

A bi-functional polyphosphate kinase driving NTP regeneration and reconstituted cell-free protein synthesis

Running title: Simultaneous regeneration of ATP and GTP by a polyphosphate kinase

Po-Hsiang Wang,^{a‡} Kosuke Fujishima,^{ab‡*} Samuel Berhanu,^{a#} Yutetsu Kuruma,^{ac#} Tony Z. Jia,^{ad} Anna N. Khusnutdinova,^c Alexander F. Yakunin^{ef} and Shawn E. McGlynn^{ad*}

^a Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo, Japan.

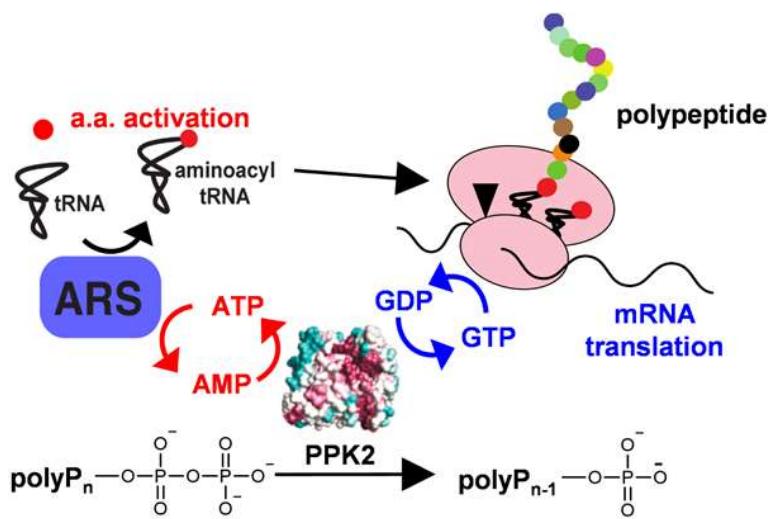
^b Graduate School of Media and Governance, Keio University, Fujisawa, Japan

^c JST, PRESTO, Saitama, Japan

^d Blue Marble Space Institute of Science, Seattle, Washington, U.S.A

^e Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada.

^f Centre for Environmental Biotechnology, Bangor University, Bangor, Wales, United Kingdom.


* To whom correspondence should be addressed: E-mail: fiji@elsi.jp; mcglynn@elsi.jp.

‡ P.-H.W. and K.F. contributed equally to this work.

Current affiliation: Institute for Extra-Cutting-Edge Science and Technology Avant-garde Research (X-star), JAMSTEC, Yokosuka, Japan

Abstract

2 Cell-free protein synthesis systems reconstituted from individually purified enzyme components (i.e., the
3 PURE system) allow the expression of toxic proteins, hetero-oligomeric protein subunits and proteins with
4 non-canonical amino acids with high levels of homogeneity. In these systems, an artificial ATP/GTP
5 regeneration system is required to drive protein synthesis, which is accomplished using three kinases and
6 phosphocreatine in the PURE system. Here, we demonstrate the ability to replace these three kinases with a
7 single bi-functional *Cytophaga hutchinsonii* polyphosphate kinase, which phosphorylates nucleotides in an
8 exchange reaction from polyphosphate. This system results in a two-fold faster initial mRNA translation
9 efficiency than that of the three-kinase system, along with a comparable final protein yield (~0.35 mg/mL).
10 The single-kinase system is also compatible with expression of heat-sensitive firefly luciferase at 37°C. The
11 single enzyme-based NTP regeneration approach described here could facilitate future applications of the
12 PURE systems and their variants for high-throughput protein expression.

14 **Keywords:** family II polyphosphate kinase; reconstituted cell-free protein synthesis; NTP regeneration;
15 functional protein expression.

16 **Introduction**

17 A major problem in contemporary biology is that a sizable fraction of proteins coded in sequenced

18 genomes do not have functional annotation¹. A high-throughput protein expression platform would

19 facilitate functional characterization and annotation, potentially to the extent of total proteome synthesis².

20 Cell-free protein synthesis systems derived from cell lysates^{3,4} or from reconstituted purified components

21 (*i.e.*, the PURE system) have yielded fundamental biochemical insights⁵⁻⁷ and also allow an opportunity for

22 high-throughput expression of a multitude of proteins^{8,9}. As opposed to *in vivo* protein expression in

23 organisms like *E. coli*, cell-free systems allow protein synthesis in an environment free of destructive

24 nucleases and proteases⁷, along with the flexibility for adjusting conditions and integrating multiple

25 biochemical reactions to cope with protein toxicity, complexity and co-factor requirements⁵. These

26 features allow functional expression of membrane proteins, hetero-oligomeric protein subunits, proteins

27 with non-canonical amino acids and toxic proteins with high levels of homogeneity^{10,11}. In addition, the

28 PURE system reconstituted from purified components allows protein expression using linear DNA, thereby

29 bypassing multiple steps of plasmid cloning and organism culturing. These properties substantially shorten

30 the procedure for protein production and prevent the occurrence of undesirable gene mutations.

31 Furthermore, the PURE system has been applied to studying protein synthesis in non-traditional, *i.e.*,

32 synthetic, settings such as in artificial cells¹²⁻¹⁵.

