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Abstract 24 

1,4-dioxane, a co-contaminant at many chlorinated solvent sites, is a problematic groundwater 25 

pollutant because of risks to human health and characteristics which make remediation 26 

challenging. In situ 1,4-dioxane bioremediation has recently been shown to be an effective 27 

remediation strategy. However, the presence/abundance of 1,4-dioxane degrading species across 28 

different environmental samples is generally unknown. Here, the objectives were to identify 29 

which 1,4-dioxane degrading functional genes are present and which genera may be using 1,4-30 

dioxane and/or metabolites to support growth across different microbial communities. For this, 31 

laboratory sample microcosms and abiotic control microcosms (containing media) were 32 

inoculated with four uncontaminated soils and sediments from two contaminated sites. Live 33 

control microcosms were treated in the same manner, except 1,4-dioxane was not added. 1,4-34 

dioxane decreased in live microcosms with all six inocula, but not in the abiotic controls, 35 

suggesting biodegradation occurred. A comparison of live sample microcosms and live controls 36 

(no 1,4-dioxane) indicated nineteen genera were enriched following exposure to 1,4-dioxane, 37 

suggesting a growth benefit for 1,4-dioxane biodegradation. The three most enriched were 38 

Mycobacterium, Nocardioides, Kribbella (classifying as Actinomycetales). There was also a 39 

higher level of enrichment for Arthrobacter, Nocardia and Gordonia (all three classifying as 40 

Actinomycetales) in one soil, Hyphomicrobium (Rhizobiales) in another soil, Clavibacter 41 

(Actinomycetales) and Bartonella (Rhizobiales) in another soil and Chelativorans (Rhizobiales) 42 

in another soil. Although Arthrobacter, Mycobacterium and Nocardia have previously been 43 

linked to 1,4-dioxane degradation, Nocardioides, Gordonia and Kribbella are potentially novel 44 

degraders. The analysis of the functional genes associated with 1,4-dioxane demonstrated three 45 

genes were present at higher relative abundance values, including Rhodococcus sp. RR1 prmA, 46 

Rhodococcus jostii RHA1 prmA and Burkholderia cepacia G4 tomA3. Overall, this study 47 

provides novel insights into the identity of the multiple genera and functional genes associated 48 

with aerobic degradation of 1,4-dioxane in mixed communities.  49 

 50 

 51 

 52 

Introduction 53 



Page 3 of 22 
 

1,4-dioxane, a probable human carcinogen (DeRosa et al. 1996), was commonly used as a 54 

stabilizer in 1,1,1-trichloroethane formulations and is now frequently detected at sites where the 55 

chlorinated solvents are present (Adamson et al. 2015; Adamson et al. 2014; ATSDR 2012; 56 

Mohr et al. 2010). For example, 1,4-dioxane was found at 195 sites in California with 95% 57 

containing one or more of the chlorinated solvents (Adamson et al. 2014). 1,4-dioxane has been 58 

classified as a probable carcinogen (Group 2B) by the U.S. EPA and a possible human 59 

carcinogen (B2) by the International Agency for Research on Cancer based on animal studies 60 

(IARC 1999; USEPA 2017). No federal maximum contaminant level for 1,4-dioxane in drinking 61 

water has been established (EPA 2017), however, several states have set low advisory action 62 

levels (e.g. California, Florida, Michigan and North Carolina have levels <5 ppb). A major 63 

challenge to 1,4-dioxane remediation concerns chemical characteristics that result in migration 64 

and persistence (Adamson et al. 2015; Mohr et al. 2010). A low organic carbon partition 65 

coefficient (log KOC = 1.23) and Henry’s Law Constant (5 X 10-6 atm. m3mol-1), make traditional 66 

remediation methods such as air stripping or activated carbon largely ineffective (Mahendra and 67 

Alvarez-Cohen 2006; Steffan et al. 2007; Zenker et al. 2003). Ex situ oxidation methods 68 

including ozone and hydrogen peroxide (Adams et al. 1994) or hydrogen peroxide and ultraviolet 69 

light (Stefan and Bolton 1998) have been commercially applied, however these can be expensive 70 

at high concentrations (Steffan et al. 2007).  71 

 72 

Many bacteria have been linked to the aerobic metabolic and co-metabolic degradation of 1,4-73 

dioxane. Currently, Pseudonocardia dioxanivorans CB1190 (Parales et al. 1994), Rhodococcus 74 

ruber 219 (Bock et al. 1996), Pseudonocardia benzennivorans B5 (Kämpfer and Kroppenstedt 75 

2004), Mycobacterium sp. PH-06 (Kim et al. 2008), Afipia sp. D1, Mycobacterium sp. D6, 76 

Mycobacterium sp. D11, Pseudonocardia sp. D17 (Sei et al. 2013), Acinetobacter baumannii 77 

DD1 (Huang et al. 2014), Rhodanbacter AYS5 (Pugazhendi et al. 2015), Xanthobacter flavus 78 

DT8 (Chen et al. 2016) and Rhodococcus aetherivorans JCM 14343 (Inoue et al. 2016) are 79 

known to degrade 1,4-dioxane metabolically. A large number of microorganisms are known to 80 

co-metabolically degrade this contaminant. For example, Pseudonocardia 81 

tetrahydrofuranoxydans sp. K1 (Kohlweyer et al. 2000), Pseudonocardia sp. ENV478 (Vainberg 82 

et al. 2006), Rhodococcus ruber T1, Rhodococcus ruber T5 (Sei et al. 2013), Rhodococcus ruber 83 

ENV 425 (Steffan et al. 1997), Rhodococcus RR1 (Stringfellow and Alvarez-Cohen 1999), 84 
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Flavobacterium sp. (Sun et al. 2011), Mycobacterium vaccae (Burback and Perry 1993), 85 

Mycobacterium sp. ENV 421 (Masuda et al. 2012b), Pseudomonas mendocina KR1 (Whited and 86 

Gibson 1991), Ralstonia pickettii PKO1 (Kukor and Olsen 1990), Burkholderia cepacia G4 87 

(Nelson et al. 1986), Methylosinus trichosporium OB3b (Whittenbury et al. 1970), 88 

Pseudonocardia acacia JCM (Inoue et al. 2016) and Pseudonocardia asaccharolytica JCM 89 

