

Enrichment of Novel Actinomycetales and the Detection of Monooxygenases during Aerobic 1,4-Dioxane Biodegradation with Uncontaminated and Contaminated Inocula

Vidhya Ramalingam and Alison M. Cupples*

9 Department of Civil and Environmental Engineering, Michigan State University, East Lansing,
10 Michigan, USA

14 *Corresponding Author:

15 Alison M. Cupples

16 A135, 1449 Engineering Research Court, Michigan State University, East Lansing, MI 48824,
17 cupplesa@egr.msu.edu

21 KEYWORDS: 1,4-dioxane, soluble di-iron monooxygenases, *Nocardioides*, *Gordonia*,
22 *Kribbella*, *prmA*, *tomA3*

24 **Abstract**

25 1,4-dioxane, a co-contaminant at many chlorinated solvent sites, is a problematic groundwater
26 pollutant because of risks to human health and characteristics which make remediation
27 challenging. *In situ* 1,4-dioxane bioremediation has recently been shown to be an effective
28 remediation strategy. However, the presence/abundance of 1,4-dioxane degrading species across
29 different environmental samples is generally unknown. Here, the objectives were to identify
30 which 1,4-dioxane degrading functional genes are present and which genera may be using 1,4-
31 dioxane and/or metabolites to support growth across different microbial communities. For this,
32 laboratory sample microcosms and abiotic control microcosms (containing media) were
33 inoculated with four uncontaminated soils and sediments from two contaminated sites. Live
34 control microcosms were treated in the same manner, except 1,4-dioxane was not added. 1,4-
35 dioxane decreased in live microcosms with all six inocula, but not in the abiotic controls,
36 suggesting biodegradation occurred. A comparison of live sample microcosms and live controls
37 (no 1,4-dioxane) indicated nineteen genera were enriched following exposure to 1,4-dioxane,
38 suggesting a growth benefit for 1,4-dioxane biodegradation. The three most enriched were
39 *Mycobacterium*, *Nocardioides*, *Kribbella* (classifying as *Actinomycetales*). There was also a
40 higher level of enrichment for *Arthrobacter*, *Nocardia* and *Gordonia* (all three classifying as
41 *Actinomycetales*) in one soil, *Hyphomicrobium* (*Rhizobiales*) in another soil, *Clavibacter*
42 (*Actinomycetales*) and *Bartonella* (*Rhizobiales*) in another soil and *Chelativorans* (*Rhizobiales*)
43 in another soil. Although *Arthrobacter*, *Mycobacterium* and *Nocardia* have previously been
44 linked to 1,4-dioxane degradation, *Nocardioides*, *Gordonia* and *Kribbella* are potentially novel
45 degraders. The analysis of the functional genes associated with 1,4-dioxane demonstrated three
46 genes were present at higher relative abundance values, including *Rhodococcus* sp. RR1 *prmA*,
47 *Rhodococcus jostii* RHA1 *prmA* and *Burkholderia cepacia* G4 *tomA3*. Overall, this study
48 provides novel insights into the identity of the multiple genera and functional genes associated
49 with aerobic degradation of 1,4-dioxane in mixed communities.

50

51

52

53 **Introduction**

54 1,4-dioxane, a probable human carcinogen (DeRosa et al. 1996), was commonly used as a
55 stabilizer in 1,1,1-trichloroethane formulations and is now frequently detected at sites where the
56 chlorinated solvents are present (Adamson et al. 2015; Adamson et al. 2014; ATSDR 2012;
57 Mohr et al. 2010). For example, 1,4-dioxane was found at 195 sites in California with 95%
58 containing one or more of the chlorinated solvents (Adamson et al. 2014). 1,4-dioxane has been
59 classified as a probable carcinogen (Group 2B) by the U.S. EPA and a possible human
60 carcinogen (B2) by the International Agency for Research on Cancer based on animal studies
61 (IARC 1999; USEPA 2017). No federal maximum contaminant level for 1,4-dioxane in drinking
62 water has been established (EPA 2017), however, several states have set low advisory action
63 levels (e.g. California, Florida, Michigan and North Carolina have levels <5 ppb). A major
64 challenge to 1,4-dioxane remediation concerns chemical characteristics that result in migration
65 and persistence (Adamson et al. 2015; Mohr et al. 2010). A low organic carbon partition
66 coefficient ($\log K_{OC} = 1.23$) and Henry's Law Constant (5×10^{-6} atm. $m^3 mol^{-1}$), make traditional
67 remediation methods such as air stripping or activated carbon largely ineffective (Mahendra and
68 Alvarez-Cohen 2006; Steffan et al. 2007; Zenker et al. 2003). *Ex situ* oxidation methods
69 including ozone and hydrogen peroxide (Adams et al. 1994) or hydrogen peroxide and ultraviolet
70 light (Stefan and Bolton 1998) have been commercially applied, however these can be expensive
71 at high concentrations (Steffan et al. 2007).

72
73 Many bacteria have been linked to the aerobic metabolic and co-metabolic degradation of 1,4-
74 dioxane. Currently, *Pseudonocardia dioxanivorans* CB1190 (Parales et al. 1994), *Rhodococcus*
75 *ruber* 219 (Bock et al. 1996), *Pseudonocardia benzennivorans* B5 (Kämpfer and Kroppenstedt
76 2004), *Mycobacterium* sp. PH-06 (Kim et al. 2008), *Afipia* sp. D1, *Mycobacterium* sp. D6,
77 *Mycobacterium* sp. D11, *Pseudonocardia* sp. D17 (Sei et al. 2013), *Acinetobacter baumannii*
78 DD1 (Huang et al. 2014), *Rhodanbacter* AYS5 (Pugazhendi et al. 2015), *Xanthobacter flavus*
79 DT8 (Chen et al. 2016) and *Rhodococcus aetherivorans* JCM 14343 (Inoue et al. 2016) are
80 known to degrade 1,4-dioxane metabolically. A large number of microorganisms are known to
81 co-metabolically degrade this contaminant. For example, *Pseudonocardia*
82 *tetrahydrofuranoxydans* sp. K1 (Kohlweyer et al. 2000), *Pseudonocardia* sp. ENV478 (Vainberg
83 et al. 2006), *Rhodococcus ruber* T1, *Rhodococcus ruber* T5 (Sei et al. 2013), *Rhodococcus ruber*
84 ENV 425 (Steffan et al. 1997), *Rhodococcus* RR1 (Stringfellow and Alvarez-Cohen 1999),

85 *Flavobacterium* sp. (Sun et al. 2011), *Mycobacterium vaccae* (Burback and Perry 1993),
86 *Mycobacterium* sp. ENV 421 (Masuda et al. 2012b), *Pseudomonas mendocina* KR1 (Whited and
87 Gibson 1991), *Ralstonia pickettii* PKO1 (Kukor and Olsen 1990), *Burkholderia cepacia* G4
88 (Nelson et al. 1986), *Methylosinus trichosporium* OB3b (Whittenbury et al. 1970),
89 *Pseudonocardia acacia* JCM (Inoue et al. 2016) and *Pseudonocardia asaccharolytica* JCM
90 (Inoue et al. 2016) are among those linked to co-metabolic degradation of 1,4-dioxane. Co-
91 metabolic 1,4-dioxane degradation has previously been reported with growth supporting
92 substrates such as tetrahydrofuran, methane, propane, toluene, ethanol, sucrose, lactate, yeast
93 extract and 2-propanol (Burback and Perry 1993; Hand et al. 2015; Kohlweyer et al. 2000;
94 Mahendra and Alvarez-Cohen 2006; Vainberg et al. 2006).

95
96 The initiation of 1,4-dioxane biodegradation has been associated with various groups of soluble
97 di-iron monooxygenases (SDIMOs) (He et al. 2017). Monooxygenases are enzymes that
98 facilitate bacterial oxidation through the introduction of oxygen. SDIMOs have been classified
99 into 6 groups based on their preferred substrate and sequence similarity (Coleman et al. 2006).
100 SDIMOs associated with metabolic and co-metabolic 1,4-dioxane degradation include [as
101 summarized in (He et al. 2017)] *Burkholderia cepacia* G4 *tomA3* (Group 1) (Mahendra and
102 Alvarez-Cohen 2006; Newman and Wackett 1995), *Pseudomonas pickettii* PKO1 *tbuA1* (Group
103 2) (Fishman et al. 2004; Mahendra and Alvarez-Cohen 2006), *Pseudomonas mendocina* KR1
104 *tmoA* (Group 2) (Mahendra and Alvarez-Cohen 2006; Yen et al. 1991), *Methylosinus*
105 *trichosporium* OB3b *mmoX* (Group 3) (Mahendra and Alvarez-Cohen 2006; Oldenhuis et al.
106 1989), *Pseudonocardia dioxanivorans* CB1190 *prmA* (Group 5) (Parales et al. 1994; Sales et al.
107 2013; Sales et al. 2011), *Pseudonocardia tetrahydrofuranoxydans* K1 *thmA* (Group 5) (Kampfer
108 et al. 2006; Thiemer et al. 2003), *Pseudonocardia* sp. strain ENV478 *thmA* (Group 5) (Masuda et
109 al. 2012a), *Rhodococcus* sp. strain YYL *thmA* (Group 5) (Yao et al. 2009), *Rhodococcus jostii*
110 RHA1 *prmA* (Group 5) (Hand et al. 2015; Sharp et al. 2007), *Rhodococcus* sp. RR1 *prmA*
111 (Group 5) (Sharp et al. 2007), *Mycobacterium* sp. ENV421 *prmA* (Group 6) (Masuda 2009) and
112 *Mycobacterium dioxanotrophicus* PH-06 *prmA* (Group 6) (He et al. 2017).

113

114 As the success of natural attenuation or biostimulation often depends on the population of native
115 degraders present at the contaminated site, several studies have developed methods targeting

116 these functional genes (Gedalanga et al. 2014; He et al. 2018; Li et al. 2013a; Li et al. 2013b).
117 For example, methods have been developed for the functional genes associated with
118 *Pseudonocardia* and *Mycobacterium* (Deng et al. 2018; Gedalanga et al. 2014; He et al. 2017).
119 Another study focused specifically on detecting functional genes of four 1,4-dioxane degraders
120 (*Pseudonocardia dioxanivorans* CB1190, *Pseudonocardia* sp. strain ENV478, *Pseudonocardia*
121 *tetrahydrofuranoxydans* K1, *Rhodococcus* sp. strain YYL). A larger number of functional genes
122 were investigated with microarray-based technology (GeoChip 4.0) and denaturing gradient gel
123 electrophoresis (Li et al. 2013b). More recently, high throughput shotgun sequencing was used to
124 evaluate the presence of the functional genes listed above in impacted and non-impacted
125 groundwater (Dang et al. 2018) . This approach has the added advantage of enabling taxonomic
126 as well as functional analysis of microbial communities. The current study adopted a similar
127 approach to examine the microbial communities involved in 1,4-dioxane degradation in
128 contaminated and uncontaminated sediment and soil inoculated microcosms.

129

130 In the current study, the objectives were 1) to identify which 1,4-dioxane degrading functional
131 genes are present across different microbial communities and 2) to determine which genera may
132 be using 1,4-dioxane and/or metabolites to support growth. The research focused on laboratory
133 microcosms inoculated with four uncontaminated soils and sediment samples from two 1,4-
134 dioxane contaminated sites. The media selected for the experiments followed the approach used
135 to enrich *Pseudonocardia dioxanivorans* CB1190 from industrial sludge (Parales et al. 1994).
136 The work is novel as it combines taxonomic and functional data to generate a more complete
137 picture of the multiple microorganisms and genes linked to 1,4-dioxane degradation in mixed
138 communities.

139

140 **Methods**

141 **Chemicals and Inocula**

142 1,4-dioxane was purchased from Sigma-Aldrich (MO, USA) with 99.8% purity. All stock
143 solutions and dilutions were prepared using DI water. The agricultural samples were collected
144 from two locations on the campus of Michigan State University, East Lansing, Michigan (herein
145 called soils F and G) and two locations at the Kellogg Biological Station, Hickory Corners,
146 Michigan (soils 1 and 2). The characteristics of the agricultural soils have been summarized

147 (Table S1). The contaminated site samples were obtained from California (contaminated with
148 trichloroethene, 1,1-dichloroethene and 1,4-dioxane, herein called C7A) and Maine
149 (contaminated with traces of 1,4-dioxane, herein called M10A). All samples were stored in the
150 dark at 6 °C until use.

151

152 **Experimental Setup, DNA Extraction, 1,4-Dioxane Analysis**

153 Laboratory microcosms were established with soil or sediment (5g wet weight) and 25 mL of
154 media in 30 mL serum bottles. For each of the six inocula (four uncontaminated soils or two
155 contaminated sediments), the experiment design included triplicate sample microcosms,
156 triplicate live control microcosms and triplicate abiotic control microcosms (autoclaved daily for
157 three consecutive days). The triplicate live control microcosms were treated in the same manner
158 as the sample microcosms except no 1,4-dioxane was added. This treatment was included to
159 enable comparisons to the microbial communities exposed to 1,4-dioxane. Following the
160 approach used to enrich *Pseudonocardia dioxanivorans* CB1190 from industrial sludge, each
161 liter of the final media contained 100 mL of a buffer stock [K₂HPO₄ (32.4 g/L), KH₂PO₄ (10
162 g/L), NH₄Cl (20 g/L)] and 100 mL of a trace metal stock [nitrilotriacetic acid (disodium salt)
163 (1.23 g/L), MgSO₄.7H₂O (2 g/L), FeSO₄.7H₂O (0.12 g/L), MnSO₄.H₂O (0.03 g/L), ZnSO₄.7H₂O
164 (0.03 g/L) and CoCl₂.6H₂O (0.01 g/L)] (Parales et al., 1994). The nitrilotriacetic acid (within the
165 trace metal stock solution) represents an additional carbon source. The live sample microcosms
166 were re-spiked with 1,4-dioxane two additional times.

