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Abstract

The time that it takes a diffusing particle to find a small target has emerged as a critical
quantity in many systems in molecular and cellular biology. In this paper, we extend the
theory for calculating this time to account for several ubiquitous biological features
which have largely been ignored in the mathematics and physics literature on this
problem. In particular, we allow (i) targets to diffuse on the two-dimensional boundary
of the three-dimensional domain, (ii) targets to diffuse in the interior of the domain, (iii)
the diffusivities of the searcher particle and the targets to stochastically fluctuate, (iv)
targets to be stochastically gated, and (v) the transition times between fluctuations in
diffusivity and gating to have effectively any probability distribution. In this general
framework, we analytically calculate the leading order behavior of the mean first
passage time and splitting probability for the searcher to reach a target as the target size
decays, which is the so-called narrow escape limit. To make these extensions, we use
a generalized It&’s formula to derive a system of coupled partial differential equations
which are satisfied by statistics of the process, where the size of the system and its
spatial dimension can be arbitrarily large. We apply matched asymptotic analysis to
this system and verify our analytical results by numerical simulation. Our results reveal
several new features and generic principles of diffusive search for small targets.
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1 Introduction

Over the past decade, there has been a surge of interest from mathematicians and
physicists in the so-called narrow escape problem (NEP) (Holcman and Schuss 2014a).
The NEP is to determine the time that it takes a diffusing particle to find a small target
on the boundary or in the interior of a bounded domain with a reflecting boundary.
Mathematically, the NEP typically takes the form of a Poisson equation in two or
three space dimensions with mixed Dirichlet/Neumann boundary conditions and/or
Dirichlet conditions on holes in the interior of the domain. One then studies how the
solution to this partial differential equation (PDE) diverges as the size of the Dirichlet
part of the boundary vanishes, which yields the behavior of the mean first passage
time (MFPT) for a diffusing “searcher” particle to find a vanishingly small target.
Much of the mathematical work has focused on determining how the MFPT depends
on geometric features, such as the shape and size of the domain and the shapes and
arrangement of the targets.

While the NEP dates back to Helmholtz (1860) and Rayleigh (1945) in the context
of acoustics, the renewed interest stems primarily from applications to molecular
and cellular biology (and also ecology Kurella et al. 2015). In essence, the NEP finds
broad application to biology since the timescale of many biological processes depends
on the arrival of diffusing ligands to small (often membrane-bound) proteins (see
Bénichou and Voituriez 2008; Bressloff and Newby 2013; Grebenkov and Oshanin
2017; Holcman and Schuss 2014a,b for more details).

However, previous work on the NEP has largely ignored several biological features,
and there is a growing body of experimental evidence indicating that these features
play important roles in certain physiological contexts. One such feature is lateral dif-
fusion, in which membrane-bound proteins diffuse on a two-dimensional membrane
surface (Alberts et al. 2014). From a mathematical standpoint, calculating the time
for a ligand diffusing in a three-dimensional domain to reach targets diffusing on the
two-dimensional boundary increases the spatial dimension of the PDE describing the
MFPT and effectively makes the diffusion operator anisotropic. By assuming that the
membrane-bound proteins are immobile, previous work has avoided such mathemat-
ical complications. Nevertheless, the lateral diffusion of membrane components is
essential to a variety of physiological processes (Saxton 1999).

Complicating the matter further, not only can target proteins diffuse, but their
diffusivity (diffusion coefficient) can stochastically fluctuate between two or more
discrete values. For example, AMPA receptors on the post-synaptic membrane alter-
nate within seconds between rapid diffusive and stationary behavior (Borgdorff and
Choquet 2002), and LFA-1 receptors alternate between fast and slow diffusive states
(Das et al. 2009; Slator et al. 2015). For LFA-1 receptors, we further note that the ran-
dom transition times between diffusive states is not exponentially distributed (Slator
et al. 2015). Due to the prevalence of fluctuating diffusivity in cell biology (some-
times called diffusion heterogeneity), a number of statistical methods have recently
been developed to analyze single particle tracking data and detect changes in diffu-
sivity (Das et al. 2009; Koo and Mochrie 2016; Monnier 2013; Montiel et al. 2006;
Persson et al. 2013; Slator and Burroughs 2018; Slator et al. 2015). These methods can
also infer parameters, such as the state-dependent diffusivities, the number of diffusive
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states, and the transition rates between states. Physically, distinct diffusion states typ-
ically model either (i) binding/unbinding of the diffusing particle to other molecules
that slow its diffusion or (ii) distinct conformational states of a large macromolecule
with distinct diffusivities associated with the effective sizes of the conformations (such
as globular versus fibrous states) (Cairo et al. 2006; Grebenkov 2019; Wu et al. 2018).

One final complicating factor is that reactions may be stochastically gated. That is,
the diffusing ligand and/or the target may switch between discrete states, with reaction
only possible in certain states. For example, enzymes diffusing in the cytoplasm can
switch between active and inactive states (Ptashne 2004), and transcription factors
diffusing in the nucleus bind to DNA promoters with a fluctuating affinity (Barrandon
et al. 2008). In the context of cellular transport, molecules with diameter larger than
a few nanometers must bind to a molecular chaperone in order to move in and out of
the nucleus (Fogelson and Keener 2018; Tran and Wente 2006). Another example is
the membrane transport of charged particles through voltage-gated or ligand-gated ion
channels that stochastically open and close. For ion channels, we note that the random
time between opening and closing is typically not exponentially distributed (Goychuk
and Hanggi 2004).

Motivated by the aforementioned biological features, in this paper we make
several extensions to the NEP. We consider a searcher diffusing in a bounded three-
dimensional domain with a collection of small boundary targets which reside on the
domain’s two-dimensional boundary and a collection of small interior targets that
reside in the three-dimensional domain. We make the following extensions, all of
which are considered simultaneously. We first allow the boundary targets to diffuse
on the surface of the boundary. Second, we allow the interior targets to diffuse in the
domain. Third, we allow the diffusivities of the searcher and the targets to stochasti-
cally fluctuate. Fourth, we allow the targets to be stochastically gated, meaning they
fluctuate between absorbing and reflecting the searcher. Fifth, we do not restrict our-
selves to exponentially distributed waiting times between fluctuations in diffusivity
and gating, as the random times between these transitions can have any phase prob-
ability distribution (Nelson 1995). Since phase distributions are dense in the set of
nonnegative distributions (Nelson 1995), our results hold for effectively any choice
of transition time distributions. Furthermore, we do not make any assumptions about
the correlations between the diffusive and gating states of the searcher and targets. In
this general setup, we analytically calculate the leading order behavior of the MFPT
for the searcher to find a target as the target size decays (the narrow escape limit). We
also calculate the leading order behavior of the so-called splitting probability, which
is the probability that the searcher reaches a given target before any other target. Our
results hold for a general class of three-dimensional domains bounded by a smooth
level surface of an orthogonal coordinate system, which includes ellipsoids and other
solids of revolution (Gomez and Cheviakov 2015).

To make these extensions, we use a generalized 1t6’s formula to derive a large
system of coupled PDEs satisfied by the MFPT in a large number of space dimensions.
Depending on the number of targets and their fluctuations in diffusivity and gating, the
size of the coupled PDE system and its space dimension can each be arbitrarily large.
We then apply matched asymptotic analysis to this PDE system in the limit that the
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targets are small. We derive a similar system and perform similar analysis to analyze
the splitting probabilities. Our analytical results are verified by numerical simulations.

