

Revision 1

Effect of correlation between traction forces on tensional homeostasis in clusters of endothelial cells and fibroblasts

Juanyong Li^{a,†}, Paul E. Barbone^a, Michael L. Smith^b, Dimitrije Stamenović^{b,c,*}

^aDepartment of Mechanical Engineering, Boston University, Boston, MA 02215

^bDepartment of Biomedical Engineering, Boston University, Boston, MA 02215

^cDivision of Material Science and Engineering, Boston University, Brookline, MA 02446

Running head: Correlation of traction forces and tensional homeostasis in cell clusters

Key words: tensional homeostasis, traction forces, focal adhesions, coefficient of variation, correlation

***Corresponding Author**

Dimitrije Stamenović

20 Department of Biomedical Engineering
21 Boston University
22 44 Cummington Mall
23 Boston, MA 02215
24 Phone: (617) 353-5902
25 Fax: (617) 353-6766
26 E-mail: dimitrij@bu.edu

[†]Current address:

29 Juanyong Li
30 Department of Biomedical Engineering
31 Worcester Polytechnic Institute
32 60 Prescott Street
33 Worcester, MA 01605

34 **Abstract**

35 The ability of cells to maintain a constant level of cytoskeletal tension in response to
36 external and internal disturbances is referred to as tensional homeostasis. It is essential for the
37 normal physiological function of cells and tissues, and for protection against disease progression,
38 including atherosclerosis and cancer. In previous studies, we defined tensional homeostasis as
39 the ability of cells to maintain a consistent level of cytoskeletal tension with low temporal
40 fluctuations. In those studies, we measured temporal fluctuations of cell-substrate traction forces
41 in clusters of endothelial cells and of fibroblasts. We observed those temporal fluctuations to
42 decrease with increasing cluster size in endothelial cells, but not in fibroblasts. We quantified
43 temporal fluctuation, and thus homeostasis, through the coefficient of variation (CV) of the
44 traction field; the lower the value of CV , the closer the cell is to the state of tensional
45 homeostasis. This metric depends on correlation between individual traction forces. In this
46 study, we analyzed the contribution of correlation between traction forces on traction field CV in
47 clusters of endothelial cells and fibroblasts using experimental data that we had obtained
48 previously. Results of our analysis showed that positive correlation between traction forces was
49 detrimental to homeostasis, and that it was cell type-dependent.

50

51 **1. Introduction**

52 Adherent cells exhibit the remarkable ability to adapt to applied mechanical stresses and
53 strains. Because of this adaptation, cells can maintain their endogenous cytoskeletal mechanical
54 tension at a steady and stable (homeostatic) level, which is essential for the normal physiological
55 function of the tissues (Bazoni and Dejana 2004; Butcher et al., 2009; Chien, 2007; Gulliot and
56 Lecuit, 20013; Humphrey, 2008a, 2008b; Macara et al, 2014; Paszek et al., 2005) and for
57 protection against diseases (Chien, 2007; Paszek et al., 2005; Provenzano and Keely, 2011).

58 The idea of tensional homeostasis of cells was introduced more than two decades ago
59 (Brown et al., 1998). However, there have been very few quantitative studies of this
60 phenomenon. Mizutani et al. (2004) demonstrated that cellular stiffness returned to a set point
61 level after stretching or relaxing single fibroblasts, which is an indirect indicator of tensional
62 homeostasis in these cells. Webster et al. (2014) have shown that in response to an applied step
63 stretch, isolated fibroblasts do not return to the state of tension that they had prior to the stretch
64 application. The authors referred to their observation as “tensional buffering”, rather than
65 tensional homeostasis.

66 We have studied the dynamic aspect of tensional homeostasis by observing temporal
67 fluctuations of cytoskeletal tension. We defined it as the ability of cells to maintain a consistent
68 level of tension with low temporal fluctuations. By measuring temporal fluctuations of cell-
69 substrate traction forces, we have observed that in some cell types, like in endothelial cells, the
70 traction field exhibits large, erratic temporal fluctuations, which become attenuated in cell
71 clusters, more so, the bigger the number of cells in the cluster (cluster size) is (Canović et al.,
72 2016). On the other hand, in other cell types, like in fibroblasts, cell clustering does not affect
73 traction field variability (Zollinger et al., 2018). In those studies, we used the coefficient of

74 variation (CV) as a quantitative metric of traction field variability. By our definition, the lower
75 the value of CV is, the closer the cell to the state of tensional homeostasis is. Although CV does
76 not specify a threshold below which tensional homeostasis is achieved, it does permit
77 quantitative comparison to determine how different factors, such as multicellularity, contribute to
78 tensional homeostasis.

