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Abstract
Antimicrobial de-escalation refers to the treatment mechanism of switching from
empiric antibiotics with good coverage to alternatives based on laboratory susceptibil-
ity test results, with the aim of avoiding unnecessary use of broad-spectrum antibiotics.
In a previous study, we have developed multi-strain and multi-drug models in an
intensive care unit setting, to evaluate the benefits and trade-offs of de-escalation in
comparison with the conventional strategy called antimicrobial continuation. Our sim-
ulation results indicated that for a large portion of credible parameter combinations,
de-escalation reduces the use of the empiric antibiotic but increases the probabilities
of colonization and infections. In this paper, we first simplify the previous models to
compare the long-term dynamical behaviors between de-escalation and continuation
systems under a two-strain scenario. The analytical results coincide with our previous
findings in the complex models, indicating the benefits and unintended consequences
of de-escalation strategy result from the nature of this treatment mechanism, not from
the complexity of the high-dimensional systems. By extending the models to three-
strain scenarios, we find that de-escalation is superior than continuation in preventing
outbreaks of invading strains that are resistant to empiric antibiotics. Thus decisions
on antibiotic use strategies should be made specifically according to ICU conditions
and intervention objectives.
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1 Introduction

Antimicrobial resistance is one of the leading threats in public health, and the rise of this
issue could result in life-threatening untreatable infections caused by antimicrobial-
resistant pathogens. Due to the limited therapeutic options, antimicrobial stewardship
programs (ASPs) have been advocated by public health authorities and implemented
in numerous hospitals since late 1990s. ASPs aim to seek for optimal antibiotic use
strategies that can preserve the effectiveness of important antibiotics, reduce the cost
of health care for infections, and slow down the evolution of antimicrobial resistance.
Antimicrobial de-escalation is one of the most recommended strategies and has been
commonly practiced by almost all ASP teams (Dellit et al. 2007; Timsit et al. 2014).
De-escalation refers to the procedure of stopping unnecessary antibiotic and switching
to the “first-line” antibiotics that are older, less expensive, or with a narrower cov-
erage when laboratory test confirms susceptibility. As opposed to de-escalation, the
conventional strategy is called continuation (or non-de-escalation), which refers to the
continuum use of antibiotics even though the patient can be treated by a “first-line”
drug. A lot of clinical and observational studies have been conducted to understand the
effects of de-escalation comparing to continuation, but the conclusions varied broadly
from study to study (Tabah et al. 2016). For example, no significant change in mor-
tality rate was observed for most of the studies (Tabah et al. 2016), and unintended
increases in multi-drug-resistant strains have been observed in the treatment groups
following de-escalation (Kim et al. 2012).

Differential equation models have been widely applied in the study of antibiotic
use in hospital settings (Spicknall et al. 2013; van Kleef et al. 2013), and strategies
such as cycling and informed cycling (Kouyos et al. 2011; zur Wiesch et al. 2014;
Tepekule et al. 2017), antibiotic restriction (Obolski et al. 2015), and minimizing
treatment duration (Hurford et al. 2012) have been well-studied by constructing com-
plex high-dimensional ODE systems. Realistic models can provide intuitive insights
of the mechanisms with credible parameterization methods. Mathematical analysis of
the simplified systems can provide parameter thresholds on the outbreak potentials of
antimicrobial-resistant pathogens via bifurcation analysis (Webb et al. 2005; D’Agata
et al. 2005, 2007; Webb et al. 2009; Webb and Browne 2015; Cen et al. 2017).

To address the varying observations, we have previously developed a novel math-
ematical model to theoretically compare the impacts of antimicrobial de-escalation
and continuation therapies in intensive care units (ICUs) (Hughes et al. 2017). Our
simulation results show that de-escalation has advantages at reducing both the use
and resistance prevalence of the broad-spectrum antibiotics, but on the other hand,
it leads to higher infection and colonization rates in ICUs. However, due to the high
dimensionality and complexity of the model, it was rather hard to evaluate the inva-
sion potentials of the drug-resistant strains under each treatment strategy. Further, the
model in Hughes et al. (2017) adopts many realistic assumptions (such as the co-
circulation of multiple pathogens, the use of multiple drugs, as well as the separation
of empiric and definitive therapies), thus we wondered if the benefits and unintended
consequences of de-escalation obtained from the simulations are resulted from the
complexity of the model system, or the nature of the two treatment strategies.
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Motivated by the above, in this paper, we investigate simplified model systems
that capture only the key difference between de-escalation and continuation. That is,
we consider two ICUs with identical ecological environments but adopt de-escalation
and continuation individually as each one’s main treatment strategy—the one with
de-escalation aims to treat patients with de-escalated antibiotics whenever there is no
resistance, while the one with continuation adopts the de-escalated drugs only when
the empiric broad-spectrum antibiotics stop working.1 We will first show, via rigorous
analysis, same benefit and unintended consequences of de-escalation can be observed
in the simplified systems. Thus, the pros and cons of de-escalation are not caused by
the complex model structure in the realistic setting in Hughes et al. (2017), but are due
to the difference in nature between the two treatment strategies. Then by computing
the invasion reproductive number R0 of each system, we can compare the abilities
possessed by the two strategies in preventing outbreaks of nosocomial infections. We
show that de-escalation is advantageous in preventing the pathogens that are resistant
to the broad-spectrum antibiotics from invading the ICUs.

This paper involves the analysis and comparison of several model systems, and is
organized as follows. In Sect. 2, we introduce the model assumptions and formulation
for the two-strain scenario; in Sect. 3, we present the mathematical analysis results
of continuation and de-escalation systems, respectively; in Sect. 4, we compare the
dynamical behaviors of the two systems both mathematically and numerically; in
Sect. 5, we develop the models for the three-strain scenario to investigate the invasion
potential of strains resistant to the empiric antibiotic. We organize rigorous mathemat-
ical proofs on the stability results of the two-strain systems in the “Appendix,” such
results are not only useful for comparing the values of steady states between the two
systems, but also necessary to guarantee the linearization of the three-strain systems
at their corresponding steady states to compute the invasion reproductive numbers in
Sect. 5.

2 Model Formulation: Two-Strain Scenario

We consider the co-circulation of two strains of a certain bacterial species—
Pseudomonas aeruginosa, and two antibiotics that are mostly used as broad-spectrum
drug (piperacillin/tazobactam) (American Thoracic Society and Infectious Diseases
Society ofAmerica 2005;Mermel et al. 2009;Hughes et al. 2016), and the de-escalated
drug (ciprofloxacin) (Braykov et al. 2014; Shime et al. 2013; Khasawneh et al. 2014;
Kollef et al. 2006; Kaye 2012; Mokart et al. 2014). For simplicity, we label the two
strains by numbers 0 and 1, and label the two antibiotics by letters A and B. The patient
population in the ICU is then stratified into five classes: uncolonized (S), colonized by
strain 0 and 1, respectively, (C0 and C1), and infected by strain 0 and 1, respectively,
(I0 and I1). Specifically, a patient being colonized/infected by strain i, i = 0, 1 means
that this patient’s colonization/infection is dominated by strain i . Coexistence of both
strains in one patient is possible, to start with the simplest model, we assume that

1 Definition of de-escalation from Dellit et al. (2007), Timsit et al. (2014).
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patients will majorly transmit, and get colonized/infected by their dominant strains.
Our models are based on the following assumptions.

Assumption 1 Strain 0 refers to the susceptible strain, which is susceptible to both
drug A and B.

Assumption 2 Strain 1 refers to the resistant strain, which is resistant to drug A but is
susceptible to drug B.

Thus, drug A is regarded as the de-escalated antibiotic to treat strain 0 as it has
a narrower coverage (such as ciprofloxacin), and drug B is the empiric drug for all
infections due to its broad coverage (such as piperacillin/tazobactam).

Assumption 3 Patients are admitted at a constant rateλ into the ICU,with a percentage
p of them being uncolonized, and a percentage (1 − p) of them being colonized by
strain 0.

Here, we assume no patient is colonized by resistant strain upon admission, partly
because we consider the ICUs being the epicenter for the transmission of resistance
strains, and partly because doing this will facilitate our computation of the invasion
reproductive numbers mathematically. In reality, patients already colonized by strain
1 could be admitted into the hospitals, models with such assumptions would be worth-
while to investigate as well.

Assumption 4 All patients are removed due to discharge or mortality at a constant
rate μ.

We make Assumption 4 based on the following argument: (1) according to clinical
studies, the correlation between bacterial resistance and patient mortality is unclear, it
was also found that antibiotic resistance had little effect on mortality (Lambert et al.
2011), thus the mortality rates for patients in I0 and I1 can be assumed as the same;
(2) uninfected patients usually have a lower risk of mortality, thus the mortality rates
for classes S,C0,C1 should be smaller than I0, I1; (3) uninfected patients often have
a shorter hospital stay, so the discharge rates for classes S,C0,C1 are higher than
I0, I1; (4) therefore, it is hard to compare the overall removal rates for uninfected and
infected patients, and we assume each compartment has the same removal rate for
simplification. Indeed, in a more realistic setting, removal rates in each compartment
should be different as assumed in Hughes et al. (2017). But as our main purpose of this
paper is to investigate the dynamical differences caused by the drug use mechanisms,
we leave the more realistic assumption on removal rates for future work.

