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Abstract—In this paper, we investigate a downlink channel of
a large intelligent surface (LIS) communication system. The LIS
is equipped with B-bit discrete phase shifts while base station
(BS) exploits low-resolution digital-to-analog converters (DACs).
Without the knowledge of channel state information (CSI) related
to the LIS, we propose a practical phase shift design method,
whose computational complexity increases by 2B independent of
the number of reflecting elements N . A tight lower bound for
the asymptotic rate of the user is obtained in closed form. As N
increases, we observe that the asymptotic rate becomes saturated
because both the received signal power and the DAC quantization
noise increase. Compared to the optimal continuous phase shift
design with perfect CSI, our proposed method asymptotically
approaches the ideal benchmark performance for moderate to
high values of B. The derived results and observations are
verified by simulation results.

Index Terms—large intelligent surface (LIS), low-resolution
digital-to-analog converters (DACs), discrete phase shifts, massive
multiple-input multiple-output (MIMO)

I. INTRODUCTION

To meet the requirements of ultra-high data rate and massive

connections in newly emerging wireless services, large intel-

ligent surface (LIS) has been considered as a potential cost-

effective technology in the field of wireless communications.

The LIS concept can be essentially seen as an extension

version of traditional massive multiple-input multiple-output

(MIMO) systems [1]. Specifically, an LIS consists of a vast

amount of passive reflecting elements whose parameters are

reconfigurable with a smart controller. Each of these elements

can effectively reflect a phase shifted version of received

signal. By adjusting the induced phase shifts in real time,

the propagation environment of the reflected signals can be

correspondingly changed to conduct beamforming, suppress

interference, enhance security, etc. Unlike commonly used

amplify-and-forward (AF) relay, LIS performs as a passive ar-

ray which does not generate new signals. Hence, no additional

power consumption is required at LIS.

Recently, some innovative efforts have been devoted to sys-

tem design and performance analysis for LIS communication

systems [2]-[4]. In [2], the total transmit power was minimized
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by jointly optimizing the transmit beamforming at the access

point (AP) and reflect beamforming at the LIS, subject to us-

er’s signal-to-interference-and-noise ratio (SINR) constraints.

Alternatively, in [3], either energy or spectral efficiency was

maximized by jointly optimizing transmit power allocation and

coefficients of the LIS. For different propagation scenarios, a

tight approximation of the ergodic capacity was formulated in

[4]. Moreover, discrete phase shifts are considered in practical

systems since ideal continuous phase shifts are not energy

efficient and are hard to realize due to hardware limitation

[5], [6]. Considering finite-resolution discrete phase shifts, a

similar optimization problem as in [2] was further studied

in [5]. In [6], it was revealed that even 1-bit phase shifts

can achieve significant energy efficiency gains compared to

conventional relay-assisted communications.

To the best of our knowledge, most of the existing works

assume perfect channel state information (CSI). The equivalent

CSI between the AP and the user can be obtained by sending

orthogonal pilots. However, the CSI between the AP and the

LIS and the CSI between the LIS and the user is in general

difficult to achieve because the LIS has limited ability of

signal processing. On the other hand, although low-resolution

digital-to-analog converters (DACs) have been widely used

in massive MIMO communications, their performance in LIS

communication systems has not been studied. In this paper,

we investigate a downlink channel of an LIS communication

system. Finite-resolution discrete phases shifts are exploited

at the LIS and low-resolution DACs are adopted at the base

station (BS). Without the knowledge of CSI related to the LIS,

we propose a practical phase shift design method and derive a

tight lower bound for the asymptotic rate of the user. Based on

the bound, we analyze the effect of various system parameters

on the asymptotic rate.

Notation: AT , A∗, and AH represent the transpose, con-

jugate, and conjugate transpose of A, respectively. a ∼
CN (0,Σ) denotes a circularly symmetric complex Gaussian

vector with zero mean and covariance Σ. Wm(n,Σ) denotes

an m ×m Wishart matrix with n degrees of freedom and Σ
is the covariance matrix of each column. Tr(A) is the trace of

A. diag(A) is a matrix that retains only the diagonal entries of

A, while diag{a1, a2, ..., aN} generates a diagonal matrix with

entries a1, a2, ..., aN . U [a, b] represents the uniform distribu-
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Fig. 1. A downlink LIS communication system.

tion between a and b.
a.s.−−→ denotes almost sure convergence.

