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Monte Carlo simulations of trapped ultracold neutrons in the UCNτ experiment
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In the UCNτ experiment, ultracold neutrons (UCN) are confined by magnetic fields and the Earth’s
gravitational field. Field-trapping mitigates the problem of UCN loss on material surfaces, which caused
the largest correction in prior neutron experiments using material bottles. However, the neutron dynamics in
field traps differ qualitatively from those in material bottles. In the latter case, neutrons bounce off material
surfaces with significant diffusivity and the population quickly reaches a static spatial distribution with a density
gradient induced by the gravitational potential. In contrast, the field-confined UCN—whose dynamics can be
described by Hamiltonian mechanics—do not exhibit the stochastic behaviors typical of an ideal gas model
as observed in material bottles. In this report, we will describe our efforts to simulate UCN trapping in the
UCNτ magnetogravitational trap. We compare the simulation output to the experimental results to determine the
parameters of the neutron detector and the input neutron distribution. The tuned model is then used to understand
the phase-space evolution of neutrons observed in the UCNτ experiment. We will discuss the implications of
chaotic dynamics on controlling the systematic effects, such as spectral cleaning and microphonic heating, for a
successful UCN lifetime experiment to reach a 0.01% level of precision.

DOI: 10.1103/PhysRevC.100.015501

I. OVERVIEW

The UCNτ experiment is designed to measure the lifetime
of neutrons by counting the number of surviving ultracold
neutrons (UCN) in a trap [1–3]. The experiment is motivated
by the discrepancy in the values of neutron lifetime measured
by the methods of beam and bottle; see reviews [4–8] for
details. The UCNτ experiment uses a magnetogravitational
trap to confine UCN in an open-top magnetic bowl. A per-
manent magnet array in a Halbach configuration produces a
steep magnetic gradient near the array surface. About 5300
discrete permanent magnets, each with a pole strength of
1 T, were used in forming the magnetic array. The array
covers the inside of a large concave bowl as shown in
Fig. 1. The resulting magnetic field decays exponentially away
from the inner surface of the bowl. Polarized neutrons (in
the low-field-seeking state) bounce off the magnetic field of

the bowl, rise up vertically, and are pulled back down into
the bowl by gravity. As such, gravity forms the lid of this
open-top trap. In this magnetogravitational (MG) trap, UCN
with kinetic energy below 50 neV are completely repelled by
the magnetic field; they rise to a maximum height of 0.5 m
in the Earth’s gravitational field. They are stored in the trap
without experiencing material interactions and the associated
losses. Additionally, a holding field everywhere perpendicular
to the trapping field is provided to ensure that there are no
regions of vanishing magnetic field inside the trapping volume
and depolarization losses are negligible [9,10]. An in situ
neutron detector, using 10B-coated ZnS scintillating sheets
[11] [shown in Fig. 1(C)], can be moved into the trap to count
the surviving neutrons.

In this paper, we present Monte Carlo simulations to
study the dynamics of these field-trapped UCN. Similar
work can be found in Ref. [12,13] with material bottles
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FIG. 1. A cross-sectional view of the UCNτ magnetogravitational trap. A An example UCN trajectory inside the trap. The laboratory

coordinate system x-y-z and the local coordinate system ξ -η-ζ are shown. B A cross section of rows of magnets with identical magnetization

highlighted by the colored strips. Arrows indicate the magnetization direction for each row of magnets. C The in situ detector, referred to as
the dagger detector, which can be to moved vertically in and out of the trap volume. The beige-colored region is the active area of the neutron
detector, coated with 10B, and the gray is the detector housing and support structure.

and in Ref. [9,14–18] for field traps. This work attempts to
understand the behavior of the UCN population in the UCNτ

MG trap—where each neutron reflection is deterministic
and nondiffusive—and its effects on the neutron counting
efficiency using the in situ detector. The physics model of the
surface interaction used in material bottles (with the Fermi
potential, the diffusivity and the loss per bounce as tunable pa-
rameters [12]) is now replaced by a field interaction model [9].
Since the field is known (or can be measured to a high degree
of precision), there is little uncertainty in the microphysics
of neutron scattering. On the other hand, the reduced number
in the degrees of freedom makes it challenging to construct
a Monte Carlo simulation that reproduces the experimentally
measured data. Nevertheless, the simulations elucidate a
nonuniform geometrical acceptance of the overthreshold
neutrons by the in situ detector. Overthreshold neutrons
are neutrons with kinetic energies larger than the trapping
potential but could reside in certain quasistable orbits and
remain in the trap during the finite measurement time. The
nonuniform geometrical acceptance of these neutrons may
imply that the procedure we used in Ref. [2,3]—based on
the counts measured at the cleaning height to constrain the
systematic effects of spectral cleaning and heating—requires
some refinement. The size of these systematic effects, on
the other hand, is reasonably well constrained by the Monte
Carlo simulations. All of the simulations indicate that the
cleaning procedures in place put stringent bounds on possible
systematic errors due to untrapped neutrons and heating. Re-
producing the arrival time data for detected neutrons in detail
is more challenging. This requires fine-tuning a relatively
large set of correlated parameters to reproduce the measured
spectra. Although the level of success is encouraging, it is
clear that further development of both measurements and the
simulations presented here are required to produce convincing
agreement between simulations and measurement, especially

when treating the subtle effects connected to phase-space
evolution.

The paper contains two parts. The first part discusses the
physics models and the optimization of input parameters by
comparing to experimentally acquired data on the neutron
arrival time. Details of the trapping potential, the numerical
integration, and the neutron detection are presented in Sec. II,
the data analysis in Sec. III, and the optimization of model
parameters in Sec. III C. The second part discusses the neutron
dynamics. The chaotic motions and their implications for
spectral cleaning are discussed in Sec. IVA. The effects
of neutron heating due to microphonic vibration and the
estimates of the systematic shift in the neutron lifetime are
presented in Sec IVB.

II. SIMULATION

Each simulation tracks about 105 to 106 neutrons in the
trap, by numerically integrating the equations of motion. The
field potential, following previous work [9,16], is described
by a Halbach array field expansion using a local coordinate
system on a curved surface. Details of the numerical inte-
gration are presented in Appendix A, along with data testing
the numerical integrations, including the degree of energy
conservation, the step size selection, the expansion truncation,
and the numerical convergence. We will start by discussing
how we model the neutrons in the MG trap (see Fig. 1) used
in the UCNτ experiment.

UCN event generation, tracking, and detection

Because the neutrons enter the trap through a removable
segment of the Halbach array (the trapdoor) located in the
bottom of the trap, UCN were generated randomly on a
15 cm×15 cm plane (the size of the trapdoor opening) placed
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at the height of the zero potential point at 3.5 cm above the
bottom of the trap. The difference between the energy and
the potential at birth is the kinetic energy, which sets the
initial velocity,

√
2(E −V )/mn, points along an azimuthal

angle φ0 and a polar angle θ0 relative to z. The polar angle
is generated from a Lambertian (cosine law) distribution.
Standard techniques are used to sample from this distribution
[19]. The azimuthal angle is generated isotropically. A linear
energy distribution is used for studies where the spectrum of
the trap is tuned in the postsimulation analysis; otherwise, a
parameterized energy distribution is used. UCN were gener-
ated up to an energy of 46.1 neV, which is sufficiently larger
than the energy needed to reach the nominal height of the
spectral cleaner (38 cm). After the initialization, each neutron
is tracked for a dwelling time td representing the filling
process, followed by a period of time, tc, for spectral cleaning.
The time constant to fill an empty UCNτ trap, measured after
the trap door opens, is about 70 s. During this time, a constant
flow of neutrons enter the trap; as the trapdoor stays open,
many neutrons already entered the trap exit just as easily. The
orbits of low-energy neutrons do not extend as far into the trap
as high-energy neutrons. Consequently, low-energy neutrons
may drain faster during the loading process. To account for
this possible effect, an energy cutoff in the spectrum was
added. Filling the trap from below with an open trapdoor
may condition the phase-space distribution inside the trap
and affect the fraction of semiperiodic neutrons. However, it
is difficult to model this filling stage, as the magnetic field
with an open door is significantly more complicated and has
not yet been modeled. The current model only implements
the magnetic field of a closed trap. In order to simulate the
filling procedure, in which each neutron would enter the trap
at a different time, we set a dwelling time for each UCN as
exponentially distributed with a time constant of 70 s and
truncated at 150 s. After the dwelling time, td , each UCN is
subject to 50 s or 200 s of spectral cleaning to emulate the
dataset of interest. After the cleaning period, the cleaner is
immediately moved to a height of 43 cm and remains a perfect
absorber in the trap.

