Article

pubs.acs.org/JACS

$_{\scriptscriptstyle 1}$ Engineering *in Vivo* Production of lpha-Branched Polyesters

- 2 Hongjun Dong, †,‡ Stephanie Liffland, Liffland, Marc A. Hillmyer, and Michelle C. Y. Chang*,†,§,||©
- ³ Department of Chemistry, [‡]QB3 Institute, [§]Department of Molecular & Cell Biology, and ^{||}Department of Chemical &
- 4 Biomolecular Engineering, University of California, Berkeley, Berkeley, California 94720, United States
- s ¹Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
- 6 Supporting Information

7

10

11

12

13

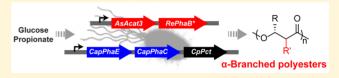
14

15

16

17

18


19 20

21

22

23

ABSTRACT: Polymers are an important class of materials that are used for a broad range of applications, from drug delivery to packaging. Given their widespread use, a major challenge in this area is the development of technology for their production from renewable sources and efforts to promote their efficient recycling and biodegradation. In this

regard, the synthesis of polyesters based on the natural polyhydroxyalkanoate (PHA) pathway offers an attractive route for producing sustainable polymers. However, monomer diversity in naturally occurring polyesters can be limited with respect to the design of polymers with material properties suitable for various applications. In this work, we have engineered a pathway to produce α -methyl-branched PHA. In the course of this work, we have also identified a PHA polymerase (CapPhaEC) from activated sludge from wastewater treatment that demonstrates a higher capacity for incorporation of α -branched monomer units than those previously identified or engineered. Production in *Escherichia coli* allows the construction of microbial strains that produce the copolyesters with 21–36% branched monomers using glucose and propionate as carbon sources. These polymers have typical weight-average molar masses ($M_{\rm w}$) in the range (1.7–2.0) × 10 $^{\rm 5}$ g mol⁻¹ and display no observable melting transition, only relatively low glass transition temperatures from –13 to –20 °C. The lack of a melting transition indicates that these polymers are amorphous materials with no crystallinity, which is in contrast to the natural poly(hydroxybutyrate) homopolymer. Our results expand the utility of PHA-based pathways and provide biosynthetic access to α -branched polyesters to enrich the properties of bio-based sustainable polymers.

INTRODUCTION

26 Living systems are powerful factories for chemical production, 27 utilizing a wide range of simple feedstocks from CO₂ to sugars, 28 to produce an enormous breadth of organic and inorganic 29 structures. 1-6 In addition to small molecules, living systems 30 can also produce high molar mass macromolecules by 31 polymerization, including not only genetically encoded 32 products such as proteins and nucleic acids but also those 33 produced by nontemplated chain growth such as lignin, 34 cellulose, and hemicellulose. Interestingly, many of these 35 polymers have promising material properties but require 36 further structural optimization to be broadly applicable. For 37 example, bacterial polyesters from the polyhydroxyalkanoate 38 (PHA) family have long been known as a source for 39 biodegradable plastics (Figure 1). However, these PHA 40 polyesters generally suffer from issues of brittleness, low 41 thermal stability, poor mechanical properties, and processing 42 difficulties. 10 In one striking example, a simple change from 3-43 hydroxybutyrate, the most commonly used PHA monomer, to 44 lactate provided a polymer with a methyl branch and a shorter 45 backbone. This small structural modification resulted in the 46 development of a compostable plastic that is produced and 47 utilized on a commercial scale. 11

As aliphatic polyesters represent a key group of polymers that support many applications while typically being more so easily degraded due to their ester linkage, we have focused on developing pathways to incorporate new monomer structures into this class of materials. Initial studies have shown that a 52 variety of longer chain lengths as well as monomers that 53 contain distal branch sites can be incorporated with wild-type 54 PHA polymerases. 12,13 Additional work has shown that non- 55 natural poly(2-, 4-, or 5-hydroxyalkanoates) can also be 56 biosynthesized with mutant and some nonengineered poly- 57 merases. 14-16 Of note, the biosynthesis of aromatic polyesters, 58 similar to poly(ethylene terephthalate) (PET), was recently 59 achieved. 17 These studies, as well as others, have shown that 60 structural characteristics such as chain length and branching 61 can be key to improving relevant mechanical properties such as 62 toughness, flexibility, and other properties related to 63 manufacturing, processing, and applications. 14,18,19 In partic- 64 ular, PHA materials extracted from activated sludge containing 65 an α -branch site have been shown to display lower degrees of 66 crystallinity and broader melting temperature ranges than the 67 most common bacterial PHA, poly(hydroxybutyrate) 68 (PHB). 19 Furthermore, Tisma et al. have demonstrated that 69 substitution of α -hydrogen atoms by alkyl groups in the 70 polyester, poly(α -dimethylpropiolactone), reduced the rate of 71 thermal degradation when compared to the unsubstituted 72 poly(β -propiolactone).²⁰ This previous work suggests that the 73 introduction of α -branching in PHA polymers may help 74 mitigate the issues of brittleness and heat stability typically 75

Received: August 8, 2019 Published: September 23, 2019 Journal of the American Chemical Society

