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Abstract

The stressnduced susceptibility hypothesishichpredictschronicstress weakesimmune

defenseswasproposedo explainincreasingnfectious diseaseelatedmassmortality and

population declinePrevious work characterized wetland salinization as a chronic stressor to

larval amphibian population$hus, wecombinedfield observationsvith experimental

exposures quantifyingpidemiological parameters test the role o$alinity stressn the

occurrence of ranaviresssociated mass mortality everidespite ubiquitous pathogen presence

(94%), populations exposed to salt runoff had slightly more frequaravirus related mass
mortality events more lethal infections, ardl 7-times greater pathogenwronmentaDNA.
Experimentakxposure t@hronicelevated salinity0.8-1.6 g/L Cl) reduced tolerance to
infection, causing greater mortality at lower dos#e found a strong negative relationship
betweersplenocyte poliferation and corticosteroria ranavirusinfected larvaat a moderate
elevation of salinitysupporting glucocorticoithedicated immunosuppressidmt not at high
salinity. Salinity aloneredued proliferation further at similar corticosterone leais infection
intensites Finally, larvaeraised in elevated salinity hd@-timesmoreintenseinfectionsand
shed5-timesas much virusvith similar viral decay rats, suggestingncreased transmissio@ur
findings illustrate how a small change in habitat qudéiadsto morelethal infectionsand

potentiallygreater transmission efficienapcreasing the severity of ranavirus epidemics
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1. Introduction

Mass mortality eventdue to infectious diseasa animals aréncreasing in frequency across
taxa[1l], manyof which involve multiple environmentatressor$2-5]. The stressnduced
susceptibility hypothesigosits thatnfectious diseasassociated population declines are caused
by persistenstresghatincreass hostsusceptibilityto infection[5-7]. The presumednechanism
is thatchronic activation of theeuroendocrine stress axig/pothalamuspituitary-
adrenal/interrenaxis) causesegative feedbaclelevatingglucocorticoidlevels that directly
signal immune cell apoptodi8, 9]. Sincethe immunomodulatory effects of glucocorticoids
depend on magnitude and timif& 10]and can be enhancing at acute elevated 1§9¢lkl], a
key assumption of this hypothesis is that ecological change cztusesc stresswhich is
immunosuppressiv®ther,glucocorticoidindependenmechanisms have been proposed, such
as limited resourcaseeded to fight infectiofiL2], directcytotoxicity (reviewed in[10]), or

altered neuroendocringmmuneinteractionscausng homeostatic imbalande.g.,endocrine
disruptorg13]). A further challenge is translating individdal/el effects tahe population scal
since stresws caraffect multiple countervailingepidemiological factorgl4]. Due tothe
complexityof hostpathogerenvironment interactionghere are few examples in whichusal
links betweerecological changeghysiological stress, artbelikelihood of pathogerinduced

mass mortality in wildlifdhave been establish§gl 15].

To investigatahe effects ofenvironmentathangeon pathogeAnduced mass mortality
events we focused on amphibian populations affected by road salt rimdfie United States,
theyearlyapplication ofmillions of tons of dieing sals (typically NaQd) hasledto persistent
salinization of freshwatesystemgup to 25% of seawatef)6]. Salinization isalsocausedy

increasing droughtining activities, agriculture, and skavel rise[17], and has been associated
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with increased disease susceptibility in other systems $trgptococcus freshwatetilapia
[18]). Althoughsome lineages have adapted to brackish Wa8dr even slight increases in
salinity areenergetally costy to evolutionarily naiveamphibiars, causing physiological stress
evidenced bylevelopmental retardatiogill inflammation, and increased cell turnoy20-22].
At concentrationbelow theUS . EP A6 s r e c level ioeaqudtie life(230 mg/L Cl),
salinization ofroadsidenabitatsn Northeatern US(average ofi50 mg/L Clin our study
systen) [23] reducesamphibianembryonic survival24, 25] larval growth and activityf26, 27]
and elevateplasma corticosterone concentratiamsdults[26]. The evidencef salinizatiors
influence oramphibian disease dynamit®wever, is mixed. ¥perimentakalt exposure
increasd trematodeRibeiroiaondatrae infection intensity but reduced the number of
infections, potentially through negative effects of salinity on the trem§28dleYetin asimilar
study,trematodenfection was more prevalenith salt exposur§29]. On the other hand,
elevated salinity reduces survival of thangal pathogeBatrachochytridum dendbatidis (Bd)
outside its hosthusappears toeduce transmissidi30]. Predictingthe neteffects ofstressors
on hostpathogen interactioris not straight forward14], butthere is an urgent need to clarify
the potentiabutcomesas secondary salinizatiesrapidly changing freshwater ecosystems
globally [17, 31]