33 In mRNA translation, formation of each peptide bond requires one ATP for tRNA aminoacylation by

34 aminoacyl-tRNA synthetases (producing an AMP) and two GTPs for elongation and translocation of

35 polypeptides (producing two GDPs)¹⁶. In contrast to cellular organisms that have intrinsic biochemical

36 pathways to regenerate nucleoside triphosphates (NTP), regeneration of ATP and GTP in cell-free systems
37 requires an artificial NTP regeneration system (e.g.,^{3,7}). In the PURE system, NTP regeneration is
38 accomplished by three coupled reactions involving creatine kinase, myokinase and nucleoside diphosphate
39 kinase, which transfer the phospho-moiety of phosphocreatine to ADP, AMP and GDP, respectively (**Figure**
40 **1A**)⁷. Harmonizing the activities of the three kinases, each with distinct kinetic properties, is challenging
41 because myokinase and nucleoside diphosphate kinase each consume ATP produced by creatine kinase.
42 Furthermore, the PURE system employs a high concentration of phosphocreatine to keep the system
43 moving in the forward direction⁸.

44 Family II polyphosphate kinase (PPK2) is a family of phosphotransferases capable of transferring
45 the phospho-moiety of inorganic polyphosphate(polyP) to nucleoside mono- and diphosphates using metal
46 cations (e.g., Mg²⁺) as the cofactor¹⁷⁻²¹. Class III PPK2s are capable of phosphorylating both nucleoside
47 mono- or diphosphates, and have been applied to *in vitro* ATP regeneration²². PolyP has been used to
48 enhance ATP regeneration in cell-lysate-based cell-free protein synthesis systems^{23,24}; nevertheless, NTP
49 regeneration in the cell-free system requires the amalgamation of multiple kinases and substrates and has
50 not been applied to reconstituted systems comprised of purified components. Recently, a novel, highly
51 active class III PPK2 from *Cytophaga hutchinsonii*, CHU0107 (ENA accession ABG57400), capable of
52 phosphorylating AMP, ADP, GMP and GDP to the corresponding nucleoside diphosphates and
53 triphosphates was structurally and biochemically characterized¹⁷.

54

55

56 **Results and Discussion**

57 In this study, we investigated the possibility using polyP and the bi-functional polyP kinase

58 CHU0107 for NTP regeneration in a reconstituted cell-free protein synthesis system. The K_m of CHU0107

59 for AMP (0.60 ± 0.10 mM) and GDP (2.75 ± 0.55 mM) are within an order of magnitude, suggesting a

60 potential for simultaneous phosphorylation of AMP to ATP via ADP and GDP to GTP¹⁷. Moreover, the

61 truncated variant of CHU0107 without the C-terminal tail (Leu285-Asp305; denoted as CHU0107t)

62 exhibited a two-fold higher activity in phosphorylation of both AMP (45 U/mg) and GDP (10 U/mg)

63 compared to the wild-type protein, rendering CHU0107t a possible alternative for NTP regeneration in the

64 PURE system (**Figure 1B**).

65 We first determined the appropriate polyP concentration for NTP regeneration using customized

66 PURE system (PUREfrex®, GeneFrontier Corp.) reagents free of phosphocreatine, ATP, GTP and the three

67 kinases. We observed polyP-dependent AMP phosphorylation to ATP via ADP¹⁷, and ATP production was

68 enhanced with the increase in polyP concentration from 10 mM to 50 mM (based on the molar content of

69 phosphate monomer) (**Figure S1A**). Therefore, we used 50 mM polyP in the PURE system for subsequent

70 experiments. Next, we applied CHU0107t for simultaneous polyP-dependent regeneration of ATP and GTP

71 in the PURE system. The K_m of CHU0107t with AMP (22 ± 3 μ M) or with GDP (0.29 ± 0.02 mM)

72 measured under PURE system conditions were more than one order-of-magnitude lower than the reported

73 values for the wild-type CHU0107 (AMP = 0.60 ± 0.10 mM; GDP = 2.75 ± 0.55 mM) (**Figure S1B**). The

74 two-fold higher k_{cat} of CHU0107t with AMP (45/s) or GDP (7.7/s) compared to that of wild-type CHU0107

75 under the PURE system conditions is consistent with the previously reported data¹⁷.

76 As a reporter for protein synthesis in the PPK2-based PURE system, we selected the superfolder

77 green fluorescent protein (sfGFP; ~26.5 kDa)²⁵. To directly compare the NTP regeneration efficiency

78 between the three-kinase system and the PPK2-based system, we utilized mRNA as the template to

79 synthesize proteins, avoiding depletion of the NTP pool by mRNA synthesis. Production of sfGFP was

80 estimated using fluorescence emission at 518 nm in round bottom 96-well microplates (20 microliter

81 reactions) in a real-time PCR system. We first performed sfGFP synthesis using 3 mM GTP and 0.2 mM

82 ATP since the K_m of CHU0107t with AMP is ~15 times lower than that with GDP (the concentration for

83 both ATP and GTP in the commercial PURE system is 3 mM). The PPK2-based PURE system showed

84 time-dependent sfGFP production against the mRNA-free negative control (**Figure S2A**). Moreover, most

85 of the sfGFP was produced within the first five hours of reaction (**Figure S2G**). The sfGFP production is

86 consistent with the visible green color of reaction mixtures after incubation and was also confirmed using

87 SDS-PAGE (**Figure 2A**). In order to improve the protein yield, we tested multiple concentrations of Mg²⁺,

88 polyP and CHU0107t in the PPK2-based PURE system and determined the optimal concentrations to be 18

