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Abstract
Many events in biology are triggered when a diffusing searcher finds a target, which
is called a first passage time (FPT). The overwhelming majority of FPT studies have
analyzed the time it takes a single searcher to find a target. However, the more relevant
timescale in many biological systems is the time it takes the fastest searcher(s) out
of many searchers to find a target, which is called an extreme FPT. In this paper, we
apply extreme value theory to find a tractable approximation for the full probability
distribution of extreme FPTs of diffusion. This approximation can be easily applied in
manydiverse scenarios, as it depends ononly a fewproperties of the short timebehavior
of the survival probability of a single FPT. We find this distribution by proving that a
careful rescaling of extreme FPTs converges in distribution as the number of searchers
grows. This limiting distribution is a type of Gumbel distribution and involves the
LambertW function. This analysis yields new explicit formulas for approximations of
statistics of extreme FPTs (mean, variance, moments, etc.) which are highly accurate
and are accompanied by rigorous error estimates.

Keywords First passage time · Diffusion · Extreme value theory

Mathematics Subject Classification 60G70 · 92B05 · 92C05

1 Introduction

Events in biological systems are often triggeredwhen a diffusing searcher finds a target
(Chou and D’Orsogna 2014; Holcman and Schuss 2014b; Bressloff and Newby 2013).
Examples range from the initiation of the immune response when a searching T cell
finds a cognate antigen (Delgado et al. 2015), to the triggering of calcium release by
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diffusing IP3 molecules that reach IP3 receptors (Wang et al. 1995), to gene activation
by the arrival of a diffusing transcription factor to a certain gene (Larson et al. 2011), to
animals foraging for food (McKenzie et al. 2009; Kurella et al. 2015). In such systems,
the activation timescale is determined by the first passage time (FPT) of a searcher to
a target.

The vast majority of FPT studies have focused on the time it takes a given single
searcher to find a target. However, several recent works and commentaries have shown
that the relevant timescale in many biological systems is actually the time it takes the
fastest searcher(s) to find a target out of a large group of searchers (Schuss et al.
2019; Basnayake et al. 2019b; Coombs 2019; Redner and Meerson 2019; Sokolov
2019; Rusakov and Savtchenko 2019;Martyushev 2019; Tamm2019; Basnayake et al.
2018; Guerrier and Holcman 2018). For example, approximately N = 108 sperm cells
search for an egg in human reproduction, but fertilization occurs as soon as a single
sperm cell finds the egg (Meerson and Redner 2015; Reynaud et al. 2015; Barlow
2016; Yang et al. 2016).

Importantly, the time it takes the fastest searcher(s) out of many searchers to find
a target is typically much less than the time it takes a given single searcher to find a
target. In fact, Schuss et al. (2019) postulated that this is a general mechanism that
operates across many biological systems and called it the redundancy principle. In
particular, these authors claimed that many seemingly redundant copies of a searcher
(molecule, protein, cell, animal, etc.) are not superfluous, but rather have the specific
functions of accelerating activation rates. That is, the apparently “extra” copies are in
fact necessary for biological function.

Indeed, the review by Schuss et al. (2019) highlights many examples of signal
transduction triggered by the fastest molecules to find a target. We now explain one
example recently studied by Basnayake et al. (2019a) that involves calcium-induced
calcium release in dendritic spines. While the geometry can vary greatly, a dendritic
spine consists roughly of a bulbous head connected to a thin neck. It has been observed
that calcium ions entering at the head of the spine can diffuse to and then bind small
Ryanodyne receptors at the base of the spine neck which then induces an avalanche
of calcium release from internal spine apparatus stores. This calcium avalanche at
the base occurs only a few milliseconds after calcium ions enter at the head, which is
perplexing because the time it takes a given single calcium ion to diffuse from the head
to a Ryanodyne receptor at the base is approximately τ = 120 ms. However, through a
close integration of experiments and numerical simulations, Basnayake et al. (2019a)
explained this phenomenon by showing that approximately N = 103 ions enter at the
head and that the fastest ions out of this group take only a few milliseconds to reach
the receptors at the base. Similar processes occur in the photoresponse of a fly to the
absorption of a single photon (Katz et al. 2017; Schuss et al. 2019).

Another similar example concerns the random production of antibodies by genetic
recombination inside a B cell during somatic hypermutation (Schuss et al. 2019;
Coombs 2019). In this scenario, while several gene segment copies are produced,
only the first segment to find and bind a certain macromolecular complex will be used
for producing antibodies. Additional examples include the IP3 pathway, in which
the first IP3 molecules which find small IP3 receptors induce calcium release, and
synaptic transmission, in which the pre-synaptic signal is transmitted by the first
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of many neurotransmitters which diffuse to and bind small post-synaptic receptors
(Schuss et al. 2019).

To investigate how the number of searchers affects the time it takes the fastest
searcher(s) to find a target, consider N � 1 independent and identical diffusive
searchers. Let τ1, . . . , τN be their independent and identically distributed (iid) FPTs
to reach some target. The first time one of these searchers finds the target is

TN := min{τ1, . . . , τN }. (1)

More generally, the kth fastest searcher finds the target at time

Tk,N := min
{{τ1, . . . , τN }\ ∪k−1

j=1 {Tj,N }}, k ∈ {1, . . . , N }, (2)

where T1,N := TN .
The mean of a single FPT, E[τ1], is well understood in a variety of scenarios

(Benichou et al. 2010; Cheviakov et al. 2010; Bressloff and Lawley 2015; Lindsay
et al. 2017; Lawley andMiles 2019), and important progress has beenmade recently in
understanding the distribution of a single FPT (Rupprecht et al. 2015; Grebenkov et al.
2018a, b, 2019). However, studying the so-called extreme FPTs, Tk,N , is notoriously
difficult, both analytically and numerically (Weiss et al. 1983; Yuste and Lindenberg
1996; Basnayake et al. 2019b; Schuss et al. 2019; Lawley and Madrid 2020; Lawley
2020). An essential difficulty is that extreme FPTs depend on very rare events. Indeed,
while a typical searcher tends to wander around before finding the target, the fastest
searchers move almost deterministically along the shortest geodesic path to the target
(Godec andMetzler 2016a, b; Grebenkov and Rupprecht 2017; Basnayake et al. 2018;
Lawley 2020). This phenomenon is illustrated in Fig. 1.

