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Abstract

Herbivore-induced plant volatiles (HIPVs) provide direct benefits to plants as antimicrobials and herbivore repellents, but
their potential as direct toxins to herbivores is unclear. Here, we assayed the larvicidal activity of six common HIPVs from
three different biochemical pathways and tested the hypothesis that the larvicidal activity of HIPVs is related to the host
specialization of the insect pest. We first assessed p-caryophyllene, linalool, z-3-hexenyl acetate, z-3-hexenol, e-2-hexenal,
and indole against the beet armyworm (Spodoptera exigua) and found that indole was sevenfold more toxic compared to
the other volatiles when incorporated into the diet. Then, we tested the larvicidal activity of indole against six common,
destructive pest caterpillars with varying host ranges. Consistent with our hypothesis, indole toxicity varied with caterpillar
host range: indole toxicity was sevenfold higher in more specialized insect species relative to generalist insect species. That
said, the LCs, of indole was comparable to other reported anti-herbivore agents even against the generalist caterpillars. Yet,
indole in headspace had neither larvicidal nor ovicidal activity on any caterpillar species tested. These results support a key
ecological precept of a trade-off between host specialization and chemical detoxification and also indicate that indole in
particular is directly toxic to herbivores and therefore potentially useful in integrated pest management strategies.

Keywords Caterpillars - Green leaf volatiles (GLVs) - Herbivore-induced plant volatiles (HIPVs) - Host range - Indole -
Pest - Toxicity - Specialist versus generalist herbivore
Key message ¢ Indole has the potential to be developed as an insecticide

against crop pests.

e We measured the direct toxicity of six common HIPVs

against the beet armyworm. Introduction
e Indole was the most toxic HIPV against the beet army-
worm. Plants produce a remarkable variety of volatile organic
e We determined the toxicity of indole against six different ~ compounds (VOCs) that can affect the behavior of pollina-
pest caterpillar species. tors (Schiestl and Ayasse 2001; Schiestl et al. 1999), seed
e The toxicity of indole was associated with the host pref-  dispersers (Valenta et al. 2017), and herbivores (Agrawal
erence of the insect species. 2001; Vickers et al. 2009). A subclass of VOCs is herbi-
e Indole exposure in headspace had no effect on egg hatch- vore-induced plant volatiles (HIPVs), which plants release
ing or caterpillar survival. in response to herbivore attack. HIPVs are typically a blend

of compounds derived from multiple biosynthetic pathways
including terpenes, fatty acid derivatives, and shikimate
derivatives. HIPVs confer both indirect and direct defense
benefits (Hare 2011), act as priming cues that activate plant
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Zhu et al. 2005), and can even render herbivores suscep-
tible to entomopathogens (Gasmi et al. 2019). HIPVs also
have direct defense benefits to the plants that produce them,
including protecting plants from microbial and pathogen
infections (Shiojiri et al. 2006; Yi et al. 2009), deterring
herbivory (Beale et al. 2006; Bernasconi et al. 1998; Heil
2004; Sandra et al. 2014) and oviposition (Kessler and Bald-
win 2001; Veyrat et al. 2016; Zakir et al. 2013), and reducing
caterpillar growth (von Mérey et al. 2013) and food con-
sumption (Veyrat et al. 2016) after just HIPV exposure.

The hypothesis that HIPVs directly affect insect herbi-
vores is not new (Pichersky and Gershenzon 2002; Unsicker
et al. 2009), but the direct larvicidal or ovicidal efficacy of
HIPVs on insect herbivores is poorly understood. This is
due in part to the fact that the consideration of diverse phy-
tochemicals acting as selective pressures driving insect pest
feeding strategies has largely excluded volatile constitu-
ents (Endara et al. 2017; Feeny 1976; Howard and Brad-
ford 2003). The vast majority of insects have evolved host
range specialization, feeding on only one or a few closely
related species (Forister et al. 2015), while a minority of
insect herbivore species has a more generalist host range.
Evolutionary theory predicts that phytochemicals that are
widespread among different plant taxa will be less toxic to
generalist insects compared to specialists (Howard and Brad-
ford 2003). HIPVs tend to be common across plant taxa, and
some HIPVs can be pre-synthesized, stored in specialized
cells in their original or conjugate forms in various types of
plant tissues (Baldwin 2010; Monson et al. 2012; Ormefio
et al. 2011; Sugimoto et al. 2015; Tominaga and Dubourdieu
2000), and released when herbivory disrupts cellular stor-
age compartments (Niinemets et al. 2013). Insect pests must
therefore cope with potential toxic effects of HIPVs by either
direct ingestion or headspace exposure.

