Neurlux: Dynamic Malware Analysis Without Feature

Engineering
Chani Jindal Christopher Salls Hojjat Aghakhani
University of California, Santa Barbara  University of California, Santa Barbara  University of California, Santa Barbara
Appfolio salls@cs.ucsb.edu hojjat@cs.ucsb.edu

chanijindal@ucsb.edu

Keith Long Christopher Kruegel Giovanni Vigna
University of California, Santa Barbara  University of California, Santa Barbara University of California, Santa Barbara
klong@ucsb.edu Lastline Lastline
chris@cs.ucsb.edu vigna@cs.ucsb.edu
ABSTRACT Conference (ACSAC ’19), December 9-13, 2019, San Juan, PR, USA. ACM, New

Malware detection plays a vital role in computer security. Modern
machine learning approaches have been centered around domain
knowledge for extracting malicious features. However, many po-
tential features can be used, and it is time consuming and difficult
to manually identify the best features, especially given the diverse
nature of malware.

In this paper, we propose Neurlux, a neural network for malware
detection. Neurlux does not rely on any feature engineering, rather
it learns automatically from dynamic analysis reports that detail
behavioral information. Our model borrows ideas from the field
of document classification, using word sequences present in the
reports to predict if a report is from a malicious binary or not. We
investigate the learned features of our model and show which com-
ponents of the reports it tends to give the highest importance. Then,
we evaluate our approach on two different datasets and report for-
mats, showing that Neurlux improves on the state of the art and can
effectively learn from the dynamic analysis reports. Furthermore,
we show that our approach is portable to other malware analysis
environments and generalizes to different datasets.

CCS CONCEPTS

- Security and privacy — Software and application security;
« Computing methodologies — Neural networks.

KEYWORDS

Dynamic malware analysis, Machine learning, deep learning

ACM Reference Format:

Chani Jindal, Christopher Salls, Hojjat Aghakhani, Keith Long, Christopher
Kruegel, and Giovanni Vigna. 2019. Neurlux: Dynamic Malware Analysis
Without Feature Engineering. In 2019 Annual Computer Security Applications

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ACSAC ’19, December 9-13, 2019, San Juan, PR, USA

© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-7628-0/19/12...$15.00
https://doi.org/10.1145/3359789.3359835

444

York, NY, USA, 12 pages. https://doi.org/10.1145/3359789.3359835

1 INTRODUCTION

As malware becomes more sophisticated, malware analysis needs
to evolve as well. Traditionally, most anti-malware software uses
signature-based detection, which cross-references executable files
with a list of known malware signatures. However, this approach
has limitations, since any changes to malware can change the signa-
ture, so new releases of the same malware can often evade signature-
based detection by encrypting, obfuscating, packing, or recompiling
the original sample. VirusTotal reports that over 680,000 new sam-
ples are analyzed per day [40], of which potentially a significant
number of samples are just re-packed versions of previously seen
samples, as Brosch et al. [3] observed more than 50% of new mal-
ware are simply re-packed versions of existing malware.

In recent years, the need for techniques that generalize to previ-
ously unseen malware samples has led to detection approaches that
utilize machine learning techniques [25, 26, 38]. Malware analysis
can be broadly divided into two categories: code (static) analysis
and behavioral (dynamic) analysis. Both static and dynamic anal-
ysis have their advantages and disadvantages. Although dynamic
analysis provides a clear picture of the executable behavior, it faces
some problems in practice. For example, dynamic analysis of un-
trusted code requires a virtual machine that replicates the target
host, which requires a substantial amount of computing resources.
Besides, malware may not exhibit its malicious behavior, or the
virtualized environment may not reflect the environment targeted
by the malware [5, 15, 27, 30].

To avoid such limitations, some related work relies only on fea-
tures extracted from static analysis to achieve rapid detection for a
large number of malware samples. However, various encryption
and obfuscation techniques can be employed to hinder static analy-
sis [19, 24]. This becomes a more severe problem for static malware
detectors, since packing is also in widespread use in benign sam-
ples today. samples [28]. Although dynamic analysis is shown to
be susceptible to evasion techniques, run-time behavior is hard to
obfuscate. Dynamically analyzing a binary gives the ability to un-
pack and record its interactions with the OS which it an attractive
choice for malware analysis.

Regardless of the use of static analysis or dynamic analysis, most
machine-learning based malware detectors rely heavily on relevant


https://doi.org/10.1145/3359789.3359835
https://doi.org/10.1145/3359789.3359835

domain knowledge [12, 13, 34]. These approaches often rely on
features that are investigated manually by malware experts, which
requires a vast amount of feature engineering. For example, Kol-
bitsch et al. [13] captured the behavior graphs of PE executables in
specific features designed for this purpose. Malware is continually
being created, updated, and changed, which can make the original
well-designed features not applicable to newer malware or differ-
ent malware families. In this case, the costly feature engineering
work has to be refined continuously. Hence, it is crucial to find a
way toreduce the cost of artificial feature engineering to extract
usefulinformation from raw data.

There has recently been some work on deep learning based
malware classification which does not require feature engineering.
However, existing deep learning approaches do not leverage the
information from already-available dynamic analysis systems, in-
stead tending to pick one type of dynamic feature [14] or use static
features [6]. These solutions miss out on the complete information
concerning what actions are taken by each sample.

In this paper we propose Neurlux, a system that uses neural
networks to analyze dynamic analysis reports. Services such as
Cuckoo [21] provide a detailed dynamic analysis of an executable
by tracing it in a sandbox. This analysis contains information, such
as network activity, changes to the registry, file actions, and more.
We use such reports as the basis for our analysis. That is, given a
dynamic analysis report, we want to be able to predict whether or
not the report is for a malware sample or a benign executable.

Our intuition is that we can treat these reports as documents.
With this intuition, we present Neurlux, a neural network which
learns and operates on the (cleaned) dynamic analysis report with-
out needing any feature engineering. Neurlux borrows concepts
from the field of document classification, treating the report as a
sequence of words, which make sequences of sentences, to create a
useful model. Neurlux intends to replace expensive hand-crafted
heuristics with a neural network that learns these behavioral arti-
facts or heuristics.

To check if our method is biased to a particular report format (i.e.,
sandbox), we included in our evaluation two different sandboxes,
the Cuckoo sandbox [21], CuckooSandbox and a commercial anti-
malware vendor’s sandbox, which we will refer to as VendorSandbox.
In addition, we used two different datasets, one provided by the
commercial anti-malware vendor, VendorDataset along with the
labeled benchmark dataset EMBER [2], EmberDataset.

To show that Neurlux does better than feature engineering ap-
proaches, we implement and compare against three such techniques
which are discussed later. Furthermore, we implement and compare
against MalDy, a model proposed by Karbab et al. [11], as a baseline.
MalDy formalizes the behavioral (dynamic) report into a bag of
words (BoW) where the features are words from the report.