(Inoue et al. 2016) are among those linked to co-metabolic degradation of 1,4-dioxane. Co-90 

metabolic 1,4-dioxane degradation has previously been reported with growth supporting 91 

substrates such as tetrahydrofuran, methane, propane, toluene, ethanol, sucrose, lactate, yeast 92 

extract and 2-propanol (Burback and Perry 1993; Hand et al. 2015; Kohlweyer et al. 2000; 93 

Mahendra and Alvarez-Cohen 2006; Vainberg et al. 2006).  94 

 95 

The initiation of 1,4-dioxane biodegradation has been associated with various groups of soluble 96 

di-iron monooxygenases (SDIMOs) (He et al. 2017). Monooxygenases are enzymes that 97 

facilitate bacterial oxidation through the introduction of oxygen. SDIMOs have been classified 98 

into 6 groups based on their preferred substrate and sequence similarity (Coleman et al. 2006). 99 

SDIMOs associated with metabolic and co-metabolic 1,4-dioxane degradation include [as 100 

summarized in (He et al. 2017)] Burkholderia cepacia G4 tomA3 (Group 1) (Mahendra and 101 

Alvarez-Cohen 2006; Newman and Wackett 1995), Pseudomonas pickettii PKO1 tbuA1 (Group 102 

2) (Fishman et al. 2004; Mahendra and Alvarez-Cohen 2006), Pseudomonas mendocina KR1 103 

tmoA (Group 2) (Mahendra and Alvarez-Cohen 2006; Yen et al. 1991), Methylosinus 104 

trichosporium OB3b mmoX (Group 3) (Mahendra and Alvarez-Cohen 2006; Oldenhuis et al. 105 

1989), Pseudonocardia dioxanivorans CB1190 prmA (Group 5) (Parales et al. 1994; Sales et al. 106 

2013; Sales et al. 2011), Pseudonocardia tetrahydrofuranoxydans K1 thmA (Group 5) (Kampfer 107 

et al. 2006; Thiemer et al. 2003), Pseudonocardia sp. strain ENV478 thmA (Group 5) (Masuda et 108 

al. 2012a), Rhodococcus sp. strain YYL thmA (Group 5)(Yao et al. 2009), Rhodococcus jostii 109 

RHA1 prmA (Group 5) (Hand et al. 2015; Sharp et al. 2007), Rhodococcus sp. RR1 prmA 110 

(Group 5) (Sharp et al. 2007), Mycobacterium sp. ENV421 prmA (Group 6) (Masuda 2009) and 111 

Mycobacterium dioxanotrophicus PH-06 prmA (Group 6) (He et al. 2017).  112 

 113 

As the success of natural attenuation or biostimulation often depends on the population of native 114 

degraders present at the contaminated site, several studies have developed methods targeting 115 
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these functional genes (Gedalanga et al. 2014; He et al. 2018; Li et al. 2013a; Li et al. 2013b). 116 

For example, methods have been developed for the functional genes associated with 117 

Pseudonocardia and Mycobacterium (Deng et al. 2018; Gedalanga et al. 2014; He et al. 2017). 118 

Another study focused specifically on detecting functional genes of four 1,4-dioxane degraders 119 

(Pseudonocardia dioxanivorans CB1190, Pseudonocardia sp. strain ENV478, Pseudonocardia 120 

tetrahydrofuranoxydans K1, Rhodococcus sp. strain YYL). A larger number of functional genes 121 

were investigated with microarray-based technology (GeoChip 4.0) and denaturing gradient gel 122 

electrophoresis (Li et al. 2013b). More recently, high throughput shotgun sequencing was used to 123 

evaluate the presence of the functional genes listed above in impacted and non-impacted 124 

groundwater (Dang et al. 2018) . This approach has the added advantage of enabling taxonomic 125 

as well as functional analysis of microbial communities. The current study adopted a similar 126 

approach to examine the microbial communities involved in 1,4-dioxane degradation in 127 

contaminated and uncontaminated sediment and soil inoculated microcosms. 128 

 129 

In the current study, the objectives were 1) to identify which 1,4-dioxane degrading functional 130 

genes are present across different microbial communities and 2) to determine which genera may 131 

be using 1,4-dioxane and/or metabolites to support growth. The research focused on laboratory 132 

microcosms inoculated with four uncontaminated soils and sediment samples from two 1,4-133 

dioxane contaminated sites. The media selected for the experiments followed the approach used 134 

to enrich Pseudonocardia dioxanivorans CB1190 from industrial sludge (Parales et al. 1994). 135 

The work is novel as it combines taxonomic and functional data to generate a more complete 136 

picture of the multiple microorganisms and genes linked to 1,4-dioxane degradation in mixed 137 

communities. 138 

 139 

Methods 140 

Chemicals and Inocula  141 

1,4-dioxane was purchased from Sigma-Aldrich (MO, USA) with 99.8% purity. All stock 142 

solutions and dilutions were prepared using DI water. The agricultural samples were collected 143 

from two locations on the campus of Michigan State University, East Lansing, Michigan (herein 144 

called soils F and G) and two locations at the Kellogg Biological Station, Hickory Corners, 145 

Michigan (soils 1 and 2). The characteristics of the agricultural soils have been summarized 146 
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(Table S1). The contaminated site samples were obtained from California (contaminated with 147 

trichloroethene, 1,1-dichloroethene and 1,4-dioxane, herein called C7A) and Maine 148 

(contaminated with traces of 1,4-dioxane, herein called M10A). All samples were stored in the 149 

dark at 6 °C until use.  150 

 151 

Experimental Setup, DNA Extraction, 1,4-Dioxane Analysis 152 

Laboratory microcosms were established with soil or sediment (5g wet weight) and 25 mL of 153 

media in 30 mL serum bottles. For each of the six inocula (four uncontaminated soils or two 154 

contaminated sediments), the experiment design included triplicate sample microcosms, 155 

triplicate live control microcosms and triplicate abiotic control microcosms (autoclaved daily for 156 

three consecutive days). The triplicate live control microcosms were treated in the same manner 157 

as the sample microcosms except no 1,4-dioxane was added. This treatment was included to 158 

enable comparisons to the microbial communities exposed to 1,4-dioxane. Following the 159 

approach used to enrich Pseudonocardia dioxanivorans CB1190 from industrial sludge, each 160 

liter of the final media contained 100 mL of a buffer stock [K2HPO4 (32.4 g/L), KH2PO4 (10 161 

g/L), NH4Cl (20 g/L)] and 100 mL of a trace metal stock [nitrilotriacetic acid (disodium salt) 162 