110

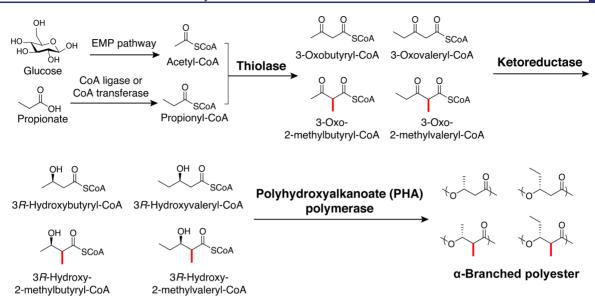


Figure 1. Design of biosynthetic pathway for α -branched PHA polyesters. Glucose and propionate can be transformed into universal building blocks acetyl-CoA and propionyl-CoA by the Embden–Meyerhof–Parnas (EMP) pathway and CoA ligase/CoA transferase, respectively. There are four possible combinations of these two acyl-CoA units via Claisen condensation by a thiolase. The resulting four 3-oxoacyl-CoAs are further reduced to generate 3*R*-hydroxyacyl-CoAs by a ketoreductase, which are then copolymerized by a polyhydroxyalkanoate (PHA) polymerase to form α -branched polyester. Thiolase and ketoreductase substrate selectivity plays a key role of controlling monomer availability for incorporation into the final copolymer by the PHA polymerase. α -Methyl branches have been highlighted in red and must be accommodated by all three enzymes.

⁷⁶ associated with PHB homopolymer. On the basis of our ⁷⁷ previous work utilizing propionate as a building block to ⁷⁸ produce 3-hydroxyacid monomers with either an α-methyl ⁷⁹ branch or increased carbon chain tail at C_3 , ^{21,22} we set out to ⁸⁰ engineer cells to produce aliphatic polyesters *in vivo* from these ⁸¹ monomers.

To do so, we first focused on obtaining access to 3-83 hydroxyacids with an R-configuration of the hydroxyl 84 substituent as PHAs made by enzymatic polymerization are 85 found as stereopure 3R-hydroxyalkanoates. In contrast, the 86 short branched-chain acid fermentation pathway we had 87 previously identified from Ascaris suum produces 3S-hydrox-88 yacids²¹ as ketoreductases participating in energy metabolism 89 often demonstrate this preference.²³ We were thus able to 90 utilize the branched chain thiolase from A. suum, Acat3, but 91 replaced Hadh2 with an engineered PhaB variant that could $_{92}$ accommodate lpha-branching. In addition, we sought to identify a 93 new PHA polymerase (PhaC) that could better utilize 94 branched monomers. Although one PhaC from Aeromonas 95 caviae has been identified that can incorporate this structural $_{96}$ perturbation, 18 the level of α -branched monomers remained 97 relatively low (2.0 \pm 0.4%) in our work. On the basis of a 98 report that an activated sludge sample could produce α -99 branched polyesters when fed propionate, 24 we were able to 100 identify CapPhaEC from the metagenome, 25 which can ₁₀₁ incorporate the α -branched monomers at high levels (36 \pm 102 9%). From these components, we engineered the production ₁₀₃ of PHAs with different incorporation levels of α -branched (3– 36%) and linear C_4 vs C_5 (36–80%) monomers. Character-105 ization of the polymers produced by fermentation showed that, 106 in contrast to PHB homopolymer, the α -branched polyesters 107 displayed no observable melting transition, only a low glass 108 transition temperature, indicating that these polymers are 109 amorphous materials with no crystallinity.

■ RESULTS AND DISCUSSION

Discovery of a PHA Polymerase with Relaxed 111 Monomer Selectivity. Natural PHA polyesters are most 112 typically composed of the 3R-hydroxybutyrate monomer unit, 113 which is generated from two acetyl-CoAs by Claisen 114 condensation followed by ketoreduction using thiolase and 115 ketoreductase enzymes (Figure 1).26 To explore the ability of 116 the canonical PHA pathway from Ralstonia eutropha²⁷ to 117 produce structurally modified polymers, we tested the ability of 118 RePhaABC genes to utilize propionyl-CoA as a building block. 119 Upon feeding glucose and propionate to provide acetyl-CoA 120 and propionyl-CoA, respectively, we observed only 0.04 ± 121 0.02% molar ratio of branched monomers in the isolated 122 polyester (Supporting Information, Figure S1). Given the 123 preference of RePhaA for linear products, the branched chain 124 AsAcat3 thiolase was then substituted in its place. This change 125 led to a 36-fold increase in branched monomers incorporated 126 into the PHA to a total molar ratio of 1.2 \pm 0.2% (Figure S1). 127 However, the production of free branched hydroxyacids was 128 found to increase 340-fold when the thiolases were exchanged, 129 indicating that the ability of RePhaB and/or RePhaC to 130 incorporate the propionate-derived monomers into PHA was 131 limiting (Figure S1).

We then set out to identify a ketoreductase–PHA 133 polymerase pair that could better incorporate branched 134 monomers. In this regard, it had been reported that α - 135 branched polyesters could be produced by activated sludge. ²⁴ 136 However, many of the bacterial species found in activated 137 sludge are unculturable, so we thus analyzed the metagenome 138 (GOLD Analysis Project ID: Ga0074232) ²⁵ to find new PHA 139 clusters. A seven-gene cluster for PHA production, likely 140 derived from the unculturable bacterium *Candidatus Accumu*- 141 *libacter phophatis* clade IIA str. UW-1, was found (Figure S2). 142 In this cluster, three genes encode for PHA polymerases 143 (CapPhaC1 and the two-subunit CapPhaEC) and the four 144