Here wetestedwhethersalinization of wetlandfom salt runoff increasethe frequency
or severity of ranavirus epidemicslarval wood frog(Lithobates sylvaticgopulations
Ranavirusesrewidely distributed multi-host,oftenlethalviruses in the genuRanavirus
(Family Iridoviridae) [32]. In a rangewide surveyof wood frogs ranaviruswasmore prevalent

in regions with greater host populatidensityand roaddensity[33]. Wood frog larvae are

highly susceptible to ranavirus infection compared to other ranids (e.g., bullfrogs) and epidemics



84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

canvary from insubstantiahortality to the complete loss of a year clggY with no clear
explanatior[35]. We predicted that ialinity stresglays a roléncreasing theeverityor
frequencyof ranavirus epidemigshenmore severe infections and greater mortality from
infectionwould occurin populations affected by salt runoff. Following the stieslsiced
susceptibility hypothesis, we predictiée: chronic stress of road salt exposurehich causes a
reallocation of resurces from body growth to coping with greater osmoregulatory demands
[26]0 will cause reduced immunocompetemiceough one or more of tledorementioned
mechanismsSince fess can reduce tipeobability d an epidemic through the loss of
susceptible hos{4.4], we would expect salinity stress to increase transmission, either by the
increasing the viral shedding or environmental persistence, both of which would leaddtea gre
chance of mass mortality in populations in salinized wetlandscombined field surveys to
examinecorrelations with pathogen presence and mass mortality events and laboratory
experiments to test causal mechanisms through which salinity stressnooeétse the likelihood

of a dieoff through effects on host susceptibility and viral transmission.

2. Methods

(a) Observations of ranavirugelatedmass mortality events

We surveyedl8 ephemeral ponds witsimilar wood frogarval densities that spannadange of
proximities to roadshat receivesalt applicatiorj24, 36]in themixed hardwood forests of Yale
Myers Fores{YMF) in northeastern Connecticut, URig. 18), where thgrimary disturbances
are associated with road maintenaand rural housingRoadside wetlands reach conductivity (a
directmeasure o$alinity [37]) levels of 4000 uS/cn~ g/L CI) due to deicing salt runof24,

36], causing high levels of embryonic mortalityvwood frogs [24, 38]thus decreased larval
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density,which would reduce our ability to detect mortality eveB&lected ponds less than 250
m from paved roads had higher salinitgriductivityrange: 36360 uS/cm:~4-95 mg/L Ct)

than those further away (ZFD uS/cm;~2-5 mg/L CI; t-test: t1.44= 2.38, P=0.03 other abiotic
factors measured in each pomdre not correlated with conductivitygble S). We conducted
weekly surveyso observecarcasseffom the midlate larval periodfrom 3 Jundo 10 July
2013,when ranaviruselatedmortality eventsare most commof86, 39] Die-off evens were
defined as> 90%of larval amphibians found dead andasirusinfections confirmedvia gPCR
We also collecteduthanizedarvae (n=5) and pond water sampiesletermine ranavirus
abundancén the community(250 ml filtered water, n=3/pond h e r e a f tattwo pdginesD N A 0
in larval developmen{see[35] for methods)We disinfected all equipment and waders with
10% bleach between pontisprevent crospond contaminatiorAll statistical analyses were
performed in R version 8.3[40]. We appliedan information theoretic approapti] (see
Supplemental Method#) estimatehe importance of pond characteristics in predictitey
observatiorof die-offs (logistic regressionandRanaviruseDNA concentrationsarly and latén
larval developmenfiinear regressions)