(1.23 g/L), MgSO4.7H2O (2 g/L), FeSO4.7H2O (0.12 g/L), MnSO4.H2O (0.03 g/L), ZnSO4.7H2O 163 

(0.03 g/L) and CoCl2.6H2O (0.01 g/L)] (Parales et al., 1994). The nitrilotriacetic acid (within the 164 

trace metal stock solution) represents an additional carbon source. The live sample microcosms 165 

were re-spiked with 1,4-dioxane two additional times.   166 

 167 

A GC/MS with Agilent 5975 GC/single quadrupole MS (Agilent Technologies, CA, USA) 168 

equipped with a CTC Combi Pal autosampler was used to determine 1,4-dioxane concentrations. 169 

Sterile syringes (1 mL) and needles (22 Ga 1.5 in.) were used to collect samples (0.7 mL) from 170 

each microcosm. The samples were filtered (0.22 µm nylon filter) before being injected into an 171 

amber glass vial (40 mL) for GC/MS analysis. A method was developed to analyze 1,4-dioxane 172 

using solid phase micro extraction (SPME). The SPME fiber was inserted in the headspace of the 173 

vial and exposed to the analyte for 1 minute before being injected into the GC for thermal 174 

desorption. The fiber coating can adsorb the analytes in the vapor phase. Splitless injection was 175 

executed and the vials were maintained at 40 °C.  The SPME fiber assembly involved 50/30µm 176 

Divinylbenzene/ Carboxen/ Polydimethylsiloxane (DVB/CAR/PDMS) and 24 Ga needle for 177 
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injection. The initial oven temperature was 35 °C and was programmed to increase at a rate of 20 178 

°C/min to 120 °C. Once it reached 120 °C, it increased at a rate of 40 °C/min to 250 °C, which was 179 

maintained for 3 min. A VF5MS column was used with helium as the carrier gas in constant flow 180 

mode at a flow rate of 1 ml/min. The conditioning of the SPME fiber was at 270 °C for 60 min at 181 

the beginning of each sequence.   182 

 183 

DNA was extracted from the soil inoculated sample microcosms and live control microcosms 184 

(1.2 mL and 0.4 g soil) using QIAGEN DNeasy PowerSoil kit as per the manufacturer’s 185 

instructions. The QIAGEN DNeasy Powermax Soil kit was used to extract DNA from the 186 

microcosms inoculated with the two contaminated sediments. For this, the entire content of each 187 

microcosm was sacrificed for DNA extraction. The DNA concentrations were determined using 188 

QUBIT dsDNA HS kit. The DNA extracts with the highest DNA yields were selected for 189 

shotgun sequencing.  190 

 191 

Library Preparation, Sequencing, MG-RAST and DIAMOND analysis 192 

Twenty-six samples were submitted for library generation and shotgun sequencing to the 193 

Research Technology Support Facility Genomics Core at Michigan State University. Libraries 194 

were prepared using the Takara SMARTer ThruPLEX DNA Library Preparation Kit following 195 

manufacturer's recommendations. Completed libraries were QC’d and quantified using a 196 

combination of Qubit dsDNA HS and Agilent 4200 TapeStation HS DNA1000 assays. Eight 197 

samples did not generate libraries of sufficient concentration for sequencing and were removed 198 

from further analysis. The remaining eighteen libraries were pooled in equimolar amounts for 199 

multiplexed sequencing. The pool was quantified using the Kapa Biosystems Illumina Library 200 

Quantification qPCR kit and loaded onto one lane of an Illumina HiSeq 4000 flow cell. 201 

Sequencing was performed in a 2x150 bp paired end format using HiSeq 4000 SBS reagents. 202 

Base calling was done by Illumina Real Time Analysis (RTA) v2.7.7 and output of RTA was 203 

demultiplexed and converted to FastQ format with Illumina Bcl2fastq v2.19.1.  204 

 205 

The Meta Genome Rapid Annotation using Subsystem Technology (MG-RAST) (Meyer et al. 206 

2008) version 4.0.2. was used for the taxonomic analysis of the metagenomes. The processing 207 

pipeline involved merging paired end reads, SolexaQA (Cox et al. 2010) to trim low-quality 208 
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regions and dereplication to remove the artificial duplicate reads. Gene calling was performed 209 

using FragGeneScan (Rho et al. 2010). For the taxonomic profiles, the best hit classification at a 210 

maximum e-value of 1e−5, a minimum identity of 60% and a minimum alignment length of 15 211 

against the ReqSeq database (Pruitt et al. 2005) were used. MG-RAST ID numbers and 212 

sequencing data have been summarized (Table S2) and the datasets are publicly available on 213 

MG-RAST. The number of sequences generated post quality control per sample was 4.7 ± 2.0 214 

million (ranging from ~1.2 to ~11 million) and the average length was 237.3 ± 2.9 bp (averages 215 

ranging from 233 to 243 bp). The sequencing data was submitted to NCBI under Bioproject 216 

PRJNA590532 (accession numbers SAMN13332566 to SAMN13332583). 217 

 218 

The MG-RAST data files were downloaded and analyzed in Microsoft Excel 2016, STAMP 219 

(Statistical Analyses of Metagenomic Profiles, software version 2.1.3.) (Parks et al. 2014) and 220 

MEGAN6 (version 6.11.7) (Huson et al. 2016). STAMP was used to detect differences in the 221 

relative proportions of the taxonomic profiles between the live controls (no 1,4-dioxane) and the 222 

samples for each soil. This analysis included Welch’s two sided t-test for two groups (samples 223 

and live controls) (p<0.05) to generate extended error bar figures for each soil. The same 224 

Welch’s test was performed to compare the profiles of all samples (n= 9) to all live controls (n= 225 

8). MEGAN6 was used to generate two phylograms. One phylogram illustrates the eighteen 226 

metagenomes classified to the Class Level. The other phylogram represents the most common 227 

genera (ranked by average relative abundance, then selected if average values >0.5%) across all 228 

metagenomes. 229 

 230 

The relative abundance of 1,4-dioxane degrading functional genes was determined using the 231 

alignment tool DIAMOND (double index alignment of next-generation sequencing data) 232 

(Buchfink et al. 2015). Specifically, reads aligning to the twelve genes previously associated 233 

with aerobic degradation (metabolic and co-metabolic) of 1,4-dioxane, as summarized previously 234 