Journal of the American Chemical Society

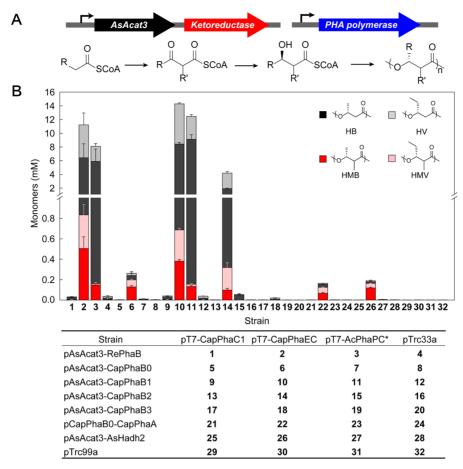


Figure 2. Screening combinations of ketoreductases and PHA polymerases for α-branched polyester production. (A) The branched polyester pathway is based on the AsAcat3 thiolase from A. suum (pTrc99a) with ketoreductase–PHA polymerase pairs (pTrc33a) varied. (B) Six ketoreductases and three PHA polymerases were combined and screened. The two vectors were cotransformed into E. coli BAP1³⁰ for polyester production. Strains were cultured for 2 days at 30 °C in TB containing 2% (w/v) glucose, 0.2% (w/v) sodium propionate, and 0.418% (w/v) MOPS in baffled flasks. Data are mean \pm s.d. of biological replicates (n = 3). CapPhaA, putative thiolase from the Candidatus A. phosphotis cluster. AcPhaPC*, mutant PhaPC from A. caviae.

145 genes between them were predicted to be thiolase (Cap-146 PhaA), 28 ketoreductase (CapPhaB0), 29 and two dehydratases 147 with MaoC domain. Further homology search of the activated 148 sludge metagenome using the RePhaB amino acid sequence as 149 a search query resulted in 87 short-chain alcohol dehydro-150 genases candidates. Three sequences (CapPhaB1, CapPhaB2, 151 and CapPhaB3; Table S1) were selected as candidates based 152 on their location adjacent to a putative PHA-related gene 153 (phaR or phaA).

The PHA expression system was assembled with synthetic genes encoding the thiolase (AsAcat3 or CapPhaA) and 156 ketoreductase (CapPhaB0-3, RePhaB, and AsHadH2) as a single operon on the pTrc99a backbone (Figure 2A and Table 158 S1). The three different PHA polymerases (CapPhaC1, 159 CapPhaEC, and AcPhaC* which is a mutant PHA polymerase 160 from Aeromonas caviae used to produce branched PHA from 161 tiglic acid¹⁸) were then placed under the control of the T7lac 162 promoter on the pTrc33a backbone. Plasmids for 18 different 163 ketoreductase-PHA polymerase were constructed and trans-164 formed into Escherichia coli BAP1, a modified BL21(DE3) 165 strain engineered to increase intracellular concentration of 166 propionyl-CoA.³⁰ Strains 1-32 were cultured in TB broth 167 containing glucose and propionate and tested for their ability 168 to produce α -branched polymers (Figure 2B). The production 169 screen shows that the CapPhaEC polymerase (strains 2, 6, 10,

14, 22, and 26) was the most active at incorporating α - 170 branched monomers, with a 3-fold increase over AcPhaPC* 171 (strains 3, 7, 11, 15, 23, and 27). In comparison, CapPhaC1 172 (strains 1, 5, 9, 13, 21, and 25) did not appear to be active 173 with any ketoreductase. Of the ketoreductases, RePhaB 174 surprisingly appeared to be the most active even compared 175 to CapPhaBO, which is found in the gene cluster with 176 CapPhaEC. AsHadH2 also demonstrated some visible activity 177 (strain 26) with CapPhaEC despite its preference for 178 producing 3S-hydroxy branched products, possibly due to 179 promiscuous production of 3R-configured products or by 180 further metabolism resulting in racemization.

We then followed up the *in vitro* screening with *in vitro* 182 biochemical experiments to explore the origin of the monomer 183 distributions found in the PHA polymer products. A 184 CapPhaEC expression plasmid containing a C-terminal His $_6$ 185 tag of CapPhaC was constructed. By use of Ni-NTA affinity 186 purification, the CapPhaEC complex was isolated cleanly, 187 indicating that the two subunits bind tightly (Figure S3). 3R- 188 Hydroxy-2-methylbutyryl-CoA was then prepared by chemo- 189 enzymatic synthesis (Figure S4) for polymerization assays 190 test activity on the α -branched substrate in comparison to the 191 canonical PHA polymerase RePhaC from R eutropha. In 192 comparing CapPhaEC against the canonical RePhaC, we 193 observed that both enzymes demonstrate activity with the

Journal of the American Chemical Society

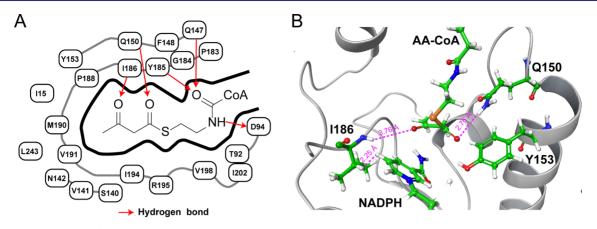


Figure 3. RePhaB pocket. (A) The pocket residues were selected based on two RePhaB structures (PDB No. 4N5M and 3VZS) with substrate acetoacetyl-CoA (AA-CoA), within a 5 Å distance around the acetoacetyl, cysteamine, and carbonyl of β-alanine moiety of substrate was used as the standard for pocket residues selection. Red arrows indicate possible hydrogen bonds. (B) 3D structure of RePhaB pocket showing the interaction of 3-oxo-butyryl-CoA with Q150 and I186. Y153 is believed to be the active residue which transfers the proton to the carbonyl group of substrate. ³⁴ AA-CoA represents acetoacetyl-CoA.

