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Abstract—We study the uplink performance of a massive
multiple-input multiple-output (MIMO) system with one-bit ana-
log to digital converters (ADCs) in the presence of a disruptive
jammer. We propose spatial Sigma-Delta (ΣΔ) quantization with
an interference cancellation feedback beamformer (FBB ΣΔ) to
mitigate the adverse impact of the jammer on the system perfor-
mance. Then we analyze the performance of this architecture by
adopting an appropriate linear model and present a recursive
algorithm to calculate the power of the quantization noise.
Simulation results show that the spatial FBB ΣΔ architecture
can achieve the same symbol error rate as in systems with high-
resolution ADCs.

Index Terms—Massive MIMO, one-bit ADCs, sigma-delta,
jamming, interference mitigation, beamforming.

I. INTRODUCTION

To decrease the power consumption of massive multiple-

input multiple-output (MIMO) systems, architectures with

low-resolution analog to digital converters (ADCs) have been

studied extensively in the literature [1]- [6]. Although coarse

quantization degrades the performance of the system, it has

been shown that it can be alleviated by increasing the num-

ber of antennas [1] or exploiting more complicated signal

processing techniques [7]. Recently, the idea of temporal ΣΔ

quantization has been extended to the spatial domain [8]–[11].

It has been shown that, using minimal additional hardware in

the analog domain, the resulting spatial one-bit ΣΔ architecture

can shape the quantization noise to angles of arrival away

from those that correspond to the users of interest. Hence,

performance close to that of systems with high-resolution

ADCs can be achieved while reducing power consumption

and complexity.

One drawback of using one-bit ADCs not addressed in

previous work is its susceptibility to strong interference, which

can occur in MIMO systems when a jammer is present. Since

a one-bit ADC has zero dynamic range, a moderately strong

jammer can effectively swamp the relatively weak signals of

interest and significantly degrade performance. With one-bit

ADCs, jammer mitigation must occur in the RF domain prior
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to sampling, in order for the coarsely quantized ADCs to reveal

the dynamics of the signals of interest.

In this paper, we show that the feedback employed by the

spatial ΣΔ architecture can be generalized for this purpose. The

genesis of the idea comes from work described in [12], which

is based on the use of temporally oversampled ΣΔ ADCs.

Instead of simply using feedback of the delayed ADC output

as in a standard temporal ΣΔ architecture, the approach of [12]

employs an analog feedback beamformer (FBB) designed to

temporally null the interference. Unlike [12], in the method

presented here we take a different approach that does not

employ temporal oversampling, but instead uses the spatial
ΣΔ architecture. In particular, the feedback between adjacent

antennas is generalized to include an FBB signal that also

serves to spatially null the interference. We generalize the

approach of [11] to develop an equivalent linear model for

the ΣΔ array that includes the FBB signal and sets the output

level of the one-bit quantizers. Simulations show that while the

ordinary spatial ΣΔ architecture is not effective in adequately

alleviating the impact of the jammer, our proposed spatial FBB

ΣΔ quantizer can provide performance that is close to that of

an unquantized system.

In the next section we outline the basic system model. In

Section III, some background on temporal FBB ΣΔmodulation

is provided and the spatial FBB ΣΔ architecture is proposed.

Then we adopt the equivalent linear model developed in [11]

to analyze the FBB ΣΔ array. Simulation results are presented

in Section IV, followed by our conclusions.

Notation: We use boldface letters to denote vectors, and

capitals to denote matrices. The symbols (.)∗, (.)T , (.)H , and

(.)† represent conjugate, transpose, conjugate transpose, and

pseudo inverse, respectively. A circularly-symmetric complex

Gaussian (CSCG) random vector with zero mean and covari-

ance matrix R is denoted n ∼ CN(0,R). The identity matrix

is denoted by I and the expectation operator by E [.]. For

a complex value, x = xr + j xi , we define xr = Re [x] and

xi = Im [x].
II. SYSTEM MODEL

Consider the uplink of a massive MIMO system consisting

of a legitimate, single-antenna user that sends its signal to a

base station (BS) equipped with a uniform linear array of M
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antennas. In addition, a jammer is present that aims to impair

the performance of the legitimate user. Accordingly, the M×1
received signal at the BS is

x =
√

pgUsU + n +
√

qgJ sJ, (1)

where p represents the average transmission power from the

user, gU = 1/
√

L
∑L

�=1 υ�a (θ�) is the user’s channel vector

where L denotes the number of signal paths, υ� ∼ CN (0,1)
is the complex channel gain for the �-th path, and

a (θ�) = [1, e−j2π d
λ sin(θ� ), · · · , e−j(M−1)2π d

λ sin(θ� )]T (2)

denotes the array response vector for angle of arrival θ� ,

where d and λ represent the antenna spacing and the carrier

wavelength, respectively. The symbol sU ∈ C transmitted from

the user satisfies E
[|sU |2] = 1, and n ∼ CN (

0, σ2
n I

)
denotes

additive CSCG receiver noise at the BS. In addition, q repre-

sents the jammer’s average power, gJ = 1/
√

L
∑L

j=1 υj a
(
θ j
)

is the channel vector between the jammer and the BS, and sJ
denotes the jammer’s signal, where E

[|sJ |2
]
= 1.

