

Distribution of extreme first passage times of diffusion

Sean D. Lawley¹

Received: 26 October 2019 / Revised: 8 April 2020
© Springer-Verlag GmbH Germany, part of Springer Nature 2020

Abstract

Many events in biology are triggered when a diffusing searcher finds a target, which is called a first passage time (FPT). The overwhelming majority of FPT studies have analyzed the time it takes a single searcher to find a target. However, the more relevant timescale in many biological systems is the time it takes the fastest searcher(s) out of many searchers to find a target, which is called an extreme FPT. In this paper, we apply extreme value theory to find a tractable approximation for the full probability distribution of extreme FPTs of diffusion. This approximation can be easily applied in many diverse scenarios, as it depends on only a few properties of the short time behavior of the survival probability of a single FPT. We find this distribution by proving that a careful rescaling of extreme FPTs converges in distribution as the number of searchers grows. This limiting distribution is a type of Gumbel distribution and involves the LambertW function. This analysis yields new explicit formulas for approximations of statistics of extreme FPTs (mean, variance, moments, etc.) which are highly accurate and are accompanied by rigorous error estimates.

Keywords First passage time · Diffusion · Extreme value theory

Mathematics Subject Classification 60G70 · 92B05 · 92C05

1 Introduction

Events in biological systems are often triggered when a diffusing searcher finds a target (Chou and D’Orsogna 2014; Holcman and Schuss 2014b; Bressloff and Newby 2013). Examples range from the initiation of the immune response when a searching T cell finds a cognate antigen (Delgado et al. 2015), to the triggering of calcium release by

The author was supported by the National Science Foundation (Grant Nos. DMS-1944574, DMS-1814832, and DMS-1148230).

✉ Sean D. Lawley
lawley@math.utah.edu

¹ University of Utah, Salt Lake City, UT 84112, USA

diffusing IP_3 molecules that reach IP_3 receptors (Wang et al. 1995), to gene activation by the arrival of a diffusing transcription factor to a certain gene (Larson et al. 2011), to animals foraging for food (McKenzie et al. 2009; Kurella et al. 2015). In such systems, the activation timescale is determined by the *first passage time* (FPT) of a searcher to a target.

The vast majority of FPT studies have focused on the time it takes a given single searcher to find a target. However, several recent works and commentaries have shown that the relevant timescale in many biological systems is actually the time it takes the fastest searcher(s) to find a target out of a large group of searchers (Schuss et al. 2019; Basnayake et al. 2019b; Coombs 2019; Redner and Meerson 2019; Sokolov 2019; Rusakov and Savtchenko 2019; Martyushev 2019; Tamm 2019; Basnayake et al. 2018; Guerrier and Holcman 2018). For example, approximately $N = 10^8$ sperm cells search for an egg in human reproduction, but fertilization occurs as soon as a single sperm cell finds the egg (Meerson and Redner 2015; Reynaud et al. 2015; Barlow 2016; Yang et al. 2016).

Importantly, the time it takes the fastest searcher(s) out of many searchers to find a target is typically much less than the time it takes a given single searcher to find a target. In fact, Schuss et al. (2019) postulated that this is a general mechanism that operates across many biological systems and called it the *redundancy principle*. In particular, these authors claimed that many seemingly redundant copies of a searcher (molecule, protein, cell, animal, etc.) are not superfluous, but rather have the specific functions of accelerating activation rates. That is, the apparently “extra” copies are in fact necessary for biological function.

Indeed, the review by Schuss et al. (2019) highlights many examples of signal transduction triggered by the fastest molecules to find a target. We now explain one example recently studied by Basnayake et al. (2019a) that involves calcium-induced calcium release in dendritic spines. While the geometry can vary greatly, a dendritic spine consists roughly of a bulbous head connected to a thin neck. It has been observed that calcium ions entering at the head of the spine can diffuse to and then bind small Ryanodyne receptors at the base of the spine neck which then induces an avalanche of calcium release from internal spine apparatus stores. This calcium avalanche at the base occurs only a few milliseconds after calcium ions enter at the head, which is perplexing because the time it takes a given single calcium ion to diffuse from the head to a Ryanodyne receptor at the base is approximately $\tau = 120$ ms. However, through a close integration of experiments and numerical simulations, Basnayake et al. (2019a) explained this phenomenon by showing that approximately $N = 10^3$ ions enter at the head and that the fastest ions out of this group take only a few milliseconds to reach the receptors at the base. Similar processes occur in the photoresponse of a fly to the absorption of a single photon (Katz et al. 2017; Schuss et al. 2019).

Another similar example concerns the random production of antibodies by genetic recombination inside a B cell during somatic hypermutation (Schuss et al. 2019; Coombs 2019). In this scenario, while several gene segment copies are produced, only the first segment to find and bind a certain macromolecular complex will be used for producing antibodies. Additional examples include the IP_3 pathway, in which the first IP_3 molecules which find small IP_3 receptors induce calcium release, and synaptic transmission, in which the pre-synaptic signal is transmitted by the first

of many neurotransmitters which diffuse to and bind small post-synaptic receptors (Schuss et al. 2019).

To investigate how the number of searchers affects the time it takes the fastest searcher(s) to find a target, consider $N \gg 1$ independent and identical diffusive searchers. Let τ_1, \dots, τ_N be their independent and identically distributed (iid) FPTs to reach some target. The first time one of these searchers finds the target is

$$T_N := \min\{\tau_1, \dots, \tau_N\}. \quad (1)$$

More generally, the k th fastest searcher finds the target at time

$$T_{k,N} := \min \left\{ \{\tau_1, \dots, \tau_N\} \setminus \bigcup_{j=1}^{k-1} \{T_{j,N}\} \right\}, \quad k \in \{1, \dots, N\}, \quad (2)$$

where $T_{1,N} := T_N$.

The mean of a single FPT, $\mathbb{E}[\tau_1]$, is well understood in a variety of scenarios (Benichou et al. 2010; Cheviakov et al. 2010; Bressloff and Lawley 2015; Lindsay et al. 2017; Lawley and Miles 2019), and important progress has been made recently in understanding the distribution of a single FPT (Rupprecht et al. 2015; Grebenkov et al. 2018a, b, 2019). However, studying the so-called *extreme* FPTs, $T_{k,N}$, is notoriously difficult, both analytically and numerically (Weiss et al. 1983; Yuste and Lindenberg 1996; Basnayake et al. 2019b; Schuss et al. 2019; Lawley and Madrid 2020; Lawley 2020). An essential difficulty is that extreme FPTs depend on very rare events. Indeed, while a typical searcher tends to wander around before finding the target, the fastest searchers move almost deterministically along the shortest geodesic path to the target (Godec and Metzler 2016a, b; Grebenkov and Rupprecht 2017; Basnayake et al. 2018; Lawley 2020). This phenomenon is illustrated in Fig. 1.

Another significant challenge in understanding extreme FPTs in biological applications is that the targets are often very small (Holcman and Schuss 2014a). For example, this is the case in the application to calcium-induced calcium release in dendritic spines discussed above, as a Ryanodyne receptor can be modeled as a disk of radius $r = 0.01 \mu\text{m}$ whereas the distance from the spine head to the base of the spine neck is roughly $L = 3 \mu\text{m}$ (Basnayake et al. 2019a), and thus a dimensionless measure

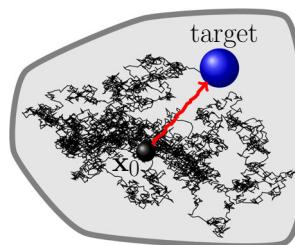


Fig. 1 The fastest diffusive searcher out of $N \gg 1$ searchers moves almost deterministically (red trajectory) along the shortest path from the starting location x_0 to the target (blue ball), while a typical searcher wanders around (black trajectory) before finding the target (color figure online)

of the target size is

$$\varepsilon := r/L \approx 0.003 \ll 1.$$

This is a challenge because the mean fastest FPT, $\mathbb{E}[T_N]$, diverges for small targets ($\varepsilon \ll 1$) but vanishes for many searchers ($N \gg 1$). That is, if we fix the number of searchers N and take the target size ε sufficiently small, then

$$\frac{D}{L^2} \mathbb{E}[T_N] \gg 1, \quad (3)$$

where $\frac{L^2}{D}$ is the diffusion timescale. On the other hand, if we fix the target size ε and take the number of searchers N sufficiently large, then

$$\frac{D}{L^2} \mathbb{E}[T_N] \ll 1. \quad (4)$$

Hence, as a first step in any specific biological application involving extreme FPTs with small targets ($\varepsilon \ll 1$) and many searchers ($N \gg 1$), one needs to determine if the extreme FPTs are in the regime represented by either (3) or (4). For example, in the dendritic spine application described above, it is not a priori clear that $N = 10^3$ is sufficiently large to overcome the small Ryanodyne receptors ($\varepsilon \approx 0.003$) and make the extreme FPT on the order of only 2–3 ms (which is much less than the diffusion timescale in this problem, $\frac{L^2}{D} \approx 15$ ms). Indeed, Basnayake et al. (2019a) developed detailed numerical Monte Carlo simulations to reach this conclusion.