(He et al. 2017), were determined. First, low quality sequences and Illumina adapters sequences 235 

were removed using Trimmomatic in the paired end mode (Bolger et al. 2014). The two paired 236 

output files were used for gene alignments in DIAMOND. Following alignment, the DIAMOND 237 

files were analyzed within Excel, which included combining the data from the two paired files 238 

and deleting duplicated data. The sort function was used to select reads that exhibited an identity 239 
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of ≥ 60% and an alignment length ≥ 49 amino acids. For each gene, the relative abundance 240 

values were calculated using the number of aligned reads divided by the total number of 241 

sequences for each sample (determined by Trimmomatic).  242 

 243 

The above analysis indicated two functional genes (Rhodococcus jostii RHA1 prmA and 244 

Rhocodoccus sp. RR1 prmA) were dominant in the soil and sediment metagenomes. Therefore, 245 

BLASTP 2.9.0+ (Altschul et al. 1997) (protein-protein BLAST) from the NCBI website was 246 

used to search for similar protein sequences to these two genes. The sequences obtained (>94.8% 247 

similar to the two query sequences) were used to create a phylogenetic tree in MEGAN7 using 248 

the Maximum Likelihood method (Jones et al. 1992; Kumar et al. 2016). 249 

 250 

Results 251 

Biodegradation of 1,4-Dioxane  252 

The concentration of 1,4-dioxane declined in all of the live microcosms (inoculated with all four 253 

uncontaminated soils and with two contaminated site sediments), but not in the abiotic controls, 254 

indicating biological removal (Figure 1). All of the live microcosms, except M10A 255 

(contaminated site soil), demonstrated >50% removal in 1,4-dioxane in approximately 40 days. 256 

Following the initial biodegradation of the chemical, the microcosms were reamended with 1,4-257 

dioxane twice. A steady depletion of 1,4-dioxane occurred in all four agricultural soils and the 258 

two contaminated site soil samples after each reamendment, while no removal was noted in the 259 

corresponding abiotic controls. However, limited biodegradation (only one replicate decreased) 260 

was observed for soil F after the last amendment. Overall, between approximately 220 and 245 261 

days was required to reduce the majority of the amended 1,4-dioxane. 262 

 263 

Taxonomic Analysis of Metagenomes 264 

Although DNA was extracted from all microcosms and live controls (no 1,4-dioxane), in some 265 

cases insufficient DNA was extracted (and was not submitted for library generation) or did not 266 

generate libraries of sufficient concentration for sequencing. Unfortunately, this included all 267 

DNA extracts for the microcosms inoculated with sediment from one of the two 1,4-dioxane 268 

contaminated sites (M10A three samples and three live controls). Also, only one sample from the 269 

other contaminated site (C7A) generated enough DNA for sequencing. Overall, eighteen libraries 270 
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were sequenced, which included two samples and two live controls for each soil (except soil F 271 

which included three samples) and one sample from one contaminated site (C7A). 272 

The phylogenetic analysis of the eighteen soil and sediment metagenomes indicated the 273 

majority of the microorganisms classified within the classes Acidobacteria, Alpha-, Beta-, 274 

Gamma-, Deltaproteobacteria, Actinobacteria, Bacilli and Clostridia (Figure S1). The most 275 

abundant genera, averaged across all metagenomes, included Candidatus Solibacter, 276 

Bradyrhizobium, Mesorhizobium, Burkholderia, Pseudomonas, Stenotrophomonas, 277 

Xanthomonas, Mycobacterium and Streptomyces (Figure S2). The relative abundance (%) of the 278 

most abundant genera (25 most abundant) for each soil analyzed separately is also shown (Figure 279 

S3). The most abundant genera in all four soils were similar and included Xanthomonas, 280 

Streptomyces, Mesorhizobium, Bradyrhizobium and Burkholderia. In contrast, Pseudomonas, 281 

Rhodococcus, Arthrobacter, Mycobacterium and Corynebacterium were the most abundant 282 

genera in the contaminated site microcosms.  283 

 284 

Genera Associated with 1,4-Dioxane Degradation  285 

The metagenomes of the samples were compared to the live controls (no 1,4-dioxane) to 286 

determine which genera were positively influenced by 1,4-dioxane degradation. First, all of the 287 

samples (n=9) were compared to all of the live controls (n=8) (Figure 2). Overall, fifteen genera 288 

were statistically significantly enriched in the live samples compared to the controls. The greatest 289 

differences between the means were noted for Mycobacterium (0.304%, p=0.0029), followed by 290 

Nocardioides (0.127%, p=0.023), and Kribbella (0.079%, p=0.017). The trends suggest these 291 

genera are obtaining a growth benefit from the presence of 1,4-dioxane. The relative abundance 292 

of these genera in the contaminated site microcosm is also shown (Figure 2B, insert). Except for 293 

Ureaplasma, the enriched genera all classify within the order Actinomycetales (Table 1).  294 

The metagenomes of the samples and controls were also compared for each soil 295 

individually. Two (Clavibacter, Bartonella) and seven genera (Arthrobacter, Nocardia, 296 

Gordonia, Kocuria, Brevibacterium, Rothia, Erysipelothrix) were statistically significantly 297 

enriched in the samples compared to the controls in soils 1 and 2, respectively (Figure 3). Three 298 

genera (Hyphomicrobium, Acetobacter, Veillonella) and one genus (Chelativorans) were 299 

statistically significantly enriched in the samples compared to the controls in soils F and G, 300 

respectively (Figure 4). Seven of the thirteen listed above classify within the Actinomycetales 301 
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(Table 1). The differences between the means (for the individual soil analysis) were the highest 302 

(≥0.033%) for Arthrobacter, Nocardia, Hyphomicrobium and Chelativorans (Table 1). The 303 

relative abundance of the thirteen enriched genera in the samples compared to the controls (for 304 

the individual soil analysis) and for the contaminated site sample is shown (Figure 5). The 305 

contaminated site sample is shown with a different scale as it involved higher relative abundance 306 

values compared to the other microcosms (Figure 5 insert). Both Arthrobacter and Nocardia 307 

have relative abundance values of >1% in the contaminated site sample. 308 

 309 

Relative Abundance of Genera Associated with 1,4-dioxane Bioegradation  310 

The metagenomes were also investigated to determine the relative abundance (%) of fifteen 311 

genera previously associated with metabolic or co-metabolic 1,4-dioxane degradation (Figure 6). 312 