167

168 A GC/MS with Agilent 5975 GC/single quadrupole MS (Agilent Technologies, CA, USA)
169 equipped with a CTC Combi Pal autosampler was used to determine 1,4-dioxane concentrations.
170 Sterile syringes (1 mL) and needles (22 Ga 1.5 in.) were used to collect samples (0.7 mL) from
171 each microcosm. The samples were filtered (0.22 µm nylon filter) before being injected into an
172 amber glass vial (40 mL) for GC/MS analysis. A method was developed to analyze 1,4-dioxane
173 using solid phase micro extraction (SPME). The SPME fiber was inserted in the headspace of the
174 vial and exposed to the analyte for 1 minute before being injected into the GC for thermal
175 desorption. The fiber coating can adsorb the analytes in the vapor phase. Splitless injection was
176 executed and the vials were maintained at 40 °C. The SPME fiber assembly involved 50/30µm
177 Divinylbenzene/ Carboxen/ Polydimethylsiloxane (DVB/CAR/PDMS) and 24 Ga needle for

178 injection. The initial oven temperature was 35 °C and was programmed to increase at a rate of 20
179 °C/min to 120 °C. Once it reached 120 °C, it increased at a rate of 40 °C/min to 250 °C, which was
180 maintained for 3 min. A VF5MS column was used with helium as the carrier gas in constant flow
181 mode at a flow rate of 1 ml/min. The conditioning of the SPME fiber was at 270 °C for 60 min at
182 the beginning of each sequence.

183

184 DNA was extracted from the soil inoculated sample microcosms and live control microcosms
185 (1.2 mL and 0.4 g soil) using QIAGEN DNeasy PowerSoil kit as per the manufacturer's
186 instructions. The QIAGEN DNeasy Powermax Soil kit was used to extract DNA from the
187 microcosms inoculated with the two contaminated sediments. For this, the entire content of each
188 microcosm was sacrificed for DNA extraction. The DNA concentrations were determined using
189 QUBIT dsDNA HS kit. The DNA extracts with the highest DNA yields were selected for
190 shotgun sequencing.

191

192 **Library Preparation, Sequencing, MG-RAST and DIAMOND analysis**

193 Twenty-six samples were submitted for library generation and shotgun sequencing to the
194 Research Technology Support Facility Genomics Core at Michigan State University. Libraries
195 were prepared using the Takara SMARTer ThruPLEX DNA Library Preparation Kit following
196 manufacturer's recommendations. Completed libraries were QC'd and quantified using a
197 combination of Qubit dsDNA HS and Agilent 4200 TapeStation HS DNA1000 assays. Eight
198 samples did not generate libraries of sufficient concentration for sequencing and were removed
199 from further analysis. The remaining eighteen libraries were pooled in equimolar amounts for
200 multiplexed sequencing. The pool was quantified using the Kapa Biosystems Illumina Library
201 Quantification qPCR kit and loaded onto one lane of an Illumina HiSeq 4000 flow cell.
202 Sequencing was performed in a 2x150 bp paired end format using HiSeq 4000 SBS reagents.
203 Base calling was done by Illumina Real Time Analysis (RTA) v2.7.7 and output of RTA was
204 demultiplexed and converted to FastQ format with Illumina Bcl2fastq v2.19.1.

205

206 The Meta Genome Rapid Annotation using Subsystem Technology (MG-RAST) (Meyer et al.
207 2008) version 4.0.2. was used for the taxonomic analysis of the metagenomes. The processing
208 pipeline involved merging paired end reads, SolexaQA (Cox et al. 2010) to trim low-quality

209 regions and dereplication to remove the artificial duplicate reads. Gene calling was performed
210 using FragGeneScan (Rho et al. 2010). For the taxonomic profiles, the best hit classification at a
211 maximum e-value of $1e^{-5}$, a minimum identity of 60% and a minimum alignment length of 15
212 against the ReqSeq database (Pruitt et al. 2005) were used. MG-RAST ID numbers and
213 sequencing data have been summarized (Table S2) and the datasets are publicly available on
214 MG-RAST. The number of sequences generated post quality control per sample was 4.7 ± 2.0
215 million (ranging from ~1.2 to ~11 million) and the average length was 237.3 ± 2.9 bp (averages
216 ranging from 233 to 243 bp). The sequencing data was submitted to NCBI under Bioproject
217 PRJNA590532 (accession numbers SAMN13332566 to SAMN13332583).

218

219 The MG-RAST data files were downloaded and analyzed in Microsoft Excel 2016, STAMP
220 (Statistical Analyses of Metagenomic Profiles, software version 2.1.3.) (Parks et al. 2014) and
221 MEGAN6 (version 6.11.7) (Huson et al. 2016). STAMP was used to detect differences in the
222 relative proportions of the taxonomic profiles between the live controls (no 1,4-dioxane) and the
223 samples for each soil. This analysis included Welch's two sided t-test for two groups (samples
224 and live controls) ($p < 0.05$) to generate extended error bar figures for each soil. The same
225 Welch's test was performed to compare the profiles of all samples ($n = 9$) to all live controls ($n =$
226 8). MEGAN6 was used to generate two phylogenograms. One phylogenogram illustrates the eighteen
227 metagenomes classified to the Class Level. The other phylogenogram represents the most common
228 genera (ranked by average relative abundance, then selected if average values $> 0.5\%$) across all
229 metagenomes.

230

231 The relative abundance of 1,4-dioxane degrading functional genes was determined using the
232 alignment tool DIAMOND (double index alignment of next-generation sequencing data)
233 (Buchfink et al. 2015). Specifically, reads aligning to the twelve genes previously associated
234 with aerobic degradation (metabolic and co-metabolic) of 1,4-dioxane, as summarized previously
235 (He et al. 2017), were determined. First, low quality sequences and Illumina adapters sequences
236 were removed using Trimmomatic in the paired end mode (Bolger et al. 2014). The two paired
237 output files were used for gene alignments in DIAMOND. Following alignment, the DIAMOND
238 files were analyzed within Excel, which included combining the data from the two paired files
239 and deleting duplicated data. The sort function was used to select reads that exhibited an identity

240 of \geq 60% and an alignment length \geq 49 amino acids. For each gene, the relative abundance
241 values were calculated using the number of aligned reads divided by the total number of
242 sequences for each sample (determined by Trimmomatic).

243

244 The above analysis indicated two functional genes (*Rhodococcus jostii* RHA1 *prmA* and
245 *Rhodococcus* sp. RR1 *prmA*) were dominant in the soil and sediment metagenomes. Therefore,
246 BLASTP 2.9.0+ (Altschul et al. 1997) (protein-protein BLAST) from the NCBI website was
247 used to search for similar protein sequences to these two genes. The sequences obtained ($>94.8\%$
248 similar to the two query sequences) were used to create a phylogenetic tree in MEGAN7 using
249 the Maximum Likelihood method (Jones et al. 1992; Kumar et al. 2016).

250

251 **Results**

252 **Biodegradation of 1,4-Dioxane**

253 The concentration of 1,4-dioxane declined in all of the live microcosms (inoculated with all four
254 uncontaminated soils and with two contaminated site sediments), but not in the abiotic controls,
255 indicating biological removal (Figure 1). All of the live microcosms, except M10A
256 (contaminated site soil), demonstrated $>50\%$ removal in 1,4-dioxane in approximately 40 days.
257 Following the initial biodegradation of the chemical, the microcosms were reamended with 1,4-
258 dioxane twice. A steady depletion of 1,4-dioxane occurred in all four agricultural soils and the
259 two contaminated site soil samples after each reamendment, while no removal was noted in the
260 corresponding abiotic controls. However, limited biodegradation (only one replicate decreased)
261 was observed for soil F after the last amendment. Overall, between approximately 220 and 245
262 days was required to reduce the majority of the amended 1,4-dioxane.

263

264 **Taxonomic Analysis of Metagenomes**

265 Although DNA was extracted from all microcosms and live controls (no 1,4-dioxane), in some
266 cases insufficient DNA was extracted (and was not submitted for library generation) or did not
267 generate libraries of sufficient concentration for sequencing. Unfortunately, this included all
268 DNA extracts for the microcosms inoculated with sediment from one of the two 1,4-dioxane
269 contaminated sites (M10A three samples and three live controls). Also, only one sample from the
270 other contaminated site (C7A) generated enough DNA for sequencing. Overall, eighteen libraries

271 were sequenced, which included two samples and two live controls for each soil (except soil F
272 which included three samples) and one sample from one contaminated site (C7A).

273 The phylogenetic analysis of the eighteen soil and sediment metagenomes indicated the
274 majority of the microorganisms classified within the classes *Acidobacteria*, *Alpha*-, *Beta*-,
275 *Gamma*-, *Delta**proteobacteria*, *Actinobacteria*, *Bacilli* and *Clostridia* (Figure S1). The most
276 abundant genera, averaged across all metagenomes, included *Candidatus Solibacter*,
277 *Bradyrhizobium*, *Mesorhizobium*, *Burkholderia*, *Pseudomonas*, *Stenotrophomonas*,
278 *Xanthomonas*, *Mycobacterium* and *Streptomyces* (Figure S2). The relative abundance (%) of the
279 most abundant genera (25 most abundant) for each soil analyzed separately is also shown (Figure
280 S3). The most abundant genera in all four soils were similar and included *Xanthomonas*,
281 *Streptomyces*, *Mesorhizobium*, *Bradyrhizobium* and *Burkholderia*. In contrast, *Pseudomonas*,
282 *Rhodococcus*, *Arthrobacter*, *Mycobacterium* and *Corynebacterium* were the most abundant
283 genera in the contaminated site microcosms.

284

285 **Genera Associated with 1,4-Dioxane Degradation**

286 The metagenomes of the samples were compared to the live controls (no 1,4-dioxane) to
287 determine which genera were positively influenced by 1,4-dioxane degradation. First, all of the
288 samples ($n=9$) were compared to all of the live controls ($n=8$) (Figure 2). Overall, fifteen genera
289 were statistically significantly enriched in the live samples compared to the controls. The greatest
290 differences between the means were noted for *Mycobacterium* (0.304%, $p=0.0029$), followed by
291 *Nocardioides* (0.127%, $p=0.023$), and *Kribbella* (0.079%, $p=0.017$). The trends suggest these
292 genera are obtaining a growth benefit from the presence of 1,4-dioxane. The relative abundance
293 of these genera in the contaminated site microcosm is also shown (Figure 2B, insert). Except for
294 *Ureaplasma*, the enriched genera all classify within the order *Actinomycetales* (Table 1).

295 The metagenomes of the samples and controls were also compared for each soil
296 individually. Two (*Clavibacter*, *Bartonella*) and seven genera (*Arthrobacter*, *Nocardia*,
297 *Gordonia*, *Kocuria*, *Brevibacterium*, *Rothia*, *Erysipelothrix*) were statistically significantly
298 enriched in the samples compared to the controls in soils 1 and 2, respectively (Figure 3). Three
299 genera (*Hyphomicrobium*, *Acetobacter*, *Veillonella*) and one genus (*Chelatavorans*) were
300 statistically significantly enriched in the samples compared to the controls in soils F and G,
301 respectively (Figure 4). Seven of the thirteen listed above classify within the *Actinomycetales*

302 (Table 1). The differences between the means (for the individual soil analysis) were the highest
303 ($\geq 0.033\%$) for *Arthrobacter*, *Nocardia*, *Hyphomicrobium* and *Chelativorans* (Table 1). The
304 relative abundance of the thirteen enriched genera in the samples compared to the controls (for
305 the individual soil analysis) and for the contaminated site sample is shown (Figure 5). The
306 contaminated site sample is shown with a different scale as it involved higher relative abundance
307 values compared to the other microcosms (Figure 5 insert). Both *Arthrobacter* and *Nocardia*
308 have relative abundance values of $>1\%$ in the contaminated site sample.

309

310 **Relative Abundance of Genera Associated with 1,4-dioxane Biogradation**

311 The metagenomes were also investigated to determine the relative abundance (%) of fifteen
312 genera previously associated with metabolic or co-metabolic 1,4-dioxane degradation (Figure 6).
313 All except *Pseudonocardia* and *Rhodanbacter* were present in the samples and controls.
314 *Burkholderia*, *Mycobacterium*, *Pseudomonas* and *Rhodococcus* were present at the highest
315 relative abundance levels (0.84-2.45%). Only *Mycobacterium* was statistically significantly
316 ($p<0.05$) enriched in the samples compare to the live controls. *Pseudonocardia* and
317 *Rhodanbacter* were also absent in the contaminated site sample (Figure 6, insert). In the
318 contaminated site metagenome, the four most abundant genera were *Pseudomonas* (49.0%),
319 *Rhodococcus* (5.9%), *Mycobacterium* (3.9%) and *Nocardia* (1.2%). The contaminated site
320 sample indicates a 25-fold higher relative abundance in *Pseudomonas* and almost a 6-fold higher
321 relative abundance in *Rhodococcus* compared to the samples from agricultural sites.

322

323 **Genes Associated with 1,4-Dioxane Degradation**

324 The reads aligning to the genes previously associated with 1,4-dioxane degradation were
325 determined using DIAMOND and the data were analyzed using Excel. Only the reads with \geq
326 60% identity for ≥ 49 amino acids were included in the analysis. Among the twelve genes
327 previously associated with 1,4-dioxane degradation, the majority were present in all the samples
328 including the contaminated site sample (Figure 7).

329 The analysis demonstrates a uniform trend of higher relative abundance values for
330 *Rhodococcus* sp. RR1 *prmA* and *Rhodococcus jostii* RHA1 *prmA* in all four agricultural samples
331 and the contaminated site sample compared to the other genes. The contaminated site sample
332 demonstrates more than twice the relative abundance of these two genes compared to the

333 samples from the agricultural sites. A high relative abundance of *Burkholderia cepacia* G4
334 *tomA3* was also noted in all of the samples, with higher abundance (10-fold increase) in the
335 contaminated site sample compared to other agricultural samples (Figure 7). Only six and eleven
336 metagenomes contained reads aligning with *Methylosinus trichosporium* OB3b *touA* and
337 *Pseudomonas pickettii* PKO1 *tbuA1*, respectively. Seven functional genes (*Pseudomonas*
338 *mendocina* KR1 *tmoA*, *Rhodococcus* sp. YYL *thmA*, *Pseudonocardia* sp. ENV478 *thmA*,
339 *Mycobacterium* sp. ENV421 *prmA*, *Pseudonocardia tetrahydrofuranoxydans* *thmA*,
340 *Pseudonocardia dioxanivorans* CB1190 *thmA*, *Mycobacterium dioxanotrophicus* PH-06 *prmA*)
341 were present in between fourteen and eighteen metagenomes. All four soils generated similar
342 trends for the functional genes and no statistically significant differences were noted between the
343 live controls and samples. The contaminated site sample generated the same trend for the three
344 most abundant genes.