Importantly, analytical approximations of statistics of extreme FPTs for small targets in general 3-dimensional domains are lacking. Basnayake et al. (2019b) derived a formal approximation, but this was proven to be false (Lawley and Madrid 2020). Recent work found the leading order large N behavior of all the moments of $T_{k,N}$, but it turns out this leading order behavior is independent of the target size (Lawley 2020). Hence, these results cannot determine if a particular application is in the regime represented by (3) or (4).

In this paper, we apply the theory of extreme statistics to find a tractable approximation for the full probability distribution of extreme FPTs of diffusion. This rigorous approximation can be applied in many scenarios as it depends on only a few properties of the short time behavior of the survival probability of a single FPT. Indeed, as long as this short time behavior is known, this approximation can be immediately applied to scenarios involving small targets and thus can determine the influence of the competing limits of small targets ($\varepsilon \ll 1$) and many searchers ($N \gg 1$).

We find this distribution by proving that a careful rescaling of extreme FPTs converges in distribution as the number of searchers grows. This limiting distribution is a type of Gumbel distribution and involves the so-called LambertW function (defined as the inverse of $f(z) = ze^z$ (Corless et al. 1996)). This analysis yields new explicit formulas for statistics of extreme FPTs (mean, variance, moments, etc.). These formulas are highly accurate and are accompanied by rigorous error estimates. Further, these formulas confirm and explain a conjecture by Yuste et al. (2001) that extreme FPT statistics can be approximated by a certain infinite series involving iterated logarithms.

The rest of the paper is organized as follows. We first summarize our main results in Sect. 2. In Sect. 3, we develop and state our precise mathematical results in more detail. We then illustrate these general results in a few examples in Sect. 4. In Sect. 5, we describe relations to prior work and discuss applications of the theory. Finally, we collect all the mathematical proofs in an appendix.

2 Main results

Let $\{\tau_n\}_{n \geq 1}$ be an iid sequence of FPTs with survival probability

$$S(t) := \mathbb{P}(\tau_1 > t).$$

Assume that $S(t)$ has the short time behavior,

$$1 - S(t) \sim At^p e^{-C/t} \quad \text{as } t \rightarrow 0+, \quad (5)$$

for some constants $A > 0$, $C > 0$, and $p \in \mathbb{R}$. Throughout this work,

“ $f \sim g$ ” means $f/g \rightarrow 1$.

We emphasize that (5) is a generic behavior for diffusion processes that holds in many diverse scenarios (see Sect. 5 for more details).

Letting T_N denote the fastest FPT in (1), we prove the following convergence in distribution (Theorem 1),

$$\frac{T_N - b_N}{a_N} \xrightarrow{d} X \quad \text{as } N \rightarrow \infty, \quad (6)$$

where X has a standard Gumbel distribution, $\mathbb{P}(X > x) = \exp(-e^x)$, and

$$\begin{aligned} a_N &= \frac{b_N}{\ln(AN)}, \quad b_N = \frac{C}{\ln(AN)}, \quad \text{if } p = 0, \\ a_N &= \frac{b_N}{p(1 + W)}, \quad b_N = \frac{C}{pW}, \quad \text{if } p \neq 0, \end{aligned} \quad (7)$$

and

$$W = \begin{cases} W_0((C/p)(AN)^{1/p}) & \text{if } p > 0, \\ W_{-1}((C/p)(AN)^{1/p}) & \text{if } p < 0, \end{cases}$$

where $W_0(z)$ denotes the principal branch of the LambertW function and $W_{-1}(z)$ denotes the lower branch (Corless et al. 1996). The LambertW function is a fairly standard function that is included in most modern computational software (it is sometimes

called the product logarithm or the omega function). Theorem 2 gives the following alternative formulas for a_N and b_N which avoid the LambertW function,

$$a'_N = \frac{C}{(\ln N)^2}, \quad b'_N = \frac{C}{\ln N} + \frac{Cp \ln(\ln(N))}{(\ln N)^2} - \frac{C \ln(AC^p)}{(\ln N)^2}. \quad (8)$$

In particular, all the statements in this section hold with a_N, b_N replaced by a'_N, b'_N .

The convergence in distribution in (6) means that if $N \gg 1$, then the distribution of the fastest FPT, T_N , is approximately Gumbel with shape parameter b_N and scale parameter a_N . That is,

$$\mathbb{P}(T_N > t) \approx \exp \left[-\exp \left(\frac{t - b_N}{a_N} \right) \right] \text{ if } N \gg 1,$$

where a_N, b_N are in (7) (or are replaced by a'_N, b'_N in (8)). Note that essentially all the statistical information about a Gumbel distribution is immediately available (mean, median, mode, variance, moments, probability density function, etc., see Proposition 1 below). Therefore, this result provides all the statistical information for the fastest FPT (approximately for large N). For example, we prove that if $\mathbb{E}[T_N] < \infty$ for some $N \geq 1$, then (Theorem 3)

$$\begin{aligned} \mathbb{E}[T_N] &= b_N - \gamma a_N + o(a_N), \\ \text{Variance}(T_N) &= \frac{\pi^2}{6} a_N^2 + o(a_N^2), \end{aligned}$$

where $\gamma \approx 0.5772$ is the Euler-Mascheroni constant and $f(N) = o(a_N^m)$ means $\lim_{N \rightarrow \infty} a_N^{-m} f(N) = 0$.

We prove similar results for the k th fastest FPT, $T_{k,N}$, defined in (2). In particular, we prove that the joint distribution of a rescaling of the k fastest FPTs,

$$\left(\frac{T_{1,N} - b_N}{a_N}, \dots, \frac{T_{k,N} - b_N}{a_N} \right),$$

converges as $N \rightarrow \infty$ to a distribution that we give explicitly (Theorem 4). This result provides explicit approximations for statistics of $T_{k,N}$, including (Theorem 5),

$$\begin{aligned} \mathbb{E}[T_{k,N}] &= b_N + \psi(k) a_N + o(a_N) = \mathbb{E}[T_N] + H_{k-1} a_N + o(a_N), \\ \text{Variance}(T_{k,N}) &= \psi'(k) a_N^2 + o(a_N^2), \end{aligned}$$

where $\psi(x)$ is the digamma function and $H_{k-1} = \sum_{r=1}^{k-1} \frac{1}{r}$ is the $(k-1)$ -th harmonic number.

3 Mathematical analysis

3.1 Fastest FPT

Let $\{\tau_n\}_{n \geq 1}$ be an iid sequence of FPTs with survival probability $S(t) := \mathbb{P}(\tau_1 > t)$. Define the fastest FPT, T_N , as in (1). Since the sequence $\{\tau_n\}_{n \geq 1}$ is iid, it is immediate that the survival probability of T_N is

$$\mathbb{P}(T_N > t) = (\mathbb{P}(\tau_1 > t))^N = (S(t))^N. \quad (9)$$

While (9) is the exact distribution of T_N , this formula is not particularly useful for understanding how the distribution depends on parameters or for calculating statistics of T_N . Furthermore, the full survival probability $S(t)$ of a single FPT is often unknown.

We thus seek a tractable approximation of (9) for large N , which will thus depend only on the short time behavior of $S(t)$. Now, (9) implies that the limiting distribution of T_N for large N is trivial,

$$\lim_{N \rightarrow \infty} \mathbb{P}(T_N > t) = \begin{cases} 1 & \text{if } t < t^*, \\ 0 & \text{if } t > t^*, \end{cases}$$

where $t^* := \inf\{t > 0 : S(t) < 1\}$. For nontrivial diffusion processes, we typically have $t^* = 0$. To ameliorate this problem, we study the distribution of T_N by finding a rescaling of T_N that has a nontrivial limiting distribution for large N . Specifically, we find sequences $\{a_N\}_{N \geq 1}$ and $\{b_N\}_{N \geq 1}$ so that

$$\frac{T_N - b_N}{a_N} \xrightarrow{d} X \quad \text{as } N \rightarrow \infty,$$

for some random variable X . In this paper, \xrightarrow{d} denotes convergence in distribution (Billingsley 2013), which means

$$\mathbb{P}\left(\frac{T_N - b_N}{a_N} > x\right) = (S(a_N x + b_N))^N \rightarrow G(x) \quad \text{as } N \rightarrow \infty, \quad (10)$$

for all $x \in \mathbb{R}$ where $G(x) = \mathbb{P}(X > x)$ is continuous.

Remarkably, the Fisher–Tippett–Gnedenko Theorem states that if (10) holds for a nondegenerate G , then G must be either a Weibull, Frechet, or Gumbel distribution (Fisher and Tippett 1928). This theorem is the cornerstone of extreme value theory, and applies to the minimum or maximum of any sequence of iid random variables (Coles 2001; De Haan and Ferreira 2007; Falk et al. 2010). Since the limiting distribution must be one of these three types, this classical theorem is an extreme value analog of the central limit theorem. We prove below that the typical short time behavior of $S(t)$ ensures that G must be Gumbel. The following definition and proposition collects some facts about the Gumbel distribution.

