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Bifurcation Analysis of a Mosquito Population Model with a Saturated Release
Rate of Sterile Mosquitoes∗
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Abstract. Releasing sterile mosquitoes is a method of mosquito control that uses area-wide inundative releases
of sterile male mosquitoes to reduce reproduction in a field population of wild mosquitoes. In this
paper, we consider a mosquito population model with a nonlinear saturated release rate of sterile
mosquitoes and study the complex dynamics and bifurcations of the model. It is shown that there
are a weak focus of multiplicity 3 and a nilpotent cusp of codimension 4 for various parameter
values and the model exhibits Hopf bifurcation of codimension 3 and Bogdanov–Takens bifurcation
of codimension 2 as the parameter values vary. Our analysis also shows that there exists a critical
release rate coefficient of sterile mosquitoes, above which the mosquito population can be eliminated
and below which the interacting sterile and wild mosquitoes coexist in the form of multiple periodic
oscillations and steady states for some initial populations. Numerical simulations are presented to
demonstrate the coexistence of a homoclinic loop and a limit cycle, the existence of two limit cycles,
and the existence of three limit cycles, respectively.

Key words. wild mosquitoes, sterile mosquitoes, release rate, Hopf bifurcation of codimension 3, nilpotent cusp
of codimension 4, Bogdanov–Takens bifurcation
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1. Introduction. Mosquito-borne diseases such as chikungunya, dengue, malaria, yellow
fever, Zika, etc., are transmitted to humans by blood-feeding mosquitoes. In tropical and
subtropical areas, mosquito-borne diseases are still rampant and are becoming serious public
health problems worldwide. Mosquito control, such as reducing the adult mosquito popu-
lations and controlling mosquito larvae, is a major measure to prevent mosquito-borne dis-
eases. However, use of large amounts of insecticides will inevitably give rise to resistance of
mosquitoes and some chemicals in pesticides affect human health (Blayneha and Mohammed-
Awel [10], Lees et al. [34]). In recent years, the sterile insect technique has been proven to be
useful and effective to reduce or eradicate mosquitoes (Alphey [2], Boete, Agusto, and Reeves
[11], Dufourd and Dumont [17], Fister and McCarthy [23], Lees et al. [34], Li [38]).
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940 J. HUANG, S. RUAN, P. YU, AND Y. ZHANG

The sterile insect technique (SIT) (Knipling [32], Dyck, Hendrichs, and Robinson [21])
is a method of biological insect control, whereby overwhelming numbers of sterile insects
are released into the wild. The sterile males compete with wild males to mate with the
females, and females that mate with a sterile male produce no offspring, thus reducing their
reproductive output. Sterile insects are not self-replicating and cannot become established in
the environment. This approach has achieved some success in controlling several insect pest
species, including screwworm, Mediterranean fruit flies, and tsetse flies (Krafsur [33], Benedict
and Robinson [8]). Applying SIT (by irradiation) to mosquitoes is not as simple as it looks.
First, it is necessary to have a very good knowledge of the biology of the mosquito species to
be controlled. Second, the irradiation dose is not the same for an Anopheles mosquito as for
an Aedes mosquito. If the irradiation dose is too strong it can greatly affect the lifespan and
the competitivity of the male (Benedict and Robinson [8], Dumont and Tchuenche [18]). It is
generally agreed that classical SIT strategies have had sporadic success, leading to the recent
development of transgenic technologies (Alphey [2], Carvalho, Costa-da-Silva, and Lees [14]).

One such transgenic strategy is the release of insects carrying a dominant lethal (RIDL)
(Thomas et al. [45], Fu et al. [24]), in which the released male mosquitoes are homozygous for
a repressible dominant lethal gene or genetic system. The repressors are something that could
be provided during mass-rearing but are not found in the wild. These RIDL male mosquitoes
mate with wild females and produce heterozygous progeny that die under predetermined
conditions (Thomas et al. [45], Alphey [2]). Sterility can also be created by artificial infection
with various strains of Wolbachia, a diverse group of intracellular bacteria (Werren, Baldo, and
Clark [42]). Wolbachia are not infectious between insects on normal timescales; rather they
are maternally transmitted, being passed from mother to her offspring. Infected males are
useless to the maternally inherited Wolbachia for propagation; instead they produce modified
sperm that produce viable zygotes only with eggs from infected females (Alphey [2]).

Mathematical models have been used extensively to gain insights into investigation and
assessment of the impact of releasing sterile mosquitoes (Anguelov, Dumont, and Lubuma
[3], Atkinson et al. [4], Barclay [5, 6], Berryman [9], Barclay and Mackauer [7], Dufourd and
Dumont [17], Dumont and Tchuenche [18], Esteva and Yang [22], Fister and McCarthy [23],
Knipling [32], Lewis and van den Driessche [35], Li [38], White, Rohani, and Sait [43]), and the
development of appropriate mathematical models can potentially answer important ecological,
epidemiological, and pest control problems more generally. Depending on the features under
consideration, various types of models such as difference equation models (Knipling [32]),
ordinary differential equation models (Anguelov, Dumont, and Lubuma [3], Barclay [5, 6],
Berryman [9], Barclay and Mackauer [7], Dufourd and Dumont [17], Dumont and Tchuenche
[18], Esteva and Yang [22], Li [38]), delay differential equation models (Atkinson et al. [4],
White, Rohani, and Sait [43]), and partial differential equation models (Lewis and van den
Driessche [35]) have been used to investigate the effects of releasing sterile mosquitoes on the
population dynamics of mosquitoes and the transmission dynamics of some mosquito-borne
diseases.

In the process of releasing sterile mosquitoes, whether SIT or transgenic, the most impor-
tant and difficult problem is to determine suitable releasing strategies, since different releasing
methods will produce different dynamic results of interactive wild and sterile mosquitoes as
well as different transmission outcomes. So far various release rates of sterile/transgenic male
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BIFURCATIONS OF A MOSQUITO POPULATION MODEL 941

mosquitoes have been used in the literature, including (i) constant rate (Anguelov, Dumont,
and Lubuma [3], Berryman [9], Barclay and Mackauer [7], Dufourd and Dumont [17], Dumont
and Tchuenche [18], Esteva and Yang [22], Li [38]); (ii) periodic rate (Barclay [6]); (iii) pulsed
rate (White, Rohani, and Sait [43]); (iv) proportional rate (Atkinson et al. [4]); (v) trajectory
rate (Atkinson et al. [4]); and (vi) nonlinear saturated rate (Cai, Ai, and Li [13], Li, Cai, and
Li [39]).

Let w(t) and g(t) be the number of wild mosquitoes and sterile mosquitoes at time t,
respectively, and let N(t)(= w(t) + g(t)) be the total number of wild mosquitoes and sterile
mosquitoes. Assume that the dynamics of both wild and sterile mosquitoes, in the absence of
interactions, follow logistic growth, and the birth rate of sterile mosquitoes is their release rate.
After the sterile mosquitoes are released into the wild mosquito population, the interactive
model takes the following form (Cai, Ai, and Li [13] and Li, Cai, and Li [39]):

dw

dt
=

[
C(N)

aw

w + g
−
(
µ1 + ξ1(w + g)

)]
w,

dg

dt
= B(·)−

[
µ2 + ξ2(w + g)

]
g,

(1.1)

where C(N) is the number of matings per individual per unit of time, a > 0 is the number
of wild offspring produced per mate, µi > 0 and ξi > 0(i = 1, 2) are the density independent
and dependent death rates of the wild and sterile mosquitoes, respectively, and B(·) is the
release rate of the sterile mosquitoes. Considering the possible difficulty in finding mates when
the mosquito population size is small, Cai, Ai, and Li [13] assumed an Allee effect such that
the mating rate takes the form of C(N) = c0N/(1 + N), where c0 is the maximum mating
rate. In the meantime, Cai, Ai, and Li [13] supposed that the release rate B(·) is a nonlinear
saturated function such that it is proportional to the wild mosquito population size when the
wild mosquito population size is small but is saturated and approaches a constant b when the
wild mosquito population size is big enough, i.e., B(·) = bw

1+w , where b > 0 is the release rate
coefficient. Under these assumptions and writing c0a as a, system (1.1) becomes a mosquito
population model with nonlinear saturated releasing rate of sterile mosquitoes

dw

dt
=

[
aw

1 + w + g
−
(
µ1 + ξ1(w + g)

)]
w,

dg

dt
=

bw

1 + w
−
[
µ2 + ξ2(w + g)

]
g,

(1.2)

where all parameters are positive. Cai, Ai, and Li [13] and Li, Cai, and Li [39] provided some
basic analysis on the dynamics and gave some numerical examples to reveal the rich dynamical
features of model (1.2). While their findings seem exciting and promising, the model could
exhibit much more complex dynamics than has been found and the model deserves further
theoretical analysis on its complex dynamics and bifurcation phenomena. Moreover, under
the hypothesis that the sterile and wild mosquitoes have the same fitness, or the same death
rates, i.e.,

µ1 = µ2 and ξ1 = ξ2,

Cai, Ai, and Li [13] studied the existence and local stability of positive equilibria of system
(1.2). They fulfilled a relatively complete analysis for this special case, obtained a threshold
release value implicitly, and showed that if there exist two positive equilibria, one must be aD
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942 J. HUANG, S. RUAN, P. YU, AND Y. ZHANG

saddle point and the other is always an asymptotically stable node or spiral. Thus there are no
complex bifurcations and dynamical phenomena for system (1.2) under the above hypothesis.
However, in general, the sterile and wild mosquitoes should have different fitness, or different
death rates, i.e.,

µ1 6= µ2 and ξ1 6= ξ2.

Hence, in this paper, in order to better understand the effect of a nonlinear saturated releasing
rate of sterile mosquitoes to wild mosquitoes, we further consider system (1.2) with different
fitnesses (i.e., µ1 6= µ2 and ξ1 6= ξ2) for the sterile and wild mosquitoes and find some
complex bifurcation phenomena, such as Hopf bifurcation of codimension 3, nilpotent cusp of
codimension 4, and Bogdanov–Takens bifurcation of codimension 2. Numerical simulations
are presented to demonstrate the coexistence of a homoclinic loop and a limit cycle, the
existence of two limit cycles, and the existence of three limit cycles, respectively.

The paper is organized as follows. In section 2, we first show that there are at most two
positive equilibria in system (1.2) with different fitnesses for the sterile and wild mosquitoes,
one is a saddle, and the other may be a stable or an unstable focus when there are two positive
equilibria; the unique positive equilibrium may be a cusp. Hopf bifurcation of codimension
3, nilpotent cusp of codimension 4, and Bogdanov–Takens bifurcation of codimension 2 are
discussed in section 3. The paper ends with a brief discussion in section 4.