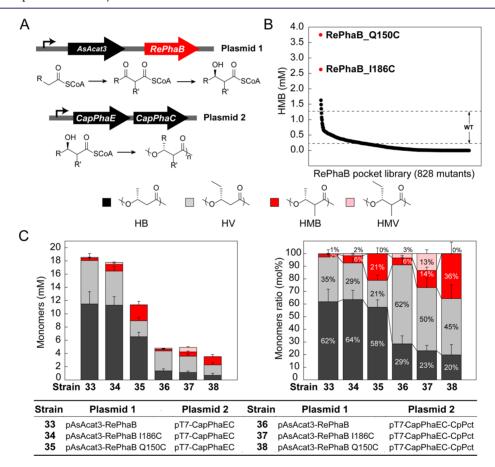


Figure 4. RePhaB pocket library screening for α -branched polyester production. (A) A two-plasmid system was constructed for production of α -polyester production. The first plasmid contains an operon containing a thiolase AsAcat3, a ketoreductase RePhaB driven by a single promoter. The second plasmid contains a PHA polymerase CapPhaEC. The RePhaB pocket library was made by NNK codon mutation based on the first plasmid. (B) Production performance of RePhaB pocket library toward α -branched monomer 3-hydroxy-2-methylbutyryl-CoA (HMB) in *E. coli* BAP1. (C) Production and characterization of monomer composition of PHA in engineered *E. coli* strains comparing WT, Q150C, and I186C RePhaB. A propionate-CoA transferase CpPct from *C. propionicum* was introduced in strains 36, 37, and 38 for further improvement of α -branched monomers ratio. Data are mean \pm s.d. of biological replicates (n = 3).

linear 3*R*-hydroxybutyryl-CoA substrate as expected, but only CapPhaEC showed detectable activity with 3*R*-hydroxy-2-methylbutyryl-CoA ($k_{\rm cat}/K_{\rm M}=(1.0\pm0.2)\times10^3~{\rm M}^{-1}~{\rm s}^{-1}$) (Figure S3). It is interesting to note that the overall activity of

CapPhaEC, measured by using the linear substrate ($k_{\rm cat}/K_{\rm M} = _{199}$ (2.9 \pm 0.2) \times 10⁵ M⁻¹ s⁻¹), is close to 20-fold higher than that $_{200}$ of RePhaC, making activity on noncanonical substrates easier $_{201}$ to detect. While the relative ratio of activity to generate $_{202}$

203 branched vs unbranched PHA is low (0.34%), the activity of 204 CapPhaEC on branched substrates remains higher than other 205 characterized PHA polymerases. Furthermore, when 206 branched and unbranched monomers are provided *in vivo*, 207 CapPhaEC can incorporate the branched monomers at high 208 molar ratios (strain 6, $76 \pm 6\%$; strain 22, $76 \pm 7\%$; strain 26, 209 $86 \pm 5\%$), suggesting that the ketoreductase rather than 210 CapPhaEC provides the more significant bottleneck for branch 211 incorporation in this system.

It was interesting to note that strains containing CapPhaB0 213 (strains 6, 7, 22, and 23) did not support significant total PHA 214 production given that it is located in the same gene cluster as 215 CapPhaEC. We therefore purified His6-CapPhaB0 (Figure S5) 216 and characterized its activity with respect to 3S- and 3R-217 hydroxybutyryl-CoA oxidation. This comparison shows that 218 activity toward 3S-hydroxybutyryl-CoA was 352-fold greater 219 than 3R-hydroxybutyryl-CoA (Figure S5), indicating that the 220 direct product of CapPhaB0 is not incorporated into PHA. 221 However, it may be possible that the two MaoC dehydratases 222 found in the gene cluster could be involved in its conversion to 3R-products. To test this possibility, two MaoC dehydratases on one expression vector were introduced into PHA pathways 225 with different ketoreductases. No significant difference was 226 observed compared with their controls, suggesting that the 227 conversion between 3S- and 3R-product does not occur in this pathway (Figure S6). Taken together, we have constructed a 229 functional pathway for α -branched polyester production (AsAcat3-RePhaB-CapPhaEC) and identified the ketoreduc-231 tase as the bottleneck for incorporation of branched monomers 232 into PHA in vivo.

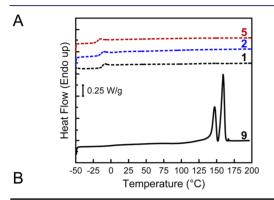
Engineering the Ketoreductase RePhaB-Substrate 234 Selectivity. In vitro steady-state kinetic characterization of 235 RePhaB showed that it exhibits an ~80-fold preference with 236 respect to $k_{cat}/K_{\rm M}$ for the unbranched 3-oxobutyryl-CoA ((4.1 237 ± 0.8) $\times 10^{7}$ M⁻¹ s⁻¹) over the branched 3-oxo-2-238 methylbutyryl-CoA ((5.1 \pm 0.3) \times 10⁵ M⁻¹ s⁻¹) (Figure 239 S7). Hence, enhancing the selectivity of RePhaB toward α -240 branched substrates could be an effective way to increase the 241 ratio of α -branched monomers in the PHA polyesters. With 242 this goal in mind, we performed saturation mutagenesis of the 243 active site pocket residues³² based on the published RePhaB 244 crystal structures determined by X-ray diffraction (PDB No. 245 4N5M and 3VZS). 33,34 Twenty-two positions located within 5 246 Å of the acetoacetyl, cysteamine, and carbonyl of β -alanine 247 moiety of the bound 3-oxobutyryl-CoA substrate (Figure 3) 248 were identified and mutated by using primers containing NNK 249 degenerate codons (Table S2). The mutants were screened in 250 vivo by using a 24-deep well plate assay by pooling individual 251 transformants corresponding to each position (37 colonies per 252 pocket residue site in average) for a total of 828 RePhaB 253 mutants. The PHA was extracted and hydrolyzed from each 254 pooled set of mutants and analyzed for monomer composition 255 by LC-QQQ MS (Figures S8 and S9).