(b) The progression afaturally acquiredranavirus infections

We collectedlarvae(Gosnef42] stages 389, median = 37from 11/18 survged siteghathad
no observed mortalitat the timgnumbered in Fig 1d.0-13 per pond2-2236 m from anajor
road within 3 days othe second eDNA sampland monitoedthe progression afaturaly
acquiredinfectionsin the laboratoryLarvae were houseddividualy in containers 0625 ml of
dechlorinated tap watér 200uS/cm) With this design, we could examine lasting effects of
roadrunoff exposure, which has been shown to contiewenafter returning larvaeotfreshwater

[43], but we @amot rule out the confounding effect @posure to ahange invater chemistry



130  when brought to the laboratoie analyzed swival to 17 d post metamorphic climéy

131  salinity using a mixed effect€ox proportional hazard (Cox Ph)odel withsiteas random

132 variable €oxmefunction incoxmepackagd44]). We comparedbgio ranavirudiver titersat

133  deatheuthanasia using a linear mixed model with site as a random vatmablen(thelmerTest

134  package).

135  (c) Effect of elevated salinity on laboratergised larvae

136  For this and subsequent experiments,reaed animalghroughout their livesn freshwater or
137  water withaddedroad sal{NaCl collected from a Department of Transportation-shid

138  (Union, CT) to achieve desired conductiviti#ge collectedwood frog eggs froma pondin

139  Poughkeepsie, N¥vhere ranavirus dieffs hal not been observgd 50 uS/cmconductivity)

140  and transportethemto Washington State University where they were housed at 15° C with
141  15L/9D light cycle. Eggsvererinsed with clean wateand divided into threeatments:

142  freshwater dechlorinatedvater with a conductivity ~200 uS/cm due to calcium ions), average
143 salinity (1500 uS/cm~0.76 g/L CI"), and near maximum salinity (3000 uS/cAi.6 g/LCI") for
144  wood frog ponds in this regid@4, 26). While thehighest salinity treatment is more salitih&an
145  those inourfield survey previous surveys have detectadsae surviving irpondsacross te full
146  range oftreatmentevels[24, 45] We euthanized 10 larvae asdreened foranavirus before the
147  exposure experiment begurone amplified

148 First, we estimated the effects of road salt exposure on mortality from iofesy

149  conducting a doseesponse experimensing the salinity treatments abauw@ssed wittfour

150  doses ofinFV3 ranavirus mockexposureglow, medium and high ranavirus dog8s3x1C,

151  3x10%, 3x1@ plaque forming units per nipfu/ml], respectively;N=20/dosé salinity level, see

152  Supplementary Methodd)arvae were distributed into treatmembupsto standardize



153  developmentastage (same mediaGosner 34and rang: 30-38). We monitored survival util

154  metamorphosis and comparegsemortality (QPCR positives onlyfrom infectionin

155 individually housed larvaasinga logisticregressiondim with family bionmial, link = logit; in
156  the packagstats[40]) anda parametric survival analysisufvregin the packagsurvival[46]),
157  with development staget exposur@s a covariate in both analyses

158 We then exposednother sample darvae fromthesame cohorfN=20/salinity leve|

159  Gosner stages 336)to a moderate dog@x10* pfu/ml) or mock exposreto determine the

160 effectof elevated salinity omfection intensityin gastrointestinal (Gl) tissyeorticosteronand
161 immuneresponsgand shedding ratét 6 days posinoculation(dpi) we euthanizednimals

162  dissected spleens (see bel@myl frozecarcassem liquid nitrogen We also filteredl50 ml of

163  waterfrom each container to collect eDNA (following method$3&]) to estimateviral

164  shedding rate. Ranavirus eDNA is positively related to infectiousness in wood frog tddphles
165  but this method does not measure concentrations of viable viieextracted DNA from

166  dissected Glissueand flters and assayed both using gPCR assays (N¥28)measured

167  corticosterone concentrations of dissected interrenal gl salinitys ranavirudevel),