2. Equilibria and their stability. Define

Ω :=

{
(w, g) : 0 ≤ w ≤ a

ξ1
, 0 ≤ g ≤ ba

ξ1µ2

}
,

which is a positively invariant and attracting set for the flows of (1.2) in the first quadrant.
In fact, first, it is easy to see that {(w, g) : w ≥ 0, g ≥ 0} is positively invariant since

w = 0 is an invariant line and dg
dt

∣∣
g=0

= bw
1+w > 0 if w > 0.

Second, from the first equation of system (1.2), we can get that

dw

dt
< (a− ξ1w)w,

and a standard comparison argument shows that

lim sup
t→∞

w(t) ≤ a

ξ1
.

Then we can observe that there exists a T > 0 such that for t > T , w(t) ≤ a
ξ1

. From the
second equation of system (1.2), we can see that for t > T , we have

dg

dt
≤ ba

ξ1
− µ2g,

which shows that

lim sup
t→∞

g(t) ≤ ba

ξ1µ2
.

The above arguments imply that Ω is a positively invariant and attracting set for the flows of
(1.2) in the positive quadrant.
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BIFURCATIONS OF A MOSQUITO POPULATION MODEL 943

We next introduce a new time variable τ by dt = dτ
a and still denote τ by t for convenience;

then system (1.2) can be rewritten as

dw

dt
=

[
w

1 + w + g
−
(
µ1
a

+
ξ1
a

(w + g)

)]
w,

dg

dt
=

b
aw

1 + w
−
[
µ2
a

+
ξ2
a

(w + g)

]
g.

Still denoting µ1
a ,

ξ1
a ,

b
a ,

µ2
a ,

ξ2
a by µ1, ξ1, b, µ2, ξ2, respectively, we have the following system:

dw

dt
=

[
w

1 + w + g
−
(
µ1 + ξ1(w + g)

)]
w,

dg

dt
=

bw

1 + w
−
[
µ2 + ξ2(w + g)

]
g,

(2.1)

where all parameters, b, µ1, µ2, ξ1, and ξ2 are positive.

2.1. Existence of equilibria. Note that the origin (0, 0) is always an equilibrium for system
(2.1) and there is no other boundary equilibrium.

Let N = w + g at a positive equilibrium. We have

(2.2) w = (1 +N)(µ1 + ξ1N), g =
b(1 +N)(µ1 + ξ1N)

[1 + (1 +N)(µ1 + ξ1N)](µ2 + ξ2N)
.

Then N satisfies

(2.3)
[
N − (1 +N)(µ1 + ξ1N)

][
1 + (1 +N)(µ1 + ξ1N)

]
(µ2 + ξ2N) = b(1 +N)(µ1 + ξ1N),

that is,

(2.4)
[
1 + (1 +N)(µ1 + ξ1N)

]
(µ2 + ξ2N) =

b(1 +N)(µ1 + ξ1N)

N − (1 +N)(µ1 + ξ1N)
,

which is a polynomial equation of degree five and may have up to five positive roots. In fact,
we will show that (2.3) has at most two positive roots.

Let G1(N) = N − (1 +N)(µ1 + ξ1N). Then G1(0) = −µ1 < 0, and it is easy to see that
G1(N) = 0 has two positive roots

N1,2 =
1

2ξ1

[
(1− µ1 − ξ1)±

√
(1− µ1 − ξ1)2 − 4µ1ξ1

]
if

1− µ1 − ξ1 > 0 and (1− µ1 − ξ1)2 − 4µ1ξ1 > 0,

or, equivalently, if

(2.5)
√
µ1 +

√
ξ1 < 1.
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944 J. HUANG, S. RUAN, P. YU, AND Y. ZHANG

Since G1(N) > 0 if N ∈ (N1, N2), we consider (2.4) when N ∈ (N1, N2). Let

F1(N) =
[
1 + (1 +N)(µ1 + ξ1N)

]
(µ2 + ξ2N), F2(N) =

(1 +N)(µ1 + ξ1N)

N − (1 +N)(µ1 + ξ1N)
.

Then (2.4) can be rewritten as

F1(N) = bF2(N).

By some trivial computation, we can get the asymptotic features of F1(N) and F2(N). F1(N)
is a monotone increasing positive function when N > 0 and limN→+∞ F1(N) = +∞. F2(N)
is positive and decreases first and then increases when N ∈ (N1, N2), limN→N1

+F2(N) = +∞,
limN→N2

−F2(N) = +∞. Furthermore, it is easy to see that F1(N) and F2(N) have no
inflection points when N > 0. Then F1(N) = bF2(N) (i.e., (2.4)) has at most two positive
roots.

We also rewrite (2.4) as

N − (1 +N)(µ1 + ξ1N)

(1 +N)(µ1 + ξ1N)

[
1 + (1 +N)(µ1 + ξ1N)

]
(µ2 + ξ2N) = b,

that is, 1
F2(N)F1(N) = b. Define F3(N) = 1

F2(N) ; then (2.4) becomes

(2.6) F3(N)F1(N) = b.

It can be seen that the positive equilibria of system (2.1) are determined by the positive roots
of (2.6) when N ∈ (N1, N2).

By some simple calculation, we can see that F3(N1) = F3(N2) = 0 and F3(N) increases
first and then decreases when N ∈ (N1, N2). Since (2.4) has at most two positive roots when
N ∈ (N1, N2), it follows that the curve for F3(N)F1(N) must have a shape similar to that
for F3(N). Thus, the function F3(N)F1(N) has a unique maximum value on the interval
(N1, N2), which determines the threshold release value

(2.7) b0 := max
N∈(N1,N2)

F3(N)F1(N).

From the above analysis, we have the following result, which is similar to Theorem 4.1 in
[13], in which only a special case that µ1 = µ2 and ξ1 = ξ2 was considered.

Theorem 2.1. The origin (0, 0) is a unique boundary equilibrium for system (2.1).
Moreover,

(i) if b > b0 or
√
µ1 +

√
ξ1 ≥ 1, then system (2.1) has no positive equilibrium;

(ii) if b = b0 and
√
µ1 +

√
ξ1 < 1, then system (2.1) has a unique positive equilibrium

E∗(w∗, g∗) with

(2.8) w∗ = (1 +N∗)(µ1 + ξ1N
∗), g∗ =

b(1 +N∗)(µ1 + ξ1N
∗)

[1 + (1 +N∗)(µ1 + ξ1N∗)](µ2 + ξ2N∗)
,

where N∗ is the unique positive root of (2.6);
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(iii) if b < b0 and
√
µ1 +

√
ξ1 < 1, then system (2.1) has two positive equilibria E∗1(w∗1, g

∗
1)

and E∗2(w∗2, g
∗
2) with

w∗1,2 = (1 +N∗1,2)(µ1 + ξ1N
∗
1,2), g∗1,2 =

b(1 +N∗1,2)(µ1 + ξ1N
∗
1,2)

[1 + (1 +N∗1,2)(µ1 + ξ1N∗1,2)](µ2 + ξ2N∗1,2)
,(2.9)

where N∗1 < N∗2 are the two positive roots of (2.6).

Remark 2.2. From Theorem 2.1, we can see that there exists a critical release rate coeffi-
cient of sterile mosquitoes, above which the mosquito population can be eliminated.

2.2. Stability of the equilibria. The Jacobian matrix of system (2.1) at the equilibrium
(0, 0) has the form [

−µ1 0
b −µ2

]
.

It is easy to see that the eigenvalues of the above matrix are −µ1 and −µ2, which are all
negative, so the origin (0, 0) is locally asymptotically stable.

The Jacobian matrix of system (2.1) at a positive equilibrium has the form

J =

[
w(1+g)
(1+N)2

− ξ1w −
(

w
(1+N)2

+ ξ1
)
w

b
(1+w)2

− ξ2g −µ2 − ξ2w − 2ξ2g

]
,

from which we have

trJ = −w(µ1 + ξ1N)

1 +N
+ µ1 − µ2 + (ξ1 − ξ2)g − ξ2N.

Define

G1(N) = N − (1 +N)(µ1 + ξ1N), G2(N) =
F1(N)

(1 +N)(µ1 + ξ1N)
= Q2

µ2 + ξ2N

µ1 + ξ1N
,

where Q2 = 1+(1+N)(µ1+ξ1N)
1+N ; then (2.3) can be rewritten as

(2.10) G1(N)G2(N) = b.

Through some calculations, we can derive that

(2.11) detJ = −w(µ1 + ξ1N)

1 + w

d(G1G2)

dN
;

the detailed computations are given in Appendix A.
If there is a unique positive equilibrium E∗ for system (2.1) associated with the unique

positive root N∗ of (2.10), then we have

d(G1G2)
dN

∣∣∣
N=N∗

= 0,

which implies that
detJ

∣∣
N=N∗

= 0.
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Figure 2.1. The phase portraits of system (2.1) with µ1 = 1
45
, ξ1 = 7

45
, µ2 = 1

30
, ξ2 = 1

90
. (a) No positive

equilibrium when b = 2
15

. (b) A unique positive equilibrium which is a cusp when b = 1
9

. (c) Two positive
equilibria when b = 11

100
, E∗1 is a saddle, E∗2 is a stable node.

If there are two positive equilibria E∗1 and E∗2 for system (2.1) associated with the two positive
roots N∗1 < N∗2 of (2.10), then we have

d(G1G2)
dN

∣∣∣
N=N∗2

< 0 < d(G1G2)
dN

∣∣∣
N=N∗1

.

Therefore, we have
detJ

∣∣
N=N∗1

< 0 < detJ
∣∣
N=N∗2

.

By the above analysis and Theorems 7.1–7.3 in Zhang et al. [50], we have the following result.

Theorem 2.3.
(i) The origin (0, 0) is always locally asymptotically stable.

(ii) If there exists a unique positive equilibrium E∗(w∗, g∗) for system (2.1), then it is a
saddle-node if trJ |E∗ 6= 0 and a cusp if trJ |E∗ = 0.

(iii) If there exist two positive equilibria E∗1(w∗1, g
∗
1) and E∗2(w∗2, g

∗
2) for system (2.1), then E∗1

is a saddle; E∗2 is a locally asymptotically stable node or focus when trJ |E∗2 < 0, an
unstable node or focus when trJ |E∗2 > 0, and a linear center when trJ |E∗2 = 0.
The phase portraits are shown in Figure 2.1.

3. Bifurcation analysis. In this section, we are interested in various possible bifurcations
in system (2.1). From Theorem 2.3, we know that system (2.1) may exhibit Hopf bifurcation
around the equilibrium E∗2 and Bogdanov–Takens bifurcation around the equilibrium E∗.
From (2.4), we can see that the positive equilibrium depends on a polynomial equation of
degree five, which makes the full bifurcation analysis very difficult and challenging.