Analysis of the mutants showed that ~15% of the library exhibited higher straight-chain monomer incorporation (3-258 hydroxybutyrate, HB; 3-hydroxyvalerate, HV) into the PHAs compared to wild-type, whereas 4% of the library demon-260 strated improved branched monomer incorporation (3-261 hydroxy-2-methylbutyrate, HMB; 3-hydroxy-2-methylvalerate, HMV) (Figure S10). Of these, the RePhaB Q150C and I186C amutants appeared to be significantly improved (Figure 4B). Further validation under production conditions showed that these mutants did indeed increase incorporation of branched

monomers to 21 \pm 5% (Q150C) and 7.4 \pm 1.2% (I186C) 266 compared to wild-type (2.5 \pm 0.5%) (Figure 4C,D). 267 Interestingly, these two mutants appear to have different 268 behaviors with Q50C improving only α-methyl branch 269 incorporation (HMB) whereas I186C can increase accom- 270 modation for both the α -methyl branch and the longer C₅ 271 branched monomer (HMB and HMV). Neither additional 272 screening of these two positions to obtain full coverage nor 273 combining the two mutations lead to identification of mutants 274 with additional gains in branched monomer incorporation 275 (Figure S11). However, changes in selectivity were observed 276 with regard to incorporation of the linear C₄ (HB) vs C₅ (HV) 277 monomers. RePhaB Q150L showed similar capability for 278 branched monomer incorporation as the Q150C mutant but 279 lower incorporation of the C₅ linear monomer, while the 280 RePhaB I186Q showed improved incorporation of the C₅ 281 linear monomer over the C4 HB with almost complete loss of 282 branched monomer incorporation.

Biochemical characterization of RePhaB Q150C shows that 284 its accommodation of the α -branched substrate increased 285 about 11-fold when comparing the relative ratios of the $k_{cat}/286$ $K_{\rm M}$ s for 3-oxo-2-methylbutyryl-CoA:3-oxobutyryl-CoA (14 \pm 287 9%) to that of the wild-type enzyme (1.3 \pm 0.3%) (Figure S7). 288 However, the magnitude of $k_{cat}/K_{\rm M}$ in the mutant decreased by 289 1 and 2 orders of magnitude for the branched vs unbranched 290 substrate, respectively. Examining the structure of RePhaB, 291 Q150 could possibly be involved in hydrogen bond with the 292 carbonyl group of the substrate thioester, which could assist in 293 positioning it for catalysis (Figure 3B). Exchange of glutamine 294 for the smaller cysteine residue may allow space for the α - 295 methyl group but could also perturb structural elements 296 involved in catalysis. Despite this catalytic defect, in vivo 297 production of PHA is maintained at reasonable level compared 298 to wild-type (61 \pm 13%, Figure 4C).

Isolation and Characterization of α -Branched Poly- 300 esters. With an improved ketoreductase in hand, we tried an 301 additional strategy to increase the incorporation of α -branched 302 monomers by introducing a propionate-CoA transferase from 303 Clostridium propionicum (CpPct) to enhance propionyl-CoA 304 supply into the pathway. With this addition, the incorporation 305 of α -branched monomers was further improved to 27 \pm 6% 306 and 36 ± 9% for pathways with RePhaB I186C and RePhaB 307 Q150C, respectively (Figure 4D). We then scaled up 308 preparation of samples from various strains utilizing RePhaB 309 Q150C, Q150L, I186C, and I186Q to characterize the 310 properties of the resulting PHA polyesters. The modified 311 PHAs were extracted from cells with chloroform³⁵ and 312 analyzed by 1D- and 2D-NMR spectroscopy to further confirm 313 the insertion of the branched monomers within the polymer 314 (Table S3 and Figure S12). Compared to the control polyester 315 samples that are composed of straight-chain monomers 3R- 316 hydroxybutyrate and/or 3R-hydroxyvalerate, cross-peaks cor- 317 responding to the α -branched monomers, 3R-2-methyl- $_{318}$ hydroxybutyrate and 3R-hydroxy-2-methylvalerate, were 319 found in the polyester samples from strains containing the 320 PhaB Q150C and I186C mutants (Figure S12).