79 By its definition, CV depends on the covariance, and therefore on correlation between
80 traction forces. The impact of this correlation on tensional homeostasis of cells has not yet been
81 investigated. In this study, we carried out correlation analysis of our previous experimental data
82 for traction dynamics for clusters of endothelial cells and for clusters of fibroblasts. Results of
83 our analysis might explain why cell clustering promotes tensional homeostasis in endothelial
84 cells and not in fibroblasts.

85 **2. Methods**

86 We consider a cluster of cells which assemble and disassemble focal adhesions (FAs)
87 continuously over time. The traction forces exerted on those FAs are measured at equal time
88 intervals (t_i), where $i = 1, 2, \dots, N_t$, and N_t is the total number of time intervals during an
89 observation period. Let $\{\mathbf{x}_k \mid k = 1, 2, \dots, N_F\}$ be the set of all locations where FAs are formed at
90 *any* time during the observation period and N_F is the number of all FAs. Let $\mathbf{F}(\mathbf{x}_k, t_i)$ be a traction
91 force vector acting on an FA at location \mathbf{x}_k at time t_i . If at t_i there is no recorded force at \mathbf{x}_k , then
92 we consider that $\mathbf{F}(\mathbf{x}_k, t_i) = \mathbf{0}$.

93 We used a scalar metric of the magnitude of the traction field, $T(t_i)$, defined as the sum of
94 magnitudes of all traction force vectors in the cluster at a given t_i , (Canović et al., 2016), i.e.,

$$95 T(t_i) = \sum_{k=1}^{N_F} \|\mathbf{F}(\mathbf{x}_k, t_i)\|, \quad (1)$$

96 For simplicity, we will label the magnitude of the traction force at (\mathbf{x}_k, t_i) as $F_k(t_i) \equiv \|\mathbf{F}(\mathbf{x}_k, t)\|$.

97 The coefficient of variation of $T(t_i)$ is defined as follows

98
$$CV = \frac{\sigma(T)}{\langle T \rangle}, \quad (2)$$

99 where $\langle T \rangle$ is the time average of $T(t_i)$, i.e.,

100
$$\langle T \rangle = \frac{1}{N_t} \sum_{i=1}^{N_t} T(t_i), \quad (3)$$

101 and $\sigma(T)$ is the corresponding standard deviation. The variance is therefore

102
$$\sigma^2(T) = \frac{1}{N_t} \sum_{i=1}^{N_t} [T(t_i) - \langle T \rangle]^2 = \langle T - \langle T \rangle \rangle^2 = \langle T^2 \rangle - \langle T \rangle^2, \quad (4)$$

103 By combining Eqs. (1) and (4), we obtain that

104
$$\langle T^2 \rangle - \langle T \rangle^2 = \frac{1}{N_t} \sum_{i=1}^{N_t} \left(\sum_{k=1}^{N_F} F_k(t_i) \right) \left(\sum_{j=1}^{N_F} F_j(t_i) \right) - \langle T \rangle^2 = \sum_{k=1}^{N_F} \sum_{j=1}^{N_F} \text{cov}(F_k, F_j), \quad (5)$$

105 where

106
$$\text{cov}(F_k, F_j) = \frac{1}{N_t} \sum_{i=1}^{N_t} [F_k(t_i) - \langle F_k \rangle][F_j(t_i) - \langle F_j \rangle] \quad (6)$$

107 is the covariance between forces applied at FAs locations \mathbf{x}_k and \mathbf{x}_j and $\langle \cdot \rangle$ denotes the time

108 average. Thus, it follows from Eqs. (4)-(6) that

109
$$\sigma^2(T) = \sum_{k=1}^{N_F} \sigma^2(F_k) + \sum_{k \neq j=1}^{N_F \times (N_F - 1)} \text{cov}(F_k, F_j), \quad (7)$$

110 where $\sigma^2(F_k)$ is the variance of the traction force applied at \mathbf{x}_k .