Another significant challenge in understanding extreme FPTs in biological appli-
cations is that the targets are often very small (Holcman and Schuss 2014a). For
example, this is the case in the application to calcium-induced calcium release in den-
dritic spines discussed above, as a Ryanodyne receptor can be modeled as a disk of
radius r = 0.01µm whereas the distance from the spine head to the base of the spine
neck is roughly L = 3µm (Basnayake et al. 2019a), and thus a dimensionless measure

x0

target

Fig. 1 The fastest diffusive searcher out of N � 1 searchers moves almost deterministically (red trajectory)
along the shortest path from the starting location x0 to the target (blue ball), while a typical searcher wanders
around (black trajectory) before finding the target (color figure online)
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of the target size is

ε := r/L ≈ 0.003 � 1.

This is a challenge because the mean fastest FPT, E[TN ], diverges for small targets
(ε � 1) but vanishes for many searchers (N � 1). That is, if we fix the number of
searchers N and take the target size ε sufficiently small, then

D
L2E[TN ] � 1, (3)

where L2

D is the diffusion timescale. On the other hand, if we fix the target size ε and
take the number of searchers N sufficiently large, then

D
L2E[TN ] � 1. (4)

Hence, as a first step in any specific biological application involving extreme FPTs
with small targets (ε � 1) and many searchers (N � 1), one needs to determine if
the extreme FPTs are in the regime represented by either (3) or (4). For example, in
the dendritic spine application described above, it is not a priori clear that N = 103 is
sufficiently large to overcome the small Ryanodyne receptors (ε ≈ 0.003) and make
the extreme FPT on the order of only 2–3 ms (which is much less than the diffusion
timescale in this problem, L2

D ≈ 15 ms). Indeed, Basnayake et al. (2019a) developed
detailed numerical Monte Carlo simulations to reach this conclusion.

Importantly, analytical approximations of statistics of extreme FPTs for small tar-
gets in general 3-dimensional domains are lacking. Basnayake et al. (2019b) derived
a formal approximation, but this was proven to be false (Lawley and Madrid 2020).
Recent work found the leading order large N behavior of all the moments of Tk,N ,
but it turns out this leading order behavior is independent of the target size (Lawley
2020). Hence, these results cannot determine if a particular application is in the regime
represented by (3) or (4).

In this paper, we apply the theory of extreme statistics to find a tractable approxi-
mation for the full probability distribution of extreme FPTs of diffusion. This rigorous
approximation can be applied in many scenarios as it depends on only a few prop-
erties of the short time behavior of the survival probability of a single FPT. Indeed,
as long as this short time behavior is known, this approximation can be immediately
applied to scenarios involving small targets and thus can determine the influence of
the competing limits of small targets (ε � 1) and many searchers (N � 1).

We find this distribution by proving that a careful rescaling of extreme FPTs con-
verges in distribution as the number of searchers grows. This limiting distribution is a
type of Gumbel distribution and involves the so-called LambertW function (defined as
the inverse of f (z) = zez (Corless et al. 1996)). This analysis yields new explicit for-
mulas for statistics of extreme FPTs (mean, variance, moments, etc.). These formulas
are highly accurate and are accompanied by rigorous error estimates. Further, these
formulas confirm and explain a conjecture by Yuste et al. (2001) that extreme FPT
statistics can be approximated by a certain infinite series involving iterated logarithms.
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The rest of the paper is organized as follows. We first summarize our main results
in Sect. 2. In Sect. 3, we develop and state our precise mathematical results in more
detail. We then illustrate these general results in a few examples in Sect. 4. In Sect. 5,
we describe relations to prior work and discuss applications of the theory. Finally, we
collect all the mathematical proofs in an appendix.

2 Main results

Let {τn}n≥1 be an iid sequence of FPTs with survival probability

S(t) := P(τ1 > t).

Assume that S(t) has the short time behavior,

1 − S(t) ∼ At pe−C/t as t → 0+, (5)

for some constants A > 0, C > 0, and p ∈ R. Throughout this work,

“ f ∼ g′′ means f /g → 1.

We emphasize that (5) is a generic behavior for diffusion processes that holds in many
diverse scenarios (see Sect. 5 for more details).

Letting TN denote the fastest FPT in (1), we prove the following convergence in
distribution (Theorem 1),

TN − bN
aN

→d X as N → ∞, (6)

where X has a standard Gumbel distribution, P(X > x) = exp(−ex ), and

aN = bN
ln(AN )

, bN = C

ln(AN )
, if p = 0,

aN = bN
p(1 + W )

, bN = C

pW
, if p �= 0,

(7)

and

W = W0
(
(C/p)(AN )1/p

)
if p > 0,

W−1
(
(C/p)(AN )1/p

)
if p < 0,

where W0(z) denotes the principal branch of the LambertW function and W−1(z)
denotes the lower branch (Corless et al. 1996). The LambertW function is a fairly stan-
dard function that is included in most modern computational software (it is sometimes
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called the product logarithm or the omega function). Theorem 2 gives the following
alternative formulas for aN and bN which avoid the LambertW function,

a′
N = C

(ln N )2
, b′

N = C

ln N
+ Cp ln(ln(N ))

(ln N )2
− C ln(AC p)

(ln N )2
. (8)

In particular, all the statements in this section hold with aN , bN replaced by a′
N , b′

