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Abstract

In multi-agent domains, the actions performed by an agent may not only modify the world and the
agent’s knowledge and beliefs about the world, but may also change the knowledge and beliefs of
other agents about the world and their own knowledge and beliefs about other agents’ knowledge
and beliefs about the world. Similarly, the goals of an agent in a multi-agent domain may involve
manipulating the knowledge and beliefs of other agents’ and, again, not just their knowledge1 about
the world, but also their knowledge about other agents’ knowledge about the world.

The goal of this paper is to investigate an action language, called mA∗, that provides the
necessary features to address the above aspects in representing and reasoning about actions and
change in multi-agent domains. The language, as designed, can also serve as a specification language
for epistemic planning, thereby addressing an important issue in the development of multi-agent
epistemic planning systems. The mA∗ action language is a generalization of the single-agent
action languages, extensively studied in the literature, to the case of multi-agent domains. The
language allows the representation of different types of actions that an agent can perform in a
domain where many other agents might be present—such as world-altering actions, sensing actions,
and communication actions. The action language also allows the specification of agents’ dynamic
awareness of action occurrences—which has implications on what agents’ know about the world
and other agents’ knowledge about the world. These features are embedded in a language that is
simple, yet powerful enough to address a large variety of knowledge manipulation scenarios in
multi-agent domains.

The semantics of mA∗ relies on the notion of state, which is described by a pointed Kripke
model and is used to encode the agents’ knowledge and the real state of the world. The semantics is
defined by a transition function that maps pairs of actions and states into sets of states. The paper
presents a number of properties of the action theories, including properties that guarantee finiteness
of the set of initial states and their practical realization in a system. Finally, the paper relates mA∗
to other relevant formalisms in the area of reasoning about actions in multi-agent domains.
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1We will use the term “knowledge” to mean both “knowledge” and “beliefs” when clear from the context.
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1. Introduction

1.1. Motivations
Reasoning about Actions and Change (RAC) has been a research focus since the early days of

artificial intelligence (McCarthy, 1959). Languages for representing actions and their effects have
been proposed soon after (Fikes and Nilson, 1971). Although the early papers on this topic by Fikes
and Nilson (1971) did not include formal semantics, papers with formal semantics came some years
after, with leading efforts by Lifschitz (1987). The approach adopted in this paper is predominantly
influenced by the methodology for representing and reasoning about actions and change proposed
by Gelfond and Lifschitz (1993). In this approach, actions of agents are described in a high-level
language, with an English-like syntax and a transition function-based semantics. Action languages
offer several benefits, including a succinct way for representing dynamic domains. The approach
proposed in this paper is also related to action description languages developed for planning, such
as (Pednault, 1989; Ghallab et al., 1998).

Over the years, several action languages (e.g., A, B, and C) have been developed, as discussed
in (Gelfond and Lifschitz, 1998). Each of these languages addresses some important problems
in RAC, e.g., the ramification problem, concurrency, actions with duration, knowledge of agents.
Action languages have also provided the foundations for several successful approaches to automated
planning; for example, the language C is used in the planner C-PLAN (Castellini et al., 2001) and
the language B is used in CPA (Son et al., 2005). The Planning Domain Definition Language
(PDDL) (Ghallab et al., 1998), the de-facto standard language for many planning systems, could
also be viewed as a type of action language (a generalization of STRIPS). However, the primary
focus of all these research efforts has been about reasoning within single-agent domains.

In single-agent domains, reasoning about actions and change mainly involves reasoning about
what is true in the world, what the agent knows about the world, how the agent can manipulate the
world (using world-changing actions) to reach particular states, and how the agent (using sensing
actions) can learn unknown aspects of the world. In multi-agent domains an agent’s action may not
just change the world and the agent’s knowledge about the world, but also may change other agents’
knowledge. Similarly, the goals of an agent in a multi-agent world may involve manipulating the
knowledge of other agents—in particular, this may involve not just their knowledge about the world,
but also their knowledge about other agents’ knowledge about the world. Although there is a large
body of research on multi-agent planning (see, e.g., (Durfee, 1999; de Weerdt et al., 2003; de Weerdt
and Clement, 2009; Allen and Zilberstein, 2009; Bernstein et al., 2002; Goldman and Zilberstein,
2004; Guestrin et al., 2001; Nair et al., 2003; Peshkin and Savova, 2002)), relatively few efforts
address the above aspects of multi-agent domains, which offer a number of new research challenges
in representing and reasoning about actions and change. The following simple example illustrates
some of these issues.

Example 1 (Three Agents and the Coin Box). Three agents, A, B, and C, are in a room. In the
middle of the room there is a box containing a coin. It is common knowledge that:
• None of the agents knows whether the coin lies heads or tails up;
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• The box is locked and one needs a key to open it; agentA has the key of the box and everyone
knows this;
• In order to learn whether the coin lies heads or tails up, an agent can peek into the box—but
this requires the box to be open;
• If one agent is looking at the box and a second agent peeks into the box, then the first agent
will observe this fact and will be able to conclude that the second agent knows the status of
the coin; on the other hand, the first agent’s knowledge about which face of the coin is up
does not change;
• Distracting an agent causes that agent to not look at the box;
• Signaling an agent to look at the box causes such agent to look at the box;
• Announcing that the coin lies heads or tails up will make this a common knowledge among
the agents that are listening.

Suppose that the agent A would like to know whether the coin lies heads or tails up. She would
also like to let the agent B know that she knows this fact. However, she would like to keep this
information secret from C. Please, observe that the last two sentences express goals that are about
agents’ knowledge about other agents’ knowledge. Intuitively, she could achieve her goals by:

1. Distracting C from looking at the box;
2. Signaling B to look at the box if B is not looking at the box;
3. Opening the box; and
4. Peeking into the box. 2

This simple story presents a number of challenges for research in representing and reasoning
about actions and their effects in multi-agent domains. In particular:

• The domain contains several types of actions:

– Actions that allow the agents to change the state of the world (e.g., opening the box);

– Actions that change the knowledge of the agents (e.g, peeking into the box, announcing
heads/tails);

– Actions that manipulate the beliefs of other agents (e.g., peeking while other agents are
looking); and

– Actions that change the observability of agents with respect to awareness about future
actions (e.g., distract and signal actions before peeking into the box).

We observe that the third and fourth types of actions are not considered in single agent
systems.

• The reasoning process that allows agent A to verify that steps (1)-(4) will indeed achieve her
goal requires A’s ability to reason about the effects of actions on several aspects:

– The state of the world—e.g., opening the box causes the box to become open;
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– The agents’ awareness of the environment and of other agents’ actions—e.g., distracting
or signaling an agent causes this agent not to look or to look at the box, respectively; and

– The knowledge of other agents about her own knowledge—e.g., someone following her
actions would know what she knows.

While the first requirement is the same as for an agent in single-agent domains, the last two
are specific to multi-agent domains.

With respect to planning, the above specifics of multi-agent systems raise an interesting problem:

“How can one generate a plan for the agentA to achieve her goal, given the description
in Example 1?”

The above problem is an Epistemic Planning problem in a Multi-agent domain (EPM) (Bolander
and Andersen, 2011) which refers to the generation of plans for multiple agents to achieve goals
which can refer to the state of the world, the beliefs of agents, and/or the knowledge of agents.
EPM has recently attracted the attention of researchers from various communities such as planning,
dynamic epistemic logic, and knowledge representation. The Dagstuhl seminars on the subject
(Agotnes et al., 2014; Baral et al., 2017) provided the impetus for the development of several
epistemic planners (Kominis and Geffner, 2015; Huang et al., 2017; Muise et al., 2015; Wan et al.,
2015; Liu and Liu, 2018; Le et al., 2018) and extensive studies of the theoretical foundations
(e.g., decidability and computational complexity) of EPM (Aucher and Bolander, 2013; Bolander
et al., 2015). In spite of all these efforts, to the best of our knowledge, only two systems have
been proposed that address the complete range of issues mentioned in Example 1: the dynamic
epistemic modeling system called DEMO van Eijck (2004) and the recently proposed system
described in Le et al. (2018). This is in stark contrast to the landscape of automated planning for
single-agent domains, where we can find several efficient automated planners capable of generating
plans consisting of hundreds of actions within seconds—especially building on recent advances in
search-based planning.

Among the main reasons for the lack of planning systems capable of dealing with the issues like
those shown in Example 1 are: (i) the lack of action-based formalisms that can address the above
mentioned issues and that can actually be orchestrated, and (ii) the fact that logical approaches to
reasoning about knowledge of agents in multi-agent domains are mostly model-theoretical, and
not amenable to an implementation in search-based planning systems. Indeed, both issues were
raised in the recent Dagstuhl seminar (Baral et al., 2017). The issue (i) is considered as one of
the main research topics in EPM, while (ii) is related to the practical and conceptual knowledge
representation challenges—discussed by Herzig2 at the second Dagstuhl seminar (Baral et al., 2017).
We will discuss these issues in more detail in the next sub-section.

2http://materials.dagstuhl.de/files/17/17231/17231.AndreasHerzig.Slides.pdf
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1.2. Related Work
In terms of related work, multi-agent actions have been explored in Dynamic Epistemic Logics

(DEL) (e.g., Baltag and Moss (2004); Herzig et al. (2005); van Benthem (2007); van Benthem
et al. (2006); van Ditmarsch et al. (2007)). However, as discussed later in the paper, DEL does not
offer an intuitive view of how to orchestrate or execute a single multi-agent action. In addition, the
complex representation of multi-agent actions—similar to a Kripke structure—drastically increases
the number of possible multi-agent actions—thus, making it challenging to adopt a search-based
approach in developing multi-agent action sequences to reach a given goal. It can be observed that
several approaches to epistemic planning in multi-agent domains with focus on knowledge and
beliefs of agents did employ an extension of PDDL rather than using DEL (Kominis and Geffner,
2015; Huang et al., 2017; Muise et al., 2015; Wan et al., 2015; Liu and Liu, 2018).

The research in DEL has also not addressed some critical aspects of multi-agent search-based
planning, such as the determination of the initial state of a planning domain instance. Moreover,
research in DEL did not explore the link between the state of the world and the observability encoded
in multi-agent actions, and hence preventing the dynamic evolution of the observational capabilities
and awareness of the agents with respect to future actions. In some ways, the DEL approach is
similar to the formulation of belief updates (e.g., (?Katsuno and Mendelzon, 1992; del Val A. and
Shoham, 1994)), and most of the differences and similarities between belief updates and reasoning
about actions carry over to the differences and similarities between DEL and our formulation of
RAC in multi-agent domains. We will elaborate on these differences in a later section of the paper.

1.3. Contributions and Assumptions
Our goal in this paper is to develop a framework that allows reasoning about actions and their

effects in a multi-agent domain; the framework is expected to address the above-mentioned issues,
e.g., actions’ capability to modify agents’ knowledge and beliefs about other agents’ knowledge and
beliefs. To this end, we propose a high-level action language for representing and reasoning about
actions in multi-agent domains. The language provides the fundamental components of a planning
domain description language for multi-agent systems. The main contributions of the paper are:

• The action language mA∗, which allows the representation of different types of actions—such
as world-altering actions, announcement actions, and sensing actions—for formalizing multi-
agent domains; the language explicitly supports actions that allow the dynamic modification
of the awareness and observation capabilities of the agents;

• A transition function-based semantics for mA∗, that enables hypothetical reasoning and
planning in multi-agent domains. This, together with the notion of a finitary-S5 theories for
representing the initial state, introduced in (Son et al., 2014), provides a foundation for the
implementation of a heuristic search-based planner for domains described in mA∗; and

• Several theoretical results relating the semantics of mA∗ to multi-agent actions characteriza-
tions using the notion of update models from DEL Baltag and Moss (2004).

In developing mA∗, we make several design decisions. The key decision is that actions in our
formalism can be effectively executed and the outcome can be effectively determined. This is not the
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case, for example, in DEL (van Ditmarsch et al., 2007), where actions are complex graph structures,
similar to Kripke structures, possibly representing a multi-modal formula, and it is not clear if and
how such actions can be executed. We also assume that actions are deterministic, i.e., the result
of the execution of a world altering action is unique. This assumption can be lifted in a relatively
simple manner—by generalizing the techniques for handling non-deterministic actions studies in
the context of single-agent domains.

Although we have mentioned both knowledge and beliefs, in this paper we will follow van
Ditmarsch et al. (2007); Baltag and Moss (2004) and focus only on formalizing the changes of
beliefs of agents after the execution of actions. Following the considerations by van Benthem (2007),
the epistemic operators used in this paper can be read as “to the best of my information.” Note that,
in a multi-agent system, there may be a need to distinguish between the knowledge and the beliefs
of an agent about the world. Let us consider Example 1 and let us denote with p the proposition

“nobody knows whether the coin lies heads or tails up.” Initially, the three agents know that p is
true. However, after agent A executes the sequence of actions (1)-(4), A will know that p is false.
Furthermore, B also knows that p is false, thanks to her awareness of A’s execution of the actions
of opening the box and looking into it. However, C, being unaware of the execution of the actions
performed by A, will still believe that p is true. If this were considered as a part of C’s knowledge,
then C would result in having false knowledge.

The investigation of the discrepancy between knowledge and beliefs has been an intense
research topic in dynamic epistemic logic and in reasoning about knowledge, which has lead to the
development of several modal logics (e.g., (Fagin et al., 1995; van Ditmarsch et al., 2007)). Since
our main aim is the development of an action language for hypothetical reasoning and planning, we
will be primarily concerned with the beliefs of agents. Some preliminary steps in this direction have
been explored in the context of the DEL framework (Herzig et al., 2005; Son et al., 2015). We leave
the development of an action-based formalism that takes into consideration the differences between
beliefs and knowledge as future work.

1.4. Paper Organization
The rest of the paper is organized as follows. Section 2 reviews the basics definitions and

notation of a modal logic with belief operators and the update model based approach to reasoning
about actions in multi-agent domains. This section also reviews the definition of finitary S5-theories
whose models are finite. It also includes a short discussion for the development of mA∗. Section 3
presents the syntax of mA∗. Section 4 explores the modeling of the semantics of mA∗ using the
update models approach; we define the transition function of mA∗ which maps pairs of actions and
states into states; the section also presents the entailment relation between mA∗ action theories and
queries along with relevant properties. Section 5 provides an analysis of mA∗ with respect to the
existing literature, including a comparison with DEL. Section 6 provide some concluding remarks
and directions for future work. For simplicity of presentation, the proofs of the main theorems are
placed in Appendix A. Appendix B provides a set of mA∗ examples.
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2. Preliminaries

We begin with a review of the basic notions from the literature on formalizing knowledge and
reasoning about effects of actions in multi-agent systems. Subsection 2.1 presents the notion of
Kripke structures. Subsection 2.2 reviews the notion of update models developed by the dynamic
epistemic logic community for reasoning about effects of actions in multi-agent systems.