II. SYSTEM MODEL

A. DAC Quantization Model
Applying Bussang theorem, a linear quantization model has

been widely used to characterize the performance of low-

resolution DACs [7]. Specifically, the output signal vector of a

low-resolution DAC can be decomposed into two uncorrelated

parts as [8]

Q(x) =
√
1− ρx+ nq, (1)

where Q(·) denotes the quantization operation of DACs, x
is a Gaussian input signal vector, ρ ∈ (0, 1) is a distortion

factor determined by quantization resolution, and nq denotes

quantization noise yielding

Cq = E{nqn
H
q } = ρE

{
diag

(
xxH

)}
. (2)

Note that the quantization model in (1) has been verified

accurate for characterizing commonly used low-resolution

DACs [8], [9].

B. Channel Model
We investigate a downlink LIS communication system as

illustrated in Fig. 1. The BS is equipped with M antennas

and the LIS is equipped with N reflecting elements, serving a

single-antenna user. Both the antennas and reflecting elements

are arranged in a uniform linear array (ULA). Despite of the

direct channel from the BS to the user, the LIS provides a

two-hop reflecting channel to improve system performance.
Assuming the line-of-sight (LoS) path between the BS and

user is blocked, we model the channel from the BS to the

user as Rayleigh fading, denoted by h ∼ CN (0M , IM ). For

the channels from the BS to the LIS and that from the LIS

to the user, LoS paths commonly exist and we model these

channels as Rician fading. Then, the channel from the BS to

the LIS can be expressed as

G =

√
k1

k1 + 1
Ḡ+

√
1

k1 + 1
G̃, (3)

where k1 is the Rician K-factor of G. G̃ ∈ C
N×M denotes

the non-line-of-sight (NLoS) component and the entries of G̃
follow i.i.d. complex Gaussian distribution with zero mean and

unit variance. Ḡ ∈ C
N×M denotes the LoS component and it

can be expressed as

Ḡ = gRg
H
B , (4)

where gB ∈ C
M×1 and gR ∈ C

N×1 denote the antenna

array response vectors at the BS and LIS respectively. More

specifically, we have

gB =
[
1, e−j2π d

λ cosφ, ..., e−j2π(M−1) d
λ cosφ

]T
, (5)

gR =
[
1, e−j2π d

λ cosϕ, ..., e−j2π(N−1) d
λ cosϕ

]T
, (6)

where φ ∼ U [0, π] is the angle of departure (AoD) of the ULA

at the BS while ϕ ∼ U [0, π] is the angle of arrival (AoA) at

the LIS. Similarly, the channel vector from the LIS to the user

is given as

g =

√
k2

k2 + 1
ḡ +

√
1

k2 + 1
g̃, (7)

where k2 is the Rician K-factor of g, g̃ ∼ CN (0N , IN )
denotes the NLoS component, and ḡ ∈ C

N×1 denotes the

LoS component expressed as

ḡ =
[
1, e−j2π d

λ cosψ, ..., e−j2π(N−1) d
λ cosψ

]T
, (8)

where ψ ∼ U [0, π] is the AoD of the reflected signal at the

LIS.

At the LIS, each element first combines all the received

multi-path signals and then reflected these signals with a

certain phase shift. Let

Θ = diag{ejθ1 , ejθ2 , ..., ejθN } (9)

denote the phase shift matrix at the LIS, where θi is the phase

shift of the ith reflecting element. At the BS, the transmit

signal s is precoded by a normalized vector w ∈ CM×1. We

assume that E
{|s|2} = 1 and ‖w‖2 = 1. Applying the DAC

quantization model in (1), the received signal at the user can

be expressed as

y=
(
gHΘG+hH

)Q(√
Pws

)
+n

=
√
(1− ρ)P

(
gHΘG+hH

)
ws+

(
gHΘG+hH

)
nq+n,

(10)

where n ∼ CN (0, σ2
n) denotes the thermal noise with power

σ2
n. Assuming that the equivalent channel, gHΘG+hH , is

known to the BS, we adopt an maximal-ratio-transmission

(MRT) precoder as

w =

(
gHΘG+hH

)H
‖gHΘG+hH‖ . (11)

By substituting (11) into (10), the signal-to-quantization-and-

noise ratio (SQNR) of the received signal is obtained as

γu =
(1− ρ)P

∥∥gHΘG+hH
∥∥2

(gHΘG+hH)Cq (gHΘG+hH)
H
+ σ2

n

, (12)

where

Cq = ρPdiag
(
wwH

)
. (13)

Considering a large number of reflecting elements, the asymp-
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totic SQNR is given in the following lemma.