Characterization of the polymers produced by fermentation 322 shows that the copolyesters with 22%–32% branched 323 monomers (Table S4; 1, 2, and 5) have typical weight-average 324 molar masses ($M_{\rm w}$) in the range (1.7–2.0) × 10⁵ g mol⁻¹ with 325 dispersity values (D) ranging from 2.1 to 2.2 (Figures S13 and 326 S14). Thermogravimetric analysis indicates that the copoly- 327 mers show 5% mass loss temperatures ($T_{\rm d.5\%}$) in the range of 328

392

400

408

329 241–266 °C compared to a $T_{\rm d,5\%}$ value of 227 °C for the 330 commercial PHB homopolymer (Figure S15). The differential 331 scanning calorimetry (DSC) thermograms of the PHA 332 polyesters (samples 1, 2, and 5) with at least 22 mol % of 333 HMV or HMB display lowered glass transition temperatures 334 ($T_{\rm g}=-13$ to -20 °C) compared to typical values for PHB 335 homopolymer and no observable melting transition, indicating 336 that these polymers are amorphous materials with no 337 crystallinity (Figure 5). Polymers derived from the RePhaB

Sample	PHA composition (mol%)				Thermal properties			
	НВ	нмв	HV	нму	T _g (°C)	T _m (°C) ^a	Δ <i>H</i> _m (J/g) ^b	
1	40%	22%	38%	0%	-13			
2	49%	28%	23%	0%	-15			
5	15%	32%	52%	0%	-20			
9	100%	0%	0%	0%	0	146, 158	83.0	

Figure 5. Thermal properties of α-branched polyesters. (A) Differential scanning calorimetry (DSC) traces of PHA samples 1, 2, and 5 produced by engineered *E. coli* strains in this work and control sample 9 (homopolymer PHB from Sigma-Aldrich). Traces are from the second heating cycle with a heating rate of 10 °C min⁻¹ and are shifted vertically for clarity. (B) Samples information and thermal property values from DSC scan. HB, 3-hydroxybutyrate; HMB, 3-hydroxy-2-methylbutyrate; HV, 3-hydroxyvalerate; HMV, 3-hydroxy-2-methylvalerate; $T_{\rm g}$, glass-transition temperature; $T_{\rm m}$, melting temperature; $\Delta H_{\rm m}$, corrected enthalpy of fusion. ^aA blank space indicates that no transition was observed. ^bThe corrected $\Delta H_{\rm m}$ value reported subtracts the $\Delta H_{\rm c}$ value from $\Delta H_{\rm m}$ determined from instrumental software.

338 I186Q mutants with no α -branching but high linear C_5 content 339 (HV, 62%) are similarly amorphous (Figure S16). As such, 340 these amorphous α -branched polyesters are expected to exhibit 341 mechanical behavior unlike the semicrystalline PHB homo-342 polymer. Potential improvements, such as higher elasticity and 343 flexibility due to a lack of crystallinity, would be useful in 344 overcoming some of the limitations associated with the 345 mechanical properties of PHB and achieving increased 346 toughness, strength, and ductility in bioplastic-derived 347 materials. 36

48 CONCLUSIONS

349 Polyesters from the PHA family are a promising option in the 350 search for more sustainable polymer materials as they have the 351 potential to be both synthesized and broken down by living 352 organisms. However, one challenge in their commercialization 353 is that they have been optimized by evolution for carbon 354 storage rather than industrial applications. As such, the tuning 355 of their mechanical properties using alternative monomers

could enable the development of PHA polymers for various 356 commercial usages. Previous reports suggest that the 357 introduction of α -branches into PHAs could both improve 358 thermal stability for polymer processing and reduce issues 359 related to brittleness by decreasing crystallinity. 18,19 In this 360 work, we have engineered a PHA pathway that is capable of 361 incorporating up to 36% α -branched monomers. This pathway 362 utilizes a thiolase 21,22 that preferentially introduces an α - 363 methyl branch as well as an engineered ketoreductase to accept 364 the methyl substituent. Using the metagenome of activated 365 sludge from wastewater treatment, 25 we were further able to 366 identify a new PHA polymerase that showed a natural 367 capability to produce α -branched polyesters. The enzyme 368 CapPhaEC complex was shown to be able to polymerize 3R- 369 hydroxy-2-methylbutyryl-CoA in vitro while the canonical PHA 370 polymerase PhaC from R. eutropha²⁷ did not display any 371 detectable activity.

The high molar mass α -branched polyesters produced by 373 fermentation in this study display only a low glass transition 374 temperature (-13 to -20 °C) and no observable melting 375 transition, indicating that these polymers are entirely 376 amorphous. These studies provide insight into the use of 377 natural and engineered enzymes for developing new cellular 378 routes for production of α -branched polyesters by fermenta- 379 tion of engineered microbes. Interestingly, characterization of 380 these α -branched polyesters shows that their properties can be 381 tuned, allowing for improved thermal properties compared to 382 the natural PHB homopolymer as well as elimination of the 383 crystallinity. Taken together, these α -branched polyesters show 384 that non-native monomers can expand the material properties 385 of PHAs in new directions and enable the production of new 386 biopolymers from biomass. 37

METHODS

Detailed procedures for plasmid construction, protein purification, 389 acyl-CoA substrate synthesis, cell culture, biochemical assays, and 390 polyester analysis are provided in the Supporting Information.

ASSOCIATED CONTENT

S Supporting Information

The Supporting Information is available free of charge on the 394 ACS Publications website at DOI: 10.1021/jacs.9b08585. 395

Materials and methods, DNA and protein sequences, 396 plasmid construction, protein purification; acyl-CoA 397 substrate synthesis, cell culture; biochemical assays, 398 and polyester analysis (PDF)

AUTHOR INFORMATION

Corresponding Author 401 *E-mail mcchang@berkeley.edu; Ph 510-642-8545. 402 ORCID • 403 Stephanie Liffland: 0000-0002-9028-2851 404 Marc A. Hillmyer: 0000-0001-8255-3853 405 Michelle C. Y. Chang: 0000-0003-3747-7630 406 Notes 407

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

H.D. thanks the U.C. Berkeley Tang Distinguished Scholars 410 Program for a postdoctoral fellowship. We thank Jeffrey G. 411 Pelton (UC Berkeley) for assisting with NMR spectroscopic 412

413 analysis. This work was funded by the generous support of the 414 NSF Center for Sustainable Polymers, a National Science 415 Foundation-supported center for Chemical Innovation (Grant 416 CHE-1413862). The College of Chemistry NMR Facility at 417 U.C. Berkeley is supported in part by the National Institutes of 418 Health (1S10RR023679 and 1S10RR16634-01).