3.1. Hopf bifurcation of codimension 3. We first consider Hopf bifurcation. For conve-
nience, introducing the time scaling t = (1 + w)(1 + w + g)τ to system (2.1), we obtain

(3.1)

dw

dτ
= w(1 + w)

[
w − (1 + w + g)

(
µ1 + ξ1(w + g)

)]
,

dg

dτ
= (1 + w + g)

[
bw − (1 + w)

(
µ2 + ξ2(w + g)

)
g
]
.
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BIFURCATIONS OF A MOSQUITO POPULATION MODEL 947

Solving µ1 and µ2 from the equations dw
dτ = dg

dτ = 0, we obtain

(3.2) µ1 =
w∗2

1 + w∗2 + g∗2
− ξ1(w∗2 + g∗2), µ2 =

bw∗2
(1 + w∗2)g∗2

− ξ2(w∗2 + g∗2),

which requires (due to µ1 > 0 and µ2 > 0)

(3.3) 0 < ξ1 <
w∗2

(w∗2 + g∗2)(1 + w∗2 + g∗2)
, 0 < ξ2 <

bw∗2
g∗2(1 + w∗2)(w∗2 + g∗2)

.

To have a Hopf bifurcation at the equilibrium E∗2(w∗2, g
∗
2), we let trJ |E∗2 = 0 and get

(3.4) ξ1 = ξ1H =
1 + g∗2

(1 + w∗2 + g∗2)2
− bw∗2 + (1 + w∗2)(g∗2)2ξ2

w∗2g
∗
2(1 + w∗2)

,

which requires

(3.5) 0 < ξ2 <
w∗2
g∗2

[ 1 + g∗2
(1 + w∗2 + g∗2)2

− b

g∗2(1 + w∗2)

]
to guarantee ξ1H > 0, which in turn requires

(3.6) 0 < b <
g∗2(1 + w∗2)(1 + g∗2)

(1 + w∗2 + g∗2)2
.

Then at the critical point ξ1 = ξ1H, the eigenvalues of the linearized system of (3.1) around
(w∗2, g

∗
2) are λ1,2 = ±iωc, where

(3.7)
ωc =

{
w∗2
g∗2

[
(1 + w∗2)

(
(1 + w∗2 + g∗2)2ξ1 − 1− g∗2

)(
bw∗2 + (g∗2)2(1 + w∗2)ξ2

)
+ g∗2

(
w∗2 + (1 + w∗2 + g∗2)2ξ1

)(
b− g∗2(1 + w∗2)2ξ2

)]}1/2
.

In addition to the conditions given in (3.3), (3.5), and (3.6), it is further required that w∗2, g∗2,
and b are chosen such that ωc is real and positive.

Now introducing the transformation

w = w∗2 +
w∗2
[
b(1 + w∗2) + (b− 1− w∗2)g∗2

]
+ (g∗2)2(1 + w∗2)(1 + w∗2 + g∗2)ξ2

g∗2
u,

g = g∗2 −
(1 + w∗2 + g∗2)

[
bw∗2 + (g∗2)2(1 + w∗2)ξ2

]
g∗2

u+ ωc v

and the time rescaling τ1 = ωcτ into (3.1), we obtain

(3.8)
du

dτ1
= v +

4∑
i+j=2

aiju
ivj ,

dv

dτ1
= −u+

4∑
i+j=2

biju
ivj ,

where the coefficients aij and bij are given in terms of b, ξ2, w
∗
2, and g∗2. Next, using the formal

series method (see p. 93 in Chapter 2 in [50]) and applying the Maple program for computing
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948 J. HUANG, S. RUAN, P. YU, AND Y. ZHANG

the normal forms of Hopf and generalized Hopf bifurcations in Yu [47] we obtain the following
normal form:

dr
dτ1

= r(v0µ+ v1r
2 + v2r

4 + v3r
6 + · · · ),

dθ
dτ1

= 1 + ν0µ+ ν1r
2 + ν2r

4 + ν3r
6 + · · · ,

where r and θ represent the amplitude and phase of the periodic motions, respectively, and
µ = ξ1 − ξ1H is the unfolding. v0 and ν0 are obtained from linear analysis, while vk and
νk(k ≥ 1) must be derived using nonlinear analysis with the aid of a computer algebra system
such as Maple or Mathematica. The vk’s are usually called focus values, which can be used
to determine the number of limit cycles bifurcating from the Hopf critical point as well as the
center conditions on the singular point, while νk’s can be applied to determine the critical
periods of the bifurcating limit cycles. It should be noted that the formal series method [50]
can be used to obtain only the focus values. However, the coefficients νk are not needed in
this paper. The Maple output of the focus values is given as follows:

v1=−
w∗2 [b(1+w

∗
2+g

∗
2)−g∗2(1+w∗2)]+(g∗2)

2(1+w∗2)(1+w
∗
2+g

∗
2)ξ2

8w∗2(g
∗
2)

4(1+w∗2)
2(1+w∗2+g

∗
2)

3ω2
c

F1,

v2=
{w∗2 [b(1+w∗2+g∗2)−g∗2(1+w∗2)]+(g∗2)

2(1+w∗2)(1+w
∗
2+g

∗
2)ξ2}2

288(w∗2)
3(g∗2)

10(1+w∗2)
6(1+w∗2+g

∗
2)

6ω6
c

F2,

v3=− 1
663552(w∗2)

10(g∗2)
18(1+w∗2)

14(1+w∗2+g
∗
2)

8ω12
c {w∗2 [b(1+w∗2+g∗2)−g∗2(1+w∗2)]+(g∗2)

2(1+w∗2)(1+w
∗
2+g

∗
2)ξ2}6

F3,

v4= · · · ,
where Fi, i = 1, 2, 3, and v4 are lengthy polynomials in b, ξ2, w

∗
2, and g∗2.

It is extremely difficult or impossible to solve v1 = v2 = v3 = v4 = 0 for the four
parameters. We consider a slightly simpler case, w∗2 = g∗2, which implies that the equilibrium
(w∗2, g

∗
2) is restricted on the 45o straight line in the first quadrant of the w-g plane. Biologically

this means that the wild and sterile mosquitoes are balanced at the equilibrium. We will see
that the system still exhibits very complex dynamics under this restriction. In fact, we have
the following theorem.

Theorem 3.1. If b < b0,
√
µ1 +

√
ξ1 < 1 and the equilibrium E∗2(w∗2, g

∗
2) satisfies w∗2 = g∗2,

then system (3.1) (i.e., system (2.1)) undergoes a Hopf bifurcation of codimension 3 around the
equilibrium E∗2(w∗2, w

∗
2), three limit cycles bifurcate from E∗2(w∗2, w

∗
2), and the outer bifurcating

limit cycle is unstable.

Proof. Let g∗2 = w∗2. Then we use the three equations F1 = F2 = F3 = 0 to eliminate ξ2
and obtain a solution ξ2 = ξ2(b, w

∗
2) and two resultants:

R1 = R1(b, w
∗
2) and R2 = R2(b, w

∗
2).

Solving R1 = R2 = 0, we obtain 10 real solutions w∗2 > 0, b > 0. However, none of them yields
all parameters being positive and ω2

c > 0. Thus, it is not possible to have four small limit
cycles arising from the Hopf bifurcation at the equilibrium (w∗2, w

∗
2) with the restrictions on

the parameters.
The next best possibility is to have three limit cycles arising from the Hopf bifurcation

at the equilibrium (w∗2, w
∗
2), which requires that v1 = v2 = 0 but v3 6= 0. Since there are

three free parameters to be used, it may have an infinite number of solutions. We take the
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BIFURCATIONS OF A MOSQUITO POPULATION MODEL 949

special case w∗2 = g∗2 = 1 to show that it indeed has three limit cycles around the equilibrium
E∗2(w∗2, g

∗
2) = (1, 1).

When w∗2 = g∗2 = 1, the focus values v1, v2, and v3 are reduced to

v1 = − 3b+ 6ξ2 − 2

432(9b2 + 18bξ2 − 2b+ 8ξ2)
G1,

v2 = − (3b+ 6ξ2 − 2)2

15116544(9b2 + 18bξ2 − 2b+ 8ξ2)3
G2,

v3 = − (3b+ 6ξ2 − 2)3

33853318889472(9b2 + 18bξ2 − 2b+ 8ξ2)5
G3,

where

G1 = 58320bξ32 + 36(1053b2 + 54b+ 112)ξ22 + 4(729b3 + 162b2 + 234b− 128)ξ2

− 3b(243b3 − 594b2 + 276b− 32),

G2 = 326517350400b(9b+ 4)ξ72 + (5652627555456b3 + 1230154117632b2

− 233641304064b+ 90296156160)ξ62 + (5356772224992b4 − 992646757440b3

− 494477270784b2 + 122343229440b− 17951735808)ξ52 + (2828380020336b5

− 1861727105088b4 + 213989796864b3 − 41088446208b2 − 80167698432b

− 800243712)ξ42 + (676120497840b6 − 729715259808b5 + 304777870560b4

− 187985142144b3 + 3568810752b2 + 10306787328b+ 43646976)ξ32

+ (14081060736b7 + 30491958816b6 − 14461808688b5 − 62097293088b4

+ 31379425920b3 − 2248839936b2 − 438829056b+ 20971520)ξ22

− 2b(7179236469b7 − 27051409782b6 + 30140735364b5 − 10457184240b4

− 290713536b3 + 754523424b2 − 118374912b+ 4587520)ξ2

− 3b2(307704339b7 − 1511418204b6 + 2493993564b5 − 1772397288b4

+ 627476544b3 − 114646752b2 + 10123008b− 327680),

G3 = · · · .

Eliminating ξ2 from the two equations G1 = G2 = 0 we obtain a solution ξ2 = −3b ξ2nξ2d , where

ξ2n = 1215766545905692880100b19 + 11428355626148810072061b18

+ 97628666394693419367840b17 − 715997536568791235574768b16

+ 1211735866715961350229198b15 − 543559502882837078777304b14

− 255989725512341271407604b13 + 220672480880794797942480b12

+ 12151290864296114845344b11 − 32574190919194325946816b10

+ 1417846145344926200064b9 + 1733701690077190723584b8

+ 324186225479331803136b7 − 187110581980086190080b6

+ 1301960277724004352b5 + 875303182018805760b4

+ 1478338776540905472b3 − 282357186133229568b2

+ 13910323048218624b− 85418309582848,
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950 J. HUANG, S. RUAN, P. YU, AND Y. ZHANG

ξ2d = 7294599275434157280600b19 + 65328089634477679418766b18

+ 2117001044703313476862344b17 − 9009507952299734170657740b16

+ 7164657795528717547554108b15 + 3337639940500031251056024b14

− 4346676042279950693824344b13 − 238100078284948543469472b12

+ 742326317332386717223872b11 + 90631919696220307980288b10

− 87560237078141623626240b9 − 8465421839634461343744b8

+ 2900436732888236384256b7 + 1650284701799561035776b6

− 289108667701422784512b5 − 26871389454145683456b4

− 7078702070790881280b3 + 3411874036366442496b2

− 215293935168258048b+ 1366692953325568,

and a resultant:

R1 = b(405b2 − 72b+ 8)(2187b3 − 81b2 + 36b− 64)(8338590849833284500b15

+ 106384977408965611545b14 − 851807047085209819260b13

+ 2083240023585151729374b12 − 2328544331618373048240b11

+ 1290985483343789350512b10 − 314786318806183991544b9

− 6123658129675584336b8 + 33488339014669159296b7

− 25233272486194035456b6 + 13708773822817963008b5

− 4299563347822319616b4 + 725893086283628544b3

− 61341366413721600b2 + 2107325685694464b− 12178782420992).