345 Following the discovery of the dominance of *Rhodococcus jostii* RHA1 *prmA* and
346 *Rhodococcus* sp. RR1 *prmA* in the soil metagenomes, a BLASTP search was performed to find
347 the closest matching sequences in the NCBI database. The matching protein sequences, with
348 number of microorganisms shown in parenthesis, belonged to the genera *Rhodococcus* (60),
349 *Kribbella* (16), *Gordonia* (10), *Mycolicibacterium* (10), *Mycobacterium* (8), *Nocardia* (7),
350 *Nocardioides* (6), *Hoyosella* (3), *Intrasporangium* (2), *Millisia* (1), *Cryptosporangium* (1) and
351 *Acidobacteria* (1). Interestingly, five of these genera (*Mycobacterium*, *Nocardioides*, *Kribbella*,
352 *Gordonia* and *Nocardia*) were enriched in the samples compared to the live controls (as
353 discussed above, Table 1). A phylogenetic tree was generated to illustrate the evolutionary
354 relationships between the two query sequences and the enriched genera (Figure 8). *Rhodococcus*
355 *jostii* RHA1 *prmA* clustered closest to *Nocardia* sequences and *Rhodococcus* sp. RR1 *prmA*
356 clustered closest to *Kribbella* sequences.

357

358

359

360 **Discussion**

361 The remediation of sites contaminated with 1,4-dioxane is challenging because of the physical
362 and chemical properties of this chemical (Mohr et al. 2010). Although bioremediation can be a

363 viable option at some sites, it is still unclear which microorganisms and functional genes are
364 linked to 1,4-dioxane degradation in mixed communities.
365 To address this knowledge gap, the current study identified which genera could obtain a growth
366 benefit from 1,4-dioxane biodegradation. For this, the sample microcosms were supplied with
367 media and 1,4-dioxane and the live control microcosms were supplied with the same media, but
368 no 1,4-dioxane. Consequently, an increase in the relative abundance of any microorganism
369 between the samples and live controls could be attributed to the presence of 1,4-dioxane. From
370 this, a reasonable hypothesis would be that the enriched microorganisms are being exposed to
371 growth supporting substrates from 1,4-dioxane degradation. Here, nineteen genera increased in
372 abundance following 1,4-dioxane degradation compared to the live controls (no 1,4-dioxane).
373 The three most enriched across all four soils were *Mycobacterium*, *Nocardioides*, *Kribbella* (all
374 classifying as *Actinomycetales*). There was also a higher level of enrichment for *Arthrobacter*,
375 *Nocardia* and *Gordonia* (*Actinomycetales*), *Hyphomicrobium* (*Rhizobiales*), *Clavibacter*
376 (*Actinomycetales*) and *Bartonella* (*Rhizobiales*) and *Chelativorans* (*Rhizobiales*) in individual
377 soils.

378
379 There are at least two hypotheses on why these genera increased in abundance in 1,4-dioxane
380 amended samples compared to the live controls. One hypothesis being that these microorganisms
381 are obtaining a growth benefit from consuming 1,4-dioxane biodegradation products. Several
382 studies have examined 1,4-dioxane biodegradation pathways (Grostern et al. 2012; Huang et al.
383 2014; Kim et al. 2009; Mahendra et al. 2007; Sales et al. 2013; Vainberg et al. 2006). A study
384 with *Pseudonocardia dioxanivorans* CB1190 provided evidence that carbon from 1,4-dioxane
385 enters central metabolism via glyoxlate (Grostern et al. 2012). In contrast, *Pseudonocardia* sp.
386 strain ENV478 produces 2-hydroxyethoxyacetic acid (HEAA) as a terminal product of 1,4-
387 dioxane biodegradation (Vainberg et al. 2006). Conversely, 1,4-dioxane biodegradation by
388 *Pseudonocardia dioxanivorans* CB1190 (metabolic 1,4-dioxane degrader), *Mycobacterium*
389 *vaccae* JOB5, *Pseudomonas mendocina* KR1, *Pseudonocardia tetrahydrofuranoxydans* K1 (co-
390 metabolic 1,4-dioxane degraders) produced HEAA transiently, but the chemical did not
391 accumulate. They identified ethylene glycol, glycolic acid, glyoxylic acid and oxalic acid as 1,4-
392 dioxane biodegradation intermediates by these isolates (Mahendra et al. 2007). Others have also
393 identified ethylene glycol (Huang et al. 2014; Kim et al. 2009), oxalic acid (Huang et al. 2014)

394 and ethane-1,2-diol (Kim et al. 2009) during 1,4-dioxane degradation. The enriched genera may
395 have benefited from funneling these degradation intermediates into central metabolism.
396 A second hypothesis being that the enriched genera are responsible for both the initial attack on
397 1,4-dioxane and for the consumption of degradation products. Evidence for this concerns the
398 similarity of genes belonging to the enriched genera (*Mycobacterium*, *Nocardioides*, *Kribbella*,
399 *Nocardia* and *Gordonia*) to *Rhodococcus jostii* RHA1 *prmA* and *Rhodococcus* sp. RR1 *prmA* (as
400 shown in the phylogenetic tree). Although *Rhodococcus jostii* RHA1 and *Rhodococcus* sp. RR1
401 co-metabolically degrade 1,4-dioxane, the enriched genera may also contain genes downstream
402 in the pathway enabling growth on 1,4-dioxane. *Arthrobacter* did not contain genes similar to the
403 *Rhodococcus* strains, although others have reported that *Arthrobacter* (ATCC 27779) can co-
404 metabolically degrade 1,4-dioxane (Chu et al. 2009). *Arthrobacter*, *Mycobacterium* and
405 *Nocardia* have previously been linked to 1,4-dioxane degradation (Chu et al. 2009; Lan et al.
406 2013; Masuda 2009), whereas *Nocardioides*, *Gordonia* and *Kribbella* are potentially novel
407 degraders. Certain species of *Gordonia* such as *G. terrae* are known to aid in degrading certain
408 chemicals, including ethyl tertiary butyl ether (ETBE) metabolically, methyl tertiary butyl ether
409 (MTBE) co-metabolically (Hernandez-Perez et al. 2001) as well as long chain hydrocarbons
410 (Kubota et al. 2008). Overall, both hypotheses in this work suggests many genera (almost all
411 classifying with the *Actinomycetales*) are likely involved in the degradation of 1,4-dioxane
412 and/or 1,4-dioxane metabolites in the soil microcosms studied.

413
414 In the current study, reads from all of the 1,4-dioxane degrading function genes were observed in
415 soil metagenomes. Consistent with the current study, others have detected SDIMOs from the
416 majority (five from six groups) of SDIMO groups (Li et al. 2013b). In that research, the authors
417 examined Arctic groundwater impacted by 1,4-dioxane using high-throughput microarrays and
418 denaturing gradient gel electrophoresis and found an enrichment of *thmA*-like genes near the
419 source zone (Li et al. 2013b). Also similar to the current work, a 1,4-dioxane degrading consortia
420 contained a high percentage of group five SDIMOs (*Rhodococcus jostii* RHA1 *prmA* and
421 *Rhodococcus* sp. RR1 *prmA* are group five SDIMOs), although the specific genes were not
422 determined (He et al. 2018). Another study noted a correlation between *dxmA/thmA* (designed
423 based on *Rhodococcus* sp. YYL *thmA*, *Pseudonocardia* sp. ENV478 *thmA*, *Pseudonocardia*
424 *tetrahydrofuranoxydans* K1 *thmA* and *Pseudonocardia dioxanivorans* CB1190 *thmA*) and the

425 amount of 1,4-dioxane degraded in groundwater inoculated microcosms (Li et al. 2013a). These
426 genes were also present in the soil metagenomes (between fourteen and sixteen) of the current
427 study.

428

429 Recently, shotgun sequencing was used to examine 1,4-dioxane degrading genes in groundwater
430 from multiple chlorinated solvent sites (previously bioaugmented with SDC-9) (Dang et al.
431 2018). From the twelve genes examined, only six were found in the groundwater metagenomes.
432 The six included the three most abundant genes in the current study; *Rhodococcus* sp. RR1
433 *prmA*, *Rhodococcus jostii* RHA1 *prmA* and *Burkholderia cepacia* G4 *tomA3*. From these, the
434 *Rhodococcus* genes were both found in a only small number of metagenomes (~18%) and *B.*
435 *cepacia* G4 *tomA3* was found in the majority (~68%). The occurrence of the three genes in both
436 studies could suggest their importance across different environments (soil vs. groundwater,
437 aerobic vs. oxygen depleted). Unlike the current study, the groundwater metagenomes contained
438 high relative abundance values for *Methylosinus trichosporium* OB3b *touA* (up to 0.0031%)
439 followed by *Pseudomonas mendocina* KR1 *tmoA* (up to 0.00022%) and *Pseudomonas pickettii*
440 PKO1 *tbuA1* (up to 0.0013%). The different results between the two studies are likely due to
441 variations in the conditions (redox potential, carbon availability, nutrient availability, soil vs.
442 groundwater) from which the samples were obtained.

443

444 In summary, several key findings highly relevant for 1,4-dioxane bioremediation were generated
445 here. Shotgun sequencing enabled both taxonomic and functional analyses to be performed on
446 multiple mixed microbial communities. Multiple genera classifying (including novel and
447 previously identified degraders) within the *Actinomycetales* were enriched during 1,4-dioxane
448 degradation and may be associated with growth linked 1,4-dioxane degradation.

449 The three most enriched were *Mycobacterium*, *Nocardioides*, *Kribbella* (classifying as
450 *Actinomycetales*). There was also a higher level of enrichment of other genera in individual soils.
451 The current research found that both previously reported genera as well as novel genera (e.g.
452 *Nocardioides*, *Gordonia* and *Kribbella*) were linked to 1,4-dioxane degradation. However, it is
453 unknown if these microorganisms are benefiting from the complete degradation of the chemical
454 or from the consumption of 1,4-dioxane degradation products, such as HEAA, ethylene glycol,
455 glycolic acid, glyoxylic acid or oxalic acid. Finally, all of the functional genes associated with

456 1,4-dioxane were found in the soil and sediment metagenomes. Reads aligning to *Rhodococcus*
457 *jostii* RHA1 *prmA* and *Rhodococcus* sp. RR1 *prmA* illustrated the highest relative abundance
458 values and were present in all eighteen metagenomes. Future research should be directed towards
459 similar molecular analyses of groundwater and sediment samples from 1,4-dioxane contaminated
460 sites as well as comparisons to 1,4-dioxane removal rates for propane amended samples.

461

462 **Acknowledgements**

463 Thanks to Dr. Dan Jones and Dr. Scott Smith at the Mass Spectrometry Laboratory at the
464 Research Technology Support Facility (MSU) for 1,4-dioxane analytical methods support.
465 Also, our thanks to Dr. Anthony Danko (Naval Facilities Engineering Command) for providing
466 the contaminated site sediments. Support for this research was also provided by the NSF Long-
467 term Ecological Research Program (DEB 1832042) at the Kellogg Biological Station and by
468 Michigan State University AgBioResearch.

469

470 **Ethical Statement**

471 This work is supported by a grant awarded to Dr. Cupples from Strategic Environmental
472 Research and Development Program (SERDP). Contract Number: W912HQ-17-C-0006. All
473 authors declare no conflict of interest. This article does not contain any studies with human
474 participants or animals performed by any of the authors.

475

476

477

478

479

480

481

482

483

484

485

486 **References**

487 Adams CD, Scanlan PA, Secrist ND (1994) Oxidation and biodegradability enhancement of 1,4-dioxane
488 using hydrogen peroxide and ozone. *Environ Sci Technol* 28(11):1812-1818

489 Adamson DT, Anderson RH, Mahendra S, Newell CJ (2015) Evidence of 1,4-dioxane attenuation at
490 groundwater sites contaminated with chlorinated solvents and 1,4-dioxane. *Environ Sci Technol*
491 49(11):6510-6518

492 Adamson DT, Mahendra S, Walker KL, Rauch SR, Sengupta S, Newell CJ (2014) A multisite survey to
493 identify the scale of the 1,4-dioxane problem at contaminated groundwater sites. *Environ Sci
494 Tech Let* 1(5):254-258

495 Altschul SF, Madden TL, Schaffer AA, Zhang JH, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and
496 PSI-BLAST: a new generation of protein database search programs. *Nucleic Acids Res*
497 25(17):3389-3402 doi:DOI 10.1093/nar/25.17.3389

498 ATSDR AfTSaDR (2012) Toxicological profile for 1,4-dioxane. In: Registry AfTSaD (ed). Agency for Toxic
499 Substances and Disease Registry.
500 <https://www.atsdr.cdc.gov/toxprofiles/TP.asp?id=955&tid=199>, Atlanta, Georgia

501 Bock C, Kroppenstedt RM, Diekmann H (1996) Degradation and bioconversion of aliphatic and aromatic
502 hydrocarbons by *Rhodococcus ruber* 219. *Appl Microbiol Biotechnol* 45(3):408-410
503 doi:10.1007/s002530050704

504 Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data.
505 *Bioinformatics* 30(15):2114-2120 doi:10.1093/bioinformatics/btu170

506 Buchfink B, Xie C, Huson DH (2015) Fast and sensitive protein alignment using DIAMOND. *Nat Methods*
507 12(1):59-60

508 Burback BL, Perry JJ (1993) Biodegradation and biotransformation of groundwater pollutant mixtures by
509 *Mycobacterium vaccae*. *Appl Environ Microb* 59(4):1025-1029

510 Chen D-Z, Jin X-J, Chen J, Ye J-X, Jiang N-X, Chen J-M (2016) Intermediates and substrate interaction of
511 1,4-dioxane degradation by the effective metabolizer *Xanthobacter flavus* DT8. *Inter Biodeter &
512 Biodeg* 106:133-140 doi:10.1016/j.ibiod.2015.09.018

513 Chu MYJ, Bennett P, Dolan M, Hyman M, Anderson R, Bodour A, Peacock A (2009) Using aerobic
514 cometabolic biodegradation and groundwater recirculation to treat 1,4-dioxane and co-
515 contaminants in a dilute plume. Paper presented at the Tenth International Conference on the
516 Remediation of Chlorinated and Recalcitrant Compounds, Baltimore, Maryland,