Definition 1 A random variable X has a *Gumbel distribution* with location parameter $b \in \mathbb{R}$ and scale parameter $a > 0$ if¹

$$\mathbb{P}(X > x) = \exp \left[-\exp \left(\frac{x - b}{a} \right) \right], \quad \text{for all } x \in \mathbb{R}. \quad (11)$$

If (11) holds, then we write

$$X =_d \text{Gumbel}(b, a).$$

Proposition 1 If $X =_d \text{Gumbel}(b, a)$, then its survival probability is in (11), its probability density function is

$$f_X(x) = \frac{1}{a} \exp \left[\frac{x - b}{a} - \exp \left(\frac{x - b}{a} \right) \right], \quad x \in \mathbb{R},$$

and its moment generating function is

$$M_X(t) := \mathbb{E}[e^{tX}] = \Gamma(1 + at)e^{bt}, \quad t \in \mathbb{R},$$

where $\Gamma(\cdot)$ denotes the gamma function. Hence, the mean and variance are

$$\mathbb{E}[X] = b - \gamma a, \quad \text{Variance}(X) = \frac{\pi^2}{6}a^2,$$

where $\gamma \approx 0.5772$ is the Euler-Mascheroni constant. The mode and median are

$$\text{Mode}(X) = b, \quad \text{Median}(X) = b + a \ln(\ln(2)) \approx b - 0.3665a.$$

Now, it was recently proven that under very general assumptions, the survival probability of a single diffusive FPT has the following short time behavior,

$$\lim_{t \rightarrow 0+} t \ln(1 - S(t)) = -C < 0, \quad (12)$$

where $C = L^2/(4D) > 0$ and D is a characteristic diffusivity and L is a certain geodesic distance (Lawley 2020), as long as the diffusive searchers cannot start arbitrarily close to the target. The next proposition shows that if (12) holds, then any nondegenerate limiting distribution G in (10) must be Gumbel.

Proposition 2 Let $\{\tau_n\}_{n \geq 1}$ be an iid sequence of nonnegative random variables with $S(t) := \mathbb{P}(\tau_1 > t)$, define $T_N := \min\{\tau_1, \dots, \tau_N\}$, and suppose (12) holds. If there exists sequences $\{a_N\}_{N \geq 1}$ and $\{b_N\}_{N \geq 1}$ with $a_N > 0$ and $b_N \in \mathbb{R}$ so that

$$\frac{T_N - b_N}{a_N} \rightarrow_d X \quad \text{as } N \rightarrow \infty,$$

¹ Some authors define a Gumbel distribution slightly differently, by saying that $-X$ has a Gumbel distribution with shape $-b$ and scale a if (11) holds.

and X has a nondegenerate distribution, then $X =_d \text{Gumbel}(b, a)$ for some $b \in \mathbb{R}$ and $a > 0$.

The condition in (12) implies that

$$S(t) = 1 - e^{-C/t+h(t)},$$

where $h(t)$ is some function satisfying $th(t) \rightarrow 0$ as $t \rightarrow 0+$. The following proposition gives precise conditions on $h(t)$ which yield rescalings $\{a_N\}_{N \geq 1}$ and $\{b_N\}_{N \geq 1}$ so that $(T_N - b_N)/a_N$ converges in distribution to a Gumbel random variable.

Proposition 3 *Let $\{\tau_n\}_{n \geq 1}$ be an iid sequence of nonnegative random variables with $S(t) := \mathbb{P}(\tau_1 > t)$, define $T_N := \min\{\tau_1, \dots, \tau_N\}$, and assume*

$$1 - S(t) \sim 1 - S_0(t) \quad \text{as } t \rightarrow 0+,$$

where

$$S_0(t) = 1 - e^{-C/t+h(t)}, \quad \text{if } t > 0,$$

for some constant $C > 0$ and some function $h(t)$ that is twice-continuously differentiable for $t > 0$ and satisfies

$$\lim_{t \rightarrow 0+} th(t) = \lim_{t \rightarrow 0+} t^2 h'(t) = \lim_{t \rightarrow 0+} t^4 h''(t) = 0. \quad (13)$$

Then

$$\frac{T_N - b_N}{a_N} \rightarrow_d X =_d \text{Gumbel}(0, 1) \quad \text{as } N \rightarrow \infty,$$

where

$$a_N := \frac{-1}{NS'_0(b_N)} > 0, \quad b_N := S_0^{-1}(1 - 1/N) > 0, \quad N \geq 1. \quad (14)$$

In (14), $S_0^{-1}(1 - 1/N)$ denotes the inverse of S_0 , which must exist for large N by the assumptions on $h(t)$. As we will see, it is typically the case that $h(t) = \ln(At^p)$, which clearly satisfies (13). In this case, we work out the rescalings $\{a_N\}_{N \geq 1}$ and $\{b_N\}_{N \geq 1}$.

Theorem 1 *Let $\{\tau_n\}_{n \geq 1}$ be an iid sequence of nonnegative random variables with $S(t) := \mathbb{P}(\tau_1 > t)$, define $T_N := \min\{\tau_1, \dots, \tau_N\}$, and assume there exists constants $C > 0$, $A > 0$, and $p \in \mathbb{R}$ so that*

$$1 - S(t) \sim At^p e^{-C/t} \quad \text{as } t \rightarrow 0+.$$

Then

$$\frac{T_N - b_N}{a_N} \xrightarrow{d} X =_d \text{Gumbel}(0, 1) \text{ as } N \rightarrow \infty, \quad (15)$$

where

$$\begin{aligned} a_N &= \frac{b_N}{\ln(AN)}, \quad b_N = \frac{C}{\ln(AN)}, \quad \text{if } p = 0, \\ a_N &= \frac{b_N}{p(1 + W)}, \quad b_N = \frac{C}{pW}, \quad \text{if } p \neq 0, \end{aligned} \quad (16)$$

and

$$W = \begin{cases} W_0((C/p)(AN)^{1/p}) & \text{if } p > 0, \\ W_{-1}((C/p)(AN)^{1/p}) & \text{if } p < 0, \end{cases} \quad (17)$$

where $W_0(z)$ denotes the principal branch of the LambertW function and $W_{-1}(z)$ denotes the lower branch (Corless et al. 1996).

If the convergence in distribution in (15) holds for some rescalings $\{a_N\}_{N \geq 1}$ and $\{b_N\}_{N \geq 1}$, then we also have that

$$\frac{T_N - b'_N}{a'_N} \xrightarrow{d} X =_d \text{Gumbel}(0, 1) \text{ as } N \rightarrow \infty, \quad (18)$$

for any rescalings $\{a'_N\}_{N \geq 1}$ and $\{b'_N\}_{N \geq 1}$ that satisfy (Peng and Nadarajah 2012)

$$\lim_{N \rightarrow \infty} \frac{a'_N}{a_N} = 1, \quad \lim_{N \rightarrow \infty} \frac{b'_N - b_N}{a_N} = 0. \quad (19)$$

The following theorem gives rescalings which avoid the LambertW functions used in Theorem 1 and are valid for any $p \in \mathbb{R}$.

Theorem 2 *Under the assumptions of Theorem 1, we have that*

$$\frac{T_N - b'_N}{a'_N} \xrightarrow{d} X =_d \text{Gumbel}(0, 1) \text{ as } N \rightarrow \infty,$$

where

$$a'_N = \frac{C}{(\ln N)^2}, \quad b'_N = \frac{C}{\ln N} + \frac{Cp \ln(\ln(N))}{(\ln N)^2} - \frac{C \ln(AC^p)}{(\ln N)^2}. \quad (20)$$

The conclusions of Propositions 2–3 and Theorems 1–2 concern convergence in distribution. In general, convergence in distribution does not imply moment convergence (Billingsley 2013). That is, $X_N \rightarrow_d X$ does not necessarily imply $\mathbb{E}[(X_N)^m] \rightarrow$

$\mathbb{E}[X^m]$ for $m > 0$. However, Pickands (1968) proved that convergence in distribution does imply moment convergence for extreme values.

Theorem 3 *Under the assumptions of Theorem 1 with $\{a_N\}_{N \geq 1}$ and $\{b_N\}_{N \geq 1}$ given by either (16) or (20), assume further that $\mathbb{E}[T_N] < \infty$ for some $N \geq 1$. Then for each moment $m \in (0, \infty)$, we have that*

$$\mathbb{E}\left[\left(\frac{T_N - b_N}{a_N}\right)^m\right] \rightarrow \mathbb{E}[X^m] \text{ as } N \rightarrow \infty, \text{ where } X =_d \text{Gumbel}(0, 1).$$

Therefore,

$$\mathbb{E}[(T_N - b_N)^m] = a_N^m \mathbb{E}[X^m] + o(a_N^m),$$

where $f(N) = o(a_N^m)$ means $\lim_{N \rightarrow \infty} a_N^{-m} f(N) = 0$. Further, if $m > 0$ is an integer, then $\mathbb{E}[X^m]$ can be calculated explicitly by Proposition 1. For example, we have that

$$\begin{aligned} \mathbb{E}[T_N] &= b_N - \gamma a_N + o(a_N), \\ \text{Variance}(T_N) &= \frac{\pi^2}{6} a_N^2 + o(a_N^2), \end{aligned}$$

where $\gamma \approx 0.5772$ is the Euler–Mascheroni constant.

3.2 k th fastest FPT

We now extend the results in the previous subsection on the fastest FPT to the k th fastest FPT,

$$T_{k,N} := \min \left\{ \{\tau_1, \dots, \tau_N\} \setminus \bigcup_{j=1}^{k-1} \{T_{j,N}\} \right\}, \quad k \in \{1, \dots, N\},$$

where $T_{1,N} := T_N$.