N .
The convergence in distribution in (6) means that if N � 1, then the distribution

of the fastest FPT, TN , is approximately Gumbel with shape parameter bN and scale
parameter aN . That is,

P(TN > t) ≈ exp
[

− exp
( t − bN

aN

)]
if N � 1,

where aN , bN are in (7) (or are replaced by a′
N , b′

N in (8)). Note that essentially all the
statistical information about a Gumbel distribution is immediately available (mean,
median, mode, variance, moments, probability density function, etc., see Proposition 1
below). Therefore, this result provides all the statistical information for the fastest
FPT (approximately for large N ). For example, we prove that if E[TN ] < ∞ for some
N ≥ 1, then (Theorem 3)

E[TN ] = bN − γ aN + o(aN ),

Variance(TN ) = π2

6
a2N + o(a2N ),

where γ ≈ 0.5772 is the Euler-Mascheroni constant and f (N ) = o(amN ) means
limN→∞ a−m

N f (N ) = 0.
We prove similar results for the kth fastest FPT, Tk,N , defined in (2). In particular,

we prove that the joint distribution of a rescaling of the k fastest FPTs,

(
T1,N − bN

aN
, . . . ,

Tk,N − bN
aN

)
,

converges as N → ∞ to a distribution that we give explicitly (Theorem 4). This result
provides explicit approximations for statistics of Tk,N , including (Theorem 5),

E[Tk,N ] = bN + ψ(k)aN + o(aN ) = E[TN ] + Hk−1aN + o(aN ),

Variance(Tk,N ) = ψ ′(k)a2N + o(a2N ),

where ψ(x) is the digamma function and Hk−1 = ∑k−1
r=1

1
r is the (k − 1)-th harmonic

number.
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3 Mathematical analysis

3.1 Fastest FPT

Let {τn}n≥1 be an iid sequence of FPTs with survival probability S(t) := P(τ1 > t).
Define the fastest FPT, TN , as in (1). Since the sequence {τn}n≥1 is iid, it is immediate
that the survival probability of TN is

P(TN > t) = (P(τ1 > t))N = (S(t))N . (9)

While (9) is the exact distribution of TN , this formula it is not particularly useful for
understanding how the distribution depends on parameters or for calculating statistics
of TN . Furthermore, the full survival probability S(t) of a single FPT is often unknown.

We thus seek a tractable approximation of (9) for large N , which will thus depend
only on the short time behavior of S(t). Now, (9) implies that the limiting distribution
of TN for large N is trivial,

lim
N→∞P(TN > t) =

{
1 if t < t∗,
0 if t > t∗,

where t∗ := inf{t > 0 : S(t) < 1}. For nontrivial diffusion processes, we typically
have t∗ = 0. To ameliorate this problem, we study the distribution of TN by finding a
rescaling of TN that has a nontrivial limiting distribution for large N . Specifically, we
find sequences {aN }N≥1 and {bN }N≥1 so that

TN − bN
aN

→d X as N → ∞,

for some random variable X . In this paper, →d denotes convergence in distribution
(Billingsley 2013), which means

P

(
TN − bN

aN
> x

)
= (S(aN x + bN ))N → G(x) as N → ∞, (10)

for all x ∈ R where G(x) = P(X > x) is continuous.
Remarkably, the Fisher–Tippett–Gnedenko Theorem states that if (10) holds for a

nondegenerate G, then G must be either a Weibull, Frechet, or Gumbel distribution
(Fisher and Tippett 1928). This theorem is the cornerstone of extreme value theory, and
applies to the minimum or maximum of any sequence of iid random variables (Coles
2001; De Haan and Ferreira 2007; Falk et al. 2010). Since the limiting distribution
must be one of these three types, this classical theorem is an extreme value analog of
the central limit theorem. We prove below that the typical short time behavior of S(t)
ensures that G must be Gumbel. The following definition and proposition collects
some facts about the Gumbel distribution.
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Definition 1 A random variable X has a Gumbel distribution with location parameter
b ∈ R and scale parameter a > 0 if1

P(X > x) = exp
[

− exp
( x − b

a

)]
, for all x ∈ R. (11)

If (11) holds, then we write

X =d Gumbel(b, a).

Proposition 1 If X =d Gumbel(b, a), then its survival probability is in (11), its prob-
ability density function is

fX (x) = 1

a
exp

[ x − b

a
− exp

( x − b

a

)]
, x ∈ R,

and its moment generating function is

MX (t) := E[et X ] = Γ (1 + at)ebt , t ∈ R,

where Γ (·) denotes the gamma function. Hence, the mean and variance are

E[X ] = b − γ a, Variance(X) = π2

6
a2,

where γ ≈ 0.5772 is the Euler-Mascheroni constant. The mode and median are

Mode(X) = b, Median(X) = b + a ln(ln(2)) ≈ b − 0.3665a.

Now, it was recently proven that under very general assumptions, the survival
probability of a single diffusive FPT has the following short time behavior,

lim
t→0+ t ln(1 − S(t)) = −C < 0, (12)

where C = L2/(4D) > 0 and D is a characteristic diffusivity and L is a certain
geodesic distance (Lawley 2020), as long as the diffusive searchers cannot start arbi-
trarily close to the target. The next proposition shows that if (12) holds, then any
nondegenerate limiting distribution G in (10) must be Gumbel.

Proposition 2 Let {τn}n≥1 be an iid sequence of nonnegative random variables with
S(t) := P(τ1 > t), define TN := min{τ1, . . . , τN }, and suppose (12) holds. If there
exists sequences {aN }N≥1 and {bN }N≥1 with aN > 0 and bN ∈ R so that

TN − bN
aN

→d X as N → ∞,

1 Some authors define a Gumbel distribution slightly differently, by saying that −X has a Gumbel distri-
bution with shape −b and scale a if (11) holds.
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and X has a nondegenerate distribution, then X =d Gumbel(b, a) for some b ∈ R

and a > 0.

