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Abstract

1,4-dioxane, a co-contaminant at many chlorinated solvent sites, is a problematic groundwater
pollutant because of risks to human health and characteristics which make remediation
challenging. In situ 1,4-dioxane bioremediation has recently been shown to be an effective
remediation strategy. However, the presence/abundance of 1,4-dioxane degrading species across
different environmental samples is generally unknown. Here, the objectives were to identify
which 1,4-dioxane degrading functional genes are present and which genera may be using 1,4-
dioxane and/or metabolites to support growth across different microbial communities. For this,
laboratory sample microcosms and abiotic control microcosms (containing media) were
inoculated with four uncontaminated soils and sediments from two contaminated sites. Live
control microcosms were treated in the same manner, except 1,4-dioxane was not added. 1,4-
dioxane decreased in live microcosms with all six inocula, but not in the abiotic controls,
suggesting biodegradation occurred. A comparison of live sample microcosms and live controls
(no 1,4-dioxane) indicated nineteen genera were enriched following exposure to 1,4-dioxane,
suggesting a growth benefit for 1,4-dioxane biodegradation. The three most enriched were
Mycobacterium, Nocardioides, Kribbella (classifying as Actinomycetales). There was also a
higher level of enrichment for Arthrobacter, Nocardia and Gordonia (all three classifying as
Actinomycetales) in one soil, Hyphomicrobium (Rhizobiales) in another soil, Clavibacter
(Actinomycetales) and Bartonella (Rhizobiales) in another soil and Chelativorans (Rhizobiales)
in another soil. Although Arthrobacter, Mycobacterium and Nocardia have previously been
linked to 1,4-dioxane degradation, Nocardioides, Gordonia and Kribbella are potentially novel
degraders. The analysis of the functional genes associated with 1,4-dioxane demonstrated three
genes were present at higher relative abundance values, including Rhodococcus sp. RR1 prmA,
Rhodococcus jostii RHA1 prmA and Burkholderia cepacia G4 tomA3. Overall, this study
provides novel insights into the identity of the multiple genera and functional genes associated

with aerobic degradation of 1,4-dioxane in mixed communities.

Introduction
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1,4-dioxane, a probable human carcinogen (DeRosa et al. 1996), was commonly used as a
stabilizer in 1,1,1-trichloroethane formulations and is now frequently detected at sites where the
chlorinated solvents are present (Adamson et al. 2015; Adamson et al. 2014; ATSDR 2012;
Mohr et al. 2010). For example, 1,4-dioxane was found at 195 sites in California with 95%
containing one or more of the chlorinated solvents (Adamson et al. 2014). 1,4-dioxane has been
classified as a probable carcinogen (Group 2B) by the U.S. EPA and a possible human
carcinogen (B2) by the International Agency for Research on Cancer based on animal studies
(IARC 1999; USEPA 2017). No federal maximum contaminant level for 1,4-dioxane in drinking
water has been established (EPA 2017), however, several states have set low advisory action
levels (e.g. California, Florida, Michigan and North Carolina have levels <5 ppb). A major
challenge to 1,4-dioxane remediation concerns chemical characteristics that result in migration
and persistence (Adamson et al. 2015; Mohr et al. 2010). A low organic carbon partition
coefficient (log Koc = 1.23) and Henry’s Law Constant (5 X 10 atm. m>mol™!), make traditional
remediation methods such as air stripping or activated carbon largely ineffective (Mahendra and
Alvarez-Cohen 2006; Steffan et al. 2007; Zenker et al. 2003). Ex situ oxidation methods
including ozone and hydrogen peroxide (Adams et al. 1994) or hydrogen peroxide and ultraviolet
light (Stefan and Bolton 1998) have been commercially applied, however these can be expensive

at high concentrations (Steffan et al. 2007).

Many bacteria have been linked to the aerobic metabolic and co-metabolic degradation of 1,4-
dioxane. Currently, Pseudonocardia dioxanivorans CB1190 (Parales et al. 1994), Rhodococcus
ruber 219 (Bock et al. 1996), Pseudonocardia benzennivorans B5 (Kdmpfer and Kroppenstedt
2004), Mycobacterium sp. PH-06 (Kim et al. 2008), Afipia sp. D1, Mycobacterium sp. D6,
Mycobacterium sp. D11, Pseudonocardia sp. D17 (Sei et al. 2013), Acinetobacter baumannii
DD1 (Huang et al. 2014), Rhodanbacter AYSS (Pugazhendi et al. 2015), Xanthobacter flavus
DTS (Chen et al. 2016) and Rhodococcus aetherivorans JCM 14343 (Inoue et al. 2016) are
known to degrade 1,4-dioxane metabolically. A large number of microorganisms are known to
co-metabolically degrade this contaminant. For example, Pseudonocardia
tetrahydrofuranoxydans sp. K1 (Kohlweyer et al. 2000), Pseudonocardia sp. ENV478 (Vainberg
et al. 2006), Rhodococcus ruber T1, Rhodococcus ruber T5 (Sei et al. 2013), Rhodococcus ruber
ENV 425 (Steffan et al. 1997), Rhodococcus RR1 (Stringfellow and Alvarez-Cohen 1999),
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Flavobacterium sp. (Sun et al. 2011), Mycobacterium vaccae (Burback and Perry 1993),
Mycobacterium sp. ENV 421 (Masuda et al. 2012b), Pseudomonas mendocina KR1 (Whited and
Gibson 1991), Ralstonia pickettii PKO1 (Kukor and Olsen 1990), Burkholderia cepacia G4
(Nelson et al. 1986), Methylosinus trichosporium OB3b (Whittenbury et al. 1970),
Pseudonocardia acacia JCM (Inoue et al. 2016) and Pseudonocardia asaccharolytica JCM
(Inoue et al. 2016) are among those linked to co-metabolic degradation of 1,4-dioxane. Co-
metabolic 1,4-dioxane degradation has previously been reported with growth supporting
substrates such as tetrahydrofuran, methane, propane, toluene, ethanol, sucrose, lactate, yeast
extract and 2-propanol (Burback and Perry 1993; Hand et al. 2015; Kohlweyer et al. 2000;
Mahendra and Alvarez-Cohen 2006; Vainberg et al. 2006).