In summary, we make the following contributions:

e We propose Neurlux, an approach which leverages docu-
ment classification concepts to detect malware based on the
behavioral (dynamic) report generated by a sandbox without
the need for feature engineering. The only preprocessing
step is cleaning the reports to extract words, upon which
our model learns relevant sequences of words which can aid

445

its prediction. Neurlux shows high accuracy achieving 96.8%
testing accuracy, in our K-fold validation.

e We create and test several approches for malware classifica-
tion on dynamic analysis reports, including novel methods
such as, a Stacking Ensemble for Integrated Features, and a
Feature Counts model. We compared with these, showing
Neurlux outperforms approaches with feature engineering.

e We assess the generalization ability of Neurlux by testing
it against a new dataset and also a new report format, i.e.,
generated by a new sandbox and show that it generalizes
better than the methods we evaluated against.

e The source code and dataset of executables will be released
on github.

2 BACKGROUND

Some related work adopted Natural Language Processing tech-
niques for malware classification such as MalDy [11], which for-
malizes the behavioral report of a sample into a bag of words. In
this section, we explain such techniques that we exploited to build
Neurlux and other models as a baseline for comparison to Neurlux.

2.1 Word Embeddings

Word embeddings are translations from words to vectors that aim
to give words with similar meaning corresponding vectors that are
close in the feature space. Word embeddings are frequently found
as the first data processing layer in a deep learning model that
processes words [10]. This is because grouping vectors by meaning
gives a deep learning model an initial correlation of words. These
embeddings are frequently pre-trained or based on another model
such as word2vec [18]. However, in our case, we do not use a pre-
trained embedding as the similarities of "words" (i.e., file paths,
mutexes, etc.) differ from ordinary English.

2.2 Embedding Visualization

Dimensionality reduction methods are used to convert high dimen-
sional data into lower dimensional data. We can use dimensionality
reduction to convert the data into two dimensions, allowing us
to show the distribution of the data in a scatter plot. To do this,
we choose to use t-Distributed Stochastic Neighbor Embedding
(t-SNE) [17], a technique for visualization of similarity data. t-SNE
preserves the local structure of the data and some global structure,
such as clusters, while reducing the dimensionality.

2.3 CNN for text classification

Convolutional neural networks (CNN) have recently shown to be
very useful in text classification. A typical model for this represents
each input as a series of n sequences, where each sequence is a
d-dimensional vector; thus input is a feature map of dimensions
nxd. The model starts by mapping words to vectors, as discussed in
Section 2.1. Then, convolutional layers are used for representation
learning from sliding k — grams.

To extract higher level features from input vectors, a CNN applies
filters of R¥*4 on an input of length n, {x1, x2, x3, X4, X;....xp }. After
applying a filter of size k we have, {X1.k, X2.k 41> X3:k 42> - Xn—k+1:n}-
Embeddings for x;, i < 1ori > n, are zero padded. For each win-
dow, x;.;4k_1, a feature p; is generated which is then fed into ReLU



non-linearity.

pi = fWkT +b) (1)
Where b € R is a bias term, f is a non-linear activation function,
such as the hyperbolic tangent, and W .k is the weights for filter k.
Applying filter k to all windows results in the feature map.

Max pooling sub-samples the input by applying a max opera-
tion on each sample. It extracts the most salient n-gram features
across the sentence in a translation-invariant manner. The extracted
feature can be added anywhere in the final sentence representation.

In practice we use multiple window sizes and multiple convolu-
tional layers in parallel. A combination of convolution layers fol-
lowed by max pooling is often used to create deep CNN networks.
Sequential convolutions can improve the sentence mining process
by capturing an abstract representation which is also semantically
rich.

2.4 LSTM/BiLSTM

Recursive Neural Networks (RNN) have gained popularity with text
classification due to their ability to preserve sequence information
over time. LSTM networks [9] overcome the vanishing gradient
problem of RNN [8]. LSTM networks use an adaptive gating, which
regulates the flow of information from the previous state and the
extracted features of the current data input. For an input sequence
with n entries: x1, X3, ..., X, an LSTM network processes it word by
word. Then, it uses the following equations to update the memory
pr and hidden state h; at time-step t:

ir o

{; = Z W.|he—1, %] @)

qt tanh

Pt = fr*pr-1+ir*qr (3)
he = oy % tanh(py) )

where x; is the input at time-step ¢, i; is the input gate activation,
ft is the forget gate activation, and oy is the output gate activation.
All gates are generated by a sigmoid function, o over the ensemble
of input x; and the preceding hidden state h;_j.

A BiLSTM network extends the unidirectional LSTM by initi-
ating a second hidden layer. In this layer, the hidden-to-hidden
connections can flow in reverse temporal order. Therefore, the
model holds information from both the past and the future. The
output of j'# word can be represented as:

by = 1 D] 5)

2.5 Attention

It is evident that not all words contribute equally to the malicious
or benign attributes of dynamic behavior. Hence, at the word level,
an attention mechanism [39] can be used to extract malicious fea-
tures/words that are important to the behavior classification. Fi-
nally, we aggregate the representations of those malicious features
to form the sentence representation.

Let H € R%™ be a matrix of hidden vectors [h1, Ao, ..., h,] that
the LSTM network produced, where d is the size of the hidden layers,
and n is the number of words in a sentence. Let h;; € H represent

446

a hidden state. The first step is to feed h;; through a single-layer
Perceptron network to get u;; as its hidden representation:

uj; = tanh(Wy,hir + byy). 6)

The second step is to initialize the context vector u,, randomly.

Then, the importance of the word as the similarity of u;; with a

word-level context vector u,, is measured. This gives a normalized

importance weight vector « through a softmax function. The Con-

text vector u,, is learned during the training process. @ measures
the importance of i*" word for malicious behavior.

exp(u;'—tuw)
>t exp(u;;uw)

In the end the sentence can be represented as the weighted
hidden vector r:

()

Ait =

r=Hal.

®)

3 APPROACH

In this section, we describe our proposed method, Neurlux, a model
which treats the dynamic behavior classification problem in a way
similar to a document classification problem. The steps of this
approach are as follows:

e Data cleaning: We want to treat the reports as a document
classification task, so the first step is to clean the JSON for-
matted reports so that it is structured less like a JSON doc-
ument and more like sequences of words, which makes up
sequences of sentences. To do this, we first remove special
characters, such as the brackets which are part of the JSON
structure. Then the document is tokenized to extract words,
of which the top 10,000 most common words are converted
into numerical sequences.

e Data Formatting: The naive method of converting words to
vectors assigns each word with a one-hot vector. This vector
would be all zeros except one unique index for each word.
This kind of word representation can lead to substantial data
sparsity and usually means that we may need more data
to train statistical models successfully. This can be fixed by
continuous vector space representation of words. To be more
specific, we want semantically similar words to be mapped
to nearby points, thus making the representation encode
useful information about the words’ actual meaning.
Therefore, we use trainable word embeddings in Neurlux,
which can have the property that similar words have similar
vectors as described in Section 2.1. This way, the model can
cluster words based on their usage patterns and they can
provide more meaningful inputs to the later layers in the
model.

o Model: We use the combination of CNN, BiLSTM networks,
and Attention networks to create a model that understands
the hidden lexical patterns in the malicious and benign re-
ports. This model is designed using concepts from document
classification. For example, an important idea is that not all
words in a sentence are equally important, so it uses the
attention mechanism to recognize and extract important
words [41]. Another aspect is that context is important for



Neurlux

Report

Cleaning CNN + LSTM + Attention — Classification
_____ Softmax
NO FEATURE " q
ENGINEERING ®_,_> T Dense —> Classification
(a) Softmax
JSON DATA
Stacking Ensemble Integrated Features Classification
Softmax
_____ n
Feature g N 0 Dense
_____ - Counts z axpooling Lo Classification
FEATUR =
ENGINEERING Softmax
(b) FEATURES
Loaded DLLs
Registry CNN + LSTM + Attention > Classification
Files
API Sequence Softmax
Mutexes

Figure 1: Overview of Models

—+ LsTM — —f s — @ |
g 5
! S Fi o ‘
] > |
L Jwsmf— > o ism|— =z :
z ] i —
o AN
o (B T B ®
st — E ——+ 1sW [—] <= i
- 8 |
=1 g !
[ % [ E i
= ] W
| 5T [— F— s — B
1 |
Waord | ;
Embedding i CNMN BILSTM Attention BILSTM Attention | Dense

Figure 2: CNN-BiLSTM-Attention model for document classification

understanding the meaning of words, therefore we use BiL-
STM to give context to the model. This model is described
in detail in the next section ( 3.0.1).