After the initial combined dwelling and cleaning time,
td + tc, the UCN are tracked throughout the duration of the
preset storage time between 20 and 1400 s (that matches our
experimental procedure). Neutron loss through β decay is
generally included during the tracking. In some cases, it was
added later in the postsimulation analysis. Finally, the detector
is simulated by inserting at a speed of 3.8 cm s−1 and stopping
at the programmed heights of the simulated run.

The dagger detector [see Fig. 1(C) and Fig. 2 (left)] is on
the midplane y = 0, with a cross section defined by

−20 cm < (x − xoff ) < 20 cm, and

f (x) < z < h(t ) + 20 cm, (1)

where xoff = 15.24 cm is the position offset of the dagger
detector from the origin of the laboratory coordinate system,
and f (x) is the curved profile of the bottom of the dagger
detector that matches the curved inner surface of the Halbach
array. f (x) is set at ζ ′ = 0 where ζ ′ is the local bowl normal
offset by the detector height. The lowest edge of the dagger

FIG. 2. Simulation of neutron hits on the dagger detector. The
left contour plot shows the distribution of arrival locations on the
surface of the dagger detector summed over all detector positions.
The right plot shows the probability of a UCN hit as a function of
ζ , the distance from the bottom edge of the dagger detector, in a
three-step measurement. Note that the neutrons detected in the lowest
position (peak 3) are distributed higher than that in peak 2.

detector, h(t ), defines the height of the detector. In addition,
the housing above the neutron-active part of the dagger de-
tector (which contains the fibers, the photomultipliers and
cooling loops) is simulated as a box made out of aluminum.
It has two parts: The lower housing is a trapezoid whose
lower width is 40 cm, upper width is 69.215 cm, and height
is 14.478 cm. The upper housing is a rectangle of width
69.215 cm and height 12.192 cm. Every time a UCN trajectory
crosses the y = 0 plane (indicated by a sign change in the y
coordinate), the approximate crossing point (x, z) is extrap-
olated to determine whether it falls within the detector cross
section. The simulated position distribution of the neutron hit
on the dagger detector (for all neutron events recorded in a
three-step measurement) is illustrated in Fig. 2. This hit profile
matches the shape given in Eq. (1). Note that the majority of
the neutron hits are registered within the 5 cm of the bottom
edge. In a three-step measurement, the detector is first inserted
to measure the remaining neutrons at the cleaning height,
followed by lowering in stages to detect UCN at subsequently
lower energies. The arrival time profile of one of these steps
is referred to as a peak; peak 1 corresponds to the check for
uncleaned neutrons and peaks 2 and 3 to detection of trapped
UCN. As shown in Fig. 2 right, the neutrons detected in peak 3
are distributed at a larger ζ relative to those in peak 2. In peak
3, the bottom of the detector is only 1 cm from the Halbach
array and UCN are repelled by the strong magnetic field to
reach higher positions.

For each detector interaction, we either simulate absorption
during tracking or during postprocessing. In the former case,
we record the first successful absorption time, energy, and
location. In the latter case, we record the first 50 interaction
times and perpendicular energies. The latter case is used when
tuning the detector model. If a UCN is not absorbed at the
detector surface, then the neutron is reflected to a different
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angle to simulate a nonabsorbing surface interaction. On re-
flection, the outgoing angle follows a Lambertian (cosine law)
distribution. Similarly, a UCN is scattered diffusively using
a Lambertian model if it intersects the aluminum detector
housing.

III. POSTSIMULATION ANALYSIS
AND MODEL OPTIMIZATION

During tuning of the Monte Carlo, the record of the sim-
ulated detector interactions is processed, using the surface
model of interest, to generate arrival time histograms in the
following fashion. Each UCN, ni, is given a weight based
on the spectrum model w. Next, for each of the 50 recorded
detector interactions j of this neutron, a surface model is
invoked to determine the probability of neutron absorption
μ(E⊥ i, j ) in the 10B surface layer; a uniform random number
ui, j is generated for each detector interaction for the given
UCN. The time of the detector hit event, for the given UCN, is
set to be the first detector interaction where ui, j < μ(E⊥ i, j ).
Once the neutron is absorbed in the detector, the record of
subsequent detector interactions is ignored. In this way, many
detector models can be tested using the same simulation
output.

A. Postsimulation spectral weighting

Even though the energy spectrum of the UCN output
from the LANL source has been measured, the initial UCN
energy spectrum in the UCNτ trap is not well known, as the
geometry and the material choice of the UCN guides together
with the vertical position of the trap modify (or filter) the
spectrum of neutrons entering the trap. Simulated neutrons
are genered by sampling from a superthermal energy spectrum
[20] and lambertian angular distribution and are then weighted
by w(E , θ0) ∝ Ex′−1cosy

′
(θ0) to present a parametrized UCN

distribution of

ρ(E , θ0) ∝ 
(E − Ecut )E
x′
sin(θ0)cos

1+y′
(θ0), (2)

where x′ gives the scaling of density with UCN energy, y′
models the forward directedness of the UCN flux, θ0 is the
initial polar angle of UCN, and Ecut is the low-energy cut-off,
due to the fact that low-energy neutrons are not reflected
by the trap door in the open position. Inside a superthermal
source, UCN are produced with spectral density x′ = 1. For
neutrons entering the UCNτ trap (after several meters of
neutron guides), this power-law scaling is adjustable to allow
for spectral distortion due to the energy-filtering during the
neutron transport. The UCN fill the UCNτ trap with the
trapdoor open. Since the trapdoor is positioned at the bottom
of the trap, low-energy neutrons, which populate the region in
the immediate vicinity of the trapdoor, readily exit the trap. As
such, a low-energy cutoff was assumed in the UCN spectrum.

B. Detector surface model

The rate of the detected neutron events depends on the
details of the surface interaction on the detector. We explore
a variety of detector models in the postsimulation analysis.
Ideally, the dagger detector has a flat UCN surface composed

FIG. 3. The neutron absorption probability as a function of the
neutron energy (perpendicular to the detector plane) for a 10B layer
of 3, 6, and 20 nm.

of three parts: a top layer of B2O3, followed by a layer of pure
10B, and an underlayer of bulk ZnS. The top oxide layer allows
variations of the effective Fermi potential. The thickness of the
10B layer controls the probability of absorption for each UCN
interaction. The ZnS crystals are around 10 μm in diameter
[11], which is larger than the UCN wavelength (∼500 Å).
Therefore, the use of the simple flat layer model is justified
to estimate the probability of reflection and absorption. The
polycrystalline nature of ZnS, however, will increase dif-
fuse reflection that randomizes the direction of the reflected
neutrons.