The initiation of 1,4-dioxane biodegradation has been associated with various groups of soluble
di-iron monooxygenases (SDIMOs) (He et al. 2017). Monooxygenases are enzymes that
facilitate bacterial oxidation through the introduction of oxygen. SDIMOs have been classified
into 6 groups based on their preferred substrate and sequence similarity (Coleman et al. 2006).
SDIMOs associated with metabolic and co-metabolic 1,4-dioxane degradation include [as
summarized in (He et al. 2017)] Burkholderia cepacia G4 tomA3 (Group 1) (Mahendra and
Alvarez-Cohen 2006; Newman and Wackett 1995), Pseudomonas pickettii PKO1 tbuAl (Group
2) (Fishman et al. 2004; Mahendra and Alvarez-Cohen 2006), Pseudomonas mendocina KR1
tmoA (Group 2) (Mahendra and Alvarez-Cohen 2006; Yen et al. 1991), Methylosinus
trichosporium OB3b mmoX (Group 3) (Mahendra and Alvarez-Cohen 2006; Oldenhuis et al.
1989), Pseudonocardia dioxanivorans CB1190 prmA (Group 5) (Parales et al. 1994; Sales et al.
2013; Sales et al. 2011), Pseudonocardia tetrahydrofuranoxydans K1 thmA (Group 5) (Kampfer
et al. 2006; Thiemer et al. 2003), Pseudonocardia sp. strain ENV478 thmA (Group 5) (Masuda et
al. 2012a), Rhodococcus sp. strain YYL thmA (Group 5)(Yao et al. 2009), Rhodococcus jostii
RHA1 prmA (Group 5) (Hand et al. 2015; Sharp et al. 2007), Rhodococcus sp. RR1 prmA
(Group 5) (Sharp et al. 2007), Mycobacterium sp. ENV421 prmA (Group 6) (Masuda 2009) and
Mpycobacterium dioxanotrophicus PH-06 prmA (Group 6) (He et al. 2017).

As the success of natural attenuation or biostimulation often depends on the population of native

degraders present at the contaminated site, several studies have developed methods targeting
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these functional genes (Gedalanga et al. 2014; He et al. 2018; Li et al. 2013a; Li et al. 2013b).
For example, methods have been developed for the functional genes associated with
Pseudonocardia and Mycobacterium (Deng et al. 2018; Gedalanga et al. 2014; He et al. 2017).
Another study focused specifically on detecting functional genes of four 1,4-dioxane degraders
(Pseudonocardia dioxanivorans CB1190, Pseudonocardia sp. strain ENV478, Pseudonocardia
tetrahydrofuranoxydans K1, Rhodococcus sp. strain YYL). A larger number of functional genes
were investigated with microarray-based technology (GeoChip 4.0) and denaturing gradient gel
electrophoresis (Li et al. 2013b). More recently, high throughput shotgun sequencing was used to
evaluate the presence of the functional genes listed above in impacted and non-impacted
groundwater (Dang et al. 2018) . This approach has the added advantage of enabling taxonomic
as well as functional analysis of microbial communities. The current study adopted a similar
approach to examine the microbial communities involved in 1,4-dioxane degradation in

contaminated and uncontaminated sediment and soil inoculated microcosms.

In the current study, the objectives were 1) to identify which 1,4-dioxane degrading functional
genes are present across different microbial communities and 2) to determine which genera may
be using 1,4-dioxane and/or metabolites to support growth. The research focused on laboratory
microcosms inoculated with four uncontaminated soils and sediment samples from two 1,4-
dioxane contaminated sites. The media selected for the experiments followed the approach used
to enrich Pseudonocardia dioxanivorans CB1190 from industrial sludge (Parales et al. 1994).
The work is novel as it combines taxonomic and functional data to generate a more complete
picture of the multiple microorganisms and genes linked to 1,4-dioxane degradation in mixed

communities.

Methods

Chemicals and Inocula

1,4-dioxane was purchased from Sigma-Aldrich (MO, USA) with 99.8% purity. All stock
solutions and dilutions were prepared using DI water. The agricultural samples were collected
from two locations on the campus of Michigan State University, East Lansing, Michigan (herein
called soils F and G) and two locations at the Kellogg Biological Station, Hickory Corners,

Michigan (soils 1 and 2). The characteristics of the agricultural soils have been summarized
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(Table S1). The contaminated site samples were obtained from California (contaminated with
trichloroethene, 1,1-dichloroethene and 1,4-dioxane, herein called C7A) and Maine
(contaminated with traces of 1,4-dioxane, herein called M10A). All samples were stored in the

dark at 6 °C until use.

Experimental Setup, DNA Extraction, 1,4-Dioxane Analysis

Laboratory microcosms were established with soil or sediment (5g wet weight) and 25 mL of
media in 30 mL serum bottles. For each of the six inocula (four uncontaminated soils or two
contaminated sediments), the experiment design included triplicate sample microcosms,
triplicate live control microcosms and triplicate abiotic control microcosms (autoclaved daily for
three consecutive days). The triplicate live control microcosms were treated in the same manner
as the sample microcosms except no 1,4-dioxane was added. This treatment was included to
enable comparisons to the microbial communities exposed to 1,4-dioxane. Following the
approach used to enrich Pseudonocardia dioxanivorans CB1190 from industrial sludge, each
liter of the final media contained 100 mL of a buffer stock [K:HPO4 (32.4 g/L), KH2PO4 (10
g/L), NH4Cl1 (20 g/L)] and 100 mL of a trace metal stock [nitrilotriacetic acid (disodium salt)
(1.23 g/L), MgS04.7H20 (2 g/L), FeSO4.7H20 (0.12 g/L), MnSO4.H20 (0.03 g/L), ZnSO4.7H20
(0.03 g/L) and CoCl2.6H>0 (0.01 g/L)] (Parales et al., 1994). The nitrilotriacetic acid (within the
trace metal stock solution) represents an additional carbon source. The live sample microcosms

were re-spiked with 1,4-dioxane two additional times.