89 mM Mg²⁺, 1 μM CHU0107t and 50 mM polyP (**Figures S2A–C**). sfGFP production was almost

90 undetectable when CHU0107t was not added to the reaction mixtures (**Figures S2B**). In the range of 0.05–

91 0.45 mM ATP and 0.9–2.7 mM GTP, concentration changes did not appear to have a significant effect on

92 sfGFP production; therefore, 0.1 mM ATP and 1 mM GTP were used for subsequent experiments (**Figures**

93 **S2D,E**). After optimization, the PPK2-based PURE system produced sfGFP with a final concentration

94 corresponding to 168 ± 4 μg/mL (determined using purified recombinant sfGFP standard), which is two

95 times lower than the sfGFP production in the PUREfrex positive control (**Figure 2B,C**).

96 Based on the observation that sfGFP production in the PPK2-based PURE system became much
97 slower after one hour of incubation (note that the fluorescence emission intensity of sfGFP is not linear at
98 concentrations >10 µg/mL) (**Figures 2B,S2F**), we hypothesized that this might be due to either the loss-of-
99 function of CHU0107t or the depletion of polyP over time. We also tested the potential influence of Mg²⁺
100 concentrations during incubation since a previous study reported synergistic effects of the phospho-moiety
101 donor and Mg²⁺ when added to the PURE system ⁶. Therefore, in another set of experiments we added
102 either additional CHU0107t (1 µM), Mg²⁺ (3 mM) or polyP (10 mM) to the reaction mixtures after one hour
103 of incubation (values are the final concentrations of the added component). After additional incubation for
104 70 min, polyP supplementation enhanced the sfGFP production by ~25% compared to the (+) control which
105 had only buffer added (**Figure 2D**), while addition of CHU0107t showed only a minor effect. In contrast,
106 additional Mg²⁺ hampered the production of sfGFP. Thus, our data suggest that the reduction in sfGFP
107 production in the PPK2-based PURE system over time is affected by polyP depletion. We therefore
108 analysed time-dependent polyP consumption in the reaction mixtures using a toluidine blue-stained TBE-
109 urea gel (6%) ²⁶. We found that after two hours of incubation, the longer-chain fraction of the added polyP
110 25-mer mixture was mostly consumed, while the shorter-chain fraction remained (**Figure S3**), suggesting
111 that CHU0107t has a preference to use long-chain polyP as substrate in the PPK2-based PURE system.

112 To investigate possible enhancement of protein synthesis by longer chain polyP, we replaced the
113 original polyP 25-mer mixture with a polyP 100-mer mixture (Kerafast[®]) at the same concentration (50 mM
114 based on the molar content of phosphate monomer) as the energy source in the PPK2-based PURE system.
115 With longer polyP substrates, the system produced over 350 µg of sfGFP per mL (351 ± 3 µg/mL), roughly

116 a two-fold increase compared to the reaction mixtures using short chain polyP (**Figure 2C**). This
117 modification resulted in a final sfGFP production comparable to yield of the PUREflex positive control
118 (~90%) (**Figure 2C**). Moreover, the PPK2-based PURE system with the polyP 100-mer exhibited a two-
119 fold faster mRNA translation efficiency than the PUREflex positive control in the first hour of incubation,
120 along with a protein concentration of ~0.2 mg/mL after the first four (**Figures 2B,S2F**). The enhanced
121 mRNA translation efficiency in the PPK2-based PURE system is consistent with the mRNA-stabilizing
122 effect of long-chain polyP reported previously ^{24,27}. Nevertheless, sfGFP production in the PPK2-based
123 PURE system with the polyP 100-mer became much slower after three hours of incubation, while sfGFP
124 production in the PUREflex positive control continued in the first five hours, resulting in the superior final
125 yield (~0.4 mg/mL; **Figure 2C, S2G**).

126 The versatility of the PPK2-based regeneration system in protein synthesis applications was then
127 tested using a heat-sensitive enzyme, *Photinus pyralis* firefly luciferase (~62 kDa), as a model protein. The
128 *P. pyralis* firefly luciferase is unstable at temperatures greater than 30°C ²⁷, whereas the PURE system is
129 generally operated at 37°C. We detected firefly luciferase bioluminescence from both reaction mixtures of
130 the PUREflex positive control and the PPK2-based system incubated at 37°C for three hours (**Figure 3A**),
131 respectively. Both systems exhibited a final concentration of active firefly luciferase corresponding to ~50
132 µg/mL of a commercial firefly luciferase standard (1×10^{11} U/mg, **Figure S4**), which is ~30% lower than
133 the final concentration of active firefly luciferase in reaction mixtures incubated at 30°C (**Figure 3A**).
134 Firefly luciferase production was also confirmed using SDS-PAGE (**Figure 3B**). Moreover, supplementing
135 the native *E. coli* chaperones DnaKJ and GrpE to the PPK2-based PURE system doubled the active firefly

136 luciferase production at 37°C (**Figure 3A**). Altogether, our data suggest that the PPK2-based PURE system
137 is compatible with functional expression of certain heat-sensitive proteins.