3.0.1 CNN + BiLSTM + Attention. Inspired by the previous
document classification methods, we create the model illustrated
in Figure 2, which consists of a convolutional neural network layer
(CNN), and two pairs of bi-directional long short term memory
network (BiLSTM) and attention layers. Convolutional neural net-
works (CNN) extract local and deep features from the input text.
Then we obtain the high-level representation from the bidirectional
LSTM network by using the hidden units from both the forward
and backward LSTM. The CNN and LSTM combination is useful
to extract local higher level features, which the LSTM can then
find temporal relationships between [45]. The two pairs of BILSTM
and Attention are inspired by hierarchical attention networks [41].

447

The input is a trainable word embedding of dimension 256 to al-
low the model to cluster similar words as it learns. Each of these
components is described thoroughly in the Section 2.

As described before, different parts of the report have different
importance for determining the overall malicious behavior of a
binary. For example, some parts of a registry key can be decisive,
while others are irrelevant. Suppose we have the sentence attention
score A; for each sentence s; € x, and the word attention score a;_j,
for each word w;,; € s;; both scores are normalized which satisfy
the following equations,

ZA,- =1 and
i

©)

Zai,j =1.

J

The sentence attention measures which sentence is more im-
portant for the overall behavior while the word attention captures
behavior signals such as the behavior words in each sentence. There-
fore, the document representation r for document x is calculated as



Table 1: Overview of the models that we create and compare
against Neurlux.

F
Model eat}l e Description
Engineering
Counts Model Yes Counts of each feature
L Document classification on
Individual Model | Yes individual extracted features
Ensemble Model | Yes Ensemble of individual features
State of the art model for
MalDy No report classification from [11]
Raw Model No Model trained on raw bytes
D lassificati
Newrlux No ocument classification on
whole report
follows,

r= Z [A,'.Z (ai,j~hi,j)]‘ (10)
i J
Finally, Neurlux outputs a classification decision as a score from
0-1 where 0 is benign, and 1 is malicious.

4 COMPARISON METHODS

In this section, we describe various models with which we compare.
We compare with a previous state of the art method and with a
couple approaches which involve feature engineering to check if
we can actually do better than feature engineering approaches.
An overview of the approaches we compare against are shown in
Table 1.

4.1 Comparison With a State-of-the-Art Model

We used the method described in MalDy [11], as a model for compar-
ison. Their approach is to preprocess sandbox reports with standard
Natural Language Processing (NLP) techniques and then create an
ensemble supervised machine learning (ML) model from a mul-
titude of different ML algorithms. They attempt to formalize the
behavioral reports in a way agnostic to the execution environment.
This is done on both Win32 and Android. They argue that the key
to their success is using their bag of words (BOW) model with Com-
mon N-Grams (CNG). CNG effectively computes the contiguous
sequences of n items where n is an adjustable hyper-parameter. In-
stead of using single words (1-grams), using n-grams aids in finding
distinct features. Once the reports are in a list of n-gram strings,
they carry out two different vectorization approaches: TF-IDF and
Feature Hashing. Feature Hashing creates fixed length feature vec-
tors from sparse input n-grams. A hash is taken of each n-gram, and
if the value is found within the table, it is incremented; otherwise,
a value of 1 is added to the table. This process creates probabilisti-
cally unique vectors, given that the hash bucket size is sufficiently
large. These vectors are subsequently fed into the ML models. We
implement and use their best performing model as a comparison. In
our evaluation (Section 6), this model reaches a plateau with 89.23%
accuracy and an F-1 score of 88.5%.

A weakness of the BOW approach used in MalDy is that it does
not take into account the context, just the frequencies with which
words appear [22].

448

4.2 Raw JSON Data

A more basic deep learning approach is to learn from raw bytes,
treating it as an image classification problem. Although the struc-
ture of the input data is defined, the placement of different string
objects within the file is not ordered. To best capture such high-
level location invariance, we choose to use a convolution network
architecture. Combining the convolutional activations with a global
max-pooling, followed by fully-connected layers allows this model
to produce its activation regardless of the location of the detected
features.

The Raw Model was inspired by an earlier approach on byte
classification [26]. First, we clean the document, removing special
characters. Then the bytes are extracted as integer values then
padded to fix length to form a vector x of d elements. This ensures
that regardless of the length of the input file, the input vector
provided to the network has a fixed dimensionality. Each byte x;
is then embedded as a vector z; = ¢(x;) of eight elements (the
network learns a fixed mapping during training). This amounts
to encoding x as a matrix Z eRI4x8] Figure 1(a) shows an outline
of the model used for raw JSON data binary classification. Then,
it goes through the convolutional layers to eventually produce a
classification between 0 and 1.

4.3 Features for Engineering Approaches

For the feature engineering approach comparisons, we begin by
categorizing the six main categories of features available in the
reports. These features are described in more detail below.

e API Sequence Calls. The reports typically include all sys-
tem calls and their arguments stored in a representation
tailored explicitly to behavior-based analysis. Much of the
past work on behavior analysis has focused on using API
call sequences for malware classification [23, 32, 35].

e Mutexes. Mutexes control the simultaneous access of the
system resources. They are used by malware creators to
avoid infecting a system more than once, and coordinate
between processes [42].

¢ File System Changes. The interaction of a malware sam-
ple with the host file system might be a good indicator to
determine malicious behavior. We consider all the important
file operations such as create, read, write, modify, delete, etc.

e Registry Changes. The registry is a core part of Windows
and contains a plethora of raw data. Registry keys can reveal
much information about the system, but the true challenge
is in unraveling which modifications to the registry are mali-
cious and which are legitimate. The registry also represents
a fundamental tool to hook into the operating system to
gain persistence. Discovering what keys are queried, created,
deleted, and modified can shed light on many significant
characteristics of a sample.

e Loaded DLLs. The reports contain the shared library code
loaded by a program. Nearly every executable program im-
ports DLLs during execution. These DLLs can give insights
into the types of APIs used by the program.

Figure 4 is an example of a CuckooSandbox report for a malicious
sample that shows the various behavioral features cuckoo identifies.
We obtain 28 such different features from CuckooSandbox and 43



features from VendorSandbox. These features are mapped based on
semantic similarities and divided into 6 main behavioral groups as
described above. The following sections give an exhaustive descrip-
tion of the various feature engineering techniques used. They are
shown in Figure 1(a).