168  where this hormone is synthesiZd8], using ether lipid extdions and enzyme immunoassays
169  We measured splenocyte proliferation as an indicator of immune system activity by marking
170  mitotic cells with a polycolonal antibody for phosphistone H3 (PH3) using

171 immunofluorohistochemistry method®rior research showeHlat devated glucocorticoid

172 signaling inhibits proliferation and stimulates apoptosis of splenocytes in amphdanSee

173 Supplemental Methodsr detailsof each of these procedures.

174 We analyzed log Gl and eDNAranavirugiters and logo interrenalcorticosterone

175 concentrations per mg of tisskg water treatments using univariditgear regression®r each



176  responsd€lm analyzed using\novain the packagear [49]). We comparecdrevalence of

177  infection ushg aX?test of proportionsWe analyzedhe number of PH34icells (n=6-

178  10/salinity? ranavirus levelsiising a Poisson regressiainin the packagstatg, with main

179  effects ofranavirusand salinity, theiinteraction and thearea of thespleen section as a

180  covariate We alsousel Poisson regression withthreeway interaction ternmbetween

181  corticosteron®r ranavirus titersalinity andranavirus exposurn® determine if the relationships
182  between these variables varied among treatments

183 In a third sample of larvae from this coharge tested whethesalinity affectscontact

184  ratesto increasalirecttransmission50], becauselevated salinity reduces larval iadly [26,

185  28]. We counted the number of contacts between gitwaysed larvae (16 replicates of 10 L
186 aquaria, 6 larvae each) that were either modwavirusexposed (high dose, same as above) in
187  eitherfreshwateior 3000 pS/cnsaltwvater. After 7 days of acclimatiorwe tallied the number of
188  contacts during a 10 miperiodl d before exposure, @pi, and 5 dpiat same time of dayyVe
189  analyzed conta rate between water and ranavittgatmentsising alinearmixed model with

190 time and tank as random variab{tserin the packagémerTes{51]).

191 To estimatethe effects oalinity on viral persistence in the environmente colleced

192  Gosnerstages 388 wood frog larvaérom YMF (Site 4 in Fig. B) when a dieoff was

193  occurring(ersuring they had highanavirugiters). We set ug8 replicatel0 L aquaria containing
194 6 larvaein eitherfreshwater or high salinitycOncentrationas above)Carcassesere removed
195  daily with a disinfected naintil day 7whenwe removed all larva&Vaterwas sampled150 mt
196 filtered and quantified as above each aquarium aight timepointsWe analyzedanavirus

197 eDNA titerusing a linear regressidiefore larvae were removed witlhe number of larvae
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remainingat d7and timepointascovariats, and after larvae were removed to compare decay

ratebetween water treatments

3. Results

(a) Observations of ranavirugelatedmass mortality events

We observed ranavirdeelated dieoffs in seven(39%)of 18 pondqFig. 1a) five of whichhad
elevatedsalinity (measured as conductivitghd werewithin 250 m of a paved roadndin three
of whichwe observedanavirus related dieffs in 2011(EMH pers. obg and 201436].
Distance to road was in all of the besipported models, arslinity wasin next best model that
did not inclide distance to roads (Tabl2 & S3), which were th@nly two variables in the best
fit models that predicted thgrobability of adie-off. Specifically, the probability declined with
distanceg(Fig. 113 Bsqrt(metersy= -0.132+ 0.068, z=-2.272, P =0.023 andmarginallyincreased
with salinity (Biog1o(conductivity= 4.300+ 2.333 z=1.843, P = 0.0650ur eDNA surveys revealed
thatranaviruswas ubiquitous (17/18 pondahd ranavirus eDNA&oncentrations were positively
related to salinity levelduring early developmerfiN=18; Biog10s/cmi= 1.93 + 0.690, t2,15=

2.798 P = 0.014; Fig. 19. andduring late development amaice dieoffs beganSpecifically,
pondswith elevated salinitjpearmajor road$ad~117 times higheconcentrations afanavirus
eDNA in pond watewhenlarvaewerenearingmetamorphosisvhich for some pondsoincided
with or afterobservedlie-offs (N=17; Bsgrt(metery =-0.045+ 0.017 t214=-2.591, P = 0.021;

log10(usiem) = 1.93+ 0.823, t214=2.351 P = 0.034).