Solving R1 = 0 yields eight real positive solutions:

b = 0.00714474 · · · , 0.07301690 · · · , 0.15234730 · · · , 0.19515215 · · · ,
0.30247351 · · · , 0.73356398 · · · , 1.60445318 · · · , 2.43448704 · · · .

Among these eight solutions, only the third one is a feasible solution under which all param-
eters and ωc are positive, as given below:

w∗2 = g∗2 = 1, b = 0.15234730 · · · , µ1 = 0.04939357 · · · , µ2 = 0.06801627 · · · ,
ξ1 = 0.14196988 · · · , ξ2 = 0.00407868 · · · , ωc = 0.27926600 · · · ,

under which
v1 = v2 = 0, v3 = 0.02803338 · · · .

Moreover, a direct computation shows that at the above critical point,

det

[
∂(v1, v2)

∂(b, ξ2)

]
= 18.68187323 · · · 6= 0,

which implies that three small-amplitude limit cycles bifurcate from the Hopf critical point
and the outer one is unstable since v3 > 0. The proof is complete.

Based on Theorem 3.1, we give some numerical simulations to illustrate the existence of
multiple limit cycles.

D
ow

nl
oa

de
d 

05
/2

6/
19

 to
 1

29
.1

71
.1

78
.6

3.
 R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.si
am

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

BIFURCATIONS OF A MOSQUITO POPULATION MODEL 951

    

0 0.4 0.8  1.2 1.6
0

0.2

0.4

0.6

0.8

1

1.2

w

g

E1*

E2
*

    

0.4 0.8  1.2 1.6 2

0.4

0.6

0.8

1

1.2

w

g

E1*

E2*

(a) (b)
    

0.4 0.8  1.2 1.6 2

0.4

0.6

0.8

1

1.2

w

g

E1*

E2*

    

0.4 0.8 1.2 1.6 2

0.4

0.6

0.8

1

1.2

w

g
E2*

E1*

(c) (d)

Figure 3.1. (a) An unstable limit cycle in system (2.1) with ξ2 = 0.0041, b = 0.152, ξ1 = 2
9
− 0.080101,

µ1 = − 1
9

+ 0.1602, µ2 = 0.0678. (b) A stable limit cycle in system (2.1) with ξ2 = 0.0038, b = 0.152,
ξ1 = 2

9
−0.07979, µ1 = − 1

9
+0.1596, µ2 = 0.0684. (c) The coexistence of one homoclinic loop and one stable limit

cycle in system (2.1) with ξ2 = 0.003821, b = 0.152, ξ1 = 2
9
− 0.079811, µ1 = − 1

9
+ 0.159642, µ2 = 0.068358.

(d) Two limit cycles in system (2.1) with ξ2 = 0.003812, b = 0.152, ξ1 = 0.142412, µ1 = 0.0485289, µ2 =
0.06836.

(i) Two limit cycles. An unstable limit cycle and a stable limit cycle around E∗2 cre-
ated from the subcritical and supercritical Hopf bifurcations are given in Figures 3.1(a) and
3.1(b), respectively. Figure 3.1(c) shows the coexistence of one homoclinic loop and one
stable limit cycle in system (2.1) with ξ2 = 0.003821, b = 0.152, ξ1 = 2

9 − 0.079811, µ1 =
−1

9 + 0.159642, µ2 = 0.068358. Figure 3.1(d) presents the existence of two limit cycles in
system (2.1) with ξ2 = 0.003812, b = 0.152, ξ1 = 0.142412, µ1 = 0.0485289, µ2 = 0.06836,
where the outer limit cycle is unstable.

(ii) Three limit cycles. To numerically simulate the existence of three limit cycles in
system (3.1), we use the normal form to determine the parameter values. First, we perturb
the parameters b and ξ2 such that the perturbed focus values satisfy
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952 J. HUANG, S. RUAN, P. YU, AND Y. ZHANG

v1 � −v2 � v3 = 0.02803338 · · · ,

and then we perturb ξ1 so that 0 < −v0µ� v1. The perturbed parameter values we obtained
are

b = 0.151428459565, µ1 = 0.048698952305, µ2 = 0.0673326199307,
ξ1 = 0.142317190514, ξ2 = 0.00419080492586,

under which the perturbed focus values are given by

v0µ=−0.9×10−8, v1=0.5790344618×10−5, v2=−0.8572860349×10−3, v3=0.0244464229.

Next, from the truncated normal form equation

ṙ = r(v0µ+ v1r
2 + v2r

4 + v3r
6),

we obtain the approximated amplitudes for the three limit cycles as follows:

r1 = 0.0476, r2 = 0.0780, r3 = 0.1635.

We use the fourth-order Runge–Kutta method to run the simulations on a PC machine.
Since the model is a two-dimensional differential equation system, we apply negative time
steps in the integration scheme to simulate the unstable limit cycles. Since v1 > 0, v2 < 0,
and v3 > 0, the innermost and outermost limit cycles are unstable while the one between
these two unstable limit cycles is stable. All three limit cycles enclose the equilibrium (1, 1),
which is stable since v0 < 0, and convergence of trajectories to the equilibrium can be verified
by simulations. Our simulations show that the convergent speed is extremely slow and the
process is very time consuming. For each limit cycle, we choose two initial points, one lying
outside the limit cycle and one lying inside the cycle, and have trajectories initiated from both
points converging to the limit cycle. (Note that convergence also appears for the unstable limit
cycles since negative time steps are used.) The two initial points for simulating the outermost
unstable limit cycle are (1.3, 1.0) (outside) and (0.85, 0.93) (inside) with time step −0.05;
those for the middle stable limit cycle are (0.85, 0.93) (outside) and (1.0, 0.975) (inside) with
time step 0.2; and those for the innermost unstable limit cycle are (1.0, 0.975) (outside) and
(1.002, 1.002) (inside) with time step −0.2. Finally, the simulation of the trajectory starting
from the point (1.002, 1.002) with time step 0.2 shows that it converges to the equilibrium
(1, 1). The simulations of three limit cycles are shown in Figure 3.2, where we only present
the very last portion of each trajectory in order to avoid massive data plotting. The solid and
dashed curves represent stable and unstable limit cycles, respectively. It is seen from Figure
3.2 that the simulations agree very well with the analytical predictions.

Remark 3.2. Finding a predator-prey or other interacting system in nature with at least
two ecologically stable cycles is very challenging and “almost impossible” (Coleman [16]).
Ecological stability means that a natural cycle persevering over a long period of time must
be somewhat insensitive to the perturbations of the real world, so a system describing this
situation must have at least three limit cycles (González-Olivares et al. [28]). There are very
few papers presenting two-dimensional real-world biological models with three limit cycles.
Aguirre, González-Olivares, and Sáez [1] showed that a Leslie–Gower predator-prey model
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BIFURCATIONS OF A MOSQUITO POPULATION MODEL 953

Figure 3.2. Simulations of three limit cycles where the inner most and outer most limit cycles (blue dotted
curves) are unstable and the middle limit cycle (red solid curve) is stable. The initial points for the simulations
are also shown with arrows indicating the spiral directions of trajectories toward the stable limit cycle and the
stable focus (in red color). The unstable limit cycles are obtained using negative time steps.

with additive Allee effect and Holling type IV functional response has three limit cycles, two
of which are infinitesimal ones generated by Hopf bifurcation, and the third one arises from
homoclinic bifurcation. Here we provide a different ecological example which has three limit
cycles.

Remark 3.3. From Theorem 3.1, we can see that the release rate coefficient of sterile
mosquitoes is the most important and sensitive parameter in affecting the nonlinear dynamics
of the model and in determining the success of the sterile mosquito release program. There
exists a critical release rate coefficient of sterile mosquitoes, below which the interacting sterile
and wild mosquitoes will coexist in the form of multiple periodic oscillations and steady states.

3.2. Nilpotent cusp of codimension 4 and Bogdanov–Takens bifurcation. Now we turn
to consider Bogdanov–Takens bifurcation around the equilibrium E∗(w∗, g∗) in system (3.1)
(i.e., system (2.1)). Again assume that w∗ = g∗. Define

(3.9)

C20 = (2 + w∗)2(1 + 2w∗)2(3w∗3 + 6w∗2 + 5w∗ + 1) b2

−w∗(2 + w∗)(1 + 2w∗)(1 + w∗)2(3w∗2 + 2w∗ + 1) b

+w∗3(1 + w∗)3(w∗3 + w∗ + 1),

C11 = 2(2 + w∗)2(1 + 2w∗)5 b3

+w∗(2 + w∗)(1 + w∗)(1 + 2w∗)2(4w∗3 − w∗2 − 5w∗ − 1) b2

+w∗2(1 + 2w∗)(1 + w∗)3(2w∗3 + w∗2 − w∗ + 1) b

− 2w∗4(1 + w∗)6,

which are the key factors of the coefficients in the normal form for a nilpotent cusp with
codimension 4 (see (3.15) and (3.16)). Note that C11 is a cubic polynomial in b. We can use
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the discriminant of the polynomial to determine the number of real roots of the polynomial
equation C11 = 0. In fact, the discriminant is obtained as

Disc =
w∗6(1+w∗)8

1728(2+w∗)6(1+2w∗)12

[
(2224w∗10+18008w∗9+62343w∗8+122528w∗7+151642w∗6

+120900w∗5 + 59089w∗4 + 15044w∗3 +
1706

7
w∗2 +

1

7
(7− 74w∗)2

]
> 0,

implying that the cubic polynomial equation C11 = 0 has one real root. Moreover, since C11

has positive coefficient for the term b3 and a negative constant term, the unique real root is
positive. Denote the unique positive root by b = b∗(w∗). Further, define

(3.10)

bL =
w∗(1 + w∗)2

(2 + w∗)(1 + 2w∗)(1 + 4w∗)
, bU =

w∗(1 + w∗)

(2 + w∗)(1 + 2w∗)
,

w∗L = 0.15732625 · · · , w∗U = 1
2(
√

3− 1) = 0.36602540 · · · ,
w∗∗ = 0.19309073 · · · , b∗∗ = 0.05936122 · · · .

Then, we have the following result.

Theorem 3.4. When the unique positive equilibrium E∗(w∗, g∗) of system (2.1) satisfies
w∗ = g∗, then E∗(w∗, w∗) is a nilpotent cusp with codimensions 2, 3, and 4, respectively,
corresponding to the following conditions:
(i) codimension 2 if

w∗ ∈ (0, w∗L] ∪ [w∗U,∞), or w∗ ∈ (w∗L, w
∗
U) and b 6= b∗(w∗);

(ii) codimension 3 if

w∗ ∈ (w∗L, w
∗∗) ∪ (w∗∗, w∗U) and b = b∗(w∗);

(iii) codimension 4 if

w∗ = w∗∗ and b = b∗∗,

where b∗(w∗) is the unique positive real root of C11 = 0.