The condition in (12) implies that

S(t) = 1 − e−C/t+h(t),

where h(t) is some function satisfying th(t) → 0 as t → 0+. The following propo-
sition gives precise conditions on h(t) which yield rescalings {aN }N≥1 and {bN }N≥1
so that (TN − bN )/aN converges in distribution to a Gumbel random variable.

Proposition 3 Let {τn}n≥1 be an iid sequence of nonnegative random variables with
S(t) := P(τ1 > t), define TN := min{τ1, . . . , τN }, and assume

1 − S(t) ∼ 1 − S0(t) as t → 0+,

where

S0(t) = 1 − e−C/t+h(t), if t > 0,

for some constant C > 0 and some function h(t) that is twice-continuously differen-
tiable for t > 0 and satisfies

lim
t→0+ th(t) = lim

t→0+ t2h′(t) = lim
t→0+ t4h′′(t) = 0. (13)

Then

TN − bN
aN

→d X =d Gumbel(0, 1) as N → ∞,

where

aN := −1

NS′
0(bN )

> 0, bN := S−1
0 (1 − 1/N ) > 0, N ≥ 1. (14)

In (14), S−1
0 (1 − 1/N ) denotes the inverse of S0, which must exist for large N by

the assumptions on h(t). As we will see, it is typically the case that h(t) = ln(At p),
which clearly satisfies (13). In this case, we work out the rescalings {aN }N≥1 and
{bN }N≥1.

Theorem 1 Let {τn}n≥1 be an iid sequence of nonnegative random variables with
S(t) := P(τ1 > t), define TN := min{τ1, . . . , τN }, and assume there exists constants
C > 0, A > 0, and p ∈ R so that

1 − S(t) ∼ At pe−C/t as t → 0 + .
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Then

TN − bN
aN

→d X =d Gumbel(0, 1) as N → ∞, (15)

where

aN = bN
ln(AN )

, bN = C

ln(AN )
, if p = 0,

aN = bN
p(1 + W )

, bN = C

pW
, if p �= 0,

(16)

and

W =
{
W0

(
(C/p)(AN )1/p

)
if p > 0,

W−1
(
(C/p)(AN )1/p

)
if p < 0,

(17)

where W0(z) denotes the principal branch of the LambertW function and W−1(z)
denotes the lower branch (Corless et al. 1996).

If the convergence in distribution in (15) holds for some rescalings {aN }N≥1 and
{bN }N≥1, then we also have that

TN − b′
N

a′
N

→d X =d Gumbel(0, 1) as N → ∞, (18)

for any rescalings {a′
N }N≥1 and {b′

N }N≥1 that satisfy (Peng and Nadarajah 2012)

lim
N→∞

a′
N

aN
= 1, lim

N→∞
b′
N − bN
aN

= 0. (19)

The following theorem gives rescalings which avoid the LambertW functions used in
Theorem 1 and are valid for any p ∈ R.

Theorem 2 Under the assumptions of Theorem 1, we have that

TN − b′
N

a′
N

→d X =d Gumbel(0, 1) as N → ∞,

where

a′
N = C

(ln N )2
, b′

N = C

ln N
+ Cp ln(ln(N ))

(ln N )2
− C ln(AC p)

(ln N )2
. (20)

The conclusions of Propositions 2–3 and Theorems 1–2 concern convergence in
distribution. In general, convergence in distribution does not imply moment conver-
gence (Billingsley 2013). That is, XN →d X does not necessarily implyE[(XN )m] →
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E[Xm] for m > 0. However, Pickands (1968) proved that convergence in distribution
does imply moment convergence for extreme values.

Theorem 3 Under the assumptions of Theorem 1 with {aN }N≥1 and {bN }N≥1 given
by either (16) or (20), assume further that E[TN ] < ∞ for some N ≥ 1. Then for
each moment m ∈ (0,∞), we have that

E

[(
TN − bN

aN

)m]
→ E[Xm] as N → ∞, where X =d Gumbel(0, 1).

Therefore,

E[(TN − bN )m] = amNE[Xm] + o(amN ),

where f (N ) = o(amN )means limN→∞ a−m
N f (N ) = 0. Further, if m > 0 is an integer,

then E[Xm] can be calculated explicitly by Proposition 1. For example, we have that

E[TN ] = bN − γ aN + o(aN ),

Variance(TN ) = π2

6
a2N + o(a2N ),

where γ ≈ 0.5772 is the Euler–Mascheroni constant.

3.2 kth fastest FPT

We now extend the results in the previous subsection on the fastest FPT to the kth
fastest FPT,

Tk,N := min
{{τ1, . . . , τN }\ ∪k−1

j=1 {Tj,N }}, k ∈ {1, . . . , N },

where T1,N := TN .

Theorem 4 Under the assumptions of Theorem 1 with {aN }N≥1 and {bN }N≥1 given
by either (16) or (20), we have that for each fixed k ≥ 1,

Tk,N − bN
aN

→d Xk as N → ∞, (21)

where Xk has the probability density function,

fXk (x) = exp(kx − ex )

(k − 1)! , for all x ∈ R. (22)
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Furthermore, for each fixed k ≥ 1, we have the following convergence in distribution
for the joint random variables,

(
T1,N − bN

aN
, . . . ,

Tk,N − bN
aN

)
→d X(k) = (X1, . . . , Xk) ∈ R

k as N → ∞,

(23)

where the joint probability density function of X(k) ∈ R
k is

fX(k) (x1, . . . , xk) =
{
exp(−exk )

∏k
r=1e

xr if x1 ≤ · · · ≤ xk,

0 otherwise.

The following theorem ensures the convergence of the moments of the kth fastest
FPT.