4.4 Feature Counts Model

In this section, we discuss an approach to use a neural network on
shallow numerical features. Numerical features here are simply the
counts of each event that was recorded, e.g., number of registry
reads, number of file writes, etc. The first step is to parse the reports
and extract all the available features. The number of features ex-
tracted differs due to the structural differences in dynamic analysis
reports collected from CuckooSandbox and VendorSandbox. Each
report lists features according to the parent process and child pro-
cesses (any process that was either spawned by or tampered with
by the primary process). Each process has its own set of individual
features. Since each executable can contain one or more processes,
the final representation of input features per sample will be:

S = processes X features

which expands to

reg_read file_write mutex
a1 ai,z ai,n 1
as 1 az azn 2 (11)
S= )
am,1 am,?2 aAm,n n

(Columns are features, rows are processes)

The data representation is similar to that of a gray-scale image;
therefore, a 2D CNN can be used for training on this dataset. We
use an 8-layer deep CNN model inspired by Simonyan et al. [36].
The model consists of 8 convolution layers and 2 fully-connected
layers. Every convolutional filter has a kernel size of 3, 4, or 5 with
a stride of 1 and pooling region of 3x3 without overlap. A pooling
function is applied to each feature map to induce a fixed-length
vector. These fixed-length, top-level feature vectors generated from
filter maps are then fed through a softmax function to generate the
final classification. Figure 1 gives an overview of this model.

4.5 Text-Based Individual Feature Model

Each analysis report is a collection of statements, and each state-
ment is a sequence of words. We believe that these sequences can
give a more granular description of the actual events, compared to
the features count method discussed in the previous section. The
assumption for the text classification approach described in this sec-
tion is that the difference between malicious and benign behavior
of binaries could be translated into sequences present in the reports.
In other words, the sequence of actions better represents if a binary
is malicious or not than merely the number of actions. Additionally,
we were looking for a feature representation (sequences of words)
that uses an automatic feature extraction without the intervention
of a security expert.

The input generation process can be divided into four steps. This
process is performed iteratively for all six feature groups.

449

o Feature Selection: Different features are selected from the
feature pool based on the top six behavioral groups discussed
earlier in this section.

e Data cleaning: Similar to our method for Neurlux, we need
to remove special characters and perform tokenization to
extract numerical sequences.

e Data Formatting: As discussed previously, we want to have
a continuous vector space representation of words, with
semantically similar words mapped to a nearby point. So
once again we use a trainable word embedding.

e Model training: We use the combination of CNN, BiLSTM,
and Attention networks to create a model that understands
the hidden lexical patterns in the malicious and benign re-
ports. This model is described in detail in Section 3.0.1

4.6

When the neural network, described in Section 3.0.1, is trained
on individual behavioral feature types (such as mutexes or api
calls), it exhibits a high variance depending on the feature. This
variance can be attributed to the importance and contribution of
each feature extracted from the reports. Therefore, in this section,
we describe a way to use ensemble learning to combine multiple
models to get a low variance and better predictive performance
than any single constituent algorithm alone. Specifically, we use
a stacking ensemble which uses one large multi-headed neural
network and learns how to best integrate predictions from each
input sub-network.

We start with five separately trained models from the previous
section. These models are trained on the five most important behav-
ior traits observed in the reports; namely, API Sequences, Mutex
Operations, File Operations, Registry Operations, and DLLs Loaded.
Each model uses the text-based feature classification method ex-
plained in Section 4.5. The outputs from all the sub-models are
concatenated, and provided to a fully connected layer that acts as
a meta-learner, and makes its probabilistic predictions. The sub-
models are not trainable; therefore, their weights are not changed
during the training, and only the weights of new hidden and output
layers are updated.

Merging the outputs from multiple neural networks adds a bias
that in turn counters the variance of a single trained neural network
model. As a result, the final predictions are less sensitive to the
specifics of training data and are more generalized.

Integrated Features using Ensemble

5 DATASETS

We have employed two different datasets for evaluating our re-
search work. Dataset 1 (VendorDataset) is a set of 27,540 Windows
%86 binaries with 13,760 benign and 13,760 malicious files. This
private dataset was randomly selected from an original pool that
was analyzed by the anti-malware vendor’s sandbox in the US dur-
ing the period from 2017-05-15 to 2017-09-19. This security vendor
provides a sandbox that runs executables, and collects full analysis
results that outline what the sample does while running inside an
isolated operating system. Dataset 2 (EmberDataset) is a subset of
the publicly available Ember dataset[2]. It consists of 42,000 Win-
dows x86 binaries with 21,000 benign and 21,000 malicious samples.



Malware Sample 1

windows nt terminal | services maxdiscon... | microsoft
windows defender spynet spynetreporting microsoft windows
defender exclusions | paths c users administrator
appdata roaming alfsvwjb | policies microsoft windows

nt terminal services maxidletime microsoft windows
currentversion | explorer advanced

Table 2: Attention for registry keys written shown for a malware sample that the model classified correctly as malicious. The

cells are colored by how much attention each word received, with colors: veryhigh, s s

# | Malware Family

Win32.Virtob.Gen.12.Dam
Trojan.VIZ.Gen.1
Gen:Heur.PonyStealer.2
NSIS:Solimba-H [PUP]
Win32.Trojan.WisdomEyes.16070401.9500.9991
Gen:Variant.Zusy.189695
Gen:Trojan.Brresmon.Gen.1
Gen:Variant.Application.Bundler.DownloadGuide.48
Trojan.Win32.Generic!BT
Win32:Malware-gen
Trojan.Ransom.WannaCryptor.H
Gen:Variant.Adware Kazy.3692
Win32.Virlock.Gen.8
ELF:Androot-I [PUP]
Gen:Heur.ZOF.2
Gen:Variant.Symmi.582
Trojan/Avanzado
Win32.Virtob.Gen.12
Gen:Variant.FakeAlert.93
Trojan.Generic.8995937
Gen:Variant.Symmi.439
Adware.Downware.1125
Gen:Variant.FakeAlert.88
Trojan[Packed]/Win32.PolyCrypt
MemScan:Trojan.Agent.BYFH

Figure 3: Top 25 Malware Families in VendorDataset and
count(#)

v object {11}
» info {17}

v sumary {20}
» file_created [16]—v file_created [16]

0t e:\\tmplvueh\\1ib\\api\\ R E_AD___T_H_I_S___XQANJ48_.hta
€:\tm \module THI us

» signatures [20] » file_recreated [2]

target {2}
» buffer [10]

> regkey_writt

> dl1_loade
» network {18}
» static {12}
» dropped [31]

» file_opened [62]
» file_copied [1]
» file_read [27]
v behavior {S} » regkey_opened [161]—v regkey_opened [161]
0 : HKEY_LOCAL_MACHINE\\SOFTWARE\\Wow6432Node\\Mi crosof t\\Cryptograp
1 : HKEY_LOCAL_MACHINE\\SOF TWARE\\How6432Node \\Mi crosof t\\Cryptograp
2 : HKEY_CLASSES_ROOT\\D
HKEY_LOCAL

» generic [4] file_moved [25]

filewritten [42]
> file_d 53]
» file_ exists [267]

» apistats {3}

» processes [4]

e MACHINE\
» processtree [2]

HKEY_LOCAL
HKEY_LOCAL
HKEY_LOCAL

MACHI
» summary {20} —

» debug {5}

> mutex [2]
o MACHT
» file_failed [36]
MACHINE\\SO

» strings [375] > wii_query [1]
> guid [17]

command_line [2]

HKEY_LOCAL_MACHINE\\Sof

» metadata {1}

» regkey_read [301]
» directory_enunerated [215]—v directory_enumerated [215]

» directory_created [2] © : c:\\Users\\adninistrator\\AppData\\Roaming\\mi crosof

S\\System32\\config\\systemprofile\\docume

Figure 4: Cuckoo Sandbox Report format example

VendorDataset has over a 1000 malware families, top 25 of which
are shown in the Figure 3.