A GC/MS with Agilent 5975 GC/single quadrupole MS (Agilent Technologies, CA, USA)
equipped with a CTC Combi Pal autosampler was used to determine 1,4-dioxane concentrations.
Sterile syringes (1 mL) and needles (22 Ga 1.5 in.) were used to collect samples (0.7 mL) from
each microcosm. The samples were filtered (0.22 um nylon filter) before being injected into an
amber glass vial (40 mL) for GC/MS analysis. A method was developed to analyze 1,4-dioxane
using solid phase micro extraction (SPME). The SPME fiber was inserted in the headspace of the
vial and exposed to the analyte for 1 minute before being injected into the GC for thermal
desorption. The fiber coating can adsorb the analytes in the vapor phase. Splitless injection was
executed and the vials were maintained at 40 ‘C. The SPME fiber assembly involved 50/30um
Divinylbenzene/ Carboxen/ Polydimethylsiloxane (DVB/CAR/PDMS) and 24 Ga needle for
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178  injection. The initial oven temperature was 35 ‘C and was programmed to increase at a rate of 20
179  "C/min to 120 °C. Once it reached 120 °C, it increased at a rate of 40 “C/min to 250 ‘C, which was
180  maintained for 3 min. A VF5MS column was used with helium as the carrier gas in constant flow
181  mode at a flow rate of 1 ml/min. The conditioning of the SPME fiber was at 270 "C for 60 min at
182  the beginning of each sequence.

183

184  DNA was extracted from the soil inoculated sample microcosms and live control microcosms
185 (1.2 mL and 0.4 g soil) using QIAGEN DNeasy PowerSoil kit as per the manufacturer’s

186  instructions. The QIAGEN DNeasy Powermax Soil kit was used to extract DNA from the

187  microcosms inoculated with the two contaminated sediments. For this, the entire content of each
188  microcosm was sacrificed for DNA extraction. The DNA concentrations were determined using
189  QUBIT dsDNA HS kit. The DNA extracts with the highest DNA yields were selected for

190  shotgun sequencing.

191

192  Library Preparation, Sequencing, MG-RAST and DIAMOND analysis

193  Twenty-six samples were submitted for library generation and shotgun sequencing to the

194  Research Technology Support Facility Genomics Core at Michigan State University. Libraries
195  were prepared using the Takara SMARTer ThruPLEX DNA Library Preparation Kit following
196  manufacturer's recommendations. Completed libraries were QC’d and quantified using a

197  combination of Qubit dsSDNA HS and Agilent 4200 TapeStation HS DNA1000 assays. Eight

198  samples did not generate libraries of sufficient concentration for sequencing and were removed
199  from further analysis. The remaining eighteen libraries were pooled in equimolar amounts for
200 multiplexed sequencing. The pool was quantified using the Kapa Biosystems Illumina Library
201  Quantification qPCR kit and loaded onto one lane of an Illumina HiSeq 4000 flow cell.

202  Sequencing was performed in a 2x150 bp paired end format using HiSeq 4000 SBS reagents.
203  Base calling was done by Illumina Real Time Analysis (RTA) v2.7.7 and output of RTA was
204  demultiplexed and converted to FastQ format with Illumina Bcl2fastq v2.19.1.

205

206  The Meta Genome Rapid Annotation using Subsystem Technology (MG-RAST) (Meyer et al.
207  2008) version 4.0.2. was used for the taxonomic analysis of the metagenomes. The processing

208  pipeline involved merging paired end reads, SolexaQA (Cox et al. 2010) to trim low-quality
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regions and dereplication to remove the artificial duplicate reads. Gene calling was performed
using FragGeneScan (Rho et al. 2010). For the taxonomic profiles, the best hit classification at a
maximum e-value of le™>, a minimum identity of 60% and a minimum alignment length of 15
against the ReqSeq database (Pruitt et al. 2005) were used. MG-RAST ID numbers and
sequencing data have been summarized (Table S2) and the datasets are publicly available on
MG-RAST. The number of sequences generated post quality control per sample was 4.7 + 2.0
million (ranging from ~1.2 to ~11 million) and the average length was 237.3 + 2.9 bp (averages
ranging from 233 to 243 bp). The sequencing data was submitted to NCBI under Bioproject
PRINAS590532 (accession numbers SAMN13332566 to SAMN13332583).

The MG-RAST data files were downloaded and analyzed in Microsoft Excel 2016, STAMP
(Statistical Analyses of Metagenomic Profiles, software version 2.1.3.) (Parks et al. 2014) and
MEGANG (version 6.11.7) (Huson et al. 2016). STAMP was used to detect differences in the
relative proportions of the taxonomic profiles between the live controls (no 1,4-dioxane) and the
samples for each soil. This analysis included Welch’s two sided t-test for two groups (samples
and live controls) (p<0.05) to generate extended error bar figures for each soil. The same
Welch’s test was performed to compare the profiles of all samples (n=9) to all live controls (n=
8). MEGANG was used to generate two phylograms. One phylogram illustrates the eighteen
metagenomes classified to the Class Level. The other phylogram represents the most common
genera (ranked by average relative abundance, then selected if average values >0.5%) across all

metagenomes.