419 REFERENCES

- (1) Jensen, M. K.; Keasling, J. D. Metabolic Pathways: Methods and 420 421 Protocols; Humana Press: 2018.
- (2) Jullesson, D.; David, F.; Pfleger, B.; Nielsen, J. Impact of 423 synthetic biology and metabolic engineering on industrial production 424 of fine chemicals. Biotechnol. Adv. 2015, 33 (7), 1395–1402.
- (3) Lee, S. Y.; Kim, H. U.; Chae, T. U.; Cho, J. S.; Kim, J. W.; Shin, 426 J. H.; Kim, D. I.; Ko, Y.-S.; Jang, W. D.; Jang, Y.-S. A comprehensive 427 metabolic map for production of bio-based chemicals. Nat. Catal 428 **2019**, 2 (1), 18.
- (4) Smanski, M. J.; Zhou, H.; Claesen, J.; Shen, B.; Fischbach, M. A.; 429 430 Voigt, C. A. Synthetic biology to access and expand nature's chemical 431 diversity. Nat. Rev. Microbiol. 2016, 14, 135-149.
- (5) Stephanopoulos, G. Synthetic Biology and Metabolic Engineer-433 ing. ACS Synth. Biol. 2012, 1 (11), 514-525.
- (6) Duchoud, F.; Chuang, D. S.; Liao, J. C. Cyanobacteria as a host 434 435 organism. Industrial Biotechnology: Microorganisms 2016, 2, 581-604.
- (7) Mohanty, A. K.; Misra, M.; Drzal, L. T. Natural Fibers, 436 437 Biopolymers, and Biocomposites; CRC Press: 2005.
- (8) Meyers, M. A.; Chen, P.-Y.; Lin, A. Y.-M.; Seki, Y. Biological 439 materials: Structure and mechanical properties. Prog. Mater. Sci. 2008, 440 53 (1), 1-206.
- (9) Chen, G.-Q. A microbial polyhydroxyalkanoates (PHA) based 442 bio-and materials industry. Chem. Soc. Rev. 2009, 38 (8), 2434-2446.
- (10) Pilla, S. Handbook of Bioplastics and Biocomposites Engineering 444 Applications; John Wiley & Sons: 2011; Vol. 81.
- (11) Tsuji, H. Poly (lactic acid) stereocomplexes: A decade of 446 progress. Adv. Drug Delivery Rev. 2016, 107, 97-135.
- (12) Lee, S. Y. Bacterial polyhydroxyalkanoates. Biotechnol. Bioeng. 448 **1996**, 49 (1), 1–14.
- (13) Chen, G.-Q.; Jiang, X.-R. Engineering microorganisms for 449 450 improving polyhydroxyalkanoate biosynthesis. Curr. Opin. Biotechnol. 451 **2018**, *53*, 20–25.
- (14) Albuquerque, P. B.; Malafaia, C. B. Perspectives on the 453 production, structural characteristics and potential applications of 454 bioplastics derived from polyhydroxyalkanoates. Int. J. Biol. Macromol. 455 **2018**, 107, 615-625.
- 456 (15) Steinbüchel, A.; Lütke-Eversloh, T. Metabolic engineering and 457 pathway construction for biotechnological production of relevant 458 polyhydroxyalkanoates in microorganisms. Biochem. Eng. J. 2003, 16 459 (2), 81-96.
- (16) Taguchi, S.; Yamada, M.; Matsumoto, K.; Tajima, K.; Satoh, Y.; 460 461 Munekata, M.; Ohno, K.; Kohda, K.; Shimamura, T.; Kambe, H.; 462 Obata, S. A microbial factory for lactate-based polyesters using a 463 lactate-polymerizing enzyme. Proc. Natl. Acad. Sci. U. S. A. 2008, 105 464 (45), 17323-17327.
- (17) Yang, J. E.; Park, S. J.; Kim, W. J.; Kim, H. J.; Kim, B. J.; Lee, 466 H.; Shin, J.; Lee, S. Y. One-step fermentative production of aromatic 467 polyesters from glucose by metabolically engineered Escherichia coli 468 strains. Nat. Commun. 2018, 9 (1), 79.
- (18) Watanabe, Y.; Ishizuka, K.; Furutate, S.; Abe, H.; Tsuge, T. 470 Biosynthesis and characterization of novel poly (3-hydroxybutyrate-471 co-3-hydroxy-2-methylbutyrate): thermal behavior associated with α -472 carbon methylation. RSC Adv. 2015, 5 (72), 58679-58685.
- (19) Dai, Y.; Lambert, L.; Yuan, Z.; Keller, J. Characterisation of 474 polyhydroxyalkanoate copolymers with controllable four-monomer 475 composition. *J. Biotechnol.* **2008**, 134 (1-2), 137-145.
- (20) Tijsma, E. J.; Does, L. V. D.; Bantjes, A.; Vulic, I. Synthesis, 477 structure, and properties of polymers based on pivalolactone. J. 478 Macromol. Sci., Polym. Rev. 1994, 34 (4), 515-553.