Assumption 5 Colonized patients could develop infections at a constant rate δ (Hur-
ford et al. 2012; Hughes et al. 2017).

Assumption 6 Infected patients immediately receive effective treatments, and are
cured at a constant rate τ .

Here, we simplify the model structure in Hughes et al. (2017) by omitting the
empiric therapy and assuming instant diagnosis, since we would like our model to
reflect the major difference in the drug use guideline between de-escalation and con-
tinuation. The fact that patients have to go through empiric therapy is due to the
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Fig. 1 Compartmental dynamics for antimicrobial continuation and de-escalation models. Compartments
colored in blue represent infected patients under treatment of the empiric drug B, and the one colored in
orange represents patients under treatment of the de-escalated drug A. When the ICU adopts continuation
strategy, all infected patients are treated with the broad-spectrum drug B thus there is no strain conversion.
When the ICU adopts de-escalation strategy, patients in I0 are receiving drug A and could experience strain
conversion via transmissions of strain 1 under the antibiotic selection pressure (Color figure online)

current lack of fast diagnosis technology, which could become available in the future
and makes this assumption closer to the reality.

According to the records from our ASP group at Toronto Mount Sinai Hospital,
the standard length for antibiotic treatments in ICUs are uniformly fixed regardless
of the drug type, such information can be retrieved from the previous publication of
the same group (Hurford et al. 2012). So we assume infected patients being cured at
a same rate.

Assumption 7 The transmission rates for two strains are assumed to be β0 and β1,
respectively.

Similar to the assumptions in Hughes et al. (2017), we omit the transmission “vec-
tors” such as health care workers and medical devices, and assume bacteria strains
being directly transmitted from patient to patient.

Assumption 8 Patients infected by P. aeruginosa usually remain its carriers for 12-
25 days (REUSSIR 2001; Murray et al. 2007), which is longer than the normal stay
in the ICU (Giantsou et al. 2007; Paskovaty et al. 2015; De Bus et al. 2016). So we
assume that infected patients remain colonized for their duration of stay after finishing
antibiotic treatments, that is, patients in Ii would recover and move to Ci for i = 0, 1.

Assumption 9 Resistant strain can replace dominant sensitive strain given antibiotic
selection pressure (Spicknall et al. 2013).

That is, under de-escalation strategy, patients in I0 are treated with drug A, and it
is possible for them to get contaminated by strain 1; then on the individual level, drug
A reduces strain 0 but not strain 1; therefore, such patients will have their infection
being dominated by the resistant strain 1 under the drug A selection pressure. On
the other hand, under continuation strategy, all infected patients are treated with the
broad-spectrum drug B which covers both strains; then, no strain conversion could
happen. In this way, de-escalation and continuation can result in different treatment
mechanisms for ICU patients and the two systems are differed dynamically.

The compartmental dynamics of both de-escalation and continuation scenarios are
shown and illustrated in Fig. 1. Model parameters are summarized in Table 1.
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Table 1 Parameter table

Parameter Definition

Parameters for all models

λ Patient admission rate

μ Patient discharge/death rate

p Percentage of uncolonized patients upon admission

δ Infection development rate for colonized patients

τ Infection clearance rate under antibiotic treatments

β0 Transmission rate of bacteria strain 0

Parameters for multiple strain models

β1 Transmission rate of bacteria strain 1

β2 Transmission rate of bacteria strain 2

The model equations for continuation strategy are shown in (1).

Ṡ = pλ − β0(C0 + I0)S − β1(C1 + I1)S − μS,

Ċ0 = (1 − p)λ + β0(C0 + I0)S + τ I0 − (δ + μ)C0,

İ0 = δC0 − (τ + μ)I0,

Ċ1 = β1(C1 + I1)S + τ I1 − (δ + μ)C1,

İ1 = δC1 − (τ + μ)I1.

(1)

The model equations for de-escalation strategy are shown in (2).

Ṡ = pλ − β0(C0 + I0)S − β1(C1 + I1)S − μS,

Ċ0 = (1 − p)λ + β0(C0 + I0)S + τ I0 − (δ + μ)C0,

İ0 = δC0 − (τ + μ)I0 − β1(C1 + I1)I0,

Ċ1 = β1(C1 + I1)S + τ I1 − (δ + μ)C1,

İ1 = δC1 + β1(C1 + I1)I0 − (τ + μ)I1.

(2)

3 Model Analysis: Two-Strain Scenario

When there is no presence of the resistant strain, based on Assumption 6, there is no
difference between de-escalation and continuation strategies on the population level
in the ICU. Mathematically, it is easy to check that (S∗,C∗

0 , I
∗
0 , 0, 0) is the unique

resistant strain-free equilibrium for both system (1) and (2), where

S∗ =
β0λ

μ
+μ−

√
(μ+ β0λ

μ
)2−4β0 pλ

2β0
, C∗

0 = μ+τ
μ+τ+δ

X∗
0, I ∗

0 = δ
μ+τ+δ

X∗
0, X∗

0 = λ
μ

− S∗.
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3.1 Continuation System

We aim to analyze the long-term behaviors of system (1). Firstly let X0 := C0 + I0
and X1 := C1 + I1, system (1) is reduced to a three-dimensional system (3).

Ṡ = pλ − β0X0S − β1X1S − μS,

Ẋ0 = (1 − p)λ + β0X0S − μX0,

Ẋ1 = β1X1S − μX1.

(3)

We therefore have the following positivity and boundedness results.

Proposition 1 For any initial value S(0), X0(0), X1(0) ≥ 0, the solution to (3) is
strictly positive for S(t) and X0(t), and nonnegative for X1(t) for all t > 0, and
is uniformly bounded in R

3+ for sufficiently large t ≥ 0. Moreover, for any strictly
positive initial condition (S(0), X0(0), X1(0)), the solution to (3) is strictly positive
for all t ≥ 0.

We here borrow the concept of invasion reproductive number from ecol-
ogy (Pugliese 2000) as many other studies (Martcheva et al. 2007; Martcheva 2009;
Xiridou et al. 2009) did. The invasion reproductive number of strain 1, R1, is
defined as the number of secondary colonization/infections that one individual col-
onized/infected with strain 1 can produce in the ICU where the strain 0 is already
present and at equilibrium.

Note that (S∗, X∗
0, 0) is the resistant strain-free equilibrium of system (3); then, it

is locally asymptotically stable for R1 < 1 and otherwise unstable. Technically, we
should calculateRCT

1 for the continuation system by applying the method in Van Den
Driessche and Watmough (2002) to the system linearized at (S∗, X∗

0, 0), and we have
RCT

1 = β1S∗/μ. The following theorem shows the stability results of system (3).

Theorem 1 For RCT
1 < 1, (S∗, X∗

0, 0) is the unique, globally asymptotically stable
equilibrium of system (3). WhenRCT

1 > 1, there exist two equilibria, (S∗, X∗
0, 0) being

unstable, and (S̄, X̄0, X̄1) being globally asymptotically stable with

S̄ = μ
β1

, X̄0 = 1−p

1−β0
β1

· λ
μ
, X̄1 = p−β0

β1

1−β0
β1

· λ
μ

− μ
β1

.

Proof See “Appendix.” ��

3.2 De-escalation System

We now analyze system (2). Let X1 := C1 + I1, (2) can be reduced to a four-
dimensional system (4), and the positivity and boundedness results are as follows:

Ṡ = pλ − β0(C0 + I0)S − β1X1S − μS,

Ċ0 = (1 − p)λ + β0(C0 + I0)S + τ I0 − (δ + μ)C0,
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İ0 = δC0 − β1X1 I0 − (τ + μ)I0,

Ẋ1 = β1X1(S + I0) − μX1. (4)

Proposition 2 For any nonnegative initial value S(0),C0(0), I0(0), X1(0) ≥ 0, the
solution to system (4) is bounded and S(t),C0(t), I0(t) > 0 for all t > 0. Thus, the
flow �t generated by the solution to the system is point dissipative.

Clearly, (S∗,C∗
0 , I

∗
0 , 0) is the resistant strain-free equilibrium of (4), and the inva-

sion reproductive number of strain 1 for the de-escalation system can be computed
similarly as RDE

1 = β1(S∗ + I ∗
0 )/μ. Under the same set of parameters, we have

RDE
1 > RCT

1 ,

thus, continuation is always superior in preventing the invasion of the resistant strain
1 than de-escalation.

Further, if the invasion of strain 1 cannot be avoided with either continuation or
de-escalation, we would like to determine which of the two strategies can result in less
colonized and infected patients. In order to do so, we will need to find the positive
equilibrium for system (4). We identify the resistant strain transmission rate β1 as the
bifurcation parameter, and then RDE

1 = 1 corresponds to a threshold for β1 as stated
below.