138 Energy delivery is a critical aspect of cell-free protein synthesis ^{3,24,28,29}. The single kinase-based
139 system described herein simplifies (from three kinases system to single kinase) and potentially cheapens the
140 cost of reagent preparations (by using polyP instead of phosphocreatine), while yielding protein amounts
141 comparable to that of the three-kinase system. The described system also exhibits a high initial rate of
142 mRNA translation suitable for high throughput protein expression. Further optimization of the reaction
143 components and conditions may result in the betterment of commercial kits, leading to wider applications of
144 protein synthesis from reconstituted systems for high-throughput protein expression. The single kinase-
145 based NTP regeneration approach developed in this study might also be applied to drive other biochemical
146 processes simultaneously requiring ATP and GTP under *in vitro* conditions, *e.g.*, gluconeogenesis ³⁰. Given
147 that polyP is a ubiquitous and ancient energy source as well as an active metabolic regulator for all cellular
148 organisms ^{26,27}, incorporation of the PPK2-based NTP regeneration system into synthetic biomembrane
149 vesicles could lead to artificial cell and proto-cell systems more akin to their natural counterparts. The use
150 of long-chain polyP as substrate for NTP regeneration in the artificial cells is also cost-effective since long-
151 chain polyP can be readily obtained from insoluble phosphate glass using an established simple two-step
152 purification method ²⁴.

153

154

155 **Methods**

156 (Methods for heterologous protein expression and purification; characterization of kinetic properties of
157 recombinant CHU0107t; *in vitro* RNA transcription; electrophoretic analysis of toluidine blue-stained TBE-
158 Urea gel are shown in **Supporting Information**)

159 **Experimental Materials.** All chemicals were purchased from Sigma-Aldrich (St Louis, MO, USA) unless
160 specified otherwise. The customized PUREfrex reagents free of ATP, GTP, phosphocreatine, Mg²⁺ and
161 NTP-regenerating kinases (creatine kinase, myokinase and nucleoside diphosphate kinase) as well as the
162 linear DNA of codon-optimized *Photinus pyralis* luciferase (RCSB-PDB ID: 1LCI) were provided by
163 GeneFrontier Corp. (Kashiwa, Chiba, Japan). The pETDuet-1 plasmid carrying the recombinant super
164 folder green fluorescent protein (sfGFP) gene (RCSB-PDB ID: 2B3P) was purchased from GenScript
165 (Nanjing, China). The DNA sequences for recombinant sfGFP and firefly luciferase are shown in the
166 **Appendix.**

167 **Cell-free protein synthesis using the polyP-based NTP regeneration system.** GFP and firefly luciferase
168 were synthesized using a customized PUREfrex system following the manufacturer's standard protocols
169 (<https://www.genefrontier.com/en/solutions/purefrex/lineup/purefrex-2-0/>). Briefly, in an ice bath, solution I
170 (reaction buffer mixtures free of NTPs, magnesium acetate and creatine phosphate; 10 µL), solution II
171 (enzyme mixtures free of creatine kinase, myokinase and nucleoside diphosphate kinase; 1 µL) and solution
172 III (ribosome; 2 µL) were mixed with the components to final concentrations of (i) recombinant CHU0107t
173 (44–1600 nM), (ii) sfGFP mRNA: 0.7–1.4 µg; (iii) firefly luciferase mRNA: 3 µg, (iv) ATP (50–250 µM),
174 (v) GTP (0.45–2.7 mM), (vi) magnesium acetate (12–27 mM) and (vii) sodium polyphosphate (50–80 mM)

175 to a final volume of 20 μ L (the components of solution I, II and III are available at
176 https://www.genefrontier.com/files/PF001_contents_Oct2016.pdf). Cell-free protein synthesis was
177 performed at 37°C and the reaction mixtures were kept on ice after incubation before further SDS-PAGE
178 analysis or firefly luciferase activity assays. Note that the stock solutions for the sodium polyphosphate 25-
179 mer mixture (0.5 M), the sodium polyphosphate 100-mer mixture (0.5 M; Kerafast®, Boston, USA) and
180 magnesium acetate (240 mM) were pre-adjusted to pH 7.5 in HEPES-K⁺ buffer (50 mM) to prevent a pH
181 shift in the PURE system reaction mixture. The SDS-PAGE gel images for all the reaction components and
182 products are available in the **Appendix**.

183 ***Real-time measurement of cell-free sfGFP synthesis.*** The time-dependent sfGFP production in the polyP-
184 based PURE system was monitored based on its characteristic fluorescence emission (blue light at 518 nm)
185 using a real-time PCR system (StepOnePlus, Applied Biosystems®, Foster City, CA, USA). The
186 MicroAmp™ optical 96-well reaction plate (Applied Biosystems®) (round bottom with a well volume of
187 0.2 mL) containing reaction mixtures (20 μ L in each well) were covered with an optically transparent film,
188 and incubated at 37°C for 2–5 h. The fluorescence emission of sfGFP was recorded every 10 min using the
189 FAM™ filter (excitation: 494 nm; emission: 518 nm). The recombinant sfGFP standards and the PURE
190 system reaction mixtures were always kept on ice before and after incubation in the real-time PCR system.
191 The sfGFP production (~27 kDa) was examined by 12% SDS-PAGE (Novex®, Thermo Fisher Scientific,
192 Waltham, MA, USA) and Coomassie Blue staining. Final sfGFP concentrations in the polyP-based PURE
193 system reaction mixtures were determined using a standard curve generated by serial-diluted recombinant
194 sfGFP standards, which has a linear range of 0–10 μ g/mL (standard curve available in the **Appendix**).