All except Pseudonocardia and Rhodanbacter were present in the samples and controls. 313 

Burkholderia, Mycobacterium, Pseudomonas and Rhodococcus were present at the highest 314 

relative abundance levels (0.84-2.45%). Only Mycobacterium was statistically significantly 315 

(p<0.05) enriched in the samples compare to the live controls. Pseudonocardia and 316 

Rhodanbacter were also absent in the contaminated site sample (Figure 6, insert). In the 317 

contaminated site metagenome, the four most abundant genera were Pseudomonas (49.0%), 318 

Rhodococcus (5.9%), Mycobacterium (3.9%) and Nocardia (1.2%). The contaminated site 319 

sample indicates a 25-fold higher relative abundance in Pseudomonas and almost a 6-fold higher 320 

relative abundance in Rhodococcus compared to the samples from agricultural sites.  321 

  322 

Genes Associated with 1,4-Dioxane Degradation 323 

The reads aligning to the genes previously associated with 1,4-dioxane degradation were 324 

determined using DIAMOND and the data were analyzed using Excel. Only the reads with ≥ 325 

60% identity for ≥ 49 amino acids were included in the analysis. Among the twelve genes 326 

previously associated with 1,4-dioxane degradation, the majority were present in all the samples 327 

including the contaminated site sample (Figure 7).  328 

The analysis demonstrates a uniform trend of higher relative abundance values for 329 

Rhodococcus sp. RR1 prmA and Rhodococcus jostii RHA1 prmA in all four agricultural samples 330 

and the contaminated site sample compared to the other genes. The contaminated site sample 331 

demonstrates more than twice the relative abundance of these two genes compared to the 332 
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samples from the agricultural sites. A high relative abundance of Burkholderia cepacia G4 333 

tomA3 was also noted in all of the samples, with higher abundance (10-fold increase) in the 334 

contaminated site sample compared to other agricultural samples (Figure 7). Only six and eleven 335 

metagenomes contained reads aligning with Methylosinus trichosporium OB3b touA and 336 

Pseudomonas pickettii PKO1 tbuA1, respectively. Seven functional genes (Pseudomonas 337 

mendocina KR1 tmoA, Rhodococcus sp. YYL thmA, Pseudonocardia sp. ENV478 thmA, 338 

Mycobacterium sp. ENV421 prmA, Pseudonocardia tetrahydrofuranoxydans thmA, 339 

Pseudonocardia dioxanivorans CB1190 thmA, Mycobacterium dioxanotrophicus PH-06 prmA) 340 

were present in between fourteen and eighteen metagenomes. All four soils generated similar 341 

trends for the functional genes and no statistically significant differences were noted between the 342 

live controls and samples. The contaminated site sample generated the same trend for the three 343 

most abundant genes. 344 

Following the discovery of the dominance of Rhodococcus jostii RHA1 prmA and 345 

Rhodococcus sp. RR1 prmA in the soil metagenomes, a BLASTP search was performed to find 346 

the closest matching sequences in the NCBI database. The matching protein sequences, with 347 

number of microorganisms shown in parenthesis, belonged to the genera Rhodococcus (60), 348 

Kribbella (16), Gordonia (10), Mycolicibacterium (10), Mycobacterium (8), Nocardia (7), 349 

Nocardioides (6), Hoyosella (3), Intrasporanqium (2), Millisia (1), Cryptosporangium (1) and 350 

Acidobacteria (1). Interestingly, five of these genera (Mycobacterium, Nocardioides, Kribbella, 351 

Gordonia and Nocardia) were enriched in the samples compared to the live controls (as 352 

discussed above, Table 1). A phylogenetic tree was generated to illustrate the evolutionary 353 

relationships between the two query sequences and the enriched genera (Figure 8). Rhodococcus 354 

jostii RHA1 prmA clustered closest to Nocardia sequences and Rhodococcus sp. RR1 prmA 355 

clustered closest to Kribbella sequences. 356 

 357 

 358 

 359 

Discussion 360 

The remediation of sites contaminated with 1,4-dioxane is challenging because of the physical 361 

and chemical properties of this chemical (Mohr et al. 2010). Although bioremediation can be a 362 
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viable option at some sites, it is still unclear which microorganisms and functional genes are 363 

linked to 1,4-dioxane degradation in mixed communities.  364 

To address this knowledge gap, the current study identified which genera could obtain a growth 365 

benefit from 1,4-dioxane biodegradation. For this, the sample microcosms were supplied with 366 

media and 1,4-dioxane and the live control microcosms were supplied with the same media, but 367 

no 1,4-dioxane. Consequently, an increase in the relative abundance of any microorganism 368 

between the samples and live controls could be attributed to the presence of 1,4-dioxane. From 369 

this, a reasonable hypothesis would be that the enriched microorganisms are being exposed to 370 

growth supporting substrates from 1,4-dioxane degradation. Here, nineteen genera increased in 371 

abundance following 1,4-dioxane degradation compared to the live controls (no 1,4-dioxane). 372 

The three most enriched across all four soils were Mycobacterium, Nocardioides, Kribbella (all 373 

classifying as Actinomycetales). There was also a higher level of enrichment for Arthrobacter, 374 

Nocardia and Gordonia (Actinomycetales), Hyphomicrobium (Rhizobiales), Clavibacter 375 

(Actinomycetales) and Bartonella (Rhizobiales) and Chelativorans (Rhizobiales) in individual 376 

soils.  377 

 378 

There are at least two hypotheses on why these genera increased in abundance in 1,4-dioxane 379 

amended samples compared to the live controls. One hypothesis being that these microorganisms 380 

are obtaining a growth benefit from consuming 1,4-dioxane biodegradation products. Several 381 

studies have examined 1,4-dioxane biodegradation pathways (Grostern et al. 2012; Huang et al. 382 

2014; Kim et al. 2009; Mahendra et al. 2007; Sales et al. 2013; Vainberg et al. 2006). A study 383 

with Pseudonocardia dioxanivorans CB1190 provided evidence that carbon from 1,4-dioxane 384 

enters central metabolism via glyoxlate (Grostern et al. 2012). In contrast, Pseudonocardia sp. 385 

strain ENV478 produces 2-hydroxyethoxyacetic acid (HEAA) as a terminal product of 1,4-386 

dioxane biodegradation (Vainberg et al. 2006). Conversely, 1,4-dioxane biodegradation by 387 