2.1. Belief Formulae and Kripke Structures
Let us consider an environment with a set AG of n agents. The real state of the world (or real

state, for brevity) is described by a set F of propositional variables, called fluents. We are concerned
with the beliefs of agents about the world and about the beliefs of other agents. For this purpose,
we adapt the logic of knowledge and the notations used in Fagin et al. (1995); van Ditmarsch et al.
(2007). We associate to each agent i ∈ AG a modal operator Bi (to indicate a belief of agent i)
and represent the beliefs of an agent as belief formulae in a logic extended with these operators.
Formally, we define belief formulae as follows.
Fluent formulae: a fluent formula is a propositional formula built using the propositional variables
in F and the traditional propositional operators ∨, ∧,→, ¬, etc. In particular, a fluent atom is a
formula containing just an element f ∈ F , while a fluent literal is either a fluent atom f ∈ F or its
negation ¬f . We will use > and ⊥ to denote true and false, respectively.
Belief formulae: a belief formula is a formula in one of the following forms:

• a fluent formula;

• a formula of the form Biϕ where ϕ is a belief formula;

• a formula of the form ϕ1 ∨ ϕ2, ϕ1 ∧ ϕ2, ϕ1 ⇒ ϕ2, or ¬ϕ1 where ϕ1, ϕ2 are belief formulae;

• a formula of the form Eαϕ or Cαϕ, where ϕ is a formula and ∅ 6= α ⊆ AG.

Formulae of the form Eαϕ and Cαϕ are referred to as group formulae. Whenever α = AG,
we simply write Eϕ and Cϕ to denote Eαϕ and Cαϕ, respectively. Let us denote with LAG the
language of the belief formulae over F and AG.

Intuitively, belief formulae are used to describe the beliefs of one agent concerning the state of
the world as well as about the beliefs of other agents. For example, the formula B1B2p expresses
the fact that “Agent 1 believes that agent 2 believes that p is true,” while B1f states that “Agent 1
believes that f is true.”

In what follows, we will simply talk about “formulae” instead of “belief formulae,” whenever
there is no risk of confusion. In order to define the semantics of such logic language, we need to
introduce the notion of a Kripke structure.

Definition 1 (Kripke Structure). A Kripke structure is a tuple 〈S, π,B1, . . . ,Bn〉, where

• S is a set of worlds,

• π : S 7→ 2F is a function that associates an interpretation of F to each element of S, and
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• For 1 ≤ i ≤ n, Bi ⊆ S × S is a binary relation over S.

A pointed Kripke structure is a pair (M, s) where M = 〈S, π,B1, . . . ,Bn〉 is a Kripke structure and
s ∈ S. In a pointed Kripke structure (M, s), we refer to s as the real (or actual) world.

For the sake of readability, we use M [S], M [π], and M [i] to denote the components S, π,
and Bi of M , respectively. We write M [π](u) to denote the interpretation associated to u via π
and M [π](u)(ϕ) to denote the truth value of a fluent formula ϕ with respect to the interpretation
M [π](u). In keeping with the tradition of action languages, we will often refer to M [π](u) as the
set of fluent literals defined by3

{f | f ∈ F ,M [π](u)(f) = >} ∪ {¬f | f ∈ F ,M [π](u)(f) = ⊥}.

Given a consistent and complete set of literals X , i.e., |{f,¬f} ∩ X| = 1 for every f ∈ F ,
we write M [π](u) = X to indicate that the interpretation M [π](u) is defined in such a way that
M [π](u) = X .

Intuitively, a Kripke structure describes the possible worlds envisioned by the agents—and the
presence of multiple worlds identifies uncertainty and the existence of different beliefs. The relation
(s1, s2) ∈ Bi denotes that the belief of agent i about the real state of the world is insufficient for her
to distinguish between the world described by s1 and the one described by s2. The world s in the
state (M, s) identifies the world in M [S] that corresponds to the actual world.

We will often view a Kripke structure M = 〈S, π,B1, . . . ,Bn〉 as a directed labeled graph,
whose set of nodes is S and whose set of edges contains (s, i, t)4 if and only if (s, t) ∈ Bi. (s, i, t)
is referred to as an edge coming out of (resp. into) the world s (resp. t).

Following van Ditmarsch et al. (2007), we will refer to a pointed Kripke structure (M, s) as a
state and often use these two terms interchangeably.

The satisfaction relation between belief formulae and a state is defined as next.

Definition 2. Given a formula ϕ, a Kripke structure M = 〈S, π,B1, . . . ,Bn〉, and a world s ∈ S:

(i) (M, s) |= ϕ if ϕ is a fluent formula and M [π](s) |= ϕ;

(ii) (M, s) |= Biϕ if for each t such that (s, t) ∈ Bi, (M, t) |= ϕ;

(iii) (M, s) |= ¬ϕ if (M, s) 6|= ϕ;

(iv) (M, s) |= ϕ1 ∨ ϕ2 if (M, s) |= ϕ1 or (M, s) |= ϕ2;

(v) (M, s) |= ϕ1 ∧ ϕ2 if (M, s) |= ϕ1 and (M, s) |= ϕ2.

(vi) (M, s) |= Eαϕ if (M, s) |= Biϕ for every i ∈ α.

(vii) (M, s) |= Cαϕ if (M, s) |= Ek
αϕ for every k ≥ 0, where

3 For simplicity of the presentation, we often omit the negative literals as well.
4(s, i, t) denotes the edge from node s to node t, labeled by i.
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– E0
αϕ = ϕ and

– Ek+1
α = Eα(Ek

αϕ).

For a Kripke structure M and a formula ϕ, M |= ϕ denotes the fact that (M, s) |= ϕ for each
s ∈M [S].
|= ϕ denotes the fact that M |= ϕ for every Kripke structure M .

Example 2 (State). Let us consider a simplified version of Example 1 in which the agents are
concerned only with the status of the coin. The three agents A,B,C do not know whether the coin
has ‘heads’ or ‘tails’ up and this is a common belief. Let us assume that the coin is heads up. The
beliefs of the agents about the world and about the beliefs of other agents can be captured by the
state of Figure 1.

s0 s1A,B,C

A,B,C A,B,C

Figure 1: An example of a state

In the figure, a circle represents a world. The name of the world are written in the circle. Labeled
edges between worlds denote the belief relations of the structure. A double circle identifies the real
world. The interpretation of the world will be given whenever it is necessary. For example, we write
M [π](s0) = {head} to denote that head is true in the world s0 and anything else is false.

We will occasionally be interested in Kripke structures that satisfy certain conditions. In
particular, given a Kripke structure M = 〈S, π,B1, . . . ,Bn〉 we identify the following properties:

• K: for each agent i and formulae ϕ, ψ, we have that M |= (Biϕ ∧Bi(ϕ⇒ ψ))⇒ Biψ.

• T: for each agent i and formula ψ, we have that M |= Biψ ⇒ ψ.

• 4: for each agent i and formula ψ, we have that M |= Biψ ⇒ BiBiψ.

• 5: for each agent i and formula ψ, we have that M |= ¬Biψ ⇒ Bi¬Biψ.

• D: for each agent i we have that M |= ¬Bi ⊥.

A Kripke structure is said to be a T-Kripke (4-Kripke, K-Kripke, 5-Krikpe, D-Kripke, respectively)
structure if it satisfies property T (4, K, 5, D, respectively). A Kripke structure is said to be an
S5 structure if it satisfies the properties K, T, 4, and 5. The S5 properties have been often used to
capture the notion of knowledge. Consistency of a set of formulae is defined next.

Definition 3. A set of belief formulae X is said to be p-satisfiable (or p-consistent) for p ∈
{S5,K,T,4,5} if there exists a p-Kripke structureM and a world s ∈M [S] such that (M, s) |= ψ
for every ψ ∈ X . In this case, (M, s) is referred to as a p-model of X.

Finally, let us introduce a notion of equivalence between states.

Definition 4. A state (M, s) is equivalent to a state (M ′, s′) if (M, s) |= ϕ iff (M ′, s′) |= ϕ for
every formula ϕ ∈ LAG .
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2.2. Update Models
The formalism of update models has been used to describe transformations of (pointed) Kripke

structures according to a predetermined transformation pattern. An update model is structured
similarly to a pointed Kripke structure and it describes how to transform a pointed Kripke structure
using an update operator defined in (Baltag and Moss, 2004; van Benthem et al., 2006).

Let us start with some preliminary definitions. An LAG-substitution is a set {p1 → ϕ1, . . . , pk →
ϕk}, where each pi is a distinct fluent in F and each ϕi ∈ LAG . SUBLAG denotes the set of all
LAG-substitutions.

Definition 5 (Update Model). Given a set AG of n agents, an update model Σ is a tuple
〈Σ, R1, . . . , Rn, pre, sub〉 where

(i) Σ is a set, whose elements are called events;

(ii) each Ri is a binary relation on Σ;

(iii) pre : Σ→ LAG is a function mapping each event e ∈ Σ to a formula in LAG; and

(iv) sub : Σ→ SUBLAG is a function mapping each event e ∈ Σ to a substitution in SUBLAG .

An update instance ω is a pair (Σ, e) where Σ is an update model 〈Σ, R1, . . . , Rn, pre, sub〉 and e,
referred to as a designated event, is a member of Σ.

Intuitively, an update model represents different views of an action occurrence which are
associated with the observability of agents. Each view is represented by an event in Σ. The
designated event is the one that agents who are aware of the action occurrence will observe. The
relation Ri describes agent i’s uncertainty on action execution—i.e., if (σ, τ) ∈ Ri and event σ
is performed, then agent i may believe that event τ is executed instead. pre defines the action
precondition and sub specifies the changes of fluent values after the execution of an action.

Definition 6 (Updates by an Update Model). Let M be a Kripke structure and Σ =
〈Σ, R1, . . . , Rn, pre, sub〉 be an update model. The update operator induced by Σ defines a Kripke
structure M ′ = M ⊗Σ, where:

(i) M ′[S] = {(s, τ) | s ∈M [S], τ ∈ Σ, (M, s) |= pre(τ )};

(ii) ((s, τ), (s′, τ ′)) ∈M ′[i] iff (s, τ), (s′, τ ′) ∈M ′[S], (s, s′) ∈M [i] and (τ, τ ′) ∈ Ri;

(iii) For all (s, τ) ∈M ′[S] and f ∈ F , M ′[π]((s, τ)) |= f iff f → ϕ ∈ sub(τ) and (M, s)|=ϕ.

The structure M ′ is obtained from the component-wise cross-product of the old structure M
and the update model Σ, by (i) removing pairs (s, τ) such that (M, s) does not satisfy the action
precondition (checking for satisfaction of action’s precondition), and (ii) removing links of the form
((s, τ), (s′, τ ′)) from the cross product of M [i] and Ri if (s, s′) 6∈ M [i] or (τ, τ ′) 6∈ Ri (ensuring
that each agent’s accessibility relation is updated according to the update model).

An update template is a pair (Σ,Γ), where Σ is an update model with the set of events Σ and
Γ ⊆ Σ. The update of a state (M, s) given an update template (Σ,Γ) is a set of states, denoted by
(M, s)⊗ (Σ,Γ), where

(M, s)⊗ (Σ,Γ) = {(M ⊗Σ, (s, τ)) | τ ∈ Γ, (M, s) |= pre(τ )}
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Remark 1. In the following, we will often represent an update instance by a graph with rectangles,
double rectangles, and labeled links between rectangles representing events, designated events, and
the relation of agents, respectively, as in the graphical representation of a Kripke structure.

2.3. Finitary S5-Theories
A finitary S5-theory, introduced in (Son et al., 2014), is a collection of formula which has finitely

many S5-models, up to a notion of equivalence (Definition 4). To define finitary S5-theories, we
need the following notion. Given a set of propositions F , a complete clause over F is a disjunction
of the form

∨
p∈F p

∗ where p∗ is either p or ¬p. We will consider formulae of the following forms:

ϕ (1)
C(Biϕ) (2)
C(Biϕ ∨Bi¬ϕ) (3)
C(¬Biϕ ∧ ¬Bi¬ϕ) (4)

where ϕ is a fluent formula.

Definition 7. A theory T is said to be primitive finitary S5 if

• Each formula in T is of the form (1)-(4); and

• For each complete clause ϕ over F and each agent i, T contains either (i) C(Biϕ) or (ii)
C(Biϕ ∨Bi¬ϕ) or (iii) C(¬Biϕ ∧ ¬Bi¬ϕ).

A theory T is a finitary S5-theory if T |= H and H is a primitive finitary S5-theory.
T is pure if T contains only formulae of the form (1)-(4).

We say that a state (M, s) is canonical if for every pairs of worlds u, v ∈ M [S] and u 6= v,
M [π](u) 6≡M [π](v) holds. We have that

Theorem 1 (From (Son et al., 2014)). Every finitary S5-theory T has finitely many finite canonical
models, up to equivalence. If T is pure then these models are minimal and their structures are
identical up to the name of the points.

2.4. Why an Action Language?
As mentioned earlier, the Dagstuhl seminars (Agotnes et al., 2014; Baral et al., 2017) identified

one of the main research topics in EPM: the development of an adequate specification language
for EPM. This problem arises from the fact that EPM has been defined and investigated using a
DEL based approach, in which actions are represented by update models (Subsection 2.2). This
representation has been useful for the understanding of EPM and the study of its complexity, but
comes with a significant drawback—practical and conceptual knowledge representation challenges—
discussed by Herzig5 at the Dagstuhl seminar Baral et al. (2017). Let us consider a slight modification

5
http://materials.dagstuhl.de/files/17/17231/17231.AndreasHerzig.Slides.pdf
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of Example 1, where the box is open, A has looked at the coin, while both B and C are distracted,
and A can announce whether the coin lies heads up or tails up. However, only agents who are
attentive (to A) could listen to what A says. Assume that A announces that the coin lies heads
up. Intuitively, this action occurrence can have different effects on the beliefs of the other agents—
depending on the context and the specific features of each of them, e.g., whether the agent is attentive
to A. As a result, we need a variety of update models to represent this primitive action. Herzig
refers to this problem as the action type vs. action token problem.