111 By substituting Eqs. (4) and (7) into Eq. (2), we obtain an expression for CV as follows

$$112 \quad CV = \frac{\sqrt{\sum_{k=1}^{N_F} \sigma^2(F_k) + \sum_{j \neq k=1}^{N_F \times (N_F-1)} \text{cov}(F_k, F_j)}}{\sum_{k=1}^{N_F} \langle F_k \rangle}. \quad (8)$$

113 According to Eq. (8), CV of the traction field depends on the variability of traction forces, their
 114 correlation and their magnitude.

115 2.1. Correlation Analysis

116 For each pair of forces (F_j, F_k) in a cluster, the corresponding correlation coefficient,
 117 $r(F_j, F_k)$, is given as follows

$$118 \quad r(F_j, F_k) = \frac{\sum_{i=1}^{N_t} [F_j(t_i) - \langle F_j \rangle][F_k(t_i) - \langle F_k \rangle]}{N_t \sigma(F_j) \sigma(F_k)} = \frac{\text{cov}(F_j, F_k)}{\sigma(F_j) \sigma(F_k)}. \quad (9)$$

119 Next, we create a symmetric correlation matrix whose elements are $r(F_j, F_k) = r(F_k, F_j)$,
 120 with $j, k = 1, 2, \dots, N_F$. According to Eq. (9), the diagonal elements of the matrix all have the value
 121 of unity. We then sum all the elements in the matrix and subtract the trace of the matrix (which
 122 equals N_F) from that sum. This yields a coefficient of global correlation of all forces in the
 123 cluster (R) as follows

$$124 \quad R = \sum_{j, k=1}^{N_F} r(F_j, F_k) - N_F. \quad (10)$$

125 Since the number of FAs vary between clusters of the same number of cells, we
 126 normalize R by two times the number of combinations ($C_2^{N_F}$) of unrepeatable pair of forces among

127 N_F forces, i.e., $C_2^{N_F} = N_F! / 2!(N_F - 2)!$. The factor of two is because of symmetry of the
128 correlation matrix. Thus, we obtain the normalized global correlation coefficient (R_{norm}) as

129
$$R_{norm} = \frac{R}{2C_2^{N_F}} = \frac{R}{N_F(N_F - 1)}. \quad (11)$$

130 Note that R_{norm} is the average Pearson's correlation coefficient of each pair of forces. If $0 < R_{norm}$
131 ≤ 1 , all forces in a cluster are predominantly positively correlated, if $-1 \leq R_{norm} < 0$, all forces in
132 a cluster are predominantly negatively correlated, and if $R_{norm} = 0$, forces are not correlated.

133 2.2. Data Analysis

134 We used experimental data that we obtained from traction microscopy on single cells and
135 on multicellular clusters of bovine aortic endothelial cells (BAECs) and of mouse embryonic
136 fibroblasts (MEFs) (Canović et al., 2016; Zollinger et al., 2018). A brief description of the
137 traction microscopy technique is given below.

138 Cellular traction forces are measured by plating cells on soft polyacrylamide gels whose
139 apical surface is micropatterned by a regular array of fibronectin dots (2- μm diameter and 6 μm
140 center-to-center spacing). Those dots are loci where cells form FAs. By observing motion of
141 dots in response to cell contraction and from known elastic properties of the gel, we can compute
142 traction forces applied to individual FAs (Polio et al., 2012, 2014).

143 Traction forces were measured at 5 min intervals over 2 h, i.e., $N_t = 25$. The cluster size
144 ranged from 2 to 30 cells in BAECs and 3 to 17 cells in MEFs. Altogether, there were 63 single
145 cells and clusters in BAECs and 30 single cells and clusters in MEFs. Since the clusters were
146 freely formed, the number of FAs varied between single cells and between clusters having the
147 same number of cells.

148 In the present analysis, we tracked each fibronectin dot within a cluster where an FA was
149 formed during the observation time. If the force applied at the FA fell below the experimental
150 threshold of 0.3 nN (Polio et al., 2012), we assigned it a zero value. The total number of traction
151 forces within the cluster was equal to the average number, N_F , of active FAs observed during 2 h.

152 In order to quantify the effect of correlation between traction forces on the traction field
153 variability, we compared values of CV obtained from clusters with measured traction forces, with
154 values of CV obtained from clusters with simulated uncorrelated traction forces. The latter were
155 obtained as follows.