To estimate the absorption probability for a multilayer
system, we follow the treatment given in Appendix 4 of
Ref. [20]. Adopting 1-d quantum mechanical step potentials,
the reflection coefficient R on the first incident boundary can
be estimated by

R = −M̄21

M̄22
, (3)

where M̄ = M̄N , . . . , M̄2 × M̄1 is the product of matrices
which match the boundary conditions on each of the N th layer
boundaries with M̄N

i j as the coefficients for the transmitted and
reflected wave ( j) or the wave function and its derivative (i).
For the neutrons remaining inside the layers, they are mostly
likely absorbed and subsequently generate a scintillation sig-
nal inside ZnS; this gives the absorption probability of

μ(E⊥) = 1 − |R|2. (4)

The absorption probability for a nominal detector surface is
plotted in Fig. 3.

Data from consecutive run cycles exhibited an increasingly
longer absorption time, shown in Fig. 4. Three effects could
explain the observed increase: an oxide or contamination
layer building up over time, a change in the thickness of the
boron (see Fig. 5), or damage to the detector from occasional
mechanical malfunctions over the course of the experiment.
Mechanical damage was caused by dropping the detector
onto the Halbach array, resulting in visible damage on the
10B-coated surface near the bottom of the dagger detector.
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FIG. 4. Neutron counted by the in situ detector as a function of
time after the detector insertion. Note that the same detector shows
different time constants for two subsequent years of operation.

We model the effect of this detector damage by modifying
Eq. (4) with an independent probability of interacting with a
bare patch instead of 10B. If we assume that the damage is
limited to the bottom band with a thickness of ζcut, then the
modified probability of absorption is modeled as

P(E⊥, ζ ′) =
{

ζ ′
ζcut

× μ(E⊥) 0 � ζ ′ < ζcut

μ(E⊥) ζ ′ � ζcut
, (5)

where ζ ′ is the distance from the bottom edge of the detector.
Incidentally, UCN absorbed during the last step have a larger ζ
on average than in higher steps due to the large field below the
detector, and thus a larger probability of absorption, resulting
in a faster draining time.

C. Parameter tuning via the χ2 minimization

In the postsimulation analysis, we construct the timing
spectrum of the neutron hit on the dagger detector from
simulated data while varying Monte Carlo parameters. We
compare the arrival time histogram of the detector hits gener-
ated by the Monte Carlo simulations to the experimental data
recorded in the dagger detector for the 2016–2017 run cycle.

FIG. 5. Detector response (for a three-step measurement) with
two different thicknesses of the boron layer. The one with a thicker
boron layer counts the neutrons in the MG trap faster.

FIG. 6. Contours of χ 2 in the parameter space of l10B, ζcut , Ecut,
x′, and y′. On each subplot, the projection of the five-dimensional χ 2

contours and the global minimum is shown.

Energy-weighted histograms (based on simulations using a
superthermal spectrum) can be compared to the reference
histograms (based on experimental data) to calculate the re-
duced χ2. Reference histograms are compiled from dozens
of experimental runs under identical conditions but across
several weeks. Detector counts are formed using the coinci-
dence methods described in previous work [3]. Each neutron
event is identified by a coincidence of counts from the two
photomultiplier tubes (within a 50-ns time window), followed
by five additional counts where the interarrival time was less
than 408.8 ns (chosen to minimize the systematic shift due to
the detector deadtime/pileup effects). A χ2 value is calculated
using the routine in Gagunashvili [21] which is also used by
the ROOT data analysis framework [22]. A χ2 minimization
was carried out using an optimization routine to determine
the model parameters for the best match between the Monte
Carlo data and the experimental data. All parameters (10B
thickness, ζcut, Ecut, x′, and y′) were varied to search for the
global minimum. The χ2 contours are produced with linear
interpolation on results from a subsequent grid search. Two-
dimensional (2D) plots of χ2 contours in the parameter space
are shown in Fig. 6. Each plot shows the projection of the χ2

contours in two parameters.
In processing the hit record into the detector timing his-

togram, we calculate the absorption probability μ(E⊥) using
an Akima spline with the GNU Scientific Library [23]. Instead
of calculating Eqs. (3)–(5), the spline interpolation speeds
up the computation to determine the reflection coefficient for
each incident of surface interaction. For the typical range
of parameters, the difference in χ2 between the full model
and interpolation was within roundoff error. The resulting χ2

function has many local minima, many of which are artifacts
due to discrete steps and statistical fluctuations associated
with finite binning size. The covariance matrix adaptation
evolutionary strategy (CMA-ES) minimization technique was
used [24] because it is expected to optimize rugged objective
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FIG. 7. Distribution of the number of collisions until absorption
on the detector with a 6 nm 10B layer. Multiple collisions with the
detector took place before a neutron is absorbed by the boron layer
and detected.

functions well. Global minima were found within hundreds
of iterations. The iteration stops when the solutions converge
with a relative difference less than ∼10−6. An estimate of the
1-σ error in the five fitted parameters is given by forming
contours of χ2

min + 1. We examine the parameters of several
local minima with the lowest χ2s; they all fall within the 1-σ
range of the best fit parameters.

The dagger detector can be lowered to the lowest point of
the trap either in a single step or in multiple steps, each step
reaching a subsequently lower position. Multistep operation
allows differential spectral measurement, as only neutrons
with high enough energies can reach the detector positioned
at elevated heights. As the detector is moved to subsequently
lower positions neutrons of decreasing energies are counted in
sequence.

The model was first tuned on the nine-step data taken in
2016–2017. Recall that the first step of the measurement is
meant to detect residual high-energy UCN and is therefore not
in the tuning. A minimum was found with χ2/NDF = 12 at
10B thickness= 5.6 nm, ζcut = 1.3 cm, Ecut = 7 neV, x′ = 1.2,
y′ = 0.28. The χ2

min + 1 contours are given in Fig. 6 and the
histograms are shown in Fig. 8. The analysis favors a detector
model with no oxide layer on top of 10B coating, that is 6 nm,
thinner than expectations but consistent with the knowledge
of the coating thickness of approximately 10 nm taken from
witness plates. We therefore discard the oxide layer in the
model. Additionally, the damaged portion was fit to be 1.3 cm,
which is consistent with visual inspection of the detector.
Visually damaged portions of the detector were macrospopic
in size, confined to the bottom edge of the detector, and
approximately 1 cm wide. The thin layer gives the absorption
probability per bounce of only 20%. Distribution of the num-
ber of collisions for absorption is plotted in Fig. 7. Neutrons
not absorbed scatter off the detector surface as described in
Sec. II A. The resulting model with physics of the detector and
input spectrum (optimized using the nine-step measurement)
was cross-checked by a full simulation to predict the timing
spectrum of three-step measurements. We also cross-check
the energy weighting scheme by comparing histograms of

FIG. 8. Comparison of 2016–2017 data (nine-step measurement)
with a simulation with the best-fit Monte Carlo parameters. The
absolute difference between the data and the simulation is shown on
the bottom figure.

weighted events and histograms of events generated using the
optimized model; the results were identical. Figure 9 shows
the results of this optimized simulation in comparison to the
2016–2017 three-step data. The resulting χ2/NDF is compa-
rable to the fit to the nine-step data, indicating consistency.