We now summarize a few salient features of diffusive search for small targets that
emerge from our analysis. First, compared to immobile targets, making the boundary
targets diffuse decreases the MFPT by a factor that depends nonlinearly on the ratio of
target and searcher diffusivities. Importantly, this factor is independent of the geometry
of the domain and the number of targets. Therefore, this factor provides a simple way
to quantitatively estimate how target diffusion affects association rates in specific
biophysical scenarios, merely requiring one to know approximate target and searcher
diffusivities. This analysis also reveals how the diffusivity of a single target may
increase the likelihood that the searcher reaches that target before any other target.

Second, making interior targets diffuse also decreases the MFPT by a factor that
depends on the ratio of target and searcher diffusivities. We find that interior target
diffusion decreases the MFPT more than boundary target diffusion, which reflects the
fact that interior targets diffuse in three dimensions, but boundary targets are restricted
to a two-dimensional surface. Third, fluctuations in searcher and interior target dif-
fusivity can often be incorporated by merely assuming a simple averaged diffusivity.
In contrast, the effect of fluctuations in boundary target diffusivity is more delicate.
Finally, we find that gating affects first passage statistics in a relatively straightforward
manner that depends only on the proportion of time that each gate is open.

The rest of the paper is organized as follows. Section 2 summarizes our main results.
In Sect. 3, we derive the PDE boundary value problem satisfied by the MFPT and
employ matched asymptotic analysis to study its solution. We then study the splitting
probability in Sect. 4. We illustrate our general results in some specific examples
in Sect. 5, which reveals several general features of diffusive search. We compare
our analytical results to numerical simulations in Sect. 6. We conclude by discussing
relations to previous work and highlighting future directions.

2 Main Results

Consider a searcher diffusing with diffusivity Dy > 0 in a bounded, three-dimensional
domain Q C R3 with smooth boundary 3. Assume that most of the boundary is
reflecting, except for N® > 1 small, well-separated disk-shaped boundary targets
with O(¢) radii for ¢ « 1. It is known (Cheviakov et al. 2010) that the MFPT, T, for
the searcher to reach a boundary target, has the following asymptotic behavior

1€2]
Tre— " ase—0, 2.1)

b
eDo2r YN b

where C%’, C'z’ e Cllz]b are the capacitances of the boundary targets, which depend

on their relative radii. If instead of boundary targets, the domain 2 contains N >
small, well-separated interior targets with O(e) diameters for ¢ <« 1, then it is known
(Cheviakov and Ward 2011) that the MFPT for the searcher to reach an interior target
satisfies

@ Springer



Journal of Nonlinear Science

Q
T~%, as e — 0, 2.2)
eDodn Yy, Cl

where C%, Ciz, ey C}vi are the capacitances of the interior targets, which depend on
their shapes and relative sizes. We also note that the probability p, that the searcher
reaches the nth target before any other target is the ratio of capacitances,

cs .
Pn~ —a—, ase— 0, ae{b,i}, 2.3)
>l Cf

for the case of either boundary targets (a = b) or interior targets (¢ = i) (Cheviakov
and Ward 2011). Equations (2.1), (2.2), and (2.3) assume that the searcher is initially
outside an O(¢g) neighborhood of all the targets. It therefore follows that (2.1), (2.2),
and (2.3) are also valid assuming the searcher starts at uniformly distributed initial
location, since in that case the probability that the searcher starts in an O(¢) of a target
is O(e).

We generalize these results to include the possibility that (i) the boundary targets
diffuse on the boundary 0€2, (ii) the interior targets diffuse in the domain €2, (iii) the
searcher and target diffusivities stochastically fluctuate, and (iv) the boundary and
interior targets are stochastically gated, meaning they fluctuate between absorbing
and reflecting the searcher. When a target is absorbing, we say it is open, and when
it is reflecting, we say it is closed. We make no assumptions on correlations between
these stochastic fluctuations. That is, the gating and diffusivity fluctuations can be
independent, perfectly correlated, or have some non-trivial correlations. We suppose
the domain @ C R3 is bounded by a smooth level surface of an orthogonal coor-
dinate system, which includes ellipsoids and other solids of revolution (Gomez and
Cheviakov 2015).

To describe our results, let J(¢) € J be an irreducible continuous-time Markov
jump process on the finite state space 7 that governs the searcher and target diffusivities
and target gate states (open or closed). That is, each j € J corresponds to a searcher
diffusivity Do(j) > 0, interior target diffusivities

YD), D). ..., Di() = 0,
boundary target diffusivities
DY(j), DS(j). ... Do) = 0,
interior target gate states
(DL SS(D. s 81 € {0, 1,
and boundary target gate states

SP(). SR .. 8% () € {0, 1.
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For the gate states, S! (j) = 1 (S!(j) = 0) means that the nth interior target is open
(closed) when J (t) = j,and similarly for S}; (7). We note that any correlations between
diffusivity fluctuations and gating are encoded in the dynamics of the jump process
J(t). We emphasize that though the time between jumps of J(¢) is exponentially
distributed, by introducing intermediate states to J (t) we can choose the time between
changes in diffusivity and gating to have any phase distribution, which are dense in the
set of distributions (see Sect. 3). We further note that the state space of 7 can be quite
large. For example, if the searcher and targets each switch independently between K
diffusivities, and each target opens and closes independently, then the cardinality of
the state space is at least | 7| > ONEN® g I+NEND

In this general setup, we find that the MFPT has the following asymptotic behavior

Q
T ~ 1<2] , ase —> 0, 24

e Y jeq v (DD 2m T2 Cr) + 4w 0L € ()]

where {y (j)};e7 is the invariant measure of J(¢) and

b .
o) = SEICE 14+ DD e, N,
Do(j) 2.5)

c (j):= St (jHCl <1 + M) ne{l,...,N'}.
n n n DO(])

Equation (2.4) assumes that the searcher is initially outside an O(g) neighborhood
of all the targets. Hence, (2.4) is also valid if the searcher starts at a random initial
location, as long as the probability that the searcher starts in an O(¢g) neighborhood of
a target vanishes as ¢ — 0 (which includes the case of a uniformly distributed initial
location). We comment on the validity of (2.4) in the limit of small or large boundary
and interior target diffusivity in Discussion. We investigate the implications of (2.4)
in several special cases in Sect. 5.

The parameters in (2.5) can be interpreted as the effective target capacitances for
each state j € J. To see this, first note that the capacitance is zero if the target is
closed (S,lf( Jj)=0or S,il (j) = 0). Next, if a boundary target diffuses with diffusivity
DS (j) = 0 while the searcher diffuses with diffusivity Dy (), then the boundary target
capacitance increases by the dimensionless factor

JU+ D26/ Do) = 1. 2.6)
Effectively, the surface diffusion of the boundary target causes it to occupy a larger
area of the boundary. Similarly, if an interior target diffuses with diffusivity D}, (j) > 0

while the searcher diffuses with diffusivity Dg(j), then the interior target capacitance
increases by

1L+ D},(j)/Do(j) = 1. @7
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Notice that the capacitance increase for a diffusing interior target is larger than for
a diffusing boundary target. This reflects the fact that diffusing boundary targets are
restricted to the two-dimensional boundary, whereas diffusing interior targets diffuse
in the three-dimensional domain.

After interpreting (2.5) as effective target capacitances, the result in (2.4) is quite
intuitive. In particular, Egs. (2.1)-(2.2) imply that the MFPT should be inversely
proportional to the product of the searcher diffusivity and the sum of the target capac-
itances. Equation (2.4) generalizes this point by averaging over the diffusivity/gate
states, j € J, and using the effective capacitances in (2.5).