Each binary is accompanied by two versions of detailed behav-
ioral analysis reports in a JSON format. One behavioral report,

450

,and

CuckooSandbox, is collected using the Cuckoo sandbox [1]. Cuckoo
is a publicly available sandbox which can be used to trace execu-
tion in a virtualized environment. It generates a JSON report of
the actions taken by the binary during runtime. The other report,
VendorSandbox, is collected using the sandbox from the security
vendor, which also traces execution and collects information about
the runtime execution of the executable. This results in two datasets
with two different report formats for a total of four different combi-
nations of datasets and reports.

5.1 Comparison of Reports

We ran an initial analysis of the two reports to understand their
structure and the features they contain, which can be used for
dynamic malware analysis. The format of one JSON report is shown
in Figure 4. When examining the reports, we noticed that parts of
the reports could be quite different for identical executables. The
number of registry actions, file actions, and even the actual paths
tended to differ. Differences show up because of differences in the
sandbox and execution environment; even how long the executable
is run influences the data in the reports.

The feature names do not match up exactly, so we try to draw
parallels in features from the respective sandboxes. For example,
VendorSandbox references “loaded_libraries”, whereas CuckooSand-
box uses “dll_loaded”, but semantically they are the same. Due
to subtle differences between the sandbox environments and for-
mats, strings to do not match exactly. For example, when looking
at registry keys, in the VendorSandbox we observe a key starting
hkcu\software\microsoft\windows, while in Cuckoo it shows
as hkey_current_user\software\ microsoft\ windows.

This shows that the reports are similar but not identical, and thus,
our model needs to be robust enough to handle the discrepancies.
We will later evaluate how robust various approaches are to these
differences between the two sandbox reports.

6 EVALUATION

In this section, we evaluate Neurlux, which we described in Sec-
tion 3. We compare Neurlux to approaches with feature engineering,
which are described in Section 4.3. We also compare Neurlux with
MalDy [11]. In particular, we attempt to answer the following re-
search questions:

RQ1: Can deep learning methods without feature engineering
identify malware from dynamic analysis reports as effec-
tively as methods with feature engineering?



python2.7

+ Cpdf

o .
It 8
"

s & o s sample
contacts” . . e, & 0y D
* pictures « . s ‘.'-- g ]
- . R
- L - .
. o -
R i B
L .. PR o e
. 2 s ol
S AT 4
b . o .'.. i |

. .
L repository

+ spush

. wsync

.
.. o 8 .
compiler « security «
assembly .o thck
msbuilld « *

.

> 'deploy . projects

.
logs

BT % 1) 5 1

Figure 5: T-SNE visualization of file operations. This shows
how the files used in file operations were clustered by the
trained embedding layer. Blue shows files common to be-
nign files, red shows files common to malicious, and green
shows files common to both.

RQ2: Does the application of advanced NLP techniques im-
prove the results of malware detection on dynamic analysis
reports compared to other deep learning models?

RQ3: How robust are the various approaches to being applied
to different datasets and sandbox/reports?

RQ4: Which parts of the report does Neurlux learn to use in
detecting malware?

The first two research questions will help us to evaluate Neurlux’s
malware detection capabilities, and compare our approach to other
deep learning models. The third question is useful in order to un-
derstand if our approach is learning robust features that apply to
other environments. Finally, the last question is chosen to explore
which parts of the report are used by Neurlux. This can help in
determining if the approach is learning useful features.

6.1 Experiment Design

Here we will evaluate the performance of Neurlux and each of
the comparison models described in the previous section. All the
evaluated models are listed in Table 1 with a brief recap on their ap-
proach. We trained each model on reports from the VendorSandbox
on executables from the EmberDataset. We chose the EmberDataset
for our training because it is the larger dataset and would provide
more samples for training. We performed the classical k-fold cross
validation (where k = 10) to test the models. That is, we divide
the dataset D into D1, Dy, ..., Dy.. We spare D; for 1 < i < k for
testing, and use the remaining k — 1 folds for training. This process
is repeated k times to get accurate validation results. We trained all
our models by minimizing the cross-entropy error.

451

After this, each model is then tested on the VendorDataset to
evaluate its ability to generalize to a new dataset. Each model is
also tested using the CuckooSandbox on the same samples in the
EmberDataset to evaluate the robustness of the model to a different
report from a different sandbox. These tests should show if the
model is learning features that generalize well and are not specific
to the particular report or dataset.

Additionally, we compared against MalDy [11]. This is a state of
the art model using XG-Boost and feature hashing. We implemented
it for our tests as we could not obtain the source code.

6.2 Results

Table 3 shows the results of each of the models we trained. Looking
at the results, we see that Neurlux performs very well, showing
the best accuracy when applied on both a new dataset and on a
new sandbox, getting 87.0% and 86.7% respectively. The ensemble
classifier outperformed it slightly in terms of validation accuracy,
but it wasn’t nearly as robust to differences in datasets or sandboxes.
This result allows us to answer our first research question.

Answer for RQ1: Neurlux, a deep learning method without
feature engineering performs about as well in validation ac-
curacy as our best model with feature engineering. It also
showed better results than the feature engineered models
when tested on another dataset or report format.

6.3 Individual Features

We also trained and tested each of the five individual features we
extracted using the same CNN+BiLSTM+Attention model design
that we use in Neurlux. These individual models are also used to
compose the Ensemble Model. The results of each model are shown
in Table 4. We observed that file actions perform the best of any
of our features. It also generalized fairly, showing good results on
the other dataset. Note that APIs were represented significantly
differently between the two sandboxes, which explains its low score
on CuckooSandbox.

We visualized the trained word embeddings for file actions to
see if the word embeddings are creating good clusters. For this we
use a T-SNE plot [17], which is shown in Figure 5. In the T-SNE we
see clusters of similar files that the model learned. We also see that
the two clusters for files seen in benign and malicious files only
had a bit of overlap.

6.4 Attention

When we look at the results in Table 3, we find that the Raw Model
had a lower validation accuracy than Neurlux, and performed much
worse when tested on a different dataset. This implies that the Raw
Model might not be using very general features, whereas Neurlux
appears to be learning features that generalize better. In this section,
we explore what the two models appear to be paying attention to,
or in other words, which parts of the reports contribute most to
the classification decisions by the models. This can be used to both
understand the model better, and it can also be used by security
researchers to identify possible features that they can use in other
analyses.