�휎

A,B,C

�휎 �훕B,C

A A,B,C

pre: head pre: �흩 

�휎 �훕C

A,B A,B,C

pre: head pre: �흩 

Figure 2: Update models for announcing “the coin lies heads up” by A in different situations

Fig. 2 shows three update models; they describe the occurrence of the announcement by A,
stating that the coin lies heads up, assuming that the coin indeed lies heads up in the real state of the
world. On the left is the update model when both B and C are attentive. The model in the middle
depicts the situation when both B nor C are not attentive. The update model on the right captures
the case of B being attentive and C being not attentive. In the figures, σ and τ are events and σ is a
designated event, head is a propositional variable denoting that the coin lies heads up.

Observe that these models are used only when the coin indeed lies heads up. The update models
corresponding to the situation where head is false (i.e., when A makes a false announcement) in the
real state of the world are different from those in the figure and are omitted. It is easy to see that the
number of update models needed to represent such simple announcement of “the coin lies heads
up” by A is exponential in the number of agents. This is certainly an undesirable consequence of
using update models and epistemic actions for representing and reasoning about effects of actions
in multi-agent domains. Therefore, any specification language for representing and reasoning about
the effects of actions in multi-agent domains should consider that the announcement of the coin lies
heads up by A is simply a primitive action. In our view, the update models should be derived from
the concrete state, which is a combination of the real state of the world and the state of beliefs of
the agents, and not specified directly. A more detailed discussion on this issue can be found in the
related work section.

3. The language mA∗: Syntax

In this paper we consider multi-agent domains in which the agents are truthful and no false
information may be announced or observed. Furthermore, the underlying assumptions guiding
the semantics of our language are the rationality principle and the idea that beliefs of an agent are
inertial. In other words, agents believe nothing which they are not forced to believe, and the beliefs
of an agent remain the same unless something causes them to change. 1 1 need to see if

inertial really holds
— or need to define
what is inertial in
MAD?

In this section and the next section, we introduce the language mA∗ for describing actions and
their effects in multi-agent environment. The language is built over a signature 〈AG,F ,A〉, where
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AG is a finite set of agent identifiers, F is a set of fluents, and A is a set of actions. Each action in
A is an action the agents in the domain are capable of performing.

Similar to any action language developed for single-agent environments, mA∗ consists of three
components which will be used in describing the actions and their effects, the initial state, and
the query language (see, e.g., (Gelfond and Lifschitz, 1998)). We will next present each of these
components. Before we do so, let us denote the multi-agent domain in Example 1 by D1. For this
domain, we have that AG = {A,B,C}. The set of fluents F for this domain consists of:

• tail: the coin lies tails up (head is often used in place of ¬tail);

• has key(x): agent x has the key of the box;

• opened: the box is open; and

• looking(x): agent x is looking at the box.

The set of actions for D1 consists of:

• open: an agent opens the box;

• peek: an agent peeks into the box;

• signal(y): an agent signals agent y (to look at the box);

• distract(y): an agent distracts agent y (so that y does not look at the box); and

• shout tail: an agent announces that the coin lies tail up.

where x, y ∈ {A,B,C}. We start with the description of actions and their effects.

3.1. Actions and effects
We envision three types of actions that an agent can perform: world-altering actions (also known

as ontic actions), sensing actions, and announcement actions. Intuitively,

• A world-altering action is used to explicitly modify certain properties of the world—e.g., the
agent A opens the box in Example 1, or the agent A distracts the agent B so that B does not
look at the box (also in Example 1);

• A sensing action is used by an agent to refine its beliefs about the world, by making direct
observations—e.g., an agent peeks into the box; the effect of the sensing action is to reduce
the amount of uncertainty of the agent;

• An announcement action is used by an agent to affect the beliefs of the agents receiving the
communication—we operate under the assumption that agents receiving an announcement
always believe what is being announced.
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For the sake of simplicity, we assume that each action a ∈ A falls in exactly one of the three
categories.6 In a multi-agent systems, we need to identify an action occurrence with the agents who
execute it. For a ∈ A and α ⊆ AG, we write a to denote the joint-execution of a by the agents in α
and call it an action instance. We will useAI to denote the set of possible action instancesA×AG.
Elements of AI will be written in san-serif font. For simplicity of the presentation, we often use
“an action” or “an action instance” interchangeably when it is clear from the context which term is
appropriate. Furthermore, when α is a singleton set, {x}, we simplify 〈{x}〉 to 〈x〉.

In general, an action can be executed only under certain conditions, called its executability
conditions. For example, the statement “to open the box, an agent must have its key” in Example 1
describes the executability condition of the action of opening a box. The first type of statements in
mA∗ is used to describe the executability conditions of action occurrences and is of the following
form:

executable a if ψ (5)

where a ∈ AI and ψ is a belief formula. A statement of type (5) will be referred to as the
executability condition of the action occurrence a. ψ is referred as the precondition of a. For
simplicity of the presentation, we will assume that each action occurrence a is associated with
exactly one executability condition. When ψ = >, the statement will be omitted.

For an occurrence of a world-altering action a, such as the action of opening the box by some
agent, we have statements of the following type that express the change that may be caused by such
action:

a causes ` if ψ (6)

where ` is a fluent literal, x ⊆ AG, and ψ is a belief formula. Intuitively, if the real state of the world
and of the beliefs match the condition described by ψ, then the real state of the world is affected by
the change that makes the literal ` true after the execution of a. When ψ = >, the part “ if ψ” will
be omitted from (6). We also use

a causes φ if ψ

where φ is a set of fluent literals as a shorthand for the set {a causes ` if ψ | ` ∈ φ}.
Sensing actions, such as the action of looking into the box, allow agents to learn about the value

of a fluent in the real state of the world (e.g., learn whether the coin lies head or tail up). We use
statements of the following kind to represent effects of sensing action occurrences:

a determines f (7)

where f is a fluent and a ∈ AI is a sensing action. Statements of type (7) encode the occurrence of
a sensing action a which enables the agent(s) to learn the value of the fluent f . f is referred to as a
sensed fluent of a.

For actions such as the action of an agent telling another agent that the coin lies head up, we have
statements of the following kind, that express the change that may be caused by the occurrences of
such actions:

6It is easy to relax this condition, but it would make the presentation more tedious.
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a announces ϕ (8)

where ϕ is a fluent formula and a ∈ AI . a is called an announcement action.
We will next illustrate the use of (5)-(8) in representing the actions of the domain D1.

Example 3. The actions of domain D1 can be specified by the following statements:

executable open〈x〉 if has key(x)
executable peek〈x〉 if opened, looking(x)
executable shout tail〈x〉 if Bx(tail), tail
executable signal(y)〈x〉 if looking(x),¬looking(y)
executable distract(y)〈x〉 if looking(x), looking(y)

open〈x〉 causes opened
signal(y)〈x〉 causes looking(y)
distract(y)〈x〉 causes ¬looking(y)
peek〈x〉 determines tail
shout tail〈x〉 announces tail

where x and y are different agents in {A,B,C}. The first five statements encode the executability
conditions of the five actions in the domain. The next three statements describe the effects of the
occurrence of three world-altering actions. peek〈x〉 is an example of an occurrence of a sensing
action. Finally, shout tail〈x〉 is an example of an occurrence of an announcement action.

3.2. Observability: observers, partial observers, and others
One of the key differences between single-agent and multi-agent domains lies in how the

execution of an action changes the beliefs of agents. This is because, in multi-agent domains, an
agent might be oblivious about the occurrence of an action or unable to observe the effect of an
action. For example, watching another agent opening the box would allow the agent to know that
the box is open after the execution of the action; however, the agent would still believe that the box
is closed if she is not aware of the action occurrence. On the other hand, watching another agent
peeking into the box does not help the observer in learning whether the coin lies heads or tails up;
the only thing she would learn is that the agent who is peeking into the box has knowledge of the
status of the coin.

mA∗ needs to have a component for representing the fact that not all the agents may be com-
pletely aware of the presence of actions being executed. Depending on the action and the current
situation, we can categorize agents in three classes:

• Full observers,

• Partial observers, and

• Oblivious (or others).
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action type full observers partial observers oblivious/others
world-altering actions

√ √

sensing actions
√ √ √

announcement actions
√ √ √

Table 1: Action types and agent observability

This categorization is dynamic, as with the change in the state an agent’s category may change. In
this paper, we will consider the possible observabilities of agents for different action types detailed
in Table 1.

The first row indicates that, for a world-altering action, an agent can either be a full observer,
i.e., completely aware of the occurrence of that action, or oblivious of the occurrence of the action.
In the second case, the observability of the agent is categorized as other. Note that we assume that
the observer agents know about each others’ status and they are also aware of the fact that the other
agents are oblivious. The oblivious agents have no clue of anything.

For a sensing action, an agent can either be a full observer, i.e., it is aware of the occurrence of
that action and of its results, it can be a partial observer, gaining knowledge that the full observers
have performed a sensing action but without knowledge of the result of the observation, or it can
be oblivious of the occurrence of the action (i.e., other). Once again, we assume that the observer
agents know about each others’ status and they also know about the agents partially observing the
action and about the agents that are oblivious. The partially observing agents know about each
others’ status, and they also know about the observing agents and the agents that are oblivious. The
oblivious agents have no clue of anything. The behavior is analogous for the case of announcement
actions.

The dynamic nature of the agents observability can be manipulated and this is specified using
agent observability statements of the following form:7

z observes a if ϕ (9)
z aware of a if ψ (10)

where z ∈ AG, a ∈ AI , and ϕ and ψ are fluent formulae. (9) indicates that agent z is a full observer
of a if ϕ holds. (10) states that agent z is a partial observer of a if ψ holds. z, a, and ϕ (resp. ψ)
are referred to as the observed agent, the action instance, and the condition of (9) (resp. (10)). The
next example illustrates the use of the above statements in specifying the agents observability of the
domain D1.

Example 4 (Observability in D1). The actions of D1 are described in Example 3. The observability

7As discussed earlier, the “ if >” are omitted from the statements.
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of agents in D1 can be described by the set O1 of statements

x observes open〈x〉 x observes peek〈x〉
y observes open〈x〉 if looking(y) y aware of peek〈x〉 if looking(y)
y observes shout tail〈x〉
x observes distract(y)〈x〉 x observes signal(y)〈x〉
y observes distract(y)〈x〉 y observes signal(y)〈x〉

where x and y denote different agents in {A,B,C}. The above statements say that agent x is a
fully observant agent when open〈x〉, peek〈x〉, distract(y)〈x〉, signal(y)〈x〉, or shout tail〈x〉 are
executed; y is a fully observant agent if it is looking (at the box) when open〈x〉 is executed. y is a
partially observant agent if it is looking when peek〈x〉 is executed. An agent different from x and y
is oblivious in all cases.

In the following, we will assume that for every agent z ∈ AG, if z is an observed agent in a
statement of the form (9) then it is not an observed agent in a statement of the form (10) for the
same occurrence a such that ϕ ∧ ψ is consistent and vice versa.

Definition 8. An mA∗ domain is a collection of statements of the forms (5)-(10).

Similar to action domains in the language A introduced by Gelfond and Lifschitz (1993), an
mA∗ domain could contain two statements specifying contradictory effects of an action occurrence
such as

a causes f if ϕ and a causes ¬f if ψ

where ϕ∧ψ is a consistent formula, i.e., there exists some pointed Kripke structure (M, s) such that
(M, s) |= ϕ ∧ ψ. Such a domain is not sensible and will be characterized as inconsistent. We define

Definition 9. An mA∗ domain D is consistent if for every pointed Kripke structure (M, s) and two
statements

a causes f if ϕ and a causes ¬f if ψ

in D, (M, s) 6|= ϕ ∧ ψ.

From now on, whenever we say an mA∗ domain D, we will assume that D is consistent.

3.3. Initial State
A domain specification encodes the actions and their effects and the observability of agents in

each situation. The initial state, that encodes both the initial state of the world and the initial beliefs
of the agents, is specified in mA∗ using initial statements of the following form:

initially ϕ (11)

where ϕ is a formula. Intuitively, this statement says that ϕ is true in the initial state. We will later
discuss restrictions on the formula ϕ to ensure the computability of the Kripke structures describing
the initial state.
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Example 5 (Representing Initial State of D1). Let us reconsider Example 1. The initial state of D1

can be expressed by the following statements:

initially C(has key(A))
initially C(¬has key(B))
initially C(¬has key(C))
initially C(¬opened)
initially C(¬Bxtail ∧ ¬Bx¬tail) for x ∈ {A,B,C}
initially C(looking(x)) for x ∈ {A,B,C}

These statements indicate that everyone knows that A has the key and B and C do not have the key,
the box is closed, no one knows whether the coin lies head or tail up, and everyone is looking at the
box.

The notion of an action theory in mA∗ is defined next.

Definition 10 (Action Theory). An mA∗-action theory is a pair (I,D) where D is an mA∗ domain
and I is a set of statements of the form (11).

In Section 4, we will define the notion of entailment between action theories and queries, similar
to the notion of entailment defined for action languages in single agent domains (e.g., (Gelfond and
Lifschitz, 1998)). This relies on the following definition.

Definition 11 (Initial State/b-State). Let (I,D) be an action theory. An initial state of (I,D) is a
state (M, s) such that for every statement

initially ϕ

in I , (M, s) |= ϕ.
(M, s) is an initial S5-state if it is an initial state and M is a S5 Kripke structure.
The initial belief-state (or initial b-state) of (I,D) is the collection of all initial states of (I,D).
The initial S5-b-state of (I,D) is the collection of all initial S5-states of (I,D).

Although Definition 11 is well-defined, it is easy to see that theoretically, there could be infinitely
many initial states for an arbitrary mA∗ theory. For example, given a state (M, s) and a set of
formulae Σ such that (M, s) |= Σ, a new state (M ′, s) that also satisfies Σ can be constructed
from M by adding a new world and keeping everything else unchanged. As such, identifying
sensible classes of action theories whose initial belief states are finite, up to a notion of equivalence
(Definition 4). Fortunately, the result on finitary S5 theories8 (Definition 7) allows us to identify
a large class of action theories satisfying this property. We call them definite action theories and
define them as follows.