Furthermore, we show that the probability that the searcher reaches the nth boundary
target before any other target is

—=b .

Zanean(])
2 Nb fb . 4 Ni 61 .
”Zje[]Zn:l n(])+ NZje]Zn:l n(])

PB ~ , aseg — 0. (2.8)

Similarly, the probability that the searcher first reaches the nth interior target is

. 47y ., Co(j)
Py~ = e CnlU - ase—> 0. (2.9)
4r Zjej Zn:l Cn(]) +4r Zjej Zn:l Cn(])

Hence, (2.8)—(2.9) are analogous to (2.3) in that the splitting probability involves the
ratio of average effective capacitances. Again, (2.8) and (2.9) assume that the searcher
is initially outside an O(¢e) neighborhood of all the targets (or the probability that the
searcher starts in an O(e) neighborhood of a target vanishes as ¢ — 0).

3 Mean First Passage Time

As above, consider a searcher X (¢) diffusing in a bounded, three-dimensional domain
Q C R3. Assume that N' > 0 interior targets labeled Y1, ..., Yyi(¢) diffuse indepen-
dently in the domain 2. In addition, assume that N b~ boundary targets labeled
Z1(t), ..., Zyn(t) diffuse independently on the boundary d€2. To avoid trivialities, we
assume that there is at least one target, N 14 nb > 1.

3.1 Fluctuations in Diffusivity and Gating

As above, let J () € J be a continuous-time Markov jump process controlling the
diffusivities and gate states. Let Q € RIVIXIT1 denote the infinitesimal generator of
J (). That is, the off-diagonal entry Q(i, j) > 0 of Q gives the rate that J(¢) jumps
from state i € J to state j € 7, and the diagonal entries Q(j, j) are chosen so that
Q has zero row sums. Let y € R! <171 denote the invariant measure of J(r), which
means
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yQ=0 and Y y(j)=1 (3.1)
jeg

We assume that J (¢) is irreducible with a finite state space, and thus the existence and
uniqueness of y is guaranteed. We note that the property y QO = 0 plays a crucial role
in our asymptotic analysis below.

Since J () is a continuous-time Markov jump process, the time between jumps of
J () is necessarily exponentially distributed. However, the time between transitions
in diffusivity or gating (opening and closing) can be chosen from the class of prob-
ability distributions known as phase distributions. Since the probability distribution
of any nonnegative random variable can be arbitrarily well approximated by a phase
distribution (Nelson 1995), our results hold for effectively any choice of transition
time distribution. To make this generalization to non-exponential transition times, one
introduces a sequence (or network) of intermediate states to J(¢) so that J(¢) must
traverse these intermediate states before a change in diffusivity or gating occurs (see
Nelson 1995 for details). We note that this basic idea is similar to the well-known
“linear chain trick” in ordinary differential equation modeling (Cox 1967; Hurtado
and Kirosingh 2018).

We follow (Gomez and Cheviakov 2015) and assume that our domain is bounded by
the level surface of an orthogonal coordinate system. Specifically, we assume (i, v, )
is an orthogonal coordinate system in R3 such that fixing x and varying v € [0, vo]
and @ € [0, wg] leads to a smooth closed bounded surface in R3. We define the domain
2 and its boundary 92 by

Q:={(u,v,0) : ne[0,no),v € [0, ], w € [0, wol},
02 = {(u,v,w) : u = o, v € [0, v], w € [0, wol}.

Observe that this implies that the derivative in the direction normal to the surface 92
is the derivative with respect to u, denoted as 9,,. We denote the scale factors for this
coordinate system by i, (x), hy(x), he(x) for x € R3.

We note that this general class of domains includes ellipsoids and all axially sym-
metric domains (Gomez and Cheviakov 2015). In Discussion section, we discuss
extending our results to other classes of domains.

The reader may find it useful to keep in mind the special case of a domain €2 that is
a sphere of radius R > 0, in which case our orthogonal coordinates are the standard
spherical coordinates; namely, (u, v, ®) = (r, 0, ¢), (1o, vo, wo) = (R, 7, 2m), and
(hyu(x), hy(x), ho(x)) = (1, r, rsin(8)).

In this orthogonal coordinate system, the position of the nth boundary target,
Zn(t) = (o, v (1), w, (1)) € 02, obeys the stochastic differential equations (SDEs),

DY(J (1)) . /huhe 2DP(J (1))
dv,(t) = =2 9, ( L dt n AWy ).
V(1) hp.hvhw v( h, ) + § (v,n)
DYJ@) .. (hyuhy 2DR(J (1)) b
doon (1) = i, aw( " )dt+ o AW, el N,

3.2)
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where {W(,,,U)}fz\':b1 and {W(n,w)}fl\;bl are independent standard Brownian motions.
These SDEs can be derived from the formula for the Laplace—Beltrami operator in the
(., v, ) coordinate system (see 3.13 below).

The SDE describing the position of the searcher X (1) € @ C R? is simplest to
express in Cartesian coordinates,

dX (1) = /2Do(J () dWo (1) + n(X (1)) dLo(2), (3.3)

where Wy (¢) is an independent R3-valued standard Brownian motion, n : 9Q > R3
is the inner normal field, and Lq(¢) is the local time (Karatzas and Shreve 2012) of
X(t) on 0€2. The local time is the time that X(¢) spends on 9S2. More precisely,
Lo(?) is non-decreasing and increases only when X (¢) is on €2 and Ly(0) = 0. The
significance of the local time term in (3.3) is that it forces X to reflect from 9<2 in the
normal direction and thus ensures that X (¢) € Qforallr > 0. Similarly, the interior
target positions satisfy

dY,(t) = /2Di (J (1)) AW, (¢) + n(Y,(t))dL,(t), ne{l,..., N}, 3.4)

where W, (¢) is an independent R3-valued standard Brownian motion and L, (7) is the
local time of Y, () on 0€2.

We point out that (3.2)—(3.4) imply that the paths of the searcher and the targets
are non-interacting. However, we emphasize that the diffusivities in (3.2)—(3.4) can
change when the Markov process J(¢) jumps. Hence, the searcher and target paths
may be correlated since their diffusivities can depend on the common jump process
J().

3.2 PDE Boundary Value Problem for the MFPT

We are interested in the first time that the searcher reaches a small neighborhood of
an open target. The region near the interior targets is the union,

UYL Q8 (Y, (1)), (3.5)
where
Q) i=lxeQ:e x—y) e, (3.6)

where ©,, C R? is a bounded, connected open set containing the origin with smooth
boundary for each n € {1,..., N'} and ¢ « 1. We emphasize that since the target
positions are stochastic processes, the region in (3.5) is also stochastic.

The region of the boundary near the boundary targets is

UM D (Z, (1), ean). 3.7)
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where for a point z = (g, v;, w;) € 92, we let ['(z, ea) C 92 denote the small
disk-like region,

[(z, ea) == {(1o, v, @) : (hy ()W — 1)) + (he(2) (@ — 0))* < (ea)?}, (3.8)

and ¢ < 1. We note that if 2 is a sphere of radius R > 0, then I'(z, ¢ R) is the spherical
cap centered at z € 92 with curved surface area 2 R%Z(1—cos(e)) = (e R)2+O(e%).

Let S'(j) C {1,..., N'} denote the set of indices of interior targets that are open
when J(t) = j € J,

S'(j) = {n: Sh(j) = 1.