Lemma 1. As M,N
a.s.−−→ ∞, the SQNR of the user almost

surely converges to

γ =
(1− ρ)P

(
α
∥∥ḡHΘḠ

∥∥2 + βMN +M
)

ρP
M

(
α
∥∥ḡHΘḠ

∥∥2 + βMN +M
)
+ σ2

n

, (14)

where we define

α � k1k2
(k1 + 1)(k2 + 1)

, (15)

β � k1 + k2 + 1

(k1 + 1)(k2 + 1)
. (16)

Proof: See Appendix A.

By applying Shannon’s formula, the asymptotic rate of the

user is obtained as

R = log2 (1 + γ)

= log2

⎛⎝1 +
(1− ρ)P

(
α
∥∥ḡHΘḠ

∥∥2 + βMN +M
)

ρP
M

(
α
∥∥ḡHΘḠ

∥∥2 + βMN +M
)
+ σ2

n

⎞⎠
= log2

(
1 +

(1− ρ)M

ρ

− (1− ρ)Mσ2
n

ρ2P
M

(
α
∥∥ḡHΘḠ

∥∥2 + βMN +M
)
+ ρσ2

n

⎞⎠ .

(17)

Remark 1. From (17), we observe that the asymptotic user

rate increases with M , N , and P . Lower DAC resolution

leads to larger distortion parameter ρ, which inevitably causes

significant degradation in R. The impact of N phase shifts

at the LIS relies on the term
∥∥ḡHΘḠ

∥∥2, requiring further

discussion in the following.

III. PHASE SHIFT DESIGN AT LIS

In this section, we propose a discrete phase shift design

method for Θ. Before that, we introduce the optimal contin-

uous phase shift design with perfect CSI, which achieves an

ideal benchmark for the rate performance.

A. Optimal Continuous Phase Shift Design

Using (17), the optimal phase shift design satisfies

Θ∗ = arg max
Θ

R = arg max
Θ

∥∥ḡHΘḠ
∥∥2 (18)

This optimization problem is similar to that in [4, Eq. (23)],

although low-resolution DACs are used in this work. Given gR

and ḡ, i.e., ϕ and ψ, the solution to (18) has been obtained

in [4, Eq. (27)]. We conclude the solution in the following

lemma.

Lemma 2. Given ϕ and ψ, the optimal Θ∗ is obtained as

Θ∗ = diag{1, ejθ, ..., ej(N−1)θ}, (19)

where

θ = 2π
d

λ
(cosϕ− cosψ). (20)

Applying Lemma 2 and using (4) and (8), the maximal value

of
∥∥ḡHΘḠ

∥∥2 equals MN2. Substituting this into (17), the

optimal asymptotic user rate is

R∗= log2

(
1+

(1− ρ)M

ρ
− (1− ρ)Mσ2

n

ρ2P (αN2 + βN + 1) + ρσ2
n

)
.

(21)

Remark 2. From (21), we have R∗ → log2

(
1 + (1−ρ)M

ρ

)
for N → ∞. This implies that the asymptotic rate becomes

saturated instead of increasing infinitely as the number of

reflecting elements increases. This is because both the DAC

quantization noise and the received signal power simultane-

ously increase with N . In an LIS communication system, ex-

tremely large number of reflecting elements are not necessary

when low-resolution DACs are adopted. On the other hand,

increasing M , i.e., the number of antennas at the BS, can

effectively improve the user rate.
As revealed in Lemma 2, the optimal continuous phase

shift design requires the AOA and AOD of the reflecting

element array at the LIS. However, it is in general difficult to

achieve the information of gR and ḡ because the LIS performs

as a passive scatter. On the other hand, ideal continuous

phase shifts cause high hardware and power consumptions,

especially for a large number of reflecting elements. For these

reasons, we propose a discrete phase shift design method

without the knowledge of gR and ḡ in the following.