8 To keep the paper at a reasonable length, we do not discuss the details of finitary S5 theories. Interested readers
are referred to (Son et al., 2014) for details and proof of Theorem 1.

• • • December 11, 2019 —0 • • • p18:#1 —©R ©M



Definition 12 (Definite Action Theory). An action theory (I,D) is said to be definite if the theory
{ϕ | initially ϕ belongs to I} is a finitary-S5 theory.

Observe that Theorem 1 indicates that for definite action theories, the initial belief state is finite.
An algorithm for computing the initial belief state is given in (Son et al., 2014). This, together
with the definition of the transition function of mA∗ domains in the next section, allows for the
implementation of progression-based epistemic planning systems. A preliminary development can
be found in (Le et al., 2018).

4. Update Model Based Semantics for mA∗ Domains

An mA∗ domain D specifies a transition system, whose nodes are “states” that encode the
description of the state of the world and of the agents’ beliefs. This transition system will be
described by a transition function ΦD, which maps pairs of action occurrences and states to states.
For simplicity of the presentation, we assume that only one action occurrence happens at each point
in time—it is relatively simple to extend it to cases where concurrent actions are present, and this is
left as future work. As we have mentioned in Section 2, we will use pointed Kripke structures to
represent states in mA∗ action theories. A pointed Kripke structure encodes three components:

• The actual world;

• The state of beliefs of each agent about the real state of the world; and

• The state of beliefs of each agent about the beliefs of other agents.

These components are affected by the execution of actions. Observe that the notion of a state in
mA∗ action theories is more complex than the notion of state used in single-agent domains (i.e., a
complete set of fluent literals).

Let S be the set of all possible pointed Kripke structures over L(F ,AG), the transition function
ΦD maps pairs of action instances and states into sets of states, i.e.,

ΦD : AI × S −→ 2S

will be defined for each action type separately and in two steps. First, we define an update model
representing the occurrence of a in a state (M, s). Second, we use the update model/instance defined
in step one and an updated instance obtained from step one in defining ΦD. We start by defining the
notion of a frame of reference in order to define the function ΦD.

4.1. Actions Visibility
Given a state (M, s) and an action occurrence a, let us define

FD(a,M, s) = {x ∈ AG | [x observes a if ϕ] ∈ D such that (M, s) |= ϕ}
PD(a,M, s) = {x ∈ AG | [x aware of a if ϕ] ∈ D such that (M, s) |= ϕ}
OD(a,M, s) = AG \ (FD(a,M, s) ∪ PD(a,M, s))
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We will refer to the tuple (FD(a,M, s),PD(a,M, s),OD(a,M, s)) as the frame of reference for
the execution of a in (M, s). Intuitively, FD(a,M, s) (resp. PD(a,M, s) and OD(a,M, s)) are the
agents that are fully observant (resp. partially observant and oblivious/other) of the execution of a
in the state (M, s). As we assume that for each pair of an action occurrence a and a state (M, s),
the sets FD(a,M, s) and PD(a,M, s) are disjoint, the domain specification D and the state (M, s)
determine a unique frame of reference for each action occurrence.

The introduction of frames of reference allows us to elegantly model several types of actions
that are aimed at modifying the frame of reference (referred to as reference setting actions). Some
possibilities are illustrated in the following examples.

Example 6 (Reference Setting Actions). Example 4 shows two reference setting actions:
signal(y)〈x〉 and distract(y)〈x〉. The action signal(y)〈x〉 allows agent x to promote agent y
into a higher level of observation for the effect of the action peek〈x〉. On the other hand, the action
distract(y)〈x〉 allows agent x to demote agent y into a lower level of observation. The net effect of
executing these actions is a change of frame.

Let us consider the action signal(y)〈x〉 and a state (M, s). Furthermore, let us assume that
(M ′, s′) is a state resulting from the execution of signal(y)〈x〉 in (M, s). The frames of reference
for the execution of the action a = peek〈x〉 in these two states are detailed in Figure 3.

in (M, s)
signal(y)〈x〉−−−−−−→ in (M ′, s′)

FD(a,M, s) FD(a,M, s)
PD(a,M, s) PD(a,M, s) ∪ {y}
OD(a,M, s) OD(a,M, s) \ {y}

Figure 3: Frame of reference for peek〈x〉 before (in (M, s)) and after signal(y)〈x〉 (in (M ′, s′))
2 the above needs to
be checked - the
right column should
be M’,s’ instead of
M,s

2 Intuitively, after the execution of signal(y)〈x〉, looking(y) becomes true because of the state-
ment

signal(y)〈x〉 causes looking(y)

in D1. By definition, the statement

y aware of peek〈x〉 if looking(y)

indicates that y is partially observant.
Similar argument shows that distract(y)〈x〉 demotes y to the lowest level of visibility, i.e., it

will cause agent y to become oblivious of the successive peek〈x〉 action. Again, for a = peek〈x〉,
we have the change of frame of reference summarized in Figure 4.

4.2. Update Model for Action Occurrences
Definition 13 (Update Model/Instance for World-Altering Actions). Given a world-altering action
instance a with the precondition ψ and a frame of reference ρ = (F, ∅, O), the update model for a
and ρ, denoted by ω(a, ρ), is defined by 〈Σ, R1, . . . , Rn, pre, sub〉 where

◦ Σ = {σ, ε};
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in (M, s)
distract(y)〈x〉−−−−−−−→ in (M ′, s′)

FD(a,M, s) FD(a,M, s) \ {y}
PD(a,M, s) PD(a,M, s) \ {y}
OD(a,M, s) OD(a,M, s) ∪ {y}

Figure 4: Frame of reference for peek〈x〉 before (in (M, s)) and after distract(y)〈x〉 (in (M ′, s′))

◦ Ri = {(σ, σ), (ε, ε)} for i ∈ F and Ri = {(σ, ε), (ε, ε)} for i ∈ O;

◦ pre(σ) = ψ and pre(ε) = >; and

◦ sub(ε) = ∅ and sub(σ) = {p→ Ψ+(p, a) ∨ (p ∧ ¬Ψ−(p, a)) | p ∈ F}, where

Ψ+(p, a) =
∨
{ϕ | [a causes p if ϕ] ∈ D}

and
Ψ−(p, a) =

∨
{ϕ | [a causes ¬p if ϕ] ∈ D}.

The update instance for the occurrence of a and the frame of reference ρ is (ω(a, ρ), {σ}).

Observe that the update model of the world-altering action occurrence a has at most two events.
Each event corresponds to a group of agents. The links in the update model for each group of agents
reflect the state of beliefs each group would have after the execution of the action. For example,
fully observant agents (in F ) will have no uncertainty. The next example illustrates this definition.

Example 7. Going back to our original example, the action instance open〈A〉 assumes that everyone
is aware that C is not looking at the box while B and A are. Figure 5 (top right) depicts the state.
For simplicity, in the worlds we report only the components of the interpretation related to the
opened and tail fluents. The frame of reference for open(A) in this situation is ({A,B}, ∅, {C}).
The corresponding update instance for open〈A〉 and the frame of reference ({A,B}, ∅, {C}) is
given in Figure 5 (top left). The bottom part of Figure 5 shows the result of the application of the
update instance to the state on the top right.

In the next definition, we provide the update instance for a sensing action occurrence given a
frame of reference. For simplicity of presentation, we will assume that the set of sensed fluents of
the action is a singleton.

Definition 14 (Update Model/Instance for Sensing Actions). Let a be a sensing action instance
with SensedD(a) = {f}, let its precondition be ψ, and let ρ = (F, P,O) be a frame of reference.
The update model for a and ρ, ω(a, ρ), is defined by 〈Σ, R1, . . . , Rn, pre, sub〉 where:

◦ Σ = {σ, τ, ε};

◦ Ri is given by

Ri =


{(σ, σ), (τ, τ), (ε, ε)} if i ∈ F
{(σ, σ), (τ, τ), (ε, ε), (σ, τ), (τ, σ)} if i ∈ P
{(σ, ε), (τ, ε), (ε, ε)} if i ∈ O
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   opened
   ¬tail

¬opened
¬tail

¬opened
tail

A,B,CA,B,C

A,B,C
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  ¬tail

  ¬opened
  tail

A,B,CA,B,C

A,B,C

   opened
   tail

A,B

A,B A,B

C CC C

! !

A,B,CA,B

C
pre: has_key(A)
sub: opened ! !" opened

pre: !
sub: !

S1 S2

(S1,!) (S2,!)

(S1,!) (S2,!)

Figure 5: Update Instance (ω(open〈A〉, ({A,B}, ∅, {C})), {σ}) and its application

◦ The preconditions pre are defined by

pre(x) =




ψ ∧ f if x = σ
ψ ∧ ¬f if x = τ
� if x = ε

◦ sub(x) = ∅ for each x ∈ Σ.

The update instance for the sensing action occurrence a and the frame of reference ρ is
(ω(a, ρ), {σ, τ}).

Observe that an update instance of a sensing action occurrence has three events, each one
corresponding to a group of agents. Each event is associated with a group of states in which the
truth value of sensed fluent is either known to be true, known to be false, or unknown.

Example 8. Let us consider the occurrence of peek〈A〉 in the state described in Figure 6 (top right).
The frame of reference for this occurrence of peek〈A〉 is ({A}, {B}, {C}). The corresponding
update instance is given in Figure 6 (top left).

We will conclude the section with a discussion on the update model of for announcement actions.

Definition 15 (Update Model/Instance for Announcement Actions). Given an announcement action
instance a that announces ϕ with the precondition ψ and a frame of reference ρ = (F, P,O), the
update model for a and ρ, ω(a, ρ), is defined by 〈Σ, R1, . . . , Rn, pre, sub〉 where:

◦ Σ = {σ, τ, ε};

◦ Ri is defined by

Ri =




{(σ, σ), (τ, τ), (ε, ε)} if i ∈ F
{(σ, σ), (τ, τ), (ε, ε), (σ, τ), (τ, σ)} if i ∈ P
{(σ, ε), (τ, ε), (ε, ε)} if i ∈ O
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  (S1,!):
¬tail tail

  (S2,!):

(S1,!): (S2,"):

tail

A,B,CA,B,C

A,B,C

C C

C C

A,B A,B

S1:
¬tail tail

S2:

A,B,CA,B,C

A,B,C

¬tail
B

!

"

!
pre: opened ! looking(A) ! ¬tail

pre: opened ! looking(A) ! tail

pre:  "
A,B

A,B A,B,C

C

C
B

Figure 6: Update Instance (ω(peek〈A〉, ({A}, {B}, {C})), {σ, τ}) and its application

◦ pre is defined by

pre(x) =




ψ ∧ ϕ if x = σ
ψ ∧ ¬ϕ if x = τ
� if x = ε

◦ sub is defined as sub(x) = ∅ for any x ∈ Σ.

The update instance for the announcement action occurrence a with respect to the frame of reference
ρ is (ω(a, ρ), {σ}).

As we can see, an update model for an announcement action and a frame of reference is
structure-wise identical to the update model for a sensing action and a frame of reference. The
main distinction lies in the set of designated events in the update instance for each type of actions.
There is only one single designated event for announcement actions while there are two for sensing
actions.

Example 9. Let us assume that A and B have agreed to a scheme of informing each other if the
coin lies heads up by raising an hand. B can only observe A if B is looking at the box (or looking
at A). C is completely ignorant about the meaning of A’s raising her hand. This can be modeled by
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the following statements9:

executable raising hand〈A〉 if Bx(¬tail),¬tail
raising hand〈A〉 announces ¬tail
A observes raising hand〈A〉 if �
B observes raising hand〈A〉 if looking(B)

If A knows the coin lies heads up and raises her hand, B will be aware that the coin lies head up
and C is completely ignorant about this.

Let us consider the action occurrence raising hand〈A〉 and the state in which B is looking at the
box and thus both A and B are aware of it. We have that the frame of reference is ({A,B}, ∅, {C})
and thus the update instance for the occurrence of raising hand〈A〉 is shown in Figure 7.

!

"

!
pre: T

pre: T !"¬tail

pre: T !"tail

A,B

A,B

A,B,C

C

C

Figure 7: Update instance for the raising hand〈A〉 action and ρ = ({A,B}, ∅, {C})

4.3. Defining ΦD

The epistemic actions representing action occurrences can be used in formalizing ΦD similar to
the proposals in Baral et al. (2012, 2013). However, a main issue of the earlier definitions is that it
does not deal with false beliefs. To account for this and inspired by the suggestion in (van Eijck,
2017), we introduce some extra notations. For a pointed Kripke model (M, s), an agent i ∈ AG,
and a formula ϕ, we say that i has false belief about ϕ in (M, s) if

(M, s) |= ϕ and (M, s) |= Bi¬ϕ.

For a set of agents S and a pointed Kripke model (M, s) and ϕ such that (M, s) |= ϕ, let M [S, ϕ]
be obtained from M by replacing M [i] with M [S, ϕ][i] where

• M [S, ϕ][i] = (M [i] \ M [i]s) ∪ {(s, s)} for i ∈ S and (M, s) |= Bi¬ϕ where M [i]s =
{(s, u) | (s, u) ∈ M [i]}; and

• M [S, ϕ][i] = M [i] for other agents, i.e., i ∈ AG \ S or i ∈ S and (M, s) �|= Bi¬ϕ.

9 For simplicity, we ignore the effect that A’s hand is raised when A raises her hand.
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This process aims at correcting beliefs of agents with false beliefs. Intuitively, the links in M [i]s

create the false belief of agent i. Therefore, to correct the false believe of i, we should replace them
by the link (s, s). We now define ΦD. Let ψ be precondition of a, (M, s) a state, and α a set of
agents. We say that a is executable in (M, s) if (M, s) |= ψ. The result of executing a in (M, s) is a
set of states, denoted by ΦD(a, (M, s)), and is defined as follows.