Definition 1 Denote β
†
1 := μ/(S∗ + I ∗

0 ), then β1 > β
†
1 if and only if RDE

1 > 1.
Denote β∗

1 := μ/S∗, then β1 > β∗
1 if and only ifRCT

1 > 1.

3.2.1 Stability Results

We first have the stability result for the resistant strain-free equilibrium.

Theorem 2 The resistant strain-free equilibrium (S∗,C∗
0 , I

∗
0 , 0) for system (4) is

locally stable for RDE
1 < 1, and unstable for RDE

1 > 1. (S∗,C∗
0 , I

∗
0 , 0) is globally

asymptotically stable when β1 < μ2/λ.

Proof See “Appendix.” ��
The next theorem investigates the local bifurcation near the resistant strain-free

equilibrium (S∗,C∗
0 , I

∗
0 , 0) as β1 perturbs from β

†
1 , we will show that a resistant

strain-prevalent equilibrium bifurcates in the forward direction as β1 increases. Many
studies (Huang et al. 1992; Dushoff et al. 1998; Van Den Driessche and Watmough
2002) have decomposed the center manifold to derive the criteria for the direction of
local bifurcation, and our proof follows Theorem4.1 andRemark 1 byCastillo-Chavez
and Song (2004).

Theorem 3 There exists ε > 0 such that system (4) has a locally asymptotically stable
resistant strain-prevalent equilibrium for β1 ∈ (β

†
1 , β

†
1 + ε).

Proof See “Appendix.” ��
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3.2.2 Existence of Resistant Strain-Prevalent Equilibrium and Persistence

From now on, we start solving for the resistant strain-prevalent equilibrium that satis-
fies (5)–(8), and we denote it as (S̃, C̃0, Ĩ0, X̃1) with X̃1 �= 0.

pλ − β0(C0 + I0)S − β1X1S − μS = 0, (5)

(1 − p)λ + β0(C0 + I0)S + τ I0 − (δ + μ)C0 = 0, (6)

δC0 − β1X1 I0 − (τ + μ)I0 = 0, (7)

β1X1(S + I0) − μX1 = 0. (8)

From (8) we have that S̃ + Ĩ0 = μ
β1
, and by adding up Eqs. (5)–(8), we have

S̃ + C̃0 + Ĩ0 + X̃1 = λ
μ
; hence, C̃0 + X̃1 = λ

μ
− μ

β1
. Further, calculations yield

C̃0 = (1−p)λ+β0 S̃ Ĩ0+τ Ĩ0
δ+μ−β0 S̃

. Now, each component of the positive equilibrium can be

represented in terms of S̃, which is a root of the polynomial (9) with its coefficients
in (10).

g(S) = S3 + aS2 + bS + c (9)

a = − λ
μ

− 2μ+δ+τ
β1

+ τ
β0

, b = μ+δ+τ
μ

(
μ
β1

)2 + (
λ
μ

− τ
β0

)
μ
β1

+ λδ+pλμ
μβ0

,

c = −pλ δ+μ
β0β1

. (10)

For 0 <
μ
β1

< λ
μ
, (S̃, C̃0, Ĩ0, X̃1) is a positive equilibrium if and only if

0 < S̃ <
μ
β1

and 0 < C̃0 = (1−p)λ+(β0 S̃+τ)(
μ
β1

−S̃)

δ+μ−β0 S̃
< λ

μ
− μ

β1
. (11)

This is equivalent to

0 < S̃ < min
{

μ
β1

,
δ+μ
β0

}
and β0 S̃

2−
(

λ
μ
β0 − τ

)
S̃+ pλ+ λ

μ
δ− μ

β1
(μ+τ +δ) > 0,

(12)
denote f (S) := S2 − ( λ

μ
− τ

β0
)S + pλ

β0
+ λδ

μβ0
− μ

β0β1
(μ + τ + δ) we rewrite the above

condition as
0 < S̃ < min

{
μ
β1

,
δ+μ
β0

}
and f (S̃) > 0. (13)

Based on the above discussion, we conclude that finding the resistant strain-
prevalent equilibrium is equivalent of finding the roots of polynomial g(S) that satisfies
condition (13):

Proposition 3 For 0 < β1 < μ2/λ, system (4) has no resistant strain-prevalent
equilibrium. For β1 > μ2/λ, (4) has a resistant strain-prevalent equilibrium
(S̃, C̃0, Ĩ0, X̃1) with X̃1 �= 0 if and only if S̃ is a root of polynomial (9) that sat-
isfies condition (13).
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Observe that

g(S) = f (S)
(
S − μ

β1

)
− μ+τ+δ

β1

(
S − μ

β0

) (
S − μ

β1

)
+ (1 − p) λδ

β0β1
(14)

=
(
S − μ

β1

) [
S2 − ( λ

μ
− τ

β0
+ μ+τ+δ

β1
)S + pλ

β0
+ λδ

μβ0

] + (1 − p) λδ
β0β1

. (15)

thus, we can simplify condition (13) further.

Proposition 4 Condition (13) is equivalent to the following condition (16).

max{0, h(β1)} < S̃ < min
{

μ
β1

,
δ+μ
β0

}
, where (16)

h(β1) := 1
2

(
μ
β0

+ μ
β1

−
√

(
μ
β0

− μ
β1

)2 + 4(1−p)λδ
β0(μ+τ+δ)

)
. (17)

Proof See “Appendix.” ��
Therefore, we can summarize as following.

Proposition 5 The bifurcation branch of the resistant strain-prevalent equilibrium can
be represented by the bifurcation diagram of S̃ in terms of β1. The resistant strain-
prevalent equilibrium branch lies in the area

� :=
{
(β1, S̃) : max{0, h(β1)} ≤ S̃ ≤ min

{
μ
β1

,
δ+μ
β0

}}
.

Further characterization of the region � is analyzed in “Appendix,” which is of
great use on showing the existence results of the positive equilibria (S̃, C̃0, Ĩ0, X̃1) as
listed below.

Theorem 4 There exists at least one positive equilibrium of system (4) when β1 > β
†
1 .

1. If β†
1 > β0, there exists an S̃ < S∗ for all β1 ∈ (β

†
1 ,+∞).

2. If β
†
1 < β0, there exists an S̃ > S∗ for β1 ∈ (β

†
1 , β0), and an S̃ < S∗ for

β1 ∈ (β0,+∞).

Proof See “Appendix.” ��
With any fixed value β1, g(S, β1) = S3 + aS2 + bS+ c in (9)–(10) is a third-order

polynomial of S, if the discriminant	(β1) = 18abc−4a3c+a2b2−4b3−27c2 does
not change its sign for all β1 > β

†
1 , we should be able to predict the continuation of the

bifurcation branch S̃ and the uniqueness of the resistant strain-prevalent equilibrium.
However, the sign of	 is hard to be checked algebraically, we thus summarize possible
cases in the following two corollaries.

Corollary 1 Assume that the discriminant 	(β1) = 18abc − 4a3c + a2b2 − 4b3 −
27c2 > 0 for all β1 > β

†
1 . Then, system (4) has a continuous bifurcation branch that

represents a resistant strain-prevalent equilibrium and
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1. if β
†
1 > β0, the S component of any resistant strain-prevalent equilibrium is less

than S∗ for all β1 > β
†
1 ;

2. if β
†
1 < β0, there exists a continuous bifurcation branch with its S component

being greater than S∗ for β
†
1 < β1 < β0 and smaller than S∗ for β1 > β0.

Proof See “Appendix.” ��
Corollary 2 Assume that the discriminant 	(β1) = 18abc − 4a3c + a2b2 − 4b3 −
27c2 < 0 for all β1 > β

†
1 . Then if β

†
1 > β0, there exists a unique resistant strain-

prevalent equilibrium with its S component being smaller than S∗ for all β1 > β
†
1 .

Proof See “Appendix.” ��
Remark 1 Note that in Corollary 2, we did not discuss the condition of β

†
1 < β0 as we

did in Corollary 1. This is because that	(β1) < 0 for all β1 > β
†
1 and β

†
1 < β0 cannot

happen simultaneously: 	(β1) < 0 implies the uniqueness of the real root S̃ and from
Theorem 4, we know S̃ ≤ S∗ for β1 ∈ [β0,+∞), but from (G.5) in Lemma 2, we
have at least another real root μ+δ

β0
when β1 = β0 > β

†
1 , which is a contradiction.

The characteristic equation of the Jacobian matrix obtained by linearizing system
(4) at the resistant strain-prevalent equilibrium is not easy to compute, thus we do
not prove its local stability. Instead, we used Latin hypercube sampling method to
numerically validate the uniqueness and local stability of the resistant strain-prevalent
equilibrium. This sampling method will be used again and illustrated in detail in the
next section.

Next, we provide the result on the persistence of the solution to system (4) when
β1 > β

†
1 .

Theorem 5 When β1 > β
†
1 , the flow induced by the solution of system (4) with initial

value x ∈ X \ {(S, I0,C0, X1) : X1 = 0} is uniformly persistent. That is, there exists
η > 0 such that for any nonnegative initial condition (S(0), I0(0),C0(0), X1(0))with
X1(0) > 0, we have lim inf

t→+∞ X1(t) > η.