Theorem 4 *Under the assumptions of Theorem 1 with $\{a_N\}_{N \geq 1}$ and $\{b_N\}_{N \geq 1}$ given by either (16) or (20), we have that for each fixed $k \geq 1$,*

$$\frac{T_{k,N} - b_N}{a_N} \rightarrow_d X_k \text{ as } N \rightarrow \infty, \quad (21)$$

where X_k has the probability density function,

$$f_{X_k}(x) = \frac{\exp(kx - e^x)}{(k-1)!}, \quad \text{for all } x \in \mathbb{R}. \quad (22)$$

Furthermore, for each fixed $k \geq 1$, we have the following convergence in distribution for the joint random variables,

$$\left(\frac{T_{1,N} - b_N}{a_N}, \dots, \frac{T_{k,N} - b_N}{a_N} \right) \xrightarrow{d} \mathbf{X}^{(k)} = (X_1, \dots, X_k) \in \mathbb{R}^k \text{ as } N \rightarrow \infty, \quad (23)$$

where the joint probability density function of $\mathbf{X}^{(k)} \in \mathbb{R}^k$ is

$$f_{\mathbf{X}^{(k)}}(x_1, \dots, x_k) = \begin{cases} \exp(-e^{x_k}) \prod_{r=1}^k e^{x_r} & \text{if } x_1 \leq \dots \leq x_k, \\ 0 & \text{otherwise.} \end{cases}$$

The following theorem ensures the convergence of the moments of the k th fastest FPT.

Theorem 5 Under the assumptions of Theorem 3 with $\{a_N\}_{N \geq 1}$ and $\{b_N\}_{N \geq 1}$ given by either (16) or (20), we have that for each moment $m \in (0, \infty)$,

$$\mathbb{E} \left[\left(\frac{T_{k,N} - b_N}{a_N} \right)^m \right] \rightarrow \mathbb{E}[X_k^m] \text{ as } N \rightarrow \infty, \quad (24)$$

where X_k has the probability density function in (22). Therefore,

$$\mathbb{E}[(T_{k,N} - b_N)^m] = a_N^m \mathbb{E}[X_k^m] + o(a_N^m).$$

Further, if $m > 0$ is an integer, then $\mathbb{E}[X_k^m]$ can be explicitly calculated. In particular,

$$\mathbb{E}[T_{k,N}] = b_N + \psi(k)a_N + o(a_N) = \mathbb{E}[T_{1,N}] + H_{k-1}a_N + o(a_N),$$

$$\text{Variance}(T_{k,N}) = \psi'(k)a_N^2 + o(a_N^2),$$

where $\psi(x)$ is the digamma function and $H_{k-1} = \sum_{r=1}^{k-1} \frac{1}{r}$ is the $(k-1)$ -th harmonic number.

4 Numerical examples

We now apply our results to three specific examples.

4.1 One dimension

First consider the case of $N \geq 1$ independent searchers diffusing in one space dimension with diffusivity $D > 0$. Suppose the searchers each start at $L > 0$ and let τ_n be the first time the n th searcher reaches the origin. In this case,

$$S(t) = \mathbb{P}(\tau_1 > t) = 1 - \text{erfc} \left(\frac{L}{\sqrt{4Dt}} \right), \quad t > 0,$$

and thus

$$1 - S(t) \sim \sqrt{\frac{4Dt}{\pi L^2}} e^{-L^2/(4Dt)} \quad \text{as } t \rightarrow 0+.$$

Therefore, Theorems 1–5 hold with

$$A = \sqrt{\frac{4D}{\pi L^2}}, \quad p = \frac{1}{2}, \quad C = \frac{L^2}{4D}.$$

In particular,

$$\frac{T_N - b_N}{a_N} \xrightarrow{d} X =_d \text{Gumbel}(0, 1) \quad \text{as } N \rightarrow \infty,$$

where $\{a_N\}_{N \geq 1}$ and $\{b_N\}_{N \geq 1}$ are given by either (16) or (20). Hence, the distribution of T_N is approximately Gumbel(b_N, a_N).

In the left panel of Fig. 2, we plot the error of various approximations of the mean fastest FPT, $\mathbb{E}[T_N]$, as functions of N . Specifically, we plot the relative error,

$$\left| \frac{\mathbb{E}[T_N] - \mathcal{T}_N}{\mathbb{E}[T_N]} \right|, \quad (25)$$

where \mathcal{T}_N is an approximation of $\mathbb{E}[T_N]$. The value of $\mathbb{E}[T_N]$ used in (25) is calculated by numerical approximation of the following integral,

$$\mathbb{E}[T_N] = \int_0^\infty (S(t))^N dt.$$

The red dotted curve in the left panel of Fig. 2 is the error (25) for the approximation $\mathcal{T}_N = L^2/(4D \ln N)$ (this approximation dates back to Weiss et al. (1983)). The blue dashed curve is for the approximation $\mathcal{T}_N = b'_N - \gamma a'_N$ where $\{a'_N\}_{N \geq 1}$ and $\{b'_N\}_{N \geq 1}$ are given by (20). The black solid curve is for the approximation $\mathcal{T}_N = b_N - \gamma a_N$ where $\{a_N\}_{N \geq 1}$ and $\{b_N\}_{N \geq 1}$ are given by (16). This figure shows that our approximations, $b_N - \gamma a_N$ and $b'_N - \gamma a'_N$, to the mean fastest FPT are much more accurate than $L^2/(4D \ln N)$, and $b_N - \gamma a_N$ is more accurate than $b'_N - \gamma a'_N$.

In the left panel of Fig. 3, we illustrate the convergence in distribution of $(T_N - b_N)/a_N$ to $X =_d \text{Gumbel}(0, 1)$ where $\{a_N\}_{N \geq 1}$ and $\{b_N\}_{N \geq 1}$ are given by (16). Specifically, we plot the probability density function of $(T_N - b_N)/a_N$ for $N \in \{10^2, 10^4, 10^6\}$, which approaches the density of X (namely, $f_X(x) = \exp(x - e^x)$) as N increases. In both Figs. 2 and 3, we take $L = D = 1$.

4.2 Partial absorption

Consider the example in the previous subsection, but now suppose the target at the origin is partially absorbing. This means that when a searcher hits the target, it is

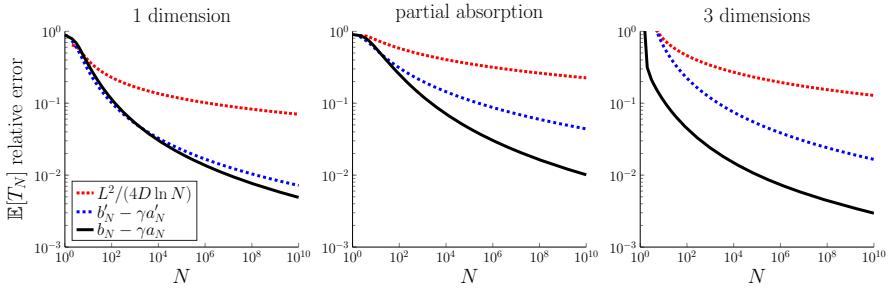


Fig. 2 Accuracy of approximations to the mean fastest FPT. The left, middle, and right panels correspond respectively to the examples in Sects. 4.1, 4.2, and 4.3. In each panel, the red dotted curve is the relative error (25) for the approximation $L^2/(4D \ln N)$, the blue dashed curve is for $b'_N - \gamma a'_N$ where a'_N, b'_N are given by (20), and the black solid curve is for $b_N - \gamma a_N$ where a_N, b_N are given by (16) (color figure online)

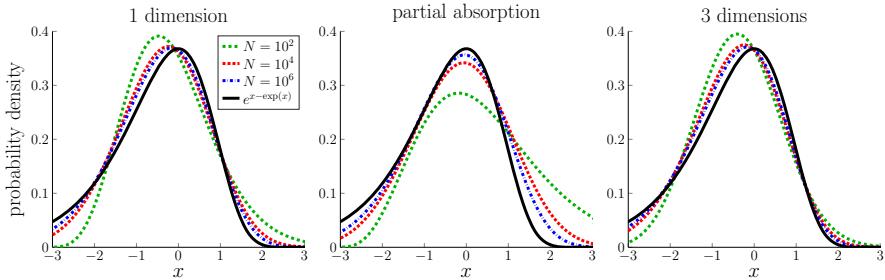


Fig. 3 Convergence in distribution of rescaled fastest FPT. The left, middle, and right panels correspond respectively to the examples in Sects. 4.1, 4.2, and 4.3. In each panel, the green dashed, red dotted, and blue dashed-dotted curves give the probability density function of $(T_N - b_N)/a_N$ for $N \in \{10^2, 10^4, 10^6\}$ where $\{a_N\}_{N \geq 1}$ and $\{b_N\}_{N \geq 1}$ are given by (16), and the black solid curve shows the limiting probability density function, $\exp(x - e^x)$ (color figure online)

either absorbed or reflected, and the probabilities of these two events are described by a parameter $\kappa > 0$ called the reactivity or absorption rate (Grebennikov 2006). Mathematically, this means the Fokker-Planck equation describing the probability density for a searcher's position has a Robin boundary condition at the origin involving the parameter $\kappa > 0$ (Lawley and Keener 2015).