(b) The progression of naturally acquired ranavirus infections
All of the larvaecollected had natural ranavirus infectiaisleath or euthanasiaut larvae

collected from pondwith higher salinitydied at a faster rafeom infection(Cox PH with pond

10
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as a random effedBogropsicm= 4.239+ 1.943 z = 1.94 P =0.029 Fig. 19 and had greatdarval
titers at deatlor euthanasign=96; 3-11/site; Pogiopsicm = 4.5%6 + 1.911 t1, 9.750= 2.405 P =
0.038 Fig. 1¢. Because salinity aneDNA concentrationg/ere correlated, survivalas also

predicted byiral eDNA (Biog1o(copiesmy= 1.535+ 0.540,z= 2.82,P = 0.005)
(c) Effeds of elevated salinitypn laboratory-raised larvae

Larvaehadgreaterodds of dyingrom infection (positives onlwvith increasingvirus dose and
developmental stage at expos(Begiorvdose= 0.899+ 0.160,z = 5.637,P < 0.00%, Bstage=
0.271+ 0.082,z = 3.310,P < 0.009), andwith highersalinity Bsaiinty = 3.737+ 1.439x 10% z =
2598 P = 0.009; Fig. 2). Exposure tdigh salinity increasedhe odds ofmortality by 2.85-fold
relative to freshwatesicrosganavirusdoses, andreduced thestimated_Dso (doselethal to
50%) by nearly 4fold compared with freshwatgirom 30,200pfu/mL in freshwatetto 7,762
pfu/mL). Larvae in the high salt treatmealsodiedfasterfrom infections (parametric survival
analysis Bsaiinity = -1.23 + 0.45 x 18, z =-2.84,P = 0.005;Bog10Rv dse= -0.851 *+ 0.1247 = -
6.88,P < 0.001;Bstage= -0.179 + 0.044z =-4.08,P < 0.001) In the absence of ranavirus
exposure, salinity had a marginal effect on mortaptyiifiy = 8.636+ 5.157x 104,z = 1.675 P

= 0.09), andsalinity did not affecthe proportion infectedP = 0.62).

Larvae exposed to ranavirus had elevaesting interrenatorticosteroneoncentrations
6 dpi compared to unexposéatvae(df = 1,F = 23.7,P <0.001) Thosereared in kevated
salinity exhibited marginally elevatezbrticosteroneANOVA; df = 1,F =3.576 P = 0.064;
Fig. 3d), butthe interactiorwith ranavirus exposungas na significant(P = 0.2%. However, we
detected main and interactive effects alfraty andranavirusexposureon proliferating
splenocytecouns (GLM, Salinity: X? = 16.483, df = 1P < 0.001;RanavirusX? = 5.672, df= 1,

P = 0.017{nteraction:X? = 4.210, df = 1P = 0.040;Fig. 3b). Salinity also increase@| viral

11



244  titersof infected larvaddf = 1,F =7.97, P = 0.01; Fig. 3c). Splenocyte pliferation was

245  negatively related toorticosterondevels(bcort=-0.724+ 0.099, z =7.31, P <0.001)put this

246  relatiorship depended on saliniandranavirusexposuretfreeway interactionX? = 8.343 df =
247  1,P=0.004,CORT-salinity interactionX? = 8.594, df=1P = 0.003, ranavirusalinity

248  interaction:X? = 3.188, df = 1P = 0.074; Fig. 3d). Specifically, salt exposed animals had steeper
249  slopes inthe CORTproliferationrelationshipcompared to those raised in freshwater, except in
250 high salt and ranavirus exposed larvae, which had a flatter slope with a lower intercept.