Proof See “Appendix.” ��

3.2.3 Understanding the Condition in Theorem 4

Although we are not able to show the global stability of the resistant strain-prevalent
equilibrium, the persistence result indicates that strain 1 will be prevalent in the ICU
for β1 > β

†
1 . Figure 2 provides two representative bifurcation diagrams of system (4).

Here, we provide an intuitive understanding on why a bump appears in the bifur-
cation diagram as shown in Fig. 2b and as predicted in Theorem 4. Strain 1 competes
with strain 0 for patients once it successfully invades into the ICU. If strain 1 is more
virulent than strain 0 (i.e., β0 < β

†
1 < β1), the overall transmission rate of bacte-

ria increases, thus the number of colonized/infected patients increases. If strain 1 is
strong enough to invade, but obtains a weaker transmission ability than strain 0 (i.e.,
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Fig. 2 Bifurcation branch of equilibrium component S under two different conditions for the de-escalation
system. a μ = 0.1, δ = 0.001, τ = 0.25, p = 0.1, λ = 5, β0 = 0.05; b μ = 0.1, δ = 0.01, τ =
0.25, p = 0.66, λ = 5, β0 = 0.2. This figure can also be used to compare the bifurcation diagrams of
system (3) and (4), where the orange curve representing S = S∗ together with the lower half of the blue
curve representing S = μ

β1
form the bifurcation branch of system (3) (Color figure online)

β
†
1 < β1 < β0), the overall transmission rate of bacteria is then “diluted” and dimin-

ishes in general; hence, there will be less colonized/infected patients than the case
without strain 1.

Such phenomena do not exist in the continuation scenario, since the strain 1 has
to exceed a higher threshold in order to invade successfully, where the threshold
(as denoted in Definition 1) β∗

1 is always larger than the transmission rate of strain
0. Thus, the overall bacteria transmission rate always increases and leads to more
colonized/infected patients.

The following Theorem provides a mathematical support of the above intuitive
understanding: there is a threshold of the transmission rate of strain 0 such that β0

exceeds the threshold if and only if β0 exceeds the value of β
†
1 .

Theorem 6 There exists a threshold β∗
0 , which is uniquely determined by parameters

μ, δ, τ, λ and p, such that when β0 < β∗
0 we have β

†
1 > β0, and when β0 > β∗

0 we

have β
†
1 < β0.

Proof See “Appendix.” ��

4 Comparison of Two-Strain Scenario

First we use Latin hypercube sampling method to numerically compare the other
components of the stable equilibria between de-escalation and continuation systems.

Definition 2 The stable equilibria for systems (3) and (4) are denoted as (SCT,CCT
0 ,

ICT0 , XCT
1 ) and (SDE,CDE

0 , IDE0 , XDE
1 ), respectively.

For each sampled parameter set, we compute the stable equilibrium values for both
systems, and evaluate their differences: SDE−SCT,CDE

0 −CCT
0 , IDE0 −ICT0 , XDE

1 −XCT
1 .
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Fig. 3 Numerical difference of each component of the stable equilibrium between de-escalation and con-

tinuation for the case of β
†
1 > β0. For each figure, approximately 5 × 104 parameter sets are sampled

by the Latin hypercube sampling method with μ, δ, τ, β0, p uniformly distributed in (0, 1), λ uniformly

distributed in (0, 5), while maintaining the condition β
†
1 > β0. β1 is uniformly distributed in the interval

stated under each condition (Color figure online)

The values of these differences under all sampled parameter combinations are collected
in box plots in each figure in Figs. 3 and 4. Similarly, we compute the difference
between the use of broad-spectrum drug at the equilibrium values IDE1 − (ICT0 + ICT1 )

in Fig. 5.
Based on the analytic and numerical results, we conclude that the benefits and trade-

offs of de-escalation are consistent with numerical results obtained in the complex
model in Hughes et al. (2017). This indicates the benefits and disadvantages of de-
escalation are not resulted from the complexity of the treatment procedures that are
previously captured, instead, they come from the use of the de-escalated antibiotics
and the follow-up selection pressure. We therefore summarize all pros and cons of
de-escalation in the two-strain scenario below.

De-escalation Benefit 1 De-escalation results in less use of the broad-spectrum drug
B, which is an expected advantage—the initial intention of using de-escalation at the
first place is to make less use of the broad-spectrum drugs (Fig. 5).

De-escalation Benefit 2 De-escalation results in less prevalence of the susceptible
strain 0, which is a direct benefit of de-escalation judged from the measurement, but
the reduction in susceptible strain is paired with an increase in the resistant strain
resulted from the strain conversion dynamics in the de-escalation system (Figs. 3
and 4).

De-escalationDisadvantage 1De-escalation results inmore prevalence of the resistant
strain 1, which is a direct result from the fact that de-escalation utilizes more drug A
(Figs. 3 and 4).

De-escalation Disadvantage 2 De-escalation results in more colonized and infected
patients overall for most of the parameter combinations, this result is observed numer-
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Fig. 5 Numerical difference of the use of the broad-spectrum drug B between de-escalation and con-
tinuation. Differences are measured by comparing the stable equilibrium values of two systems via
IDE1 − (ICT0 + ICT1 ), parameter values are drawn using the same method illustrated in Figs. 3 and 4
(Color figure online)

ically in Hughes et al. (2017) and our analysis provides a deterministic proof-based
confirmation (Fig. 2).

De-escalation Disadvantage 3 De-escalation facilitates potential outbreaks of the
resistant strain when susceptible strain is already prevalent (RDE

1 > RCT
1 ).

5 Three-Strain Scenario

In this section, we are interested in which treatment strategy is superior in preventing
the invasion of an additional strain that is resistant to the empiric antibiotic, especially
under the worst-case scenario when both strain 0 and 1 inevitably co-circulate. The
strain resistant to empiric therapy is denoted as strain 2, with a transmission rate β2.
Assume that some last resort drugs, denoted as drugC , are also available for treatment.
In the realistic setting (Hughes et al. 2017), drug A represents ciprofloxacin, drug B
represents the empiric antibiotic such as pip-tazo, drug C represents those highly
effective antibiotics that are only reserved for severe or high-risk infections, such as
carbapenem or aminoglycoside.

5.1 Model Formulation: Three-Strain Scenario

In addition to Assumptions 1–9, we include the following assumptions on the third
strain and antibiotic to formulate the de-escalation and continuation systems under the
three-strain scenario.

Assumption 10 Strain 0 is susceptible to all three drugs, strain 1 is only resistant to
drug A, and strain 2 is only resistant to drug B.

Assumption 11 Patients infected by strain 2 will be treated by drug C under all strate-
gies.
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Fig. 6 Compartmental dynamics for antimicrobial continuation and de-escalationmodels under three-strain
three-drug scenario. Compartments colored in blue represent infected patients under treatment of the empiric
drug B (such as pip-tazo), the one colored in orange represents patients under treatment of the de-escalated
drug A (such as ciprofloxacin), and the ones colored in dark blue represents patients under treatment of the
last resort drug C (such as carbapenem or aminoglycoside) (Color figure online)

Drug B refers to the empiric broad-spectrum antibiotic that is supposed to be
effective for most infections, in practice, since ICU patients are all in severe health
conditions, patients showing resistance to the empiric drug usually receive escalated
antibiotics for treatment effectiveness.

Assumption 12 Possibilities for strain conversions will follow Assumption 9—
patients treated by drug A could have their infection dominated by strain 1; patients
treated by drug B could have their infection dominated by strain 2; those treated by
drug C will not experience strain conversions as we assume no resistance is present
to drug C .

The compartmental dynamics shown in Fig. 6 and equation systems (18)–(19)
follow based on the above assumptions.

Ṡ = pλ − β0(C0 + I0)S − β1(C1 + I1)S − β2(C2 + I2)S − μS,

Ċ0 = (1 − p)λ + β0(C0 + I0)S + τ I0 − (δ + μ)C0,

İ0 = δC0 − β2(C2 + I2)I0 − (τ + μ)I0,

Ċ1 = β1(C1 + I1)S + τ I1 − (δ + μ)C1,

İ1 = δC1 − β2(C2 + I2)I1 − (τ + μ)I1,

Ċ2 = β2(C2 + I2)S + τ I2 − (δ + μ)C2,

İ2 = δC2 + β2(C2 + I2)(I0 + I1) − (τ + μ)I2. (18)

Ṡ = pλ − β0(C0 + I0)S − β1(C1 + I1)S − β2(C2 + I2)S − μS,

Ċ0 = (1 − p)λ + β0(C0 + I0)S + τ I0 − (δ + μ)C0,

İ0 = δC0 − β1(C1 + I1)I0 − (τ + μ)I0,

Ċ1 = β1(C1 + I1)S + τ I1 − (δ + μ)C1,

İ1 = δC1 − β2(C2 + I2)I1 − (τ + μ)I1,

Ċ2 = β2(C2 + I2)S + τ I2 − (δ + μ)C2,

İ2 = δC2 + β2(C2 + I2)I1 − (τ + μ)I2. (19)
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Fig. 7 Box plots for RDE
2 − RCT

2 . a RDE
2 < RCT

2 when strains 0 and 1 are co-circulating in the ICU

under both strategies. b RDE
2 < RCT

2 whenever the transmission ability of strain 1 is stronger than strain
0. Sampling strategy is the same with Figs. 3 and 4 (Color figure online)

5.2 Invasion Potential of Strain 2

Note that the stable equilibrium of each two-strain system is a strain 2 free equilibrium
for the corresponding three-strain system. Thus the invasion reproductive number of
strain 2, R2, is denoted as the number of secondary colonization/infections that one
individual colonized/infected with strain 2 can produce in the ICU, where strain 0 or
both strains 0 and 1 are already present and at equilibrium. By the method in Van Den
Driessche and Watmough (2002) and follow the notation in Definition 2, we get the
invasion reproductive number of strain 2 as:

RCT
2 = β2

μ

(
SCT + ICT0 + ICT1

)
, RDE

2 = β2
μ

(
SDE + IDE1

)
.