Even though the simulation with optimized parameters
does not sufficiently agree with the experimental data on
the quantitative level, as indicated by the rather large χ2,
the exercise brings about qualitative understanding of the
neutron arrival time spectra. The draining time constant (for
each individual peak) is largely controlled by the detector
parameters and the relative peak heights by the input neutron
spectrum. On the detector, a larger thickness of the boron layer
decreases the draining time observed in all peaks in multistep

FIG. 9. Comparison of the three-step measurement (2016–2017
data) with a simulation with the best-fit Monte Carlo parameters ob-
tained by the nine-step comparisons (Fig. 8). The absolute difference
between the data and the simulation is shown on the bottom figure.
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measurements. Shorter draining times also mean more UCN
are counted at the higher heights. The energy scaling x′ affects
the relative height between peaks; a higher power scaling will
increase the counts in early steps. A higher-energy cutoff Ecut

will lower the population of the lowest peaks in the count-
ing period. In addition, the angular distribution parameter y′
strongly affects the last peak, as UCN with a large initial angle
tend to roll on the bottom of the trap and are more likely to
be counted when the detector is lowered to the array surface.
A more forward-directed incoming flux of UCN decreases
the relative height of the last peak. Finally, the ζcut, which
accounts for the damage on the bottom ridge of the detector,
adjusts both the relative heights between the peaks and the
draining time. A nonzero ζcut allows the bulk of the detector
to have a thicker 10B coating, which causes UCN to drain
relatively faster in the last step.

IV. NEUTRON DYNAMICS

With the detector and UCN spectrum model parameters
adjusted to produce good agreement with our measured de-
tector signals, we attempt to examine the dynamics of the
trapped neutrons and to understand whether the procedures
of spectral cleaning and neutron detection implemented in
the UCNτ experiment can mitigate systematic effects to the
desired level of precision. The ensemble of trapped neu-
trons is often treated as in an ergodic state which exhibits
the same behavior averaged over time as averaged over all
the accessible states in the phase space. The design and the
analysis of past bottle neutron lifetime measurements were
largely based on this assumption. However, this assumption
is not valid in our application. Due to the nature of our
field trap, where the neutrons bounce off field gradients of
macroscopic scales, it is unlikely that the trapped neutrons
would ever establish the ideal stochastic distribution. A few
special geometries are known to be ergodic, including the 2d
stadium and gravitational billiards in a wedge [25], but most
systems exhibit mixed behaviors, with both quasiperiodic
and chaotic motions. The dynamics of UCN inside our trap
influence every stage of the lifetime measurement cycle: it
affects how efficiently the overthreshold neutrons are removed
in the initial stage of the spectral cleaning; it affects how
well the neutrons explore the phase space during the stage
of storage; it affects how efficient the neutrons are absorbed
and counted by the detector inserted into the trap at different
heights.

A. Chaos and UCN spectral cleaning

The open-top geometry of the UCNτ trap allows over-
threshold neutrons to flow out of the trap. However, many of
them remain inside the trap. If these overthreshold neutrons
are in chaotic orbits, then they can quickly find the escape
trajectories. To further facilitate the removal of these over-
threshold neutrons, a spectral cleaner, made of a large sheet
of polyethylene, is inserted to cover a horizontal plane at a
fixed cleaning height (typically at a few centimeters below
the top of the trap). High-energy neutrons (including the
overthreshold neutrons) rise up to the height of the cleaner,

get upscattered and removed from the trap. However, ap-
proximately half of overthreshold neutrons are rolling orbits
characterized by trajectories close to the array (ζ remains
within a few centimeters). We call these trajectories rolling
orbits because they tend to have their kinetic energy primarily
in the longitudinal directions and roll from one end of the
array to the other without exploring the inner volume of the
trap. As such, they might not rise high enough to interact with
the cleaner. Many of these rolling orbits are quasiperiodic
and the timescale to evolve into escape trajectories, given
the nondiffusive nature of the field interactions, can be quite
long. During the long storage duration, this slow escape of
the residual population of overthreshold neutrons leads to a
systematic shortening of the neutron lifetime.

To study the spectral cleaning, we will analyze the dynam-
ics of high-energy neutrons, including overthreshold neutrons.
We classify the motions of these neutrons into the quasiperi-
odic and chaotic orbits by the Lyapunov characteristic expo-
nents (LCE). The LCE measures the rate of divergence of
two trajectories with an infinitesimal difference in the initial
condition, ε. In our six-dimensional phase space, there are
two unique, positive LCE. The largest exponent dominates
the growth of the separation �δ because any difference in that
direction is exponentially amplified over the other direction.

We follow an algorithm used by Benettin et al. [26] to
measure the largest LCE of any given trajectory. In our Monte
Carlo simulations, for each trajectory, we randomly sample an
initial condition to start a reference trajectory and its partner
which is displaced a small amount ε in phase space. The two
trajectories, using the symplectic integrator, are evolved for
a time �t , followed by an assessment of the separation in
phase space �δi. The partner trajectory is then reset to begin
at a point ε along δ̂ away from the reference trajectory. This
procedure is then repeated to allow us to record a distribution
of separations. The record of N separations is averaged to find
an averaged rate of separation for each reference trajectory:

k = 1

N�t

N∑
i=1

ln

(
|�δi|
ε

)
. (6)

The k approaches the LCE, as N approaches infinity, and ε

approaches zero. The normalized separation |�δ| is defined as

|�δ| =
√(

x − x′

X

)2

+
(
y − y′

Y

)2

+ · · · +
(
pz − p′

z

P

)2

, (7)

where x, y, . . . , pz is the location of the reference trajectory
in phase space, x′, y′, . . . , p′

z is the location of the partner
trajectory, and X,Y, . . . ,P are normalization factors to ensure
equal contributions from separations in momentum space and
separations in position space. Both the reference and the part-
ner trajectories share the same initial position and speed, while
the initial momenta differ by a slight angular perturbation.
This scheme ensures the same energy for the two trajectories.

Figure 10 shows the results of one such Monte Carlo
simulation, in which the trajectories were numerically inte-
grated inside the UCNτ trap using an initial separation of
ε = 1 × 10−9, for a time �t = 5 s, and for N = 100 resets.
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FIG. 10. The distribution of LCE of neutron trajectories and the
corresponding neutron energy.

We find that the distribution of the LCE strongly depends
on the energy of UCN. Below some critical energy (E <

25 neV), most UCN are regular with k < 0.5. Above this
threshold, a group of chaotic UCN emerges, with k growing
linearly with energy. This increase in k can be understood by
a higher momentum causing �δ to grow more during the 5 s
of separation. As the neutron energy approaches the energy
threshold of the trap (50 neV), the percentage of neutrons
in chaotic orbits increases. Even for overthreshold neutrons,
there is still a nonzero fraction of neutrons in quasiperiodic
orbits, which might be hard to remove from the trap and might
pose possible challenges in controlling the systematic effects
of the lifetime measurements.

In the recent UCNτ run cycles, the cleaning height was
set at 38 cm above the bottom of the trap. The cleaner covers
approximately half of the trap area and was lowered at the
start of the filling procedure which lasted 150 s. The cleaner
stays at the cleaning height for 50 s, after filling, to remove
high-energy neutrons. After the cleaning period, the cleaner
was raised to a height of 43 cm, where it remained during the
storage period. In our simulation, the cleaner was modeled as
a perfect absorber covering exactly half the area of the trap.
UCN were simulated with the cleaner at 38 cm for up to 200 s
postfilling. The arrival time on the cleaner was recorded for
each UCN that could reach it, and we assign the cleaning time
as the first arrival time. Figure 11 shows the distribution of the
cleaning time for neutrons with high enough energies to rise
and intersect the cleaner as a function of time on the x axis.
For each cleaner hit event, we also calculate the corresponding
Lyapunov exponent k, which is displayed on the y axis.