517 Coleman NV, Bui NB, Holmes AJ (2006) Soluble di-iron monooxygenase gene diversity in soils, sediments
518 and ethene enrichments. 8(7):1228-1239 doi:10.1111/j.1462-2920.2006.01015.x

519 Cox MP, Peterson DA, Biggs PJ (2010) SolexaQA: At-a-glance quality assessment of Illumina second-
520 generation sequencing data. *BMC Bioinform* 11:485:1-6

521 Dang HY, Kanitkar YH, Stedtfeld RD, Hatzinger PB, Hashsham SA, Cupples AM (2018) Abundance of
522 chlorinated solvent and 1,4-dioxane degrading microorganisms at five chlorinated solvent
523 contaminated sites determined via shotgun sequencing. *Environ Sci Technol* 52(23):13914-
524 13924 doi:10.1021/acs.est.8b04895

525 Deng DY, Li F, Li MY (2018) A novel propane monooxygenase initiating degradation of 1,4-dioxane by
526 *Mycobacterium dioxanotrophicus* PH-06. *Environ Sci Tech Let* 5(2):86-91
527 doi:10.1021/acs.estlett.7b00504

528 DeRosa CT, Wilbur S, Holler J, Richter P, Stevens YW (1996) Health evaluation of 1,4-dioxane. *Toxicol &*
529 *Indust Health* 12(1):1-43

530 EPA (2017) Technical fact sheet - 1,4-dioxane. vol EPA 505-F-17-011. EPA Office of Land and Emergency
531 Management

532 Fishman A, Tao Y, Wood TK (2004) Toluene 3-monoxygenase of *Ralstonia pickettii* PKO1 is a para-
533 hydroxylating enzyme. *J Bacteriol* 186(10):3117-3123 doi:10.1128/Jb.186.12.3117-3123.2004

534 Gedalanga PB, Pornwongthong P, Mora R, Chiang SYD, Baldwin B, Ogles D, Mahendra S (2014)
535 Identification of biomarker genes To predict biodegradation of 1,4-dioxane. *Appl Environ Microb*
536 80(10):3209-3218 doi:10.1128/Aem.04162-1

537 Grostern A, Sales CM, Zhuang WQ, Erbilgin O, Alvarez-Cohen L (2012) Glyoxylate metabolism is a key
538 feature of the metabolic degradation of 1,4-dioxane by *Pseudonocardia dioxanivorans* strain
539 CB1190. *Appl Environ Microb* 78(9):3298-3308

540 Hand S, Wang BX, Chu KH (2015) Biodegradation of 1,4-dioxane: Effects of enzyme inducers and
541 trichloroethylene. *Sci Total Environ* 520:154-159

542 He Y, Mathieu J, da Silva MLB, Li MY, Alvarez PJJ (2018) 1,4-Dioxane-degrading consortia can be enriched
543 from uncontaminated soils: prevalence of *Mycobacterium* and soluble di-iron monooxygenase
544 genes. *Microb Biotechnol* 11(1):189-198 doi:10.1111/1751-7915.12850

545 He Y, Mathieu J, Yang Y, Yu P, da Silva MLB, Alvarez PJJ (2017) 1,4-Dioxane biodegradation by
546 *Mycobacterium dioxanotrophicus* PH-06 is associated with a Group-6 soluble di-Iron
547 monooxygenase. *Environ Sci & Tec Lett* 4(11):494-499 doi:10.1021/acs.estlett.7b00456

548 Hernandez-Perez G, Fayolle F, Vandecasteele J-P (2001) Biodegradation of ethyl t-butyl ether (ETBE),
549 methyl t-butyl ether (MTBE) and t-amyl methyl ether (TAME) by *Gordonia terrae*. *Appl Micro &*
550 *Biote* 55(1):117-121 doi:10.1007/s002530000482

551 Huang H, Shen D, Li N, Shan D, Shentu J, Zhou Y (2014) Biodegradation of 1,4-dioxane by a novel strain
552 and its biodegradation pathway. *Water Air Soil Poll* 225(9) doi:10.1007/s11270-014-2135-2

553 Huson DH, Beier S, Flade I, Gorska A, El-Hadidi M, Mitra S, Ruscheweyh HJ, Tappu R (2016) MEGAN
554 Community Edition - Interactive exploration and analysis of large-scale microbiome sequencing
555 data. *Plos Comput Biol* 12(6) doi:ARTN e1004957 10.1371/journal.pcbi.1004957

556 IARC (1999) Re-evaluation of some organic chemicals, hydrazine and hydrogen peroxide. Proceedings of
557 the IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. Lyon, France, 17-24
558 February 1998. 71 Pt 1:1-315

559 Inoue D, Tsunoda T, Sawada K, Yamamoto N, Saito Y (2016) 1,4-Dioxane degradation potential of
560 members of the genera *Pseudonocardia* and *Rhodococcus*. *Biodegrad* 27(4-6):277-286
561 doi:10.1007/s10532-016-9772-7

562 Jones DT, Taylor WR, Thornton JM (1992) The rapid generation of mutation data matrices from protein
563 sequences. *Comput Appl Biosci* 8(3):275-282

564 Kampfer P, Kohlweyer U, Thiemer B, Andreesen JR (2006) *Pseudonocardia tetrahydrofuranoxydans* sp
565 nov. *Int J Syst Evol Micr* 56:1535-1538 doi:10.1099/ijns.0.64199-0

566 Kämpfer P, Kroppenstedt RM (2004) *Pseudonocardia benzenivorans* sp. nov. *Int J Syst Evol Micro*
567 54(3):749-751 doi:10.1099/ijns.0.02825-0

568 Kim Y-M, Jeon J-R, Murugesan K, Kim E-J, Chang Y-S (2008) Biodegradation of 1,4-dioxane and
569 transformation of related cyclic compounds by a newly isolated *Mycobacterium* sp. PH-06.
570 *Biodegrad* 20(4):511 doi:10.1007/s10532-008-9240-0

571 Kim YM, Jeon JR, Murugesan K, Kim EJ, Chang YS (2009) Biodegradation of 1,4-dioxane and
572 transformation of related cyclic compounds by a newly isolated *Mycobacterium* sp PH-06.
573 *Biodegrad* 20(4):511-519

574 Kohlweyer U, Thiemer B, Schrader T, Andreesen JR (2000) Tetrahydrofuran degradation by a newly
575 isolated culture of *Pseudonocardia* sp strain K1. *Fems Microbiol Lett* 186(2):301-306 doi:DOI
576 10.1111/j.1574-6968.2000.tb09121.x

577 Kubota K, Koma D, Matsumiya Y, Chung SY, Kubo M (2008) Phylogenetic analysis of long-chain
578 hydrocarbon-degrading bacteria and evaluation of their hydrocarbon-degradation by the 2,6-
579 DCPIP assay. *Biodegrad* 19(5):749-57 doi:10.1007/s10532-008-9179-1

580 Kukor JJ, Olsen RH (1990) Molecular cloning, characterization, and regulation of a *Pseudomonas pickettii*
581 PKO1 gene encoding phenol hydroxylase and expression of the gene in *Pseudomonas*
582 *aeruginosa* PAO1c. *J Bac* doi:10.1128/jb.172.8.4624-4630.1990

583 Kumar S, Stecher G, Tamura K (2016) MEGA7: Molecular evolutionary genetics analysis version 7.0 for
584 bigger datasets. *Mol Biol Evol* 33(7):1870-1874 doi:10.1093/molbev/msw054

585 Lan RS, Smith CA, Hyman MR (2013) Oxidation of cyclic ethers by alkane-grown *Mycobacterium vaccae*
586 JOB5. *Remediation* 23(4):23-42 doi:10.1002/rem.21364

587 Li M, Mathieu J, Liu Y, Van Orden E.T., Yang Y, Fiorenza S, Alvarez PJ (2013a) The abundance of
588 tetrahydrofuran/dioxane monooxygenase genes (*thmA/dxmA*) and 1,4-dioxane degradation
589 activity are significantly correlated at various impacted aquifers. *Env Sci Tech Lett* 1:122-127

590 Li MY, Mathieu J, Yang Y, Fiorenza S, Deng Y, He ZL, Zhou JZ, Alvarez PJJ (2013b) Widespread distribution
591 of soluble di-iron monooxygenase (SDIMO) genes in Arctic groundwater impacted by 1,4-
592 dioxane. *Environ Sci Technol* 47(17):9950-9958 doi:10.1021/es402228x

593 Mahendra S, Alvarez-Cohen L (2006) Kinetics of 1,4-dioxane biodegradation by monooxygenase-
594 expressing bacteria. *Environ Sci Technol* 40(17):5435-5442 doi:10.1021/es060714v

595 Mahendra S, Petzold CJ, Baidoo EE, Keasling JD, Alvarez-Cohen L (2007) Identification of the
596 intermediates of in vivo oxidation of 1,4-dioxane by monooxygenase-containing bacteria.
597 *Environ Sci Technol* 41(21):7330-7336 doi:10.1021/es0705745

598 Masuda H (2009) Identification and characterization of monooxygenase enzymes involved in 1,4-
599 dioxane degradation in *Pseudonocardia* sp. strain ENV478, *Mycobacterium* sp. strain ENV421,
600 and *Nocardia* sp. strain ENV425. Rutgers The State University of New Jersey and University of
601 Medicine and Dentistry of New Jersey

602 Masuda H, McClay K, Steffan RJ, Zylstra GJ (2012a) Biodegradation of tetrahydrofuran and 1,4-dioxane
603 by soluble diiron monooxygenase in *Pseudonocardia* sp. strain ENV478. *J Mol Microb Biotech*
604 22(5):312-316

605 Masuda H, McClay K, Steffan RJ, Zylstra GJ (2012b) Characterization of three propane-inducible
606 oxygenases in *Mycobacterium* sp. strain ENV421. *Lett in App Micro* 55(3):175-181
607 doi:10.1111/j.1472-765x.2012.03290.x

608 Meyer F, Paarmann D, D'Souza M, Olson R, Glass EM, Kubal M, Paczian T, Rodriguez A, Stevens R, Wilke
609 A, Wilkening J, Edwards RA (2008) The metagenomics RAST server - a public resource for the
610 automatic phylogenetic and functional analysis of metagenomes. *BMC Bioinformatics* 9 doi:Artn
611 386 10.1186/1471-2105-9-386

612 Mohr T, Stickney J, Diguiseppi B (2010) Environmental investigation and remediation : 1,4-dioxane and
613 other solvent stabilizers. CRC Press/Taylor & Francis, Boca Raton, FL

614 Nelson MJ, Montgomery SO, O'Neill EJ, Pritchard PH (1986) Aerobic metabolism of trichloroethylene by
615 a bacterial isolate. *Appl Environ Microbiol* 52(2):383-384

616 Newman LM, Wackett LP (1995) Purification and characterization of toluene 2-monooxygenase from
617 *Burkholderia cepacia* G4. *Biochemistry-Us* 34(43):14066-14076 doi:DOI 10.1021/bi00043a012

618 Oldenhuis R, Vink RLJM, Janssen DB, Witholt B (1989) Degradation of chlorinated aliphatic hydrocarbons
619 by *Methylosinus trichosporium* OB3b expressing soluble methane monooxygenase. *Appl Environ
620 Microb* 55(11):2819-2826

621 Parales RE, Adamus JE, White N, May HD (1994) Degradation of 1,4-dioxane by an actinomycete in pure
622 culture. *Appl Environ Microb* 60(12):4527-4530

623 Parks DH, Tyson GW, Hugenholtz P, Beiko RG (2014) STAMP: statistical analysis of taxonomic and
624 functional profiles. *Bioinformatics* 30(21):3123-3124

625 Pruitt KD, Tatusova T, Maglott DR (2005) NCBI Reference Sequence (RefSeq): a curated non-redundant
626 sequence database of genomes, transcripts and proteins. *Nucleic Acids Res* 33:D501-D504

627 Pugazhendi A, Rajesh Banu J, Dhavamani J, Yeom IT (2015) Biodegradation of 1,4-dioxane by
628 Rhodanobacter AYS5 and the role of additional substrates. *Annal of Micro* 65(4):2201-2208
629 doi:10.1007/s13213-015-1060-y

630 Rho MN, Tang HX, Ye YZ (2010) FragGeneScan: predicting genes in short and error-prone reads. *Nucleic*
631 *Acids Res* 38(20)

632 Sales CM, Grostern A, Parales JV, Parales RE, Alvarez-Cohen L (2013) Oxidation of the cyclic ethers 1,4-
633 dioxane and tetrahydrofuran by a monooxygenase in two *Pseudonocardia* species. *Appl Environ*
634 *Microb* 79(24):7702-7708 doi:10.1128/Aem.02418-13

635 Sales CM, Mahendra S, Grostern A, Parales RE, Goodwin LA, Woyke T, Nolan M, Lapidus A, Chertkov O,
636 Ovchinnikova G, Sczryba A, Alvarez-Cohen L (2011) Genome sequence of the 1,4-dioxane-
637 degrading *Pseudonocardia dioxanivorans* Strain CB1190. *J Bacteriol* 193(17):4549-4550
638 doi:10.1128/Jb.00415-11

639 Sei K, Miyagaki K, Kakinoki T, Fukugasako K, Inoue D, Ike M (2013) Isolation and characterization of
640 bacterial strains that have high ability to degrade 1,4-dioxane as a sole carbon and energy
641 source. *Biodegrad* 24(5):665-674

642 Sharp JO, Sales CM, LeBlanc JC, Liu J, Wood TK, Eltis LD, Mohn WW, Alvarez-Cohen L (2007) An inducible
643 propane monooxygenase is responsible for N-nitrosodimethylamine degradation by
644 *Rhodococcus* sp strain RHA1. *Appl Environ Microb* 73(21):6930-6938 doi:10.1128/Aem.01697-07

645 Stefan MI, Bolton JR (1998) Mechanism of the degradation of 1,4-dioxane in dilute aqueous solution
646 using the UV hydrogen peroxide process. *Env Sci Tech* 32(11):1588-1595

647 Steffan RJ, McClay K, Vainberg S, Condee CW, Zhang D (1997) Biodegradation of the gasoline oxygenates
648 methyl tert-butyl ether, ethyl tert-butyl ether, and tert-amyl methyl ether by propane-oxidizing
649 bacteria. *Appl Environ Microbiol* 63(11):4216-4222

650 Steffan RJ, McClay KR, Masuda H, Zylstra GJ (2007) Biodegradation of 1,4-dioxane. Strategic
651 Environmental Research and Development Program: ER-1422 Final Report