Comparison between the two invasion reproductive numbers of strain 2 is not alge-
braically obvious, sowe check them numerically by Latin hypercube samplingmethod
in Fig. 7, from which we observe that the system with de-escalation has smaller R2
values for most parameter combinations.

De-escalation Benefit 3 De-escalation is superior in preventing outbreaks of strain 2
when both strain 0 and 1 are prevalent in the ICU.

Figure 7b shows RDE
2 < RCT

2 for all parameter combinations when β1 > β∗
1

(where both system (3) and (4) have the resistant strain-prevalent equilibria as their
stable equilibria).

De-escalationBenefit 4De-escalation is superior in preventing outbreaks of strain 2 for
a majority of parameter combinations even when de-escalation causes the prevalence
of strain 1 while continuation does not.

The parameter combinations shown on the first bar plot in Fig. 7a and the first
two bar plots in Fig. 7b correspond to the scenario when both strain 0 and 1 become
prevalent in the ICU adopting de-escalation while only strain 0 is prevalent in the one
adopting continuation.
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These results indicate thatDe-escalation disadvantage 3might not be a disadvan-
tage for all the time. Intuitively, patients infected by the susceptible strain are treated
by the antibiotic with the least coverage under de-escalation, leaving more antibiotic
options for future use of potential resistance development, which results in a lower
possibility for conversions to strain 2. That is, patients at primary risks of switching
to the resistant strain 2 are those taking the empiric drug B, which refer to patients in
I0 and I1 under continuation therapy but only patients in I1 under de-escalation.

6 Discussion

In this paper, we compare de-escalation and continuation under different scenarios
with multiple strain and drug combinations. The models analyzed in this paper are
simplified versions of those studied in Hughes et al. (2017), which takes into consid-
eration of multiple strains and species and separates the empiric and definitive therapy
status. However, the simplified models show similar features as those predicted in the
complex models: (1) de-escalation reduces the use of broad-spectrum antibiotics as
well as its resistance prevalence; (2) de-escalation increases the overall infection and
colonization in the ICU. These indicate that the benefits and unintended consequences
of de-escalation strategy observed in Hughes et al. (2017) is not due to the complexity
of the model, but resulted from the nature of the strategy differences. Thus, our under-
standing of the simplifiedmodels would provide credible insights into the complicated
reality.

The invasion reproductive numbers for strain 2 being calculated in Sect. 5 rep-
resent the invasion potential for strain 2 into an ICU when either strain 0 or both
0 and 1 are inevitably prevalent. Technically, the number is calculated by lineariz-
ing the three-strain system at the stable equilibrium of the corresponding two-strain
system (Martcheva et al. 2007). Thus, the heavy analysis of the steady states for the
two-strain systems is necessary for us to determine under which equilibrium should
the systems (18) and (19) be linearized in order to calculate the invasion reproductive
numbers.

Therefore, we are able to compare the invasion reproductive numbers that repre-
sent potentials of invading strain outbreaks.We conclude that de-escalation is superior
than continuation in preventing the invasion of the strain that is resistant to the empiric
antibiotic, especially when the strain resistant to the de-escalated antibiotic has already
become prevalent in the ICU no matter which treatment strategy is being adopted. In
reality, the multi-strain de-escalation strategy would depend on the specific drug-bug
combination with the coverage of each antibiotic being different fromAssumption 10,
thus systems (18) and (19) are not unique for three-strain scenarios. Similar analysis
can be performed for certain bacterial species and corresponding antibiotics. In gen-
eral, both de-escalation and continuation possess their own benefits and trade-offs,
decisions on strategies should be made specifically according to the conditions of the
ICU, and the intervention objectives.
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A Appendix

A.1 Proof of Theorem 1

Proof Sketch of the proof: we can easily get the local stability results by analyzing
the eigenvalues of the system linearized at the equilibria. The global stability results
can be checked by the LaSalle’s invariant principle. When RCT

1 < 1, the Lyapunov
function is defined as

V1(S, X0, X1) := S − S∗ − S∗ ln S
S∗ + X0 − X∗

0 − X∗
0 ln

X0
X∗
0

+ X1,

hence we can get the global stability of (S∗, X∗
0, 0).

For RCT
1 > 1, a routine calculation gives us the unique resistant strain-prevalent

equilibrium

S̄ = μ
β1

, X̄0 = 1−p

1−β0
β1

· λ
μ
, X̄1 = p−β0

β1

1−β0
β1

· λ
μ

− μ
β1

,

and we can construct the Lyapunov function

V2(S, X0, X1) := S − S̄ − S̄ ln S
S̄

+ X0 − X̄0 − X̄0 ln
X0
X̄0

+ X1 − X̄1 − X̄1 ln
X1
X̄1

.

to show the global stability of (S̄, X̄0, X̄1). ��

A.2 Proof of Theorem 2

Proof First, we construct a Lyapunov function to show the global stability, we continue
using the notation X0 := C0 + I0 and define V3 : (0,+∞) × (0,+∞) × (0,+∞) ×
[0,+∞) → R where

V3(S,C0, I0, X1) := S − S∗ − S∗ ln S
S∗ + X0 − X∗

0 − X∗
0 ln

X0
X∗
0

+ X1.

Proposition 2 guarantees that the function is well-defined, taking the derivative of V3
along the solution, and we have

dV3
dt (S,C0, I0, X1) = − μ+β0X∗

0
S (S − S∗)2 − μ−β0S∗

X0
(X0 − X∗

0)
2

− X1(μ − β1S
∗ − β1

I0
X0

X∗
0)

By the positivity of solution, we have I0
X0

= I0
I0+C0

≤ 1. Thus, the last item in the above

equation can be estimated as−X1(μ−β1S∗−β1
I0
X0

X∗
0) ≤ −X1(μ−β1S∗−β1X∗

0) =
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−X1(μ − β1
λ
μ
) ≤ 0 for β1 < μ2/λ. It is also easy to check μ − β0S∗ ≤ 0, so

dV3
dt (S,C0, I0, X1) ≤ 0 for β1 < μ2/λ.

Notice that dV3
dt (S,C0, I0, X1) = 0 if and only if either {S = S∗, X0 = X∗

0, X1 =
0} or {S = S∗, X0 = X∗

0, S + I0 = μ
β1

}. Denote the largest invariant set that
contains {S = S∗, X0 = X∗

0, X1 = 0} as M1. Then for any initial condition
(S(0),C0(0), I0(0), X1(0)) ∈ M1, we have the corresponding solution to system (4)
satisfying Ṡ(0) = Ẋ0(0) = Ẋ1(0) = 0 so there is no initial rate of change for the three
compartments, and we should have S(t) = S∗, X0(t) = X∗

0, X1(t) = 0. Therefore,
M1 ⊂ {S = S∗, X0 = X∗

0, X1 = 0}, and henceM1 = {S = S∗, X0 = X∗
0, X1 = 0}.

Denote the largest invariant set that contains {S = S∗, X0 = X∗
0, S + I0 = μ

β1
} to

be M2. Then for any initial condition (S(0),C0(0), I0(0), X1(0)) ∈ {S = S∗, X0 =
X∗
0, S+ I0 = μ

β1
}, we have the corresponding solution to system (4) satisfying Ṡ(0) =

Ẋ0(0) = Ẋ1(0) = 0, then S(t) = S∗, X0(t) = X∗
0 , and X1(t) = X1(0). As the

population in all three compartments are constant, we have S∗ + X∗
0 + X1(0) = λ

μ
,

and hence X1(0) = 0; therefore, M2 ⊂ M1.
For any initial condition (S(0),C0(0), I0(0), X1(0)), the system (4) has a unique

solution (S(t),C0(t), I0(t), X1(t)) such that for any ε > 0, there exists a t0 > 0 and
for all t > t0, we have |C0(t) + I0(t) − X∗

0 | < ε and |X1(t)| < ε. And we have the
estimation

δ(X∗
0 − ε) − (εβ1 + δ + τ + μ)I0(t)

< İ0(t) < δ(X∗
0 + ε) − (−εβ1 + δ + τ + μ)I0(t),

thus we have

δ
εβ1+δ+τ+μ

(X∗
0 − ε) ≤ lim

t→+∞ I0(t) ≤ δ
−εβ1+δ+τ+μ

(X∗
0 + ε),

and since it is for any ε > 0, we know that limt→+∞ I0(t) = I ∗
0 , and hence

lim
t→+∞C0(t) = C∗

0 . ��

A.3 Proof of Theorem 3

Proof System (4) can be framed as a general system of ODEs with the bifurcation
parameter β1:

dx

dt
= f (x, β1), f : R

4 × R, f ∈ C2(R4 × R).