In this case, the survival probability for a single searcher is (Carslaw and Jaeger 1959)

$$S(t) = \mathbb{P}(\tau_1 > t) = 1 - \operatorname{erfc}\left(\frac{L}{\sqrt{4Dt}}\right) + e^{\frac{\kappa(\kappa t + L)}{D}} \operatorname{erfc}\left(\frac{2\kappa t + L}{\sqrt{4Dt}}\right), \quad t > 0,$$

and thus

$$1 - S(t) \sim \frac{4}{\sqrt{\pi}} \frac{\kappa L}{D} \left(\frac{Dt}{L^2}\right)^{3/2} e^{-L^2/(4Dt)} \quad \text{as } t \rightarrow 0+.$$

Therefore, Theorems 1–5 hold with

$$A = \frac{4}{\sqrt{\pi}} \frac{\kappa L}{D} \left(\frac{D}{L^2} \right)^{3/2}, \quad p = \frac{3}{2}, \quad C = \frac{L^2}{4D}. \quad (26)$$

The middle panel of Fig. 2 shows the relative error (25) of approximations to $\mathbb{E}[T_N]$ in this case of a partially absorbing target. The red dotted curve is again the error for the approximation $T_N = L^2/(4D \ln N)$ [this approximation was recently found and proven to have the correct large N asymptotics (Lawley 2020)]. The blue dashed and black solid curves again correspond respectively to $T_N = b'_N - \gamma a'_N$ and $T_N = b_N - \gamma a_N$ where a'_N, b'_N are in (20) and a_N, b_N are in (16). Again, $b_N - \gamma a_N$ and $b'_N - \gamma a'_N$ are much more accurate than $L^2/(4D \ln N)$, and $b_N - \gamma a_N$ is more accurate than $b'_N - \gamma a'_N$.

The middle panel of Fig. 3 illustrates the convergence in distribution of $(T_N - b_N)/a_N$ to $X =_d \text{Gumbel}(0, 1)$ in this case of a partially absorbing target [again, for $N \in \{10^2, 10^4, 10^6\}$ and where $\{a_N\}_{N \geq 1}$ and $\{b_N\}_{N \geq 1}$ are given by (16)]. In both Figs. 2 and 3, we take $L = D = \kappa = 1$.

4.3 Three dimensions

Finally, consider the case where the $N \geq 1$ independent searchers diffuse in three dimensional space, and let τ_n be the first time the n th searcher leaves a sphere of radius $L > 0$ centered at its starting location. In this case, the survival probability for a single searcher is (Carslaw and Jaeger 1959)

$$S(t) = \mathbb{P}(\tau_1 > t) = 1 - 2 \sqrt{\frac{L^2}{\pi D t}} \sum_{j=0}^{\infty} e^{-(j+1/2)^2 L^2/(Dt)}, \quad t > 0,$$

and thus

$$1 - S(t) \sim 2 \sqrt{\frac{L^2}{\pi D t}} e^{-L^2/(4Dt)} \quad \text{as } t \rightarrow 0+.$$

Therefore, Theorems 1–5 hold with

$$A = 2 \sqrt{\frac{L^2}{\pi D}}, \quad p = -\frac{1}{2}, \quad C = \frac{L^2}{4D}.$$

The right panel of Fig. 2 shows the relative error (25) of approximations to $\mathbb{E}[T_N]$ in this three dimensional example. The red dotted curve is again the error for the approximation $T_N = L^2/(4D \ln N)$ (this approximation was found by Yuste et al. (2001)). The blue dashed and black solid curves again correspond respectively to $T_N = b'_N - \gamma a'_N$ and $T_N = b_N - \gamma a_N$ where a'_N, b'_N are in (20) and a_N, b_N are in (16). Further, the right panel of Fig. 3 illustrates the convergence in distribution

of $(T_N - b_N)/a_N$ to $X =_d$ Gumbel(0, 1) in this three dimensional example [again, for $N \in \{10^2, 10^4, 10^6\}$ and where $\{a_N\}_{N \geq 1}$ and $\{b_N\}_{N \geq 1}$ are given by (16)]. In both Figs. 2 and 3, we take $L = D = 1$.

5 Discussion

In this work, we found tractable approximations for the full probability distribution of extreme FPTs of diffusion. These approximate distributions depend on only three parameters describing the short time behavior of the survival probability of a single searcher, and we proved that these approximations are exact in the many searcher limit. We used our approximate distributions to derive new formulas for statistics of extreme FPTs and prove rigorous error estimates.

Extreme FPTs of diffusion were first studied by Weiss et al. (1983), where they found approximations of $\mathbb{E}[T_{k,N}]$ for large N in various one dimensional problems. Statistics of extreme FPTs of diffusion in one dimensional or spherically symmetric domains were further studied by Yuste and Lindenberg (1996), Yuste and Acedo (2000), Yuste et al. (2001), van Beijeren (2003), Redner and Meerson (2014), and Meerson and Redner (2015). Recently, approximate formulas for the moments of extreme FPTs of diffusion in more general two and three dimensional domains were derived by Ro and Kim (2017), Basnayake et al. (2019b), and Lawley and Madrid (2020). Even more recently, it was proven in significant generality that the m th moment of the k th fastest FPT has the large N behavior,

$$\mathbb{E}[(T_{k,N})^m] \sim \left(\frac{L^2}{4D \ln N} \right)^m \quad \text{as } N \rightarrow \infty, \quad (27)$$

where D is a characteristic diffusivity and L is a certain geodesic distance (Lawley 2020).

The moment formulas derived in the present work agree with (27) to leading order, but are much more accurate for finite N . In addition, the moment formulas in the present work explain and confirm a remarkable conjecture by Yuste and Acedo (2000). In that work, the authors conjectured that the mean fastest FPT to escape a ball of radius L in dimension $d \geq 2$ has the following approximation,

$$\mathbb{E}[T_{1,N}] \approx \frac{L^2}{4D \ln N} \left[1 + \sum_{n=1}^{\infty} (\ln N)^{-n} \sum_{m=0}^n K_m^{(n)} (\ln \ln N)^m \right], \quad (28)$$

for some unknown constants $\{\{K_m^{(n)}\}_{m=0}^n\}_{n \geq 1}$ (some of which were estimated numerically). To derive (28) from our results, first note that the principal branch of the LambertW function has the following expansion for $z \gg 1$ (Corless et al. 1996),

$$W_0(z) = L_1 - L_2 + \sum_{i=0}^{\infty} \sum_{j=1}^{\infty} c_{ij} L_1^{-i-j} L_2^j, \quad (29)$$

where $L_1 = \ln z$, $L_2 = \ln \ln z$,

$$c_{ij} = \frac{(-1)^i}{j!} \begin{bmatrix} i+j \\ i+1 \end{bmatrix},$$

and $\begin{bmatrix} i+j \\ i+1 \end{bmatrix}$ are non-negative Stirling numbers of the first kind. Similarly, the lower branch, $\tilde{W}_{-1}(z)$, has the expansion in (29) for $-1 \ll z < 0$ if $L_1 = \ln(-z)$ and $L_2 = \ln(-\ln(-z))$ (Corless et al. 1996). Therefore, upon using the definitions in (16)-(17) and the expansion in (29), it follows that our formula $\mathbb{E}[T_{1,N}] \approx b_N - \gamma a_N$ is exactly of the form in the conjecture (28).

Finally, we emphasize that our results apply to any FPT problem where the survival probability $S(t) = \mathbb{P}(\tau_1 > t)$ of a single searcher satisfies

$$1 - S(t) \sim At^p e^{-C/t} \quad \text{as } t \rightarrow 0+, \quad (30)$$

for some constants $C > 0$, $A > 0$, and $p \in \mathbb{R}$. The behavior in (30) is very generic for diffusion processes and holds in many diverse scenarios. For example, Weiss et al. (1983) found (30) for one-dimensional drift-diffusion processes with a broad class of potential (drift) fields. Similarly, Yuste et al. (2001) found (30) for the first time a pure diffusion in dimension $d \geq 1$ moves any distance $L > 0$ from its initial location (and referred to (30) as a “universal” form). Further, Ro and Kim (2017) formally derived (30) for a pure diffusion searching for an arbitrarily placed small target in a spherical domain in dimension $d = 3$. It is also known that (30) holds for pure diffusion in dimension $d = 1$ with a partially absorbing target (see section 4.2 above). Further, it was proven that under very general conditions (including (i) diffusions in \mathbb{R}^d with space-dependent diffusivities and drift fields and (ii) diffusions on d -dimensional smooth Riemannian manifolds that may contain reflecting obstacles), the survival probability satisfies (Lawley 2020)

$$\lim_{t \rightarrow 0+} t \ln(1 - S(t)) = -\frac{L^2}{4D} < 0, \quad (31)$$

where $D > 0$ is a characteristic diffusivity and $L > 0$ is a certain geodesic distance that depends on any space-dependence or anisotropy in the diffusivity (if the diffusivity is constant in space, then L is merely the shortest distance from the starting location to the target). Therefore, if (30) holds in a particular problem, then (31) implies that $C = L^2/(4D)$, and thus the only parameters to be found are A and p .