652 Stringfellow WT, Alvarez-Cohen L (1999) Evaluating the relationship between the sorption of PAHs to
653 bacterial biomass and biodegradation. *Wat Res* 33(11):2535-2544 doi:10.1016/s0043-
654 1354(98)00497-7

655 Sun B, Ko K, Ramsay JA (2011) Biodegradation of 1,4-dioxane by a *Flavobacterium*. *Biodegrad* 22(3):651-
656 659 doi:10.1007/s10532-010-9438-9

657 Thiemer B, Andreesen JR, Schrader T (2003) Cloning and characterization of a gene cluster involved in
658 tetrahydrofuran degradation in *Pseudonocardia* sp strain K1. *Arch Microbiol* 179(4):266-277
659 doi:10.1007/s00203-003-0526-7

660 USEPA (2017) Technical Fact Sheet 1,4-Dioxane. In: Management USEOoLaE (ed).

661 Vainberg S, McClay K, Masuda H, Root D, Condee C, Zylstra GJ, Steffan RJ (2006) Biodegradation of ether
662 pollutants by *Pseudonocardia* sp strain ENV478. *Appl Environ Microb* 72(8):5218-5224

663 Whited GM, Gibson DT (1991) Separation and partial characterization of the enzymes of the toluene-4-
664 monooxygenase catabolic pathway in *Pseudomonas mendocina* KR1. *J Bacteriol* 173(9):3017-
665 3020 doi:10.1128/jb.173.9.3017-3020.1991

666 Whittenbury R, Phillips KC, Wilkinson JF (1970) Enrichment, isolation and some properties of methane-
667 utilizing bacteria. *J of Gen Micro* 61(2):205-218 doi:10.1099/00221287-61-2-205

668 Yao YL, Lv ZM, Min H, Lv ZH, Jiao HP (2009) Isolation, identification and characterization of a novel
669 *Rhodococcus* sp strain in biodegradation of tetrahydrofuran and its medium optimization using
670 sequential statistics-based experimental designs. *Bioresource Technol* 100(11):2762-2769
671 doi:10.1016/j.biortech.2009.01.006
672 Yen KM, Karl MR, Blatt LM, Simon MJ, Winter RB, Fausset PR, Lu HS, Harcourt AA, Chen KK (1991)
673 Cloning and characterization of a *Pseudomonas mendocina* KR1 gene cluster encoding toluene-
674 4-monooxygenase. *J Bacteriol* 173(17):5315-5327 doi:DOI 10.1128/jb.173.17.5315-5327.1991
675 Zenker MJ, Borden RC, Barlaz MA (2003) Occurrence and treatment of 1,4-dioxane in aqueous
676 environments. *Env Eng Sci* 20(5):423-432

677

678

679 **Table and Figure Legends**

680 **Table 1.** Classification of genera statistically significantly enriched ($p<0.05$) in the samples
681 compared to the controls (no 1,4-dioxane) following the degradation of 1,4-dioxane in all soils
682 collectively and when the soils were analyzed individually. The last column also illustrates the
683 difference in means between the controls and the samples for each genera. Genera in bold were
684 identified in the BLASTP search as containing genes similar to *Rhodococcus jostii* RHA1 *prmA*
685 and *Rhodococcus* sp. *prmA* (as discussed in the results section for the functional gene analysis)

686 **Figure 1.** Average 1,4-dioxane concentrations (mg/L) in triplicate samples and abiotic controls
687 with different inocula, including four agricultural soils and sediments from two contaminated
688 sites (bars represent standard deviations). 1,4-dioxane was reamended to the samples
689 microcosms twice (arrows).

690

691 **Figure 2.** Extended error bar plot illustrating genera statistically significantly different in relative
692 abundance (Welch's two sided t-test, $p < 0.05$) between the samples ($n=9$) and the live controls
693 (no 1, 4-dioxane, $n=8$) following 1,4-dioxane degradation (A). The symbols to the left of the
694 dashed line (yellow) indicate a higher relative abundance in the samples compared to the controls
695 and the symbols to the right (blue) indicate the reverse. The figure was created with the software
696 STAMP. A comparison of the relative abundance values (%) for the genera enriched in the
697 samples is also shown in a box plot format (B). The insert illustrates the relative abundance of
698 these enriched genera in the contaminated site sample (C7A) with a different y-axis scale.

699

700 **Figure 3.** Extended error bar plots illustrating genera statistically significantly different in
701 relative abundance (Welch's two sided t-test, $p < 0.05$) between the samples and the live controls
702 following 1,4-dioxane degradation in soil 1 (A) and 2 (B). The symbols to the left of the dashed
703 line (in yellow) indicate a higher relative abundance in the samples compared to the controls and
704 the symbols to the right (in blue) indicate the reverse.

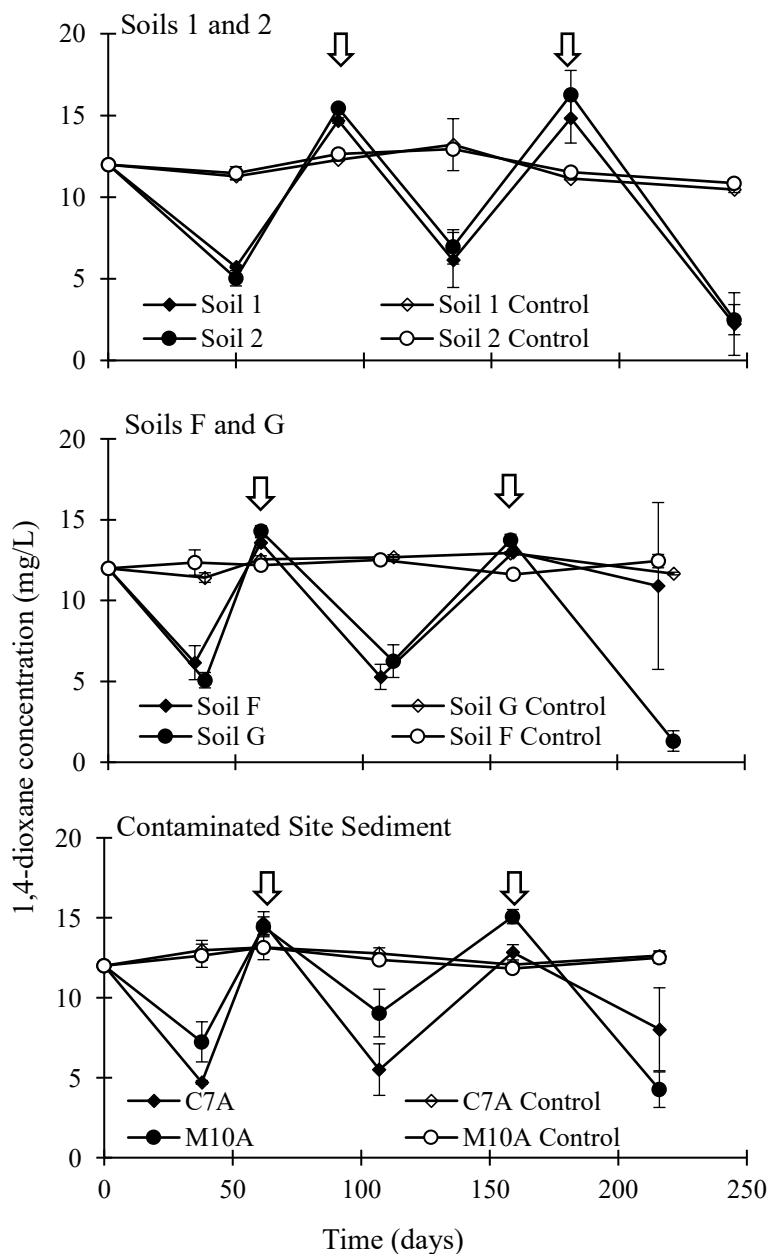
705

706 **Figure 4.** Extended error bar plots illustrating genera statistically significantly different in
707 relative abundance (Welch's two sided t-test, $p < 0.05$) between the samples and the live controls
708 following 1,4-dioxane degradation in soil F (A) and G (B). The symbols to the left of the dashed

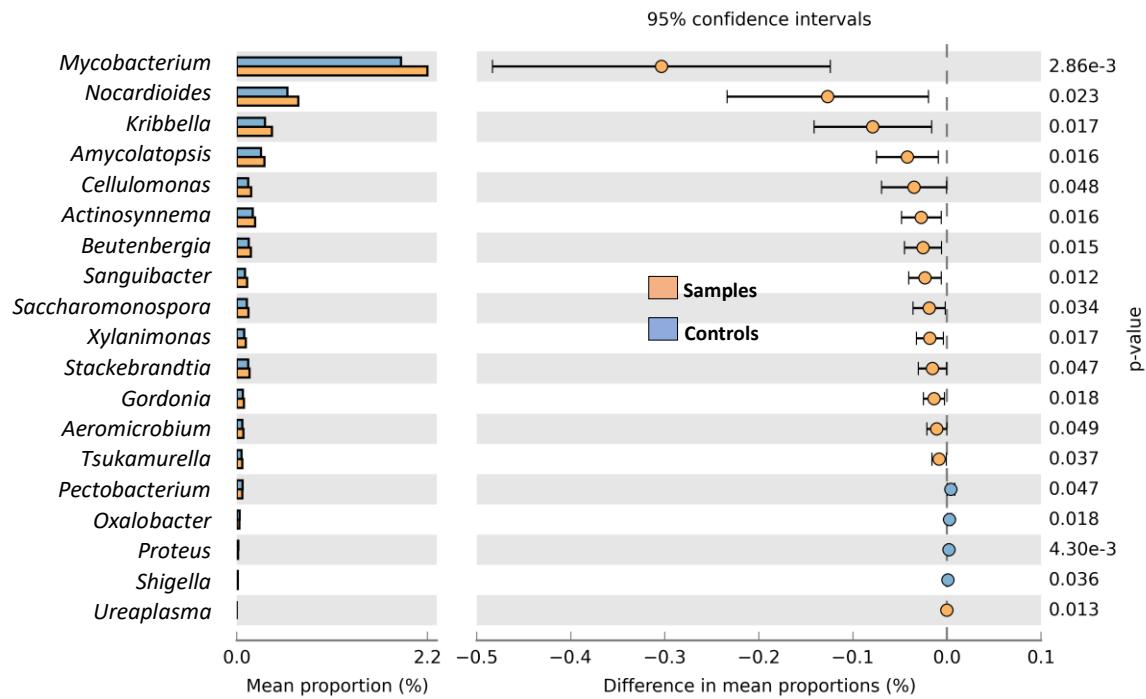
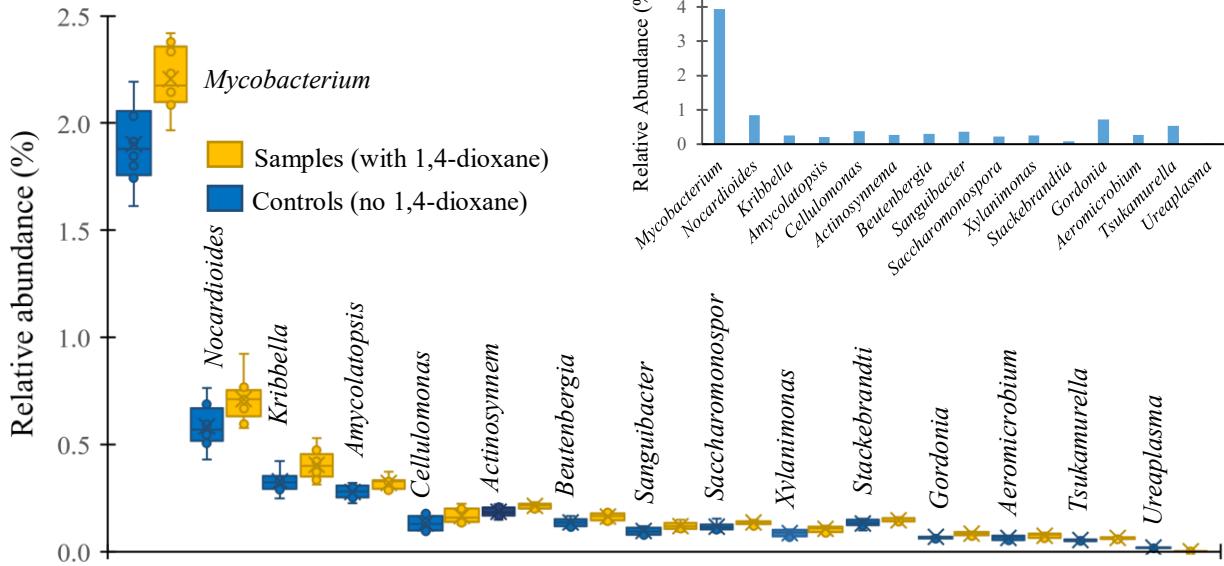
709 line (in yellow) indicate a higher relative abundance in the samples compared to the controls and
710 the symbols to the right (in blue) indicate the reverse.