156 We randomized fluctuations of measured traction forces as follows. Each time lapse of a
157 traction force measured over 2 h at a 5-min sampling rate represents a sequence of 25 forces:
158 $F(t_1), F(t_2), F(t_3), \dots, F(t_{25})$. Using a MATLAB random number generator, we reordered integers
159 1 to 25 and then, accordingly created a random sequence of 25 forces from a measured sequence
160 of forces. This procedure did not alter values of $\sigma(F)$ and $\langle F \rangle$, while at the same time it reduced
161 temporal correlation between traction forces that may have existed before reordering. In each
162 cluster, measured forces were replaced by the corresponding simulated uncorrelated forces, and
163 CV was computed as above.

164 **3. Results**

165 We found that the contribution of correlation between traction forces was different in
166 clusters of BAECs than in clusters of MEFs. In both BAECs and MEFs, application of simulated
167 uncorrelated forces caused CV to decrease relative to the values obtained with measured forces.
168 This decrease was greater in BAECs, roughly 50% on average over the entire range of N_F (Fig.
169 1a), than in MEFs, where it was < 50% (Fig. 1b).

170 In the clusters of BAECs with measured forces, CV exhibited a significant negative
171 dependence on N_F (Spearman correlation coefficient $\rho = -0.404, p = 0.0011$), which followed a
172 power-law relationship, $CV = 1.06N_F^{-0.47}$ (Fig. 2a). When we applied uncorrelated forces, CV
173 also exhibited a significant negative dependence on N_F ($\rho = -0.671, p = 2 \times 10^{-7}$) and also
174 followed a power law, $CV = 0.62N_F^{-0.5}$ (Fig. 2a). In the clusters of MEFs with measured forces,
175 CV was virtually independent of N_F ($\rho = 0.016, p = 0.931$) (Fig. 2b). When uncorrelated forces
176 were applied, however, the CV vs. N_F relationship exhibited a nearly significant negative
177 dependence ($\rho = -0.344, p = 0.062$), which followed a power law, $CV = 0.49N_F^{-0.56}$ (Fig. 2b).

178 In BAECs, R_{norm} decreased with increasing N_F for lower values of N_F , and exhibited no
179 systematic dependence for larger values of N_F (Fig. 3), whereas in MEFs, R_{norm} slightly decreased
180 with increasing N_F from the mid-range of N_F (Fig. 3). This is consistent with the data for
181 measured forces shown in Fig. 1.

182 The average values shown in Figs. 1 and 3 were calculated by dividing the range of N_F
183 into bins of ten. Bins with fewer than three data points were not taken into consideration.

184 **4. Discussion**

185 In this exercise, we analyzed the impact of correlation between traction forces on
186 tensional homeostasis of multicellular clusters of BAECs and MEFs. We found that correlation
187 between FA forces was detrimental for homeostasis and that it had different effects on these two
188 cell types. In BAECs, the correlation enhanced traction field variability and decreased with
189 increasing N_F , which is consistent with our previous observation that CV decreases with
190 increasing cluster size. In MEFs, however, the correlation had a lesser effect on traction field
191 variability than in BAECs and changed little with increasing N_F , which is consistent with our

192 previous observation that CV does not change with increasing cluster size. These are novel and
193 the most significant findings of this study.

194 The observed correlation between traction forces may be explained by the fact that these
195 forces must be balanced at all times. Any perturbation that disturbs force balance must be
196 accompanied by a simultaneous, correlated force readjustment in order to reestablish
197 equilibrium. This, however, does not explain the observed lower correlation of traction forces in
198 MEFs than in BAECs, which may be associated with more random force fluctuations in MEFs
199 than in BAECs.

200 From a biological point of view, it is reasonable to expect that in BAECs increasing N_F is
201 favorable for achieving tensional homeostasis. These cells form monolayers *in vivo* where a
202 very large N_F may overcome the detrimental effect of correlation between traction forces on
203 tensional homeostasis. In MEFs, however, increasing N_F appears to have a little effect on
204 tensional homeostasis. This, in turn, suggests that MEFs need to be able to achieve tensional
205 homeostasis at a single cell level, which is consistent with the fact that these cells *in vivo* do not
206 form large clusters and monolayers.