Denote the resistant strain-free equilibrium (S∗,C∗
0 , I

∗
0 , 0) as x∗ and we know that

f (x∗, β1) = 0 for all β1 > 0.
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Next, we verify the assumptions of Theorem 4.1 in Castillo-Chavez and Song
(2004). Firstly, the matrix of the linearized system at x∗ is

A = Dx f (x
∗, β†

1 ) =

⎡
⎢⎢⎣

−β0X∗
0 − μ −β0S∗ −β0S∗ −β

†
1 S

∗
β0X∗

0 β0S∗ − δ − μ β0S∗ + τ 0
0 δ −(τ + μ) −β

†
1 I

∗
0

0 0 0 0

⎤
⎥⎥⎦ ,

and 0 is a simple eigenvalue of A and all the other eigenvalues of A are negative real
numbers. Next, we compute the right eigenvector w = (wi )

4
i=1 and have

w1 = (μ+δ−β0S∗)w2−(β0S∗+τ)w3
β0X∗

0
, and w4 = δw2−(μ+τ)w3

β
†
1 I

∗
0

,

where we pick

w2 = 1 − β0S∗+τ

β0X∗
0

− μ+τ

β
†
1 I

∗
0

and w3 = −1 − μ+δ−β0S∗
β0X∗

0
− δ

β
†
1 I

∗
0

.

Simplifying the expressions of w1 and w4, we have

w4 = μ+τ+δ

β
†
1 I

∗
0 X

∗
0

(
μ
β0

+ λ
μ

− 2S∗) > 0, by knowing that S∗ < min
{

μ
β0

, λ
μ

}
,

w1 =
(

β0

β
†
1

− 1

)
S∗

β0X∗
0 I

∗
0
(μ + τ + δ).

Note from the Remark 1 in Castillo-Chavez and Song (2004) w1, w2, w3 are not
necessarily positive, but it is crucial to have w4 > 0 as it corresponds to a positive
perturbation of the equilibrium x∗ on its X1 component.

Compute the left eigenvector v = (vi )
4
i=1 and we have v1 = v2 = v3 = 0, and

v4 = 1. We are thus able to calculate the following:

a =
n∑

k,i, j=1

vkwiw j
∂2 fk

∂xi ∂x j
(x∗, β†

1 ) = 2β†
1w4(w1 + w3),

b =
n∑

k,i=1

vkwi
∂2 fk

∂xi ∂β1
(x∗, β†

1 ) = μ

β
†
1

v4w4 > 0.

Clearly, w3 < 0 and if β0 < β
†
1 , we have w1 < 0, thus a < 0. Otherwise, if β0 ≥ β

†
1 ,

we have

w1 + w3 = (μ+δ−β0S∗)w2+(β0X∗
0−β0S∗−τ)w3

β0X∗
0

= −β0(μ+τ+δ)(
μ
β0

−S∗)−β0β
†
1 X

∗
0 I

∗
0 −β0 I ∗

0 (β
†
1 I

∗
0 +δ)−τ I ∗

0 (β0−β
†
1 )

β0β
†
1 X

∗
0 I

∗
0

< 0,

and thus a < 0, which completes the proof. ��

123



6 Page 22 of 31 X. Huo

A.4 Proof of Proposition 4

Proof From (14), we have

g(S̃) = 0 ⇐⇒ f (S̃)
(
S̃ − μ

β1

)
= μ+τ+δ

β1

(
S̃ − μ

β0

) (
S̃ − μ

β1

)
− (1 − p) λδ

β0β1
.

Then, condition (13) is equivalent to

0 < S̃ < min
{

μ
β1

,
δ+μ
β0

}
and S̃2 −

(
μ
β0

+ μ
β1

)
S̃ − (1 − p) λδ

β0(μ+τ+δ)
+ μ2

β0β1
< 0,

which is equivalent to

0 < S̃ < min
{

μ
β1

,
δ+μ
β0

}
and

1
2

(
μ
β0

+ μ
β1

−
√

(
μ
β0

− μ
β1

)2 + 4(1−p)λδ
β0(μ+τ+δ)

)
< S̃

< 1
2

(
μ
β0

+ μ
β1

+
√

(
μ
β0

− μ
β1

)2 + 4(1−p)λδ
β0(μ+τ+δ)

)
.

Notice that

1
2

(
μ
β0

+ μ
β1

−
√

(
μ
β0

− μ
β1

)2 + 4(1−p)λδ
β0(μ+τ+δ)

)

< 1
2

(
μ
β0

+ μ
β1

− | μ
β0

− μ
β1

|) < min
{

μ
β0

,
μ
β1

}
,

and

1
2

(
μ
β0

+ μ
β1

+
√

(
μ
β0

− μ
β1

)2 + 4(1−p)λδ
β0(μ+τ+δ)

)

> 1
2

(
μ
β0

+ μ
β1

+ | μ
β0

− μ
β1

|) > max
{

μ
β0

,
μ
β1

}
.

Thus, condition (13) is equivalent to condition (16). ��

A.5 Proof of Theorem 4

Next, we state some facts about the boundaries of region� introduced in Proposition 5.

Lemma 1 The following properties of function h are defined in (17) and S∗ are easy
to be verified.

(H .1) h(β1) is a decreasing function for β1 > 0, and lim
β1→0+ h(β1) = 2μ

β0
> S∗;

(H .2) h(β1) = S∗ if and only if β1 = β
†
1 ;

(H .3) h(β1) < 0 for β1 >
μ2(μ+τ+δ)

(1−p)λδ
;

(H .4) S∗ <
μ+δ
β0

;

(H .5) μ+δ
β0

<
μ
β1

if and only if β1 <
μβ0
μ+δ

.
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With the above information, the area� is illustrated as the shaded areas in Fig. 2.We
will need the following Lemma to show the existence of the resistant strain-prevalent
equilibria.

Lemma 2 In the following statements, we begin to regard the function g(S) introduced
in (9) with coefficients defined in (10) as a function of two variables, g(S, β1). The
following facts about g(S, β1) are true.

(G.1) g(h(β1), β1) < 0 for β1 > β
†
1 , and g(h(β1), β1) = 0 when β1 = β

†
1 and

h(β
†
1 ) = S∗;

(G.2) g(S∗, β1) = 0 if and only if β1 = β
†
1 or β1 = β0, g(S∗, β1) < 0 only when β1

lies in between the two roots, otherwise g(S∗, β1) > 0;
(G.3) g( μ

β1
, β1) > 0 for all β1 > 0;

(G.4) g(0, β1) < 0 for all β1 > 0.
(G.5) g(μ+δ

β0
, β1) = 0 if and only if β1 = β0 or β1 = μ(μ+δ+τ)β0

(μ+δ)(μ+δ+τ)−(1−p)β0λ
.

(G.6) μ
β0

> λ
μ
implies β

†
1 > β0, hence β

†
1 < β0 implies

μ
β0

≤ λ
μ
.

(G.7) g(S, β
†
1 ) = 0 has S∗ as one root, and has no root in (S∗,min{μ+δ

β0
,

μ

β
†
1

}) when
β
†
1 < β0.

Proof (G.3)−(G.5) can be checked either algebraically by hand or symbolically by
software Wolfram Mathematica, and we will show the proofs of the other facts.

– Proof of (G.1) We first locate the solution β1 of g(h(β1), β1) = 0. From the proof
of Proposition 4, we know that S = h(β1) is a root of the following quadratic
equation

μ+τ+δ
β1

(S − μ
β0

)(S − μ
β1

) − (1 − p) λδ
β0β1

= 0,

hence by (14), g(h(β1), β1) = f (h(β1), β1)(h(β1)− μ
β1

). Then g(h(β1), β1) = 0

if and only if f (h(β1), β1) = 0 since h(β1) �= μ
β1

for any β1 > 0.
Denote the equilibriumwe look for as (h(β1), I0(β1),C0(β1), X1(β1)), from (11)–
(12), we have f (h(β1), β1) = 0 if and only if C0(β1) = λ

μ
− μ

β1
and X1(β1) = 0.

Thus, we are looking for an equilibrium with its X1 component being 0. An easy
calculation shows thatwehave either h(β1) = S∗+ (where S∗+ > S∗) or h(β1) = S∗.
As h(β1) is a strictly decreasing function, the solution to h(β1) = S∗+ > S∗ is

strictly less than β
†
1 . By (H .2) in Lemma 1, h(β1) = S∗ yields β1 = β

†
1 . That is,

there is no β1 > β
†
1 such that g(h(β1), β1) = 0.