The insect order Lepidoptera (butterflies and moths)
contains many of the major agricultural pests that cause
significant damage and economic loss of food crops world-
wide (Mullen and Zaspel 2019; Zalucki et al. 2012). Known
lepidopteran pests include both feeding specialists and gen-
eralists. To combat these pests, potent and toxic synthetic
chemicals are frequently used in current agricultural sys-
tems (Cordero et al. 2006; Ecobichon 2001; Pimentel 1996).
However, these insecticides can have detrimental health
effects on humans and nontarget organisms (Cimino et al.
2016; Hahn et al. 2015; Mulé et al. 2017; Tingle et al. 2003),
and insecticide resistance by insect pests against commonly
used chemical insecticides is well documented (Roush and
Tabashnik 2012; Sparks and Nauen 2015). Plants produce
a variety of chemicals with insecticidal activity, and even
some VOC:s are directly toxic against invertebrates (Hubert
et al. 2008; Laquale et al. 2018; Lee et al. 1999; Zhao et al.
2017). Moreover, blends of plant essential oils containing
major constituents of HIPV blends (Maffei et al. 2011) are
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known ovicidals and larvicidals against lepidopteran pests
(Bakkali et al. 2008; El-Zaeddi et al. 2016; Isman 2016;
Mossa 2016). Although the potential toxicity of individual
HIPVs against lepidopteran pests is limited, investigating
the larvicidal and ovicidal activity of common individual
HIPVs may add to our arsenal of chemical-mediated pest
control options in agriculture systems.

Here, we evaluated the hypothesis that HIPVs are acutely
toxic to insect herbivores. Plant volatiles may affect her-
bivores either as a constituent of ingested leaf tissues or
through air contact alone (Veyrat et al. 2016), so we con-
ducted dose-response assays with HIPVs either in head-
space alone or infused directly into the diet. We specifically
selected six HIPVs that represented the three major bio-
chemical pathways: terpenes, green leaf volatiles (GLVs)
derived from the lipoxygenase pathway, and indole (Heil
2014). Indole is an aromatic, bicyclic, amino acid precursor
from the shikimate pathway. The volatile compound indole
is emitted from a variety of eukaryotes and prokaryotes (Lee
et al. 2015), and recently indole has been implicated in plant
defense priming and direct defense against insects (Erb et al.
2015).

First, we tested the larvicidal activity of the six indi-
vidual HIPVs against a common lepidopteran herbivore
pest beet armyworm (Spodoptera exigua). We used the beet
armyworm (S. exigua) in our first experiments because it is
destructive generalist agricultural pest (Liburd et al. 2000)
that is capable of developing resistance against a broad
range of chemical insecticides including eight out of nine
chemical agents tested in field trials (Brewer et al. 1990;
Che et al. 2013), and is also a model herbivore in HIPV-
mediated direct and indirect plant defense studies (Chris-
tensen et al. 2013; Engelberth et al. 2004; Huffaker et al.
2013; Schmelz et al. 2003; Ton et al. 2007). As nonvolatile
terpenes and phenylpropanoids are known direct defenses
(Moghaddam and Mehdizadeh 2017), we predicted that
indole and the terpenes would be relatively more toxic than
the GLVs. Results from this experiment led us to focus our
work specifically on indole. We tested the larvicidal activity
of indole on six agriculturally important caterpillar species
with different host ranges. Because indole is produced by a
wide range of plant species (Cna’ani et al. 2018; Lee et al.
2015), we hypothesized that indole toxicity would increase
with herbivore host specialization. That is, specialists would
be more sensitive to indole than would be generalists. Lastly,
we tested the ovicidal effect of indole. Since HIPVs pro-
vide indirect defenses by attracting egg predators (Fatouros
et al. 2008), we predicted that indole would provide a direct
defense benefit by reducing egg hatching success.
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Materials and methods
Plant volatiles