207 In conclusion, this study highlights the impact of correlation between FA traction forces
208 on the ability of cells to achieve tensional homeostasis. This impact appears to be cell-type
209 dependent and in accordance with biological functions of cells. This study also provides a
210 quantitative tool to analyze traction force data and to compare the contractile behavior of
211 different cell types and its evolution with the size of the cell clusters.

212

213

214 **Declaration of Competing Interest**

215 The authors declare no conflicts of interest.

216

217 **Acknowledgements**

218 We thank Dr. Han Xu for providing experimental data. This study was supported by

219 NSF grants CEBET 115467 (M. L. Smith), CMMI-1362922 and CMMI-1910401 (D.

220 Stamenović).

221

222

223 **References**

224 Bazoni, G., Dejana, D. 2004. Endothelial cell-to-cell junctions: molecular organization and role
225 in vascular homeostasis. *Physiol. Rev.* 84, 869-901.

226 Brown, R. A., Prajapati, R., McGrouther, D. A., Yannas, I. V., Eastwood, M. 1998. Tensional
227 homeostasis in dermal fibroblasts: mechanical responses to mechanical loading in three-
228 dimensional substrates. *J. Cell Physiol.* 175, 323-332.

229 Butcher, D. T., Alliston, T., Weaver, V. M., 2009. A tense situation: forcing tumor progression
230 *Nat. Rev. Cancer* 9, 108-122.

231 Canović, E. P., Zollinger, A. J., Tam, S. N., Smith, M. L., Stamenović, D. 2016. Tensional
232 homeostasis in endothelial cells is a multicellular phenomenon. *Am. J. Physiol. Cell Physiol.*
233 311, C528-C535.

234 Chien, S. 2007. Mechanotransduction and endothelial cell homeostasis: the wisdom of the cell.
235 *Am. J. Physiol. Heart Circ. Physiol.* 292, H1209-H1224.

236 Guillot, C, Lecuit, T. 2013. Mechanics of epithelial tissue homeostasis and morphogenesis.
237 *Science* 340, 1185-1189.

238 Humphrey, J. D. 2008a. Mechanism of arterial remodeling in hypertension: coupled roles of wall
239 shear and intramural stress. *Hypertension* 52, 195-200.

240 Humphrey, J. D. 2008b. Vascular adaptation and mechanical homeostasis at tissue, cellular, and
241 subcellular levels. *Cell Biochem. Biophys.* 50, 53-78.

242 Macara, I. G., Guyer, R., Richardson, G., Huo, Y., Ahmed, M. 2014. Epithelial homeostasis.
243 Curr. Biol. 24, R815-R825.

244 Mizutani, T., Haga, H., Kawabata, K. 2004. Cellular stiffness response to external deformation:
245 tensional homeostasis in a single fibroblast. Cell Motil. Cytoskeleton 59, 242-248.

246 Paszek, M. J., N. Zahir, K. R. Johnson, J. N. Lakins, G. I. Rozenberg, A. Gefen, C. A. Reinhart-
247 King, S. S. Margulies, M. Dembo, D. Boettiger, D. A. Hammer, V. M. Weaver. 2005. Tensional
248 homeostasis and the malignant phenotype. Cancer Cell 8, 241-254.

249 Polio, S. R., Parameswaran, H., Canović, E. P., Gaut, C. M., Aksyonova, D., Stamenović, D.,
250 Smith, M. L. 2014. Topological control of multiple cell adhesion molecules for traction force
251 microscopy. Integr. Biol. 6, 357-365.

252 Polio, S. R., Rotheneberg, K. E., Stamenović, D. Smith, M. L. 2012. A micropatterning and
253 image processing approach to simplify measurement of cellular traction forces. Acta Biomater.
254 8, 82-88.

255 Provenzano, P. P., Keely, P. J. 2011. Mechanical signaling through the cytoskeleton regulates
256 cell proliferation by coordinated focal adhesion and Rho GTPase signaling. J. Cell Sci. 124:
257 1195-1205.

258 Webster, K. D., Ng, W. P., Fletcher, D. A. 2014. Tensional homeostasis in single fibroblasts.
259 Biophys. J. 107, 146-155.

260 Zollinger, A. J., Xu, H., Figueiredo, J., Paredes, J., Seruca, R., Stamenović, D., Smith, M. L.
261 2018. Dependence of tensional homeostasis on cell type and on cell-cell interactions. Cell. Mol.
262 Bioeng. 11, 175-184, 2018.