Theorem 5 Under the assumptions of Theorem 3 with {aN }N≥1 and {bN }N≥1 given
by either (16) or (20), we have that for each moment m ∈ (0,∞),

E

[(
Tk,N − bN

aN

)m]
→ E[Xm

k ] as N → ∞, (24)

where Xk has the probability density function in (22). Therefore,

E[(Tk,N − bN )m] = amNE[Xm
k ] + o(amN ).

Further, if m > 0 is an integer, then E[Xm
k ] can be explicitly calculated. In particular,

E[Tk,N ] = bN + ψ(k)aN + o(aN ) = E[T1,N ] + Hk−1aN + o(aN ),

Variance(Tk,N ) = ψ ′(k)a2N + o(a2N ),

where ψ(x) is the digamma function and Hk−1 = ∑k−1
r=1

1
r is the (k − 1)-th harmonic

number.

4 Numerical examples

We now apply our results to three specific examples.

4.1 One dimension

First consider the case of N ≥ 1 independent searchers diffusing in one space dimen-
sion with diffusivity D > 0. Suppose the searchers each start at L > 0 and let τn be
the first time the nth searcher reaches the origin. In this case,

S(t) = P(τ1 > t) = 1 − erfc
( L√

4Dt

)
, t > 0,
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and thus

1 − S(t) ∼
√

4Dt

πL2 e
−L2/(4Dt) as t → 0 + .

Therefore, Theorems 1–5 hold with

A =
√

4D

πL2 , p = 1

2
, C = L2

4D
.

In particular,

TN − bN
aN

→d X =d Gumbel(0, 1) as N → ∞,

where {aN }N≥1 and {bN }N≥1 are given by either (16) or (20). Hence, the distribution
of TN is approximately Gumbel(bN , aN ).

In the left panel of Fig. 2, we plot the error of various approximations of the mean
fastest FPT, E[TN ], as functions of N . Specifically, we plot the relative error,

∣∣∣
E[TN ] − TN

E[TN ]
∣∣∣, (25)

where TN is an approximation ofE[TN ]. The value ofE[TN ] used in (25) is calculated
by numerical approximation of the following integral,

E[TN ] =
∫ ∞

0
(S(t))N dt .

The red dotted curve in the left panel of Fig. 2 is the error (25) for the approximation
TN = L2/(4D ln N ) (this approximation dates back to Weiss et al. (1983)). The blue
dashed curve is for the approximation TN = b′

N − γ a′
N where {a′

N }N≥1 and {b′
N }N≥1

are given by (20). The black solid curve is for the approximationTN = bN−γ aN where
{aN }N≥1 and {bN }N≥1 are given by (16). This figure shows that our approximations,
bN − γ aN and b′

N − γ a′
N , to the mean fastest FPT are much more accurate than

L2/(4D ln N ), and bN − γ aN is more accurate than b′
N − γ a′

N .
In the left panel of Fig. 3, we illustrate the convergence in distribution of (TN −

bN )/aN to X =d Gumbel(0, 1) where {aN }N≥1 and {bN }N≥1 are given by (16).
Specifically, we plot the probability density function of (TN − bN )/aN for N ∈
{102, 104, 106}, which approaches the density of X (namely, fX (x) = exp(x − ex ))
as N increases. In both Figs. 2 and 3, we take L = D = 1.

4.2 Partial absorption

Consider the example in the previous subsection, but now suppose the target at the
origin is partially absorbing. This means that when a searcher hits the target, it is
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Fig. 2 Accuracy of approximations to the mean fastest FPT. The left, middle, and right panels correspond
respectively to the examples in Sects. 4.1, 4.2, and 4.3. In each panel, the red dotted curve is the relative
error (25) for the approximation L2/(4D ln N ), the blue dashed curve is for b′

N − γ a′
N where a′

N , b′
N are

given by (20), and the black solid curve is for bN − γ aN where aN , bN are given by (16) (color figure
online)
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Fig. 3 Convergence in distribution of rescaled fastest FPT. The left, middle, and right panels correspond
respectively to the examples in Sects. 4.1, 4.2, and 4.3. In each panel, the green dashed, red dotted, and
blue dashed-dotted curves give the probability density function of (TN − bN )/aN for N ∈ {102, 104, 106}
where {aN }N≥1 and {bN }N≥1 are given by (16), and the black solid curve shows the limiting probability
density function, exp(x − ex ) (color figure online)

either absorbed or reflected, and the probabilities of these two events are described
by a parameter κ > 0 called the reactivity or absorption rate (Grebenkov 2006).
Mathematically, this means the Fokker-Planck equation describing the probability
density for a searcher’s position has a Robin boundary condition at the origin involving
the parameter κ > 0 (Lawley and Keener 2015).

In this case, the survival probability for a single searcher is (Carslaw and Jaeger
1959)

S(t) = P(τ1 > t) = 1 − erfc
( L√

4Dt

)
+ e

κ(κt+L)
D erfc

(2κt + L√
4Dt

)
, t > 0,

and thus

1 − S(t) ∼ 4√
π

κL

D

(Dt

L2

)3/2
e−L2/(4Dt) as t → 0 + .
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Therefore, Theorems 1–5 hold with

A = 4√
π

κL

D

( D

L2

)3/2
, p = 3

2
, C = L2

4D
. (26)

The middle panel of Fig. 2 shows the relative error (25) of approximations to
E[TN ] in this case of a partially absorbing target. The red dotted curve is again the
error for the approximation TN = L2/(4D ln N ) [this approximation was recently
found and proven to have the correct large N asymptotics (Lawley 2020)]. The blue
dashed and black solid curves again correspond respectively to TN = b′

N − γ a′
N and

TN = bN − γ aN where a′
N , b′

N are in (20) and aN , bN are in (16). Again, bN − γ aN
and b′

N − γ a′
N are much more accurate than L2/(4D ln N ), and bN − γ aN is more

accurate than b′
N − γ a′

N .
The middle panel of Fig. 3 illustrates the convergence in distribution of (TN −

bN )/aN to X =d Gumbel(0, 1) in this case of a partially absorbing target [again, for
N ∈ {102, 104, 106} and where {aN }N≥1 and {bN }N≥1 are given by (16)]. In both
Figs. 2 and 3, we take L = D = κ = 1.