The relative abundance of 1,4-dioxane degrading functional genes was determined using the
alignment tool DIAMOND (double index alignment of next-generation sequencing data)
(Buchfink et al. 2015). Specifically, reads aligning to the twelve genes previously associated
with aerobic degradation (metabolic and co-metabolic) of 1,4-dioxane, as summarized previously
(He et al. 2017), were determined. First, low quality sequences and Illumina adapters sequences
were removed using Trimmomatic in the paired end mode (Bolger et al. 2014). The two paired
output files were used for gene alignments in DIAMOND. Following alignment, the DIAMOND
files were analyzed within Excel, which included combining the data from the two paired files

and deleting duplicated data. The sort function was used to select reads that exhibited an identity
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of > 60% and an alignment length > 49 amino acids. For each gene, the relative abundance
values were calculated using the number of aligned reads divided by the total number of

sequences for each sample (determined by Trimmomatic).

The above analysis indicated two functional genes (Rhodococcus jostii RHA1 prmA and
Rhocodoccus sp. RR1 prmA) were dominant in the soil and sediment metagenomes. Therefore,
BLASTP 2.9.0+ (Altschul et al. 1997) (protein-protein BLAST) from the NCBI website was
used to search for similar protein sequences to these two genes. The sequences obtained (>94.8%
similar to the two query sequences) were used to create a phylogenetic tree in MEGANT7 using

the Maximum Likelihood method (Jones et al. 1992; Kumar et al. 2016).

Results

Biodegradation of 1,4-Dioxane

The concentration of 1,4-dioxane declined in all of the live microcosms (inoculated with all four
uncontaminated soils and with two contaminated site sediments), but not in the abiotic controls,
indicating biological removal (Figure 1). All of the live microcosms, except M10A
(contaminated site soil), demonstrated >50% removal in 1,4-dioxane in approximately 40 days.
Following the initial biodegradation of the chemical, the microcosms were reamended with 1,4-
dioxane twice. A steady depletion of 1,4-dioxane occurred in all four agricultural soils and the
two contaminated site soil samples after each reamendment, while no removal was noted in the
corresponding abiotic controls. However, limited biodegradation (only one replicate decreased)
was observed for soil F after the last amendment. Overall, between approximately 220 and 245

days was required to reduce the majority of the amended 1,4-dioxane.

Taxonomic Analysis of Metagenomes

Although DNA was extracted from all microcosms and live controls (no 1,4-dioxane), in some
cases insufficient DNA was extracted (and was not submitted for library generation) or did not
generate libraries of sufficient concentration for sequencing. Unfortunately, this included all
DNA extracts for the microcosms inoculated with sediment from one of the two 1,4-dioxane
contaminated sites (M10A three samples and three live controls). Also, only one sample from the

other contaminated site (C7A) generated enough DNA for sequencing. Overall, eighteen libraries
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were sequenced, which included two samples and two live controls for each soil (except soil F
which included three samples) and one sample from one contaminated site (C7A).

The phylogenetic analysis of the eighteen soil and sediment metagenomes indicated the
majority of the microorganisms classified within the classes Acidobacteria, Alpha-, Beta-,
Gamma-, Deltaproteobacteria, Actinobacteria, Bacilli and Clostridia (Figure S1). The most
abundant genera, averaged across all metagenomes, included Candidatus Solibacter,
Bradyrhizobium, Mesorhizobium, Burkholderia, Pseudomonas, Stenotrophomonas,
Xanthomonas, Mycobacterium and Streptomyces (Figure S2). The relative abundance (%) of the
most abundant genera (25 most abundant) for each soil analyzed separately is also shown (Figure
S3). The most abundant genera in all four soils were similar and included Xanthomonas,
Streptomyces, Mesorhizobium, Bradyrhizobium and Burkholderia. In contrast, Pseudomonas,
Rhodococcus, Arthrobacter, Mycobacterium and Corynebacterium were the most abundant

genera in the contaminated site microcosms.

Genera Associated with 1,4-Dioxane Degradation

The metagenomes of the samples were compared to the live controls (no 1,4-dioxane) to
determine which genera were positively influenced by 1,4-dioxane degradation. First, all of the
samples (n=9) were compared to all of the live controls (#=8) (Figure 2). Overall, fifteen genera
were statistically significantly enriched in the live samples compared to the controls. The greatest
differences between the means were noted for Mycobacterium (0.304%, p=0.0029), followed by
Nocardioides (0.127%, p=0.023), and Kribbella (0.079%, p=0.017). The trends suggest these
genera are obtaining a growth benefit from the presence of 1,4-dioxane. The relative abundance
of these genera in the contaminated site microcosm is also shown (Figure 2B, insert). Except for
Ureaplasma, the enriched genera all classify within the order Actinomycetales (Table 1).

The metagenomes of the samples and controls were also compared for each soil
individually. Two (Clavibacter, Bartonella) and seven genera (Arthrobacter, Nocardia,
Gordonia, Kocuria, Brevibacterium, Rothia, Erysipelothrix) were statistically significantly
enriched in the samples compared to the controls in soils 1 and 2, respectively (Figure 3). Three
genera (Hyphomicrobium, Acetobacter, Veillonella) and one genus (Chelativorans) were
statistically significantly enriched in the samples compared to the controls in soils F and G,

respectively (Figure 4). Seven of the thirteen listed above classify within the Actinomycetales
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(Table 1). The differences between the means (for the individual soil analysis) were the highest
(>0.033%) for Arthrobacter, Nocardia, Hyphomicrobium and Chelativorans (Table 1). The
relative abundance of the thirteen enriched genera in the samples compared to the controls (for
the individual soil analysis) and for the contaminated site sample is shown (Figure 5). The
contaminated site sample is shown with a different scale as it involved higher relative abundance
values compared to the other microcosms (Figure 5 insert). Both Arthrobacter and Nocardia

have relative abundance values of >1% in the contaminated site sample.