• if a is not executable in (M, s) then ΦD(a, (M, s)) = ∅

• if a is executable in (M, s) and (E , Ed) is the representation of the occurrence of a in (M, s)
then

– ΦD(a, (M, s)) = (M, s)⊗(E , Ed) if a is an ontic action instance;

– ΦD(a, (M, s)) = M [FD(a,M, s), f ] ⊗ (E , Ed) if a is a sensing action instance that
senses f and (M, s) |= f ;

– ΦD(a, (M, s)) = M [FD(a,M, s),¬f ] ⊗ (E , Ed) if a is a sensing action instance that
senses f and (M, s) |= ¬f ;

– ΦD(a, (M, s)) = M [FD(a,M, s), ϕ]⊗ (E , Ed) if a is an announcement action instance
that announces ϕ.

Finally, for a set of statesM,

• if a is not executable in some (M, s) ∈M then ΦD(a,M) = ∅;

• if a is executable in for every (M, s) ∈M then

ΦD(a,M) =
⋃

(M,s)∈M

ΦD(a, (M, s)).

4.4. Properties of ΦD

The syntax and semantics of mA∗ may be of interest in and of themselves, but of particular
interest is the fact that mA∗ satisfies certain useful properties—namely that it correctly captures
certain intuitions concerning the effects of various types of actions. Specifically, if an agent is fully
aware of the execution of an action instance then her belief will be updated with the effects of
this action occurrence; an agent who is only partially aware of the action occurrence will believe
that those who are fully aware of the action occurrence are certain about its effects; and an agent
who is oblivious of the action occurrence is also ignorance of its effects. We will next present
several theorems discussing these properties. To simplify the presentation, we will use the following
notation throughout the theorems in this subsection.

• D denotes a consistent mA∗ domain;

• (M, s) denotes a state; and
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• a is an action instance, whose precondition is given by the statement

executable a if ψ

in D, and a is executable in (M, s).

• ρ = (F, P,O) is the frame of reference of the execution of a in (M, s) where F =
FD(a,M, s), P = PD(a,M, s), and O = OD(a,M, s).

We begin with a theorem about the occurrence of an ontic-action instance.

Theorem 2. Assume that a is an ontic-action instance. It holds that:

1. for every agent x ∈ FD(a,M, s) and [a causes ` if ϕ] belongs to D, if (M, s) |= Bxϕ then
ΦD(a, (M, s)) |= Bx`;

2. for every agent y ∈ OD(a,M, s) and a belief formula η, ΦD(a, (M, s)) |= Byη iff (M, s) |=
Byη;

3. for every pair of agents x ∈ FD(a,M, s) and y ∈ OD(a,M, s) and a belief formula η,
ΦD(a, (M, s)) |= BxByη if (M, s) |= BxByη;

In the above theorem, the first property discusses the changes in the beliefs of agents who are
fully aware of the occurrence of an ontic-action instance. The second property shows that oblivious
agents are still in the “old state,” i.e., they believe nothing has happened. The third property indicates
that fully aware agents are also aware that oblivious agents’ beliefs do not change. This is particular
useful in situations when an agent would like to create false beliefs about a fluent p for other agents:
she only needs to secretly execute an action that changes the truth value of p.

Theorem 3. Assume that a is a sensing action instance and D contains the statement
a determines f . It holds that:

1. ΦD(a, (M, s)) |= CFD(a,M,s)f if (M, s) |= f ;
2. ΦD(a, (M, s)) |= CFD(a,M,s)¬f if (M, s) |= ¬f ;
3. ΦD(a, (M, s)) |= CPD(a,M,s)(CFD(a,M,s)f ∨CFD(a,M,s)¬f);
4. for every agent y ∈ OD(a,M, s) and a belief formula η, ΦD(a, (M, s)) |= Byη iff (M, s) |=

Byη;
5. for every pair of agents x ∈ FD(a,M, s) and y ∈ OD(a,M, s) and a belief formula η,

ΦD(a, (M, s)) |= BxByη if (M, s) |= BxByη;

The first and second properties of the above theorem indicate that agents who are fully aware
of the occurrence of the sensing action instance will be able to update their beliefs with the true
truth value of the sensed fluent, thereby correcting any false beliefs that they might have before the
execution of the action. The third property shows that agents who are partially aware of the action
execution will know that agents who are fully aware of the action execution will have the correct
beliefs about the sensed fluents. The fourth and fifth properties are about oblivious agents’ beliefs.

Theorem 4. Assume that a is an announcement action instance and D contains the statement
a announces ϕ. If (M, s) |= ϕ then it holds that
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1. ΦD(a, (M, s)) |= CFD(a,M,s)ϕ;
2. ΦD(a, (M, s)) |= CPD(a,M,s)(CFD(a,M,s)ϕ ∨CFD(a,M,s)¬ϕ);
3. for every agent y ∈ OD(a,M, s) and a belief formula η, ΦD(a, (M, s)) |= Byη iff (M, s) |=

Byη;
4. for every pair of agents x ∈ FD(a,M, s) and y ∈ OD(a,M, s) and a belief formula η,

ΦD(a, (M, s)) |= BxByη if (M, s) |= BxByη;

Similar to Theorem 3, the first property of the above theorem indicates that truthful announce-
ment could help agents who are fully aware of the execution of the action will be able to correct
their false beliefs. Likewise, partially aware agents will only know that fully aware agents know
the truth value of the announced formula but they might not have the real value of this formula
themselves. Furthermore, as in other types of actions, the beliefs of oblivious agents do not change.

4.5. Entailment in mA∗ Action Theories
We are now ready to define the notion of entailment in mA∗ action theories. It will be defined

between mA∗ action theories and queries of the following form:

ϕ after δ (12)

where ϕ is a belief formula and δ is a sequence of action instances a1; . . . ; an (n ≥ 0)—referred
to as a plan. Let us observe that the entailment can be easily extended to consider more general
forms of conditional plans, that include conditional statements (e.g., if-then) or even loops (e.g.,
while)—as discussed in (Levesque et al., 1997; Son and Baral, 2001). We leave these relatively
simple extensions for future work.

The description of an evolution of a system will deal with sets of states. We refer to a set of
states as a belief state (or a b-state). We need the following definitions. For a b-state B and an
action occurrence a, we say that a is executable in B if ΦD(a, (M, s)) 6= ∅ for every state (M, s) in
B. With a slight abuse of notation, we define

ΦD(a,B) =


{⊥} if ΦD(a, (M, s)) = ∅ in some state (M, s) in B

or B = {⊥}⋃
(M,s)∈B ΦD(a, (M, s)) otherwise

where {⊥} denotes that the occurrence of a in B fails. Note that we assume that no action is
executable in ⊥.

Let δ be a plan and B be a b-state. The set of b-states resulting from the execution of δ in B,
denoted by Φ∗D(δ, B), is defined as follows:

• If δ is the empty plan [ ] then Φ∗D([ ], B) = B;

• If δ is a plan of the form a; δ′ (with a ∈ A), then Φ∗D(a; δ′, B) = Φ∗D(δ′,ΦD(a,B)).

Intuitively, the execution of δ in B can go through several paths, each path might finish in a set
of states. It is easy to see that if one of the states reached on a path during the execution of δ is ⊥
(the failed state) then the final result of the execution of δ in B is {⊥}. Φ∗D(δ, B) = {⊥} indicates
that the execution of δ in B fails.

We are now ready to define the notion of entailment.
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Definition 16 (Entailment). An action theory (I,D) entails the query

ϕ after δ,

denoted by (I,D) |= ϕ after δ, if

(a) Φ∗D(δ, I0) 6= {⊥} and

(b) (M, s) |= ϕ for each (M, s) ∈ Φ∗D(δ, I0)

where I0 is the initial b-state of (I,D).
We say that (I,D) S5-entails the query ϕ after δ, denoted by (I,D) |=S5 ϕ after δ, if the two

conditions (a)-(b) are satisfied with respect to I0 being the initial S5-b-state of (I,D).

4.6. Using mA∗: An Illustration
The next example illustrates these definitions.

Example 10. Let D1 be the domain specification given in Examples 3 and 4 and I1 be the set of
initial statements given in Example 5. Furthermore, let δA be the sequence of actions:

δA = distract(C)〈A〉; signal(B)〈A〉; open〈A〉; peek〈A〉.

We can show that

(I1, D1) |=S5 (BAtail ∨BA¬tail) ∧BA(BB(BAtail ∨BA¬tail)) after δA
(I1, D1) |=S5 BB(BAtail ∨BA¬tail) ∧ (¬BBtail ∧ ¬BB¬tail) after δA
(I1, D1) |=S5 BC [

∧
i∈{A,B,C}(¬Bitail ∧ ¬BA¬tail)] after δA

3 This part needs to
be rewritten3

To see how the above conclusions hold, let us construct a S5 initial state for (I1, D1) (see also
Figure 8). Since the truth values of all fluents but tail are known to every agent, we have that
M0 = 〈{s0, s1}, π0,B0

A,B0
B,B0

C〉 where

π0(s0) =

{
¬opened, has key(A),¬has key(B),¬has key(C),
looking(A), looking(B), looking(C),¬tail

}
and

π0(s1) =

{
¬opened, has key(A),¬has key(B),¬has key(C),
looking(A), looking(B), looking(C), tail

}
Furthermore, B0

A = B0
B = B0

C = {(s0, s0), (s0, s1), (s1, s0), (s1, s1)}.
The execution of the action distract(C)〈A〉 in (M0, s0) results in the state (M1, s2) as shown

in Figure 9 where M1 = 〈{s0, s1, s2, s3}, π1,B1
A,B1

B,B1
C〉. The top part of the new structure is a

replica of (M0, s0), encoding the beliefs of B, who is ignorant of the action occurrence. The bottom
part encodes the beliefs of A and C, who are observers of the action occurrence. It includes two
new worlds, s2 and s3, which represent the result of the execution of distract(A,C) in s0 and s1
respectively, where π1(s0) = π0(s0), π1(s1) = π0(s1),

π1(s2) = π0(s0) \ {looking(C)} ∪ {¬looking(C)}
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S0 S1

A, B, C A, B, C

A, B, C

Figure 8: (M0, s0): an initial state of (I1, D1)

S2 S3

A, C A, C

A, C

S0 S1

A, B, C A, B, C

A, B, C

B B

B B

Figure 9: (M1, s2): result of execution of distract(C)〈A〉
in (M0, s0)

and
π1(s3) = π0(s1) \ {looking(C)} ∪ {¬looking(C)}.

Finally, B1
A = B0

A ∪ {(s2, s2), (s2, s3), (s3, s2), (s3, s3)}, B1
C = B0

C ∪
{(s2, s2), (s2, s3), (s3, s2), (s3, s3)}, and B1

B = B0
B ∪ {(s2, s0), (s2, s1), (s3, s0), (s3, s1)}.

The execution of signal(A,B) in (M1, s2) results in a new state (M2, s6) where

M2 = 〈{s0, . . . , s7}, π2,B2
A,B2

B,B2
C〉

where:

• For i ∈ {0, . . . , 3}, the state si+4 is the result of executing signal(A,B) in si. We have that
π2(si+4) = π1(si) because B is looking at the box already and thus the execution of this
action does not change the state;

• B2
A = B1

A ∪ {(si+4, sj+4) | 0 ≤ i, j ≤ 3 and (si, sj) ∈ B1
A};

• B2
B = B1

B ∪ {(si+4, sj+4) | 0 ≤ i, j ≤ 3 and (si, sj) ∈ B1
B}; and

• B2
C = B1

C ∪ {(si+4, sj) | 0 ≤ i, j ≤ 3 and (si, sj) ∈ B1
C}.

The execution of open(A) in (M2, s6) will result in a new state (M3, s14) where

M3 = 〈{s0, . . . , s15}, π3,B3
A,B3

B,B3
C〉

where:

• For i ∈ {0, . . . , 7}, the state si+8 is the result of executing open(A) in si. We have that
π3(si+8) = π2(si) \ {¬opened} ∪ {opened};
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• B3
A = B2

A ∪ {(si+8, sj+8) | 0 ≤ i, j ≤ 7 and (si, sj) ∈ B2
A};

• B3
B = B2

B ∪ {(si+8, sj+8) | 0 ≤ i, j ≤ 7 and (si, sj) ∈ B2
B}; and

• B3
C = B2

C ∪ {(si+8, sj) | 0 ≤ i, j ≤ 7 and (si, sj) ∈ B2
C}.

Finally, the execution of peek(A) in (M3, s14) results in a new state (M4, s30) where

M4 = 〈{si | 0 ≤ i ≤ 31}, π4,B4
A,B4

B,B4
C〉

where:

• For i ∈ {0, . . . , 15}, the interpretation π4(si+15) = π3(si) since the execution of a sensing
action does not change the state of the world;

• B4
A = B3

A∪{(si+16, sj+16) | 0 ≤ i, j ≤ 15 and (si, sj) ∈ B3
A and ((¬tail ∈ π3(si)∩π3(sj))∨

(tail ∈ π3(si) ∩ π3(sj))};

• B4
B = B3

B ∪ {(si+16, sj+16) | 0 ≤ i, j ≤ 15 and (si, sj) ∈ B3
B}; and

• B4
C = B3

C ∪ {(si+16, sj) | 0 ≤ i, j ≤ 15 and (si, sj) ∈ B3
C}.

We will finally show that (M4, s30) |= BAtail ∨ BA¬tail. In fact, since (M0, s0) |= ¬tail, we
will show that (M4, s30) |= BA¬tail. To prove this, we need to show that (M4, sj) |= ¬tail for
every sj ∈ M4[S], (s30, sj) ∈ B4

A. Since s30 6∈ M3[S], we have that (s30, sj) ∈ B4
A iff j ≥ 16,

(s14, sj−16) ∈ B3
A, and ¬tail ∈ π3(s14) ∩ π3(sj−16) (because ¬tail ∈ π3(s14)). This implies that

(M4, s30) |= BA¬tail. The proof of other conclusions is similar.
We conclude the example with the observation that another initial state for (I1, D1) is (M0, s1)

and the execution of δA in this state results in a new state (M ′, s′) with the property that (M ′, s′) |=
BAtail. Theoretically, this fact and the fact that (M4, s30) |= BA¬tail are insufficient for us to
conclude that (I1, D1) |=S5 BAtail ∨BA¬tail holds. This, however, holds under some additional
assumption and thanks to Proposition ?? (see Section ??).

5. Related Work and Discussion

In this section, we connect our work to related efforts in reasoning about actions and their effects
in multi-agent domains. The background literature spans multiple areas. We will give a quick
introduction and focus our attention on the most closely related works.