We used six common, commercially available HIPVs
belonging to different biosynthetic pathways. Three com-
pounds were GLVs derived from the lipoxygenase pathway:
cis-3-hexenol (97%) (CAS: 928-96-1; TCI America), cis-
3-hexenyl acetate (99%) (CAS: 3681-71-8; TCI America),
and trans-2-hexenal 98%) (Sigma-Aldrich). Two terpene
representatives were the sesquiterpene fB-caryophyllene
97% (CAS: 87-44-5; MP Biomedicals) and the monoter-
pene linalool (97%) (CAS: 78-70-6; Alfa Aesar). Finally,
we tested the nitrogen-containing compound indole (97%)
(CAS: 120-72-9; TCI America) that derives from the shi-
kimic acid pathway.

Experimental insects

For our experiments, we selected six common pest herbi-
vores that are known to cause severe economic losses, varied
in their host range (degree of specialization), and were com-
mercially available. We chose four generalists: beet army-
worm (Spodoptera exigua) (Capinera 1999a; Greenberg
et al. 2001), fall armyworm (Spodoptera frugiperda) (CABI
2018b; Capinera 1999c), cotton bollworm (Helicoverpa zea)
(CABI 2018a; Martin et al. 1976), and tobacco budworm
(Heliothis virescens) (Capinera 2001; Harding 1976; Martin
et al. 1976). We selected the cabbage looper (Trichoplusia
ni), a generalist that has a strong host preference for the mus-
tard family (Brassicaceae) (Capinera 1999b; Hoo et al. 1984;
Martin et al. 1976). Finally, we selected velvetbean caterpil-
lar (Anticarsia gemmatalis), a specialist on legumes (Slan-
sky 1993; Waters and Barfield 1989). Eggs or egg masses of
these species were obtained from Benzon Research Inc. USA
(Permit #P526P-16-02563 to CJF). Eggs were immediately
transferred to 2-ounce diet cups for hatching. The diet cups
were maintained on shelving in a climate-controlled room at
24-27 °C until the egg hatched, and first-instar larvae were
used within 24 h of hatching for all experiments.

Preparation of test diets for feeding bioassays

Larvicidal effects of HIPVs against S. exigua were tested
at five different concentrations 1, 2.5, 3.75, 5, and 10 mg/
ml or pl/ml in feeding and headspace bioassays. Previous
work establishing the LCj, of trans-2-hexenal against five
species of stored product beetles (Hubert et al. 2008) was
used as a starting point for initial test concentrations in our
study, and preliminary assays suggested this range would
be adequate to determine LCs, for the HIPVs. However,

the relatively high larvicidal activity of indole in our initial
experiments caused us to also include lower concentrations
of indole ranging from 0.005 to 1 mg/ml. All test diets were
prepared 12 h prior to starting an experiment. Artificial diet
powder (Southland Products Incorporated, Arkansas, USA)
was prepared as per manufactures instructions and aliquoted
into 50-ml centrifuge tubes. Prior to the diet solidifying, an
appropriate amount of an individual HIPV was added, and
the tube was vortexed thoroughly to mix each test compound
in the diet. Of the six volatiles used, pure indole is solid at
room temperature, while the other five are liquid. In prepar-
ing the diets, indole was added directly to the diet as a solid
and dissolved through vortexing to prepare a homogenous
mixture. That is, indole was not pre-dissolved in a solvent.
The five other volatiles were added in pure liquid form and
homogenized through vortexing. Control diets were prepared
similarly but without any HIPV added. After solidifying at
room temperature, the diet was cut into disk-shaped pieces
(10 mm diameter, 5 mm height, ca. 400 mg) using a 10-cm-
long cork borer. Each experimental cup received one piece
of artificial diet.