The 2D histogram, when integrated over the y axis, shows
how quickly neutrons are removed from the trap by the
cleaner. The cleaning time distribution for all UCN groups is
shown in dark gray. There is an initial fast cleaning period
followed by a long tail. The red (gray) histogram shows UCN
with k < 0.75. These are trajectories in regular, quasiperiodic
orbits, that slowly evolve into trajectories that intersect the
cleaner. These quasiperiodic orbits make up the bulk of the
cleaning time distribution tail. UCN with energy >43 cm
are cleaned significantly faster than lower-energy UCN. The
initial cleaning time is faster and the tail is significantly

FIG. 11. The distribution of LCE and the arrival time on the
cleaner. The bottom figure shows the count rate by integrating the
neutrons over the full range of the UCN energy (dark gray), and over
neutrons with LCE <0.75 with quasiperiodic trajectories (red/gray),
and over neutrons with E/mng > 43 cm (orange/light gray).

smaller. These high-energy UCN will be susceptible to losses
during storage on the raised cleaner inside the trap.

To understand how orbits of different LCE are populated,
we plot the initial polar angle θ0 and the Lyapunov exponent
of the resulting trajectory. Figure 12 shows the distribution
for both the overthreshold neutrons with E > g38 cm and
the trappable neutrons with E < g38 cm. For overthreshold
neutrons (on the left plot), the neutrons are roughly separated
into two groups by the LCE: The group with k > 0.75 has
a broad angular distribution centering at low θ0 and the other
with k < 0.75 starts with larger θ0 > 45◦. A sizable amount of
overthreshold neutrons are quasiperiodic and in rolling orbits,
populated with an initial polar angle >45◦. These neutrons, as
shown in Fig. 11, take a long time to clean due to their small
LCE. In contrast, Fig. 12(b) shows that the trappable neutrons,
independent of their initial polar angle, mostly reside in
quasiperiodic orbits with small k. To understand how to most
efficiently clean these neutrons, we plot the hit position on
the cleaner in Fig. 13(a). The nonuniform distribution of the
hit position can be understood as the effects of imaging the
trapdoor (where the neutrons are started) by the combined
magnetic and gravitational fields; the effective neutron optics
renders on the plane of the cleaner multiple images of the
trapdoor, similar to the effects of gravitational lensing. Fig-
ure 13(c) shows how the hit position of neutrons in the rolling
orbits (neutrons with θ0 > 45◦) concentrate on the edge of
the cleaner. Figure 13(b) shows the hit of neutrons after the
cleaning time of 50 s; the resulting uncontrolled removal of
neutrons will cause a systematic shift on the neutron lifetime.
Finally, Fig. 13(d) shows the neutron hit distribution if the
neutrons are heated during the storage; these neutrons are lost
on the cleaner during the storage time and it leads to another
systematic shift in the neutron lifetime.

To reduce the size of the systematic lifetime shift due to
insufficient spectral cleaning, we can either leave the cleaner
at the cleaning height (38 cm) for longer times, or move the
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FIG. 12. Distribution of the initial polar angle and the Lyapunov exponent for (a) overthreshold neutrons and (b) trappable neutrons.

cleaner at a lower height while maintaining the same raised
height. The resulting statistics of neutrons in these cleaning
scenarios are given in Table I. The numbers are reported as
the ratio to the total number of neutrons. In this table, the
uncleaned neutrons are defined as the total neutrons with suffi-
cient energy to reach height larger than the cleaning height of
the cleaner (38 cm). Out of these, some can reach higher than
43 cm, which is the height of the cleaner at the raised position.
These high-energy neutrons have a finite probability to hit the
cleaner at the raised height and get lost during storage, causing
a systematic shortening of the measured neutron lifetime. This

leads to a neutron lifetime down-shift of 0.034 second, which
is consistent with the upper-bound limit reported in Ref. [3].

B. Multistep detection and Peak 1 corrections

The dagger detector provides insight into the dynamics of
the trapped UCN, and understanding the detector response
using both Monte Carlo and data-driven methods is critical
for limiting potential systematic effects. Multistep neutron
detection spreads out the neutron counts over time and thus
mitigates the size of dead-time-related corrections associated

FIG. 13. Distribution of neutron hits on the cleaner surface for (a) neutrons arriving over the first 50 s of the cleaner insertion, (b) neutrons
arriving after 50 s, (c) neutrons with initial polar angle θ0 > 45◦ (integrated over the full cleaning time), and (d) neutrons being heated during
storage and hitting the cleaner at the raised position.
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TABLE I. Fraction of uncleaned UCN population and the shift in
τ , evaluated with cleaning configurations varied in the cleaning time,
the cleaning height, and the ubscattering probability per interaction.
The high-energy cut-offs of interests are set by the cleaner at the
cleaning position at 38 cm and at the raised position at 43 cm.

Cleaning conditions
Population fraction �τ (s)

time, height, prob. E/mng > 38 cm >43 cm

50 s, 38 cm, 50% 0.024 9.8× 10−5 0.05
50 s, 38 cm, 100% 0.012 6.6× 10−5 0.034
200 s, 38 cm, 100% 0.0036 3.4× 10−6 0.0016
50 s, 35 cm, 100% 0.00019 9.8× 10−8 8 × 10−5

with high counting rates. More importantly, it allows for
differential spectral measurement, as only neutrons with high
enough energies can reach the detector positioned at elevated
heights. In a typical multistep detection, the first step, set at the
cleaning height (38 cm), can be used to check for the presence
of uncleaned or heated neutrons. The arrival time profile of
neutrons during the first step is referred to as Peak 1 or P1.
The shape of the timing spectra measured in the multistep
detections is a product of the geometrical acceptance and
the spectral distribution of the stored neutrons. The resulting
spectral monitoring is a handle to detect systematic effects,
such as material loss or heating loss, that often have a strong
energy dependence.

We have attempted to use the neutrons counted in P1 to
quantify the effects of insufficient cleaning. If the cleaner
did not sufficiently remove the overthreshold neutrons (as
discussed in the previous section), then we expect a finite
probability for these overthreshold neutrons to be counted by
the dagger detector placed at the cleaning height. We expect
these excess counts for the short storage runs, but not for the
long storage runs because during the long storage time the
overthreshold neutrons would have either exited the trap or
intersected with the cleaner at the elevated height and thus
evaded detection. This leads to a systematic downshift of
the measured neutron lifetime. To correct for this effect of
insufficient spectral cleaning, we implemented a correction
procedure, called P1 subtraction. We subtract the residual
population of overthreshold neutrons from the total detected
counts, based on the counts registered in Peak 1 of the
multistep detection when the detector was inserted at the
cleaning height. The geometrical acceptance of neutrons for
the dagger detector scales roughly as the area of the active
surface of the detector to the volume occupied by the neutrons
(of sufficient energies to intersect the dagger detector at the
specific height). Thus, the geometrical acceptance in the P1
position is rather limited, as indicated by the long counting
time recorded in peak 1 in the multistep timing spectrum (see
Fig. 14). In our P1 correction procedure, we extrapolate the
total population of the uncleaned, overthreshold neutrons in
the first peak by fitting the counting curve to an exponential
curve (the red (gray) dashed line in Fig. 14) with the draining
time constants measured in dedicated runs. Integrating this ex-
trapolated curve to infinite time should give the total number
uncleaned UCN which are overthreshold and could rise up the
the height of the cleaner. See Refs. [2,3] for more details.