195 **Firefly luciferase activity assays.** Firefly luciferase activity assays were performed following the
196 established protocol published previously with some modifications²⁷. Briefly, fresh *Photinus pyralis*
197 luciferase standards (62 kDa; 10¹¹ U/mg) were diluted to a final concentration of (10, 5, 2.5 and 1.25) x 10⁸
198 U/mg using a Hepes-K⁺ buffer (pH 7.5; 50 mM) containing NaCl (150 mM), 5% glycerol, dithiothreitol
199 (DTT) (1 mM) and EDTA (1 mM). In a black 96-well polystyrene plate (Costar®, Corning, Corning, NY,
200 USA), *Photinus pyralis* luciferase standards or the PURE system reaction mixtures (2 µL) were pipetted
201 into the luciferase activity assay buffer (98 or 198 µL; 50-fold and 100-fold dilution) containing Hepes-K⁺
202 (pH 7.5; 50 mM), 5% glycerol, sodium coenzyme A (0.1 mM), ATP (2 mM), MgCl₂ (5 mM), bovine serum
203 albumin (0.1 mg/mL), D-sodium luciferin (50 µM), sodium EDTA (0.1 mM) and DTT (1 mM). The
204 luciferase standards, reaction mixtures and activity assay buffers were always kept on ice before the
205 bioluminescence measurement. Bioluminescence of luciferase was measured in a multimode plate reader
206 (EnSpire®, PerkinElmer, Waltham, MA, USA) at 562 nm. The black 96-well plate was incubated at 25°C
207 for 10 min with a bioluminescence scan every 20 s. The luciferase production in the PURE system was
208 estimated by comparing the bioluminescence (the average values from 2–7 min) to that of the commercial
209 luciferase standards (10¹¹ U/mg).

210

211 **Author contributions** P.-H.W. and K.F. designed this research; A.K., A.F.Y. and P.-H.W purified the
212 recombinant CHU0107t and recombinant sfGFP; P.-H.W. characterized kinetic properties of CHU0107t;
213 P.-H.W. and K.F. developed polyP-based NTP regeneration system for cell-free protein synthesis; P.-H.W.
214 and T.Z.J. performed the electrophoretic analysis of polyP; P.-H.W. performed the firefly luciferase activity

215 assays; P.-H.W., K.F., Y.K., S.B. and S.E.M participated in experimental design; all authors participated in
216 the data analysis; P.-H.W. and S.E.M. wrote the paper with assistance from all authors. The authors declare
217 no conflict of interest.

218 **Acknowledgement** This work is supported by JSPS KAKENHI Grant Numbers 10751084 to S.E.M,
219 16H06156 to Y.K. and JP18K14354 to T.Z.J. K.F. is supported by FirstLogic-Astrobiology donation
220 program. A.K. and A.F.Y. are supported by the NSERC Industrial Biocatalysis Strategic Network grant IBN
221 and Genome Canada (GAPP). We also gratefully acknowledge support of customized PUREfrex reagents
222 and codon-optimized linear DNA of *P. pyralis* firefly luciferase from Dr. Takashi Kanamori at GeneFrontier
223 Corp. (Japan).

224

225 **Abbreviations** sfGFP, super-folder green fluorescent protein; NTP, nucleoside triphosphate; polyP,
226 polyphosphate; PPK2, family II polyphosphate kinase; PURE system, reconstituted cell-free protein
227 synthesis system.

228

229 **References**

- 230 (1) Hanson, A. D.; Pribat, A.; Waller, J. C.; de Crécy-Lagard, V. “Unknown” Proteins and “Orphan”
231 Enzymes: The Missing Half of the Engineering Parts List--and How to Find It. *Biochem J* **2009**, *425*
232 (1), 1–11.
- 233 (2) Sawasaki, T.; Ogasawara, T.; Morishita, R.; Endo, Y. A Cell-Free Protein Synthesis System for High-
234 Throughput Proteomics. *Proc Natl Acad Sci USA* **2002**, *99* (23), 14652.
- 235 (3) Jewett, M. C.; Swartz, J. R. Mimicking the *Escherichia Coli* Cytoplasmic Environment Activates
236 Long-Lived and Efficient Cell-Free Protein Synthesis. *Biotechnol Bioeng* **2004**, *86* (1), 19–26.
- 237 (4) Schwarz, D.; Junge, F.; Durst, F.; Frölich, N.; Schneider, B.; Reckel, S.; Sobhanifar, S.; Dötsch, V.;
238 Bernhard, F. Preparative Scale Expression of Membrane Proteins in *Escherichia Coli*-Based
239 Continuous Exchange Cell-Free Systems. *Nat Protoc* **2007**, *2*, 2945.
- 240 (5) Katzen, F.; Chang, G.; Kudlicki, W. The Past, Present and Future of Cell-Free Protein Synthesis.

241 Trends Biotechnol **2005**, 23 (3), 150–156.

242 (6) Li, J.; Zhang, C.; Huang, P.; Kuru, E.; Forster-Benson, E. T. C.; Li, T.; Church, G. M. Dissecting
243 Limiting Factors of the Protein Synthesis Using Recombinant Elements (PURE) System. *Trans* **2017**,
244 5 (1), e1327006.

245 (7) Shimizu, Y.; Inoue, A.; Tomari, Y.; Suzuki, T.; Yokogawa, T.; Ishikawa, K.; Ueda, T. Cell-Free
246 Translation Reconstituted with Purified Components. *Nat Biotechnol* **2001**, 19 (August), 751–755.