Proof. When g∗ = w∗, from the equilibrium equations for E∗(w∗, g∗), i.e., equations (3.2),
and the necessary conditions for (w∗, g∗) being a cusp, i.e., tr(J(E∗)) = det(J(E∗)) = 0, we
obtain

(3.11)

ξ1 =
w∗ ξ∗1

(1 + 2w∗)2
[
w∗(1 + w∗)2 + b(2 + w∗)(1 + 2w∗)

] ,
ξ2 =

b ξ∗2
w∗(1 + w∗)

[
w∗(1 + w∗)2 + b(2 + w∗)(1 + 2w∗)

] ,
µ1 =

w∗ µ∗1
(1 + 2w∗)2

[
w∗(1 + w∗)2 + b(2 + w∗)(1 + 2w∗)

] ,
µ2 =

b µ∗2
(1 + w∗)

[
w∗(1 + w∗)2 + b(2 + w∗)(1 + 2w∗)

] ,

D
ow

nl
oa

de
d 

05
/2

6/
19

 to
 1

29
.1

71
.1

78
.6

3.
 R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.si
am

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

BIFURCATIONS OF A MOSQUITO POPULATION MODEL 955

where

(3.12)

ξ∗1 = (1 + w∗)3 − b(2 + w∗)(1 + 2w∗),

ξ∗2 = w∗(1 + w∗)− b(2 + w∗)(1 + 2w∗),

µ∗1 = b(2 + w∗)(1 + 2w∗)(1 + 4w∗)− w∗(1 + w∗)2,

µ∗2 = 3b(2 + w∗)(1 + 2w∗) + w∗(w∗2 − 1).

Hence, ξ1, ξ2, µ1, and µ2 have the same sign as that of ξ∗1 , ξ∗2 , µ∗1, and µ∗2, respectively.
To determine the conditions on b and w∗ satisfying ξ∗1 > 0, ξ∗2 > 0, µ∗1 > 0, and µ∗2 > 0,

first note that ξ∗1 > ξ∗2 for w∗ > 0. So we may ignore ξ∗1 > 0. Then, ξ∗2 > 0 and µ∗1 > 0 yield

(3.13) bL < b < bU for w∗ > 0,

where bL and bU are given in (3.10). For µ∗2 > 0, it is true for any b > 0 if w∗ ≥ 1. If
0 < w∗ < 1, then

b >
w∗(1− w∗2)

3(2 + w∗)(1 + 2w∗)
for 0 < w∗ < 1.

Further, it is easy to show that

w∗(1− w∗2)
3(2 + w∗)(1 + 2w∗)

< bL for w∗ > 0.

Summarizing the above results shows that the necessary and sufficient conditions for ξ∗1 > 0,
ξ∗2 > 0, µ∗1 > 0, and µ∗2 > 0 are given in (3.13).

Next, introducing the transformation

w = w∗ − w∗2(1 + w∗)2

(1 + 2w∗)
[
b(2 + w∗)(1 + 2w∗) + w∗(1 + w∗)2

] u,
g = g∗ − bw∗(2 + w∗)

b(2 + w∗)(1 + 2w∗) + w∗(1 + w∗)2
u+ v

into system (2.1) and then expanding the equations around the origin (u, v) = (0, 0) up to the
fifth order, we obtain the following system:

(3.14)

du

dt
= v +

5∑
i+j=2

aij u
ivj ,

dv

dt
=

5∑
i+j=2

bij u
ivj ,

where aij and bij are expressed in terms of b and w∗.
Now we apply the normal form theory (e.g., see [48, 49, 25, 26, 27]) to system (3.14) with

the transformations

u = x1 +
5∑

i+j=2

h1ij x
i
1x
j
2, v = x2 +

5∑
i+j=2

h2ij x
i
1x
j
2, t =

(
1 + t10 x1

)
τ,
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956 J. HUANG, S. RUAN, P. YU, AND Y. ZHANG

and obtain the following normal form:

(3.15)

dx1
dτ

= x2,

dx2
dτ

= c20 x
2
1 + c11 x1x2 + c31 x

3
1x2 + c41 x

4
1x2.

Here, all the coefficients h1ij , h2ij , t10, and cij are expressed in terms of b and w∗. In particular,

t10 =
t10n
t10d

,

where

t10n = w∗
[
(2 + w∗)3(1 + 2w∗)3(w∗3 + 3w∗2 + 4w∗ + 1) b3

− (1 + w∗)(2 + w∗)2(1 + 2w∗)2(3w∗5 + 15w∗4 + 19w∗3 + 15w∗2 + 7w∗ + 1) b2

+ w∗(1 + w∗)3(2 + w∗)(1 + 2w∗)(3w∗5 + 10w∗4 + 20w∗3 + 13w∗2 + 4w∗ + 1) b

− w∗3(1 + w∗)4(w∗5 + 8w∗4 + 11w∗3 + 10w∗2 + 7w∗ + 2)
]
,

t10d = 2(1 + 2w∗)2
[
w∗(1 + w∗)2 + b(2 + w∗)(1 + 2w∗)

]
×
[
(2 + w∗)2(1 + 2w∗)2(3w∗3 + 6w∗2 + 5w∗ + 1) b2

− w∗(1 + w∗)2(2 + w∗)(1 + 2w∗)(3w∗2 + 2w∗ + 1) b

+ w∗3(1 + w∗)3(w∗3 + w∗ + 1)
]
,

and

(3.16)

c20 =
bw∗

(1 + w∗)2(1 + 2w∗)4
[
w∗(1 + w∗)2 + b(2 + w∗)(1 + 2w∗)

]2 C20,

c11 =
−1

(1 + w∗)(1 + 2w∗)4
[
w∗(1 + w∗)2 + b(2 + w∗)(1 + 2w∗)

]2 C11,

c31 = − bw∗2

40(1 + w∗)5(1 + 2w∗)18 c220
[
w∗(1 + w∗)2 + b(2 + w∗)(1 + 2w∗)

]9 C31,

where C20 and C11 are given in (3.9) and C31 is given in Appendix B, but C41 is very lengthy,
so we omit it for the sake of brevity. Thus, c20 = 0 and c11 = 0 are equivalent to C20 = 0 and
C11 = 0, respectively.

First, we consider the possibility of C20 = 0. Since C20 is a quadratic polynomial in b, we
solve C20 = 0 for b to obtain

b± =
w∗(1 + w∗)

2(2 + w∗)(1 + 2w∗)(3w∗3 + 6w∗2 + 5w∗ + 1)

×
[
3w∗3+5w∗2+3w∗+1± (1+2w∗)

√
(1+w∗)(1−3w∗−2w∗2−2w∗3−3w∗4−3w∗5)

]
.

When

P (w∗) ≡ 1− 3w∗ − 2w∗2 − 2w∗3 − 3w∗4 − 3w∗5 ≥ 0, i.e., 0 < w∗ ≤ 0.26679924 · · · ,
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there are two positive solutions b+ > b− > 0 (b+ = b− if w∗ = 0.26679924 · · · ). Instead of
directly verifying if b± ∈ (bL, bU ), we compute µ1 at b = b± and obtain

µ1± = − w∗2(1 + w∗)

2(1 + 2w∗)(3w∗3 + 6w∗2 + 5w∗ + 1)
[
w∗(1 + w∗)2 + b±(2 + w∗)(1 + 2w∗)

]
×
[
(1− w∗2)(1 + 3w∗)∓ (1 + 4w∗)

√
(1 + w∗)P (w∗)

]
.

It is obvious that µ1− < 0 for 0 < w∗ ≤ 0.26679924 · · · . For b = b+, it can be shown that

(1− w∗2)(1 + 3w∗)− (1 + 4w∗)
√

(1 + w∗)P (w∗) > 0

⇐⇒ w∗2
[
2(1 + w∗) + (1− 2w∗)2

]
(3w∗3 + 6w∗2 + 5w∗ + 1) > 0.

Therefore, µ1+ < 0, i.e., b± /∈ (bL, bU), then c20 6= 0 under the feasible condition b ∈ (bL, bU).
Next, we discuss the possibility of C11 = 0 (i.e., c11 = 0). As shown above, C11 = 0 has a

unique real positive solution b = b∗(w∗). In order to have this solution in the interval (bL, bU),
it needs

C11(bL, w
∗)C11(bU, w

∗) < 0,

which is equivalent to

(2w∗2 + 2w∗ − 1)(16w∗4 + 40w∗3 + 21w∗2 + 2w∗ − 1) < 0.

Since

2w∗2 + 2w∗ − 1

{
> 0 if w∗ > 1

2

(√
3− 1) = 0.36602540 · · · ,

< 0 if w∗ < 1
2

(√
3− 1) = 0.36602540 · · · ,

16w∗4 + 40w∗3 + 21w∗2 + 2w∗ − 1

{
> 0 if w∗ > 0.15732625 · · · ,
< 0 if w∗ < 0.15732625 · · · ,

we know that for

(3.17) w∗L , 0.15732625 · · · < w∗ < 1
2

(√
3− 1) = 0.36602540 · · · , w∗U,

C11 = 0 has a unique positive solution b∗(w∗) ∈ (bL, bU). Hence, the nilpotent cusp E∗(w∗, w∗)
is codimension 2 if

w∗ ∈ (0, w∗L] ∪ [w∗U,∞), or w∗ ∈ (w∗L, w
∗
U) and b 6= b∗(w∗).

So when w∗ = 1 (and so g∗ = w∗ = 1), it is easy to see that the nilpotent cusp E∗(1, 1) is
codimension 2, which will be used in the following unfolding process.

To study Bogdanov–Takens singularity of codimension 3, we first verify if there exist
solutions such that c11 and c31 equal zero simultaneously. To achieve this, eliminating b from
the two equations C11 = C31 = 0 yields a solution b = b̃(w∗) and a resultant
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R2 =w∗(1 + w∗)(1 + 2w∗)(19w∗12 + 160w∗11 + 695w∗10 + 1850w∗9 + 3516w∗8 + 5138w∗7

+ 5752w∗6 + 4704w∗5 + 2654w∗4 + 944w∗3 + 155w∗2 − 12w∗ − 6)

× (8772w∗29 + 146446w∗28 + 1084168w∗27 + 4727481w∗26 + 14441605w∗25

+ 38087268w∗24+105837095w∗23+304927780w∗22+785978012w∗21+1665060927w∗20

+ 2834444190w∗19 + 3867211998w∗18 + 4215316877w∗17 + 3619345869w∗16

+ 2352432058w∗15 + 1027429156w∗14 + 144447875w∗13 − 191144790w∗12

− 183218482w∗11 − 80812223w∗10 − 12409164w∗9 + 8160325w∗8 + 6938467w∗7

+ 2713619w∗6 + 617679w∗5 + 58193w∗4 − 11357w∗3 − 4976w∗2 − 756w∗ − 46),

which has only one real solution w∗ = w∗∗ ∈ (w∗L, w
∗
U), for which b = b∗∗ , b̃(w∗∗) = b∗(w∗∗).