FIG. 14. The P1 subtraction procedure is illustrated by the red
(gray) dashed curve which fits the neutron counts measured in P1 (as
the detector is positioned in the cleaning height) by an exponentially
decaying curve, extrapolated to infinite time. The curve fitting esti-
mates the total population of overthreshold neutrons that did not get
removed by the cleaner; the fitted number is then subtracted from the
total counted neutron events.

The correction procedure described above assumes that
all the overthreshold neutrons can be counted by the dagger
detector in the P1 position, if the detector were counting in
position for a sufficiently long time. The curve-fitting extrapo-
lates the integrated number of overthreshold neutrons and thus
corrects for the finite measurement time. It implicitly assumes
that the geometrical acceptance of overthreshold neutrons
remains the same independent of the detector position and
height; naively, the acceptance is roughly the ratio of the area
of the detector to the volume occupied by the overthreshold
neutrons. These assumptions are valid, if the neutron distri-
bution is ergodic, i.e., the trapped neutrons sample uniformly
through the accessible points in the phase-space volume.

This simulation work, on the other hand, shows that a sig-
nificant amount of field-trapped neutrons remain in quasiperi-
odic trajectories and they don’t fully explore the phase space.
In the UCNτ trap, there are many neutrons residing in
quasiperiodic orbits, characterized by small LCEs. The sim-
ulation shows that after the spectral cleaning (50 s), there
remains a significant population of overthreshold neutrons in
quasiperiodic orbits, which were initially populated with large
polar angles (see discussions in the previous section). These
neutrons bounce close to the surface of the trap and rise up
in height, only when they come close to the circumference
of the trap. Thus, the geometrical acceptance of these over-
threshold neutrons by the dagger detector placed in P1—high
in the middle plane of the trap—is practically zero. As the
dagger detector descends to the subsequently lower position
it overlaps with the volumes occupied by overthreshold neu-
trons, and the geometrical acceptance increases. This effect is
illustrated in the timing spectrum shown in Fig. 15, in which
the nine-step detection of the full UCN spectrum (the dark
gray histogram) is compared to the detection of high-energy
neutrons with E/mng > 25 cm [the red (gray) histogram]. As
the detector descends to a lower position, more high-energy
neutrons are counted; the total number of neutron counts is 3
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FIG. 15. The detection of neutrons (all energies) in the nine-step
detection (the dark gray histogram) is compared to the detection of
high-energy neutrons, E/mng > 25 cm [the red (gray) histogram].
The first peak has no counts due to the high efficiency of the cleaner.
The second peak measures neutrons with E/mng > 25 cm. Note that
the subsequent peaks at increasingly lower height contains sizable
population of the same high-energy neutrons with E/mng > 25 cm.
The extrapolated sum of P2 counts only 30% of the total UCN with
E/mng > 25 cm.

times greater than the extrapolated exponential decay assumed
in the P1 subtraction procedure. The P1 subtraction procedure
thus (1) has little sensitivity to populations of overthresh-
old neutrons with low LCEs and (2) uses the exponential
function that fails to capture the geometrical acceptance of
overthreshold neutrons for subsequent lower steps. Limits
for the residual population of overthreshold neutrons from
our P1 subtraction procedure are difficult to interpret, in
that the sensitivity to these populations appear to be low
when measured in P1 and the extrapolation procedure fails
to account for acceptance of higher-energy UCN in the trap in
subsequent, lower steps. Because our corrections are sensitive
to populations of UCN which are expected to be small, evolve
very slowly in phase space, and may have low detection
efficiency, providing an reliable Monte Carlo prediction for
the sensitivity of the P1 subtraction scheme is under develop-
ment. In particular, we are in the process of refining both our
simulation and measurements which explicitly test our ability
to model phase-space evolution.

Our simulations do indicate, however, that the systematic
shift in the neutron lifetime, due to insufficient cleaning, is
well under control as long as the large cleaner is used. Thus
the P1 subtraction procedure does not have direct consequence
to the neutron lifetime. The same arguments also apply to
the way we quantify the effect of neutron heating. UCN
could be heated due to mechanical vibrations of the appara-
tus. The effects of microphonic vibrations can be modeled
by adding oscillatory time dependencies in the coordinates
used to describe the magnetic field. We have implemented
a more comprehensive heating models in our simulations,
building on a 1D toy model used previously [1]. Vibrations
of the Halbach array were modeled by adjusting the x-y-z
coordinates of the array by δx(t ), δy(t ), δz(t ). We use real-
istic vibrational amplitudes δx(t ), δy(t ), δz(t ) extracted from

FIG. 16. The spectrum of detected neutrons in the simulation
with vibration of microphonic frequencies. Scenarios of no vibration,
1, 40, and 80 μm are shown. The neutron spectrum broadens with
increasing amplitude of vibration.

accelerometer measurements, which shows multiple frequen-
cies below 200 Hz and amplitudes no larger than 1 μm.
For every field bounce, neutrons in the trap can gain or lose
energy. After a sufficient number of bounces, the energy distri-
bution broadens; neutrons on the high-energy end of the distri-
bution can rise above the cleaning height. Figure 16 shows the
effects of spectral broadening due to vibrational energy trans-
fer. Over time, a small number of neutrons gain enough energy
to reach the raised cleaner and get absorbed. Figure 13(d)
shows the hits of heated neutrons in the raised cleaner. The
simulation records the number of neutrons lost on the raised
cleaner due to vibrations to determine the shift in lifetime.
Using the vibration data, we conclude that the loss due to mi-
crophonic heating can downshift the neutron lifetime by δτ =
0.03 s. This shift is dominated by initially uncleaned neutrons
and is consistent with shifts due to insufficient cleaning.

If we attempted to correct for the effects of the heated
neutrons, based on the counts registered in P1, then we
need to consider the geometrical acceptance of overthreshold
neutrons. To accentuate the effects of heating (and get more
statistics of heated neutrons), we increase the maximum vibra-
tion amplitude to 40 and 80 μm. The corresponding shifts in
lifetime due to heated UCN lost on the raised cleaner are δτ =
0.15 s and δτ = 7.68 s, respectively. The results of the 80-μm
heating simulation in a three-step detection experiment are
shown in Fig. 17(b). The Monte Carlo simulations shows that
the detector in the P1 does count the heated neutrons, however,
a large population of the heated neutrons also appear in the
lower two steps. Based on the P1 subtraction procedure, we
would have estimated that approximately ten heated UCN
exist in the trap for every one UCN counted in P1 at the
cleaning height. The Monte Carlo shows that the ratio is
750 of heated neutron for every UCN counted in P1, in the
scenario with a large amplitude of microphonic vibrations. For
smaller amplitudes, the ratio gets smaller. Below a critical am-
plitude of microphonic vibrations, the heated neutrons slowly
gain energy. The heated neutrons can extend into the region
between the cleaning height and the raised cleaner (nominally
the horizontal region with 5 cm in height), but they do not
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FIG. 17. The detection of high-energy neutrons (E/mng > 38 cm) in the three-step measurement. The red (gray) histogram shows E/mng >

38 cm, the orange (light gray) E/mng > 43 cm, and the dark gray shows all neutron counts, with f38 and f43 showing the integrated number of
counted UCN of the corresponding energies. fP1 is the counts in Peak 1 normalized to the total population. Neutrons with E/mng > 43 cm could
reach the cleaner at the raised height (during the long storage time) and be lost (without detection). (a) The three-step data in a short-storage
run to illustrates the detection of overthreshold neutrons due to insufficient spectral cleaning. (b) The same three-step data in a long-storage
run to illustrate the detection of overthreshold neutrons due to heating (of 80-μm amplitude). Of UCN, 1.4% are lost to the cleaner at the raised
height due to heating.

rise up to the raised cleaner. In this scenario, no neutrons are
lost, and thus all neutrons counted in the multistep detection—
including the counts registered in P1—should be included to
calculate the neutron lifetime. This suggests that Monte Carlo
input could be an important supplement for the P1 subtraction
technique in setting a quantitative estimate (bound) of the
heating effects. We can attempt to put an upper bound using
the population counted in step 1, however, more careful work
is needed to estimate the efficiency of the dagger detector
counting these heated neutron in the P1 position.