5.1. Related Logics
The research discussed in this paper relates to a broad variety of logics and languages used to

deal with reasoning about actions and their effects in multi-agent domains—e.g., classical logic,
non-monotonic logics, causal logics, high level action languages, modal logics, epistemic logics,
dynamic logics and dynamic epistemic logics. Here, we provide a very brief overview of their
relevance to reasoning about actions and their effects in multi-agent domains.
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Classical logics, in particular, propositional and first-order logic, are often used to specify the
physical state of the world. For example, the propositional formula on table a ∧ on table b ∧
¬on table c expresses that the blocks a and b are on the table and the block c is not of the table.
Similarly, the first order formula on table(a) ∧ on table(b) ∧ ¬on table(b) ∧ ∀X(ontable(X)⇒
color(X, red)), describes a situation where the blocks a and b are on the table, the block c is not on
the table, and all blocks on the table are red. Propositional logic and first-order logic can be used
to represent the effects of actions and to reason about them. However, straightforward encodings
require a large number of axioms, especially to represent the inertia axioms—the properties of the
world that do not change when a particular action is performed. Two approaches can be considered
to address this problem: (i) By using non-monotonic logics, that can naturally express statements
of the type “Normally an action does not affect a property” and can express exceptions to this
statement; (ii) By an alternative approach, used for example in Reiter (2001), where the effects
of actions on various properties of the world are expressed using a high-level logic, which is then
translated, using sophisticated compilation techniques, into succinct encodings of inertia axioms in
a classical logic.

While reasoning about the effect of actions, the relationship between some properties of the
world may give rise to “qualification” and “ramification”. Expressing this in classical logic leads
to problems in many cases, especially when the relationship between the properties are causal in
nature. For example consider the two statements:

(a) A person cannot be in two places at the same time and

(b) A person cannot be married to two persons at the same time.

In classical logic, their representations are very similar: at(X) ∧ at(Y ) ⇒ X = Y and
married to(X) ∧ married to(Y ) ⇒ X = Y . But let us assume that, initially, a person is at
location p and he performs the action of moving to a location q different from p. The statement (a)
causes a ramification—since we would like to infer that, after the execution of the action, the person
is at p and not at q. On the other hand, let us assume that initially a person is married to p and he
(tries to) perform the action of marrying q (in a courthouse with marriage records) different from p.
The statement (b), this time, introduces a qualification, because of which the person is unable to
perform the action of marrying q.

Causal logic allows us to express (a) and (b) in a different way: at(X)∧X 6= Y causes ¬at(Y )
and married to(X) ∧ married to(Y ) ∧ X 6= Y causes FALSE. Such causal relation-
ships can be expressed using logic programming, which has a non-classical connective “←.”
In logic programming (a) and (b) can be expressed as: ¬at(Y ) ← at(X), X 6= Y and
← married to(X),married to(Y ), X 6= Y .

High-level action languages were introduced to (a) provide a English-like specification language
to describe the effects of actions on properties of the world and the relationships between these
properties, and to provide a semantics that uses simple set theoretical notations; and (b) provide a
framework that can be used to prove correctness of encodings in various logics for reasoning about
effect of actions. For example, specifications in the language A Gelfond and Lifschitz (1993) are of
the forms: (i) a causes f if p1, . . . , pn; and (ii) f after a1, . . . an.
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Modal logics add modal operators to various logics and their semantics is often defined using
Kripke structures. Two simple modal logics that are relevant to reasoning about actions are temporal
logics and epistemic logics. One of the simplest temporal logic is the forward linear temporal
logic; it includes the operators 2,©, 3, and U , meaning “always in the future”, “next time step”,
“sometime in the future” and “until.” Formulae in this logic are often used to express goals that
specify how we want the world to evolve. Reasoning is commonly focused on action-plans, to verify
if an action-plan satisfies a desired temporal specification, or to derive action-plans that satisfy a
goal, given as a temporal specification. Epistemic logics use the modal operators Ki, where Kif
means that agent i knows that f is true. In this paper, we used belief logics which are similar to
epistemic logics, the main difference being that we use the modal operators Bi, where Bif means
that the agent i believes that f is true.

The community working on reasoning about actions and change initially used only the se-
quencing constructs to build action-plans as sequence of actions and reason about such sequences.
This has been extended Scherl and Levesque (2003); Son and Baral (2001) to allow “if-then” and
other procedural features, that become necessary when sensing actions are needed to be part of
plans. GOLOG Levesque et al. (1997), an acronym for “alGOl in LOGic”, borrows programming
constructs from procedural languages to express complex plans which can be “evaluated” to gen-
erate valid action sequences. The evaluation of GOLOG programs, as well as other action-plans,
is realized on top of action theories that allow one to reason about a single action and its impact
on the world—and, in the process, take into account the issues regarding inertia, qualification and
ramification.

A related area of research is focused on the exploration of Dynamic logics. Dynamic logics
were originally developed to reason about program correctness. In the programming domain, the
basic actions are assignments of values to variables. Reasoning about the effects of such assignment
actions and the associated inertia is straightforward, since all variables retain their old values except
for the variables being assigned. In traditional procedural programming languages, one does not
have to worry about qualification and ramification, since assigning a value to a variable does not
have any implicit impact on other variables.10 Any needed impact is explicitly written as new
assignment statements. The original focus of dynamic logics is to reason about programs that are
built by composing simple assignment statements. Such programs are built using constructs such
as: (i) α ∪ β (i.e., execute α or β), (ii) α; β (i.e., execute α followed by β), (iii) α∗ (i.e., iterate α a
finite number of times), (iv) p? (i.e., test whether α holds), and (v) λ (i.e., no-op).

To reason about programs in dynamic logics, programs are used as modal operators; various
axioms and inference rules have been developed that allow one to reason about the programs. The
modal constructs used are of the form: (i) [a]p, meaning that, after performing a, it is necessarily
the case that p is true in the world, and (ii) 〈a〉p, meaning that, after performing a, it is possible
that p is true in the world. These modal constructs allow one to specify effects of arbitrary actions.
For example, to express that an action a makes the formula φ true, one can write [a]φ. Similarly,
to express that a makes the formula φ true only when executed in a state where ψ is true, one can
write [λ](ψ ⇒ [a]φ). However, when we go beyond assignment actions, one needs to account for

10If we ignore issues of aliasing, e.g., through pointers.
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inertia. Similarly, when one goes beyond the programming environment and variable assignments,
one needs to worry about qualification and ramification. The inertia axioms can be expressed in
dynamic logic as shown in Meyer (2000), which is similar to writing inertia axioms using classical
logic—i.e., they are encoded using a large number of formulae, that list one by one what properties
are not affected by an action. Such approach to account for ramification is tedious and involves the
use of logic programming, pre-compilation and then generating dynamic logic formulae based on
such pre-compilation. In Prendinger and Schurz (1996), where dynamic logic is used for reasoning
about actions and change, inertia is avoided by referring to it as an undesirable over-commitment;
however, the authors admit that their formulation cannot address qualification, and they indicate that
“non-monotonic logics are clearly superior” in that regard. Overall, when reasoning about actions
and change (beyond simple variable assignments) using dynamic logics, one still needs to worry
about inertia and the frame problem, qualification and ramification issues.

Many early works about action and change, as well as dynamic logics, reason about the world
and do not worry about agent’s knowledge about the world. When sensing actions are considered,
one has to distinguish between the world and a single agent’s knowledge about the world. This leads
to the use of epistemic logics and Kripke structures, and frame axioms need to be developed with
respect to knowledge formulae. This has been achieved by having frame axioms for the accessibility
relations used in the Kripke structures. High level languages that can express sensing actions and
their effects have been developed and matched with logical encodings. This paper extends such
approach to the case of multi-agent domains, where other knowledge actions (besides sensing) are
considered. A new dimension that emerges is the observability of the various agents as part of
an action; some may have full observability, some others may have partial observability, and the
rest have no observability. The result of such actions and such varied observability is that different
agents have different knowledge and beliefs about the world and about each other’s knowledge and
beliefs.

Several researchers have considered reasoning about actions in a multi-agent domain using the
dynamic logics approach. These proposals are focused on extending dynamic logics to Dynamic
Epistemic Logics (DEL), to reason about the agent’s knowledge about the world and about other
agents’ knowledge in presence of multi-agent actions. The extensions are twofold. In particular,
in the formula [α]p: (i) In DEL, p is a formula in epistemic logic, while in dynamic logic p is
a classical logic formula, and (ii) In DEL, α is a more general action than in dynamic logic. In
van Ditmarsch et al. (2007), α has the usual dynamic logic constructs for complex actions, plus
constructs such as: (a) LA?ϕ whose intuitive meaning is that the agents in the group A learn that
ϕ is true; and (b) (α!α′) whose intuitive meaning is that between α and α′, we choose α. The
latter is often written as (!α ∪ α′). Using these actions, the authors of van Ditmarsch et al. (2007)
show that one can express sensing actions (refereed to as “read” actions) in a multi-agent setting.
Specifically, the fact that we have two agents a and b, a senses the value of p as being true, and it
is common knowledge between a and b that b observes a sensing, can be modeled as the complex
action Lab(!La?p ∪ La?¬p). However, the language of update models Baltag and Moss (2004) is
more general and is currently preferred by the DEL community to express such multi-agent actions.
In the language of update models, the action discussed above can be expressed as in Figure 10.
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Figure 10: A program model for Lab(!La?p ∪ La?¬p)

5.2. Relating mA∗ and DEL with Update Models: Differences
The similarities between mA∗ and the update models based approach has been discussed in

detail in Section 4. We next detail the differences between the two approaches.

5.2.1. Multi-Agent Actions
A key difference between the formalism proposed in this paper and DEL with update models is

with respect to the simplest of actions in presence of multiple agents.
Let us consider the simplified version of the coin in a box problem as presented in Example

2—with three agents A, B, and C, a box containing a coin, and initially it is common knowledge
that none of the agents knows whether the coin lies heads up or tails up. Let us assume that agent
A peeks into the box. In our formalism, we express this action as peek(A). In DEL, the update
model for the same action, as given in Figure 6, will also include additional information about all
three agents A, B, and C encoding their “roles” or “perspectives” while A is peeking into the box.
By roles or perspectives we mean information about what the agents are doing, in terms of who is
watching whom and who knows about that.

It is evident that our representation of the action simply as peek(A) is much simpler than the
DEL representation in Figure 6. But our representation does not include the information about what
else the agents A, B, and C are doing while A is peeking into the box. In our formulation, such
information is part of the state, and is expressed by using perspective fluents, such as looking(B)—
that encodes the information that B is looking at the box—and group member(B,group(A))—that
encodes the information that B and A are together in the same group.

Thus, it appears that a critical difference between the mA∗ approach to representing multi-agent
actions and the approach used in DEL with update models lies in the way we encode the information
about agents roles and perspectives—as part of the action in DEL with update models and as part of
the state in mA∗. At first glance, this difference may not appear far reaching. However, there are
some far reaching implications of such difference, as discussed in the following subsections.

Narratives and Dynamic Evolution of Multi-agent Actions:. Let us consider a scenario with two
agents A and B. Initially, agent B is looking at agent A. Agent A lifts a block and, after some time,
agent A puts down the block. Some time later, agent B is distracted while agent A again lifts the
block.

In our formulation, this narrative can be formalized by first describing the initial situation, and
then describing the sequence of actions that occurred, which for this example is:

liftBlock(A); putDown(A); distract(B); liftBlock(A).
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The description of this evolution of scenario in DEL is not as simple: each action occurrence will
have to be described as an update model containing information about both agents A and B. In
addition, such a description (in DEL) will be partly superfluous, as it will have to record information
about B looking (or not looking) at A in the update model, when that information is already part
of the state. Thus, the approach used in mA∗ to describe this narrative is more natural than the
representation in DEL.

Observe that, in our narrative, the action liftBlock(A) appears twice. However, due to the
difference in the roles and perspectives over time, the two occurrences of liftBlock(A) correspond
to two different update models. This shows how, using the mA∗ formulation, we can support the
dynamic evolution of update models, as result of changes in perspective fluents in the state. In DEL,
the two update models are distinct and there is no direct connection between them and neither one
does evolve from the other.

In order to further reinforce this point, let us consider another narrative example. Let us consider
a scenario with three agents, A, B, and C. Initially, it is common knowledge that none of the agents
knows whether the coin in the box is lying heads up or tails up. In addition, let us assume that
initially A and B are looking at the box, while C is looking away. Let us consider the narrative
where A peeks into the box; afterwards, A realizes that C is distracted and signals C to look at the
box as well; finally A peeks into the box one more time. In mA∗, this situation can be described
again by a sequence of actions:

peek(A); signal(C); peek(A)

The two occurrences of peek(A) correspond to two different update models; the second occurrence
is an evolution of the first caused by the execution of signal(C). In DEL, the relevance of the
intermediate action signal(C), and its impact on the second occurrence of peek(A), is mostly lost—
and this results in the use of two distinct update models for peek(A) with complete information
about the whole action scenario.

The key aspect that allows a natural representation of narratives and evolution of update models
in mA∗ is the presence of the agents’ perspectives and roles encoded as perspective fluents of a state,
and their use to dynamically generate the update models of the actions. While DEL can include
perspective fluents as part of the states as well, it does not have a way to take advantage of them in a
similar way as mA∗.

Separation of Specification of Actions and their Effects and the Observability of an Agent:. As
alluded in the previous two sections, a core difference between mA∗ and the DEL specification of
actions in multi-agent domains, lies in that mA∗ separates the specification of actions and action
effects from the description of observability of the action occurrence by each agent. In both van
Ditmarsch et al. (2007) and Baltag and Moss (2004), the observability of agents is hard-coded in the
specification of each complex action. We discuss this difference in more detail using an example.

Let us reconsider the domain D1. In order to describe the possible histories of the domain, we
need to develop the update models for every action occurrence. Let us consider, for example, the
action peek(A); we need to have an update model for all of the following cases:
• Both B and C are looking;
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• Either B or C is looking but not both; and
• Both B C are not looking.