Next we determine the sign of g(h(β1), β1). Observe that f (h(β1), β1) is a
continuous function about β1 > 0, then by the intermediate value theorem,
f (h(β1), β1) will not change its sign for β1 > β

†
1 . Therefore, in order to know

the sign of f (h(β1), β1), we only need to test it at a specific β1 value, which

we choose to be μ2(μ+τ+δ)
(1−p)λδ

and h(
μ2(μ+τ+δ)

(1−p)λδ
) = 0. An easy calculation yields

f (0, μ2(μ+τ+δ)
(1−p)λδ

) = pλ
β0

( δ
μ

+ 1) > 0. Also for all β1 > β
†
1 we have h(β1) <

μ
β1
,

hence g(h(β1), β1) = f (h(β1), β1)(h(β1) − μ
β1

) < 0.
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– Proof of (G.2) By (10), g(S∗, β1) can be seen as a quadratic function about μ
β1

with positive coefficient of the second-order term, it is easy to check that μ
β0

and
μ

β
†
1

are the two roots for g(S∗, β1) = 0, we therefore complete the proof.

– Proof of (G.6) Assume μ
β0

> λ
μ
, notice that S∗ < min{ μ

β0
, λ

μ
}, then

μ

β
†
1

= δ
μ+τ+δ

λ
μ

+ μ+τ
μ+τ+δ

S∗ <
μ
β0

implies β
†
1 > β0.

– Proof of (G.7) When β1 = β
†
1 we have μ

β
†
1

= δ
μ+τ+δ

λ
μ

+ μ+τ
μ+τ+δ

S∗ and rewrite

(15) as

g(S, β
†
1 ) =

(
S − μ

β
†
1

) [
S2 − ( λ

μ
− τ

β0
+ λδ

μ2 + μ+τ
μ

S∗)S + pλ
β0

+ λδ
μβ0

]

+(1 − p) λδ

β0β
†
1

.

Then, the roots of g(S, β
†
1 ) = 0 can be obtained by investigating the intersections

between the third-order polynomial y = P(S) := (S− μ

β
†
1

)
[
S2 − ( λ

μ
− τ

β0
+ λδ

μ2 +
μ+τ

μ
S∗)S + pλ

β0
+ λδ

μβ0

]
and the horizontal line y = −(1 − p) λδ

β0β
†
1

.

Next we look at the roots of the quadratic equation S2−( λ
μ

− τ
β0

+ λδ
μ2 + μ+τ

μ
S∗)S+

pλ
β0

+ λδ
μβ0

. The condition of β
†
1 < β0 is equivalent to

μ

β
†
1

= δ
μ+τ+δ

λ
μ

+ μ+τ
μ+τ+δ

S∗ >
μ
β0

and equivalent to

S∗ >
μ
β0

− δ
μ+τ

( λ
μ

− μ
β0

),

then we can estimate

λ
μ

− τ
β0

+ λδ
μ2 + μ+τ

μ
S∗ >

δ+μ
β0

+ λ
μ
.

Now, we check the determinant of the quadratic equation

	 =
(

λ
μ

− τ
β0

+ λδ
μ2 + μ+τ

μ
S∗)2 − 4 pλ

β0
− 4 λδ

μβ0
>

(
μ+δ
β0

− λ
μ

)2
.

Thus, the quadratic equation has two real roots with the bigger one

x1 > max{μ+δ
β0

, λ
μ
},
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Fig. 8 Auxiliary figure for the proof of (G.7) in Lemma 2 (Color figure online)

it is easy to see that μ

β
†
1

= δ
μ+τ+δ

λ
μ

+ μ+τ
μ+τ+δ

S∗ < λ
μ
, so we have x1 >

μ

β
†
1

.

Therefore, μ

β
†
1

is not the largest root of the third-order polynomial P(S), and the

intersections between y = P(S) and line y = −(1 − p) λδ

β0β
†
1

are illustrated in

Fig. 8. In this way, we can see that S∗ must be the smallest root of g(S, β
†
1 ) = 0

and there is no other root lying in the interval (S∗, μ

β
†
1

), and there is no other roots

lying in the even smaller interval (S∗,min{μ+δ
β0

,
μ

β
†
1

}).
��

Proof of Theorem 4 We only need to show the existence of an S̃ that satisfies condition
(16). Proof of 1: In the case of β

†
1 > β0, for β1 > β

†
1 > β0, we have μ

β1
<

μ+δ
β0

;

then, condition (16) is reduced to max{0, h(β1)} < S̃ <
μ
β1
. By (G.1) and (G.4) in

Lemma 2, we have g(max{0, h(β1)}, β1) < 0, and by (G.2) and (G.3) in Lemma2,
we have g(min{S∗, μ

β1
}, β1) > 0. The intermediate value theorem guarantees that

g(S̃, β1) has a root S̃ in between max{0, h(β1)} and min{S∗, μ
β1

}, and S̃ < S∗.
Proof of 2We split the proof for the case of β

†
1 < β0 into the following two sub-cases.

(1) If μ
μ+δ

β0 < β
†
1 < β0, For β1 > β

†
1 >

μ
μ+δ

β0, we have
μ
β1

<
μ+δ
β0

; then, condition

(16) is reduced to max{0, h(β1)} < S̃ <
μ
β1
.

By (G.1) and (G.4) in Lemma 2, we have g(max{0, h(β1)}, β1) < 0, and by (G.2)
and (G.3) Lemma 2, we have g(min{S∗, μ

β1
}) > 0 for β1 ∈ (β0,+∞), then the inter-

mediate value theorem guarantees that g(S̃, β1) has a root S̃ in betweenmax{0, h(β1)}
and min{S∗, μ

β1
} for β1 ∈ (β0,+∞), and S̃ < S∗.

Again by (G.2) in Lemma 2, we have g(S∗, β1) < 0 for β1 ∈ (β
†
1 , β0), and by

(G.3) in Lemma2, the intermediate value theorem guarantees that g(S̃, β1) has a root
S̃ in between S∗ and μ

β1
for β1 ∈ (β

†
1 , β0) and clearly S̃ > S∗.

(2) If β
†
1 <

μ
μ+δ

β0, we here discuss the existence of S̃ in three intervals of β1.
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(2a) For β1 ∈ (β0,+∞), we have μ
β1

<
μ+δ
β0

and the condition (16) is reduced to

max{0, h(β1)} < S̃ <
μ
β1
. Follow the same discussion as in case (1), we have the

existence of S̃ < S∗.
(2b) For β1 ∈ (

μ
μ+δ

β0, β0), we have the condition (16) reduced to

max{0, h(β1)} < S̃ <
μ
β1

.

By (G.2) and (G.3) in Lemma 2, we can conclude the existence of S̃ > S∗.
(2c) For β1 ∈ (β

†
1 ,

μ
μ+δ

β0), we have the condition (16) reduced to

max{0, h(β1)} < S̃ <
μ+δ
β0

.

Then in order to prove the conclusion, we only need to show that g(μ+δ
β0

, β1) > 0

for β
†
1 ∈ (β

†
1 ,

μ
μ+δ

β0). From (10), g(μ+δ
β0

, β1) can be regarded as a quadratic func-

tion about μ
β1

with positive coefficient of the second-order term, thus the interval for

g(μ+δ
β0

, β1) > 0 is determined by the two zeros of the function which were obtained

in (G.5) in Lemma 2. Firstly, if μ(μ+δ+τ)β0
(μ+δ)(μ+δ+τ)−(1−p)β0λ

> 0, it is easy to check that
μ

μ+δ
β0 <

μ(μ+δ+τ)β0
(μ+δ)(μ+δ+τ)−(1−p)β0λ

, and g(μ+δ
β0

, β1) > 0 for β1 <
μ

μ+δ
β0. Secondly,

if μ(μ+δ+τ)β0
(μ+δ)(μ+δ+τ)−(1−p)β0λ

< 0, we have g(μ+δ
β0

, β1) > 0 if and only if μ
β1

>
μ
β0

or μ
β1

<
μ(μ+δ+τ)β0

(μ+δ)(μ+δ+τ)−(1−p)β0λ
which is equivalent to β1 < β0. Thus, we have

g(μ+δ
β0

, β1) > 0 for all β1 ∈ (β
†
1 ,

μ
μ+δ

β0). ��

A.6 Proof of Corollary 1

Proof It is a well-known result that if the discriminant of a third-order polynomial is
strictly greater than zero, then thepolynomial has three distinct real roots ofmultiplicity
1, hence each of the real roots S of g(S, β1) = 0 is continuously dependent on β1.
As (G.3) and (G.4) in Lemma 2 guarantee the existence of a real root in (0, μ

β1
), we

denote S−(β1) as the continuous branch that represents the smallest root in (0, μ
β1

),

and S+(β1) as the one that represents the largest root in (0, μ
β1

). Then, both S−(β1)

and S+(β1) are well-defined and continuous for all β1 > β
†
1 .