In the extreme heating scenario with 40 μm of vibration
amplitudes, the Monte Carlo predicts 20 UCN detected at
P1, and this will lead to a lifetime shift of 0.15 s, which is
below the current statistical precision. In the experiment, the
neutron count measured in P1 is consistent with background.
However, due to the size of the background, the data collected
so far is statistically consistent with Monte Carlo simulations
using 80-μm amplitude vibrations which would cause a shift
in the lifetime of over 7 s. This is primarily due to low
acceptance for counting heated UCN at the cleaning height.
Though such a large vibration amplitude is inconsistent with
the accelerometer measurements. With nominal vibration am-
plitudes, the Monte Carlo simulation shows no measurable
effect due to the heating loss. Once again, even though the
P1 subtraction procedure might be insufficient to account for
heating, given the small microphonic amplitudes, it does not
have direct consequence to the neutron lifetime at the current
level of precision. Moving towards improving the precision
to 0.1 s, it is necessary to implement long-term monitoring
of the vibrations and to apply necessary corrections using the
Monte Carlo extracted geometrical acceptance to analyze the
multistep detection data.

V. SUMMARY

We have developed an in-depth Monte Carlo model for
the UCNτ experiment. By using an analytical approximation

of the magnetic fields, a thin-film detector model, and a
parameterized spectral distribution of incoming neutrons, the
simulations reproduce major features of the measured time
distribution. This model with five independent parameters,
optimized using the data taken in the nine-step detection,
qualitatively reproduces data taken in the three-step detection.
The model can be improved if the initial neutron distribution is
better known. This can be achieved by a separate simulation
that models detailed neutron transports from the production
source to the UCNτ apparatus, with the trap door in the
open position. Furthermore, efforts to calibrate the detector,
to yield the information on the position-dependent scattering
and absorption probabilities, will be needed to improve the
agreement between the simulation to the data of neutron
detection. Nevertheless, the Monte Carlo model, calibrated
by the neutron timing spectrum, was then used to explore the
unique dynamics of the field-trapped neutrons.

In the simulations, by analyzing the rate of divergence
between close trajectories, we categorize neutrons into chaotic
(with large LCEs) and regular (with small LCEs). Low-
energy neutrons are overwhelmingly regular. Chaotic neu-
trons emerge with energies above 25 neV; even high-energy
neutrons, the population is roughly evenly divided between
regular and chaotic. High-energy neutrons started with po-
lar angles θ0 > 45◦ are most likely to remain in regular,
quasiperiodic orbits. These neutrons present challenges to
spectral cleaning, as it takes a long time for them to intersect
with and be removed by the cleaner placed close to the top
of the trap. The current scheme of using a large-area cleaner
suppresses the overthreshold neutrons (that could be lost on
the cleaner at the raised height at 43 cm) below 10−4 of the
total population of trapped neutrons. This limits the neutron
lifetime shift due to insufficient spectral cleaning to below
0.03 s. Smaller corrections can be achieved by cleaning longer
and/or deeper.

Using the simulation, we also examine the multistep
detection and its power to infer the lifetime correction due to

015501-12



MONTE CARLO SIMULATIONS OF TRAPPED ULTRACOLD … PHYSICAL REVIEW C 100, 015501 (2019)

insufficient cleaning and heating, based on the counts
registered in P1. We discover that the geometrical acceptance
of the overthreshold neutrons, in particular the ones in regular
orbits, is highly position dependent. When the detector is
placed in P1, the acceptance is small for the overthreshold
neutrons in regular orbits. The geometrical acceptance
increases in subsequent peaks as the detector is lowered,
cutting into the phase-space volume of these neutrons. We
also simulate neutron heating due to microphonic vibration,
giving rise to a time-dependent magnetic fields. With nominal
vibration amplitude of 1 μm, the lifetime correction is 0.03 s.
If the vibration amplitudes are anomalously large, then we
might be able to infer the size of heating by counting the
population of neutrons detected in P1. However, the P1
correction procedure, which assumes a constant geometrical
acceptance and an ergodic neutron distribution, does not
capture the underlying neutron dynamics.

Using this simulation, we also study details of the phase-
space evolution. Preliminary results, when compared to exper-
imental data, show that the overall population of neutrons ex-
plore the phase space at a rate somewhat faster than the Monte
Carlo model predicts. This suggests that the trapped neutrons
either undergo excessive heating or the quasiperiodic trajecto-
ries evolve. This could result from irregularity of the magnets,
or additional source of heating beyond the level of micro-
phonic heating estimated in our experiment. Further work is
needed to replicate the phase-space evolution of the trap.

In conclusion, we have demonstrated, through simulations
using a validated Monte Carlo model, that the systematic
effects of insufficient spectral cleaning and microphonic heat-
ing are no larger than 0.03 s. The UCNτ apparatus, coupled to
the intense UCN source at LANL, has the potential to realize
a neutron lifetime measurement to 0.1 s precision.
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APPENDIX

1. Equations of motion

In the UCNτ trap, each neutron follows Hamiltonian
mechanics, with a well-defined magnetic and gravitational
potential energy. The trajectory of each neutron is tracked by
numerically integrating Hamilton’s equations:

d pi
dt

= −dH
dq j

;
dqi
dt

= dH
d pi

; i = 1, 2, 3, (A1)

H = V (q) + p2

2mn

V (q) = −μ · B(q) + mngqiδi3 = −μ||B|| + mngz, (A2)

where mn and μ are the mass and the absolute magnitude of
the neutron magnetic moment, B is the magnetic field, and
g is the local gravitational acceleration. Since the neutrons
are moving slowly in a continuous magnetic field, we use
the adiabatic approximation, i.e., the angle subtended between
the spin of the neutron and the magnetic field is preserved.
Since the neutrons are polarized longitudinally, the neutron’s
magnetic moment, μ, always antialigns with B. If the neutron
passes through a fast varying magnetic field (or a time-varying
magnetic field), at a rate comparable to or faster than the
Larmor precession period, then the adiabatic approximation
will not work. In this case, the spin would need to be tracked
by numerically integrating the Bloch equations.