- (21) Blaisse, M. R.; Dong, H.; Fu, B.; Chang, M. C. Discovery and 479 engineering of pathways for production of α -branched organic Acids. 480 J. Am. Chem. Soc. 2017, 139 (41), 14526-14532.
- (22) Blaisse, M. R.; Fu, B.; Chang, M. C. Structural and biochemical 482 studies of substrate selectivity in Ascaris suum thiolases. Biochemistry 483 2018, 57 (22), 3155-3166.
- (23) Houten, S. M.; Wanders, R. J. A general introduction to the 485 biochemistry of mitochondrial fatty acid β -oxidation. J. Inherited 486 Metab. Dis. 2010, 33 (5), 469-477.
- (24) Matsuo, T.; Mino, T.; Sato, H. Metabolism of organic 488 substances in anaerobic phase of biological phosphate uptake process. 489 Water Sci. Technol. 1992, 25 (6), 83-92.
- (25) Martin, H. G.; Ivanova, N.; Kunin, V.; Warnecke, F.; Barry, K. 491 W; McHardy, A. C; Yeates, C.; He, S.; Salamov, A. A; Szeto, E.; Dalin, 492 E.; Putnam, N. H; Shapiro, H. J; Pangilinan, J. L; Rigoutsos, I.; 493 Kyrpides, N. C; Blackall, L. L.; McMahon, K. D; Hugenholtz, P. 494 Metagenomic analysis of two enhanced biological phosphorus 495 removal (EBPR) sludge communities. Nat. Biotechnol. 2006, 24 496 (10), 1263-1269.
- (26) Wang, Y.; Yin, J.; Chen, G.-Q. Polyhydroxyalkanoates, 498 challenges and opportunities. Curr. Opin. Biotechnol. 2014, 30, 59-65. 499 (27) Pohlmann, A.; Fricke, W. F.; Reinecke, F.; Kusian, B.; 500 Liesegang, H.; Cramm, R.; Eitinger, T.; Ewering, C.; Potter, M.; 501 Schwartz, E.; Strittmatter, A.; Voß, I.; Gottschalk, G.; Steinbuchel, A.; 502 Friedrich, B.; Bowien, B. Genome sequence of the Bioplastic- 503 producing "Knallgas" bacterium Ralstonia eutropha H16. Nat. 504
- (28) He, S.; McMahon, K. D. 'Candidatus Accumulibacter'gene 506 expression in response to dynamic EBPR conditions. ISME J. 2011, 5 507 (2), 329-340.

Biotechnol. 2006, 24 (10), 1257-1262.

- (29) Wilmes, P.; Andersson, A. F.; Lefsrud, M. G.; Wexler, M.; Shah, 509 M.; Zhang, B.; Hettich, R. L.; Bond, P. L.; VerBerkmoes, N. C.; 510 Banfield, J. F. Community proteogenomics highlights microbial strain- 511 variant protein expression within activated sludge performing 512 enhanced biological phosphorus removal. ISME J. 2008, 2 (8), 513 853-864.
- (30) Pfeifer, B. A.; Admiraal, S. J.; Gramajo, H.; Cane, D. E.; Khosla, 515 C. Biosynthesis of complex polyketides in a metabolically engineered 516 strain of E. coli. Science 2001, 291 (5509), 1790-1792.
- (31) Yuan, W.; Jia, Y.; Tian, J.; Snell, K. D.; Müh, U.; Sinskey, A. J.; 518 Lambalot, R. H.; Walsh, C. T.; Stubbe, J. Class I and III 519 polyhydroxyalkanoate synthases from Ralstonia eutropha and 520 Allochromatium vinosum: characterization and substrate specificity 521 studies. Arch. Biochem. Biophys. 2001, 394 (1), 87-98.
- (32) Sun, Z.; Lonsdale, R.; Kong, X. D.; Xu, J. H.; Zhou, J.; Reetz, 523 M. T. Reshaping an enzyme binding pocket for enhanced and 524 inverted stereoselectivity: use of smallest amino acid alphabets in 525 directed evolution. Angew. Chem., Int. Ed. 2015, 54 (42), 12410-526 12415.
- (33) Matsumoto, K. i.; Tanaka, Y.; Watanabe, T.; Motohashi, R.; 528 Ikeda, K.; Tobitani, K.; Yao, M.; Tanaka, I.; Taguchi, S. Directed 529 evolution and structural analysis of NADPH-dependent acetoacetyl- 530 CoA reductase from Ralstonia eutropha reveals two mutations 531 responsible for enhanced kinetics. Appl. Environ. Microbiol. 2013, 532 79, 6134-6139.
- (34) Kim, J.; Chang, J. H.; Kim, E.-J.; Kim, K.-J. Crystal structure of 534 (R)-3-hydroxybutyryl-CoA dehydrogenase PhaB from Ralstonia 535 eutropha. Biochem. Biophys. Res. Commun. 2014, 443 (3), 783-788. 536
- (35) Akdoğan, M.; Çelik, E. Purification and characterization of 537 polyhydroxyalkanoate (PHA) from a Bacillus megaterium strain using 538 various dehydration techniques. J. Chem. Technol. Biotechnol. 2018, 93 539 (8), 2292-2298.
- (36) Horowitz, D.; Gerngross, T. U. Methods and apparatus for the 541 production of amorphous polymer suspensions. Metabolix Inc. U.S. 542 Patent 6,228,934, 2001.
- (37) Schneiderman, D. K.; Hillmyer, M. A. 50th anniversary 544 perspective: There is a great future in sustainable polymers. 545 Macromolecules 2017, 50 (10), 3733-3749.