Preparation of volatile dispenser for headspace
bioassays

Experimental amounts of cis-3-hexenol, cis-3-hexenyl acetate,
B-caryophyllene, linalool, trans-2-hexenal, and indole were
added into a 2.0-ml amber glass vial (Agilent Technologies)
with 1 mg of glass wool (Fig. 1). All volatiles were pure and
not dissolved in a solvent. Control dispensers had only glass
wool without any volatile (Erb et al. 2015). The amber vials
with HIPVs were sealed with a rubber septum and connected
to the diet cup by piercing the diet cup and amber vial rubber
septum with an 18-gauge needle (inner diameter 0.83 mm).
This design was similar to a previous work in which dispensers
containing 20 mg of indole were pierced with a 1 pl micro-
pipette (inner diameter 0.2 mm) (Ye et al. 2019).

Volatile infused glasswool

18-guage needle

Diet
Caterpillar

Fig.1 Volatile delivery system for headspace bioassay.
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Test of toxicity of plant volatiles against caterpillars

First-instar larvae were used for testing the toxicity of plant
volatiles because the first instar is the most sensitive stage
to the secondary plant chemicals (Zalucki et al. 2002). For
feeding bioassays, ten first-instar larvae were placed in a
2-oz diet cup containing either volatile infused diet or con-
trol diet. The cup was the experimental unit of replication.
Headspace bioassays were conducted similarly, except that
all diets were control (no HIPVs) and the diet cups were
connected to a dispenser that contained a specific HIPV or
no HIPV (control). Each experimental group had 5-10 rep-
licate cups. The percent survival at 24 h was determined for
each replicate.

Effects of headspace indole on S. exigua and T. ni
egg hatching rates

For egg hatching assays, we specifically selected caterpillar
species most susceptible and tolerant to indole in feeding
bioassays. The inhibitory effect of indole on the beet army-
worm (S. exigua) and the cabbage looper (7. ni) egg hatch-
ing was measured in a headspace bioassay. S. exigua and T.
ni eggs were transferred to diet cups that were connected
to volatile dispensers containing different concentrations of
indole: 0, 0.1, 0.25, 0.5, 1, 2.5, 5, 10, 15, and 20 mg. Each
concentration of indole had five replicate diet cups. The per-
cent hatch of the eggs was measured at 96 h after exposure
and compared to controls without indole.

Statistical analyses

All analyses were conducted in R version 3.4.1 (R 2018)
using R Studio version 1.0.153 (Wickham 2011). For calcu-
lating the median lethal concentration (LCs), the mortality
rates of caterpillar larvae after 24 h of VOC exposure were
regressed against indole concentration using quadratic logis-
tic regression (glm function), and the median lethal con-
centration (LCs,) was calculated using the fitted function in
quadratic logistic regression. We used this model because
it produced the best fit based on AIC values. The figures
were plotted with GraphPad Prism version 8.0.0 (San Diego,
California USA) and ggplot2 in R Studio (Wickham 2011).

Results

HIPV toxicity against S. exigua

Indole caused the highest larval mortality of all six HIPVs
tested (Fig. 2a). With the exception of B-caryophyllene, all

HIPVs that were directly consumed in diet caused com-
plete mortality at some concentration tested (Fig. 2a).
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In contrast, no HIPV showed any toxicity to S. exigua
when administered in headspace alone at any concentra-
tion (Fig. 2b). Based on LC50 values, indole was more
than seven times more larvicidal than was the second
most potent volatile (linalool) among all the HIPVs tested
against S. exigua (indole LC50 = 0.35 mg/ml; linalool
LC50 = 2.59 uyl/ml) (Fig. 3). GLVs were relatively less
toxic: cis-3-hexenol (LC50 = 3.32 pl/ml diet), cis-3-hex-
enyl acetate (LC50 = 4.61 pl/ml diet), and trans-2-hexenal
(LC50 = 4.85 pl/ml diet) (Fig. 3). B-caryophyllene was nei-
ther toxic in diet nor headspace against S. exigua caterpillars
at any of the tested concentrations. Mortality of S. exigua
was negligible in the control group.