For boundary targets, we similarly define S®(j) = {n : Sl'i( j) = 1}. Define the
stopping time

T = inf {r >0 X(0) € { Upesiran 2 Tn)} U Upeso sy T(Za(0), ea,,)}},
3.9)

which is the first time the searcher reaches an open target (boundary or interior), and
the corresponding MFPT,

Ti(x,y,z) :==E[t|X(0) =x,Y(0) =y, Z(0) =2, J(0) = jl, (3.10)
which is the MFPT conditioned on the initial conditions X (0) = x € ©,

Y(0) = (Y100), ..., Ypi(0) = (31, ... yyi) =y € @,
Z(0) = (Z1(0), ... Zyv(0) = (21, ..., zy0) =2 € BV,
and J(0O)=j e J.

Putting these functions in a vector T(x,y, z) = {T;(x,y,2)}je7 € R|~7|, we claim
that

1= (L+O)T, x € QU5 h0n) ye @Y, ze @Y, (G.1D)

where 1 € R is the vector of all 1’s, L is the differential operator
Ni ' Nb
L:=DoA;+ Y DiA, +Y DiL.,. (3.12)
n=1 n=1

where
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Dy := diag(Do(j)) € RV,
D := diag(Dl(j)) e R neq1, ... N}
DY := diag(D®(j)) e RV e 1, ..., N

are diagonal matrices, A, is the Laplacian acting on x € R3, and L, is the Laplace—
Beltrami operator

L, := hﬂhluhw [av(h’;lh‘” av) + aw(%aw)] (3.13)

acting on z = (o, v, @) € 0. Furthermore, 7 satisfies

I;=0, xe€ { UneSi(j) Qi(yn)} U { Unesb(j) I'(zn, san)},
0., Tj =0, xe€ B.Q\{ UneSb(j) I'(zn, ean)}, (3.14)
I, Tj=0, y€0Q, ne{l,....N,

where ., denotes differentiation in x € R? in the direction normal to the boundary
0%2.

We now use the generalized 1t6’s formula to verify (3.11) and (3.14). Suppose a
function T(x,y,z) = {T;(x,y,2)};c7 satisfies (3.11) and (3.14). Let T (x,y, z, j)
denote Tj(x,y, z) and let Eq denote expectation conditioned on

X0 =x, YO =y, ZO)=1z JO)=]j.
By the generalized It6’s formula,! we have that
Eo[T(X(min{t, t}), Y(min{z, t}), Z(min{z, 7}), J (min{z, T}))] —T(x,y,z,j)
min{z,t}
—E [ €+ QT Y0). 261, S5 8]
0

min{z,t}
+ Eo[/o 0, T(X(5),Y(s), Z(s), J (5)) dLo(s)]

N min{z,t}
+ ZEO[/O By, T(X(5), Y(5), Z(5), J (5)) dL,,(s)].
n=1
(3.15)

By the definition of 7 in (3.9) and the equations satisfied by T in (3.11) and (3.14), we
have that (3.15) reduces to

1 1t6’s formula is the stochastic version of the chain rule (Oksendal 2003). The generalized It6’s formula
applies to SDEs with random switching. For more information, see Lemma 3 on page 104 of [59] or Lemma
1.9 on page 49 of Mao and Yuan (2006).
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EO[T(X(min{t, o)), Y(min{z, 7}), Z(min{z, 7)), J (min{z, r}))] —T(x,y.2, )
= —[Eg[min{z, t}].
(3.16)

We then recover (3.10) after taking # — oo in (3.16) and using that T < oo almost
surely.

3.3 Matched Asymptotic Analysis of MFPT PDE

Fore « 1, we expect that T has a boundary layer for x in a neighborhood of {Uf:’:i1 yn U

{Uﬁ:’zbl Zn}, S0 we introduce the outer expansion
T=e'TO14+TD ... | (3.17)

where T € Risa constant and TV e RV is a function. Plugging (3.17) into (3.11)
and (3.14) yields

1=+ OTY, xeQ(Uysiylmll yeaV, ze @V,
3MXT(1) = 0, X € 89\{Unesb(j){zn}} (318)
9, TV =0, y,€0Q, ne{l,....N'.
Comparing (3.18) to (3.14), notice that the targets have shrunk to points from the
perspective of the outer solution. We now approximate the solution to (3.11) and

(3.14) in the inner region near each y, and z, to determine the singular behavior of
T as either x — Yp OF X — Zp.

3.3.1 Behavior Near Boundary Targets

To determine the behavior of the jth component of T(!) (denoted by Tj(l)) in the inner

region near z, = (o, Vp, w,) € 0Q2forn € S°(j), we introduce the local coordinates

= e "hy(za)(mo — 1), (3.19)
s1 = & 8, ()M (20) (v — ), (3.20)
52 1= & Ey (e (20) (@ — wp), (3.21)

where &, () is the dimensionless constant

. Do(j)
n =l — 0, 1]. 3.22
SO =\ Doy + opcp <M G:22)

We then define the inner solution,
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w((n, s1,92),y,2) ==

Tj (10 — e(hy @)™ 0, vn+eEn(Dhy(@n) ™' 51, 0 + £En(Dho(z) ™' 52), ¥, 2).
We note that the local coordinates (7, s1, s2) and the inner solution w depend on the
indices n and j, but we have suppressed this dependence to simplify notation.

By our choice of &,(j) in (3.22), a straightforward calculation shows that the jth
component of the differential operator £ in (3.12) expressed in local coordinates is

(£); = &2 Do) By + Bsysy + Boass | + O,
Therefore, substituting the inner expansion
w=¢ "w® +w(1) + -,
into (3.11) yields the leading order inner problem,

(Oyy + 05y + 8S252)w(0) =0, n>0,s €R, s €R,
aw® =0, onn=0, s7 +53 > & ()an), (3.23)
w® =0, onn=0, s +55 < E(an)’

The matching condition is that the near-field behavior of the outer expansion as
x — 7, must agree with the far-field behavior of the inner expansion as p — 00,

where
p = /0% + 7 +53.
That is,
e @ 4 TJ.(D 4o e @ pw® o asx -z, 0 000 (3.24)

Hence, the leading order matching condition is that w© ~ 7O 4 o — 00. Therefore,
wesetw @ = 7O (1—w,), where w, satisfies the well-known electrified disk problem
from electrostatics,

(am] + aslsl + aszsz)wc =0, n>0,s5€R, 55 eR,
dwe =0, onn=0, 57 +s5 > E(jan)’, (325,
we=1, onn=0, 512 —‘rS% =< (‘i:n(j)an)z,
we > 0, asp— oo.
The solution w, is known explicitly (Fabrikant 1989), but we need only the far-field
behavior,

we ~ E(HCRp~Y, as p — o0, (3.26)
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where CE = 2a, /7 is the capacitance of a disk of radius a,, > 0. It follows that
w® ~ T<°>(1 — .§,,(j)C}:p71), as p — 0o. (3.27)

Plugging this into the matching condition yields that Tj(l) has the following singular

behavior as x — z, forn € S°(}),

7o —&,(HCETO
T
[(hu(zn) (o — )% 4+ En (DA () (V0 — va))? + (En (o (2n) (@ — ©n))?]?