4.3 Three dimensions

Finally, consider the case where the N ≥ 1 independent searchers diffuse in three
dimensional space, and let τn be the first time the nth searcher leaves a sphere of
radius L > 0 centered at its starting location. In this case, the survival probability for
a single searcher is (Carslaw and Jaeger 1959)

S(t) = P(τ1 > t) = 1 − 2

√
L2

πDt

∞∑

j=0

e−( j+1/2)2L2/(Dt), t > 0,

and thus

1 − S(t) ∼ 2

√
L2

πDt
e−L2/(4Dt) as t → 0 + .

Therefore, Theorems 1–5 hold with

A = 2

√
L2

πD
, p = −1

2
, C = L2

4D
.

The right panel of Fig. 2 shows the relative error (25) of approximations to E[TN ]
in this three dimensional example. The red dotted curve is again the error for the
approximation TN = L2/(4D ln N ) (this approximation was found by Yuste et al.
(2001)). The blue dashed and black solid curves again correspond respectively to
TN = b′

N − γ a′
N and TN = bN − γ aN where a′

N , b′
N are in (20) and aN , bN are

in (16). Further, the right panel of Fig. 3 illustrates the convergence in distribution
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of (TN − bN )/aN to X =d Gumbel(0, 1) in this three dimensional example [again,
for N ∈ {102, 104, 106} and where {aN }N≥1 and {bN }N≥1 are given by (16]. In both
Figs. 2 and 3, we take L = D = 1.

5 Discussion

In this work, we found tractable approximations for the full probability distribution
of extreme FPTs of diffusion. These approximate distributions depend on only three
parameters describing the short time behavior of the survival probability of a single
searcher, and we proved that these approximations are exact in the many searcher
limit. We used our approximate distributions to derive new formulas for statistics of
extreme FPTs and prove rigorous error estimates.

Extreme FPTs of diffusion were first studied by Weiss et al. (1983), where they
found approximations of E[Tk,N ] for large N in various one dimensional problems.
Statistics of extreme FPTs of diffusion in one dimensional or spherically symmetric
domains were further studied by Yuste and Lindenberg (1996), Yuste and Acedo
(2000), Yuste et al. (2001), van Beijeren (2003), Redner and Meerson (2014), and
Meerson and Redner (2015). Recently, approximate formulas for the moments of
extreme FPTs of diffusion in more general two and three dimensional domains were
derived by Ro and Kim (2017), Basnayake et al. (2019b), and Lawley and Madrid
(2020). Evenmore recently, it was proven in significant generality that themthmoment
of the kth fastest FPT has the large N behavior,

E[(Tk,N )m] ∼
( L2

4D ln N

)m
as N → ∞, (27)

where D is a characteristic diffusivity and L is a certain geodesic distance (Lawley
2020).

The moment formulas derived in the present work agree with (27) to leading order,
but aremuchmore accurate for finite N . In addition, themoment formulas in the present
work explain and confirm a remarkable conjecture by Yuste and Acedo (2000). In that
work, the authors conjectured that the mean fastest FPT to escape a ball of radius L
in dimension d ≥ 2 has the following approximation,

E[T1,N ] ≈ L2

4D ln N

[
1 +

∞∑

n=1

(ln N )−n
n∑

m=0

K (n)
m (ln ln N )m

]
, (28)

for some unknown constants {{K (n)
m }nm=0}n≥1 (some of which were estimated numer-

ically). To derive (28) from our results, first note that the principal branch of the
LambertW function has the following expansion for z � 1 (Corless et al. 1996),

W0(z) = L1 − L2 +
∞∑

i=0

∞∑

j=1

ci j L
−i− j
1 L j

2, (29)
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where L1 = ln z, L2 = ln ln z,

ci j = (−1)i

j !
[
i + j
i + 1

]
,

and
[
i+ j
i+1

]
are non-negative Stirling numbers of the first kind. Similarly, the lower

branch, W−1(z), has the expansion in (29) for −1 � z < 0 if L1 = ln(−z) and
L2 = ln(− ln(−z)) (Corless et al. 1996). Therefore, upon using the definitions in
(16)-(17) and the expansion in (29), it follows that our formula E[T1,N ] ≈ bN − γ aN
is exactly of the form in the conjecture (28).

Finally, we emphasize that our results apply to any FPT problem where the survival
probability S(t) = P(τ1 > t) of a single searcher satisfies

1 − S(t) ∼ At pe−C/t as t → 0+, (30)

for some constants C > 0, A > 0, and p ∈ R. The behavior in (30) is very generic
for diffusion processes and holds in many diverse scenarios. For example, Weiss et al.
(1983) found (30) for one-dimensional drift-diffusion processes with a broad class
of potential (drift) fields. Similarly, Yuste et al. (2001) found (30) for the first time a
pure diffusion in dimension d ≥ 1 moves any distance L > 0 from its initial location
(and referred to (30) as a “universal” form). Further, Ro and Kim (2017) formally
derived (30) for a pure diffusion searching for an arbitrarily placed small target in
a spherical domain in dimension d = 3. It is also known that (30) holds for pure
diffusion in dimension d = 1 with a partially absorbing target (see section 4.2 above).
Further, it was proven that under very general conditions (including (i) diffusions
in R

d with space-dependent diffusivities and drift fields and (ii) diffusions on d-
dimensional smooth Riemannian manifolds that may contain reflecting obstacles), the
survival probability satisfies (Lawley 2020)

lim
t→0+ t ln(1 − S(t)) = − L2

4D
< 0, (31)

where D > 0 is a characteristic diffusivity and L > 0 is a certain geodesic distance
that depends on any space-dependence or anisotropy in the diffusivity (if the diffusivity
is constant in space, then L is merely the shortest distance from the starting location
to the target). Therefore, if (30) holds in a particular problem, then (31) implies that
C = L2/(4D), and thus the only parameters to be found are A and p.