247 (8) Kazuta, Y.; Matsuura, T.; Ichihashi, N.; Yomo, T. Synthesis of Milligram Quantities of Proteins Using
248 a Reconstituted *in vitro* Protein Synthesis System. *J Biosci Bioeng* **2014**, 118 (5), 554–557.

249 (9) Niwa, T.; Ying, B.-W.; Saito, K.; Jin, W.; Takada, S.; Ueda, T.; Taguchi, H. Bimodal Protein
250 Solubility Distribution Revealed by an Aggregation Analysis of the Entire Ensemble of *Escherichia*
251 *Coli* Proteins. *Proc Natl Acad Sci USA* **2009**, 106 (11), 4201–4206.

252 (10) Singh-Blom, A.; Hughes, R. A.; Ellington, A. D. An Amino Acid Depleted Cell-Free Protein
253 Synthesis System for the Incorporation of Non-Canonical Amino Acid Analogs into Proteins. *J*
254 *Biotechnol* **2014**, 178, 12–22.

255 (11) Kuruma, Y.; Ueda, T. The PURE System for the Cell-Free Synthesis of Membrane Proteins. *Nat*
256 *Protoc* **2015**, 10, 1328.

257 (12) Berhanu, S.; Ueda, T.; Kuruma, Y. Artificial Photosynthetic Cell Producing Energy for Protein
258 Synthesis. *Nat Comm* **2019**, 10 (1), 1325.

259 (13) Nourian, Z.; Roelofsen, W.; Danelon, C. Triggered Gene Expression in Fed-Vesicle Microreactors
260 with a Multifunctional Membrane. *Angew Chem Int Ed Engl* **2012**, 51 (13), 3114–3118.

261 (14) Furusato, T.; Horie, F.; Matsubayashi, H. T.; Amikura, K.; Kuruma, Y.; Ueda, T. *De novo* Synthesis of
262 Basal Bacterial Cell Division Proteins FtsZ, FtsA, and ZipA Inside Giant Vesicles. *ACS Synth Biol*
263 **2018**, 7 (4), 953–961.

264 (15) Forster, A. C.; Church, G. M. Towards Synthesis of a Minimal Cell. *Mol Syst Biol* **2006**, 2 (1), 45.

265 (16) Zavialov, A. V.; Ehrenberg, M. Peptidyl-TRNA Regulates the GTPase Activity of Translation Factors.
266 *Cell* **2003**, 114 (1), 113–122.

267 (17) Berlicki, Ł.; Joachimiak, A.; Flick, R.; Burda, M.; Mucha, A.; Ruszkowski, M.; Batyrova, K.;
268 Khusnutdinova, A. N.; Nocek, B. P.; Yakunin, A. F.; et al. Structural Insights into Substrate
269 Selectivity and Activity of Bacterial Polyphosphate Kinases. *ACS Cat* **2018**, 8 (11), 10746–10760.

270 (18) Ishige, K.; Zhang, H.; Kornberg, A. Polyphosphate Kinase (PPK2), a Potent, Polyphosphate-Driven
271 Generator of GTP. *Proc Natl Acad Sci USA* **2002**, 99 (26), 16684–16688.

272 (19) Parnell, A. E.; Mordhorst, S.; Kemper, F.; Giurrandino, M.; Prince, J. P.; Schwarzer, N. J.; Hofer, A.;
273 Wohlwend, D.; Jessen, H. J.; Gerhardt, S.; et al. Substrate Recognition and Mechanism Revealed by
274 Ligand-Bound Polyphosphate Kinase 2 Structures. *Proc Natl Acad Sci USA* **2018**, 115 (13), 3350–
275 3355.

276 (20) Ogawa, M.; Uyeda, A.; Harada, K.; Sato, Y.; Kato, Y.; Watanabe, H.; Honda, K.; Matsuura, T. Class
277 III Polyphosphate Kinase 2 Enzymes Catalyze the Pyrophosphorylation of Adenosine-5'-
278 Monophosphate. *ChemBioChem*.

279 (21) Mordhorst, S.; Siegrist, J.; Müller, M.; Richter, M.; Andexer, J. N. Catalytic Akylation Using a Cyclic
280 S-Adenosylmethionine Regeneration System. *Angew Chem Int Ed Engl* **2017**, 56 (14), 4037–4041.

281 (22) Kameda, A.; Shiba, T.; Kawazoe, Y.; Satoh, Y.; Ihara, Y. A Novel ATP Regeneration System Using
282 Polyphosphate-AMP Phosphotransferase and Polyphosphate Kinase. *J Biosci Bioeng* **2001**, *91* (6),
283 557–563.

284 (23) Caschera, F.; Noireaux, V. A Cost-Effective Polyphosphate-Based Metabolism Fuels an All *E. coli*
285 Cell-Free Expression System. *Meta Eng* **2015**, *27*, 29–37.

286 (24) Itoh, H.; Kawazoe, Y.; Shiba, T. Enhancement of Protein Synthesis by an Inorganic Polyphosphate in
287 an *E. coli* Cell-Free System. *J Microbiol Meth* **2006**, *64* (2), 241—249.