Relative Abundance of Genera Associated with 1,4-dioxane Bioegradation

The metagenomes were also investigated to determine the relative abundance (%) of fifteen
genera previously associated with metabolic or co-metabolic 1,4-dioxane degradation (Figure 6).
All except Pseudonocardia and Rhodanbacter were present in the samples and controls.
Burkholderia, Mycobacterium, Pseudomonas and Rhodococcus were present at the highest
relative abundance levels (0.84-2.45%). Only Mycobacterium was statistically significantly
(»<0.05) enriched in the samples compare to the live controls. Pseudonocardia and
Rhodanbacter were also absent in the contaminated site sample (Figure 6, insert). In the
contaminated site metagenome, the four most abundant genera were Pseudomonas (49.0%),
Rhodococcus (5.9%), Mycobacterium (3.9%) and Nocardia (1.2%). The contaminated site
sample indicates a 25-fold higher relative abundance in Pseudomonas and almost a 6-fold higher

relative abundance in Rhodococcus compared to the samples from agricultural sites.

Genes Associated with 1,4-Dioxane Degradation
The reads aligning to the genes previously associated with 1,4-dioxane degradation were
determined using DIAMOND and the data were analyzed using Excel. Only the reads with >
60% identity for > 49 amino acids were included in the analysis. Among the twelve genes
previously associated with 1,4-dioxane degradation, the majority were present in all the samples
including the contaminated site sample (Figure 7).

The analysis demonstrates a uniform trend of higher relative abundance values for
Rhodococcus sp. RR1 prmA and Rhodococcus jostii RHA1 prmA in all four agricultural samples
and the contaminated site sample compared to the other genes. The contaminated site sample

demonstrates more than twice the relative abundance of these two genes compared to the
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samples from the agricultural sites. A high relative abundance of Burkholderia cepacia G4
tomA3 was also noted in all of the samples, with higher abundance (10-fold increase) in the
contaminated site sample compared to other agricultural samples (Figure 7). Only six and eleven
metagenomes contained reads aligning with Methylosinus trichosporium OB3b toud and
Pseudomonas pickettii PKOI tbuAl, respectively. Seven functional genes (Pseudomonas
mendocina KR1 tmoA, Rhodococcus sp. YYL thmA, Pseudonocardia sp. ENV478 thmA,
Mycobacterium sp. ENV421 prmA, Pseudonocardia tetrahydrofuranoxydans thmA,
Pseudonocardia dioxanivorans CB1190 thmA, Mycobacterium dioxanotrophicus PH-06 prmA)
were present in between fourteen and eighteen metagenomes. All four soils generated similar
trends for the functional genes and no statistically significant differences were noted between the
live controls and samples. The contaminated site sample generated the same trend for the three
most abundant genes.

Following the discovery of the dominance of Rhodococcus jostii RHA1 prmA and
Rhodococcus sp. RR1 prmA in the soil metagenomes, a BLASTP search was performed to find
the closest matching sequences in the NCBI database. The matching protein sequences, with
number of microorganisms shown in parenthesis, belonged to the genera Rhodococcus (60),
Kribbella (16), Gordonia (10), Mycolicibacterium (10), Mycobacterium (8), Nocardia (7),
Nocardioides (6), Hoyosella (3), Intrasporangium (2), Millisia (1), Cryptosporangium (1) and
Acidobacteria (1). Interestingly, five of these genera (Mycobacterium, Nocardioides, Kribbella,
Gordonia and Nocardia) were enriched in the samples compared to the live controls (as
discussed above, Table 1). A phylogenetic tree was generated to illustrate the evolutionary
relationships between the two query sequences and the enriched genera (Figure 8). Rhodococcus
jostii RHA1 prmA clustered closest to Nocardia sequences and Rhodococcus sp. RR1 prmA

clustered closest to Kribbella sequences.

Discussion
The remediation of sites contaminated with 1,4-dioxane is challenging because of the physical

and chemical properties of this chemical (Mohr et al. 2010). Although bioremediation can be a
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viable option at some sites, it is still unclear which microorganisms and functional genes are
linked to 1,4-dioxane degradation in mixed communities.

To address this knowledge gap, the current study identified which genera could obtain a growth
benefit from 1,4-dioxane biodegradation. For this, the sample microcosms were supplied with
media and 1,4-dioxane and the live control microcosms were supplied with the same media, but
no 1,4-dioxane. Consequently, an increase in the relative abundance of any microorganism
between the samples and live controls could be attributed to the presence of 1,4-dioxane. From
this, a reasonable hypothesis would be that the enriched microorganisms are being exposed to
growth supporting substrates from 1,4-dioxane degradation. Here, nineteen genera increased in
abundance following 1,4-dioxane degradation compared to the live controls (no 1,4-dioxane).
The three most enriched across all four soils were Mycobacterium, Nocardioides, Kribbella (all
classifying as Actinomycetales). There was also a higher level of enrichment for Arthrobacter,
Nocardia and Gordonia (Actinomycetales), Hyphomicrobium (Rhizobiales), Clavibacter
(Actinomycetales) and Bartonella (Rhizobiales) and Chelativorans (Rhizobiales) in individual

soils.

There are at least two hypotheses on why these genera increased in abundance in 1,4-dioxane
amended samples compared to the live controls. One hypothesis being that these microorganisms
are obtaining a growth benefit from consuming 1,4-dioxane biodegradation products. Several
studies have examined 1,4-dioxane biodegradation pathways (Grostern et al. 2012; Huang et al.
2014; Kim et al. 2009; Mahendra et al. 2007; Sales et al. 2013; Vainberg et al. 2006). A study
with Pseudonocardia dioxanivorans CB1190 provided evidence that carbon from 1,4-dioxane
enters central metabolism via glyoxlate (Grostern et al. 2012). In contrast, Pseudonocardia sp.
strain ENV478 produces 2-hydroxyethoxyacetic acid (HEAA) as a terminal product of 1,4-
dioxane biodegradation (Vainberg et al. 2006). Conversely, 1,4-dioxane biodegradation by
Pseudonocardia dioxanivorans CB1190 (metabolic 1,4-dioxane degrader), Mycobacterium
vaccae JOBS, Pseudomonas mendocina KR 1, Pseudonocardia tetrahydrofuranoxydans K1 (co-
metabolic 1,4-dioxane degraders) produced HEAA transiently, but the chemical did not
accumulate. They identified ethylene glycol, glycolic acid, glyoxylic acid and oxalic acid as 1,4-
dioxane biodegradation intermediates by these isolates (Mahendra et al. 2007). Others have also

identified ethylene glycol (Huang et al. 2014; Kim et al. 2009), oxalic acid (Huang et al. 2014)
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and ethane-1,2-diol (Kim et al. 2009) during 1,4-dioxane degradation. The enriched genera may
have benefited from funneling these degradation intermediates into central metabolism.