Finally, we discuss how our results can be used to investigate the question posed
in the Introduction section regarding the competing limits of small targets and many
searchers, which is a ubiquitous feature of extreme FPTs in biological applications
(Schuss et al. 2019). Consider a collection of small targets on an otherwise reflecting
surface. Such a “patchy surface” arises in many applications (Brown and Escombe
1900; Wolf et al. 2016; Keil 1999), including the classic work of Berg and Purcell
(1977) on cell sensing by membrane receptors. In this scenario, the heterogeneous
surface is commonly replaced by a homogeneous partially absorbing surface with a
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reactivity parameter κ > 0 which incorporates the size, number, and arrangement
of targets [many methods have been developed for determining κ (Berezhkovskii
et al. 2004; Muratov and Shvartsman 2008; Cheviakov et al. 2012; Dagdug et al.
2016; Bernoff et al. 2018; Lawley 2019)]. We thus cast this scenario into the setup of
Section 4.2 above. If the targets are small, then the trapping rate is small, κL/D � 1
(Bernoff et al. 2018). Hence, the mean fastest FPT will be large compared to the
diffusion timescale unless the number of searchers is very large. How large does the
number of searchers N need to be in order for the mean fastest FPT to be small
compared to the diffusion timescale? That is, (i) how large does N need to be so that
D
L2E[TN ] � 1 and (ii) what is an approximation of E[TN ] in this regime?
To answer questions (i) and (ii), notice that Theorems 2 and 3 imply that

E[TN ] = bN − γ aN + o(aN )

= C

ln N

[
1 + p ln(ln(N ))

ln N
− ln(AC p) + γ

ln N
+ o(1/ ln N )

]
as N → ∞,

where are A, p, and C are given in (26). Hence, this approximation is accurate if N is
sufficiently large so that

| ln(AC p)| � ln N . (32)

Using the values in (26), the relation (32) becomes ln D
κL � ln N . Therefore, in this

scenario we have that

E[TN ] ≈ bN − γ aN � L2

D as long as ln D
κL � ln N ,

which answers questions (i) and (ii) above.

Appendix

In this appendix, we collect the proofs of the propositions and theorems of Sect. 3.

Proof of Proposition 1 This proposition merely collects basic results on Gumbel ran-
dom variables, all of which follow directly from (11). ��
Proof of Proposition 2 Since most results in extreme value theory are formulated in
terms of the maximum of a set of random variables, define

MN := max{−τ1, . . . ,−τN } = −TN ,

and F(x) = P(−τ1 < x) = S(−x). If there exists normalizing constants {aN }N≥1 and
{bN }N≥1 so that (MN − bN )/aN converges in distribution as N → ∞ to a nontrivial
random variable, then the distribution of that random variable can only be Frechet,
Weibull, or Gumbel (Fisher and Tippett 1928). Since

x∗ := sup{x : F(x) < 1} = 0 < ∞,
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Theorem 1.2.1 in the book by De Haan and Ferreira (2007) ensures that the limiting
distribution cannot be Frechet.

Furthermore, if the limiting distribution isWeibull, then Theorem 1.2.1 in (DeHaan
and Ferreira 2007) guarantees that there exists some γ < 0 so that

lim
t→0+

1 − F(−t x)

1 − F(−t)
= lim

t→0+
1 − S(t x)

1 − S(t)
= x−1/γ for all x > 0. (33)

Now, it follows directly from (12) that S(t) = 1 − e−C/t+h(t) for some function h(t)
satisfying

lim
t→0+ th(t) = 0. (34)

Therefore, we claim that (33) is violated with, for example, x = 2. To see this, note
that

lim
t→0+

1 − S(2t)

1 − S(t)
= lim

t→0+ eC/t+h(2t)−h(t).

By (34), we are assured that

−C

2t
≤ h(t) ≤ C

2t
for sufficiently small t .

Hence,

lim
t→0+ eC/t+h(2t)−h(t) ≥ lim

t→0+ e3C/(4t) = +∞,

which indeed violates (33). Therefore, if the limiting distribution is nondegenerate, it
must be Gumbel. ��
Proof of Proposition 3 Using the assumptions on h(t) in (13), a direct calculation shows
that

lim
t→0+

d

dt

(
1 − S0(t)

S′
0(t)

)
= 0.

Therefore, Theorem 2.1.2 in (Falk et al. 2010) ensures that

lim
N→∞(S0(aN x + bN ))N = exp(−ex ), for all x ∈ R, (35)

for some choice of normalizing constants {(aN , bN )}N≥1. Remark 1.1.9 in the book
by De Haan and Ferreira (2007) implies we can take aN and bN as in (14).

Now, (35) is equivalent to

lim
N→∞ N ln(S0(aN x + bN )) = −ex , for all x ∈ R.
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Hence, it must be the case that S0(aN x + bN ) → 1 as N → ∞, and thus a
straightforward application of L’Hospital’s rule gives

− ln(S0(aN x + bN )) ∼ 1 − S0(aN x + bN ) as N → ∞.

Therefore, (35) is equivalent to

lim
N→∞ N (1 − S0(aN x + bN )) = ex , for all x ∈ R. (36)

Now, 1 − S0(t) ∼ 1 − S0(t) as t → 0+ by assumption. Hence, (36) holds with
S0 replaced by S, which then implies that (35) holds with S0 replaced by S, which
completes the proof. ��
Proof of Theorem 1 The theorem follows fromProposition 3 upon calculating {aN }N≥1
and {bN }N≥1 in (16) forh(t) = ln(At p) andusingproperties of theLambertWfunction
(Corless et al. 1996). ��
Proof of Theorem 2 The theorem follows immediately from Theorem 1 and (18)-(19).