251  Splenocyte proliferatio was also negatively related to infection intengity, this relationship

252  depeneédon exposure to salinity (Gl titevalinity interactionX? =6.248, df=1, P = 0.012; Gl

253 titer: X? = 7.202, df =1, P = 0.00Fig. SJ. Further,greatersalinity exposurslowed

254  developmental ratgruskatWallis: X?=7.532 df=2, P = 0.023), andsplenocyte proliferation
255 anddevelopmental rateere negatively associated in elevated salinity but niseghwater

256  (Developmental ratsalinity interactionX? = 9.041, df=1, P = 0.008)evelopmentP = 0.7374,

257  Salinity: P = 0.329, RV exposure = 0.3%yg. SJ.

258 Our experiments designed tiweasure effects of salinity on routes of transmissimwed
259 thatsalinity treatmenttended to have more extreme sheddgusintile regressioANOVA of
260 90" from 50" percentile F = 4.879,P = 0.029 whiskers shown in Figl). Whenwe sumthe

261 ranavirus eDNAconcentrationsicross individualso estimate a populatielevel responselarvae
262 in thehigh sainity treatment shefl.5-timesmore virus than the freshwatgmoup (20,417

263 compared t@®,715copies total)Shed viraleDNA concentrations were correlated w@lhtiters
264 (Piogrocititer=0.954+ 0.075, t1 58= 12.737 P < 0.001).However,elevated salinity did not affect

265 contact ratebetweerarvaewith or without ranavirugxposuretz1.1s=-1.175P = 0.253.

12
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We also observed an increaseiiral sheddingn high salinity conditionsn naturally
infectedlarvaecollectedfrom a pond during a dieff. eDNA concentrationsveremore tharan
order of magnitudgreaterin the highsalinity treatmentompared tdreshwateiBsaiinity = 1.411
+ 0.220,t16=6.407,P <0.00]), and remained higher for 12after we removedarvae though
there were no differences in decay rates between salinity treatments1.598,P = 0.125,

Fig. 4).

4. Discussion

Since first proposetb explaininfectious diseasknked amphibian populatiodeclineq7], the
stressinduced susceptibility hypothedias receivedupportinking envronmental change
physiological stress argteatemortality from infection(e.g., agricultural runoff, but not natural
stressorssee revieW52]). Yet fewstudiescausally linkimmunosuppression observed in the
laboratory tgprevalence of infection on the landsc@$p®], andnonewe know oflink to mass
mortality eventsSincesalinization isa persistentenergetically demandirgjressof22, 26]we
hypothesizededuced immunéunctionvia glucocorticoiddependent andndependent pathways
at the individualevel; and immunocompromised populations withreased transmission and
mortality from infectionwould pass thépping point of mordrequentand severe ranavirus
epidemics Fig. SJ. Though oufield observations were necessarily biased towards robust
populations in order to observe mass mortality (simigger salinity roadside ponds had much
lower larval densities we selected roadside populations with lower than tygiicéty [26, 36),
we discovere@ correlatiorbetweerthe probability of observed ranavirassociated dieffs
andproximity to roadsand a weak correlation with salipitThis observation wasorroborated

with >100 times greater concentration of viral eDIN#vhich is tightly associated with larval

13



289 titers[35]0 and greater mortality and viral loads in larvae with naturally acquired infections
290 from more saline wetlandBerhapstthe maximuntolerablesalinity levels embryonic

291  mortality reduces the probability of @pidemiahroughthelossof susceptible individualgl4],
292  thus future work is needed to more strongly link salt stress and masétynevtants through
293  broadersurveys. Altogether, hese correlationset the stage for experimentally testwlgether
294  salinity stress plag/a role in the severity and outcome of infections in wood frog larvae.
295 Our experimental exposured environmentallyelevantroad salconcentrations

296  supported several components of the stiedgced susceptibility hypothesis and revealed
297 additional nuances.drvaereared irelevated salinityvere more likely to die from virus

298  exposureandexhibitedsuppressednmune functionPrevious work also found thednavirus
299 infection induces a stress respoftsé similar to other infectionfb5]. However, contraryo our
300 expectationgor the involvement of the HPI axisalinity only marginallyincreasd resting