Indole toxicity relative to caterpillar host range

The caterpillar species with restricted host ranges were more
sensitive to indole than were the generalist caterpillars. The
LCs, of indole for the four widely generalist pests ranged
from 0.18 to 0.35 mg/ml diet (Fig 4). Specifically, the LCs,
of indole was 0.35 mg/ml for S. exigua (Fig. 4a), 0.29 mg/ml
for S. frugiperda (Fig. 4b), 0.27 mg/ml for H. zea (Fig. 4c),
and 0.18 mg/ml for H. virescens (Fig. 4d). In contrast, the
LCs, of indole was 0.05 mg/ml for both the velvetbean
caterpillar (A. gemmatalis) and the cabbage looper (7. ni)
(Fig. 4e, f). That is, indole was 3.6-7.0 times more toxic
for the two more specialized caterpillars than it was for the
four generalists.

Larvicidal and ovicidal activity of volatile indole
in headspace

Consistent with our first experiment using S. exigua
(Fig. 2b), indole present only in headspace had no effect on
T. ni caterpillar mortality (Fig. 5). Furthermore, there was
no inhibitory effect of any tested concentration of indole on
egg hatching success of either S. exigua or T. ni caterpillars
(Fig. 6a, b). Because these two caterpillar species were the
most (S. exigua) and least (7. ni) sensitive to indole, we did
not conduct headspace bioassays for mortality or egg hatch-
ing on the other caterpillars.

Discussion

We have demonstrated that (1) HIPVs have direct larvicidal
activity with indole being considerably more toxic than were
GLVs or terpenes tested, (2) the larvicidal effect of HIPVs
is largely constrained to direct consumption by caterpillars
as opposed to airborne volatile exposure alone, and (3) the
larvicidal effect of the common volatile indole depends on
the degree of host specialization of the caterpillar species.
To our knowledge, this is the first study to report LCs, values
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Fig. 2 Direct toxicity of plant
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for HIPVs against lepidopteran pests, which was a key goal
of this study. In support of the hypothesis that larvicidal
activity would vary among HIPVs, we found that indole was
distinctly toxic against beet armyworm, whereas GLVs and
volatile terpenes showed comparatively mild direct larvicidal
activity. Similar larvicidal effect of some GLVs and terpenes
has been reported against stored pest beetles (Hubert et al.
2008) and aphids (Sadeghi et al. 2009), and our results are
comparable. For example, the LCs, values we obtained for
the three GLVs we tested, cis-3-hexenol (3.32 pl/ml), cis-
3-hexenyl acetate (4.61 ul/ml), and trans-2-hexenal (4.85 pl/
ml) (Fig. 3), are similar to those reported against stored pest
beetles (0.6-3.32 mg/g) (Hubert et al. 2008). Similarly, the
larvicidal activity of the terpene linalool against S. exigua in
our study (LCs, of 2.59 pl/ml) is comparable to the previous
work testing linalool against the European corn borer (Lee
et al. 1999). While the mechanism of detoxification and dose
dependency are important factors to consider, our collective
results do at least suggest that the LCs;, values we obtained
are similar across three insect orders.

A key finding is that indole is considerably more toxic
than the other HIPVs tested. In fact, the LCs, of indole

(50-350 pg/ml) is comparable to other natural toxic agents
such as spores from various strains of the bacterium Bacil-
lus thuringiensis (LCsy = 63.0-153.0 ug/ml) (Moar et al.
1989) and purified Cryl protein from B. thuringiensis
(LCsq = 1-870 pg/g) (Ali et al. 2006; Niu et al. 2013).
Moreover, the LCs, of commercial B. thuringiensis DiPel
ES (LCsy = 2 pg/g) (Liao et al. 2002) and the synthetic
insecticide lambda-cyhalothrin (LCs,= 5.27 ug/ml) (Hardke
et al. 2011) are close to LCs, obtained for indole at 24 h in
our experiments. While the LCs values of tested HIPVs in
this study are higher than emission rates observed in nature
(Allmann et al. 2013; Degen et al. 2012), they are likely
representative of what might be stored within leaf tissues
(Loreto et al. 1998, 2000; Niinemets et al. 2004) and what
insect herbivores may realistically encounter in their natural
diets. In other words, our results have both ecological and
practical relevance.