A second hypothesis being that the enriched genera are responsible for both the initial attack on
1,4-dioxane and for the consumption of degradation products. Evidence for this concerns the
similarity of genes belonging to the enriched genera (Mycobacterium, Nocardioides, Kribbella,
Nocardia and Gordonia) to Rhodococcus jostii RHA1 prmA and Rhodococcus sp. RR1 prmA (as
shown in the phylogenetic tree). Although Rhodococcus jostii RHA1 and Rhodococcus sp. RR1
co-metabolically degrade 1,4-dioxane, the enriched genera may also contain genes downstream
in the pathway enabling growth on 1,4-dioxane. Arthrobacter did not contain genes similar to the
Rhodococcus strains, although others have reported that Arthrobacter (ATCC 27779) can co-
metabolically degrade 1,4-dioxane (Chu et al. 2009). Arthrobacter, Mycobacterium and
Nocardia have previously been linked to 1,4-dioxane degradation (Chu et al. 2009; Lan et al.
2013; Masuda 2009), whereas Nocardioides, Gordonia and Kribbella are potentially novel
degraders. Certain species of Gordonia such as G. terrae are known to aid in degrading certain
chemicals, including ethyl tertiary butyl ether (ETBE) metabolically, methyl tertiary butyl ether
(MTBE) co-metabolically (Hernandez-Perez et al. 2001) as well as long chain hydrocarbons
(Kubota et al. 2008). Overall, both hypotheses in this work suggests many genera (almost all
classifying with the Actinomycetales) are likely involved in the degradation of 1,4-dioxane

and/or 1,4-dioxane metabolites in the soil microcosms studied.

In the current study, reads from all of the 1,4-dioxane degrading function genes were observed in
soil metagenomes. Consistent with the current study, others have detected SDIMOs from the
majority (five from six groups) of SDIMO groups (Li et al. 2013b). In that research, the authors
examined Arctic groundwater impacted by 1,4-dioxane using high-throughput microarrays and
denaturing gradient gel electrophoresis and found an enrichment of thmA-like genes near the
source zone (Li et al. 2013b). Also similar to the current work, a 1,4-dioxane degrading consortia
contained a high percentage of group five SDIMOs (Rhodococcus jostii RHA1 prmA and
Rhodococcus sp. RR1 prmA are group five SDIMOs), although the specific genes were not
determined (He et al. 2018). Another study noted a correlation between dxmA/thmA (designed
based on Rhodococcus sp. YYL thmA, Pseudonocardia sp. ENVA478 thmA, Pseudonocardia
tetrahydrofuranoxydans K1 thmA and Pseudonocardia dioxanivorans CB1190 thmA) and the
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amount of 1,4-dioxane degraded in groundwater inoculated microcosms (Li et al. 2013a). These
genes were also present in the soil metagenomes (between fourteen and sixteen) of the current

study.

Recently, shotgun sequencing was used to examine 1,4-dioxane degrading genes in groundwater
from multiple chlorinated solvent sites (previously bioaugmented with SDC-9) (Dang et al.
2018). From the twelve genes examined, only six were found in the groundwater metagenomes.
The six included the three most abundant genes in the current study; Rhodococcus sp. RR1
prmA, Rhodococcus jostii RHA1 prmA and Burkholderia cepacia G4 tomA3. From these, the
Rhodococcus genes were both found in a only small number of metagenomes (~18%) and B.
cepacia G4 tomA3 was found in the majority (~68%). The occurrence of the three genes in both
studies could suggest their importance across different environments (soil vs. groundwater,
aerobic vs. oxygen depleted). Unlike the current study, the groundwater metagenomes contained
high relative abundance values for Methylosinus trichosporium OB3b touA (up to 0.0031%)
followed by Pseudomonas mendocina KR1 tmoA (up to 0.00022%) and Pseudomonas pickettii
PKOL1 tbuA1 (up to 0.0013%). The different results between the two studies are likely due to
variations in the conditions (redox potential, carbon availability, nutrient availability, soil vs.

groundwater) from which the samples were obtained.

In summary, several key findings highly relevant for 1,4-dioxane bioremediation were generated
here. Shotgun sequencing enabled both taxonomic and functional analyses to be performed on
multiple mixed microbial communities. Multiple genera classifying (including novel and
previously identified degraders) within the Actinomycetales were enriched during 1,4-dioxane
degradation and may be associated with growth linked 1,4-dioxane degradation.

The three most enriched were Mycobacterium, Nocardioides, Kribbella (classifying as
Actinomycetales). There was also a higher level of enrichment of other genera in individual soils.
The current research found that both previously reported genera as well as novel genera (e.g.
Nocardioides, Gordonia and Kribbella) were linked to 1,4-dioxane degradation. However, it is
unknown if these microorganisms are benefiting from the complete degradation of the chemical
or from the consumption of 1,4-dioxane degradation products, such as HEAA, ethylene glycol,

glycolic acid, glyoxylic acid or oxalic acid. Finally, all of the functional genes associated with
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456  1,4-dioxane were found in the soil and sediment metagenomes. Reads aligning to Rhodococcus
457  jostii RHA1 prmA and Rhodococcus sp. RR1 prmA illustrated the highest relative abundance

458  values and were present in all eighteen metagenomes. Future research should be directed towards
459  similar molecular analyses of groundwater and sediment samples from 1,4-dioxane contaminated
460  sites as well as comparisons to 1,4-dioxane removal rates for propane amended samples.
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679  Table and Figure Legends

680  Table 1. Classification of genera statistically significantly enriched (p<0.05) in the samples

681  compared to the controls (no 1,4-dioxane) following the degradation of 1,4-dioxane in all soils
682  collectively and when the soils were analyzed individually. The last column also illustrates the
683  difference in means between the controls and the samples for each genera. Genera in bold were
684  identified in the BLASTP search as containing genes similar to Rhodococcus jostii RHA1 prmA
685  and Rhocodoccus sp. prmA (as discussed in the results section for the functional gene analysis)

686  Figure 1. Average 1,4-dioxane concentrations (mg/L) in triplicate samples and abiotic controls
687  with different inocula, including four agricultural soils and sediments from two contaminated
688  sites (bars represent standard deviations). 1,4-dioxane was reamended to the samples

689  microcosms twice (arrows).