B. Discrete Phase Shift Design
We first introduce a practical approach to determine the

discrete phase shifts at the LIS, which is similar to the

AOA estimation procedure in [10]. In each coherence interval,

the BS broadcasts a frequency tone x = cos 2πft from an

arbitrary antenna. The LIS reflects the received signal to the

user, and the received signal at the user is

y′ = gHΘGx+ hHx+ n′, (22)

where n′ ∼ CN (0, σ2
n) denotes the thermal noise. Considering

discrete phase shifts constrained by a limited quantization

resolution B, angles of each diagonal element of Θ is chosen

from a codebook:

Ω =
{
0, 2δ, ...,

(
2B+1 − 2

)
δ
}
, (23)

where δ � π
2B

. According to (18), the estimated optimal Θ
can be obtained by

Θ̂ = arg max
Θ=diag{ejθ1 ,ejθ2 ,...,ejθN },

θi∈Ω, ∀i∈{1,2,...,N}

∥∥ḡHΘḠ
∥∥2

= arg max
Θ=diag{ejθ1 ,ejθ2 ,...,ejθN },

θi∈Ω, ∀i∈{1,2,...,N}

|y′|2 (24)

≈ arg max
Θ=diag{1,ejθ,...,ej(N−1)θ},

θ∈Ω

|y′|2, (25)
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where (24) uses (22). Note that the power of terms hHx
and n′ have constant expectations and thus their effect can

be neglected. In this way, the optimal Θ can be obtained

by maximizing the power of the received signal at the user.

Further in (25), in order to reduce the complexity of exhausted

search for θi, ∀ i ∈ {1, 2, ..., N}, from Ω with large N , we

utilize the constraint in Lemma 2 that the phases of diagonal

elements of the optimal Θ form an arithmetic sequence. In

this way, the searching set size of candidate Θ̂ reduces from

2NB to 2B .

Let

Θ̂ = diag{1, ejθ̂, ..., ej(N−1)θ̂}, (26)

denote the obtained phase matrix from (25) and

Δθ � θ̂ − θ, (27)

denote the phase quantization error where θ is given in (20).

We assume that Δθ ∈ [−δ, δ]. For the proposed discrete phase

shift design method, a lower bound for the asymptotic rate of

the user is given in the following theorem.

Theorem 1. Using Θ̂ in (25) at the LIS and considering low-
resolution DACs at the BS, a lower bound for the asymptotic
rate of the user is obtained as

R̂L = log2

(
1 +

(1− ρ)M

ρ

− (1− ρ)Mσ2
n

ρ2P
[
α(N − 1)2Sa2

(
N−1
2 δ

)
+ βN + 1

]
+ ρσ2

n

)
,

(28)

where Sa(x) � sin x
x .

Proof: The lower bound in (28) is obtained by substituting∥∥∥ḡHΘ̂Ḡ
∥∥∥2 ≥ M(N − 1)2Sa2

(
N−1
2 δ

)
into (17), where we

use the fact that | sin(x)| ≤ |x| for −π
2 ≤ x ≤ π

2 and the

properties of sampling function Sa(x). Due to the page limit,

we leave out the proof details.

Remark 3. By comparing R̂L in (28) to R∗ in (17), we

observe that the distortion of user rate caused by discrete phase

shifts relies on the term (N −1)2Sa2
(
N−1
2 δ

)
, which replaces

the term N2 in R∗. The phase interval δ decreases with

resolution B increasing, leading to a higher asymptotic rate.

For moderate to high values of B, we have Sa2
(
N−1
2 δ

) ≈ 1

and thus R̂L approaches R∗ in this case.

IV. NUMERICAL RESULTS

In this section, we verify the derived lower rate bound

in Theorem 1 for the proposed discrete phase shift design

method, compared to the optimal continuous phase shift de-

sign.

Fig. 2 shows the user rate versus the number of antennas

M . P
σ2
n

denotes signal-to-noise ratio of the system and 3-bit

DACs are exploited at the BS. Dotted markers correspond to

numerical results while solid lines correspond to the analytical

result in (28). Obviously, the derived lower bound for the

 M

 P σ

 P σ

Fig. 2. User rate and the derived lower bound versus M using 3-bit DACs
(B = 4, N = 8, and k1 = k2 = 10).

 N

 P σ

 P σ

Fig. 3. User rate and the derived lower bound versus N using 3-bit DACs
(B = 6, M = 8, and k1 = k2 = 10).

user rate is verified accurate. The proposed practical phase

shift design method, which uses 4-bit discrete phase shifts,

achieves nearly the same rate as the optimal one. In addition,

we observe that the user rate monotonically increases with

M because more antennas can achieve larger diversity gain.