��
Proof of Theorem 3 By assumption, E[TN ] < ∞ for some N ≥ 1. Hence, if m ∈
(0, 1), thenE[(TN )m] ≤ 1+E[TN ] < ∞. Ifm ≥ 1, then it is straightforward to check
that [see the proof of Proposition 2 in the work by Lawley (2020)]

E[(T2m−1N )m] < ∞.

Since E[Xm] < ∞, applying Theorem 2.1 in (Pickands 1968) completes the proof. ��
Proof of Theorem 4 The convergence in distribution in (21) and (23) follows immedi-
ately from Theorem 1 above and Theorem 3.5 in the book by Coles (2001). ��
Proof of Theorem 5 While convergence in distribution does not necessarily imply con-
vergence ofmoments, it does imply convergence ofmoments if the sequence of random
variables is uniformly integrable (Billingsley 2013). Hence, it is sufficient to prove
that

sup
N

E

[(Tk,N − bN
aN

)2]
< ∞ (37)

since (37) ensures that { Tk,N−bN
aN

}N≥1 is uniformly integrable (Billingsley 2013).

By assumption, 1 − S(t) ∼ At pe−C/t as t → 0+. Hence, there exists a δ > 0 so
that

1 − A1t
pe−C/t ≤ 1 − S(t) ≤ 1 − A0t

pe−C/t , if t ∈ (0, δ],
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where 0 < A0 < A < A1. Define the survival probability

S+(t) =

⎧
⎪⎨

⎪⎩

1 t ≤ 0,

1 − A0t pe−C/t t ∈ (0, δ],
S(t) t > δ.

Define S−(t) similarly with A0 replaced by A1. Hence, S−(t) ≤ S(t) ≤ S+(t) for
all t ∈ R. Let {Un}n≥1 be an iid sequence of random variables, each with a uniform
distribution on [0, 1]. Define

τn := S−1(Un),

τ−
n := S−1− (Un),

τ+
n := S−1+ (Un),

and

Tk,N := min
{{τ1, . . . , τN }\ ∪k−1

j=1 {Tj,N }}, k ∈ {1, . . . , N },
T±
k,N := min

{{τ±
1 , . . . , τ±

N }\ ∪k−1
j=1 {T±

j,N }}, k ∈ {1, . . . , N },

where T1,N := min{τ1, . . . , τN } and T±
1,N := min{τ±

1 , . . . , τ±
N }. By construction, we

have that

T−
k,N ≤ Tk,N ≤ T+

k,N almost surely.

Therefore, if 1A denotes the indicator function on an event A, then

E

[(Tk,N − bN
aN

)2] = E

[(Tk,N − bN
aN

)2
1Tk,N>bN

]
+ E

[(Tk,N − bN
aN

)2
1Tk,N<bN

]

≤ E

[(T+
k,N − bN

aN

)2
1T+

k,N>bN

]
+ E

[(T−
k,N − bN

aN

)2
1T−

k,N<bN

]

≤ E

[(T+
k,N − bN

aN

)2] + E

[(T−
k,N − bN

aN

)2]
.

Hence, it remains to show that

sup
N

E

[(T±
k,N − bN

aN

)2]
< ∞.
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Now,

E

[(T±
k,N − bN

aN

)2] =
∫ ∞

0
P

((T±
k,N − bN

aN

)2
> t

)
dt

=
∫ ∞

0
P(T±

k,N − bN > aN
√
t) dt +

∫ ∞

0
P(bN − T±

k,N > aN
√
t) dt

=: I1 + I2.

Since T±
1,N ≤ T±

k,N almost surely for any k ∈ {1, . . . , n}, we have that

I2 ≤
∫ ∞

0
P(bN − T±

1,N > aN
√
t) dt ≤

∫ ∞

0
P

((T±
1,N − bN

aN

)2
> t

)
dt

= E

[(T±
1,N − bN

aN

)2]
.

Now, Theorem 3 implies that

E

[(T±
1,N − b±

N

a±
N

)2] → E[X2] < ∞ as N → ∞,

where {a±
N }N≥1 and {b±

N }N≥1 are given by (16) with A replaced by A0 or A1. Now, it
is straightforward to check that there exists α± > 0 and β± ∈ R so that

a±
N

aN
→ α± and

bN − b±
N

aN
→ β± as N → ∞.

Therefore, Proposition 1.1 and Remark 1 in the work by Peng and Nadarajah (2012)

imply that E[( T
±
1,N−b±

N

a±
N

)2] converges to some finite constant as N → ∞. Hence,

sup
N

I2 < ∞.

Moving to I1, note first that

P(T±
k,N > x) = P(T±

1,N > x) +
k−1∑

j=1

P(T±
j,N < x < T±

j+1,N ).

Hence,

I1 =
∫ ∞

0
P(T±

1,N > aN
√
t + bN ) dt +

k−1∑

j=1

∫ ∞

0
P(T±

j,N < aN
√
t + bN < T±

j+1,N ) dt

=: I3 + I4.
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Now, I3 can be handled similarly to I2 to obtain

sup
N

I3 < ∞.

Hence, it remains to show that supN I4 < ∞. Now, since {τ±
n }n≥1 are iid, it follows

that

P(T±
j,N < x < T±

j+1,N ) =
(
N

j

)
(1 − S±(x)) j (S±(x))N− j , if j ∈ {1, . . . , k − 1}.

Hence,

I4 =
k−1∑

j=1

(
N

j

)∫ ∞

0
(1 − S±(aN

√
t + bN )) j (S±(aN

√
t + bN ))N− j dt .

An application of Laplace’s method with a movable maximum [see, for example,
section 6.4 in the book by Bender and Orszag (2013)] shows that each term in this
sum is bounded in N , and so the proof is complete. ��
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