301 glucocorticoid levelsAlthough salinity and ranaviruxposuredid not interact to predicesting
302 interrenal corticosterone concentrations, observed atrong negative relationship between
303  splenocyte proliferatiomnd corticosteronthat depended on salinity and ranavirus exposure
304 Thus,glucocorticoidmedated immunosuppressi@xplains in parteduced tolerance (i.e.,

305 greater infection intensityjue to salt exposur8&plenocyte proliferatiorms negatively affected
306 by glucocorticoid signaling in experimental studies in anufd8kand is an essentiatute

307 inflammatoryresponsé¢hat ranavirus is likely capable of inhibitifig6], offering a potential

308 explanation to theegative relationship we found between infection loads and proliferation
309 Additional work is needed to determine if teiglenocyte response coincides with the inhibition
310 of otherantiviral responsethat occurs in other vertebrates via increased GR sigralido

311 cause greater viral loads observed hérkile the increased ranavirus titers and ranavirus

14
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334

induced mortality of fielecaught larvae is consistent witiese experimental responskegure
work is still needed to determine whether wild amphibian populations exposdettiog salt
also experience a rise in glucocorticoid levels and immunosuppression similar to laboratory
findingsto cause more frequent mortality events

Our findings also show #t elevated salinity suppressed splenocyte proliferation more
than what could be explained by corticosterone leGscifically,we observed dose
dependent reduction of splenocyte proliferatiath elevated salinityn ranavirusunexposed
larvae andlower proliferation across corticosterone levels at high salinity in ranaexpssed
larvae These patternsuggesthat elevated salinitis suppressig immunity through
glucocorticoidindependent mechanisi&ince we observed reduced feeding activity in a prior
study[26], salinity may affect resource acquisition or cause a delay in developmental processes
that affect susceptibility to ranavirus infecti@ur findings support evidence of a tradf#
between thaignificant energetic demands of osmoregulati®) and mounting aimmune
response, specifically, salt exposed larvae exdddiwwer splenocyte proliferation when
maintaining acomparablalevelopmental rate, whereas the freshwater individuals exhibited no
such tradeoff. Similarly, migratory waterbirds experienced a tradiebetween mounting an
immune response and maintainimgmotic homeostasis in response to elevated sa5ély
Additional experiments are also needed to test whetkgatednternal osmolality is cytotoxic
to the spleen, owhether salt changasterrenalfunction in ranavirusnfected larvaeThis
finding highlights that the stresgiduced susceptibility hypothesiperates vianechanisms
beyond glucocorticoianediated immunosuppression

At the population lesl, these mdividuatlevel effects of salinity on ranavirus infection

appear to drivenore severe epidemics througicreased diseaseduced mortality rate

15
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combined withpotentiallygreatertransmissiorefficiency. Theincrease in cumulative viral
sheddingwve observedh high salinitywould be expected tocreaseaates oftransmission

through the wateed 7], which corroboratesur finding ofgreater pathogen eDNA levels in
higher salinity pads Contact rates were not affected by salinity, Wwatwould expecthe>10-

fold moreintense infections are more transmissiken acontact.Elevated salinitycouldalso
increase wateborne transmissiothrough itsnegative effecsurvival ofzooplankton[59], which
consumanfectiousranavirugsin the watef60]; or the accumulation ohfected carcasses
resulting from greater mortalitgould increase ranavirus transmissaitierby contact or via
necrophagy61]. Thus,small changes ihabitat qualitycanaffect multiplemechanismshat
concertedlypush hospathogen systems beyond the tipping point towards a nrapisk

mortality even{1]. Such interactions are increasingly recagui as critical to understanding and
perhaps mitigating the impact of infectious disease on host populf@@RinRecent work with
integral projection models of doskependent hogtamasite interactions show that small changes
in host resistance or tolerance, akin to those we observed with salinity, can lead to large changes
in the populatioflevel outcome$63].