Pseudonocardia dioxanivorans CB1190 (metabolic 1,4-dioxane degrader), Mycobacterium 388 

vaccae JOB5, Pseudomonas mendocina KR1, Pseudonocardia tetrahydrofuranoxydans K1 (co-389 

metabolic 1,4-dioxane degraders) produced HEAA transiently, but the chemical did not 390 

accumulate. They identified ethylene glycol, glycolic acid, glyoxylic acid and oxalic acid as 1,4-391 

dioxane biodegradation intermediates by these isolates (Mahendra et al. 2007). Others have also 392 

identified ethylene glycol (Huang et al. 2014; Kim et al. 2009), oxalic acid (Huang et al. 2014) 393 
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and ethane-1,2-diol (Kim et al. 2009) during 1,4-dioxane degradation. The enriched genera may 394 

have benefited from funneling these degradation intermediates into central metabolism. 395 

A second hypothesis being that the enriched genera are responsible for both the initial attack on 396 

1,4-dioxane and for the consumption of degradation products. Evidence for this concerns the 397 

similarity of genes belonging to the enriched genera (Mycobacterium, Nocardioides, Kribbella, 398 

Nocardia and Gordonia) to Rhodococcus jostii RHA1 prmA and Rhodococcus sp. RR1 prmA (as 399 

shown in the phylogenetic tree). Although Rhodococcus jostii RHA1 and Rhodococcus sp. RR1 400 

co-metabolically degrade 1,4-dioxane, the enriched genera may also contain genes downstream 401 

in the pathway enabling growth on 1,4-dioxane. Arthrobacter did not contain genes similar to the 402 

Rhodococcus strains, although others have reported that Arthrobacter (ATCC 27779) can co-403 

metabolically degrade 1,4-dioxane (Chu et al. 2009). Arthrobacter, Mycobacterium and 404 

Nocardia have previously been linked to 1,4-dioxane degradation (Chu et al. 2009; Lan et al. 405 

2013; Masuda 2009), whereas Nocardioides, Gordonia and Kribbella are potentially novel 406 

degraders. Certain species of Gordonia  such as G. terrae are known to aid in degrading certain 407 

chemicals, including ethyl tertiary butyl ether (ETBE) metabolically, methyl tertiary butyl ether 408 

(MTBE) co-metabolically (Hernandez-Perez et al. 2001) as well as long chain hydrocarbons 409 

(Kubota et al. 2008). Overall, both hypotheses in this work suggests many genera (almost all 410 

classifying with the Actinomycetales) are likely involved in the degradation of 1,4-dioxane 411 

and/or 1,4-dioxane metabolites in the soil microcosms studied.  412 

 413 

In the current study, reads from all of the 1,4-dioxane degrading function genes were observed in 414 

soil metagenomes. Consistent with the current study, others have detected SDIMOs from the 415 

majority (five from six groups) of SDIMO groups (Li et al. 2013b). In that research, the authors 416 

examined Arctic groundwater impacted by 1,4-dioxane using high-throughput microarrays and 417 

denaturing gradient gel electrophoresis and found an enrichment of thmA-like genes near the 418 

source zone (Li et al. 2013b). Also similar to the current work, a 1,4-dioxane degrading consortia 419 

contained a high percentage of group five SDIMOs (Rhodococcus jostii RHA1 prmA and 420 

Rhodococcus sp. RR1 prmA are group five SDIMOs), although the specific genes were not 421 

determined (He et al. 2018). Another study noted a correlation between dxmA/thmA (designed 422 

based on Rhodococcus sp. YYL thmA, Pseudonocardia sp. ENV478 thmA, Pseudonocardia 423 

tetrahydrofuranoxydans K1 thmA and Pseudonocardia dioxanivorans CB1190 thmA) and the 424 
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amount of 1,4-dioxane degraded in groundwater inoculated microcosms (Li et al. 2013a). These 425 

genes were also present in the soil metagenomes (between fourteen and sixteen) of the current 426 

study.  427 

 428 

Recently, shotgun sequencing was used to examine 1,4-dioxane degrading genes in groundwater 429 

from multiple chlorinated solvent sites (previously bioaugmented with SDC-9) (Dang et al. 430 

2018). From the twelve genes examined, only six were found in the groundwater metagenomes. 431 

The six included the three most abundant genes in the current study; Rhodococcus sp. RR1 432 

prmA, Rhodococcus jostii RHA1 prmA and Burkholderia cepacia G4 tomA3. From these, the 433 

Rhodococcus genes were both found in a only small number of metagenomes (~18%) and B. 434 

cepacia G4 tomA3 was found in the majority (~68%). The occurrence of the three genes in both 435 

studies could suggest their importance across different environments (soil vs. groundwater, 436 

aerobic vs. oxygen depleted). Unlike the current study, the groundwater metagenomes contained 437 

high relative abundance values for Methylosinus trichosporium OB3b touA (up to 0.0031%) 438 

followed by Pseudomonas mendocina KR1 tmoA (up to 0.00022%) and Pseudomonas pickettii 439 

PKO1 tbuA1 (up to 0.0013%). The different results between the two studies are likely due to 440 

variations in the conditions (redox potential, carbon availability, nutrient availability, soil vs. 441 

groundwater) from which the samples were obtained.  442 

 443 

In summary, several key findings highly relevant for 1,4-dioxane bioremediation were generated 444 

here. Shotgun sequencing enabled both taxonomic and functional analyses to be performed on 445 

multiple mixed microbial communities. Multiple genera classifying (including novel and 446 

previously identified degraders) within the Actinomycetales were enriched during 1,4-dioxane 447 

degradation and may be associated with growth linked 1,4-dioxane degradation.  448 

The three most enriched were Mycobacterium, Nocardioides, Kribbella (classifying as 449 

Actinomycetales). There was also a higher level of enrichment of other genera in individual soils. 450 

The current research found that both previously reported genera as well as novel genera (e.g. 451 