263 **Figure Captions**

264 Figure 1. Relative contribution of correlation on of FA forces to the coefficient of variation of
265 the traction field (CV) in clusters of BAECs (a) and in clusters of MEFs (b). Light gray indicate
266 the contribution of measured forces and the dark gray indicates the contribution of simulated
267 uncorrelated forces. Data are mean \pm SE; * indicates significantly higher values of CV obtained
268 from measured forces relative to values obtained from uncorrelated forces ($p < 0.05$). The data
269 were analyzed using the one-tailed paired t-test, or the Wilcoxon signed-rank test if the data
270 failed the normality (Shapiro-Wilk) test.

271

272 Figure 2. Relationships between the coefficient of variation of the traction field (CV) and the
273 total number of focal adhesions (N_F) in clusters of BAECs (a) and MEFs (b) with measured
274 traction forces (open circles) and with uncorrelated traction forces (solid circles) with the solid
275 and the dashed lines representing the best fit of the power-law relationship, respectively.

276

277 Figure 3. Relationships between the normalized global correlation coefficient (R_{norm}) and the
278 total number of focal adhesions (N_F) in clusters of BAECs (solid circles) and MEFs (open
279 circles). Data are average \pm SE; * indicates lower values of R_{norm} , which are marginally
280 significant ($p < 0.1$), relative to its highest value in BAECs, and # indicates lower values of R_{norm} ,
281 which are marginally significant ($p < 0.1$), relative to its highest value in MEFs. The data were
282 analyzed using the one-tailed t-test, or the Mann-Whitney rank-sum test if the data failed the
283 equal variance (Brown-Forsythe) test.