(3.28)

The singular behavior in (3.28) can be written in distributional form as

CP s(v—vy)8(w—

" Tj(]) — onTO® Z " (vh vn)h(a) Cl)n)’ X e,

nesh(j) é%n(.]) v(zn) w(Zn) (3.29)

O, T\ =0, yp€dQ, ne(l,... N
for each j € J. In order to see that (3.29) is the distributional form of (3.28) for
the PDE (3.18), assume that a set of functions {f;} ;e satisfy (3.18) and (3.29). To

determine the behavior of f; asx — z, € 9Q forn € SP(j), welet0 < & < 1 and
define

g((@,51,52),y,2) =
Fi((10=8(hyu (@) ™', v+ En (D (2) 151, 00 + B (Dha(zn) ™ '52), ¥, 2),

for i > 0,51 € R, 5, € R. If we then expand g as g = & 'go + g1 + - - -, it follows
from a calculation similar to the one that led to (3.23) that g satisfies

(057 + 05,5, + 05,5,)80 =0, 1 >0,5 €R, 50 eR. (3.30)

Furthermore, the following boundary condition follows immediately from (3.29) and
the definition of g,

08((7. 51,52y, 2) = & 21 T V&, ())CP8(51)8(52).
and therefore,
3580 = 21T Ve, (/)CP8(51)8(2), 7=0,51 € R, 5 € R. (3.31)
The solution to (3.30) and (3.31) is

g0o=—-TYe,(HClp".
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Matching the far-field behavior of £~ gg with the near-field behavior of f  implies
that f; has the singular behavior in (3.28) as x — z,.

3.3.2 Behavior Near Interior Targets

To determine the behavior of 7" in the inner region near y, € Q forn € Si(j), we
introduce the local coordinate

Fi=elx =y, (3.32)
and the inner solution

u(x,y,z) :=T;j(y, + &X,y, 2).
Expanding the inner solution,

u=e @M.

and noting that A, = ¢ >A; and Ay, = 72 Az, we obtain the leading order inner
problem

Au® =0, %¢Q,,
u® =0, 1€Q,.

The matching condition is
e MO+ 4o~ e @ a4 asx >y, 7] > 00, (3.33)
and thus u©@ ~ T© a5 |¥| — o0. Therefore, we write
u® =191 -y, (3.34)
where u, satisfies

Asuc =0, ¢ Qp,
ue=1, e, (3.35)

uc — 0, as|x| - oo.

The problem (3.35) has been well studied in the field of electrostatics, and it is
known that the solution has the following far-field behavior (Jackson 1975),

ue ~ ChlE[T + O(I%17%), as || — oo, (3.36)

where Cil is the capacitance of €2,,. The capacitance is determined by the shape of €2,
and can be calculated analytically for certain shapes. For example, if €2, is a sphere
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of radius a > 0, then C,il = a. See Table 1 in Cheviakov and Ward (2011) for other
examples in which the capacitance can be calculated analytically.

Using the matching condition (3.33), the form of u® in (3.34), and the far-field
behavior in (3.36), it follows that Tj(l) has the singular behavior

o
o 10C

, asx — y,ifn e S'(j). (3.37)
J lx — Yl

3.3.3 Determining T©

Recall that y € R!*IJ1 is the invariant distribution of the jump process J (¢) and thus
satisfies (3.1). Therefore, multiplying the PDE in (3.18) on the left by y yields the
scalar PDE,

Ni Nb
—1=Y"y() | DoDAr + Y Di(DAy, + Y DXL, [TV, (338)
jeJ n=1 n=1

which is satisfied at x € Q\{U, c5i(j{vn}}, ¥ € QNi, Z € (BQ)Nb. In light of the

singular behavior in (3.37), we decompose T/.(l) into

O i
M _ () rvc, .
Tj _Tj,reg Z Ix—ynl’ jeJ,

nesi(j)

where {7} g} je7 satisfy (3.38) atx € @,y € @V, z € QN and T reg is
bounded as x — y, foralln € {1, ..., N'}. Using the identity

Aq(la—b7") = —4n8(a—b), a,beR’,

it follows that

NP Ni
1=y [DOU)AX + 3 DDAy, + Y D,lq)(j)]l‘zn:| h

jed n=1 n=1

—4nT® 3y () Y Do(DHDLGNCh -, xeRyeaV ze M.
jed nesi(j)
(3.39)

Integrating (3.39) over 2 x ()" x (32)™" yields
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i b . .
— oMMt =3 y(J)[Dom/AxT}“dxdydsz
jed
N NP
i 1 . 1
+ZD;,(J)fAy"Tj‘ )dxddez+ZDB(j)/LGTj( )dxddez] (3.40)

n=1 n=1

i b . . i . i
—4xTOPAVIQIN Y v () Y (Do) + Dy())Cy,
jeJ nesi(j)

where dS, = dS;, --- dSsz and dS;, = h,(z,)he(2,)dw, is the surface element.
Now, the divergence theorem implies that

1 1
f Aij( )dx = f 8#)( T]( )dS_X7
Q Q2

(3.41)
/AynTj(l) dy,,:/ O, T}V dSy,, ne(l,... N},
Q a2

and

/ L, TidS, =0 nef(l,...,N°, (3.42)
Q2

since L is the Laplace—Beltrami operator and 92 is a closed manifold. Combining
(3.40) with (3.41)—(3.42) and (3.29) yields

-1

b . .
7O = |9 Zy(j)[ZnDo(j) Z Cr +4m Z (Do(j)+D;(j))C,‘1]

jeg nesh(j) En (1) nesi(j)
Nb . Nt !
. . - . —1 .
=121 > y(Do)[27 Y Crp +4x YT
jed n=1 n=1

(3.43)

where we have defined

b .
Gy = sthet 14 22 ey,
Do (j)

C.(j) = Si()ci (1 +D—(“) netl... N,
! e Do(j)

which can be interpreted as effective capacitances depending on the state j € J.
Combining (3.43) with (3.17) thus yields the leading order MFPT for the searcher
to find an open target, assuming the particle starts outside an O(e) neighborhood of
every target. It follows that (3.43) is also the leading order MFPT for a random initial
location for the searcher, as long as the probability that the searcher starts in an O(¢)
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neighborhood of a target vanishes as ¢ — 0. Of course, this includes a uniformly
distributed initial location.

4 Splitting Probability

In the previous section, we calculated the expected amount of time it takes for the
searcher to find an open target. In this section, we calculate the probability that the
searcher first reaches a specific open target before reaching any other open target.
For concreteness, we calculate the probability that the searcher first reaches boundary
target ng € {1, ..., NP}. Calculating the probability that the searcher first reaches a
specific interior target is similar.

Recall the stopping time 7 in (3.9) and define the splitting probability,

Pj(x,y,2) : =P(X(7) € ['(Zyy (1), £ay,) | X (0)=x, Y(0)=y, Z(0) = 2, J (0) = j).

Similar to the previous section, one can use It6’s formula to show that the vector
p(x,y,z) = {p;(x,y, 2)}e7 satisfies
(L+0p=0, x€Q\([Upesiy@m) ye ¥, ze @,
pj =1, noeS°(j), x € ['(zng, edny).
Pi =0, x €{Upcso(j)nstnol @n» €an)} U{U,esic )2 (W)}, 4.1
0, pj =0, x € dQ\{ Upeo(j) T @ns €an) },
I, pj =0, ya€dQ, ne{l,....N%L

As in the previous section, we use the method of matched asymptotic expansions
to approximate p. In the outer region, we introduce the outer expansion,

p=pO1+ep®f...

where p© € R is a constant and p(" € RV is a function. Plugging this expansion
into (4.1) yields

i b
L+ p" =0, xeQ\(Uyegi(jynl} y e @V, ze 0DV,
0, i =0, x € IQ\[Uyen(jylantl, (4.2)
O, P =0, ya €02, nefl,... N}

To determine the behavior of the jth component of p‘" (denoted by pj.l)) in the

inner region near z, = (o, Vu, w,) forn € Sb( J), we define the inner solution,

w((n, s1,52),y) =
pi((1o — e (za) ™ 0, vn + €En(D (@) 51, 0n + En(NDha () 52), y),
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as a function of the local coordinates (7, s1, s2) in (3.19).
As above, substituting the inner expansion

w=w?®+ew® ... s
into (4.1) yields the leading order inner problem,

gy + Osy5, + 3ips)w @ =0, >0, 51 €R, 52 €R,
Hw® =0, onn=0, st 457> (E()an)?,

w® =8, onn=0, s{+53 < E(Han)?,

where 8,,,, = 0if n # ng and 8,,,, = 1.
Using the matching condition

p(o)—i—sp;l)—i—--- ~w® pew® 4. , ASX —> Zp, P —> OO,
we have that the leading order inner solution near z,, is
w® = pO 4 Gung — p O,
where w, is as in (3.25). Using (3.26), it follows that

w©® ~ p(()) + (Sumg — p(()))";;n(]')C'l?lofl7 as p — 0.