In a standard implementation involving one-bit quantization,

each antenna element at the BS is connected to a one-bit

ADC. In such systems, the received baseband signal at the

mth antenna becomes

ym = Qm (xm) , (3)

where Qm (.) denotes the one-bit quantization operation ap-

plied separately to the real and imaginary parts as

Qm (xm) = αm,rsign (Re (xm)) + jαm,isign (Im (xm)) . (4)

The output voltage levels of the one-bit quantizers are repre-

sented by αm,r and αm,i . While the value of the output level

is irrelevant for standard one-bit quantization, in the case of

ΣΔ quantization the selection of adequate output levels is of

paramount importance and the necessity for this more general

approach will become apparent later1. Furthermore, we will

allow these levels to be a function of the antenna index m,

unlike most prior work which assumes that the output levels

are the same for all antennas. Finally, the received baseband

signal at the BS is given by

y = Q (x) = [Q1 (x1) ,Q2 (x2) , · · · ,QM (xM )]T . (5)

III. ΣΔ ARCHITECTURE

A. Temporal FBB ΣΔ Modulation

In this subsection, we elaborate on the temporal FBB ΣΔ

modulation approach of [12] to clarify the noise shaping

characteristics of this technique. Fig. 1(a) shows a block dia-

gram representing the Nth-order temporal FBB ΣΔ modulator

with feedback weights w = [w0, · · · ,wN−1]T . To shape the

quantization noise, the weighted output signals are fed back

and subtracted from the input (Δ-stage), and then this error is

integrated (Σ-stage).

1While the one-bit ADC output levels will be optimized, this is a one-time
optimization and the values do not change as a function of the user scenario
or channel realization. Thus the ADCs are still truly “one-bit.”

(a)

(b)

Fig. 1. (a) Block diagram for the N th-order temporal FBB ΣΔ modulator.
(b) Equivalent linear model for the quantizer.

To characterize the transfer function of this non-linear

system, we substitute the one-bit quantizer with the equivalent

linear model depicted in Fig. 1(b). The input-output relation-

ship of the FBB ΣΔ quantizer can then be written as

Y (z) = A(z)X (z) + B(z)Q (z) , (6)

where X (z) = ∑∞
n=0 x [n] z−n denotes the z-transform and

A(z) = γ

1 + (γw0 − 1) z−1 + γw1z−2 + · · · + γwN−1z−N
(7)

B(z) = 1 − z−1

1 + (γw0 − 1) z−1 + γw1z−2 + · · · + γwN−1z−N
. (8)

Unlike ordinary ΣΔ modulation that passes the signal through

an all-pass filter and the quantization noise through a high-

pass filter, in (6) we see that X(z) is passed through A(z)
and Q(z) through B(z) for FBB ΣΔ modulation. Hence, this

approach not only provides a tool for shaping the quantization

noise, but proper design of the feedback weights w allows

for temporal filtering that passes the desired signal while

eliminating undesirable contributions from other sources such

as a jammer.

B. One-Bit Spatial FBB ΣΔ Modulation

The idea underlying temporal FBB ΣΔ modulation can

be adapted to the angle domain, in order to spatially shape

the quantization noise in a desired way and remove inter-

ference. Instead of forming the Δ component using delayed
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Fig. 2. Spatial FBB ΣΔ architecture.

samples of the quantized input as in the temporal case, we

use the quantized signals from adjacent antennas. A direct

translation of the temporal ΣΔ concept to the angle domain

pushes the quantization noise to higher spatial frequencies,

which correspond to angles away from the array broadside

(|θ | � 0◦), while oversampling (i.e., reduced d/λ) pushes

the signals of interest near broadside closer to zero spatial

frequency. However, by phase-shifting the quantization error

in the feedback loop prior to the Σ stage, the quantization

error can be shaped away from a band of spatial frequencies

that is not centered at zero. This bandpass approach has

been proposed for spatial ΣΔ architectures in [9], [11]. It

is worthwhile to note that although ordinary ΣΔ modulation

provides a noise shaping characteristic, FBB ΣΔ not only

shapes the quantization noise, but also suppresses the extra

quantization noise caused by the jammer with appropriate

feedback beamforming.