Finally, we discuss how our results can be used to investigate the question posed in the Introduction section regarding the competing limits of small targets and many searchers, which is a ubiquitous feature of extreme FPTs in biological applications (Schuss et al. 2019). Consider a collection of small targets on an otherwise reflecting surface. Such a “patchy surface” arises in many applications (Brown and Escombe 1900; Wolf et al. 2016; Keil 1999), including the classic work of Berg and Purcell (1977) on cell sensing by membrane receptors. In this scenario, the heterogeneous surface is commonly replaced by a homogeneous partially absorbing surface with a

reactivity parameter $\kappa > 0$ which incorporates the size, number, and arrangement of targets [many methods have been developed for determining κ (Berezhkovskii et al. 2004; Muratov and Shvartsman 2008; Cheviakov et al. 2012; Dagdug et al. 2016; Bernoff et al. 2018; Lawley 2019)]. We thus cast this scenario into the setup of Section 4.2 above. If the targets are small, then the trapping rate is small, $\kappa L/D \ll 1$ (Bernoff et al. 2018). Hence, the mean fastest FPT will be large compared to the diffusion timescale unless the number of searchers is very large. How large does the number of searchers N need to be in order for the mean fastest FPT to be small compared to the diffusion timescale? That is, (i) how large does N need to be so that $\frac{D}{L^2} \mathbb{E}[T_N] \ll 1$ and (ii) what is an approximation of $\mathbb{E}[T_N]$ in this regime?

To answer questions (i) and (ii), notice that Theorems 2 and 3 imply that

$$\begin{aligned}\mathbb{E}[T_N] &= b_N - \gamma a_N + o(a_N) \\ &= \frac{C}{\ln N} \left[1 + \frac{p \ln(\ln(N))}{\ln N} - \frac{\ln(AC^p) + \gamma}{\ln N} + o(1/\ln N) \right] \text{ as } N \rightarrow \infty,\end{aligned}$$

where A , p , and C are given in (26). Hence, this approximation is accurate if N is sufficiently large so that

$$|\ln(AC^p)| \ll \ln N. \quad (32)$$

Using the values in (26), the relation (32) becomes $\ln \frac{D}{\kappa L} \ll \ln N$. Therefore, in this scenario we have that

$$\mathbb{E}[T_N] \approx b_N - \gamma a_N \ll \frac{L^2}{D} \text{ as long as } \ln \frac{D}{\kappa L} \ll \ln N,$$

which answers questions (i) and (ii) above.

Appendix

In this appendix, we collect the proofs of the propositions and theorems of Sect. 3.

Proof of Proposition 1 This proposition merely collects basic results on Gumbel random variables, all of which follow directly from (11). \square

Proof of Proposition 2 Since most results in extreme value theory are formulated in terms of the maximum of a set of random variables, define

$$M_N := \max\{-\tau_1, \dots, -\tau_N\} = -T_N,$$

and $F(x) = \mathbb{P}(-\tau_1 < x) = S(-x)$. If there exists normalizing constants $\{a_N\}_{N \geq 1}$ and $\{b_N\}_{N \geq 1}$ so that $(M_N - b_N)/a_N$ converges in distribution as $N \rightarrow \infty$ to a nontrivial random variable, then the distribution of that random variable can only be Frechet, Weibull, or Gumbel (Fisher and Tippett 1928). Since

$$x^* := \sup\{x : F(x) < 1\} = 0 < \infty,$$

Theorem 1.2.1 in the book by De Haan and Ferreira (2007) ensures that the limiting distribution cannot be Frechet.

Furthermore, if the limiting distribution is Weibull, then Theorem 1.2.1 in (De Haan and Ferreira 2007) guarantees that there exists some $\gamma < 0$ so that

$$\lim_{t \rightarrow 0+} \frac{1 - F(-tx)}{1 - F(-t)} = \lim_{t \rightarrow 0+} \frac{1 - S(tx)}{1 - S(t)} = x^{-1/\gamma} \quad \text{for all } x > 0. \quad (33)$$

Now, it follows directly from (12) that $S(t) = 1 - e^{-C/t+h(t)}$ for some function $h(t)$ satisfying

$$\lim_{t \rightarrow 0+} th(t) = 0. \quad (34)$$

Therefore, we claim that (33) is violated with, for example, $x = 2$. To see this, note that

$$\lim_{t \rightarrow 0+} \frac{1 - S(2t)}{1 - S(t)} = \lim_{t \rightarrow 0+} e^{C/t+h(2t)-h(t)}.$$

By (34), we are assured that

$$-\frac{C}{2t} \leq h(t) \leq \frac{C}{2t} \quad \text{for sufficiently small } t.$$

Hence,

$$\lim_{t \rightarrow 0+} e^{C/t+h(2t)-h(t)} \geq \lim_{t \rightarrow 0+} e^{3C/(4t)} = +\infty,$$

which indeed violates (33). Therefore, if the limiting distribution is nondegenerate, it must be Gumbel. \square

Proof of Proposition 3 Using the assumptions on $h(t)$ in (13), a direct calculation shows that

$$\lim_{t \rightarrow 0+} \frac{d}{dt} \left(\frac{1 - S_0(t)}{S'_0(t)} \right) = 0.$$

Therefore, Theorem 2.1.2 in (Falk et al. 2010) ensures that

$$\lim_{N \rightarrow \infty} (S_0(a_N x + b_N))^N = \exp(-e^x), \quad \text{for all } x \in \mathbb{R}, \quad (35)$$

for some choice of normalizing constants $\{(a_N, b_N)\}_{N \geq 1}$. Remark 1.1.9 in the book by De Haan and Ferreira (2007) implies we can take a_N and b_N as in (14).

Now, (35) is equivalent to

$$\lim_{N \rightarrow \infty} N \ln(S_0(a_N x + b_N)) = -e^x, \quad \text{for all } x \in \mathbb{R}.$$

Hence, it must be the case that $S_0(a_N x + b_N) \rightarrow 1$ as $N \rightarrow \infty$, and thus a straightforward application of L'Hospital's rule gives

$$-\ln(S_0(a_N x + b_N)) \sim 1 - S_0(a_N x + b_N) \text{ as } N \rightarrow \infty.$$

Therefore, (35) is equivalent to

$$\lim_{N \rightarrow \infty} N(1 - S_0(a_N x + b_N)) = e^x, \quad \text{for all } x \in \mathbb{R}. \quad (36)$$

Now, $1 - S_0(t) \sim 1 - S_0(t)$ as $t \rightarrow 0+$ by assumption. Hence, (36) holds with S_0 replaced by S , which then implies that (35) holds with S_0 replaced by S , which completes the proof. \square

Proof of Theorem 1 The theorem follows from Proposition 3 upon calculating $\{a_N\}_{N \geq 1}$ and $\{b_N\}_{N \geq 1}$ in (16) for $h(t) = \ln(At^p)$ and using properties of the LambertW function (Corless et al. 1996). \square

Proof of Theorem 2 The theorem follows immediately from Theorem 1 and (18)-(19). \square

Proof of Theorem 3 By assumption, $\mathbb{E}[T_N] < \infty$ for some $N \geq 1$. Hence, if $m \in (0, 1)$, then $\mathbb{E}[(T_N)^m] \leq 1 + \mathbb{E}[T_N] < \infty$. If $m \geq 1$, then it is straightforward to check that [see the proof of Proposition 2 in the work by Lawley (2020)]

$$\mathbb{E}[(T_{2^{m-1}N})^m] < \infty.$$

Since $\mathbb{E}[X^m] < \infty$, applying Theorem 2.1 in (Pickands 1968) completes the proof. \square

Proof of Theorem 4 The convergence in distribution in (21) and (23) follows immediately from Theorem 1 above and Theorem 3.5 in the book by Coles (2001). \square

Proof of Theorem 5 While convergence in distribution does not necessarily imply convergence of moments, it does imply convergence of moments if the sequence of random variables is uniformly integrable (Billingsley 2013). Hence, it is sufficient to prove that

$$\sup_N \mathbb{E} \left[\left(\frac{T_{k,N} - b_N}{a_N} \right)^2 \right] < \infty \quad (37)$$

since (37) ensures that $\{\frac{T_{k,N} - b_N}{a_N}\}_{N \geq 1}$ is uniformly integrable (Billingsley 2013).