This implies that adding antennas at the BS can significantly

improve the user rate.

Fig. 3 shows the user rate versus the number of reflecting

elements N using 3-bit DACs. Unlike in Fig. 2, the user

rate becomes saturated when N increases, as indicated in

Remark 2. The dashed line in the figure denote the asymp-

totic upper benchmark of the user rate, i.e., R∗, R̂L →
log2

(
1 + (1−ρ)M

ρ

)
for N → ∞. According to the DAC

quantization model in (1), both the received power of signals

and quantization noise increases with N . Given a fixed thermal

noise power, the SQNR first increases with N , which results in

an increasing user rate. As N continues increasing, the power

of thermal noise becomes neglectable compared to the power

of received signals and quantized noise. Hence, the SQNR
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saturates to a constant independent of N , leading to a saturated

user rate.

V. CONCLUSIONS

In this work, we investigated an LIS communication system

employing discrete phase shifts and low-resolution DACs.

Without the knowledge of CSI related to the LIS, we propose a

practical phase shift design method. Moreover, a lower bound

for the asymptotic rate of the user is obtained. For moderate to

high phase resolutions, we observe that our proposed method

asymptotically approaches the ideal benchmark performance

of the optimal continuous phase shift design with perfect CSI.

APPENDIX A

PROOF OF LEMMA 1

According to (11), we have

wwH =

(
gHΘG+hH

)H (
gHΘG+hH

)
‖gHΘG+hH‖2 (29)

Due to the strong law of large numbers for large M ,

diag
(
wwH

)
in (13) almost surely converges to a scaled

identity matrix. Along with Tr
{
wwH

}
= ‖w‖2 = 1, we

have diag
(
wwH

) a.s.−−→ 1
M IM . Substituting this into (13), it

yields

Cq
a.s.−−→ ρP

M
IM . (30)

On the other hand, by substituting (3) and (7), we have∥∥gHΘG+hH
∥∥2

=

∥∥∥∥∥
√

1

(k1+1)(k2+1)

(√
k1k2ḡ

HΘḠ+
√
k1g̃

HΘḠ

+
√

k2ḡ
HΘG̃+ g̃HΘG̃

)
+ hH

∥∥∥2
a.s.−−→ 1

(k1 + 1)(k2 + 1)

(
k1k2

∥∥ḡHΘḠ
∥∥2+k1

∥∥g̃HΘḠ
∥∥2

+k2

∥∥∥ḡHΘG̃
∥∥∥2+∥∥∥g̃HΘG̃

∥∥∥2)+
∥∥hH

∥∥2
(31)

a.s.−−→ 1

(k1 + 1)(k2 + 1)

(
k1k2

∥∥ḡHΘḠ
∥∥2 + k1MN

+ k2MN +MN) +M, (32)

where (31) uses the assumption that g̃, G̃, and h are indepen-

dent with each other and have zero means, and (32) uses the

following results∥∥g̃HΘḠ
∥∥2 = tr

{
g̃HΘḠḠHΘH g̃

}
= tr

{
ḠHΘH g̃g̃HΘḠ

}
a.s.−−→ tr

{
NgBg

H
B

}
(33)

= MN, (34)

∥∥∥ḡHΘG̃
∥∥∥2 = ḡHΘG̃G̃HΘH ḡ

a.s.−−→ M ḡHΘΘH ḡ (35)

= MN, (36)

∥∥∥g̃HΘG̃
∥∥∥2 = g̃HΘG̃G̃HΘH g̃

a.s.−−→ M g̃HΘΘH g̃ (37)

= M g̃H g̃
a.s.−−→ MN, (38)

∥∥hH
∥∥2 = hHh

a.s.−−→ M, (39)

where (33) uses the property of the complex Wishart matrix

ḠHΘH g̃g̃HΘḠ ∼ WM

(
1, NgBg

H
B

)
[11], (35) and (37)

comes from 1
M G̃G̃H a.s.−−→ IN , (38) uses 1

N g̃H g̃
a.s.−−→ 1, and

(39) utilizes 1
M hHh

a.s.−−→ 1, due to the strong law of large

numbers for large M and N .

Since convergence is preserved for continuous functions

according to the Continuous Mapping Theorem [12], the

asymptotic SQNR in (14) is obtained by substituting (30) and

(32) into (12) and using the definitions in (15) and (16).
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