Fig. 2 shows the architecture of the angle-steered FBB ΣΔ

array. Using Fig. 2, we can formulate a compact input-output

description of the spatial FBB ΣΔ array by defining

U =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1
e−jφ 1
...

. . .
. . .

e−j(M−1)φ · · · e−jφ 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(9)

V = e−jφZ−1UW , (10)

where2

Z−1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
1 0
...
. . .

. . .

0
. . . 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(11)

W =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

w0 0
w1 w0
...

. . . w0

wN−1
. . .

. . .
. . .

...
. . .

. . .
. . .

. . .

0 · · · wN−1 · · · w1 w0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (12)

and expressing the input to the quantizers as

r = Ux − V y. (13)

The output of the angle-steered one-bit FBB ΣΔ array is then

defined by

y = Q (r) . (14)

To analyze the performance of spatial ΣΔ processing, we

will represent the one-bit quantization operation in (14) with

an equivalent linear model [11]

y = Q (r) = Γr + q, (15)

where Γ = diag (γ1, . . . , γM ) with

γm =
E
[
rmy∗m

]
E
[|rm |2] = αmE [|Re [rm]| + |Im [rm]|]

E
[|rm |2] , (16)

and q denotes the effective quantization noise. In (16), it

is assumed that rm is circularly symmetric. This assumption

implies that identical values should be selected for the output

levels of the real and imaginary quantizers, and thus we

will let αm represent both αm,r and αm,i . Following the

same reasoning as in [11], we will set Γ = I by choosing

an appropriate value for each αm. Therefore, we obtain the

following mathematical model for the FBB ΣΔ architecture:

y = B−1Ux + B−1q, (17)

where B = I + V . Equation (17) is the spatial equivalent of

the temporal FBB ΣΔ description in (6), with the following

equivalences:

B−1U ←→ A(z) (18)

B−1 ←→ B(z). (19)

Note that the condition Γ = I and assuming that rm is

approximately Gaussian leads to the following choice for the

output levels [11]:

α�m =

√
πE

[|rm |2]
2

. (20)

2Note that Z−1 is the spatial domain equivalent of the delay operator z−1

for the z-transform in the time domain.
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Next, we calculate the power of the equivalent quantization

noise q, which is needed both to analytically assess the system

performance and to compute α�m. In the discussion below, we

show how to express (20) in terms of the statistics of the

array input x, which illustrates how the quantizer output levels

can be analytically chosen in a practical setting. Moreover,

we will show how spatial FBB ΣΔ impacts the power of the

quantization noise and elaborate on how it differs from the

ordinary spatial ΣΔ approach.

With Γ = I , (15) becomes

y = r + q. (21)

Since rm and qm are uncorrelated, and using (20), we obtain

E
[ |qm |2] = E [|ym |2] − E [ |rm |2] = ( π

2
− 1

)
E
[ |rm |2] . (22)

To determine E
[|rm |2] , we substitute (21) into (13), so that

r = B−1Ux − B−1V q. (23)

Let us denote Ψ = B−1U and Υ = B−1V . It is clear that Ψ is

a lower triangular matrix and Υ is a lower triangular matrix

with zeros along the main diagonal. In addition, following the

same reasoning as in Appendix A of [1], it can be shown that

E
[
xm′q∗

m

] ≈ 0, ∀m,m′ ∈ M = {1, · · · ,M}. This results in

Rqx ≈ 0. Therefore,

Rr ≈ ΨRxΨ
H + ΥRqΥ

H . (24)

Eq. (24) implies that

E
[|rm |2] ≈

{ [
ΨRxΨ

H
]
mm

m = 1[
ΨRxΨ

H
]
mm
+
[
ΥRqΥ

H
]
mm

m > 1
(25)

To approximate E
[ |rm |2] , and for the sake of analysis, we

assume Rq is diagonal. Since Υ is a lower triangular matrix

with zeros along the main diagonal, we only need the first m−1
diagonal elements of Rq to specify E

[ |rm |2] . Hence, we can

recursively calculate E
[ |rm |2] for m > 1 using (22) and (25).

In the next section, we show that the diagonal elements of Rq

are much smaller than those for the ordinary ΣΔ architecture.

This is because of the appropriate design of the feedback

weights that lead to the elimination of strong interference

before the one-bit quantization.