288 (25) Pédelacq, J.-D.; Cabantous, S.; Tran, T.; Terwilliger, T. C.; Waldo, G. S. Engineering and
289 Characterization of a Superfolder Green Fluorescent Protein. *Nat Biotechnol* **2006**, *24* (1), 79–88.

290 (26) Achbergerová, L.; Nahálka, J. Polyphosphate - an Ancient Energy Source and Active Metabolic
291 Regulator. *Microb Cell Fact* **2011**, *10*, 1–14.

292 (27) Gray, M. J.; Wholey, W.; Wagner, N. O.; Cremers, C. M.; Mueller-schickert, A.; Hock, N. T.; Krieger,
293 A. G.; Smith, E. M.; Bender, R. A.; Bardwell, J. C. A.; et al. Polyphosphate Is a Primordial
294 Chaperone. *Mol Cell* **2014**, *53* (5), 689–699.

295 (28) Kim, H.-C.; Kim, D.-M. Methods for Energizing Cell-Free Protein Synthesis. *J Biosci Bioeng* **2009**,
296 *108* (1), 1–4.

297 (29) Kim, D.-M.; Swartz, J. R. Prolonging Cell-Free Protein Synthesis with a Novel ATP Regeneration
298 System. *Biotechnol Bioeng* **1999**, *66* (3), 180–188.

299 (30) Krebs Hans Adolf. The Croonian Lecture, 1963 Gluconeogenesis. *Proc R Soc Lond B Biol Sci* **1964**,
300 *159* (977), 545–564.

301

302

303 **Figure legends**

304 **Figure 1. NTP regeneration systems required for cell-free protein synthesis.** (A) The conventional NTP
305 regeneration system in the PURE system functions with phosphocreatine and three coupled kinases: CK,
306 creatine kinase; MK, myokinase; NDK, nucleoside diphosphate kinase. (B) The single polyphosphate
307 kinase-based NTP regeneration system for cell-free protein synthesis developed in this study. ARS,
308 aminoacyl-tRNA synthetase; PPK2, polyP kinase family II.

309

310 **Figure 2. Small-scale superfolder green fluorescent protein (sfGFP) synthesis using the PPK2-based**
311 **PURE system in a 96-well microplate.** (A) sfGFP production in reaction mixtures of PPK2-based PURE
312 system after five hours of incubation, evidenced by the visible green color in the reaction mixtures
313 (fluorescence emmission of sfGFP in a blue light gel illuminator) and SDS-PAGE analysis (~26.5 kDa)

314 (untrimmed images of 96-well plate and SDS-PAGE gel available in **Supporting Information**). mRNA (-),
315 mRNA-free control; mRNA (+), positive control. The arrow indicates the position of sfGFP. **(B)** sfGFP
316 production in the reaction mixtures with and without sfGFP mRNA, along with polyP in different lengths
317 (polyP 25-mer or polyP 100-mer) as the energy source. The bars represent the range and the symbols
318 represent the mean from duplicate trials. Note that the sfGFP fluorescence intensity is not linear above 10
319 $\mu\text{g/mL}$. **(C)** Final sfGFP concentrations (after 5 hours of incubation) were measured by dilution to the linear
320 range. The * represents undetectable fluorescence. Time-dependent sfGFP production for five hours based
321 on fluorescence intensity is shown in **Figure S2G**. The bars represent the range and the symbols represent
322 the mean from duplicate trials. **(D)** Final sfGFP concentrations in reaction mixtures that received an extra
323 addition of polyP, CHU0107t (PPK2), Mg^{2+} or only buffer (positive control) after one hour of incubation.
324 All component stocks were dissolved in the same PURE system buffer and were added to reaction mixtures
325 that were incubated for 60 min, and the reaction mixtures were further incubated for 70 min. Assays were
326 performed in triplicate and the bars represent the standard error and the symbols represent the mean.

327

328 **Figure 3. Functional expression of *P. pyralis* firefly luciferase (Luc) in the polyphosphate kinase**

329 **(PPK2)-based PURE system.** **(A)** Average bioluminescence activity (562 nm) in the supernatants of the
330 PPK2-based PURE system reaction mixtures incubated for three hours with and without firefly luciferase
331 mRNA (mRNA(+)) and mRNA (-)). Some reaction mixtures were supplemented with native *E. coli*
332 chaperones (DnaK). Luc production in the three-kinase based PUREfrex system was used as a positive
333 control. Reaction mixtures were incubated at either 30°C or 37°C. The * represents undetectable
334 bioluminescence activity. **(B)** SDS-PAGE analysis of functional Luc production (~62 kDa) in the
335 supernatants of the PPK2-based PURE system after three hours of incubation (untrimmed SDS-PAGE gel
336 image is available in **Supporting Information**). The arrow indicates the position of Luc. Assays were
337 performed in triplicate and the bars represent the standard error and the symbols represent the mean.