Nocardioides, Gordonia and Kribbella) were linked to 1,4-dioxane degradation. However, it is 452 

unknown if these microorganisms are benefiting from the complete degradation of the chemical 453 

or from the consumption of 1,4-dioxane degradation products, such as HEAA, ethylene glycol, 454 

glycolic acid, glyoxylic acid or oxalic acid. Finally, all of the functional genes associated with 455 
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1,4-dioxane were found in the soil and sediment metagenomes. Reads aligning to Rhodococcus 456 

jostii RHA1 prmA and Rhodococcus sp. RR1 prmA illustrated the highest relative abundance 457 

values and were present in all eighteen metagenomes. Future research should be directed towards 458 

similar molecular analyses of groundwater and sediment samples from 1,4-dioxane contaminated 459 

sites as well as comparisons to 1,4-dioxane removal rates for propane amended samples. 460 
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Table and Figure Legends 679 

Table 1. Classification of genera statistically significantly enriched (p<0.05) in the samples 680 

compared to the controls (no 1,4-dioxane) following the degradation of 1,4-dioxane in all soils 681 

collectively and when the soils were analyzed individually. The last column also illustrates the 682 

difference in means between the controls and the samples for each genera. Genera in bold were 683 

identified in the BLASTP search as containing genes similar to Rhodococcus jostii RHA1 prmA 684 

and Rhocodoccus sp. prmA (as discussed in the results section for the functional gene analysis) 685 

Figure 1. Average 1,4-dioxane concentrations (mg/L) in triplicate samples and abiotic controls 686 

with different inocula, including four agricultural soils and sediments from two contaminated 687 

sites (bars represent standard deviations). 1,4-dioxane was reamended to the samples 688 

microcosms twice (arrows). 689 

 690 

Figure 2. Extended error bar plot illustrating genera statistically significantly different in relative 691 

abundance (Welch's two sided t-test, p <0.05) between the samples (n=9) and the live controls 692 

(no 1, 4-dioxane, n=8) following 1,4-dioxane degradation (A). The symbols to the left of the 693 

dashed line (yellow) indicate a higher relative abundance in the samples compared to the controls 694 

and the symbols to the right (blue) indicate the reverse. The figure was created with the software 695 

STAMP. A comparison of the relative abundance values (%) for the genera enriched in the 696 

samples is also shown in a box plot format (B). The insert illustrates the relative abundance of 697 

these enriched genera in the contaminated site sample (C7A) with a different y-axis scale. 698 

 699 

Figure 3. Extended error bar plots illustrating genera statistically significantly different in 700 

relative abundance (Welch's two sided t-test, p <0.05) between the samples and the live controls 701 

following 1,4-dioxane degradation in soil 1 (A) and 2 (B). The symbols to the left of the dashed 702 

line (in yellow) indicate a higher relative abundance in the samples compared to the controls and 703 

the symbols to the right (in blue) indicate the reverse.  704 

 705 

Figure 4. Extended error bar plots illustrating genera statistically significantly different in 706 

relative abundance (Welch's two sided t-test, p <0.05) between the samples and the live controls 707 

following 1,4-dioxane degradation in soil F (A) and G (B). The symbols to the left of the dashed 708 
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line (in yellow) indicate a higher relative abundance in the samples compared to the controls and 709 

the symbols to the right (in blue) indicate the reverse.  710 

 711 

Figure 5. Summary of the relative abundance of statistically significantly enriched genera in the 712 

samples compared to the controls (no 1,4-dioxane) for soils 1, 2, F and G. The insert illustrates 713 

the relative abundance of these genera in the contaminated site sample (C7A) with a different 714 

scale on the y-axis. 715 

 716 

Figure 6. Relative abundance (%) of genera associated with metabolic and co-metabolic 717 

degradation of 1,4-dioxane in live controls (n=8) and samples (n=9) in four soils and one 718 

contaminated site sample (C7A). The value "a" indicates a significant difference (p<0.05) in a 719 

two tailed student's  t-test between the samples and controls. The insert illustrates the same data 720 

with a different y-axis. 721 

 722 

Figure 7. Relative abundance (%) of reads aligning  (≥60% identity for ≥ 49 amino acids) to 723 

genes previously associated with the metabolic and co-metabolic degradation of 1,4- dioxane in 724 

Soil F and C7A (A), Soil G (B), Soil 1 (C) and Soil 2 (D). 725 

 726 

Figure 8. Phylogenetic tree of Rhodococcus jostii RHA1 prmA and Rhocodoccus sp. prmA and 727 

BLASTP results (>94.8% similar to the two query sequences). Only genera that were enriched 728 

following 1,4-dioxane degradation (compared to the controls) are shown (Table 1). The 729 

evolutionary history was inferred by using the Maximum Likelihood method based on the Jones-730 

Taylor-Thornton (JTT) matrix-based model. The tree with the highest log likelihood (-2731.06) 731 

is shown. Initial tree(s) for the heuristic search were obtained automatically by applying 732 

Neighbor-Join and BioNJ algorithms to a matrix of pairwise distances estimated using a JTT 733 

model, and then selecting the topology with superior log likelihood value. The tree is drawn to 734 

scale, with branch lengths measured in the number of substitutions per site. The analysis 735 

involved 48 amino acid sequences. All positions containing gaps and missing data were 736 

eliminated. There were a total of 439 positions in the final dataset. Evolutionary analyses were 737 

conducted in MEGA7.  738 

 739 
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Table 1.  
 

Phylum Class Order Family Genus 
Difference 
in Means 

(%) 

All Soils: All samples (n=9) compared to all controls (n=8) 