By assumption, $1 - S(t) \sim At^p e^{-C/t}$ as $t \rightarrow 0+$. Hence, there exists a $\delta > 0$ so that

$$1 - A_1 t^p e^{-C/t} \leq 1 - S(t) \leq 1 - A_0 t^p e^{-C/t}, \quad \text{if } t \in (0, \delta],$$

where $0 < A_0 < A < A_1$. Define the survival probability

$$S_+(t) = \begin{cases} 1 & t \leq 0, \\ 1 - A_0 t^p e^{-C/t} & t \in (0, \delta], \\ S(t) & t > \delta. \end{cases}$$

Define $S_-(t)$ similarly with A_0 replaced by A_1 . Hence, $S_-(t) \leq S(t) \leq S_+(t)$ for all $t \in \mathbb{R}$. Let $\{U_n\}_{n \geq 1}$ be an iid sequence of random variables, each with a uniform distribution on $[0, 1]$. Define

$$\begin{aligned} \tau_n &:= S^{-1}(U_n), \\ \tau_n^- &:= S_-^{-1}(U_n), \\ \tau_n^+ &:= S_+^{-1}(U_n), \end{aligned}$$

and

$$\begin{aligned} T_{k,N} &:= \min \left\{ \{\tau_1, \dots, \tau_N\} \setminus \bigcup_{j=1}^{k-1} \{T_{j,N}\} \right\}, \quad k \in \{1, \dots, N\}, \\ T_{k,N}^\pm &:= \min \left\{ \{\tau_1^\pm, \dots, \tau_N^\pm\} \setminus \bigcup_{j=1}^{k-1} \{T_{j,N}^\pm\} \right\}, \quad k \in \{1, \dots, N\}, \end{aligned}$$

where $T_{1,N} := \min\{\tau_1, \dots, \tau_N\}$ and $T_{1,N}^\pm := \min\{\tau_1^\pm, \dots, \tau_N^\pm\}$. By construction, we have that

$$T_{k,N}^- \leq T_{k,N} \leq T_{k,N}^+ \quad \text{almost surely.}$$

Therefore, if $1_{\mathcal{A}}$ denotes the indicator function on an event \mathcal{A} , then

$$\begin{aligned} \mathbb{E} \left[\left(\frac{T_{k,N} - b_N}{a_N} \right)^2 \right] &= \mathbb{E} \left[\left(\frac{T_{k,N} - b_N}{a_N} \right)^2 1_{T_{k,N} > b_N} \right] + \mathbb{E} \left[\left(\frac{T_{k,N} - b_N}{a_N} \right)^2 1_{T_{k,N} < b_N} \right] \\ &\leq \mathbb{E} \left[\left(\frac{T_{k,N}^+ - b_N}{a_N} \right)^2 1_{T_{k,N}^+ > b_N} \right] + \mathbb{E} \left[\left(\frac{T_{k,N}^- - b_N}{a_N} \right)^2 1_{T_{k,N}^- < b_N} \right] \\ &\leq \mathbb{E} \left[\left(\frac{T_{k,N}^+ - b_N}{a_N} \right)^2 \right] + \mathbb{E} \left[\left(\frac{T_{k,N}^- - b_N}{a_N} \right)^2 \right]. \end{aligned}$$

Hence, it remains to show that

$$\sup_N \mathbb{E} \left[\left(\frac{T_{k,N}^\pm - b_N}{a_N} \right)^2 \right] < \infty.$$

Now,

$$\begin{aligned}\mathbb{E}\left[\left(\frac{T_{k,N}^\pm - b_N}{a_N}\right)^2\right] &= \int_0^\infty \mathbb{P}\left(\left(\frac{T_{k,N}^\pm - b_N}{a_N}\right)^2 > t\right) dt \\ &= \int_0^\infty \mathbb{P}(T_{k,N}^\pm - b_N > a_N\sqrt{t}) dt + \int_0^\infty \mathbb{P}(b_N - T_{k,N}^\pm > a_N\sqrt{t}) dt \\ &=: I_1 + I_2.\end{aligned}$$

Since $T_{1,N}^\pm \leq T_{k,N}^\pm$ almost surely for any $k \in \{1, \dots, n\}$, we have that

$$\begin{aligned}I_2 &\leq \int_0^\infty \mathbb{P}(b_N - T_{1,N}^\pm > a_N\sqrt{t}) dt \leq \int_0^\infty \mathbb{P}\left(\left(\frac{T_{1,N}^\pm - b_N}{a_N}\right)^2 > t\right) dt \\ &= \mathbb{E}\left[\left(\frac{T_{1,N}^\pm - b_N}{a_N}\right)^2\right].\end{aligned}$$

Now, Theorem 3 implies that

$$\mathbb{E}\left[\left(\frac{T_{1,N}^\pm - b_N^\pm}{a_N^\pm}\right)^2\right] \rightarrow \mathbb{E}[X^2] < \infty \quad \text{as } N \rightarrow \infty,$$

where $\{a_N^\pm\}_{N \geq 1}$ and $\{b_N^\pm\}_{N \geq 1}$ are given by (16) with A replaced by A_0 or A_1 . Now, it is straightforward to check that there exists $\alpha^\pm > 0$ and $\beta^\pm \in \mathbb{R}$ so that

$$\frac{a_N^\pm}{a_N} \rightarrow \alpha^\pm \quad \text{and} \quad \frac{b_N - b_N^\pm}{a_N} \rightarrow \beta^\pm \quad \text{as } N \rightarrow \infty.$$

Therefore, Proposition 1.1 and Remark 1 in the work by Peng and Nadarajah (2012) imply that $\mathbb{E}\left[\left(\frac{T_{1,N}^\pm - b_N^\pm}{a_N^\pm}\right)^2\right]$ converges to some finite constant as $N \rightarrow \infty$. Hence,

$$\sup_N I_2 < \infty.$$

Moving to I_1 , note first that

$$\mathbb{P}(T_{k,N}^\pm > x) = \mathbb{P}(T_{1,N}^\pm > x) + \sum_{j=1}^{k-1} \mathbb{P}(T_{j,N}^\pm < x < T_{j+1,N}^\pm).$$

Hence,

$$\begin{aligned}I_1 &= \int_0^\infty \mathbb{P}(T_{1,N}^\pm > a_N\sqrt{t} + b_N) dt + \sum_{j=1}^{k-1} \int_0^\infty \mathbb{P}(T_{j,N}^\pm < a_N\sqrt{t} + b_N < T_{j+1,N}^\pm) dt \\ &=: I_3 + I_4.\end{aligned}$$

Now, I_3 can be handled similarly to I_2 to obtain

$$\sup_N I_3 < \infty.$$

Hence, it remains to show that $\sup_N I_4 < \infty$. Now, since $\{\tau_n^\pm\}_{n \geq 1}$ are iid, it follows that

$$\mathbb{P}(T_{j,N}^\pm < x < T_{j+1,N}^\pm) = \binom{N}{j} (1 - S_\pm(x))^j (S_\pm(x))^{N-j}, \text{ if } j \in \{1, \dots, k-1\}.$$

Hence,

$$I_4 = \sum_{j=1}^{k-1} \binom{N}{j} \int_0^\infty (1 - S_\pm(a_N \sqrt{t} + b_N))^j (S_\pm(a_N \sqrt{t} + b_N))^{N-j} dt.$$

An application of Laplace's method with a movable maximum [see, for example, section 6.4 in the book by Bender and Orszag (2013)] shows that each term in this sum is bounded in N , and so the proof is complete. \square

References

Barlow PW (2016) Why so many sperm cells? Not only a possible means of mitigating the hazards inherent to human reproduction but also an indicator of an exaptation. *Commun Integr Biol* 9(4):e1204499

Basnayake K, Hubl A, Schuss Z, Holcman D (2018) Extreme Narrow escape: shortest paths for the first particles among N to reach a target window. *Phys Lett A* 382(48):3449–3454. <https://doi.org/10.1016/j.physleta.2018.09.040>

Basnayake K, Mazaud D, Bemelmans A, Rouach N, Korkotian E, Holcman D (2019a) Fast calcium transients in dendritic spines driven by extreme statistics. *PLoS Biol* 17(6):e2006202. <https://doi.org/10.1371/journal.pbio.2006202>

Basnayake K, Schuss Z, Holcman D (2019b) Asymptotic formulas for extreme statistics of escape times in 1, 2 and 3-dimensions. *J Nonlinear Sci* 29(2):461–499

Bender C, Orszag S (2013) Advanced mathematical methods for scientists and engineers I: asymptotic methods and perturbation theory. Springer, Berlin

Benichou O, Grebenkov D, Levitz P, Loverdo C, Voituriez R (2010) Optimal reaction time for surface-mediated diffusion. *Phys Rev Lett* 105(15):150606. <https://doi.org/10.1103/PhysRevLett.105.150606>

Berezhkovskii A, Makhnovskii Y, Monine M, Zitserman V, Shvartsman S (2004) Boundary homogenization for trapping by patchy surfaces. *J Chem Phys* 121(22):11390–11394

Berg HC, Purcell EM (1977) Physics of chemoreception. *Biophys J* 20(2):193–219

Bernoff A, Lindsay A, Schmidt D (2018) Boundary homogenization and capture time distributions of semipermeable membranes with periodic patterns of reactive sites. *Multiscale Model Simul* 16(3):1411–1447. <https://doi.org/10.1137/17M1162512>

Billingsley P (2013) Convergence of probability measures. Wiley, New York

Bressloff PC, Lawley SD (2015) Escape from subcellular domains with randomly switching boundaries. *Multiscale Model Simul* 13(4):1420–1445

Bressloff PC, Newby JM (2013) Stochastic models of intracellular transport. *Rev Mod Phys* 85(1):135–196. <https://doi.org/10.1103/RevModPhys.85.135>

Brown HT, Escombe F (1900) Static diffusion of gases and liquids in relation to the assimilation of carbon and translocation in plants. *Philos Trans R Soc Lond Ser B Contain Papers Biol Char* 193(185–193):223–291

Carslaw HS, Jaeger JC (1959) Conduction of heat in solids, 2nd edn. Clarendon Press, Oxford

Cheviakov AF, Ward MJ, Straube R (2010) An asymptotic analysis of the mean first passage time for narrow escape problems: part II: the sphere. *Multiscale Model Simul* 8(3):836–870

Cheviakov AF, Reimer AS, Ward MJ (2012) Mathematical modeling and numerical computation of narrow escape problems. *Phys Rev E* 85(2):021131