338

339

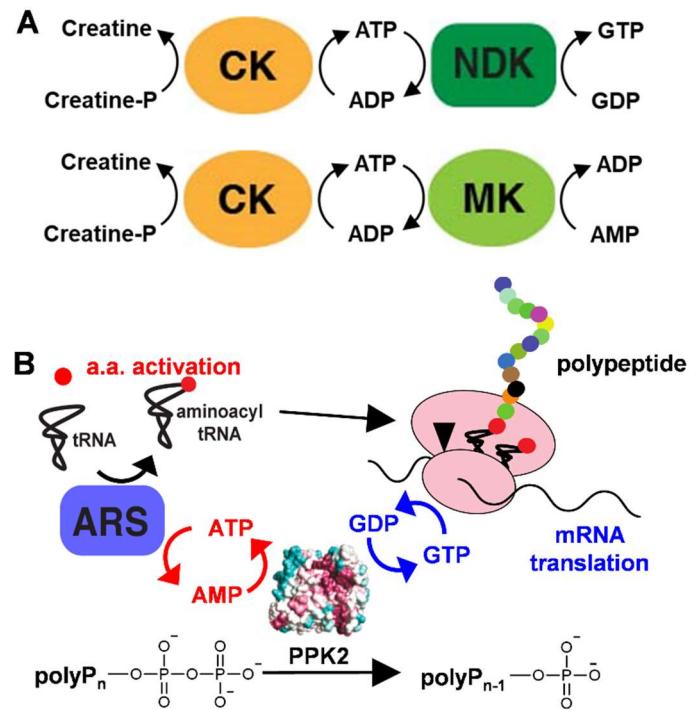
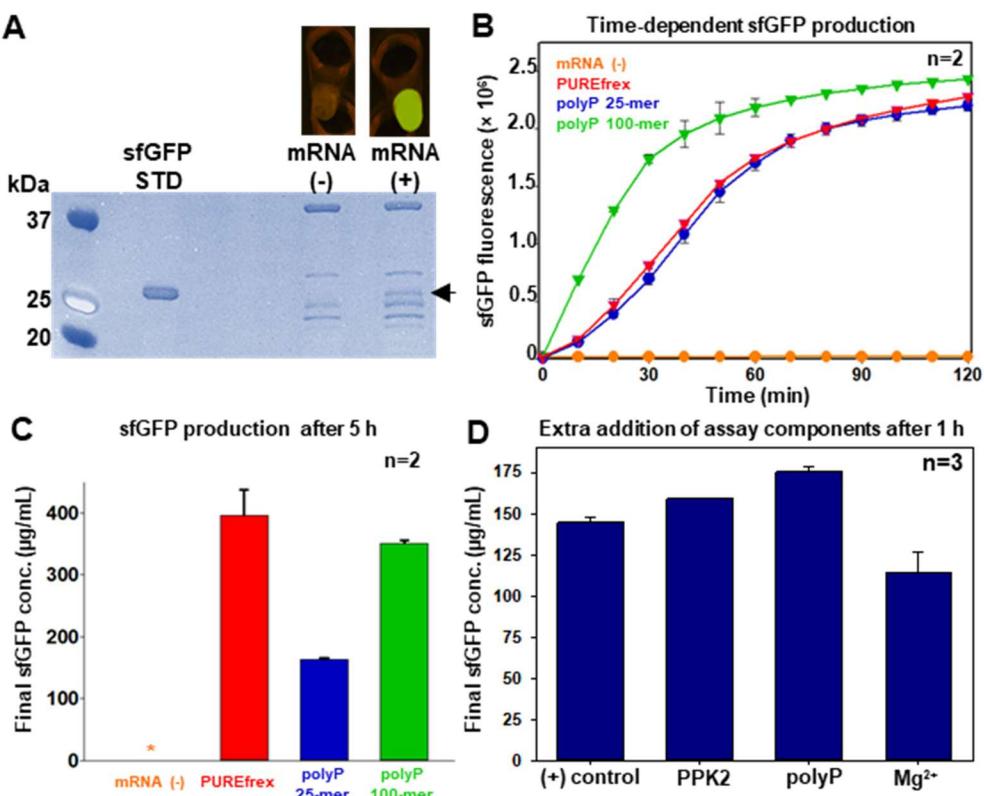
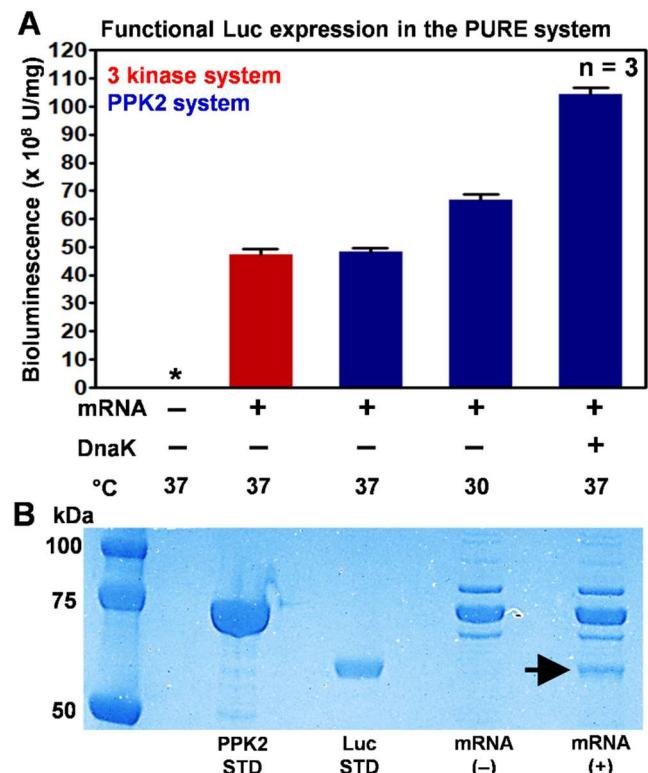



Figures**Figure 1****Figure 2**

Figure 3