When w∗ = w∗∗ and b = b∗∗, we can get that c41 = 0.00006181 · · · > 0.
Thus, the system (2.1) has a nilpotent cusp E∗(w∗, w∗) of codimension 3 if the following

conditions hold:
w∗ ∈ (w∗L, w

∗∗) ∪ (w∗∗, w∗U) and b = b∗(w∗);

the system has a nilpotent cusp E∗(w∗, w∗) of codimension 4 if

w∗ = w∗∗ and b = b∗∗.

This completes the proof.

Next we further investigate if system (2.1) can exhibit Bogdanov–Takens bifurcation
around the unique positive equilibrium E∗(w∗, g∗) as the bifurcation parameters are chosen
suitably. In order to simplify the calculation in the bifurcations analysis, we let E∗(w∗, g∗) =
(1, 1) in the following analysis.

We prove the existence of Bogdanov–Takens bifurcation by following the process in Xiao
and Ruan [46] (see also Huang et al. [31, 29]). The necessary conditions for Bogdanov–Takens
bifurcation to occur are det(J(E∗)) = 0 and tr(J(E∗)) = 0.

Combining E∗ = (1, 1) with tr(J(E∗)) = 0, we have

ξ1 =
2

9
− µ2 − 3ξ2, µ1 = 2µ2 + 6ξ2 −

1

9
, µ2 =

b

2
− 2ξ2,(3.18)

and from det(J(E∗)) = 0, we get

ξ2 =
2b− 9b2

2(9b+ 4)
,(3.19)

then combining (3.18) and (3.19), we can represent parameters ξ1, ξ2, µ1, and µ2 by b as
follows:

ξ1 =
8− 9b

9(9b+ 4)
, ξ2 =

2b− 9b2

2(9b+ 4)
, µ1 =

45b− 4

9(9b+ 4)
, µ2 =

27b2

2(9b+ 4)
,(3.20)

where 4
45 < b < 2

9 .
First, it is easy to see that the nilpotent cusp E∗(1, 1) is codimension 2 from the proof of

Theorem 3.4.
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Figure 3.3. A codimension 2 cusp E∗ of system (2.1) under the conditions (3.20) and b = 7
45

.

Theorem 3.5. Under the conditions (3.20), the unique positive equilibrium E∗(1, 1) of sys-
tem (2.1) is a cusp of codimension 2 (i.e., the Bogdanov–Takens singularity). The phase
portrait for a codimension 2 cusp is shown in Figure 3.3.

Thus system (2.1) may exhibit Bogdanov–Takens bifurcation under a small parameter
perturbation if the bifurcation parameters are chosen suitably. In order to make sure such
a bifurcation can be fully unfolded, for system (2.1) we choose ξ1 and µ1 as bifurcation
parameters. Actually we have the following theorem.

Theorem 3.6. Under conditions (3.20), system (2.1) undergoes repelling Bogdanov–Takens
bifurcation of codimension 2 in a small neighborhood of the unique positive equilibrium E∗(1, 1)
as (ξ1, µ1) varies near ( 8−9b

9(9b+4) ,
45b−4
9(9b+4)), where 4

45 < b < 2
9 . Hence, there exist some parameter

values such that system (2.1) has an unstable limit cycle, and there exist some other parameter
values such that system (2.1) has an unstable homoclinic loop. The bifurcation portrait and
corresponding phase portraits are shown in Figure 3.4.

Proof. Under condition (3.20), we consider the following unfolding system:

dw

dt
= w

[ w

1 + w + g
−
( 45b− 4

9(9b+ 4)
+ λ1

)
−
( 8− 9b

9(9b+ 4)
+ λ2

)
(w + g)

]
,

dg

dt
=

bw

1 + w
−
[ 27b2

2(9b+ 4)
+

2b− 9b2

2(9b+ 4)
(w + g)

]
g,

(3.21)

where (λ1, λ2) is a parameter vector in a small neighborhood of (0, 0).
We first let x = w − 1, y = g − 1; then system (3.21) becomes

dx

dt
= a0 + a1x+ a2y + a3x

2 + a4xy + a5y
2 +O(|(x, y)|3),

dy

dt
= b1x+ b2y + b3x

2 + b4xy + b5y
2 +

b

16
x3 +O(|(x, y)|4),

(3.22)
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Figure 3.4. The bifurcation diagram and the corresponding phase portraits of system (3.21) when b = 7
45

.
(a) Bifurcation diagram. (b) No equilibria when (λ1, λ2) = (−0.01, 0.0058) lies in region I. (c) An unstable
focus E∗2 and a saddle E∗1 when (λ1, λ2) = (−0.01, 0.0052) lies in region II. (d) An unstable limit cycle around
a stable focus E∗2 when (λ1, λ2) = (−0.01, 0.00515) lies in region III. (e) An unstable homoclinic loop when
(λ1, λ2) = (−0.01, 0.005015) lies on the curve HL. (f) A stable focus E∗2 and a saddle E∗1 when (λ1, λ2) =
(−0.01, 0.005) lies in region IV.

where

a0 = −λ1 − 2λ2, a1 =
3b

9b+ 4
− λ1 − 3λ2, a2 = − 4

3(9b+ 4)
− λ2,

a3 =
63b− 8

27(9b+ 4)
− λ2, a4 = − 9b+ 40

27(9b+ 4)
− λ2, a5 =

1

27
, b1 =

27b2

4(9b+ 4)
,

b2 = − 3b

9b+ 4
, b3 = − b

8
, b4 = b5 =

9b2 − 2b

2(9b+ 4)
.

Next we let

x1 = y, x2 = b1x+ b2y + b3x
2 + b4xy + b5y

2 +
b

16
x3 +O(|(x, y)|4).
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System (3.22) can be written as

dx1
dt

= x2,

dx2
dt

= γ0 + γ1x1 + γ2x2 + γ3x
2
1 + γ4x1x2 + γ5x

2
2 +O(|(x1, x2)|3),

(3.23)

where

γ0 = −27b2(λ1 + 2λ2)

4(9b+ 4)
,

γ1 =
(4− 18b)λ1 + (8− 63b)λ2

36
,

γ2 =
(4− 18b)λ1 + (8− 63b)λ2

27b
,

γ3 =
1

8748b2(9b+ 4)
[−27b2(8− 72b+ 405b2) + 4(32 + 180b− 81b2 − 4374b3 + 6561b4)λ1

+ 8(32 + 288b− 810b2 − 6561b3 + 6561b4)λ2],

γ4 =
1

6561b3(9b+ 4)
[27b2(−64 + 36b− 81b2 + 2187b3)− 2(4 + 9b)2(−8− 9b+ 81b2)λ1

− 2(−256− 2304b+ 5832b2 + 36450b3 + 32805b4)λ2],

γ5 =
1

19683b4
[(4 + 9b)(54b2(−7 + 27b) + (32 + 36b− 81b2)λ1 − 32(−2− 9b+ 81b2)λ2)].

We next introduce a new time variable τ by dt = (1 − γ5x1)dτ and let x = x1, y =
x2(1− γ5x1) (still denoting τ as t); then system (3.23) becomes

dx

dt
= y,

dy

dt
= ψ1 + ψ2x+ ψ3y + ψ4x

2 + ψ5xy +O(|(x, y)|3),
(3.24)

where

ψ1 = γ0, ψ2 = γ1 − 2γ5γ0, ψ3 = γ2, ψ4 = γ3 − 2γ1γ5 + γ25γ0, ψ5 = γ4 − γ2γ5.

By simple calculation, we have

ψ4 =
−8 + 72b− 405b2

324(4 + 9b)
+ h1(λ1, λ2),

where h1(λ1, λ2) is a function with respect to (λ1, λ2), whose coefficients depend smoothly on
b, and we can see that ψ4 < 0 when 4

45 < b < 2
9 and λi are small. Let

x1 = x, x2 =
y√
−ψ4

, τ =
√
−ψ4t,
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962 J. HUANG, S. RUAN, P. YU, AND Y. ZHANG

and still denote τ as t; then system (3.24) becomes

dx1
dt

= x2,

dx2
dt

= −ψ1

ψ4
− ψ2

ψ4
x1 +

ψ3√
−ψ4

x2 − x21 +
ψ5√
−ψ4

x1x2 +O(|(x1, x2)|3).
(3.25)

Under the transformation

x = x1 +
ψ2

2ψ4
, y = x2,

system (3.25) becomes

dx

dt
= y,

dy

dt
= −ψ1

ψ4
+

ψ2
2

4ψ2
4

+

(
ψ3√
−ψ4

− ψ2ψ5

2ψ4
√
−ψ4

)
y − x2 +

ψ5√
−ψ4

xy +O(|(x, y)|3).
(3.26)

Notice that

ψ5 =
−64 + 36b− 81b2 + 2187b3

243b(4 + 9b)
+ h2(λ1, λ2),

where h2(λ1, λ2) is a function with respect to (λ1, λ2), and the coefficients of h2 depend
smoothly on b; we can see that ψ5 < 0 when 4

45 < b < 2
9 and λi are small.

Finally, making the change of variables

x1 =
ψ2
5

ψ4
x, x2 =

ψ3
5

−ψ4
√
−ψ4

y, τ = −
√
−ψ4

ψ5
t,

and rewriting τ as t, we obtain the universal unfolding of system (3.21)

ẋ1 = x2,

ẋ2 = τ1 + τ2x2 + x21 + x1x2 +O(|(x1, x2)|3),
(3.27)

where

τ1 =
ψ1ψ

4
5

ψ3
4

− ψ2
2ψ

4
5

4ψ4
4

, τ2 =
ψ3ψ5

ψ4
− ψ2ψ

2
5

2ψ2
4

.

By a complex calculation, we obtain that∣∣∣∣ ∂(τ1, τ2)

∂(λ1, λ2)

∣∣∣∣
λ=0

=
32(−16− 36b+ 243b2 + 729b3)(−64 + 36b− 81b2 + 2187b3)5

243b3(4 + 9b)2(8− 72b+ 405b2)5
6= 0

when 4
45 < b < 2

9 , then τ1 and τ2 are independent parameters, and the above parameter
transformation is a homeomorphism in a small neighborhood of the origin.