2. Halbach array field expansion

The Halbach array consists of rows of permanent magnets
arranged in strips. The direction of magnetization between ad-
jacent strips is rotated by 90◦ [see Fig. 1(B)]. These magnetic
strips are placed along the major axis of the bowl, which is
a part of a toroid. Magnetic field in the UCNτ trap, thus,
can be described using a toroidal coordinate. On the curved
inner surface of the bowl, the local coordinates, η-ζ -ξ , are
designated with ζ̂ normal to the bowl surface, ξ̂ along the
major axis of the torii, and η̂ along to the minor axis. The
coordinate ζ measures the distance from the array and ζ = 0
corresponds to the surface of the array. Moving along the
direction of the individual rows (in the ξ̂ direction), the field is
constant; moving along the direction crossing the rows (in the
η̂ direction, i.e., the minor axis of the toroid), the field rotates
with a periodicity of four rows. The resulting field attenuates
exponentially away from the surface of the magnets (in the ζ̂

direction). We have mapped the field on the curved surface,
and it follows the expected behavior of a Halbach array. To
calculate the force in the neutron-tracking simulation, we can
use either the tabulated data from the field mapping or an
analytical function that describes the field. The Halbach field
inside the magnetic trap can be expanded in a Fourier series
[9,16]:

B = 4Brem

π
√
2

∞∑
n=1

(−1)n−1

4n − 3

× (1 − e−knd )e−knζ (sinknηη̂ + cosknηζ̂ ), (A3)

where Brem is the remnant strength of the permanent magnets,
kn = 2π (4n − 3)/L, with L the period of the rotated magne-
tization, and d is the thickness of the magnet (d = 25.4 mm).
In the UCNτ trap, Brem is 1.35 T and L is 51.114 mm
from empirical measurements. Note that L is slightly larger
than its nominal 50.8 mm, due to the combined results
of magnet size variation and finite gaps between magnets.
Equation (A3) is an approximation that violates Laplace’s
equation in local bowl coordinates. However, since the field
decays quickly compared to the curvature of the array the
violation is <1%.

To eliminate the possibility of neutron depolarization from
field zeros, the Halbach array field is superimposed with
a holding field. The holding field is generated by a set of
ten electromagnets, placed outside the vacuum chamber that
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houses the Halbach array. The resulting holding field is along
the major axis of the toroid, ξ̂ ; it is perpendicular to the field
generated by the Halbach array. The orthogonality between
the two fields ensures a nonzero magnetic field within the
trap, with no accidental field cancellations. The strength of
the holding field is modeled by an ideal toroid

Bξ = B0
r + R

ρ
ξ̂ , (A4)

where ρ =
√
x2 + y2. B0 is about 100 gauss with an applied

current of 300 A in our coils. The origin of the laboratory
frame is set 1.5 m above the lowest point of the trap. The local
coordinates η-ζ -ξ are related to the laboratory coordinates
x-y-z by

ξ = (R + r) × atan

(
y

z

)
, (A5)

η = r × atan

(
x√

y2 + z2 − R

)
, (A6)

ζ = r −
√
x2 + (

√
y2 + z2 − R)2. (A7)

Here, R and r are the major and minor radii of the torus,
respectively. The total field strength is given by

‖B‖ =
√
B2

η + B2
ζ + B2

ξ , (A8)

with Bη and Bζ from the Halbach array, and Bξ from the
holding-field coils. The two halves of the magnetic bowl have
r + R = 1.5 m, but swap r and R at x = 0. This feature breaks
the left-right symmetry to increase the number of chaotic
neutron trajectories in the trap (see Sec. IVA). To smooth out
the sudden change of radii along the middle line, we redefine
the major and minor radii:

R = 1

2
+ 1

2[1 + exp(−κx)]
, (A9)

r = 1 − 1

2[1 + exp(−κx)]
, (A10)

where κ = 1000 is a parameter that sets the size of the
crossover region near the x = 0 plane to approximately 5 mm.
R and r are chosen to be continuous functions of x, in
comparison to the values given by Ref. [9]. This modification
improves the degree of energy conservation in the simulation.

The total potential experienced by the neutron is pro-
portional to ‖B‖ and gravity. The minimum potential point
(magnetic and gravitational) inside the trap was found at

FIG. 18. Study of the energy conservation of UCN tracks using the symplectic integrator. For subplot (c) and (d), the distribution is
generated with 1000 UCN tracks, integrated over 1000 s.
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3.5 cm above the trap bottom. This is the reference point for
zero energy. The forces on the neutron can be computed by
taking the derivatives of the field:

∂‖B‖
∂qi

= 1

‖B‖ ×
∑

n=i, j,k

∑
m=i, j,k

BQn

∂BQn

∂Qm

∂Qm

∂qi
, (A11)

where the laboratory coordinate qi = x, y, z for i=1,2,3, and
the local coordinate Qj = ξ, η, ζ for j = 1,2,3. Here Bζ

and Bη follow the expansion in Eq. (A3). To compute the
component of the field in the laboratory frame, we take the
derivatives of η and ζ with respect to x, y, z. These deriva-
tives include the contributions from the logistic functions of
Eqs. (A10) and (A9). The holding field Bξ and its derivatives
are calculated from Eq. (A4).

3. Symplectic integration

To solve the dynamics of this Hamiltonian system, a
fourth-order symplectic integrator is used to track individual
neutrons inside the trap. The algorithm is given explicitly in
Table IV of Ref. [27]. This prescription gives an nth-order
symplectic integrator with time-dependent potentials, assum-
ing the Hamiltonian is of the form H (q, p, t ) = V (q, t ) +
T (p). We use the coefficients given in Ref. [28], which are
numerically optimized to ensure better energy conservation
than analytic coefficients. With the force and the integrator, we
evaluate the degree of energy conservation of individual neu-
trons by calculating the total energy for each step. Figure 18(a)
illustrates the energy evolution of a sample trace over 10 s, nu-
merically integrated with fixed time step of 0.5 ms. The energy
deviates when a neutron enters regions where the magnetic
fields are highly nonuniform; a slight offset in its position can
lead to a large difference in the potential energy. When the
neutron moves back into low-field regions, the energy restores
to its initial value. These spikes of energy deviations are the
artifact of the numerical integration and should not affect
the long-term stability of neutron tracking—a feature of the
symplectic integration [29]. The history of the global energy
deviation of a typical simulated neutron trajectory is shown
in Fig. 18(b). A histogram of (Estart − Eend)/Estart is given in
Fig. 18(c) for a step size of 0.5 ms. The standard deviation of
energy conservation as a function of step size is shown in
Fig. 18(d). The majority of the simulations presented in this
work use a step size of 0.5 ms; it gives a local deviation from
the conserved energy on the order of 10−8 and global drift on
the order of 10−11.

FIG. 19. Distribution of LCE of simulated neutron trajectories
using the field expansion Eq. (A3) up to N terms.

To quantify the convergence of the results with step size
and expansion cutoff, we analyze the Lyapunov characteristic
exponents (defined in Sec. IVA) of the simulated trajectories.
Individual simulated trajectories in other magnetic neutron
traps do not converge with step size [14], so we instead focus
on the statistical distribution of the whole ensemble. Adding
more terms in the field expansion changes the Hamiltonian
perturbatively. Similarly, changing the time step changes the
exact Hamiltonian that is solved, and changes the evolution of
a given initial condition. However, if the distribution does not
change with finer time steps or more terms in the expansion,
then we argue that the solution of the trap dynamics converges
and the statistical behavior is stable at the macroscopic level.
As shown in Fig. 19, adding more terms beyond 2 does
not significantly change the distribution. Furthermore, the
number of UCN with Lyapunov exponent >0.75 (considered
chaotic trajectories) converges for n > 2, with the fluctuations
consistent with Poisson statistics. We therefore truncate the
field expansion after three terms for the results presented
here. The distribution of Lyapunov exponents >0.75 is shown
in Fig. 19 to be singly peaked. This indicates that we have
measured the largest Lyapunov exponent in the system. A
Hamiltonian system with n-dimensions contains (n − 2)/2
independent Lyapunov exponents. The largest one will domi-
nate the exponential growth, and therefore the measurement of
the Lyapunov exponent using the method in Ref. [26] should
suffice to characterize the degree of chaos for each UCN
trajectory.
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