1. If β
†
1 > β0. For β1 being sufficiently large, condition (16) is equivalent to 0 <

S̃ <
μ
β1
, hence S+(β1) stays in the region

�1 :=
{
(β1, S) : β1 ≥ β

†
1 , max{0, h(β1)} ≤ S ≤ min

{
μ
β1

, S∗}}

for sufficiently large β1. By (G.1)−(G.4) in Lemma 2 and that S+(β1) is a con-
tinuous curve, S+(β1) must stay in region �1 and only touches and crosses the
boundary of �1 through the point (β†

1 , S
∗). Hence, both S+(β1) and S−(β1) stay

below S∗.
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2. (2a): If μ
μ+δ

β0 < β
†
1 < β0. By (G.1), (G.3), (G.4), (G.7) in Lemma 2, we know

that the curve S+(β1) stays in region

�2 :=
{
(β1, S) : β1 ≥ β

†
1 , max{0, h(β1)} ≤ S ≤ μ

β1

}
.

Then, the bifurcation branch only touches and crosses the boundary of �2 through
the point (β

†
1 , S

∗). Also from Theorem 4, there exists a S̃ ∈ (S∗, μ
β1

) for β1 ∈
(β

†
1 , β0), so S+(β1) must pass through the points (β

†
1 , S

∗) and (β0, S∗) and stays
above S∗ for β1 ∈ (β

†
1 , β0) and for β1 > β0, S+(β1) < S∗.

(2b): If β†
1 <

μ
μ+δ

β0. From the proof of (2c) in Theorem 4, the curve g(S, β1) = 0

intersects the horizontal line S = μ+δ
β0

at two points and both of them are outside
of the region

�3 :=
{
(β1, S) : β1 ≥ β

†
1 , max{0, h(β1)} ≤ S ≤ min{μ+δ

β0
,

μ
β1

}
}

.

By (G.1)−(G.4), (G.7) in Lemma 2, we know that the bifurcation branch S+(β1)

stays in region �3, it only touches and crosses the boundary of �3 through the
point (β

†
1 , S

∗), but for β1 ∈ (β
†
1 , β0), we have S+(β1) > S∗ and for β1 > β0,

S+(β1) < S∗. ��

A.7 Proof of Corollary 2

Proof If the discriminant of a third-order polynomial is strictly smaller than zero,
then the polynomial has only one real root of multiplicity 1, hence S̃ is unique and
continuously dependent on β1. From Theorem 4, we have that S̃ < S∗. ��

A.8 Proof of Theorem 5

We will apply Theorem 1.3.2 in Zhao (2003) to show the uniform persistence, and
hence we need to formulate the problem as follows.

Consider the solution spaceX := {(S, I0,C0, X1) : S, I0,C0, X1 ≥ 0}, the interior
subspace of X: X0 := {(S, I0,C0, X1) : S, I0,C0, X1 > 0}, and the boundary of X0
in X: ∂X0 := X \ X0 = {(S, I0,C0, X1) : S = 0 or I0 = 0 orC0 = 0 or X1 = 0}. We
denote �t : X → X, t ≥ 0 as the semiflow defined by the solution of system (4), and
M∂ := {x ∈ ∂X0 : �t (x) ∈ ∂X0, t ≥ 0}. Denote d(x, y) as the Euclidean distance
between two points x, y ∈ R

4, and d(x, E) := inf{d(x, y) : y ∈ E} as the distance
between a point x and a set E ⊆ R

4. As X0 is positively invariant, p(x) := d(x, ∂X0)

can be seen as a generalized distance function for �.
Further, we denote the baseline system with only strain 0 as

Ṡ = pλ − β0(C0 + I0)S − μS,

Ċ0 = (1 − p)λ + β0(C0 + I0)S + τ I0 − (δ + μ)C0, (20)
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İ0 = δC0 − (τ + μ)I0.

Lemma 3 M∂ = {(S, I0,C0, X1) : X1 = 0} ∩ ∂X0.

Proof If x ∈ {(S, I0,C0, X1) : X1 = 0} ∩ ∂X0, then �t (x) is the solution to
system (20) and �t (x) ∈ {(S, I0,C0, X1) : X1 = 0} ∩ ∂X0 ⊆ M∂ ; hence,
{(S, I0,C0, X1) : X1 = 0} ∩ ∂X0 ⊆ M∂ . For any x ∈ M∂ , suppose for contra-
diction that x ∈ {(S, I0,C0, X1) : X1 > 0} ∩ ∂X0; then, Proposition 2 implies
�t (x) ∈ {(S, I0,C0, X1) : S, I0,C0, X1 > 0} � ∂X0. Therefore, we have
x ∈ {(S, I0,C0, X1) : X1 = 0} ∩ ∂X0. ��
Lemma 4 {(S∗, I ∗

0 ,C∗
0 , 0)} is isolated in X for β1 > β

†
1 .

Proof Choose ε = (
β1(S∗ + I ∗

0 ) − μ
)
/3 > 0, denote B0 as the ball centered at

(S∗, I ∗
0 ,C∗

0 , 0) with radius ε, and denote the maximal invariant set in B0 as M . For
any point x ∈ B0 \ {(S∗, I ∗

0 ,C∗
0 , 0)} and �t (x) ∈ M ⊆ B0 for all t > 0, denote

(S(t), I0(t),C0(t), X1(t)) := �t (x), thenwehave |S(t)−S∗| < ε and |I0(t)−I ∗
0 | < ε

for all t > 0. However, from the last equation of system (4), we have Ẋ1(t) =
[β1(S(t)+ I0(t))−μ]X1(t) > [β1(S∗ + I ∗

0 )−2ε0 −μ]X1(t) = εX1(t) for all t > 0,
then Ẋ1(t) > ε1X1(t) implies lim

t→+∞ X(t) = +∞ which leads to a contradiction.

Therefore, the maximal invariant set in B0 is the set that contains only the equilibrium
{(S∗, I ∗

0 ,C∗
0 , 0)}. ��

Proof of Theorem 5 Apply Theorem 1.3.2 in Zhao (2003) to show the uniform persis-
tence. By Proposition 2, X0 is positively invariant for the semiflow �t generated by
the solution to system (4), and �t is compact and point dissipative, hence there is a
global attractor for �t .

Let {(S∗, I ∗
0 ,C∗

0 , 0)} be the finite sequence that only consists of one set, which is
obviously disjoint, compact, and from Lemma 4 it is an isolated invariant set in ∂X0.
Next, we check with the following properties.

(a) From Lemma 3, for any x ∈ M∂ we know that�t (x) is the solution to system (20)
and by our analysis of the baseline system, we have ω(x) = {(S∗, I ∗

0 ,C∗
0 , 0)}.

(b) There is apparently no subset of {(S∗, I ∗
0 ,C∗

0 , 0)} that forms a cycle.
(c) {(S∗, I ∗

0 ,C∗
0 , 0)} is isolated in X from Lemma 4.

(d) As stated before, we define p(x) := d(x, ∂X0), we need to show that for any
x ∈ X \ ∂X0, lim

t→+∞ d(�t (x), (S∗, I ∗
0 ,C∗

0 , 0)) �= 0, and similar argument as the

proof in Lemma 4 is sufficient.

It follows from Theorem 1.3.2 in Zhao (2003) that there exists η > 0 such that for
any x ∈ X \ M∂ , we have min

y∈ω(x)
p(y) > η. That is,

lim inf
t→+∞ S(t) > η, lim inf

t→+∞ I0(t) > η, lim inf
t→+∞ C0(t) > η, lim inf

t→+∞ X1(t) > η,

for any nonnegative initial condition (S(0), I0(0),C0(0), X1(0)) with X1(0) > 0. ��
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A.9 Proof of Theorem 6

Proof Firstly, we compute the difference between β
†
1 and β0:

β
†
1 − β0 = μ

S∗+I ∗
0

− β0 = μ
λ
μ

δ
μ+δ+τ

+ μ+τ
μ+δ+τ

S∗ − β0.

Therefore, β†
1 − β0 has the same sign with the following function d(β0):

d(β0) :=
(
μ − 1

2μ
μ+τ

μ+δ+τ

)
−

(
λ
μ

δ
μ+δ+τ

+ 1
2

λ
μ

μ+τ
μ+δ+τ

)
β0

+ 1
2

μ+τ
μ+δ+τ

√(
λβ0
μ

+ μ
)2 − 4pλβ0.

Clearly, d(0) = μ > 0, and

d(β0) <
(
μ − 1

2μ
μ+τ

μ+δ+τ

)
−

(
λ
μ

δ
μ+δ+τ

+ 1
2

λ
μ

μ+τ
μ+δ+τ

)
β0 + 1

2
μ+τ

μ+δ+τ

(
λβ0
μ

+ μ
)

= μ − λ
μ

δ
μ+δ+τ

β0 → −∞ as β0 → +∞,

thus d(β0) < 0 for β0 being sufficiently large. Since d(β0) is a continuous function,
there exists at least one intersection between its curve and the positive branch of the
β0 axis. Observe that d(β0) = 0 has at most two real roots; hence, we can conclude
that there exists a unique positive solution to d(β0) = 0, and we denote it as β∗

0 . So
d(β0) > 0 on (0, β∗

0 ) and d(β0) < 0 on (β∗
0 ,+∞), which completes the proof. ��
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