284

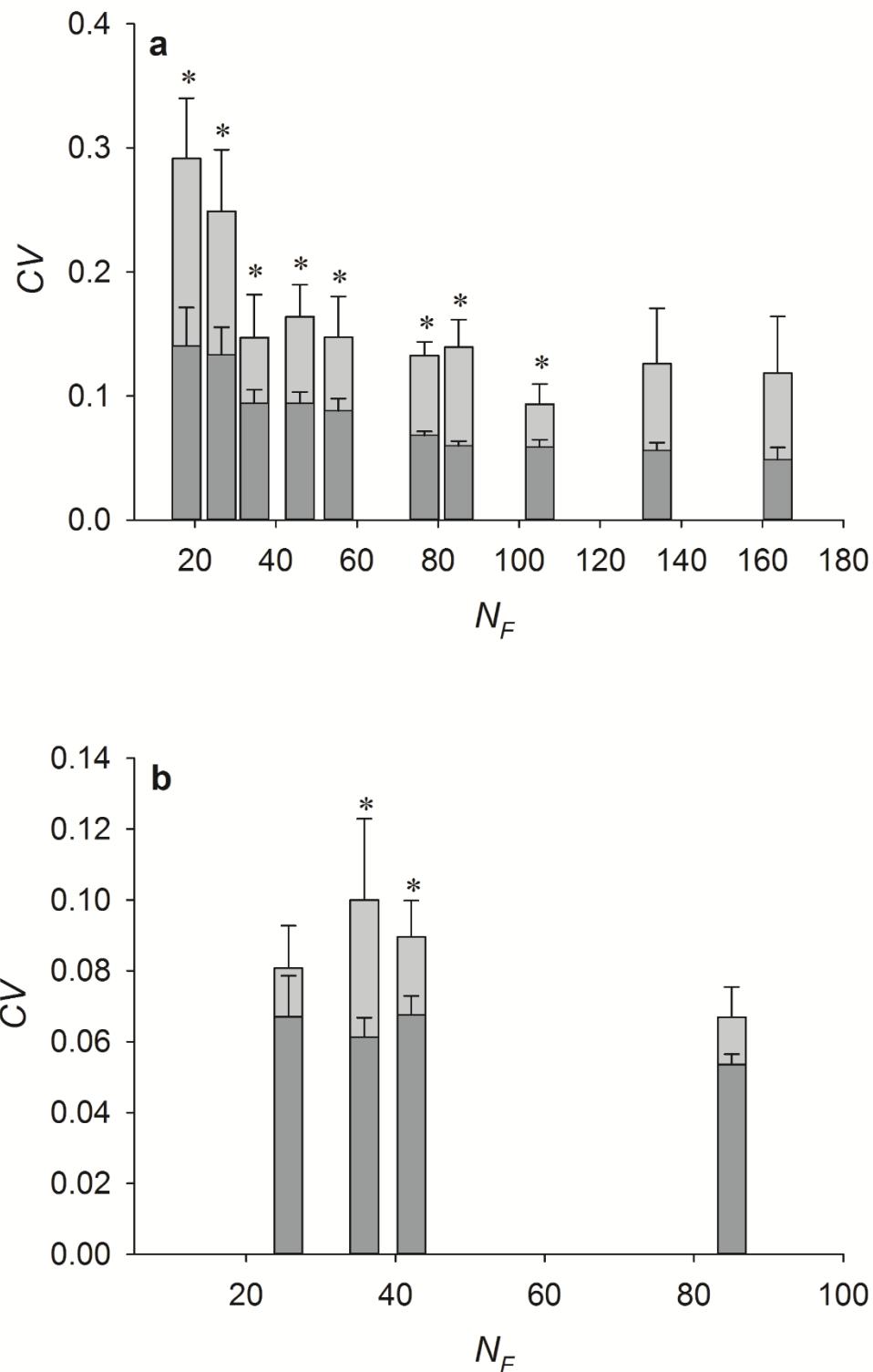


Figure 1

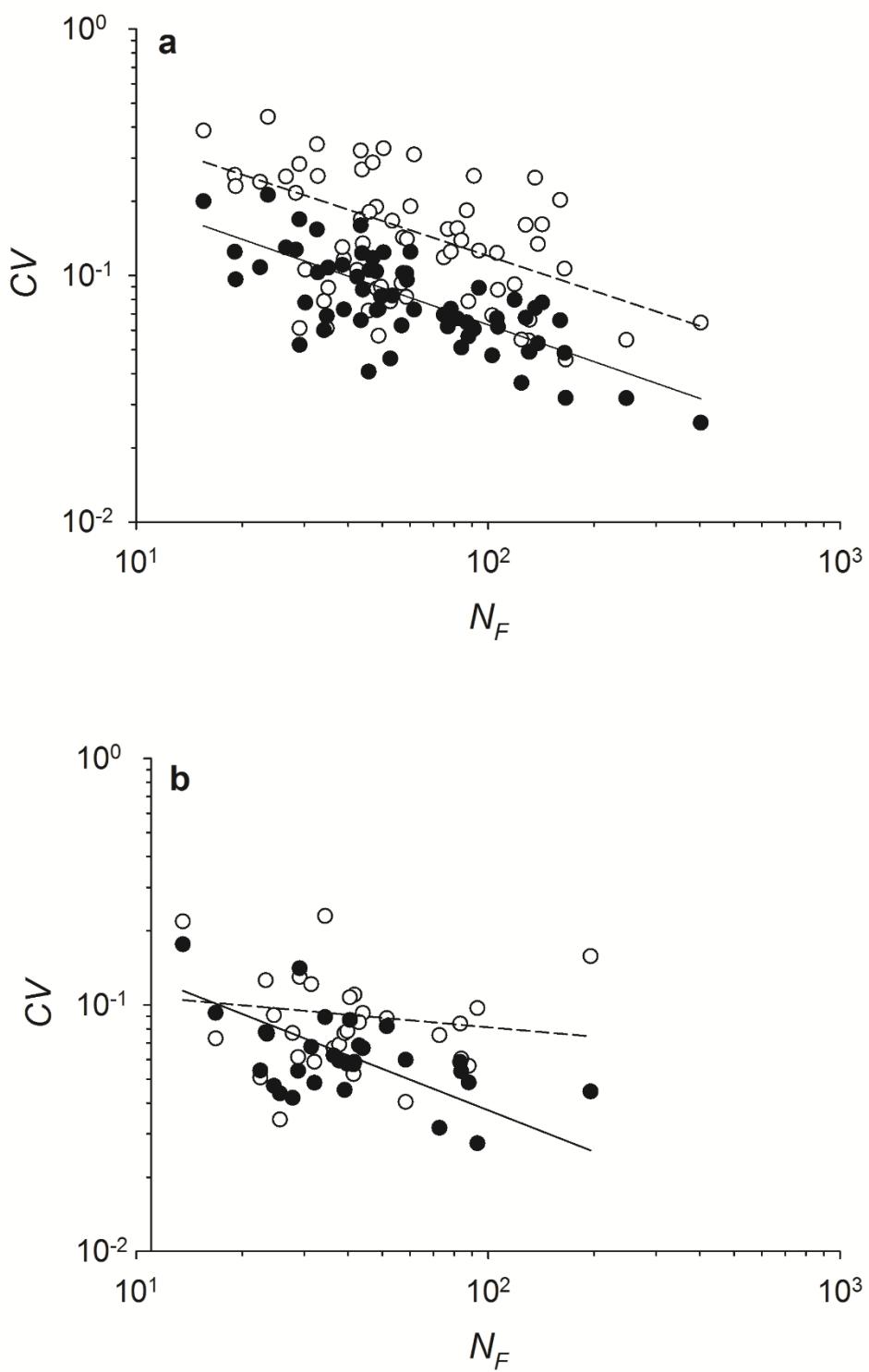