(4.3)

4.4)

(4.5)

Plugging this into the matching condition yields that pﬁl) has the following singular

behavior as x — z, forn € S°(}),

M By = POV ()CY

J

[y () (10 — D2 + En (DR @)V = v)? + En(Dhoo(n) (@ — 00))212

(4.6)

To determine the behavior of pﬁ.l) in the inner region near y, € Q forn € Si(}),

we define the inner solution
u(x,y,z) ;= pj(y, +ex,y, z).
where the local coordinate X is as in (3.32). Expanding the inner solution,
w=u® 4eu® ...

we obtain the leading order inner problem
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Au® =0, % ¢Q,
u® =0, ieQ,.

Using the matching condition,
p(o) + sp;.l) B /A Ay LS S, , asx — yu, |X| > oo, “@.7
it follows that
u® = pO(1 —ue), 4.8)

where u, satisfies (3.35). Using (3.36) and (4.7)~(4.8), it follows that p'" has the
singular behavior

o —P(O)Cyi,

2 asx — y, ifn € S'()). (4.9)
J |x — ynl

As above, we multiply the PDE in (4.2) on the left by y € R! *IT1 and write the
singular behavior in (4.6) and (4.9) in distributional form to obtain

n=1 n=1

N NP
0=>"r() [Doumx + > DL(DAy, + D:(j)Lz,,} P
jeTJ

—4xp@ 3" y() Y Do()) + DLGNCLS@ —yi). xeyeV ze @M

jeJ nesi(j)
(4.10)
and
Cl 8 — )8 — o)
o, P\ =21 Y ((Snno_[’(o))g 5 (")h = n xedQ,
nesh(j) ntJ) Avian e ian (4.11)
O, P =0, ¥y €9Q, nefl,... N},
Integrating (4.10) and using the divergence theorem and (4.11) imply that
e 7 V(NG ()
© _ jeg Vi)l (4.12)

YiesvDIEN TN +2Y 0 v (D XN, ()

A similar calculation shows that the probability of reaching interior target ng €
{1, ..., N'} before any other interior or boundary target converges as € — 0 to

2% ¥(NTry () -
Y s DI T +2Y ey (D XN T()

(4.13)
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The expressions (4.12)—(4.13) for the splitting probabilities are valid when ¢ < 1,
assuming the searcher starts outside an O(e) neighborhood of every target. Therefore,
(4.12)—(4.13) are also valid for a random initial location for the searcher, as long as
the probability that the searcher starts in an O(e) neighborhood of a target vanishes
as ¢ — 0 (which is the case for a uniformly distributed initial location).

5 Examples

In this section, we apply our general results from the previous two sections to several
specific examples. In addition to illustrating our results, this section reveals several
general features of diffusive search for small targets.

Example 1 (Boundary targets with constant diffusivity) Assume that there are N® =
N > 0 boundary targets and no interior targets, N' = 0. If the targets are immobile
(Dg =0,n € {l,..., N}) and always open, and the searcher has constant diffusivity
Dy > 0, then (3.43) implies that the MFPT for the searcher to reach a target is

Q
T ~ |—|N, ase — 0,

which recovers a known result (Gomez and Cheviakov 2015). If we now suppose that
each boundary target diffuses with constant diffusivity D > 0, then (3.43) implies
that the MFPT is

§1€|
——— ase — 0, 5.1
2meDg Y, CP
where £ is the dimensionless factor,
gi= |20 o (5.2)
" \Do+D e ‘

Hence, making the boundary targets diffuse has the relatively simple leading order
effect of shrinking the MFPT for immobile targets by the factor & € (0, 1).

Next, suppose that the N boundary targets have potentially differing diffusivities
D, ..., Dy. For simplicity, assume the targets have the same size (a, = a > 0,
n € {l,..., N}).Then, (4.12) implies that the probability that the searcher first reaches
boundary target n is

—1 D
p~ 1(\,&0—), ase — 0, where§, := —0. (5.3)
Zn:l(%—n)_l Do+ D,

This equation reveals that differing surface diffusivity of targets could be a mechanism
for regulating the flux to each target.
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Example 2 (Interior targets with constant diffusivity) Assume that there are N1 =
N > 0 interior targets and no boundary targets, N° = 0. If the targets are immobile
(D; =0,n € {l,..., N}) and always open, and the searcher has constant diffusivity
Dy > 0, then (3.43) implies that the MFPT for the searcher to reach a target is

€2

— . as&—> 0,
4meDy YN, Ci

which recovers a known result (Cheviakov and Ward 2011). If we now suppose that
each interior target diffuses with constant diffusivity D > 0, then (3.43) implies that
the MFPT is

B Q| I
4re(Do+ D)Y5)_, Ci  4meDo Y n_, C}

n

, ase — 0, 5.4)

where & is as in (5.2).

Interpreting the first expression in (5.4), we see that making the interior targets
diffuse with diffusivity D > 0 is (to leading order) equivalent to making the targets
immobile and increasing the searcher diffusivity to Dog + D. Comparing (5.1) to the
second expression in (5.4), we see that making boundary targets diffuse shrinks the
MFPT by &, whereas making interior targets diffuse has the stronger effect of shrinking
the MFPT by £2. It is not surprising that making interior targets diffuse has a stronger
effect on the MFPT compared to making boundary targets diffuse, since diffusing
boundary targets are restricted to a two-dimensional surface.

Analogous to Example 1, suppose the N interior targets have potentially differing
diffusivities Dy, ..., Dy, and for simplicity, assume the targets have the same size
and shape (2, = @, € R3 foralln,m € {1,..., N}). Then, (4.12) implies that the
probability that the searcher first reaches interior target ng is

(Eng) 2

p~————, ase — 0, (5.5)
i ED?

where &, is as in (5.3). Comparing (5.5) to (5.3), we see that differing interior target

diffusivities have a stronger effect on splitting probabilities compared to differing

boundary target diffusivities.

Example 3 (Fluctuating diffusivity and searcher/target correlations) Assume that
there is one boundary target and zero interior targets and that the boundary target
is always open. Suppose that the boundary target diffusivity fluctuates between slow
and fast diffusivities, D~ < D™, and similarly suppose that the searcher diffusivity
fluctuates between Dy < Dar . For simplicity, assume that the target and the searcher
each spend an equal proportion of time in their respective slow and fast states. In order
to minimize the MFPT, how should the fluctuations in diffusivity be correlated? That
is, should the searcher diffuse fast when the target diffuses fast or should the searcher
diffuse fast when the target diffuses slowly?
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To answer this question, we apply (3.43) which reveals that if the searcher diffuses
fast (slowly) when the target diffuses fast (slowly), then the MFPT is

182

meC (D 1+ DY/DF + Dy \/1+D=/D5 )

In the opposite situation, in which the searcher diffuses fast (slowly) when the target
diffuses slowly (fast), the MFPT is

T ~

ase — 0. (5.6)

|€2]
meC (D 1+ D=/Df + Dy \/1+ D+/D5 )

It is straightforward to check that the MFPT in (5.6) is less than the MFPT in (5.7).
Thus, the MFPT is minimized by coupling fast (slow) searcher diffusion with fast
(slow) boundary target diffusion.