Actinobacteria Actinobacteria  Actinomycetales Mycobacteriaceae Mycobacterium 0.304 
Actinobacteria Actinobacteria  Actinomycetales Nocardioidaceae Nocardioides 0.127 
Actinobacteria Actinobacteria  Actinomycetales Nocardioidaceae Kribbella 0.079 
Actinobacteria Actinobacteria  Actinomycetales Pseudonocardiaceae Amycolatopsis 0.042 
Actinobacteria Actinobacteria  Actinomycetales Cellulomonadaceae Cellulomonas 0.035 
Actinobacteria Actinobacteria  Actinomycetales Actinosynnemataceae Actinosynnema 0.027 
Actinobacteria Actinobacteria  Actinomycetales Beutenbergiaceae Beutenbergia 0.025 
Actinobacteria Actinobacteria  Actinomycetales Sanguibacteraceae Sanguibacter 0.023 
Actinobacteria Actinobacteria  Actinomycetales Pseudonocardiaceae Saccharomonospora 0.019 
Actinobacteria Actinobacteria  Actinomycetales Promicromonosporaceae Xylanimonas 0.018 
Actinobacteria Actinobacteria  Actinomycetales Glycomycetaceae Stackebrandtia 0.015 
Actinobacteria Actinobacteria  Actinomycetales Gordoniaceae Gordonia 0.014 
Actinobacteria Actinobacteria  Actinomycetales Nocardioidaceae Aeromicrobium 0.011 
Actinobacteria Actinobacteria  Actinomycetales Tsukamurellaceae Tsukamurella 0.008 
Tenericutes Mollicutes Mycoplasmatales Mycoplasmataceae Ureaplasma 0.0002 
Soil 1: Samples (n=3) compared to controls (n=2) 
Actinobacteria Actinobacteria  Actinomycetales Microbacteriaceae Clavibacter 0.017 
Proteobacteria Alphaproteobacteria Rhizobiales Bartonellaceae Bartonella 0.010 
Soil 2: Samples (n=2) compared to controls (n=2) 
Actinobacteria Actinobacteria  Actinomycetales Micrococcaceae Arthrobacter 0.276 
Actinobacteria Actinobacteria  Actinomycetales Nocardiaceae Nocardia 0.049 
Actinobacteria Actinobacteria  Actinomycetales Gordoniaceae Gordonia 0.019 
Actinobacteria Actinobacteria  Actinomycetales Micrococcaceae Kocuria 0.017 
Actinobacteria Actinobacteria  Actinomycetales Brevibacteriaceae Brevibacterium 0.015 
Actinobacteria Actinobacteria  Actinomycetales Micrococcaceae Rothia 0.005 
Firmicutes Erysipelotrichi Erysipelotrichales Erysipelotrichaceae Erysipelothrix 0.0005 
Soil F: Samples (n=2) compared to controls (n=2) 
Proteobacteria Alphaproteobacteria Rhizobiales Hyphomicrobiaceae Hyphomicrobium 0.033 
Proteobacteria Alphaproteobacteria Rhodospirillales Acetobacteraceae Acetobacter 0.003 
Firmicutes Negativicutes Selenomonadales Veillonellaceae Veillonella 0.002 
Soil G: Samples (n=2) compared to controls (n=2) 
Proteobacteria Alphaproteobacteria Rhizobiales Phyllobacteriaceae Chelativorans 0.055 
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Figure 4 
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Table S1. Summary of the characteristics of the soils used to inoculate the sample and control 
microcosms. 

Soil Sand (%) Silt (%) Clay (%) pH Organic Matter % 
E 70 19 11 7.3 1.9 
F 64 25 11 6.6 1.5 
G 68 20 12 5.5 1.6 
T1 40 40 20 6.4 1.6 
T2 36 42 22 6.1 1.9 
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Table S2. Summary of sequencing information processed by MG-RAST. 

QC – Quality Control 

 

 

 

 

ID Name Upload: bp 
Count 

Upload: 
Sequences 

Count 

Artificial 
Duplicate 

Reads: 
Sequence 

Count 

Post QC: bp 
Count 

Post QC: 
Sequences 

Count 

Post QC: 
Mean 

Sequence 
Length bp 

mgm4846244.3 C7A_6_S10_L001_R 928,461,523 3,828,893 730,886 745,308,161 3,067,261 243 ± 33  
mgm4842040.3 SF_2_S3_L001_R 1,249,466,781 5,278,200 741,761 1,057,029,663 4,469,282 237 ± 36  
mgm4846245.3 SF_3_S6_L001_R 1,497,947,613 6,267,333 1,045,636 1,227,596,223 5,142,267 239 ± 35  
mgm4846246.3 SF_4_S8_L001_R 698,047,178 2,986,100 484,606 572,423,699 2,454,542 233 ± 36  
mgm4846247.3 SF_5_S11_L001_R 1,455,181,423 6,244,496 875,408 1,226,035,914 5,268,011 233 ± 37  
mgm4846248.3 SF_6_S13_L001_R 1,276,229,786 5,446,704 791,730 1,069,530,685 4,570,187 234 ± 36  
mgm4846291.3 SG_1_S15_L001_R 362,019,482 1,517,474 232,203 300,578,338 1,261,641 238 ± 35  
mgm4841972.3 SG_3_S17_L001_R 1,237,320,023 5,151,224 739,217 1,042,837,451 4,346,084 240 ± 34  
mgm4841973.3 SG_4_S1_L001_R 1,183,825,731 4,906,054 779,630 975,862,599 4,048,734 241 ± 34  
mgm4842102.3 SG_6_S4_L001_R 1,097,936,207 4,598,102 612,987 933,115,160 3,911,767 239 ± 35  
mgm4841974.3 ST1_2_S7_L001_R 1,722,580,822 7,248,808 1,205,707 1,409,132,207 5,932,625 238 ± 35  
mgm4846290.3 ST1_3_S9_L001_R 687,193,817 2,855,664 394,713 580,636,546 2,415,127 240 ± 35  
mgm4842023.3 ST1_4_S12_L001_R 1,720,695,830 7,269,781 1,124,424 1,433,388,134 6,053,609 237 ± 35  
mgm4842024.3 ST1_6_S14_L001_R 1,165,586,999 4,879,142 683,336 983,135,037 4,119,069 239 ± 35  
mgm4842104.3 ST2_1_S16_L001_R 3,144,582,833 13,429,024 2,172,387 2,579,894,248 11,026,268 234 ± 36  
mgm4842103.3 ST2_3_S18_L001_R 1,274,658,549 5,369,262 727,123 1,080,887,053 4,557,307 237 ± 35  
mgm4842107.3 ST2_5_S2_L001_R 1,622,482,462 6,854,685 982,861 1,362,403,381 5,762,840 236 ± 35  
mgm4842106.3 ST2_6_S5_L001_R 1,463,433,476 6,249,417 846,173 1,252,082,629 5,349,932 234 ± 36  
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Figure S1. Phylogram (created with MEGAN6, version 6.11.7) illustrating the relative abundance and classification (Class Level) of all 
bacteria across all metagenomes (samples and controls).  
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Figure S2. Phylogram (created with MEGAN6, version 6.11.7) illustrating the most abundant genera (ranked by average relative abundance, 
then selected if average relative abundance >0.5%) across all metagenomes (samples and controls).  
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Figure S3. The twenty-five most common genera (by relative abundance, %), ranked by 
the averages of the samples and controls, in soil 1 (A), soil 2 (B), soil F (C), soil G (D) and 
the contaminated site sediment 7A (E). 