690

691  Figure 2. Extended error bar plot illustrating genera statistically significantly different in relative
692  abundance (Welch's two sided t-test, p <0.05) between the samples (#=9) and the live controls
693  (no 1, 4-dioxane, n=8) following 1,4-dioxane degradation (A). The symbols to the left of the
694  dashed line (yellow) indicate a higher relative abundance in the samples compared to the controls
695  and the symbols to the right (blue) indicate the reverse. The figure was created with the software
696  STAMP. A comparison of the relative abundance values (%) for the genera enriched in the

697  samples is also shown in a box plot format (B). The insert illustrates the relative abundance of
698  these enriched genera in the contaminated site sample (C7A) with a different y-axis scale.

699

700  Figure 3. Extended error bar plots illustrating genera statistically significantly different in

701  relative abundance (Welch's two sided t-test, p <0.05) between the samples and the live controls
702  following 1,4-dioxane degradation in soil 1 (A) and 2 (B). The symbols to the left of the dashed
703  line (in yellow) indicate a higher relative abundance in the samples compared to the controls and
704  the symbols to the right (in blue) indicate the reverse.

705

706  Figure 4. Extended error bar plots illustrating genera statistically significantly different in

707  relative abundance (Welch's two sided t-test, p <0.05) between the samples and the live controls
708  following 1,4-dioxane degradation in soil F (A) and G (B). The symbols to the left of the dashed
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line (in yellow) indicate a higher relative abundance in the samples compared to the controls and
the symbols to the right (in blue) indicate the reverse.

Figure 5. Summary of the relative abundance of statistically significantly enriched genera in the
samples compared to the controls (no 1,4-dioxane) for soils 1, 2, F and G. The insert illustrates
the relative abundance of these genera in the contaminated site sample (C7A) with a different
scale on the y-axis.

Figure 6. Relative abundance (%) of genera associated with metabolic and co-metabolic
degradation of 1,4-dioxane in live controls (#=8) and samples (#n=9) in four soils and one
contaminated site sample (C7A). The value "a" indicates a significant difference (p<0.05) in a
two tailed student's t-test between the samples and controls. The insert illustrates the same data
with a different y-axis.

Figure 7. Relative abundance (%) of reads aligning (>60% identity for > 49 amino acids) to
genes previously associated with the metabolic and co-metabolic degradation of 1,4- dioxane in
Soil F and C7A (A), Soil G (B), Soil 1 (C) and Soil 2 (D).

Figure 8. Phylogenetic tree of Rhodococcus jostii RHA1 prmA and Rhocodoccus sp. prmA and
BLASTP results (>94.8% similar to the two query sequences). Only genera that were enriched
following 1,4-dioxane degradation (compared to the controls) are shown (Table 1). The
evolutionary history was inferred by using the Maximum Likelihood method based on the Jones-
Taylor-Thornton (JTT) matrix-based model. The tree with the highest log likelihood (-2731.06)
is shown. Initial tree(s) for the heuristic search were obtained automatically by applying
Neighbor-Join and BioNJ algorithms to a matrix of pairwise distances estimated using a JTT
model, and then selecting the topology with superior log likelihood value. The tree is drawn to
scale, with branch lengths measured in the number of substitutions per site. The analysis
involved 48 amino acid sequences. All positions containing gaps and missing data were
eliminated. There were a total of 439 positions in the final dataset. Evolutionary analyses were
conducted in MEGA7.
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Table 1.

Difference

Phylum Class Order Family Genus in Means
(%)