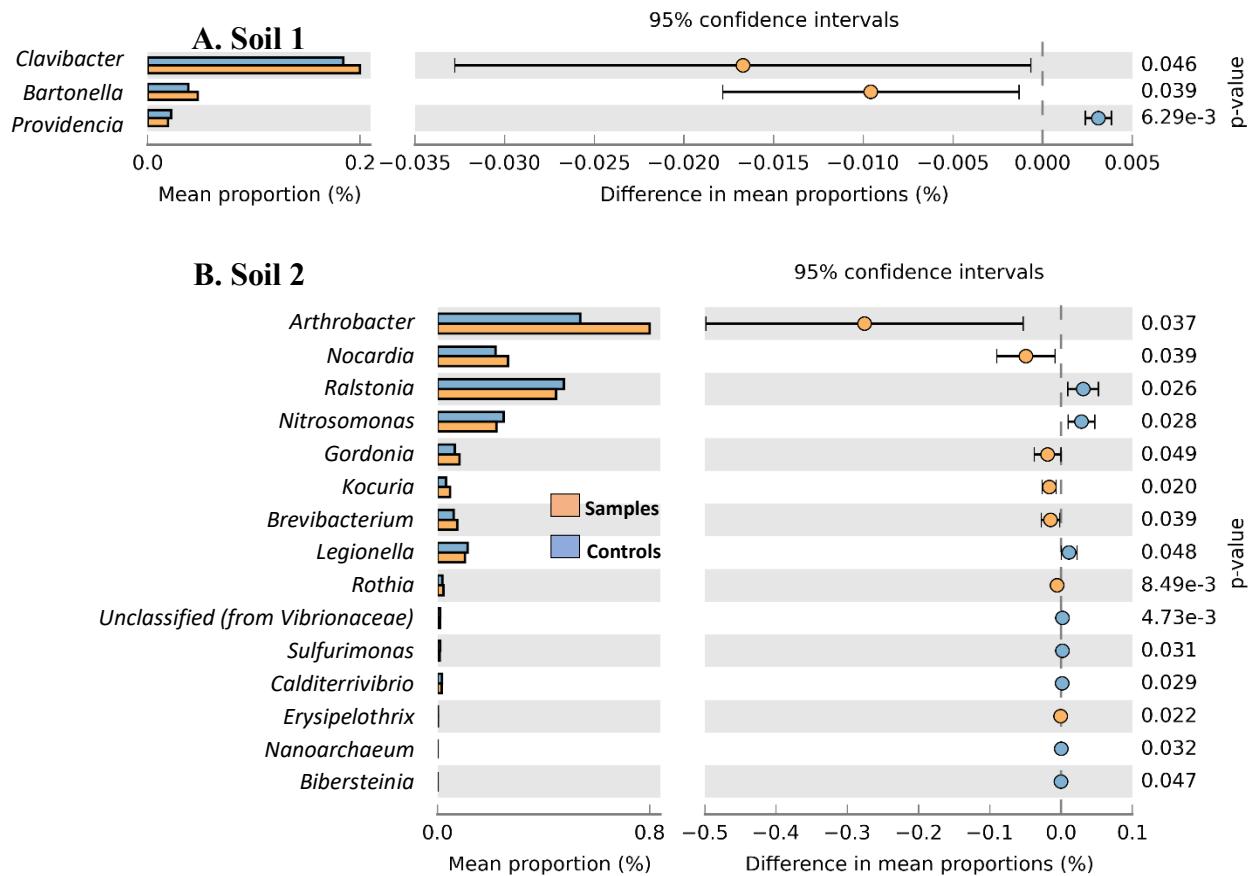
711
712 **Figure 5.** Summary of the relative abundance of statistically significantly enriched genera in the
713 samples compared to the controls (no 1,4-dioxane) for soils 1, 2, F and G. The insert illustrates
714 the relative abundance of these genera in the contaminated site sample (C7A) with a different
715 scale on the y-axis.

716
717 **Figure 6.** Relative abundance (%) of genera associated with metabolic and co-metabolic
718 degradation of 1,4-dioxane in live controls ($n=8$) and samples ($n=9$) in four soils and one
719 contaminated site sample (C7A). The value "a" indicates a significant difference ($p<0.05$) in a
720 two tailed student's t-test between the samples and controls. The insert illustrates the same data
721 with a different y-axis.

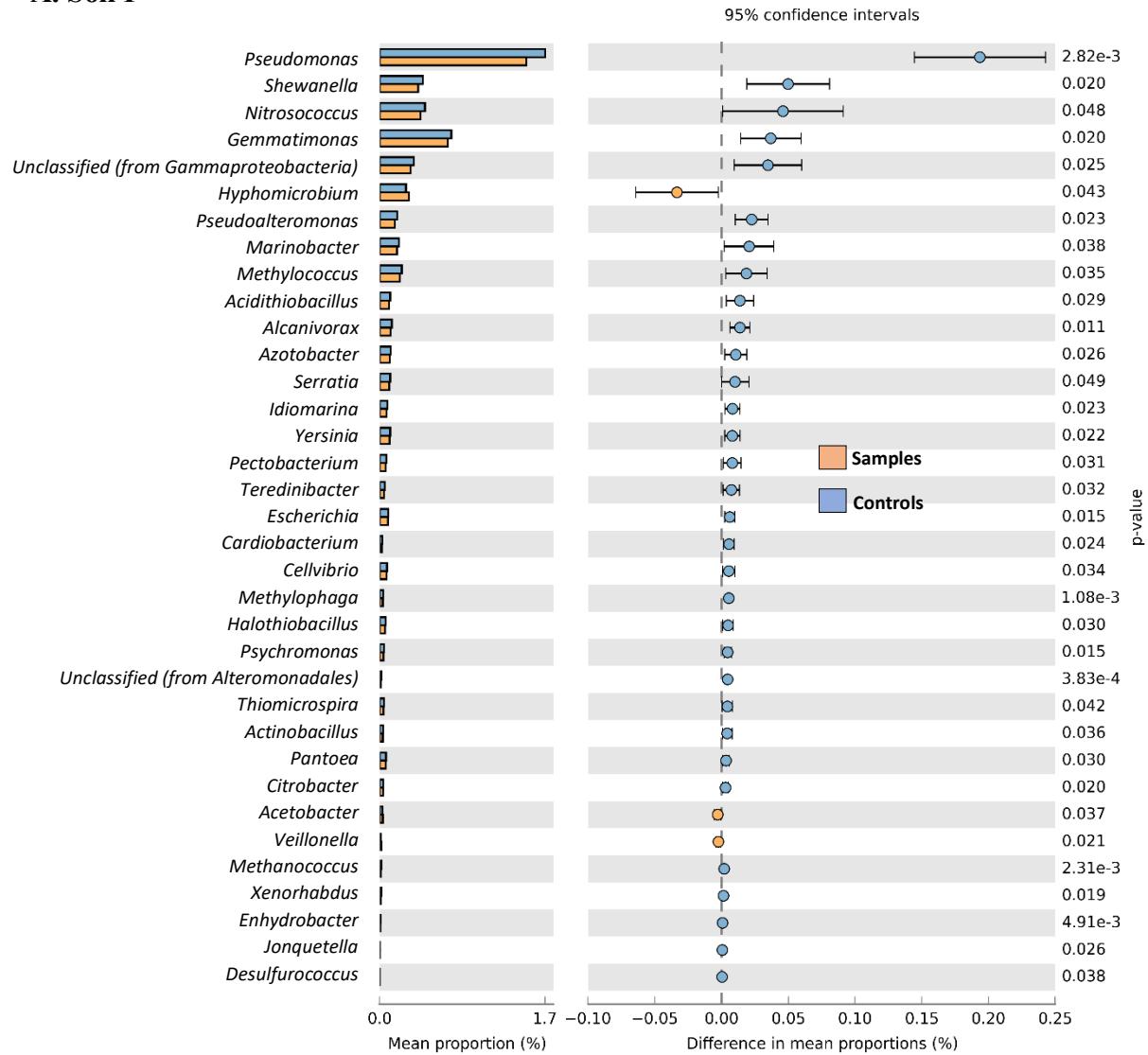

722
723 **Figure 7.** Relative abundance (%) of reads aligning ($\geq 60\%$ identity for ≥ 49 amino acids) to
724 genes previously associated with the metabolic and co-metabolic degradation of 1,4- dioxane in
725 Soil F and C7A (A), Soil G (B), Soil 1 (C) and Soil 2 (D).

726
727 **Figure 8.** Phylogenetic tree of *Rhodococcus jostii* RHA1 *prmA* and *Rhodococcus* sp. *prmA* and
728 BLASTP results ($>94.8\%$ similar to the two query sequences). Only genera that were enriched
729 following 1,4-dioxane degradation (compared to the controls) are shown (Table 1). The
730 evolutionary history was inferred by using the Maximum Likelihood method based on the Jones-
731 Taylor-Thornton (JTT) matrix-based model. The tree with the highest log likelihood (-2731.06)
732 is shown. Initial tree(s) for the heuristic search were obtained automatically by applying
733 Neighbor-Join and BioNJ algorithms to a matrix of pairwise distances estimated using a JTT
734 model, and then selecting the topology with superior log likelihood value. The tree is drawn to
735 scale, with branch lengths measured in the number of substitutions per site. The analysis
736 involved 48 amino acid sequences. All positions containing gaps and missing data were
737 eliminated. There were a total of 439 positions in the final dataset. Evolutionary analyses were
738 conducted in MEGA7.

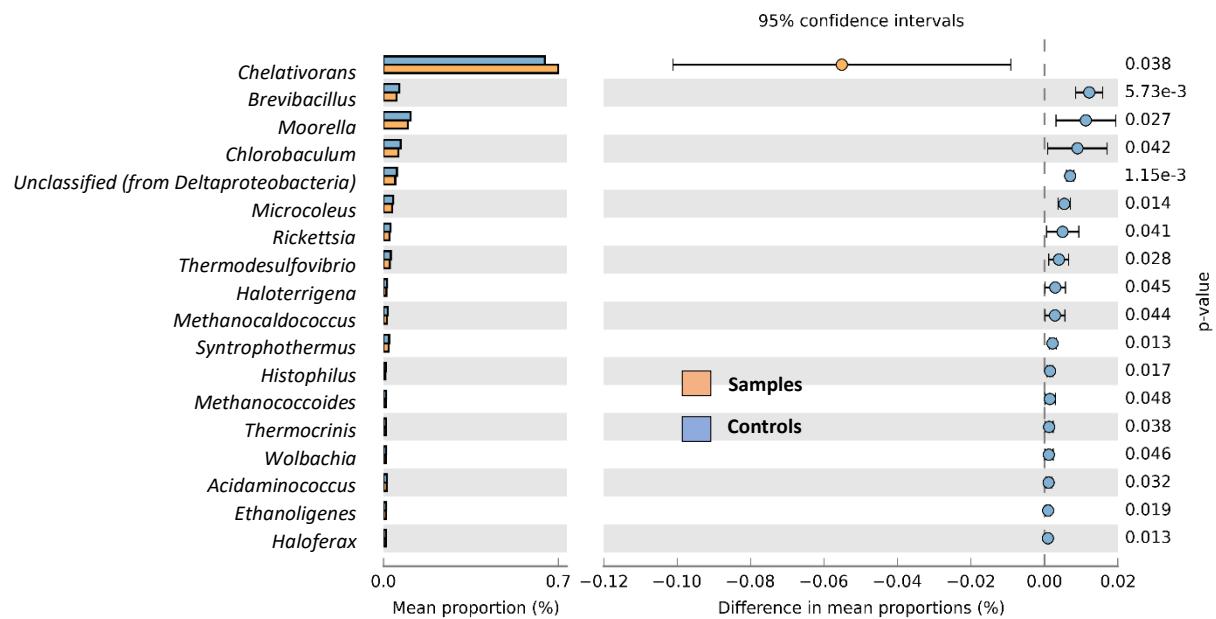


739

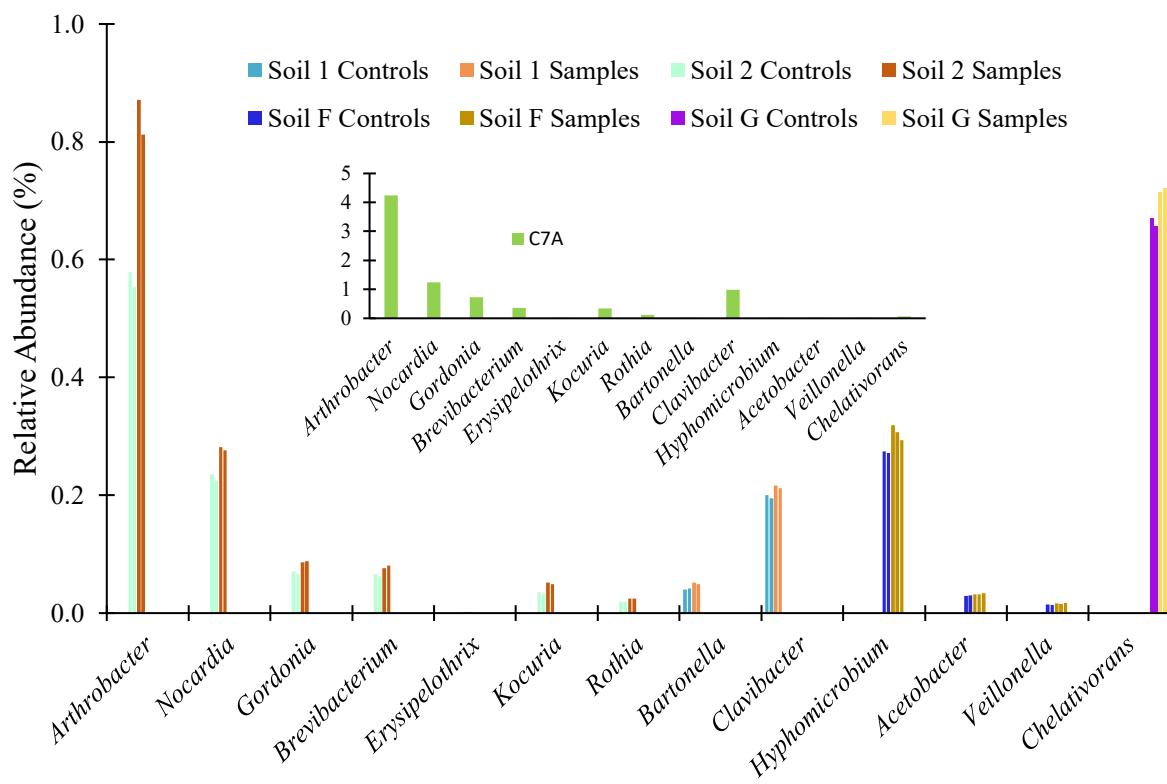

Table 1.