In our approach, the above example is specified in a very different way: the action is about sensing
tail. The agents who sense it, who observe the sensing take place, and who are oblivious can be
specified directly or can be specified indirectly in terms of conditions, such as which agents are
near the sensing, which ones are watching from far, and which ones are looking away, respectively.
Actions can be planned and executed to change the observers and partial observers. In other words,
in mA∗, if we have a complex action α; β, by executing α we may be able to change the world,
in terms of who is fully observing, who is partially observing, and who is oblivious with respect
to the next action β. This is not possible in DEL. Thus, while mA∗ allows us to develop plans
where an agent can manipulate the observability of other agents, such planning cannot be done in
straightforward manner in DEL.

Simplicity by Design:. The formulation adopted in this paper is limited in expressivity to ensure
simplicity. It is limited by the (perspective) fluents we have and how we use them. On the other
hand, DEL is more complex and also more expressive.

One advantage of our simplicity is that it limits the number of possible plans of a particular
length, contributing to the feasibility of multi-agent planning. In DEL, since update models are
analogous to Kripke models, even in presence of a small number fluents, it is possible to generate
an infinite number of update models. One can limit the number of update models by imposing
restrictions on their structure. Nevertheless, as discussed earlier, an update model is much more
complex than actions mA∗, which are often11 single units.

As an example,12 Figure 11 displays an update model that cannot be represented in mA∗. The
intuition behind this update model is as follows. When A executes the action peek(A), A believes
that both A and B can see the outcome of sensing tail—i.e., A and B are fully observant. In reality,
B is oblivious. This shows that, in multi-agent domains, an agent’s observability could also be
considered as beliefs, and as such affect the beliefs of an agent about other agents’ beliefs after the
execution of an action. The present mA∗ language does not allow for such specification.

pre: tail pre: tail

pre: T

! "

#

A

B

A,B

A,B

Figure 11: An update model of the peek(A) action without an equivalent mA∗ representation

11We could allow parallel actions.
12 We thank an anonymous reviewer of an earlier version of this paper who suggested a similar example.
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The simplicity of our formulation is by design, and not an inherent flaw of our approach. Indeed,
one could envision developing a complete encoding of the complex graph structure of an update
model as part of state, using an extended collection of perspective fluents—but, at this time, we do
not have a corresponding theory of change to guide us in using these more expressive perspective
fluents to capture the full expressive power of update models in DEL. Hence, our current formalism
is less expressive than DEL. However, the higher expressiveness of update models provides us with
a target to expand mA∗ and capture more general actions. Expanding mA∗ to express actions as the
one in Fig. 11 will be one of our immediate future goal.

On the other hand, as remarked earlier, the research on DEL with update models lacks at present
an exploration of how update models can evolve as result of action executions.

Analogy with Belief Update:. Another approach to explore the differences between mA∗ and DEL
builds on the analogy to the corresponding differences between belief updates and the treatment of
actions and change in early action languages Gelfond and Lifschitz (1998).

Papers on belief updates define and study the problem of updating a formula φ with a formula ψ.
In contrast, in reasoning about actions and change, the focus is on defining the resulting state of
the world after a particular action is performed in a particular world, given a description of (i) how
the action may change the world, (ii) when the action can be executed; and (iii) how the fluents in
the world may be (possibly causally) related to each other. In such a context, given a state s and
an action a, it is possible to see the the determination of the resulting state as the update of s by a
formula ϕ; But, what is important to consider is that the ϕ is not just the collection of effects of the
action a, but incorporates several other components, that take into account the static causal laws as
well as which conditions (part of the conditional effects of a) are true in s.

This situation is not dissimilar to the distinction between DEL update models and mA∗. An
update model can be encoded by an action formula, and the resulting state can be obtained by
updating the starting state with such formula. In DEL, such action formula has to be given directly.
Instead, our considerations in mA∗ are in the spirit of the early research in reasoning about actions
and change—where we focus on describing actions and their effects, their executability conditions,
and where a resulting “state” is determined by applying these descriptions to the “state” where a
particular action is performed. Thus, the action formula in this latter case is not explicitly given, but
derived from the description of the actions, their effects, and executability conditions.

Taking the analogy further, an important application of reasoning about actions is to determine
action sequences or plan structures that achieve a given goal. This is different from searching for a
formula ψ which, if used to update a given initial state, will generate a goal state; the difference is
partly due to the fact that the the space of formulae is infinite. Similarly, the space of update models
is infinite, and it is not viable to look for an update model (or a sequence of update models) that will
cause a transition from a given initial state to a goal state. Instead, mA∗ supports the traditional way
of planning by finding action sequences or plan structures that achieve a goal.

Executing Actions:. The notion of actions adopted in mA∗ is designed to enable their executions by
one or multiple agents. For example, the action peek(A) can be executed by agent A, by peeking
into the box. On the other hand, an action modeled using update models in DEL is not executable,
in the normal sense. For example, how does the action expressed in Figure 6 get executed? Who
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does execute such action? What does executing the various edges of Figure 6 mean? The answers
to these questions are not clear.

Furthermore, let us turn around such questions and focus on the perspective fluents: how does
one execute the perspective fluents, such as looking(B)? The answer is that they are fluents, and
they are not required or supposed to be executed. A more appropriate question would be: how do
they become true? The answer is that, while our formulation could have some actions that make
them true, when describing a state we need not worry about how exactly the facts in the state came
about to be true. This is not the case when describing actions: when describing actions we need to
describe something that can be executed. In summary, actions, or parts of actions, are supposed to
be something that can be executed, while states, or parts of states, do not have such requirement.

Hence, our representation of actions is more appropriate, and follows the common meaning of
an action,13 than the representation of action in DEL.

Value of Update Models:. Having discussed the differences between mA∗ and update models, we
would like to point out that update models present a very good technical tool for the understanding
of effects of actions in multi-agent domains. In fact, the transition function Φ for mA∗ action
theories can be effectively characterized using update models, as described in Section 4.

5.2.2. Specifying the Initial State
An important aspect of many algorithms for reasoning about actions and change (including

planning) is to have a finite set of possible “initial states”. Although most of the examples in DEL
papers show a finite number of possible initial states (often a single Kripke structure), they do not
focus on constraining the knowledge specified about the initial state to guarantee the finiteness of the
set of possible initial states. This is an important concern of our paper, and we propose a restricted
class of knowledge about the initial states that guarantees finiteness and yet is able to capture most
of the examples in the literature. Observe that this condition identifies a class of epistemic planning
problems as defined in van der Hoek and Wooldridge (2002); Löwe et al. (2011); ? whose solutions
can be computed using heuristic forward search.

We note that this problem is related to the finite model property in modal logics—which defines
when a theory has (at least) one finite model Gabbay et al. (2003); van Benthem (2010). The
problem addressed in Section ?? could be viewed as the problem of identifying a class of epistemic
theories that has (up to equivalence) finitely many finite models and is, thus, a stronger problem than
the finite model property problem. To the best of our knowledge, this more complex problem has
not been addressed in multi-modal logics before. We believe that this is an important contribution
of our development of mA∗.

5.3. Previous Work by the Authors
4 We might need to
also refer to
MA STRIPS
(Brafman and
Domshlak, 2008)
and perhaps the
paper by Nebel and
his students
(Engesser et al.,
2017) and the goal
description language
of Thielscher
(Engesser et al.,
2018) – see related
work folder

4

13For example, the relevant dictionary meaning of “action is (1) something done or performed; act; deed. (2) an act
that one consciously wills and that may be characterized by physical or mental activity.
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Early attempts to adapt action languages to formalize multi-agent domains can be found in Baral
et al. (2010b); Son et al. (2009); Son and Sakama (2009). In these works, the action languages A,
B, and C have been extended to formalize multi-agent domains.

The works in Son et al. (2009); Son and Sakama (2009) investigate the use of action language in
multi-agent planning context and focus on the generation of decentralized plans for multiple agents,
to either jointly achieve a goal or individual goals.

In Baral et al. (2010b), we show that several examples found in the literature—created to
address certain aspect in multi-agent systems (e.g., Boella and van der Torre (2005); Gerbrandy
(2006); van der Hoek et al. (2005); Herzig and Troquard (2006); Sauro et al. (2006); Spaan et al.
(2006))—can be formalized using an extension of the action language C. Yet, most of the extensions
considered in Baral et al. (2010b); Son et al. (2009); Son and Sakama (2009) are inadequate for
formalizing multi-agent domains in which reasoning about knowledge of other agents is critical.
To address this shortcoming, we have developed and investigated several preliminary versions of
mA∗ Baral et al. (2010a); Pontelli et al. (2010); Baral and Gelfond (2010). We started with an
attempt to formulate knowledge of multiple agents in Baral et al. (2010a); we successively extended
this preliminary version of mA∗ with the use of static observability specifications in Pontelli et al.
(2010). The language developed in this paper subsumes that of Pontelli et al. (2010). In Baral and
Gelfond (2010), we demonstrated the use of update models to describe the transition function for
the action language mA∗ of Pontelli et al. (2010).

5.4. mA∗ and Action Languages for Single-Agent Domains
mA∗ is a high-level action language for multi-agent domains. It is therefore instructive to discuss

the connection between mA∗ and action languages for single-agent domains. First, let us observe
that mA∗ has the following multi-agent domain specific features:

• it includes announcement actions; and

• it includes specification of the agents’ observability of action occurrences.

As it turns out, if we remove all features that are specific to multi-agent domains from mA∗, and
consider the S5-entailment as its semantics, then the language is equivalent to the language AK
from Son and Baral (2001). Formally, let us consider a mA∗ definite action theory (I,D) over
the signature 〈AG,F ,A〉 such that |AG| = 1 and D does not contain statements of the form (8)
(announcement actions) and statements of the form (9)-(10). Let us define

IAK
= {ϕ | ϕ appears in a statement of the form (1), (??), or (2) in I}.

Then, the following holds

(comp(I), D) |=S5 ϕ after δ iff (IAK
, D) |=AK

ϕ after δ.

This shows that mA∗ is indeed a generalization of action languages for single-agent domains to
multi-agent domains. This also supports the claim that other elements that have been considered in
action languages of single-agent domains, such as static causal laws, non-deterministic actions, or
parallel actions could potentially be generalized to mA∗. This is one of our goals for future work.
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6. Conclusions and Future Works

In this paper, we developed an action language for representing and reasoning about effects of
actions in multi-agent domains. The language considers world-altering actions, sensing actions, and
announcement actions. It also allows the dynamic specification of agents’ observability with respect
to action occurrences, enabling varying degrees of visibility of action occurrences and action effects.
The semantics of the language relies on the notion of states (pointed Kripke structures), used as
representations of the states of the world and states of agents’ knowledge and beliefs; the semantics
builds on a transition function, which maps pairs of states and actions to sets of states.

We discussed several properties of the transition function and identified a class of theories
(definite action theories) whose set of initial S5-states is finite, thus allowing for the development
of algorithms for the S5-entailment relation that is critical in applications such as planning and
temporal reasoning. We also relate the proposed language to the update model based approaches for
representing and reasoning about effects of actions in multi-agent domains.

The development of mA∗ is our first step towards our goal of developing automated reasoning
and planning systems in multi-agent domains. This will be our focus in the near future. In addition,
we plan to extend the language to deal with lying and/or misleading actions, refine the distinction
between knowledge and beliefs of the agents, expand the language to include non-deterministic
actions and static causal laws, and specify more general models of agents’ observability, to capture
some of the capabilities of update models that are missing from mA∗.
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Appendix A: Proofs of Theorems

Recall that the following notations are used in the presentation of the theorems.
• D denotes a consistent mA∗ domain;
• (M, s) denotes a state; and
• a is an action instance, whose precondition is given by the statement

executable a if ψ

in D, and a is executable in (M, s).
• ρ = (F, P,O) is the frame of reference of the execution of a in (M, s) where F =
FD(a,M, s), P = PD(a,M, s), and O = OD(a,M, s).

Theorem 2. Assume that a is an ontic-action instance. It holds that:

1. for every agent x ∈ FD(a,M, s) and [a causes ` if ϕ] belongs to D, if (M, s) |= Bxϕ then
ΦD(a, (M, s)) |= Bx`;

2. for every agent y ∈ OD(a,M, s) and a belief formula η, ΦD(a, (M, s)) |= Byη iff (M, s) |=
Byη;

3. for every pair of agents x ∈ FD(a,M, s) and y ∈ OD(a,M, s) and a belief formula η, if
(M, s) |= BxByη then ΦD(a, (M, s)) |= BxByη.

• • • December 11, 2019 —0 • • • p46:#4 —©R ©M

http://ijcai.org/proceedings/2015


Proof. Since a is executable in (M, s), we have that (M, s) |= ψ. This means that

ΦD(a, (M, s)) = (M, s)⊗(ω(a, ρ), {σ})

where (ω(a, ρ), {σ}) is given in Definition 13. Assume that (M ′, s′) ∈ ΦD(a, (M, s)). By Defini-
tion 6, we have s′ = (s, σ). Assume that the fluent in ` is p, i.e., ` = p or ` = ¬p.

1. Let Ψ+(p, a) =
∨
{ϕ | [a causes p if ϕ] ∈ D} and Ψ−(p, a) =

∨
{ϕ | [a causes ¬p if ϕ] ∈

D} and θ = Ψ+(p, a) ∨ (p ∧ ¬Ψ−(p, a)). By Definition 13, p→ θ ∈ sub(σ). Furthermore,
for every u′ ∈M ′[S] such that (s′, u′) ∈M ′[x], it holds that u′ = (u, σ) for some u ∈M [S],
(M,u) |= ψ, and (s, u) ∈ M [x]. Because (M, s) |= Bxϕ, we have that (M,u) |= ϕ.
Consider two cases:

• ` = p. Then, (M,u) |= Ψ+(p, a), and hence, (M,u) |= θ. So, M ′[π]((u, σ)) |= p.

• ` = ¬p. Then, because (M,u) |= ϕ, the consistency of D implies that (M,u) 6|= θ.
Therefore, M ′[π]((u, σ)) 6|= p, i.e., M ′[π]((u, σ)) |= ¬p.

Both cases imply that M ′[π]((u, σ)) |= `. This holds for every u′ ∈ M ′[S] such that
(s′, u′) ∈M ′[x], which implies (M ′, s′) |= Bx`.

2. By the construction of M ′, we have the following observations:

• for every u ∈M [S] iff (u, ε) ∈M ′[S];

• for every z ∈ AG, (u, v) ∈M [z] iff ((u, ε), (v, ε)) ∈M ′[z]; and

• for every u ∈ M [S] and p ∈ F , M ′[π]((u, ε)) |= p iff (M ′, (u, ε)) |= p because
sub(ε) = ∅.