Since the time transformations we have made are all positve, then by the results in Bog-
danov [12] and Takens [44] (see also Chow, Li, and Wang [15] and Perko [41]), we know that
system (3.21) is the versal unfolding of the repelling Bogdanov–Takens bifurcation of codimen-
sion 2, i.e., system (2.1) undergoes the repelling Bogdanov–Takens bifurcation of codimension
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BIFURCATIONS OF A MOSQUITO POPULATION MODEL 963

2 in a small neighborhood of E∗(1, 1) as (ξ1, µ1) varies near ( 8−9b
9(9b+4) ,

45b−4
9(9b+4)), and the Hopf bi-

furcation within the Bogdanov–Takens bifurcation is subcritical. Moreover, we can obtain the
following local representations of the bifurcation curves up to second-order approximations:

(i) the saddle-node bifurcation curve SN = {(τ1, τ2)|τ1 = 0, τ2 6= 0}, i.e.,{
(λ1, λ2)|

16(64− 36b+ 81b2 − 2187b3)4(λ1 + 2λ2)

243b2(4 + 9b)2(8− 72b+ 405b2)3
+

4(−64 + 36b− 81b2 + 2187b3)3

59049b4(4 + 9b)2(8− 72b+ 405b2)4

[4(−425984−370944b+11352960b2+44521488b3−171058392b4−183524292b5−301327047b6

+ 2970223749b7)λ21 + 4(−1703936 + 4571136b+ 54276480b2 + 136515456b3 − 1104190056b4

−1656678744b5+731794257b6+16917361353b7)λ1λ2+(−6815744+42504192b+259282944b2

+ 406233792b3 − 6071077008b4 − 10527491916b5 + 9685512225b6 + 86653049373b7)λ22] = 0

}
;

(ii) the subcritical Hopf bifurcation curve H = {(τ1, τ2)|τ2 =
√
−τ1, τ1 < 0}, i.e.,{

(λ1, λ2)|
16(64− 36b+ 81b2 − 2187b3)4(λ1 + 2λ2)

243b2(4 + 9b)2(8− 72b+ 405b2)3
+

16(64− 36b+ 81b2 − 2187b3)2

2187b4(4 + 9b)2(8− 72b+ 405b2)4

[4(307200−272384b−5446656b2−35909568b3+105734160b4+276270588b5+1090162638b6

− 4886068554b7−3041968284b8−9685512225b9+62762119218b10)λ21+4(1228800−4327424b

− 24565248b2 − 127495296b3 + 754380864b4 + 1691793216b5 + 2452777362b6 − 28485237600b7

− 28740860721b8 − 7360989291b9 + 345191655699b10)λ1λ2 + (4915200− 30261248b

− 111117312b2−438690816b3+4331962944b4+8802237600b5+1376077896b6−147122000676b7

− 166275134316b8 + 113514203277b9 + 1757339338104b10)λ22] = 0

}
;

(iii) the homoclinic bifurcation curve HL =
{

(τ1, τ2)|τ2 = 5
7

√
−τ1, τ1 < 0

}
, i.e.,{

(λ1, λ2)|
16(64− 36b+ 81b2 − 2187b3)4(λ1 + 2λ2)

243b2(4 + 9b)2(8− 72b+ 405b2)3
+

16(64− 36b+ 81b2 − 2187b3)2

492075b4(4 + 9b)2(8− 72b+ 405b2)4

[4(80949248− 136931328b− 991097856b2 − 9151621056b3 + 24989431824b4 + 68215058172b5

+ 232957162350b6 − 1034393573754b7 − 801443851578b8 − 2472130140309b9

+ 14686335897012b10)λ21 + 4(323796992− 1200605184b− 4491044352b2 − 34465813632b3

+ 170315161920b4+398237793408b5+518627957490b6−5887911366504b7−6527906099487b8

− 3706451818263b9+78232981605237b10)λ1λ2+(1295187968−7413940224b−19978970112b2

− 123435353088b3 + 960139469376b4 + 1903091638176b5 − 155805746616b6

− 29637131715972b7−31950051167178b8+21733127171433b9+395966210146362b10)λ22]=0

}
.

This completes the proof.

D
ow

nl
oa

de
d 

05
/2

6/
19

 to
 1

29
.1

71
.1

78
.6

3.
 R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.si
am

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

964 J. HUANG, S. RUAN, P. YU, AND Y. ZHANG

The Bogdanov–Takens bifurcation diagram and corresponding phase portraits of system
(3.21) are given in Figure 3.4, where we let b = 7

45 . From Figure 3.4, we can see that
(a) these bifurcation curves SN , H, and HL divide the small neighborhood of the origin

in the parameter (λ1, λ2)-plane into four regions (see Figure 3.4(a));
(b) when (λ1, λ2) = (0, 0), the unique positive equilibrium is a cusp of codimension 2 (see

Figure 3.3);
(c) there are no equilibria when the parameters lie in region I (see Figure 3.4(b));
(d) when the parameters pass region I and lie on the curve SN , there is a positive equi-

librium, which is a saddle-node;
(e) when the parameters cross SN into region II, there are two positive equilibria through

the saddle-node bifurcation, one an unstable focus and the other a saddle (see Figure 3.4(c));
(f) when the parameters cross H into region III, an unstable limit cycle appears through

the subcritical Hopf bifurcation (see Figure 3.4(d)), where the focus is stable, whereas the
focus is an unstable one with multiplicity one when the parameters lie on the curve H;

(g) when the parameters pass region III and lie on the curve HL, an unstable homoclinic
cycle appears through the homoclinic bifurcation (see Figure 3.4(e));

(h) when the parameters cross III into region IV, the relative locations of one stable and
one unstable manifold of the saddle E∗1 are reversed (compare Figures 3.4(c) and 3.4(f)).

Remark 3.7. From Theorem 3.4, we can see that system (2.1) may exhibit nilpotent cusp
bifurcation of codimension 3 (usually called Bogdanov–Takens bifurcation of codimension 3)
and nilpotent cusp bifurcation of codimension 4; for the bifurcation diagrams and correspond-
ing phase portraits refer to Dumortier et al. [19, 20] and Li and Rousseau [37] (see also the
applications of Bogdanov–Takens bifurcation of codimension 3 in predator-prey systems and
epidemic models in Huang et al. [30], Li, Li, and Ma [36], and Zhu, Campbell, and Wolkowicz
[51]). These results indicate that the dynamical behavior of the model is very sensitive to
the initial densities of the wild and sterile mosquitoes. When the initial values lie inside the
homoclinic loop, the densities of wild and sterile mosquitoes fluctuate periodically about the
endemic levels. When the initial values lie outside the homoclinic loop, either wild mosquitoes
or sterile mosquitoes will die out depending on their initial population densities.

4. Discussion. It is possible to reduce or eradicate some mosquito-borne diseases by mak-
ing full use of the SIT (Alphey [2], Anguelov, Dumont, and Lubuma [3], Cai, Ai, and Li [13],
Dumont and Tchuenche [18], Lees, Gilles, and Hendrichs [34]). In this paper, we revisited
a mosquito population model with a nonlinear saturated release rate of sterile mosquitoes,
which was proposed by Cai, Ai, and Li [13]. After removing the restriction that the sterile
and wild mosquitoes have the same fitness, i.e., µ1 = µ2 and ξ1 = ξ2, assumed in [13], our
qualitative and bifurcation analysis reveals that model (2.1) exhibits complex dynamics and
bifurcations, such as Hopf bifurcation of codimension 3, nilpotent cusp of codimension 4, and
Bogdanov–Takens bifurcation of codimension 2. Thus, there exist some parameter values such
that model (2.1) exhibits multiple stable or unstable limit cycles, and there exist some other
parameter values such that model (2.1) exhibits an unstable homoclinic cycle. We presented
numerical examples which have two and three limit cycles, respectively. The limit cycles
represent sustained oscillations for the interacting wild and sterile mosquitoes.
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BIFURCATIONS OF A MOSQUITO POPULATION MODEL 965

We also found that there exists a critical release rate of sterile mosquitoes, above which
the mosquito population can be eliminated, and the constant b in the release rate plays an
important role in determining the dynamics and bifurcations of system (2.1); it affects not
only the number and the type of equilibria (Theorems 2.1, 2.3, and 3.4) but also the type
of bifurcations (Hopf bifurcation of codimensions 1, 2, and 3 in Theorem 3.1 and Bogdanov–
Takens bifurcation in Theorem 3.6). In detail, we obtained the threshold release value b0 in
(2.7) implicitly. In Theorem 2.1, we showed that there is a unique equilibrium (0, 0) when
the release parameter b is above the threshold b0, and it is locally asymptotically stable such
that the two interactional mosquito populations go extinct, which means that mosquito-borne
diseases can be controlled or eradicated with enough release of sterile mosquitoes. However,
releasing sterile mosquitoes in large quantities represents one of those great unknowns in the
SIT and this will consume a lot of money and result in tremendous social impact, and so on
(Okorie et al. [40]).

There are two positive equilibria E∗1 and E∗2 when the release parameter b is below the
threshold b0, and multiple unstable or stable limit cycles appear from the Hopf bifurcations of
codimensions 1, 2, and 3. Especially, the stable limit cycle represents the sustained oscillations,
which provides useful guidelines in mosquito control and disease prevention. There is only
one positive equilibrium E∗ when the release parameter b is equal to the threshold b0, which
is a cusp of codimension 4; we proved that an unstable limit cycle or unstable homoclinic loop
arises from the Bogdanov–Takens bifurcation of codimension 2.

It is worth noting that we have assumed that the equilibrium (w∗, g∗) of system (2.1)
satisfies w∗ = g∗ in the bifurcation analysis. The complete bifurcation analysis will be very
interesting and challenging if we take this hypothesis away, and bifurcations with codimension
more than 4 may occur. On the other hand, the model may undergo Bogdanov–Takens
bifurcation of codimensions 3 and 4 for suitable bifurcation parameters; then for some various
parameter values, the model may have the coexistence of limit cycles and homoclinic loops,
the existence of two or three limit cycles, etc., which means that the nonlinear dynamics of
the interactive wild and sterile mosquito population not only depend on more bifurcation
parameters but also are very sensitive to parameter perturbations, which are important for
the control of the wild population. In detail, in Figure 3.2, for example, when the initial
mosquito population is outside the outer unstable limit cycle, both the interactive wild and
the sterile mosquitoes will tend to extinction; when the initial mosquito population is inside
the outer unstable limit cycle and outside the inner unstable limit cycle, the interactive wild
and sterile mosquitoes will tend to periodic fluctuations (i.e., the inner stable limit cycle);
when the initial mosquito population is inside the inner unstable limit cycle, the interactive
wild and sterile mosquitoes will tend to a positive steady state. These results will be useful
in designing reasonable sterile mosquito releasing policies.