Firstly, we examine the Raw Model. To do this, we use a concept
called saliency, introduced by Simonyan et al. [37]. Saliency uses the



- Accuracy on Accuracy on
Model Accuracy | Precision | Recall | F1-Score VendorDataset | CuckooSandbox
MalDy [11] 8923 850 830 | .885 55 40
Counts Model .935 .891 .941 .92 778 -
Ensemble Model | .980 .986 975 980 .843 .780
Raw Model 914 .948 .906 927 .698 .627
Neurlux .968 .967 966 968 .870 .867

Table 3: This table shows how the models performed. The models were all trained on reports from VendorSandbox on the
EmberDataset. They are tested using K-Fold validation and tested on the other dataset and report format. The first row, MalDy,
is a state of the art model from [11] that we compare with. The next two rows are feature-engineering based approaches.

Individual Accuracy Accuracy on Accuracy on
Feature VendorDataset | CuckooSandbox
Registry 944 .801 767

File 978 .842 771

API .865 776 .510

Mutex .808 733 677

DLLs 960 .810 701

Table 4: This table shows how the model performed on each
of the five individual features. This table shows the valida-
tion accuracy as well as the accuracy when given a different
dataset and different report format.

gradient of the output with respect to the input to determine which
areas of input will most affect the output of a neural net. This will
allow us to highlight, for a particular sample, the regions of bytes
that contribute most to its classification. When applying saliency
on the Raw Model, we see that the model frequently pays the most
attention to hashes (SHA-1 hashes, MD5 hashes), DLLs, file names,
and library addresses. An example of the most highlighted area
of one sample is shown in Figure 6. Although SHA-1 hashes are
frequently important to the model’s classifications results, they are
not a feature that generalizes well. Any byte changed can cause
these features to be wrong. Additionally, intuitively, we know that
library addresses are likely to change, and not the best feature
either.

Then, we examine our approach, Neurlux, which uses NLP tech-
niques to learn on whole words rather than bytes. For this model,
we have an Attention layer, explained in the Section 2.5, which
allows the model to learn what it should focus on, and allows us to
interpret which words/phrases received the most attention directly.
By examining the attention activations, we can also see what the
model is paying attention. An example is shown in Figure 7, which
shows our method giving the most attention to a few API calls.
Overall, we found that Neurlux focused on parts of the document
that seemed much more general. For example, in the first couple
of samples it focused on words such as “ntqueryinformationpro-
cess”, “ntreadvirtualmemory”, “virustotal”, “programs”, “startup”.
These intuitively make sense as valuable features. The first couple
indicates that the process is attempting to interact with other run-
ning processes. Then, of course, “startup programs” shows that the
executable might be trying to set a new process to autostart.

452

"Local SM0:5332:
168:WilSta8ing_02"}], "loaded li
[{"start_address": "0x
"0x73e

{"mutex_name" :

braries":
73c40000",
9c@0@" ,

"end_address":

"filename": "c:\\windows

Figure 6: The most salient area of sample 234 highlighted
by the Raw Model at the byte level showing the Raw Model
giving a lot of importance to seemingly random parts such
as part of "address” and "end”. Sample 234 was misclassified
by the Raw Model as benign when it is malicious.

syswow64 ole32 syswow64 imm32 | ntclose
ntqueryinformationfile ntquerysysteminformation
ntqueryinformationprocess ntcreateevent

ntdeviceiocontrolfile api sm0 5332

168 wilstaging

Figure 7: The highest attention areas of sample 234 high-
lighted by Neurlux. Neurlux paid the most attention to the
api calls in this example. Neurlux was able to correctly clas-
sify it as malicious.

Our approach (Neurlux) was able to pick features that look bet-
ter intuitively, and it showed that its results generalized well to
other datasets. This seems to be a result of applying document
classification techniques from NLP to our model. Our approach
looks at whole words rather than bytes, and its model learns better
which words and phrases are indicative of malicious behavior when
compared with the raw model, which focused on more arbitrary
things such as sequences of bytes in SHA1 or MD5 hashes.

We also counted which features show up most frequently with
the highest attention score. More specifically, for a subset of ma-
licious samples we took the words with the most attention and
determined to which feature they applied. These results are shown
in Table 5. We see that file operations were most commonly the
most highly paid attention to, followed by API calls, then network
and DLL loads. Interestingly, file operations were also the best per-
forming individual feature. This means that the feature it paid the
most attention to was also the best performing on its own.



Number of times
Feature . .
in top attention
File 831
API 305
Network 107
DLL Loads | 95
Mutex 72
Registry 20

Table 5: This table shows how many times each feature ap-
peared as one of the 10 most important words according to
the attention score for 100 samples.

Answer for RQ2: NLP techniques for document classifica-
tion can be effectively applied on reports to perform malware
detection and show much better results than our Raw Model
neural network.

Answer for RQ4: Neurlux appears to be learning to use
the best combinations of features. Specifically, it pays more
attention to the file operations performed by the malware, as
well as the API calls.

6.5 Robustness

We found that all the approaches had lower accuracies when tested
on a dataset or sandbox report that they were not trained on. The
report format has many differences that should account for the
drop in accuracy. However, the lower accuracy on VendorDataset
implies that we are learning features that do not generalize to all
executables. This could be a problem due to deficiencies in the
training set (not having as wide a breadth of samples as we need).
Also, it could be that the model is still learning some specific features
that do not generalize as well. Neurlux showed the best robustness
to the report formats. Also, the other NLP-based deep learning
approaches (the individual models and Ensemble Model) showed
decent robustness, implying that the NLP techniques give us more
general features than our raw bytes approach.

Answer for RQ3: Neurlux is the most robust of the models
we tried, showing the highest accuracy on another dataset and
on another report format. On the other hand, our raw bytes
model was poor at classification across datasets and reports.
This implies that the features learned using text classification
approaches were more general.

6.6 Unseen Malware Family

Another experiment we performed was to remove one malware
family, train on the remaining data, and then evaluate Neurlux’s
classification accuracy when tested on that family. We removed all
samples that were identified as the family Trojan.Viz.Gen.1, using
VirusTotal. During evaluation Neurlux still correctly classified all
346 samples of that family as malware.

6.7 Performance

We run our experiments on Nvidia Titan RTX and Xeon Gold 6252
processor. Our training process took 19.47 milliseconds/sample

453

and detection process took 8.21 milliseconds/sample. The data-
cleaning/preprocessing runs at a rate of 6.16 milliseconds/sample.

7 DISCUSSION AND FUTURE WORK

One limitation of Neurlux is that it performs classification based
on behavior seen in dynamic analyses. This means that it is not as
effective as a preventative measure. However, its results still are
useful for identifying malware to generate signatures or catch that
an infection has occurred. Also, Neurlux showed that it was able
to detect a previously unseen family, indicating that it can be used
even on malware that has not been analyzed before. This result
could be further explored to understand the correlations between
different malware families.

Also, Neurlux relies on accurate and broad training data. Future
work would be to try and make it more resilient to the quality of the
training data, as well as exploring different execution environments
to discover if one provides better results for it. Other directions
for future work include exploring different models to improve the
results. For example, image recognition [16], has recently shown
promising results. These models are based on ones that were known
to perform well on image recognition tasks, and can also sometimes
use transfer learning, using the training already done on images.

