the immune 256 

components in response to viral density 𝛙 on the overall model dynamics. Future experiments 257 

should be used to better estimate the attack rate parameter. 258 

4. Discussion 259 
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Our study represents an initial step towards making model-based, quantitative predictions about 260 

ranavirus growth and immune system functioning within larval amphibian hosts, which 261 

complements the history of empirical work in these research areas. The experimental data with 262 

bullfrog (Lithobates catesbeianus) tadpoles suggests a non-monotonic relationship between within-host 263 

viral titer and time post-exposure. That is, an immune response appears to be reducing the growth 264 

of the virus over time. This is broadly consistent with the immunological studies with Xenopus laevis 265 

tadpoles, showing a robust interferon response [15,16]. Through model comparisons, we identified a 266 

model of exponential viral growth and a mass-action immune system response that captures key 267 

features of our data and generally fits our data quite well. Importantly, this model-based approach 268 

allows us to make predictions and to develop testable hypotheses for follow-up experiments. 269 

However, we did not measure immune responses directly in our experiment, and therefore cannot 270 

conclude with certainty that the patterns we observe in viral titer are driven by immune system 271 

processes. To clarify these mechanisms, below we suggest specific ways to collect and analyze data 272 

in future studies. 273 

The best-fitting model predicts that individuals that survive infection should exhibit a viral titer 274 

pattern that rises and falls over time. This prediction contrasts with the empirical work that uses 275 

Xenopus, because larval Xenopus almost always die from frog virus 3 (FV3) exposure. Even a pre-276 

treatment of type III interferon, which should boost the immune response, only delays mortality in 277 

the Xenopus system [16]. Unfortunately, we do not know of any studies that have tested whether 278 

similar host immune responses exist in our study organism, the American bullfrog. However, it is 279 

well known that the American bullfrog is uncommon in its high resistance and tolerance to multiple 280 

diseases, including FV3 [7,25] and the amphibian chytrid fungus (Batrachochytrium dendrobatidis) 281 

[26,27]. Therefore, it is not surprising that we could infer a more robust immune response from this 282 

species compared to X. laevis. Still, our current data cannot validate that, in surviving individuals, 283 

virus loads rise and then fall, because we do not have individual host-level time series of viral load. 284 

Future studies could use various sources of eDNA (e.g., swabbing, skin scrapes, or water filtration), 285 

which are correlated with internal titers [17], to validate whether there is a rise and fall of viral load 286 

in individuals. Alternatively, it may be fruitful to experiment with larger-bodied animals that would 287 

permit sampling blood repeatedly through time.  288 

Our model also predicts that, if a host does not die from the initial exponential growth of the virus, 289 

the immune system will decrease the virus to an endemic equilibrium (Appendix A). In other words, 290 

we should see persistent infections with very low levels of virus in some infected bullfrog tadpoles. 291 

It is worth noting that this model prediction is not relevant to quiescent virus persisting in particular 292 

tissues, such as that found in peritoneal leukocytes in adult Xenopus [28]. Rather, the persistence in 293 

our model is due to a dynamic balance between viral replication and host immune responses. In any 294 

case, our model predicts low-level infections that would be detectable beyond 60 days from initial 295 

exposure time and should be actively replicating. That said, there are also several reasons that an 296 

endemic equilibrium may not hold. First, demographic stochasticity in the virus population could 297 

cause low-level infections to fade out [6,29]. Second, variability in the immune response over time 298 

(e.g. waning immunity) could cause fluctuations in viral titer. Third, the costs of continued immune 299 

responses could lead to host death even with low levels of infection [30]. 300 

Several of the tested model structures predict full viral clearance at equilibrium, but none of these 301 

models fit as well to the observed dynamics in bullfrog tadpoles. Future studies that collect time-302 

series data and that have some long-term exposures (e.g., greater than 50 days) will improve our 303 

ability to distinguish between viral clearance and viral persistence. Furthermore, because we did not 304 

have simultaneous empirical data from the larval immune system, our model fitting algorithm was 305 

agnostic to the model’s prediction of immune system dynamics. If future studies simultaneously 306 

capture time-series data on viral titer and measures of larval immune system, we would have much 307 

more power to distinguish between different models of within-host dynamics. 308 
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There are key features of the data set that our deterministic modeling scheme does not fully capture, 309 

and these are areas for future model development. First, the main process that our model ignores is 310 

host mortality due to viral growth. For instance, our current model predicts that 311 

immunocompromised individuals would show exponential viral growth, and in reality, this likely 312 

lead to death. Future versions of our model could include stochasticity, following Kennedy and 313 

Dwyer [6], such that demographic stochasticity in the viral population could lead to the virus 314 

exceeding a threshold growth rate or titer that causes host death. Then, we could analyze the 315 

probability of this occurring over many realizations of the stochastic model. This would allow us to 316 

explicitly evaluate how initial exposure dosage affects the probability of host mortality, from a 317 

within-host, mechanistic framework.  318 

Viral titers within a host can be important determinants of the infection dynamics among hosts [3], 319 

affecting both the duration of infections and their propensity to be transmitted. Many dose-response 320 

experiments, for instance, show that hosts exposed to higher doses of ranaviruses, and so presumably 321 

harbor larger viral populations, are more likely to die and die more rapidly [31–33]. More intensely 322 

infected individuals may also shed more virus (e.g., [17]) and thus be more infectious. Similar effects 323 

of the intensity of infection are common in other host-virus systems [34,35], as well as for other 324 

amphibian pathogens (e.g., B. dendrobatidis; [36]). Pathogen titers or intensity of infection can be a 325 

natural way in which to link within and between-host dynamics [3,37,38]. Within-host models of 326 

host-virus interactions may therefore be a fruitful way of integrating the myriad effects that are 327 

known to influence the outcome of ranavirus infections.  328 

Supplementary Materials: The following are available online at www.mdpi.com/xxx/s1, Supplement1.docx, 329 

which includes Figures S1 – S4.  330 
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Appendix A 345 

The coexistence equilibrium of model B2, which analytically expresses the amount of virus and host 346 

immune components at the stable equilibrium with a persistent infection, is as follows: 347 

𝒁∗ = 𝝓𝜷 (𝑨𝟏. 𝟏) 348 

𝑽∗ = 𝜸𝝍 (𝜹 − 𝑵𝒁𝒁∗ )(𝟏 − 𝜹𝝍 + 𝑵𝒁𝝍𝒁∗) (𝑨𝟏. 𝟐) 349 

 350 
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