Appendix A. Computation of the determinant in (2.11). By direct computation, we
can get

1

w
detJ =

[
ξ1 −

1 + g

(1 +N)2

]
(µ2 + ξ2N + ξ2g) +

[ w

(1 +N)2
+ ξ1

][ b

(1 + w)2
− ξ2g

]
=
[
ξ1 −

1 + g

(1 +N)2

]
(µ2 + ξ2N)− ξ2g(1 + g)

(1 +N)2
+
[ w

(1 +N)2
+ ξ1

] b

(1 + w)2
− ξ2gw

(1 +N)2D
ow

nl
oa

de
d 

05
/2

6/
19

 to
 1

29
.1

71
.1

78
.6

3.
 R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.si
am

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 
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=
[
ξ1 −

1 + g

(1 +N)2

]
(µ2 + ξ2N) +

[ w

(1 +N)2
+ ξ1

] b

(1 + w)2
− ξ2g

1 +N

=
[
ξ1 −

1 + g

(1 +N)2

]
(µ2 + ξ2N) +

b(ξ1µ2 − ξ2µ1)− bξ2µ1w − bξ1ξ2Nw
(1 + w)2(µ2 + ξ2N)

+
w

(1 +N)2
b

(1 + w)2

=
[
ξ1 −

1 + g

(1 +N)2

]
(µ2 + ξ2N) +

[ 1

(1 +N)2
− ξ2(µ1 + ξ1N)

µ2 + ξ2N

]g(µ2 + ξ2N)

1 + w

+
b(ξ1µ2 − ξ2µ1)

(1 + w)2(µ2 + ξ2N)
,

then

detJ

(µ2 + ξ2N)w
= ξ1 −

1 + g

(1 +N)2
+
[ 1

(1 +N)2
− ξ2(µ1 + ξ1N)

µ2 + ξ2N

] g

1 + w
+

b(ξ1µ2 − ξ2µ1)
(1 + w)2(µ2 + ξ2N)2

.

Next, it is easy to get that

1 + w = (1 +N)Q2, g = N − w = N − ((1 +N)Q2 − 1) = (1 +N)(1−Q2),

G1 = N − w = (1 +N)(1−Q2) = (1 +N)

(
1− µ1 + ξ1N

µ2 + ξ2N
G2

)
,

then

ξ1 −
1

(1 +N)2
=

dQ2

dN
=

d

dN
(
µ1 + ξ1N

µ2 + ξ2N
G2),

−g
(1 +N)2

=
(1 +N)(Q2 − 1)

(1 +N)2
=
Q2 − 1

1 +N
,

g

1 + w
=

(1 +N)(1−Q2)

(1 +N)Q2
=

1−Q2

Q2
.

Notice that
dG2

dN
= ξ2 +

(1 +N)(ξ2µ1 − ξ1µ2)
[(1 +N)(µ1 + ξ1N)]2

− (µ2 + ξ2N)(µ1 + ξ1N)

[(1 +N)(µ1 + ξ1N)]2
,

we have

1

(1 +N)2
− ξ2(µ1 + ξ1N)

µ2 + ξ2N
=

ξ2µ1 − ξ1µ2
(1 +N)(µ1 + ξ1N)(µ2 + ξ2N)

− µ1 + ξ1N

µ2 + ξ2N

dG2

dN
,

then

(1 + w)detJ

(µ2 + ξ2N)w
= (1 + w)

[dQ2

dN
+
Q2 − 1

1 +N
+

bξ1µ2 − bξ2µ1
(1 + w)2(µ2 + ξ2N)2

+
1−Q2

Q2

( ξ2µ1 − ξ1µ2
(1 +N)(µ1 + ξ1N)(µ2 + ξ2N)

− µ1 + ξ1N

µ2 + ξ2N

dG2

dN

)]
= (1 + w)

[dQ2

dN
+
Q2 − 1

1 +N
− 1−Q2

Q2

µ1 + ξ1N

µ2 + ξ2N

dG2

dN
+

bξ1µ2 − bξ2µ1
(1 + w)2(µ2 + ξ2N)2D
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+
g

1 + w

ξ2µ1 − ξ1µ2
(1 +N)(µ1 + ξ1N)(µ2 + ξ2N)

]
= (1 + w)

[dQ2

dN
+
Q2 − 1

1 +N
− 1−Q2

Q2

µ1 + ξ1N

µ2 + ξ2N

dG2

dN

]
= (1 + w)

[ d

dN
(
µ1 + ξ1N

µ2 + ξ2N
G2) +

µ1+ξ1N
µ2+ξ2N

G2 − 1

1 +N
−

1− µ1+ξ1N
µ2+ξ2N

G2

G2

dG2

dN

]
= (1 + w)

[ ξ1µ2 − ξ2µ1
(µ2 + ξ2N)2

G2 +
µ1 + ξ1N

µ2 + ξ2N

dG2

dN
+

µ1+ξ1N
µ2+ξ2N

G2 − 1

1 +N

−
1− µ1+ξ1N

µ2+ξ2N
G2

G2

dG2

dN

]
= (1 + w)

ξ1µ2 − ξ2µ1
(µ2 + ξ2N)2

G2 +
µ1 + ξ1N

µ2 + ξ2N

dG2

dN
(1 +N)

[
2
µ1 + ξ1N

µ2 + ξ2N
G2 − 1

]
+
µ1 + ξ1N

µ2 + ξ2N
G2

[µ1 + ξ1N

µ2 + ξ2N
G2 − 1

]
.

Finally we can compute that

d(G1G2)

dN
=

d

dN

[
(1 +N)(1− µ1 + ξ1N

µ2 + ξ2N
G2)G2

]
=
[
1− µ1 + ξ1N

µ2 + ξ2N
G2

]
G2 + (1 +N)

[
1− 2

µ1 + ξ1N

µ2 + ξ2N
G2

]dG2

dN

− (1 +N)
ξ1µ2 − ξ2µ1
(µ2 + ξ2N)2

G2
2

and
µ2 + ξ2N

µ1 + ξ1N
(1 + w)

ξ1µ2 − ξ2µ1
(µ2 + ξ2N)2

G2 = (1 +N)
ξ1µ2 − ξ2µ1
(µ2 + ξ2N)2

G2
2.

Hence, we have

detJ = −w(µ1 + ξ1N)

1 + w

d(G1G2)

dN
.

Appendix B. The normal form coefficient C31 in (3.15). We have

C31 =
10935

268435456
(2 + w∗)2(1 + 2w∗)2(400w∗2 + 532w∗ + 157) b7

+
405

2147483648
(2 + w∗)(1 + 2w∗)(2040164w∗4 + 7345120w∗3 + 8021037w∗2

+ 3467155w∗ + 519434) b6 +
15

17179869184
(220872892w∗6 + 2012558376w∗5

+ 5427607587w∗4 + 5882428747w∗3 + 2964209802w∗2 + 681948588w∗ + 55434712) b5

+
5

549755813888
(90491108625547112816w∗6 + 407209988621331167912w∗5

+ 678683313909257473488w∗4 + 565569427795063976610w∗3

+ 254506242281420194099w∗2 + 59384789813104703796w∗
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+ 5655694263387712684) b4 +
5

8796093022208
(8077328936067004964944w∗6

+ 37448955366164530496632w∗5 + 63558632673438009403672w∗4

+ 53710822049366789102646w∗3 + 24450015311293886534991w∗2

+ 5757915734560851036324w∗ + 551963844104437159740) b3

− 5

17592186044416
w∗(1 + w∗)(8655355533852672w∗38 + 199768068627365888w∗37

+ 2159549963481120768w∗36 + 14582987096181440512w∗35

+ 69206571313501569024w∗34 + 246153237170967543808w∗33

+ 683156440426334912512w∗32 + 1520307706192552001536w∗31

+ 2766134478953842212864w∗30 + 4175908204348337815552w∗29

+ 5299626061744327098368w∗28 + 5744032827241217916928w∗27

+ 5454910034146028945408w∗26 + 4738805020638991876096w∗25

+ 3977925921437590224896w∗24 + 3323023712636786180096w∗23

+ 2673422691564344836096w∗22 + 1918044394160951918592w∗21

+ 1126269787115186421760w∗20 + 486845242821262114816w∗19

+ 117907898900226703360w∗18 − 16138810339937550336w∗17

− 30125056780022939648w∗16 − 14517915728681869312w∗15

− 3953315709850659840w∗14 − 432976326466850304w∗13

− 111122577743033600w∗12 + 325306578545902208w∗11

− 592687303277461760w∗10 + 1193208278628159424w∗9

− 2385998862171245120w∗8 + 4771988508665800896w∗7

− 9543980176694203312w∗6 − 4562523153575594228836w∗5

− 3561104918995743382620w∗4 + 5298123749676963193727w∗3

+ 6773237545745039974837w∗2 + 2453673595675322222989w∗

+ 275981922052218579870) b2 − 5

17592186044416
w∗2(w∗ + 1)3(4860940906397696w∗36

+ 106008588958302208w∗35 + 1116160776441167872w∗34

+ 7499130598099779584w∗33 + 35958874053736923136w∗32

+ 130752328119263166464w∗31

+ 374521547118367211520w∗30 + 867353185622826156032w∗29

+ 1654892060187629191168w∗28 + 2638276342638239023104w∗27

+ 3552881543132586442752w∗26 + 4076474357220806492160w∗25

+ 4011774879235838050304w∗24 + 3401707588884656816128w∗23
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+ 2487877654355254444032w∗22 + 1561255170333249896448w∗21

+ 826718954032604643328w∗20 + 355261871049785606144w∗19

+ 112787860602429833216w∗18 + 18612759991533502464w∗17

− 4467543654664306688w∗16 − 4455443629760708608w∗15

− 2000166245611663360w∗14 − 24654464790232064w∗13

− 942135910358966784w∗12 + 1777709168327884544w∗11

− 3672638787394217344w∗10 + 7541881550721502208w∗9

− 15481602030482666560w∗8 + 31758563129409142336w∗7

− 65107809065257493888w∗6 + 133396955003178748192w∗5

− 137419905964873192092w∗4 − 529807387244153981484w∗3

+ 220562102355633587327w∗2 − 65225017642507572415w∗

− 137990961026109289935) b

+
5

8796093022208
w∗4(w∗ + 1)6(540684842958848w∗32 + 11467974997180416w∗31

+ 112289738110533632w∗30 + 677359202057846784w∗29 + 2834784882230558720w∗28

+ 8781226322820071424w∗27 + 20945216454665437184w∗26

+ 39429696594607341568w∗25

+ 59402844017289854976w∗24 + 71903787981100548096w∗23

+ 69338317915118632960w∗22

+ 51657822937064407040w∗21 + 27128234990123352064w∗20

+ 6430713621765947392w∗19

− 4473822265756614656w∗18 − 6551056013710196736w∗17 − 4429594232603213824w∗16

− 1986042127752691712w∗15 − 641065886359126016w∗14 − 137920606478221312w∗13

− 53658929621835776w∗12 + 47946203369582592w∗11 − 109831747771763712w∗10

+ 225203595050309888w∗9 − 465365226137065600w∗8 + 960222030190801280w∗7

− 1979368825414780096w∗6 + 4076565316012812672w∗5 − 8388782409167098432w∗4

+ 17248870746396534080w∗3 − 35440356161179121600w∗2

+ 72765943383601717520w∗ − 137990961026109289935),

where C11 = 0 has been used to simplify C31.

Acknowledgment. We would like to thank the two anonymous reviewers for their helpful
comments and suggestions, which really helped us to improve the manuscript.

REFERENCES
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