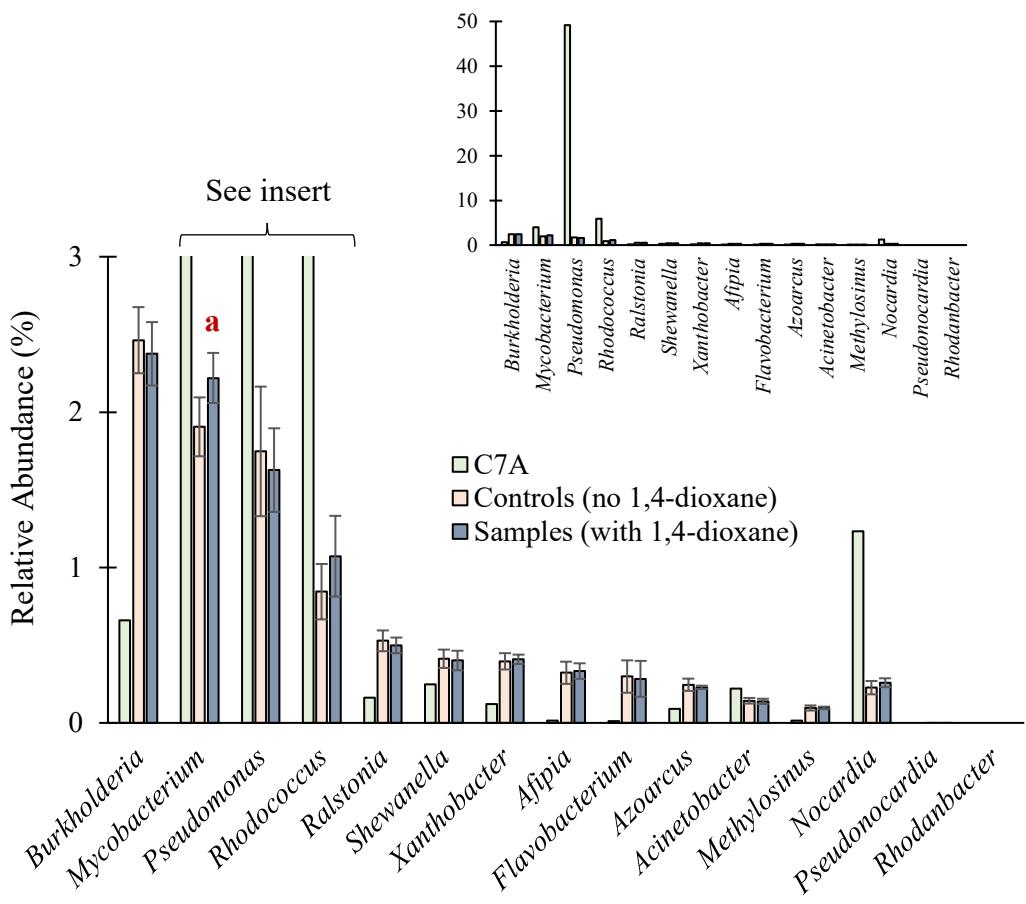
Phylum	Class	Order	Family	Genus	Difference in Means (%)
All Soils: All samples (n=9) compared to all controls (n=8)					
Actinobacteria	Actinobacteria	Actinomycetales	Mycobacteriaceae	<i>Mycobacterium</i>	0.304
Actinobacteria	Actinobacteria	Actinomycetales	Nocardiidaeae	<i>Nocardioides</i>	0.127
Actinobacteria	Actinobacteria	Actinomycetales	Nocardiidaeae	<i>Kribbella</i>	0.079
Actinobacteria	Actinobacteria	Actinomycetales	Pseudonocardiaceae	<i>Amycolatopsis</i>	0.042
Actinobacteria	Actinobacteria	Actinomycetales	Cellulomonadaceae	<i>Cellulomonas</i>	0.035
Actinobacteria	Actinobacteria	Actinomycetales	Actinosynnemataceae	<i>Actinosynnema</i>	0.027
Actinobacteria	Actinobacteria	Actinomycetales	Beutenbergiaceae	<i>Beutenbergia</i>	0.025
Actinobacteria	Actinobacteria	Actinomycetales	Sanguibacteraceae	<i>Sanguibacter</i>	0.023
Actinobacteria	Actinobacteria	Actinomycetales	Pseudonocardiaceae	<i>Saccharomonospora</i>	0.019
Actinobacteria	Actinobacteria	Actinomycetales	Promicromonosporaceae	<i>Xylanimonas</i>	0.018
Actinobacteria	Actinobacteria	Actinomycetales	Glycomycetaceae	<i>Stackebrandtia</i>	0.015
Actinobacteria	Actinobacteria	Actinomycetales	Gordoniaceae	<i>Gordonia</i>	0.014
Actinobacteria	Actinobacteria	Actinomycetales	Nocardiidaeae	<i>Aeromicrobium</i>	0.011
Actinobacteria	Actinobacteria	Actinomycetales	Tsukamurellaceae	<i>Tsukamurella</i>	0.008
Tenericutes	Mollicutes	Mycoplasmatales	Mycoplasmataceae	<i>Ureaplasma</i>	0.0002
Soil 1: Samples (n=3) compared to controls (n=2)					
Actinobacteria	Actinobacteria	Actinomycetales	Microbacteriaceae	<i>Clavibacter</i>	0.017
Proteobacteria	Alphaproteobacteria	Rhizobiales	Bartonellaceae	<i>Bartonella</i>	0.010
Soil 2: Samples (n=2) compared to controls (n=2)					
Actinobacteria	Actinobacteria	Actinomycetales	Micrococcaceae	<i>Arthrobacter</i>	0.276
Actinobacteria	Actinobacteria	Actinomycetales	Nocardiaceae	<i>Nocardia</i>	0.049
Actinobacteria	Actinobacteria	Actinomycetales	Gordoniaceae	<i>Gordonia</i>	0.019
Actinobacteria	Actinobacteria	Actinomycetales	Micrococcaceae	<i>Kocuria</i>	0.017
Actinobacteria	Actinobacteria	Actinomycetales	Brevibacteriaceae	<i>Brevibacterium</i>	0.015
Actinobacteria	Actinobacteria	Actinomycetales	Micrococcaceae	<i>Rothia</i>	0.005
Firmicutes	Erysipelotrichi	Erysipelotrichales	Erysipelotrichaceae	<i>Erysipelothrix</i>	0.0005
Soil F: Samples (n=2) compared to controls (n=2)					
Proteobacteria	Alphaproteobacteria	Rhizobiales	Hyphomicrobiaceae	<i>Hyphomicrobium</i>	0.033
Proteobacteria	Alphaproteobacteria	Rhodospirillales	Acetobacteraceae	<i>Acetobacter</i>	0.003
Firmicutes	Negativicutes	Selenomonadales	Veillonellaceae	<i>Veillonella</i>	0.002
Soil G: Samples (n=2) compared to controls (n=2)					
Proteobacteria	Alphaproteobacteria	Rhizobiales	Phyllobacteriaceae	<i>Chelativorans</i>	0.055


Figure 1

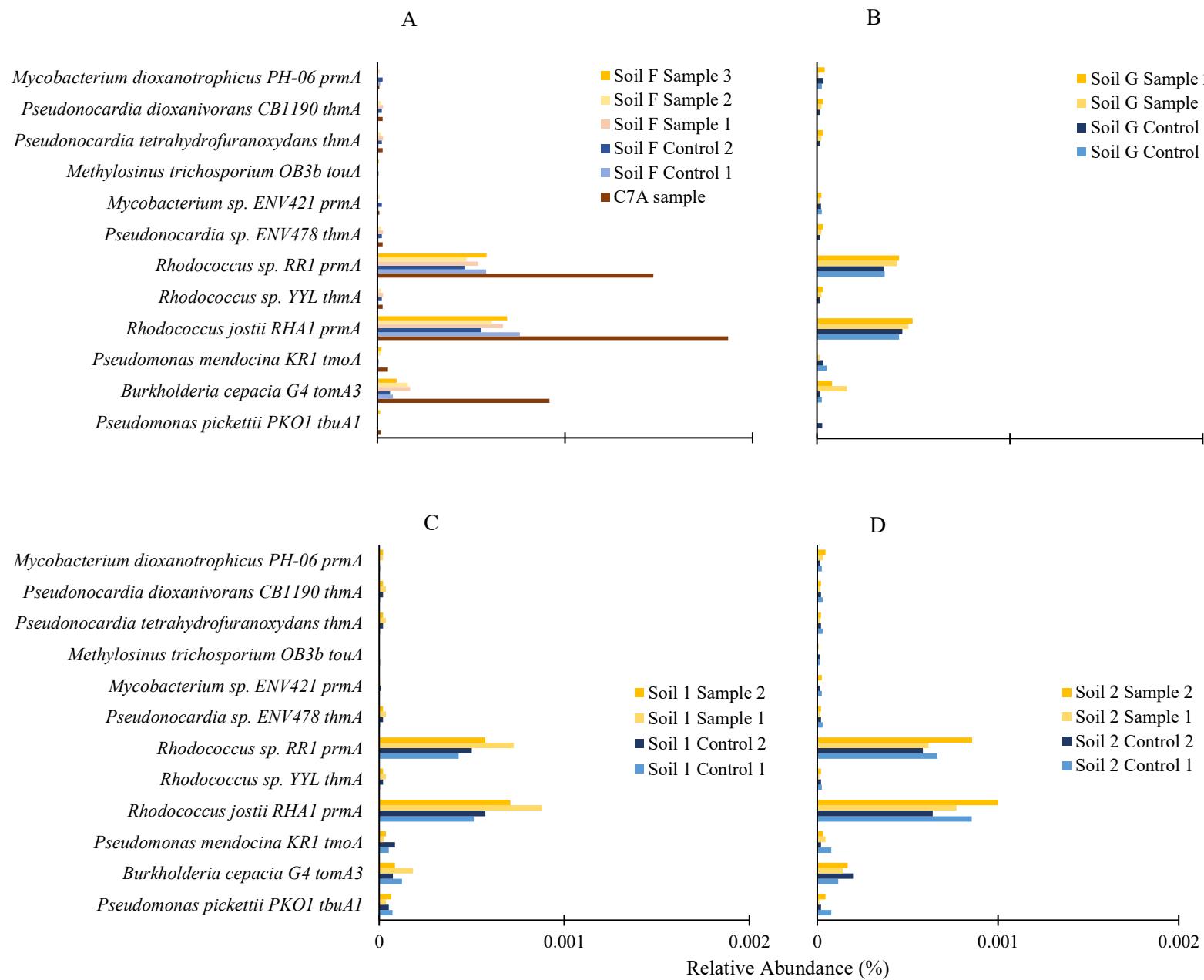
A**B****Figure 2**


Figure 3


A. Soil F


Figure 4

B. Soil G



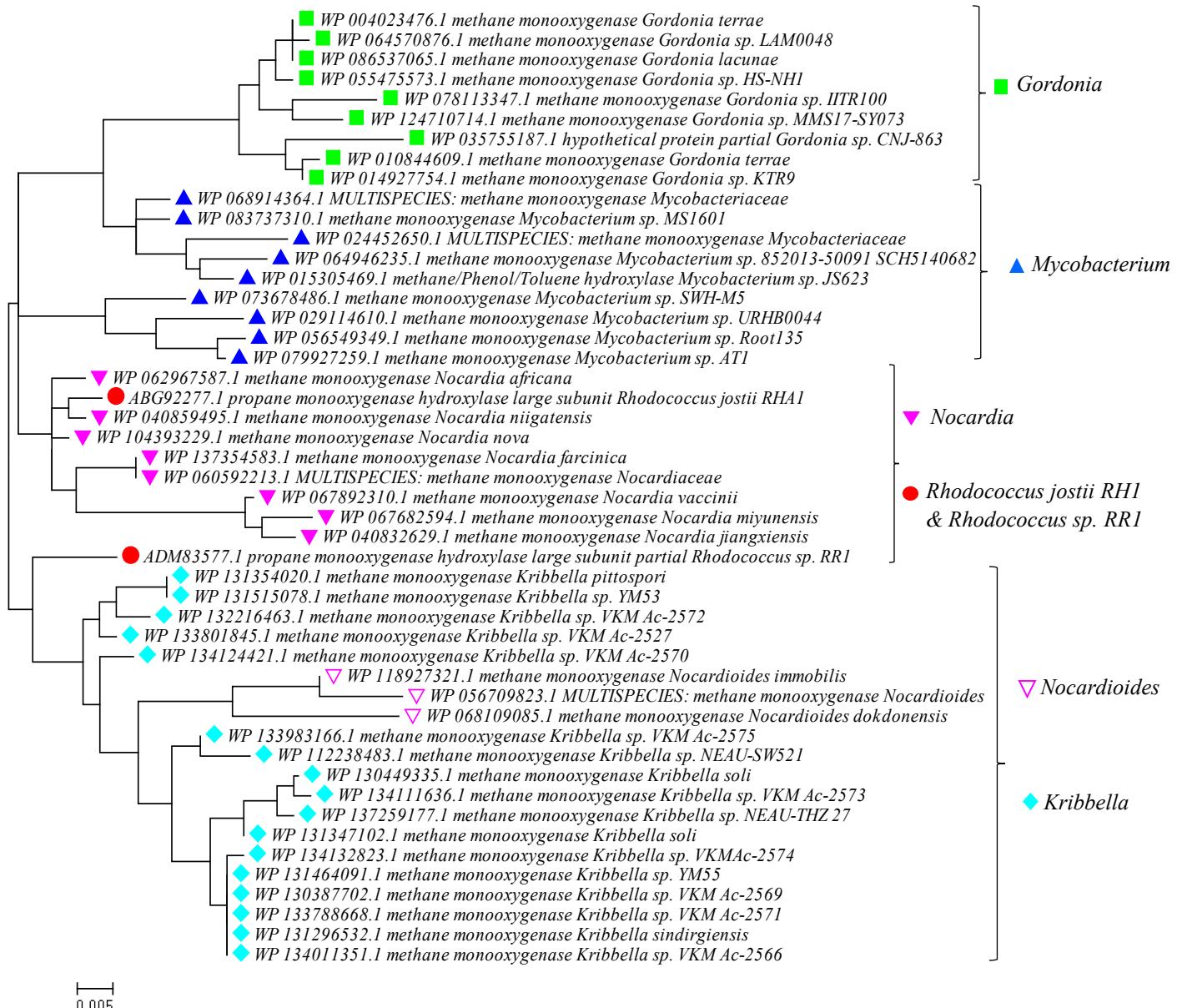

Figure 5

Figure 6

Figure 7

Figure 8

Applied Microbiology and Biotechnology

Supplementary Section

Enrichment of Novel Actinomycetales and the Detection of Monooxygenases during Aerobic 1,4-Dioxane Biodegradation with Uncontaminated and Contaminated Inocula