In our study, indole in headspace alone did not affect cat-
erpillar survival or egg hatching. In fact, none of the vola-
tiles tested showed any effect when present in headspace
alone (Fig. 2b). In a previous work, volatile indole reduced
the survival of the generalist herbivore S. littoralis by ~ 10%

@ Springer
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Fig.3 LCs, of individual plant volatiles on S. exigua caterpillars in
feeding bioassay. Graphs for each volatile refer to fitted values based

causing 50% mortality. Data are reproduced individually from Fig. 2a
for easy visualization.

on quadratic logistic regression. LC50 represents lethal concentration

in neonates and ~ 6% in first instar (Veyrat et al. 2016). This
study also noted decreases in food consumption and, sur-
prisingly, increases in larval weight under indole treatments
(Veyrat et al. 2016). While we did not find similar effects
with S. exigua, our study was focused on larvicidal activity
as reflected in LCs, which is fundamentally a different met-
ric. So, it appears that volatile exposure may exert non-lethal
influences on caterpillars. That said, exposure of eggs to
indole in headspace also had no effect on hatching success of
either S. exigua or T. ni (Fig. 6), which is consistent with the
previous work (Veyrat et al. 2016). Plant volatiles can clearly
have repellent effects on insect pests (Beale et al. 2006; Ber-

et al. 1971), whereas specialist herbivores are more tol-
erant to compounds specific to their host range but sen-
sitive to more common phytochemicals (Whittaker and
Feeny 1971). In other words, there is a trade-off between
chemical detoxification and host specialization. Since free
indole is produced in some eukaryotes and prokaryotes
(Lee et al. 2015) and is a common HIPV (Cna’ani et al.
2018; Frost et al. 2007), we predicted that it would be
relatively toxic to specialist caterpillars compared to gen-
eralist caterpillars. Indeed, larvicidal activity of indole was
approximately seven times lower for specialist A. gem-

nasconi et al. 1998; Heil 2004; Sandra et al. 2014), but our
study indicates that larvicidal efficacy of HIPVs depends on

their direct consumption by herbivores.

The larvicidal activity of indole varied with cater-
pillar host range in a manner that supported our initial
prediction. A long-standing hypothesis is that generalist
herbivores are well equipped to detoxify a wide array of
common phytochemicals (Agrawal and Ali 2012; Krieger
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matalis compared to generalist S. exigua and, in general,
all the generalist species were tolerant to indole relative
to the specialist. The exception was T. ni, a pest that dis-
plays clear feeding preferences for Brassicaceae species
(Rivera-Vega et al. 2017), which had an LCs, to indole
approximately the same as the specialist A. gemmatalis
(LCsy = 0.05 mg/ml of diet) (Fig. 4). While we only used
six caterpillar species in our study, our results support
ecological theory related to herbivore specialization.
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Fig. 5 Effect of varying concentrations of indole on the survival of T.
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mean of five—ten biological replicates + 1SEM.

the arsenal of chemical defenses in pest management. Due
to its toxicity, indole might be particularly useful as a part
of integrated pest management strategy for both generalist
and specialist caterpillars given that its larvicidal effect is
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Fig. 6 Effect of varying concentrations of indole on percent egg hatch
of S. exigua (a) and T. ni (b). Values represent the mean of five bio-
logical replicates + 1SEM.

similar or stronger than to some commercial pesticides and
potent biopesticides like the CrylF bacillus thuringiensis
protein. Even the larvicidal activity of the GLVs and linalool
against S. exigua in our study is approximately the same as
reported for other pests. Therefore, our results indicate that
HIPVs warrant attention as chemical components of control
strategies against insect pests.
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