These observations allow us to conclude that for every formula η, (M,u) |= η iff
(M ′, (u, ε)) |= η.
Now, let us get back to the second item of the theorem. Consider u′ ∈ M ′[S] such that
(s′, u′) ∈M ′[y]. This holds iff there exists u ∈M [S], (s, u) ∈M [y], and u′ = (u, ε).
Since (M,u) |= η iff (M ′, (u, ε)) |= η and this holds for every u′ ∈ M ′[S] such that
(s′, u′) ∈M ′[y], we have that (M, s) |= Byη iff (M ′, s′) |= Byη.

3. Consider u′, v′ ∈ M ′[S] such that (s′, u′) ∈ M ′[x] and (u′, v′) ∈ M ′[y]. This holds if there
exist u, v ∈M [S], (s, u) ∈M [x] and (u, v) ∈M [y] such that u′ = (u, σ) and v′ = (v, ε).
Assume that (M, s) |= BxByη. This implies that (M, v) |= η. The second item shows
that (M ′, (v, ε)) |= η, i.e., which implies (M ′, s′) |= BxByη. Since this holds for every
u′, v′ ∈M ′[S] such that (s′, u′) ∈M ′[x] and (u′, v′) ∈M ′[y], we have (M ′, s′) |= BxBy`.

Since (M ′, s′) is an arbitrary element in ΦD(a, (M, s)), the theorem holds. 2

Theorem 3. Assume that a is a sensing action instance and D contains the statement
a determines f . It holds that:

1. if (M, s) |= f then ΦD(a, (M, s)) |= CFD(a,M,s)f ;
2. if (M, s) |= ¬f then ΦD(a, (M, s)) |= CFD(a,M,s)¬f ;
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3. ΦD(a, (M, s)) |= CPD(a,M,s)(CFD(a,M,s)f ∨CFD(a,M,s)¬f);
4. ΦD(a, (M, s)) |= CFD(a,M,s)(CPD(a,M,s)(CFD(a,M,s)f ∨CFD(a,M,s)¬f));
5. for every agent y ∈ OD(a,M, s) and formula η, ΦD(a, (M, s)) |= Byη iff (M, s) |= Byη;
6. for every pair of agents x ∈ FD(a,M, s) and y ∈ OD(a,M, s) and a formula η if (M, s) |=

BxByη then ΦD(a, (M, s)) |= BxByη.

Proof. We will prove the theorem for the case (M, s) |= f . The proof of the theorem when
(M, s) |= ¬f is similar and is omitted here. Since a is executable in (M, s), we have that (M, s) |= ψ.
This means that

ΦD(a, (M, s)) = M [FD(a,M, s), f ]⊗ (ω(a, ρ), {σ, τ})

where (ω(a, ρ), {σ, τ}) is given in Definition 14. Let us denote M [FD(a,M, s), f ] with M∗. Ob-
serve that by the definition of M∗, for each x ∈ F there exists some u ∈ M∗[x] such that
(M∗, u) |= f .

We need to prove Items 1, 3, 4, 5, and 6.
Assume that (M ′, s′) ∈ ΦD(a, (M, s)). By Definition 6, we have s′ = (s, σ).

1. Proof of the first item of the theorem.
To prove (M ′, s′) |= CFf , we need to show that

(M ′, s′) |= Bi1Bi2 . . .Bikf

for any sequence i1, . . . , ik of agents in F , i.e., ij ∈ F for j = 1, . . . , k.
Let u′1, . . . , u

′
k+1 ∈M ′[S] such that (s′, u′1) ∈M ′[i1], (u′j, u

′
j+1) ∈M ′[ij+1] for j = 1, . . . , k.

Observe that for any x ∈ F and u′ ∈M ′[S] such that (s′, u′) ∈M ′[x], it holds that u′ = (u, σ)
for some u ∈M∗[S], (M∗, u) |= ψ ∧ f , and (s, u) ∈M∗[x].
This observation allows us to conclude that, for u′1, . . . , u

′
k+1, there exist u1, . . . , uk+1 ∈

M∗[S] such that (s, u1) ∈M∗[i1], (uj, uj+1) ∈M∗[ij+1] for j = 1, . . . , k, and for every j =
1, . . . , k+ 1, u′j = (uj, σ) and ui |= ψ ∧ f . It is easy to see that this leads to (M ′, s′) |= CFf .

2. Proof of the third item of the theorem when (M, s) |= f .
To prove (M ′, s′) |= CP (CFf ∨CF¬f), we need to show that

(M ′, s′) |= Bi1Bi2 . . .Bik(CFf ∨CF¬f)

for any sequence i1, . . . , ik of agents in P , i.e., ij ∈ P for j = 1, . . . , k.
Let u′1, . . . , u

′
k+1 ∈M ′[S] such that (s′, u′1) ∈M ′[i1], (u′j, u

′
j+1) ∈M ′[ij+1] for j = 1, . . . , k.

Similar to the argument in the previous item and Definitions 6 and 14 allows us to con-
clude that, for u′1, . . . , u

′
k+1, there exist u1, . . . , uk+1 ∈ M∗[S] such that (s, u1) ∈ M∗[i1],

(uj, uj+1) ∈M∗[ij+1] for j = 1, . . . , k, and for every j = 1, . . . , k+1, either (a) u′j = (uj, σ)
and ui |= ψ ∧ f or (b) u′j = (uj, τ) and ui |= ψ ∧ ¬f . This leads to two cases:

(a) u′k+1 = (uk+1, σ) and uk+1 |= ψ ∧ f . Then, similar to the proof in Item 1, we can show
that (M ′, u′k+1) |= CFf .

(b) u′k+1 = (uk+1, σ) and uk+1 |= ψ ∧ ¬f . Again, similar to the proof in Item 1, we can
show that (M ′, u′k+1) |= CF¬f .
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The two cases imply that (M ′, s′) |= CP (CFf ∨CF¬f).
3. Proof of the fourth item of the theorem when (M, s) |= f .

To prove (M ′, s′) |= CF (CP (CFf ∨CF¬f)), we need to show that

(M ′, s′) |= Bi1Bi2 . . .Bik(CP (CFf ∨CF¬f))

for any sequence i1, . . . , ik of agents in F , i.e., ij ∈ F for j = 1, . . . , k. This holds because
we can show that for each u′ = (u, σ) such that u ∈M∗[S] and (M∗, u) |= ψ∧f , (M ′, u′) |=
CP (CFf ∨CF¬f). The arguments for this conclusion are similar to the arguments used in
the proof in Item 2.

4. The proof of the fifth and sixth items of this theorem is similar to the proof of the second and
third item of Theorem 2, respectively.

Since (M ′, s′) is an arbitrary element in ΦD(a, (M, s)), the theorem holds. 2

Appendix B: Examples of mA∗ Domains

In this appendix, we illustrate the use of mA∗ in representing multi-agent domains. The next
example represents a domain in which the agent who executes an action might not be a full observer
of the action occurrence.

Example 11. Let us consider a domain with two agentsA = {A,B}. The two agents are operating
in a room; agent A is blind while B is not. Both agents are aware that by flipping a switch it is
possible to change the status of the light in the room, and both agents can perform such action. On
the other hand, the effect of the execution of the action will be visible only to B. This action can be
described by the following statements of mA∗:

flip〈x〉 causes on if ¬on
flip〈x〉 causes ¬on if on
B observes flip〈x〉

We will next describe several examples that contain common actions that are typical to multi-
agent domains in mA∗. We refer to these actions as reference setting actions, such as the action of
distracting another agent. This type of actions is interesting, because it is often necessary for agents
to execute them in order to allow subsequent actions to achieve their intended effects (e.g., sharing
a secret).

Example 12 (Distraction). Agent A wishes to access some files on C’s computer without C’s
knowledge. Agent C is rather observant, therefore in order for A to succeed, she must first cause a
distraction (such as pulling the fire alarm) in order to pull C’s attention away from the computer.
Once C is distracted, A may access the file on the computer. This can be described by the following
statements:

distract(C)〈A〉 causes distracted(C)
A observes distract(C)〈A〉
C observes distract(C)〈A〉
executable accessFile(C)〈A〉 if distracted(C)
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The action that helps an agent to form or dissolve a group is also frequently needed in multi-
agent domains. Groups enable, for example, the execution of communications that are only local to
the group (e.g., a secret conversation).

Example 13 (Group Formation/Dissolution and Secret Communication). Continuing with Example
12, now that A has access to the file, she needs the assistance of agent B to learn its contents
because the file is encrypted and the expertise of B is required for decryption. In order to read the
file, she must first establish a connection with B—agent A must first open/invite a communications
channel to B. Let linked(x, y) denote that X and Y are connected and distracted(Z) that Z
is distracted. This action of A inviting B to connect via some communication channel can be
represented using the action openChannel(B) with the following following specification:

openChannel(B)〈A〉 causes linked(A,B)
A observes openChannel(B)〈A〉
B observes openChannel(B)〈A〉
C observes openChannel(B)〈A〉 if ¬distracted(C)
executable openChannel(B)〈A〉 if ¬linked(A,B)

Once a channel has been opened, agents A and B are linked and they may together read the file.
Once they have read the file, they disconnect the channel in order to leave no trace of their activity.
This action can be represented using the action closeChannel(B) with the following specification:

closeChannel(B)〈A〉 causes ¬linked(A,B)
A observes closeChannel(B)〈A〉
B observes closeChannel(B)〈A〉
C observes closeChannel(B)〈A〉 if ¬distracted(C)
executable closeChannel(B)〈A〉 if linked(A,B)

Reading the file allows A and B to understand its content. Let us assume that the file indicates
whether tomorrow is the established date of a cyberattack against A’s organization. This can be
represented as follows.

readFile〈A〉 determines attackDate(tomorrow)
A observes readFile〈A〉
B observes readFile〈A〉 if linked(A,B)
C aware of readFile〈A〉 if ¬distracted(C)
executable readFile〈A〉 if linked(A,B)

If a channel is open, it can be used to share the knowledge of an impeding attack. However, the
communication is secure only if the third party is distracted. This action is an announcement action
and can be represented using the following statements.

warnOfAttack(B)〈A〉 announces attackDate(tomorrow)
A observes warnOfAttack(B)〈A〉
B observes warnOfAttack(B)〈A〉
C observes warnOfAttack(B)〈A〉 if ¬distracted(C)
executable warnOfAttack(B)〈A〉 if linked(A,B) ∧ attackDate(tomorrow)
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A more general version of the actions of secretly creating/dissolving a group is given in the next
example.

Example 14. Consider an agent X joining an agent Y to gain visibility of everything that the agent
X does; this could be modeled by the action join(X), where an agent joins X at the same level of
visibility of X’s actions:

join(X)〈Y 〉 causes group member X(Y )
X observes join(X)〈Y 〉
Y observes join(X)〈Y 〉

This could be refined by adding the need to be invited to join X:

executable join(Y )〈A〉 if invited(Y,X)

The effect of gaining visibility of the actions of X can be described by

Y observes a〈X〉 if group member X(Y )

where a〈X〉 is any action occurrence executed by agent X . The symmetrical operation is the
operation of leaving the group, leading the agent Y to completely loose visibility of what agent X
is doing:

leave(X)〈Y 〉 causes ¬group member X(Y )
X observes leave(X)〈Y 〉
Y observes leave(X)〈Y 〉

The agent Y may also decide to take the action of separating from the group, through the action
separate(X), where the agent Y will observe X from “a distance”, with the consequent loss of the
intimate knowledge of X actions’ effects:

separate(X)〈Y 〉 causes ¬group member X(Y ) ∧ group observer X(Y )
X observes separate(X)〈Y 〉
Y observes separate(X)〈Y 〉
Y aware of a〈X〉 if group observer X(Y )

Distracting an agent is not only necessary for secure communication, it is also important for
certain world-altering actions to achieve their intended effects, as in Example 12. Another example
that highlights the importance of this type of actions can be seen next.

Example 15. Agent D is a prisoner, having been captured by C. Agent A is charged with rescuing
agent D. In order to do so, he must first distract C, and then trigger a release on C’s computer.
Once the release has been triggered, D may escape. The distract(A,C) action has already been
presented in Example 12. Let us consider the other actions. Rescuing an agent means that the
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rescued agent is released. We use the following statements:

rescue(D)〈A〉 causes released(D)
A observes rescue(D)〈A〉
D observes rescue(D)〈A〉
C observes rescue(D)〈A〉 if ¬distracted(C)
executable rescue(D)〈A〉 if distracted(C)

The action of escaping can have different effects.

escape〈D〉 causes dead(D) if ¬distracted(C)
escape〈D〉 causes free(D) if distracted(C)
A observes escape〈D〉
D observes escape〈D〉
C observes escape〈D〉 if ¬distracted(C)

Reference setting actions can be used in modeling group formation activities.

Example 16. Consider the join and leave actions from Example 14. The frame setting changes of
these actions can be summarized as in Figure 12, where a〈X〉 denotes the execution of action a by
X and (M ′, s′) denotes the state resulting from the execution of the corresponding action in (M, s).

in (M, s)
join(X)〈Y 〉−−−−−−→ in (M ′, s′)

FD(a〈X〉,M, s) FD(a〈X〉,M, s) ∪ {Y }
PD(a〈X〉,M, s) PD(a(〈X〉,M, s) \ {Y }
OD(a〈X〉,M, s) OD(a〈X〉,M, s) \ {Y }

in (M, s)
leave(X)〈Y 〉−−−−−−→ in (M ′, s′)

FD(a〈X〉,M, s) FD(a〈X〉,M, s) \ {Y }
PD(a〈X〉,M, s) PD(a〈X〉,M, s)
OD(a〈X〉,M, s) OD(a〈X〉,M, s) ∪ {Y }

in (M, s)
separate(X)〈Y 〉−−−−−−−−→ in (M ′, s′)

FD(a〈X〉,M, s) FD(a〈X〉,M, s) \ {Y }
PD(a〈X〉,M, s) PD(a〈X〉,M, s) ∪ {Y }
OD(a〈X〉,M, s) OD(a〈X〉,M, s)

Figure 12: Frame of reference for a〈X〉 before (in (M, s), left column) and after the execution of a joint/leave/separate
action (in (M ′, s′), right column)
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