Vidhya Ramalingam and A. M. Cupples

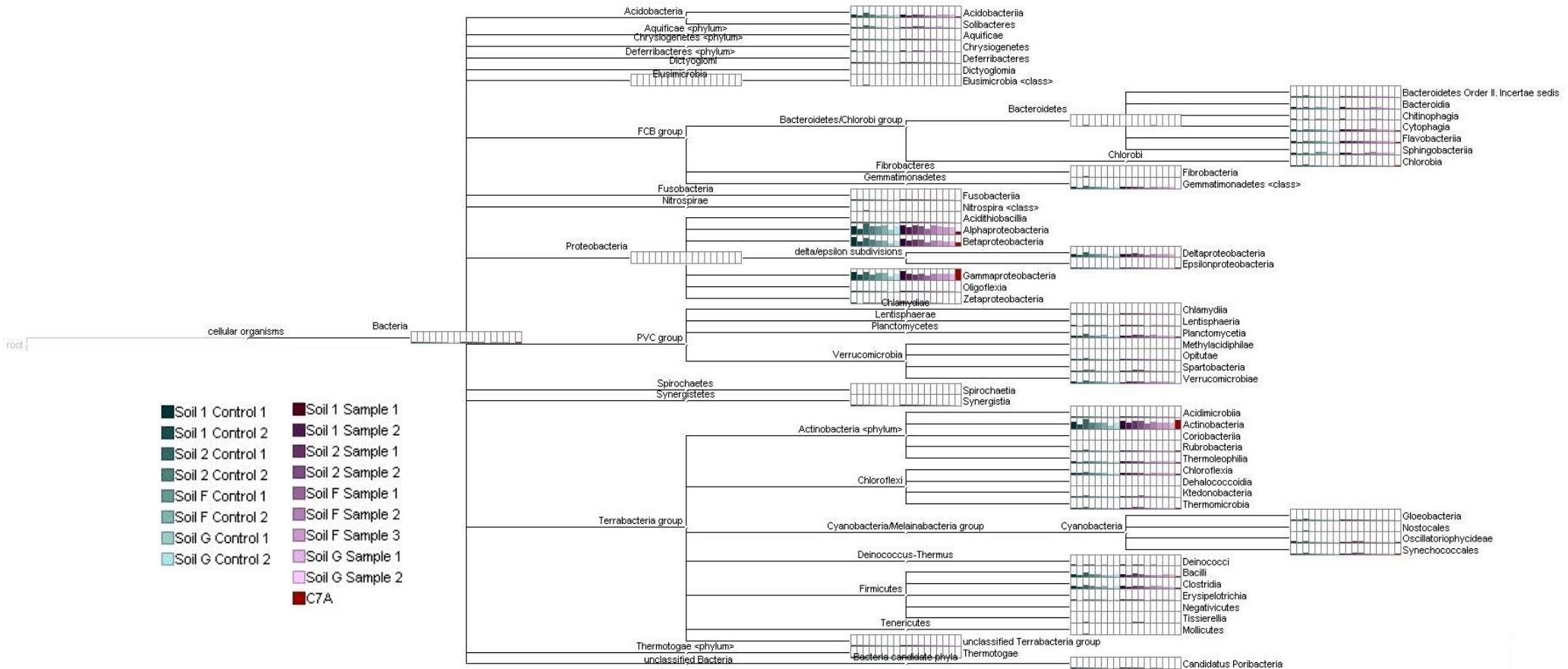
Department of Civil and Environmental Engineering, Michigan State University, East Lansing, Michigan, USA

*Corresponding Author:

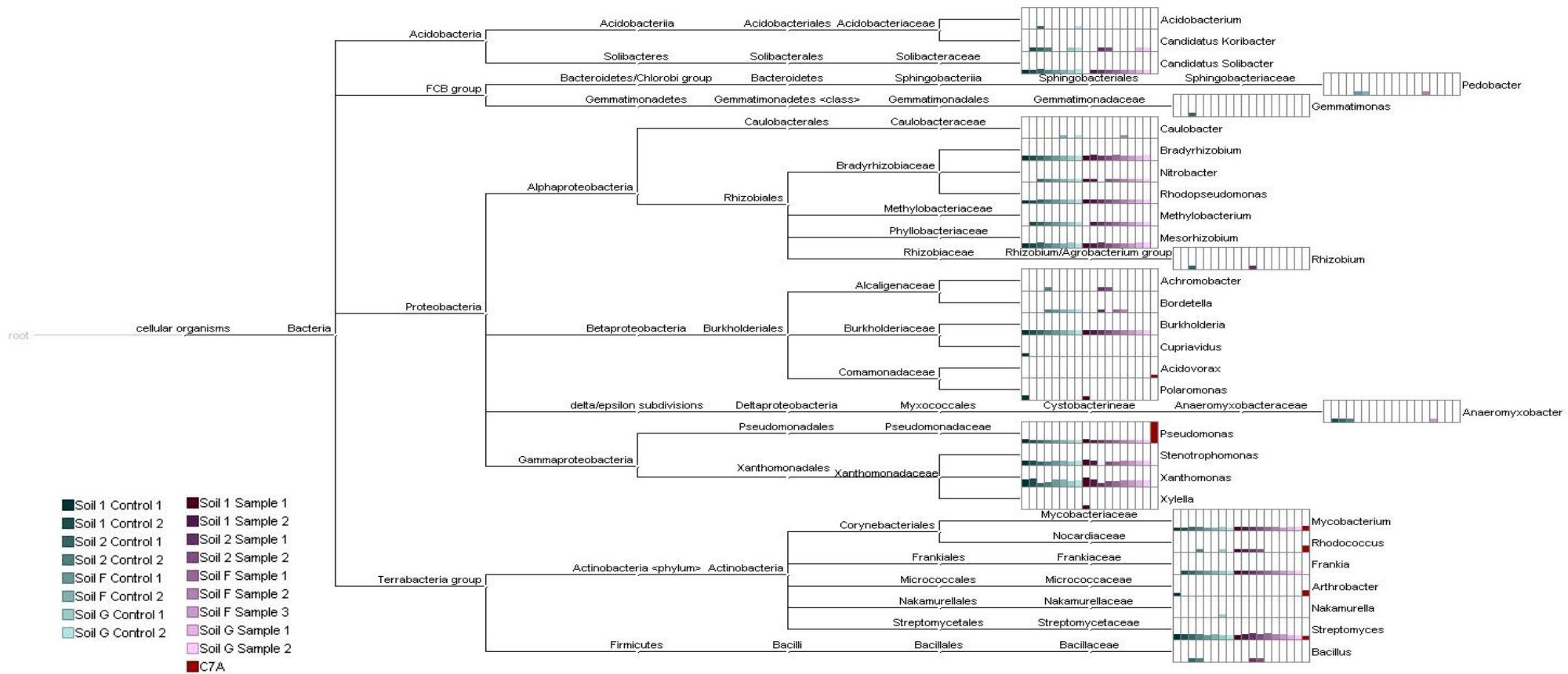
Alison M. Cupples

A135, 1449 Engineering Research Court, Michigan State University, East Lansing, MI 48824,

cupplesa@egr.msu.edu


Table S1. Summary of the characteristics of the soils used to inoculate the sample and control microcosms.

Soil	Sand (%)	Silt (%)	Clay (%)	pH	Organic Matter %
E	70	19	11	7.3	1.9
F	64	25	11	6.6	1.5
G	68	20	12	5.5	1.6
T1	40	40	20	6.4	1.6
T2	36	42	22	6.1	1.9


Table S2. Summary of sequencing information processed by MG-RAST.

QC – Quality Control

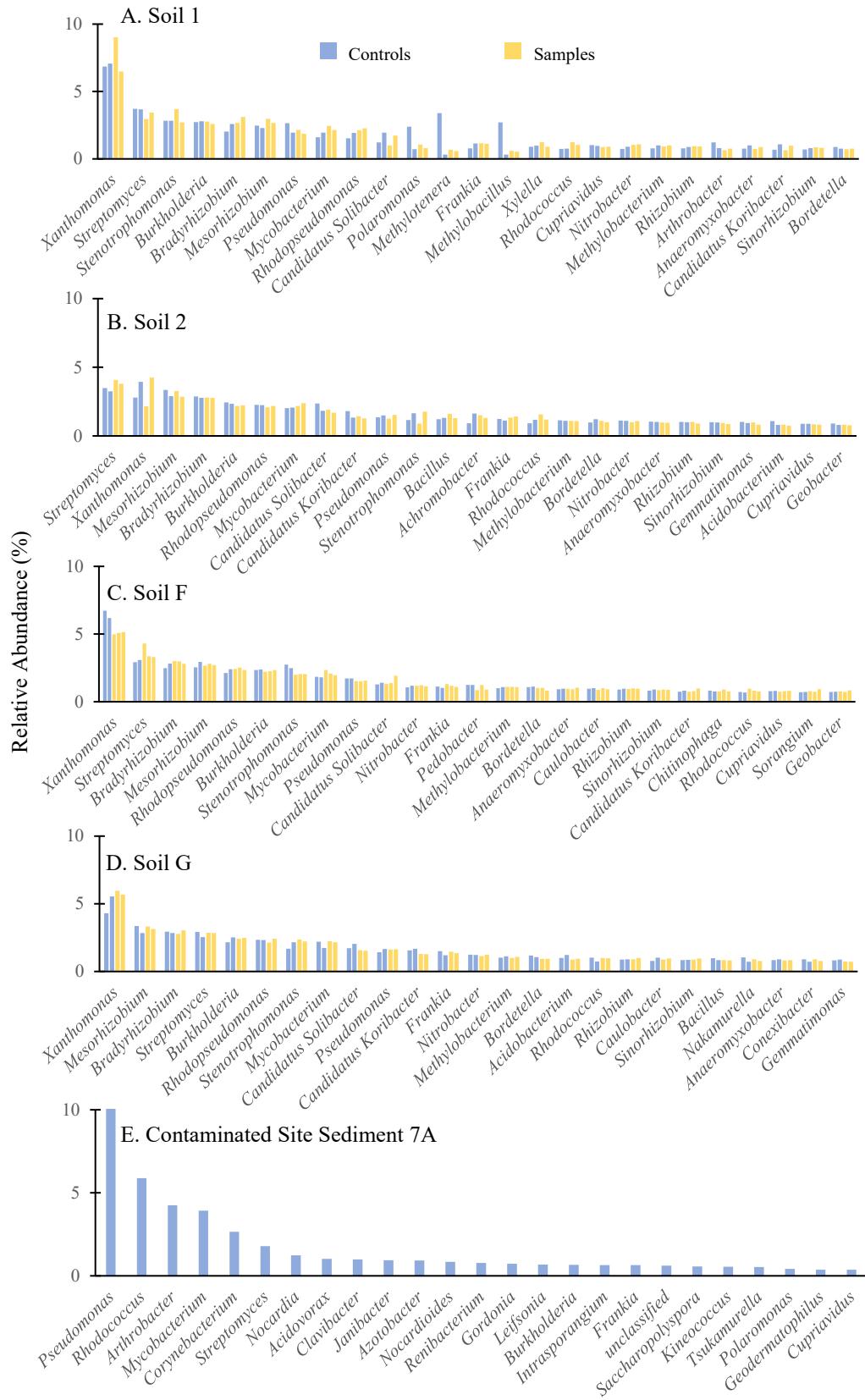

ID	Name	Upload: bp Count	Upload: Sequences Count	Artificial Duplicate Reads: Sequence Count	Post QC: bp Count	Post QC: Sequences Count	Post QC: Mean Sequence Length bp
mgm4846244.3	C7A_6_S10_L001_R	928,461,523	3,828,893	730,886	745,308,161	3,067,261	243 ± 33
mgm4842040.3	SF_2_S3_L001_R	1,249,466,781	5,278,200	741,761	1,057,029,663	4,469,282	237 ± 36
mgm4846245.3	SF_3_S6_L001_R	1,497,947,613	6,267,333	1,045,636	1,227,596,223	5,142,267	239 ± 35
mgm4846246.3	SF_4_S8_L001_R	698,047,178	2,986,100	484,606	572,423,699	2,454,542	233 ± 36
mgm4846247.3	SF_5_S11_L001_R	1,455,181,423	6,244,496	875,408	1,226,035,914	5,268,011	233 ± 37
mgm4846248.3	SF_6_S13_L001_R	1,276,229,786	5,446,704	791,730	1,069,530,685	4,570,187	234 ± 36
mgm4846291.3	SG_1_S15_L001_R	362,019,482	1,517,474	232,203	300,578,338	1,261,641	238 ± 35
mgm4841972.3	SG_3_S17_L001_R	1,237,320,023	5,151,224	739,217	1,042,837,451	4,346,084	240 ± 34
mgm4841973.3	SG_4_S1_L001_R	1,183,825,731	4,906,054	779,630	975,862,599	4,048,734	241 ± 34
mgm4842102.3	SG_6_S4_L001_R	1,097,936,207	4,598,102	612,987	933,115,160	3,911,767	239 ± 35
mgm4841974.3	ST1_2_S7_L001_R	1,722,580,822	7,248,808	1,205,707	1,409,132,207	5,932,625	238 ± 35
mgm4846290.3	ST1_3_S9_L001_R	687,193,817	2,855,664	394,713	580,636,546	2,415,127	240 ± 35
mgm4842023.3	ST1_4_S12_L001_R	1,720,695,830	7,269,781	1,124,424	1,433,388,134	6,053,609	237 ± 35
mgm4842024.3	ST1_6_S14_L001_R	1,165,586,999	4,879,142	683,336	983,135,037	4,119,069	239 ± 35
mgm4842104.3	ST2_1_S16_L001_R	3,144,582,833	13,429,024	2,172,387	2,579,894,248	11,026,268	234 ± 36
mgm4842103.3	ST2_3_S18_L001_R	1,274,658,549	5,369,262	727,123	1,080,887,053	4,557,307	237 ± 35
mgm4842107.3	ST2_5_S2_L001_R	1,622,482,462	6,854,685	982,861	1,362,403,381	5,762,840	236 ± 35
mgm4842106.3	ST2_6_S5_L001_R	1,463,433,476	6,249,417	846,173	1,252,082,629	5,349,932	234 ± 36

Figure S1. Phylogram (created with MEGAN6, version 6.11.7) illustrating the relative abundance and classification (Class Level) of all bacteria across all metagenomes (samples and controls).

Figure S2. Phylogram (created with MEGAN6, version 6.11.7) illustrating the most abundant genera (ranked by average relative abundance, then selected if average relative abundance >0.5%) across all metagenomes (samples and controls).

Figure S3. The twenty-five most common genera (by relative abundance, %), ranked by the averages of the samples and controls, in soil 1 (A), soil 2 (B), soil F (C), soil G (D) and the contaminated site sediment 7A (E).