7.1 Adversarial Learning

Some recent works try to evade the detection of machine learning
based malware classifiers by adversarial learning. Their experi-
ments show that it is possible to generate adversarial samples based
on a trained machine learning classifier. The core of adversarial
sample crafting is to find a small perturbation to feature vectors X
of the original malware sample to change the classification results
F to benign. Formally, they compute the gradient of F with respect
to X to estimate the direction in which a perturbation in X would
maximally change F’s output. The earliest work of this topic came
from Nguyen et al. [20] who found that a slight change in the image
could trick the image classifier, and then it has been introduced
into computer security in recent years to attack security systems
that rely on machine learning models.

Robustness against adversarial attacks provided is an essential
design characteristic. Our future work will include making our
proposed model more robust against such attacks.

8 RELATED WORK

There has been much work on using machine learning and NLP
models to classify malware, all bringing new strengths and trade-
offs to the table. There were initially many machine learning models
being used, such as Support Vector Machines (SVM), Decision Trees
(DT), Random Forest, and K-Nearest Neighbor (KNN) amongst
others. Recently, neural networks have been prevalent for detecting
and classifying malware.

Saxe et al. [33] proposed a method to distinguish malware from
benign software based on a neural network, deep learning approach.
Their system uses four different types of complementary static
features from benign and malicious binaries. These features are
entropy histogram features, PE import features, string 2D histogram
features, and PE metadata features. However, this work primarily
focused on feature engineering and static analysis. Fan et al. [4]



created a sequence mining algorithm that discovers consecutive
malicious patterns using All-Nearest-Neighbor classifier. They used
feature engineering to extract instruction sequences from the PE
files as the preliminary features. This approach used static features
and required domain knowledge for feature extraction.

Zheng et al. [43] creates a behavior chain that aids in its de-
tection method. The method monitors behavior points based on
API calls and then uses the respective calling sequence at runtime
to construct a behavior chain. The system uses long short-term
memory (LSTM) to detect maliciousness from the created chains.
Salehi et al. [31] used a monitored environment where the argu-
ments and return values of every API call are recorded as (API,
variables, return value) tri-tuples. The authors found a selective
and discriminative set of these features and used SVM algorithm for
classification. Other methods also focused on using API sequence
calls for dynamic malware classification [23, 32, 35]. However, re-
stricting to only one type of feature limits the vast feature space
that can be used to represent different types of malware behaviors.

MalInsight [7] takes a different approach, and profiles malware
based on basic structure, low-level behavior, and high-level behavior.
A feature space is built on three core profiles, namely, the structural
features, how the binary interacts with the OS, and operations on
files, registry, and network. Han et al. pick select features from
the Cuckoo sandbox and train on those. Unlike our experiments
in Section 6.3, they do not use neural networks and they do not
use the whole report as Neurlux does, instead requiring feature
selection.

Another approach is based on early stage recognition [29]. They
implemented a recurrent neural network that takes as input a short
feature set of file activity. They can predict whether or not a file is
malicious using the first few seconds of file execution. Their intu-
ition is that malicious activity surfaces rapidly once the malicious
file begins execution. Their approach differs from ours in that it
only uses file activity, and aims to detect malware in real time. We
use entire dynamic analysis reports which provide a more complete
picture but requires analyzing it in a sandbox.

Zhong et al. [44] suggested that a single deep learning model
was insufficient and created a Multi-Level Deep Learning System.
They first partition the data using static and dynamic features, then
create a convolutional model which learns to classify each cluster,
and combine the clusters to create their final model. They use a
feature extraction phase to extract static and dynamic features,
whereas Neurlux simply learns on the report of dynamic behavior
and not extracted features.

Another approach that performs classification on behavior re-
ports is MalDy, which uses a bag of words approach, with models
combined in an ensemble [11]. A limitation of a bag of words ap-
proach is that it does not take into account the context, just the
frequencies with which words appear [22]. Additionally, BoW pro-
duces feature vectors which are fairly sparse. On the other hand, our
system, which uses word embeddings does not have this limitation,
and produces more dense, low dimensional feature vectors. In our
evaluation (results in Table 3), we show that Neurlux gives a higher
validation accuracy and a much stronger ability to generalize, both
to other datasets and to other report formats than MalDy.

454

9 CONCLUSIONS

This paper introduced Neurlux, a robust malware detection tool
that can successfully identify malicious files based on their run-time
behavior without feature engineering. It is based on techniques
borrowed from the field of document classification and applied
to dynamic analysis reports. Based on our evaluation results, we
conclude that Neurlux outperforms similar approaches for malware
classification. Our work not only focused on eliminating the need
for feature engineering, but also explains the relation of the classifi-
cation process with respect to different auto-detected features. The
fact that Neurlux can retain a high detection accuracy when tested
on samples from another dataset and on an unknown report format
shows that our model promises robust real-world applicability.

ACKNOWLEDGMENTS

This research is based on research sponsored by a gift from Intel for
the investigation of machine learning for malware analysis, by the
National Science Foundation grant #CNS-1704253, and by DARPA
under agreement number #FA8750-19-C-0003. The U.S. Government
is authorized to reproduce and distribute reprints for Governmental
purposes notwithstanding any copyright notation thereon. The
views and conclusions contained herein are those of the authors
and should not be interpreted as necessarily representing the official
policies or endorsements, either expressed or implied, of DARPA
or the U.S. Government.

We would also like to thank Lastline for providing data that
made this research possible.

REFERENCES

[1]
[2]

[3]
[4]
[5]
[6]

Cuckoo, automated malware analysis. https://cuckoosandbox.org/.

H.S. Anderson and P. Roth. Ember: an open dataset for training static pe malware
machine learning models. arXiv preprint arXiv:1804.04637, 2018.

T. Brosch and M. Morgenstern. Runtime Packers: The Hidden Problem? Black
Hat USA, 2006.

Y. Fan, Y. Ye, and L. Chen. Malicious sequential pattern mining for automatic
malware detection. Expert Systems with Applications, 52:16-25, 2016.

T. Garfinkel, K. Adams, A. Warfield, and J. Franklin. Compatibility is not trans-
parency: Vmm detection myths and realities. In HotOS, 2007.

K. Grosse, N. Papernot, P. Manoharan, M. Backes, and P. McDaniel. Adversarial
examples for malware detection. In European Symposium on Research in Computer
Security, pages 62-79. Springer, 2017.

W. Han, J. Xue, Y. Wang, Z. Liu, and Z. Kong. Malinsight: A systematic pro-
filing based malware detection framework. Journal of Network and Computer
Applications, 125:236-250, 2019.

S. Hochreiter. The vanishing gradient problem during learning recurrent neural
nets and problem solutions. International Journal of Uncertainty, Fuzziness and
Knowledge-Based Systems, 6(02):107-116, 1998.

S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural computation,
9(8):1735-1780, 1997.

Kanchan Sarkar. Recent trends in natural language processing using deep
learning, 2017. https://medium.com/@kanchansarkar/recent-trends-in-natural-
language-processing-using-deep-learning-a1469fbd2ef.

E. B. Karbab and M. Debbabi. Maldy: Portable, data-driven malware detection us-
ing natural language processing and machine learning techniques on behavioral
analysis reports. Digital Investigation, 28:S77-S87, 2019.

A. Kharaz, S. Arshad, C. Mulliner, W. Robertson, and E. Kirda. {UNVEIL}: A
large-scale, automated approach to detecting ransomware. In 25th {USENIX}
Security Symposium ({USENIX} Security 16), pages 757-772, 2016.