We now investigate the analogous question for interior targets. Suppose that there
is one interior target and zero boundary targets. As above, suppose the boundary
target diffusivity fluctuates between D~ < D™ and the searcher diffusivity fluctuates
between D, < DO+ , spending an equal proportion of time in each diffusive state.
Equation (3.43) implies that the MFPT is

T ~

ase — 0. 5.7

Q
T ~ — | _l , ase — 0, (5.8)
2nCY(Dy + Dy + Dt + D7)

regardless of the correlations between searcher and target diffusivity. Thatis, in contrast
to the result for boundary targets, correlations between searcher and interior target
diffusivities have no leading order effect on the MFPT.

Example 4 (Fluctuations in diffusivity) First assume that all of the targets are immobile
(D), = DS = 0) and always open. Then, (3.43) implies that the MFPT is

Nb Ni
_ . —1
T ~ |sz|{sDo[2nZC};+4an;]] Case— 0,
n=1 n=1
where

Do =Y y()HDo())
jed

is the average searcher diffusivity. Hence, for the purpose of calculating the leading
order MFPT, the fluctuating searcher diffusivity can be replaced by a constant, average
searcher diffusivity.

@ Springer



Journal of Nonlinear Science

Similarly, if we also allow the interior targets to diffuse with fluctuating diffusivity,
then (3.43) implies that the MFPT is

NP Ni
— _ _ . —1
T ~ |Q|{8[D027‘[ Y Chan Y (Do + D;)c;]] Case— 0,
n=1 n=1

where

D, =Y y()HDi(j). ne{l,... N},
jeJ

is the average diffusivity of the nth interior target. That is, the fluctuating searcher and
interior target diffusivities can be replaced by their average diffusivities.

However, if we allow the boundary targets to diffuse with fluctuating diffusivity,
then (3.43) implies that we cannot merely replace the fluctuating boundary target
diffusivity by their average diffusivity (even if the searcher diffuses with constant
diffusivity). This is because &, (/) in (3.22) is a nonlinear function of Di, -

Example 5 (Gating independent of fluctuations in diffusivity) Suppose that the target
gating is independent of fluctuations in searcher and target diffusivity. This implies that
the Markov jump process J () € J can be decomposed into two independent Markov
jump processes, Jo(t) € Jg and Jq(t) € Jq, that, respectively, control the gating
and diffusivity fluctuations, and the state space of J(¢) is the Cartesian product J =
Te X Ja = {(g, ja) : Jg € Tg, ja € Ja}. Furthermore, it is straightforward to show
that the invariant measure of J(¢) is the product measure y (jg, ja) = Ye(je)¥a(ja),
where y, € Rl and y4 € R4l are the unique invariant measures of Jg (1) and
Ja(t), respectively.
Therefore, (3.43) implies that the MFPT is

NP by
- D)\ 12
T ~12lfe Y vaGoDoGin[27 30 pRCh(1+ T
. — Do (ja)
JjaeJa n=1
+4 %PiCi(l+ D’i’(jd))]}_l 0
s , ase — U,
i Do (ja)

(5.9)

where P,E’ € (0, 1] (respectively, P,il € (0, 1]) is the proportion of time that the nth
boundary (respectively interior) target is open,

Py = Z ve(ig) Sy ) Py = Z Vg(jg)S;iz(jg)-

Jje€Te Jg€Tg

In words, (5.9) implies the simple and intuitive result that the capacitance of each target
is merely reduced by the proportion of time that that target is open. If each target is
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open the same proportion of time P € (0, 1], then (5.9) implies that the MFPT is
T ~ P’lTopen, ase — 0,

where Topen is the MFPT in the case that the targets are always open.

6 Numerical Simulation

We perform Monte Carlo simulations to verify the predicted MFPTs derived above. In
all numerical results discussed, 10* trajectories were simulated. For each trajectory,
a single searcher particle is initialized to a position uniformly within the domain 2
and evolves with (unless noted) diffusivity Do = 1. This update step uses an Euler—
Maruyama scheme (Kloeden and Platen 1992) with varying time step ranging from
1073 to 10~7 depending on how far the particle is from the nearest target or boundary.
The interior targets are also initialized uniformly within the domain and evolve by
standard diffusion updated with the Euler-Maruyama scheme. The boundary targets
are initialized uniformly on 9€2. The SDEs (3.2) provide the evolution of the centers of
the boundary targets, written in the orthogonal coordinates. When the searcher hits the
boundary of the domain, a check is made whether a boundary target is encountered.
If not, the interior particle is reflected off the normal direction of the surface at the
point of intersection, and repeated until this procedure places the particle within the
domain. Reflection of interior targets is handled in the same manner. When the searcher
encounters either type of target, the trajectory is terminated and the time is recorded.
Interior targets are taken to be spheres and boundary targets are circular, each with
radius €. More precisely, for interior targets we take 2, = {x € R3 : x| = 1} in (3.6)
forne{l,...,N i}, and boundary targets are defined in (3.7)—(3.8) witha = 1.

Examples 1 and 2 above discuss the first scenario of interest for numerical simula-
tion: how target diffusivity influences the MFPT with varying number of interior and
boundary targets with constant diffusivity, D. We take the domain to be a unit sphere
and the target size to be ¢ = .025. The results of these Monte Carlo simulations,
compared with the predicted formulae (5.1) and (5.4), are in Fig. 1a. Indeed, we see a
strong agreement between the predicted dependence on D for interior, boundary, and
mixed target scenarios.

We also performed simulations in an ellipsoid domain €2 with standard parameter-
1zation

x =asinfcos¢p, y=bsinfsing, z=ccosb, 6.1)

with6 € [-7/2, /2], € [-m,],anda = 2, b = 1, ¢ = 1. In these simulations,
we kept the diffusivity of the searcher constant (Dy = 1) and varied the size ¢ and
diffusivity D of the boundary target. The results of these simulations are in Fig. 1b,
along with the predicted values in (5.1), and we again see excellent agreement between
the simulations and the predicted values.