IV. NUMERICAL RESULTS

This section describes the results of several Monte Carlo

simulations in order to illustrate the performance of the FBB

ΣΔ quantizer. In our simulations, we assume L = 20 multipath

arrivals for both the legitimate user and the jammer with angles

of arrival randomly uniformly distributed in θl ∈ [θ0−δ, θ0+δ],
where the center angle θ0 is different for the user and the

jammer. We set θ0u = −20◦ and θ0 j = 60◦ for the desired user

and jammer, respectively, with δ = 5◦. We further assume

d/λ = 1/4, 8-PSK symbols, and 105 trials. The steering angle

of the FBB ΣΔ array is set to φ = 2π dλ sin
(
θ0u

)
. We let

σ2
n = 1, so that p and q denote the SNR of the user and the

jammer, respectively. In all simulations, we consider a strong

Fig. 3. Spatial spectrum of the quantization noise for the FBB ΣΔ, regular
ΣΔ, and standard one-bit architectures when d = λ/4, p = 0 dB, q = 20 dB,
and N = 50.

interference setting with q = 20 dB. We also assume that θ0u
and θ0 j are known at the BS3. Hence, following the same

reasoning as in [12], the feedback weights are estimated as

w =
(
e−jφZ−1UȲ

)†
(Ux̄ − ȳ) , (26)

where

Ȳ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ȳ0 0

ȳ1
. . .

...
. . . ȳ0

...
...

...
ȳM−1 · · · ȳM−N

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, ȳ = βa

(
θ0u

)
(27)

x̄ = βa
(
θ0u

)
+ a

(
θ0 j

)
. (28)

and β is a constant. In the simulations that follow, we selected

β =
√

10. Then, the solution in (26) is followed by iterative

refinement (see Section III-C in [12]) to find the desired

feedback weights.

Fig. 3 shows the simulated and analytically derived quanti-

zation noise power density which is defined as

ρq (θ) � 1
M

a (θ)H R a (θ), (29)

where R is the covariance matrix of the quantization noise

for each approach (standard one-bit, ΣΔ, or FBB ΣΔ). In this

3Note that, although here we consider a single jammer in a known location,
the feedback weights can in general be designed to reduce the impact of
signals arriving from multiple sectors in which the jammers are known to lie,
without precise knowledge of the actual jammer locations.
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Fig. 4. Symbol error rate versus p for a system with θ0u = −20◦ and
θ0 j = 60◦, d = λ/4, q = 20 dB, N = 50.

figure, we set the order of the FBB ΣΔ filter at N = 50.

We see that the quantization noise power for the FBB ΣΔ

array is substantially lower over the angles where the user is

present, while the effect is the opposite for standard one-bit

quantization – the quantization noise is higher for angles where

the amplitude of the received signals is larger. In addition,

we see that even the ordinary ΣΔ array suffers from large

quantization noise in the presence of strong interference. We

also observe that there is excellent agreement between the

simulations and our theoretically derived expressions for both

cases. Note that careful design of the quantizer output levels is

a critical component in achieving the desired ΣΔ noise shaping

characteristic shown here.

In Fig. 4, we compare the symbol error rate of the FBB ΣΔ

array with that of a system with high-resolution ADCs and a

system with high-resolution ADCs and no strong interference,

i.e., xp =
√

pgUsU + n, as a benchmark. The methods that do

not allow FBB in the RF domain must attempt to cancel the

interference digitally, after the quantization. Consequently, for

the systems implemented with high-resolution ADCs, standard

one-bit ADCs, and the original spatial ΣΔ architecture, we

project the sampled signal onto the subspace orthogonal to

the interference in the digital domain. Denoting the signals re-

ceived by the standard one-bit and ΣΔ architectures by y1 and

yΣΔ, respectively, the signals after the projection for the three

methods are given by B−1Ux, B−1Uy1, and B−1UyΣΔ. We

assume perfect channel state information (CSI) is available and

use the maximum ratio combiner (MRC) at the BS to decode

the 8-PSK symbols. Fig. 4 shows the superior performance of

the one-bit FBB ΣΔ architecture which achieves performance

equivalent to that of a system with only high resolution ADCs.

This performance is achieved with only minimal additional

hardware in the analog domain, and thus has significantly

reduced complexity and energy consumption compared with a

system employing high-resolution ADCs.

V. CONCLUSION

We presented a new spatial one-bit FBB ΣΔ architecture for

mitigating strong interference in massive MIMO systems with

one-bit quantization. We showed that this simple architecture

can effectively compensate for the vulnerability of one-bit

ADCs against strong interference. The critical challenges in

designing this architecture are to find the appropriate output

levels for the one-bit quantizers and the values for the feedback

weights. A recursive algorithm was proposed to specify the

quantizers’ output levels. The feedback weights were designed

by adopting an algorithm used previously for a temporal FBB

ΣΔ implementation. However, the behaviour of the feedback

weights indicates that they amount to a spatial beamformer

pointing in the direction(s) of the interference, and hence

could be designed by a less complicated approach. Interesting

directions for future work include studying the impact of angle

estimation errors on the performance of the FBB ΣΔ architec-

ture, or using the approach for combined quantization noise

shaping and transmit beampattern design for the downlink with

low-resolution digital-to-analog converters.
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