All Soils: All samples (n=9) compared to all controls (n=8)
Actinobacteria Actinobacteria Actinomycetales Mycobacteriaceae Mycobacterium 0.304
Actinobacteria Actinobacteria Actinomycetales Nocardioidaceae Nocardioides 0.127
Actinobacteria Actinobacteria Actinomycetales Nocardioidaceae Kribbella 0.079
Actinobacteria Actinobacteria Actinomycetales Pseudonocardiaceae Amycolatopsis 0.042
Actinobacteria Actinobacteria Actinomycetales Cellulomonadaceae Cellulomonas 0.035
Actinobacteria Actinobacteria Actinomycetales Actinosynnemataceae Actinosynnema 0.027
Actinobacteria Actinobacteria Actinomycetales Beutenbergiaceae Beutenbergia 0.025
Actinobacteria Actinobacteria Actinomycetales Sanguibacteraceae Sanguibacter 0.023
Actinobacteria Actinobacteria Actinomycetales Pseudonocardiaceae Saccharomonospora 0.019
Actinobacteria Actinobacteria Actinomycetales Promicromonosporaceae  Xylanimonas 0.018
Actinobacteria Actinobacteria Actinomycetales Glycomycetaceae Stackebrandltia 0.015
Actinobacteria Actinobacteria Actinomycetales Gordoniaceae Gordonia 0.014
Actinobacteria Actinobacteria Actinomycetales Nocardioidaceae Aeromicrobium 0.011
Actinobacteria Actinobacteria Actinomycetales Tsukamurellaceae Tsukamurella 0.008
Tenericutes Mollicutes Mycoplasmatales  Mycoplasmataceae Ureaplasma 0.0002
Soil 1: Samples (n=3) compared to controls (n=2)
Actinobacteria Actinobacteria Actinomycetales Microbacteriaceae Clavibacter 0.017
Proteobacteria Alphaproteobacteria  Rhizobiales Bartonellaceae Bartonella 0.010
Soil 2: Samples (n=2) compared to controls (n=2)
Actinobacteria Actinobacteria Actinomycetales Micrococcaceae Arthrobacter 0.276
Actinobacteria Actinobacteria Actinomycetales Nocardiaceae Nocardia 0.049
Actinobacteria Actinobacteria Actinomycetales Gordoniaceae Gordonia 0.019
Actinobacteria Actinobacteria Actinomycetales Micrococcaceae Kocuria 0.017
Actinobacteria Actinobacteria Actinomycetales Brevibacteriaceae Brevibacterium 0.015
Actinobacteria Actinobacteria Actinomycetales Micrococcaceae Rothia 0.005
Firmicutes Erysipelotrichi Erysipelotrichales  Erysipelotrichaceae Erysipelothrix 0.0005
Soil F: Samples (n=2) compared to controls (n=2)
Proteobacteria Alphaproteobacteria  Rhizobiales Hyphomicrobiaceae Hyphomicrobium 0.033
Proteobacteria Alphaproteobacteria  Rhodospirillales Acetobacteraceae Acetobacter 0.003
Firmicutes Negativicutes Selenomonadales  Veillonellaceae Veillonella 0.002
Soil G: Samples (n=2) compared to controls (n=2)
Proteobacteria Alphaproteobacteria  Rhizobiales Phyllobacteriaceae Chelativorans 0.055
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WP 004023476.1 methane monooxygenase Gordonia terrae
WP 064570876.1 methane monooxygenase Gordonia sp. LAM0048
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Table S1. Summary of the characteristics of the soils used to inoculate the sample and control
microcosms.

Soil Sand (%) | Silt (%) | Clay (%) pH Organic Matter %

E 70 19 11 7.3 1.9
F 64 25 11 6.6 1.5
G 68 20 12 5.5 1.6
T1 40 40 20 6.4 1.6

T2 36 42 22 6.1 1.9




Table S2. Summary of sequencing information processed by MG-RAST.

QC — Quality Control

Artii:icial Post QC:
Upload: bp Upload: Duplicate Post QC: bp Post QC: Mean
1D Name Sequences Reads: Sequences

Count Count Sequence

Count Sequence Count Length bp

Count

mgm4846244.3 | C7TA 6 S10 L001 R | 928,461,523 3,828,893 730,886 745,308,161 3,067,261 243 £33
mgm4842040.3 SF 2 S3 L001 R 1,249,466,781 | 5,278,200 741,761 1,057,029,663 | 4,469,282 237 +36
mgm4846245.3 SF 3 S6 L001 R 1,497,947,613 | 6,267,333 1,045,636 1,227,596,223 | 5,142,267 239 + 35
mgm4846246.3 SF 4 S8 L001 R 698,047,178 2,986,100 484,606 572,423,699 2,454,542 233 +£36
mgm4846247.3 SF 5 S11 L00l1 R 1,455,181,423 | 6,244,496 875,408 1,226,035,914 | 5,268,011 233 +37
mgm4846248.3 SF 6 _S13 L001 R 1,276,229,786 | 5,446,704 791,730 1,069,530,685 | 4,570,187 234 +36
mgm4846291.3 | SG 1 S15 L001 R 362,019,482 1,517,474 232,203 300,578,338 1,261,641 238 +35
mgm4841972.3 | SG 3 S17 L001 R 1,237,320,023 | 5,151,224 739,217 1,042,837,451 | 4,346,084 240 + 34
mgm4841973.3 SG 4 S1 L0o01 R 1,183,825,731 | 4,906,054 779,630 975,862,599 4,048,734 241 +34
mgm4842102.3 SG 6 _S4 1001 R 1,097,936,207 | 4,598,102 612,987 933,115,160 3,911,767 239 £35
mgm4841974.3 ST1 2 S7 LOOI R 1,722,580,822 | 7,248,808 1,205,707 1,409,132,207 | 5,932,625 238 +£35
mgm4846290.3 | ST1 3 S9 L001 R 687,193,817 2,855,664 394,713 580,636,546 2,415,127 240 + 35
mgm4842023.3 | STI 4 S12 L1001 R | 1,720,695,830 | 7,269,781 1,124,424 1,433,388,134 | 6,053,609 237 +£35
mgm4842024.3 | STI1 6 S14 1001 R | 1,165,586,999 | 4,879,142 683,336 983,135,037 4,119,069 239 +35
mgm4842104.3 | ST2 1 S16 L0O01 R | 3,144,582,833 | 13,429,024 2,172,387 2,579,894,248 | 11,026,268 234 + 36
mgm4842103.3 | ST2 3 S18 L001 R | 1,274,658,549 | 5,369,262 727,123 1,080,887,053 | 4,557,307 237 +35
mgm4842107.3 ST2 5 S2 1L.001 R 1,622,482,462 | 6,854,685 982,861 1,362,403,381 | 5,762,840 236 £35
mgm4842106.3 ST2 6 S5 LOOI R 1,463,433,476 | 6,249,417 846,173 1,252,082,629 | 5,349,932 234 +36
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Figure S1. Phylogram (created with MEGANG, version 6.11.7) illustrating the relative abundance and classification (Class Level) of all
bacteria across all metagenomes (samples and controls).
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Figure S2. Phylogram (created with MEGANG, version 6.11.7) illustrating the most abundant genera (ranked by average relative abundance,
then selected if average relative abundance >0.5%) across all metagenomes (samples and controls).
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Figure S3. The twenty-five most common genera (by relative abundance, %), ranked by
the averages of the samples and controls, in soil 1 (A), soil 2 (B), soil F (C), soil G (D) and
the contaminated site sediment 7A (E).