C. Kolbitsch, P. M. Comparetti, C. Kruegel, E. Kirda, X.-y. Zhou, and X. Wang.
Effective and efficient malware detection at the end host. In USENIX security
symposium, volume 4, pages 351-366, 2009.

B. Kolosnjaji, A. Zarras, G. Webster, and C. Eckert. Deep learning for classification
of malware system call sequences. In Australasian Joint Conference on Artificial
Intelligence, pages 137-149. Springer, 2016.

M. Lindorfer, C. Kolbitsch, and P. M. Comparetti. Detecting environment-sensitive
malware. In International Workshop on Recent Advances in Intrusion Detection,

[7]

8]

[9]

(10]

[11

[12

=
&

[14

[15


https://cuckoosandbox.org/
https://medium.com/@kanchansarkar/recent-trends-in-natural-language-processing-using-deep-learning-a1469fbd2ef
https://medium.com/@kanchansarkar/recent-trends-in-natural-language-processing-using-deep-learning-a1469fbd2ef

[16]
[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25

[26]

[27

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41

[42]

pages 338-357. Springer, 2011.

M. Long, Y. Cao, J. Wang, and M. L. Jordan. Learning transferable features with
deep adaptation networks. arXiv preprint arXiv:1502.02791, 2015.

L. v. d. Maaten and G. Hinton. Visualizing data using t-sne. Journal of machine
learning research, 9(Nov):2579-2605, 2008.

T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean. Distributed rep-
resentations of words and phrases and their compositionality. In Advances in
neural information processing systems, pages 3111-3119, 2013.

A. Moser, C. Kruegel, and E. Kirda. Limits of static analysis for malware detection.
In Twenty-Third Annual Computer Security Applications Conference (ACSAC 2007),
pages 421-430. IEEE, 2007

A. Nguyen, J. Yosinski, and J. Clune. Deep neural networks are easily fooled:
High confidence predictions for unrecognizable images. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, pages 427-436, 2015.
D. Oktavianto and I. Muhardianto. Cuckoo malware analysis. Packt Publishing
Ltd, 2013.

G. Paltoglou and M. Thelwall. More than bag-of-words: Sentence-based docu-
ment representation for sentiment analysis. In Proceedings of the International
Conference Recent Advances in Natural Language Processing RANLP 2013, pages
546-552, 2013.

N. Peiravian and X. Zhu. Machine learning for android malware detection using
permission and api calls. In 2013 IEEE 25th international conference on tools with
artificial intelligence, pages 300-305. IEEE, 2013.

R. Perdisci, A. Lanzi, and W. Lee. Mcboost: Boosting scalability in malware
collection and analysis using statistical classification of executables. In 2008
Annual Computer Security Applications Conference (ACSAC), pages 301-310. IEEE,
2008.

E. Raff, J. Sylvester, and C. Nicholas. Learning the pe header, malware detection
with minimal domain knowledge. In Proceedings of the 10th ACM Workshop on
Artificial Intelligence and Security, pages 121-132. ACM, 2017.

E. Raff, J. Barker, J. Sylvester, R. Brandon, B. Catanzaro, and C. K. Nicholas.
Malware detection by eating a whole exe. In Workshops at the Thirty-Second
AAAI Conference on Artificial Intelligence, 2018.

T. Raffetseder, C. Kruegel, and E. Kirda. Detecting system emulators. In Interna-
tional Conference on Information Security, pages 1-18. Springer, 2007.

B. Rahbarinia, M. Balduzzi, and R. Perdisci. Exploring the long tail of (malicious)
software downloads. In 2017 47th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN), pages 391-402. IEEE, 2017.

M. Rhode, P. Burnap, and K. Jones. Early-stage malware prediction using recurrent
neural networks. computers & security, 77:578-594, 2018.

C. Rossow, C. J. Dietrich, C. Grier, C. Kreibich, V. Paxson, N. Pohlmann, H. Bos,
and M. Van Steen. Prudent practices for designing malware experiments: Status
quo and outlook. In 2012 IEEE Symposium on Security and Privacy, pages 65-79.
IEEE, 2012.

Z. Salehi, A. Sami, and M. Ghiasi. Maar: Robust features to detect malicious
activity based on api calls, their arguments and return values. Engineering
Applications of Artificial Intelligence, 59:93-102, 2017.

A. Sami, B. Yadegari, H. Rahimi, N. Peiravian, S. Hashemi, and A. Hamze. Malware
detection based on mining api calls. In Proceedings of the 2010 ACM symposium
on applied computing, pages 1020-1025. ACM, 2010.

J. Saxe and K. Berlin. Deep neural network based malware detection using
two dimensional binary program features. In Malicious and Unwanted Software
(MALWARE), 2015 10th International Conference on, pages 11-20. IEEE, 2015.

D. Sgandurra, L. Mufioz-Gonzalez, R. Mohsen, and E. C. Lupu. Automated
dynamic analysis of ransomware: Benefits, limitations and use for detection.
arXiv preprint arXiv:1609.03020, 2016.

M. K. Shankarapani, S. Ramamoorthy, R. S. Movva, and S. Mukkamala. Malware
detection using assembly and api call sequences. Journal in computer virology, 7
(2):107-119, 2011.

K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale
image recognition. arXiv preprint arXiv:1409.1556, 2014.

K. Simonyan, A. Vedaldi, and A. Zisserman. Deep inside convolutional net-
works: Visualising image classification models and saliency maps. arXiv preprint
arXiv:1312.6034, 2013.

D. Ucci, L. Aniello, and R. Baldoni. Survey on the usage of machine learning
techniques for malware analysis. arXiv preprint arXiv:1710.08189, 2017.

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser,
and L. Polosukhin. Attention is all you need. In Advances in neural information
processing systems, pages 5998-6008, 2017.

VirusTotal. Av comparative analyses. https://blog.virustotal.com/2012/08/av-
comparative-analyses-marketing-and.html. (Accessed: 2019-3-31).

Z.Yang, D. Yang, C. Dyer, X. He, A. Smola, and E. Hovy. Hierarchical attention
networks for document classification. In Proceedings of the 2016 Conference of the
North American Chapter of the Association for Computational Linguistics: Human
Language Technologies, pages 14801489, 2016.

L. Zeltser. How malware generates mutex names to evade detec-
tion. https://isc.sans.edu/diary/How+Malware+Generates+Mutex+Names+
to+Evade+Detection/19429/. (Accessed: 2019-5-31).

455

[43] H.Zhang, W. Zhang, Z. Lv, A. K. Sangaiah, T. Huang, and N. Chilamkurti. Maldc:
a depth detection method for malware based on behavior chains. World Wide
Web, pages 1-20, 2019.

[44] W. Zhong and F. Gu. A multi-level deep learning system for malware detection.
Expert Systems with Applications, 2019.

[45] C.Zhou, C. Sun, Z. Liu, and F. Lau. A c-Istm neural network for text classification.
arXiv preprint arXiv:1511.08630, 2015.


https://blog.virustotal.com/2012/08/av-comparative-analyses-marketing-and.html
https://blog.virustotal.com/2012/08/av-comparative-analyses-marketing-and.html
https://isc.sans.edu/diary/How+Malware+Generates+Mutex+Names+to+Evade+Detection/19429/
https://isc.sans.edu/diary/How+Malware+Generates+Mutex+Names+to+Evade+Detection/19429/