We also used Monte Carlo simulations to verify the MFPT in scenarios in which
the searcher and targets switch diffusivities. Taking the domain to be a unit sphere, we
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Fig. 1 Mean first passage times with constant searcher and target diffusivity. a MFPT (7') for a particle
in a spherical domain as a function of target diffusivity D, for varying types and numbers of targets. b
MEFPT (T') plotted against target diffusivity D for a single boundary target on the surface of a non-spherical
(ellipsoidal) domain and varying &
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Fig. 2 Mean first passage time for switching searcher and target diffusivities. a MFPT (T') as a function
of switching rate A of searcher and one boundary target. The curves are (5.6) and (5.7). b MFPT (T)
as a function of switching rate A of searcher and one interior target. The curves are (5.8). In both plots,
the correlated scenario has the searcher and target switch between slow/slow and fast/fast states, whereas
anticorrelated switches between slow/fast and fast/slow

follow Example 3 above by having a single interior or boundary target with & = 10713
which switches between a slow and a fast diffusivity (D~ = 0.05 and D™ = 2) at
rate A > 0. In addition, the searcher switches between diffusivities D, = 0.1 and
D(J)’ = 1. The results of these simulations are in Fig. 2, where we consider the MFPT
T to a single boundary or single interior target as a function of the switching rate A.
In one set of simulations, which we denote correlated, the searcher and the target
is initialized (with equal probability) to both be in their slow state or both in their
fast state, so the state of the system is either (D, D™) or (D, D7T). At rate A, the
whole system switches between these two states, causing both the searcher and target
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to switch from slow to fast (or vice versa). In the anticorrelated scenario, the searcher
is initialized to a diffusivity and targets are initialized to the opposite, so the states
of the systems now become and (D, , D) or (DT, D). Again, at rate A, the whole
system switches between these two states. We plot these Monte Carlo simulations for
a boundary target against the predictions in (5.6) and (5.7) in Fig. 2a. We also note that
in the fast switching limit (large 1), the switching diffusivities can be replaced with
average diffusivities Do, D in the constant diffusivity prediction (5.1). We see that
for these chosen parameters, in the slow switching scenario, the correlated scenario
produces the largest MFPT. However, as the switching rate increases, the theory values
become accurate and remain accurate over several orders of magnitude. As predicted,
the performance reverses with switching: the anticorrelated scenario performs worse
than the correlated. As A becomes large, both correlated and anticorrelated converge
to the fast switching limit, which closely matches the correlated prediction.

We repeat this same setup for a single interior target, the results of which can be seen
in Fig. 2b. Here, the theory suggests that the correlated and anticorrelated scenarios
should be indistinguishable with both having a MFPT predicted by (5.8). Indeed, we
see that for sufficiently fast switching, the prediction holds and the two different cor-
relation scenarios are indistinguishable, illustrating a fundamental difference between
switching interior and boundary targets.

7 Discussion

We have extended the narrow escape problem to include diffusing boundary targets,
diffusing interior targets, stochastically fluctuating searcher and target diffusivities,
and stochastically gated targets. We make no assumptions on correlations between
changes in diffusivity and gating, and thus they can be independent, perfectly corre-
lated, or have some non-trivial correlations. Furthermore, the time between transitions
in diffusivity or gating can have any phase distributions. Since phase distributions
are dense in the set of nonnegative distributions (Nelson 1995), our results hold for
effectively any choice of transition time distributions.

Our analysis is in the narrow escape (small target) limit. Note that our results (2.4,
2.8, and 2.9) remain valid if take the limit of small boundary and/or interior target
diffusivities, as the factors in (2.6) and (2.7) reduce to unity if D}; /Dy — 0 and
Dil /Do — 0, respectively. However, our results do not in general remain valid if we
take the limit of large diffusivity of targets. To see this, note that the MFPT formula
in (2.4) vanishes if D,E’ (j)/Do(j) — oo, but the MFPT in this limit should actually
correspond to the case of a perfectly absorbing boundary (see Lawley and Miles 2019
for more on this phenomenon).

Our work is related to a number of prior studies. The method of matched asymptotic
analysis that we employ relies on the theory of strong localized perturbations (Ward
and Keller 1993). More specifically, the methods that we employ for diffusive targets
follow the methods used in Cheviakov and Ward (2011) for immobile interior targets
and the methods used in Cheviakov et al. (2010) for immobile boundary targets.

Other works that study diffusive search for diffusive targets include (Bramson and
Lebowitz 1988; Bray and Blythe 2002; Gabel et al. 2012; Giuggioli et al. 2013; Mehra
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and Grassberger 2002; Redner and Krapivsky 1999; Sokolov et al. 1991; Tzou et al.
2014). In contrast to these previous works which consider searchers and targets both
diffusing in the same space dimension (which is typically one space dimension), we
considered searchers diffusing in three dimensions and boundary targets diffusing in
two dimensions (and interior targets diffusing in three dimensions). To our knowl-
edge, the only prior work that considers such inter-dimensional reactions of searchers
diffusing in three dimensions and targets diffusing in two dimensions is our recent
work (Lawley and Miles 2019), where we show how receptor lateral diffusion and cell
rotational diffusion modify Berg and Purcell’s classic results (Berg and Purcell 1977)
in chemoreception.

In the context of molecular and cellular biology, several recent works study the
MFPT of a searcher to reach a target, where the searcher diffusivity stochastically
fluctuates (Bressloff and Lawley 2017a,b,c; Godec and Metzler 2017; Reingruber
and Holcman 2009, 2010). In contrast to our present work, these prior works consider
only two possible diffusivities for the searcher and a single immobile target. In further
contrast, Bressloff and Lawley (2017b); Godec and Metzler (2017) consider one-
dimensional or spherically symmetric spatial domains. Moreover, Godec and Metzler
(2017); Reingruber and Holcman (2009, 2010) consider fluctuations in diffusivity and
gating assuming that the states of the diffusivity and the gate are perfectly correlated.
Additional prior studies of diffusive search for stochastically gated targets includes
Ammari et al. (2011); Bressloff and Lawley (2015¢, a,b). In most of this prior work,
there is only a single target (Bressloff and Lawley 2015¢, b, 2017b; Godec and Metzler
2017; Reingruber and Holcman 2009, 2010). In the references which consider multiple
gated targets, the gate states are either perfectly correlated (Ammari et al. 2011) or
independent (Bressloff and Lawley 2015a). All of this prior work assumes that the
time between fluctuations in diffusivity and/or gating is exponentially distributed.

We have followed (Gomez and Cheviakov 2015) in assuming that our three-
dimensional spatial domain 2 is bounded by the level surface of an orthogonal
coordinate system. This class of domains is quite general, as it includes all axially
symmetric domains. Furthermore, this assumption allows our calculations regarding
diffusing boundary targets and the behavior of the MFPT and splitting probabilities
to be quite explicit. Nevertheless, we suspect that our results can be extended to any
domain with a smooth boundary. Indeed, our results immediately apply to domains
with smooth boundaries if we have only interior targets (N° = 0).

Furthermore, we found that the leading order behavior of the MFPT and splitting
probabilities depends only on the volume of the domain and is otherwise independent of
the geometry of the domain. To determine how the geometry of the domain influences
the MFPT and splitting probabilities at higher orders, one would need more detailed
information about a certain Green’s function corresponding to that domain. Indeed,
using detailed information about certain Green’s functions for spherical domains,
previous authors have determined two or three term asymptotic expansions for MFPTs
to small targets in various scenarios (Cheviakov and Ward 2011; Cheviakov etal. 2010;
Coombs et al. 2009; Gomez and Cheviakov 2015).

An additional interesting and biologically motivated future direction would be to
extend our results to space-dependent diffusivities. Alternatively, one could seek to
extend our results to space-dependent transition rates between spatially constant diffu-
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sivities. Indeed, very recent experimental work has revealed the critical role that such
space-dependent transition rates play in the formation of protein concentration gradi-
ents in developing cells (Bressloff et al. 2019; Folkmann and Seydoux 2018; Wu et al.
2018) (see also Lasker et al. 2017). The notion that space-dependent transition rates
between spatially constant diffusivities could yield space-dependent diffusivities was
proposed and analyzed in Bressloff and Lawley (2017a,c) (see also Lipkow and Odde
2008), along with the resulting It6-Stratonovich dilemma for continuous stochastic
processes with multiplicative noise (Kuroiwa and Miyazaki 2013; Tupper and Yang
2012).
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