Chou T, D’Orsogna MR (2014) First passage problems in biology. In: *First-passage phenomena and their applications*. World Scientific, pp 306–345

Coles S (2001) An introduction to statistical modeling of extreme values, vol 208. Springer, Berlin

Coombs D (2019) First among equals: comment on “Redundancy principle and the role of extreme statistics in molecular and cellular biology” by Z. Schuss, K. Basnayake and D. Holcman. *Phys Life Rev* 28:92–93. <https://doi.org/10.1016/j.phrev.2019.03.002>

Corless R, Gonnet G, Hare D, Jeffrey D, Knuth D (1996) On the Lambert function. *Adv Comput Math* 5(1):329–359

Dagdug L, Vázquez M, Berezhkovskii A, Zitserman V (2016) Boundary homogenization for a sphere with an absorbing cap of arbitrary size. *J Chem Phys* 145(21):214101

De Haan L, Ferreira A (2007) Extreme value theory: an introduction. Springer, Berlin

Delgado MI, Ward MJ, Coombs D (2015) Conditional mean first passage times to small traps in a 3-D domain with a sticky boundary: applications to T cell searching behavior in lymph nodes. *Multiscale Model Simul* 13(4):1224–1258

Falk M, Hüsler J, Reiss R (2010) Laws of small numbers: extremes and rare events. Springer, Berlin

Fisher R, Tippett L (1928) Limiting forms of the frequency distribution of the largest or smallest member of a sample. In: *Mathematical proceedings of the Cambridge philosophical society*, vol 24. Cambridge University Press, pp 180–190

Godec A, Metzler R (2016a) First passage time distribution in heterogeneity controlled kinetics: going beyond the mean first passage time. *Sci Rep* 6:20349

Godec A, Metzler R (2016b) Universal proximity effect in target search kinetics in the few-encounter limit. *Phys Rev X* 6(4):041037

Grebennikov D, Rupprecht JF (2017) The escape problem for mortal walkers. *J Chem Phys* 146(8):084106

Grebennikov DS (2006) Partially reflected brownian motion: a stochastic approach to transport phenomena. *Focus Probab Theory*, 135–169

Grebennikov DS, Metzler R, Oshanin G (2018a) Strong defocusing of molecular reaction times results from an interplay of geometry and reaction control. *Commun Chem* 1(1):1–12

Grebennikov DS, Metzler R, Oshanin G (2018b) Towards a full quantitative description of single-molecule reaction kinetics in biological cells. *Phys Chem Chem Phys* 20(24):16393–16401

Grebennikov DS, Metzler R, Oshanin G (2019) Full distribution of first exit times in the narrow escape problem. *New J Phys* 21(12):122001

Guerrier C, Holcman D (2018) The first 100 nm inside the pre-synaptic terminal where calcium diffusion triggers vesicular release. *Front Synaptic Neurosci*. <https://doi.org/10.3389/fnsyn.2018.00023>

Holcman D, Schuss Z (2014a) The narrow escape problem. *SIAM Rev* 56(2):213–257. <https://doi.org/10.1137/120898395>

Holcman D, Schuss Z (2014b) Time scale of diffusion in molecular and cellular biology. *J Phys A Math Theor* 47(17):173001. <https://doi.org/10.1088/1751-8113/47/17/173001>

Katz B, Voolstra O, Tzadok H, Yasin B, Rhodes-Modrov E, Bartels JP, Strauch L, Huber A, Minke B (2017) The latency of the light response is modulated by the phosphorylation state of drosophila trp at a specific site. *Channels* 11(6):678–685

Keil FJ (1999) Diffusion and reaction in porous networks. *Catal Today* 53(2):245–258

Kurella V, Tzou JC, Coombs D, Ward MJ (2015) Asymptotic analysis of first passage time problems inspired by ecology. *Bull Math Biol* 77(1):83–125

Larson DR, Zenklusen D, Wu B, Chao JA, Singer RH (2011) Real-time observation of transcription initiation and elongation on an endogenous yeast gene. *Science* 332(6028):475–478

Lawley SD (2019) Boundary homogenization for trapping patchy particles. *Phys Rev E* 100(3):032601

Lawley SD (2020) Universal formula for extreme first passage statistics of diffusion. *Phys Rev E* 101(1):012413

Lawley SD, Keener JP (2015) A new derivation of robin boundary conditions through homogenization of a stochastically switching boundary. *SIAM J Appl Dyn Syst* 14(4):1845–1867

Lawley SD, Madrid JB (2020) A probabilistic approach to extreme statistics of Brownian escape times in dimensions 1, 2, and 3. *J Nonlinear Sci*, 1–21

Lawley SD, Miles CE (2019) Diffusive search for diffusing targets with fluctuating diffusivity and gating. *J Nonlinear Sci.* <https://doi.org/10.1007/s00332-019-09564-1>

Lindsay AE, Bernoff AJ, Ward MJ (2017) First passage statistics for the capture of a brownian particle by a structured spherical target with multiple surface traps. *Multiscale Model Simul* 15(1):74–109

Martyushev LM Minimal time, weibull distribution and maximum entropy production principle. Comment on “Redundancy principle and the role of extreme statistics in molecular and cellular biology” by Z. Schuss, et al (2019) *Phys Life Rev* 28:83–84. <https://doi.org/10.1016/j.plrev.2019.02.002>

McKenzie H, Lewis M, Merrill E (2009) First passage time analysis of animal movement and insights into the functional response. *Bull Math Biol* 71(1):107–129

Meerson B, Redner S (2015) Mortality, redundancy, and diversity in stochastic search. *Phys Rev Lett* 114(19):198101

Muratov C, Shvartsman S (2008) Boundary homogenization for periodic arrays of absorbers. *Multiscale Model Simul* 7(1):44–61

Peng Z, Nadarajah S (2012) Convergence rates for the moments of extremes. *Bull Korean Math Soc* 49(3):495–510

Pickands J (1968) Moment convergence of sample extremes. *Ann Math Stat* 39(3):881–889

Redner S, Meerson B (2014) First invader dynamics in diffusion-controlled absorption. *J Stat Mech* 6:P06019

Redner S, Meerson B (2019) Redundancy, extreme statistics and geometrical optics of brownian motion. comment on “Redundancy principle and the role of extreme statistics in molecular and cellular biology” by Z. Schuss. *Physics of life reviews* 28:80–82. <https://doi.org/10.1016/j.plrev.2019.01.020>

Reynaud K, Schuss Z, Rouach N, Holcman D (2015) Why so many sperm cells? *Commun Integr Biol* 8(3):e1017156. <https://doi.org/10.1080/19420889.2015.1017156>

Ro S, Kim YW (2017) Parallel random target searches in a confined space. *Phys Rev E* 96(1):012143

Rupprecht JF, Bénichou O, Grebenkov D, Voituriez R (2015) Exit time distribution in spherically symmetric two-dimensional domains. *J Stat Phys* 158(1):192–230

Rusakov DA, Savchenko LP (2019) Extreme statistics may govern avalanche-type biological reactions: comment on “Redundancy principle and the role of extreme statistics in molecular and cellular biology” by Z. Schuss. *Phys Life Rev*, K Basnayake, D Holcman. <https://doi.org/10.1016/j.plrev.2019.02.001>

Schuss Z, Basnayake K, Holcman D (2019) Redundancy principle and the role of extreme statistics in molecular and cellular biology. *Phys Life Rev.* <https://doi.org/10.1016/j.plrev.2019.01.001>

Sokolov IM (2019) Extreme fluctuation dominance in biology: On the usefulness of wastefulness: comment on “Redundancy principle and the role of extreme statistics in molecular and cellular biology” by Z. Schuss, K. Basnayake and D. Holcman. *Phys Life Rev.* <https://doi.org/10.1016/j.plrev.2019.03.003>

Tamm MV (2019) Importance of extreme value statistics in biophysical contexts: comment on “Redundancy principle and the role of extreme statistics in molecular and cellular biology”. *Phys Life Rev.* <https://doi.org/10.1016/j.plrev.2019.03.001>

van Beijeren H (2003) The uphill turtle race; on short time nucleation probabilities. *J Stat Phys* 110(3–6):1397–1410

Wang SS, Alousi AA, Thompson SH (1995) The lifetime of inositol 1, 4, 5-trisphosphate in single cells. *J Gener Physiol* 105(1):149–171

Weiss GH, Shuler KE, Lindenberg K (1983) Order statistics for first passage times in diffusion processes. *J Stat Phys* 31(2):255–278

Wolf A, Anderegg WRL, Pacala SW (2016) Optimal stomatal behavior with competition for water and risk of hydraulic impairment. *Proc Natl Acad Sci* 113(46):E7222–E7230

Yang J, Kupka I, Schuss Z, Holcman D (2016) Search for a small egg by spermatozoa in restricted geometries. *J Math Biol* 73(2):423–446

Yuste S, Acedo L (2000) Diffusion of a set of random walkers in euclidean media. First passage times. *J Phys A* 33(3):507

Yuste SB, Lindenberg K (1996) Order statistics for first passage times in one-dimensional diffusion processes. *J Stat Phys* 85(3–4):501–512

Yuste SB, Acedo L, Lindenberg K (2001) Order statistics for d -dimensional diffusion processes. *Phys Rev E* 64(5):052102