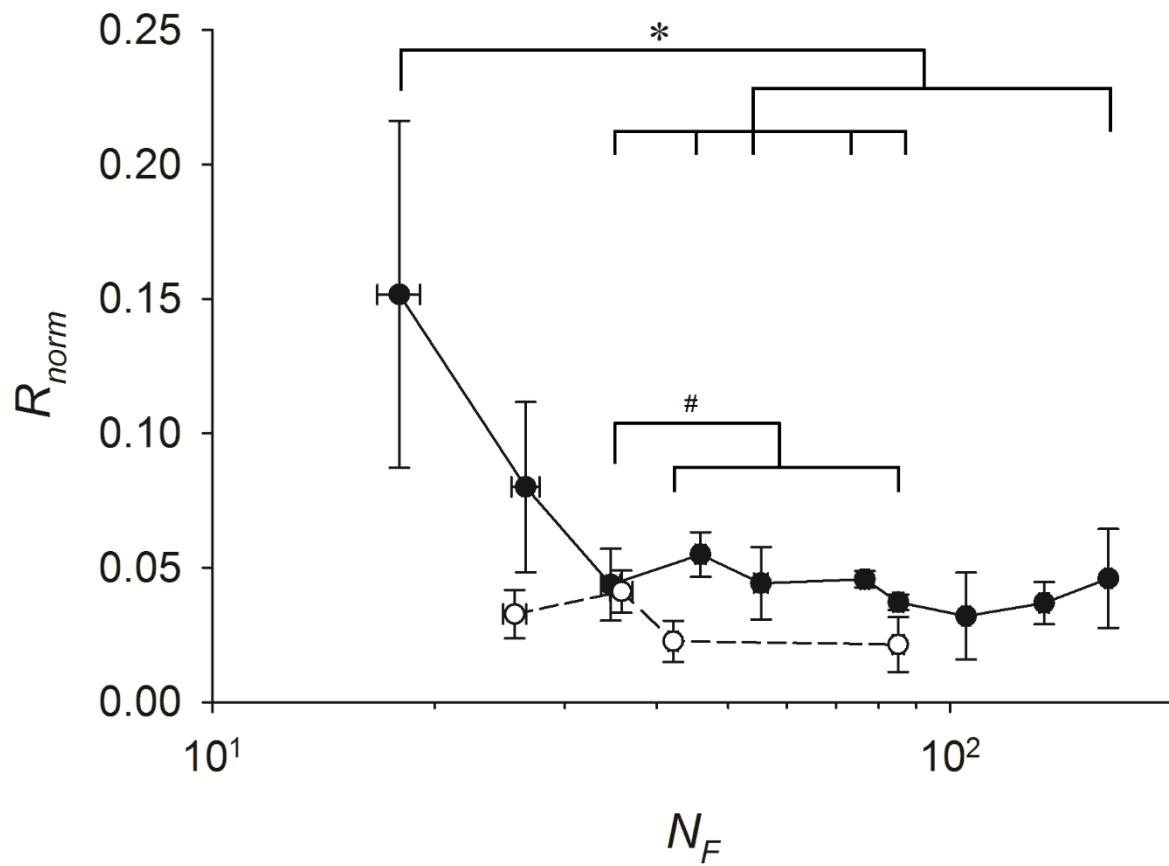


Figure 2



337

338

Figure 3