Mass mortality events caused by infectious diseases are often asswiiated
environmentathangegl, 2, 5] yet, we are just beginning to clarify generalizable pattanads
mechanisms to explain the riseesherging infectious diseases in wifdlj64]. In addition to
salinity, numerous environmental changes are known to act eetineendocrinstressaxis in
amphibians (e.glow pH [65], see reviewW52]). Althoughsomecausencreasd mortality from
infection (e.g.atrazine[66]; see reviewW67]), furtherresearch is needed determinevhether
these individualevel effects manifest as more common or severe epide@icgesearch

suwggests that the mechanisms relating stressors to disease outcomes at thalrmuatigidu
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population level will be complex, and experiments need to be designed to test multiple
hypothesesConsidering salinization has been proposed as a management straeyyde
refuge fromanother amphibian disea®¥] [30], our studysuggests holistic approach is

required to successfully mitigate timepact of stress and diseas® amphibian populations
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Figure Captions

Figure 1. a, Field survey of ranavirus occurrence and associatedftiel eft: Map indicating
locations of the 18 ephemeral ponds monitored weaekline and Julfor ranavirusassociated
die-offs of wood frog larvae ithe vicinity of Yale Myers Forest in Northeastern CT, USA {top
left subset)a 32 krd managed mixethardwood forst Numberedsiteson maprefer to the
ponds from which larvae were collectidobserve the progressionradturally acquired
ranavirus infection§l1 pondspanels d & e)Die-offs of > 90% were observed in seven ponds
while die-offs were not observed in the remaingigvenponds. b, Proximity to major roadsas
correlated with the probability of observe@-offs. ¢, LogioRanavirussDNA concentratiorby
conductivity(measuref salinity) during early larval developmerfMean+SEM) d, Average
days to death of naturally infected animals in captivity after collegtiina line of predicted
survival fromCox proportional hazards analyses Averagelarval ranavirus (RVYiter of

infected animalsollected in the field and monitored for mortality in the laboratory by pond
salinity (11 sitesnumbered in aN=96; 311/sitg. Lines and shaded areas are the logisliof
linear , €) regression lines and the 95% confidence envelopall panels, black and gray
pointsindicate ponds where dEfs were and were not observed, respectively.

Figure 2. Toleranceo ranavirus exposui@ naivelarvae reared in road sateated waten the
laboratory Salinityexposures reflect theeveragg1500uS/cnm) and maximum (300QS/cm)
conductivitiesof roadside pondsurveyedn this region24]. We standardized ranavirus
exposures to the range of susceptible developmental stageis fpahiesGosner30-38; [54]).
Points represent the proportion dedth a positiveranavirugiter (N=20 per dose/groupere
exposedl and linesand 984 confidence envelope (shaded area) reflexbestit logistic
model

Figure 3. Stress and immune responses of naive larvae reareddrsalitreated watein a
laboratory experimerdt 6 d post exposuf®l=20 persalinity/exposure grougexpogdto 10°
pfu/ml: RV+; or mockexposedRV-). a, LS meanmterrenal corticosteron€QRT) levels
(xSEM, N=10)accounting for developmental stage effditeS mean poliferating splenocyte
counts £SEM, N=6-10) accounting for spleenzandc, positive Logo ranavirugitersin
gastrointestinal (Gl) tissu&E6-8). In ac, dark and light bars represent ranavienposed and
unexposed, respectivelg, Therelationship between proliferating splenocyte count and
corticosterone levels across salin(itivided plots correspondirtg x-axis of panels-&) and
ranavirusreatmentgN=4-9). Lines represent best fit Poisson regressionswiiite points and
solidlines representing RV unexposed, d&hakck points and dotted lines representmagavirus
exposed.

Figure 4. Effects of road salt orhé sheddingateand persistencef ranavirus froninfected

larvaefrom two laboratory experimentkseft: Concentratia of ranavirus DNA shed into

housing wate(eDNA) in points andox plots showing median, lower and upper quantiles of

shed DNA, whiskers extend to"1@nd 90" quantilesyepresenting he i ncr e-ase i n fs
shedder so i n t H(N=203 Righti Avaragef=SEM, =4 aquara)dg:s

ranaviruseDNA concentrationn aquaria wateafter 6 ranavirusnfected wood frog larvae were
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615 introduced. Larvae were removatl d(vertical dotted line)and eDNA sampling continued to
616 examine decay rates.
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