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Abstract
Context

Albedo can be used to quantify ecosystem and landscape contributions to local and global climate.
Such contributions are conventionally expressed as radiative forcing (RF) and global warming impact
(GWI). We contextualize our results within landscape carbon production and storage to highlight the
importance of changes in albedo for landscape GWI from multiple causes, including net ecosystem
production (NEP) and greenhouse gas (GHG) emissions.
Objective

To examine the spatiotemporal changes in albedo (Aa) in contrasting managed landscapes through
calculations of albedo-induced RF (RFa,) and GWI (GWIa,) under different climatic conditions.
Methods

We selected five contrasting landscapes within the Kalamazoo River watershed in southern Michigan
USA as proof of concept. The daily MCD43A3 MODIS (V006) product was used to analyze the inter-
and intra-annual variations of growing season albedo. In addition, the variations of RFa, and GWIa, were
computed based on landscape composition and climate.
Results

The RFaq (-5.6 W m?) and GWIa, (-1.3 CO2q ha yr) were high in forest-dominated landscapes,
indicating cooling effects and COxq mitigation impacts similar to crops. The COxq mitigation of
cropland-dominated landscapes was on average 52% stronger than forest-dominated landscapes. In the
landscape with the highest proportion of forest, under dry and wet conditions COzq mitigation was
reduced by up to 24% and ~30%, respectively; in one cropland-dominated landscape wet conditions

reduced COxq mitigation by 23%.

Conclusions
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Findings demonstrate that quantifying spatiotemporal changes in albedo in managed landscapes and
under different climatic conditions is essential to understand how landscape modification affects RFa, and

GWIx, and thereby contributes to ecosystem-level GWI.

Keywords: Albedo, Land mosaics, Radiative forcing, Global warming impact, Cropland, Forest
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1. Introduction

Decoupling the causes and consequences of ecosystem functions and services at multiple spatial
scales represents an important scientific frontier in landscape ecology (Raudsepp-Hearne et al. 2010;
Anton et al. 2011; Chen et al. 2013; Yuan and Chen 2015; Seidl et al. 2016). Land use and land cover
change (LULCC) caused by human activities (e.g., land use), natural disturbances (e.g., wildfires) and
global warming directly affects regional and global climate through the exchange of energy, carbon,
water, and greenhouse gases (GHGs) between the land surface and the atmosphere (Bright et al. 2015;
Bonan 2016). Management activities and disturbances such as cultivation, burning, and grazing not only
influence GHG emissions but also alter the surface radiation balance (Piclke et al. 2011; Shao et al. 2014).
Unfortunately, little effort has been directed towards investigating resulting changes in surface radiation
balance (e.g., changes in albedo) at landscape scales (Euskirchen et al. 2002; Chen et al. 2004).

Albedo — the ratio of solar radiation reflected by a surface to the total incoming solar radiation (e.g.,
surface radiation balance) — is a measurable physical variable that can be used to quantify ecosystem and
landscape contributions to local and global climate (Dickinson 1983; Picard et al. 2012; Brovkin et al.
2013; Li et al. 2016; Storelvmo et al. 2016). Changing albedo has been proposed as one of several
geoengineering options for climate change mitigation (Lenton and Vaughan 2009; Goosse 2015) and
albedo is also important for understanding exchanges of energy and mass between terrestrial surfaces and
the atmosphere (Merlin 2013). Albedo is in its early stages of incorporation into climate models, but it is
useful for deriving different mechanisms to lower climate warming by potentially increasing the
reflectance of energy back into the atmosphere (Lenton and Vaughn 2009). Although LULCC (e.g.,
conversions from forest to biofuel, grassland, and cropland) can significantly alter albedo (Bala et al.
2007; Cai et al. 2016), the magnitude of changes depends on vegetation type and canopy structure (see
also Bennett et al. 2006; Tian et al. 2018).

Albedo is also highly correlated with leaf wetness, soil moisture, and soil water content (Henderson-
Sellers & Wilson 1983; Wang et al. 2004) — which are strongly related to precipitation and its temporal
distribution — and as well with plant phenology and vegetation structure (Luyssaert et al. 2014), plant or

4
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tree height (Betts, 2001), and agricultural practices (Houspanossian et al. 2017) — this last scarcely
considered (Zhang et al. 2013, Jeong et al. 2014). For example, Culf et al. (1995) reported decreased
albedo in forests as a function of darker leaves and darker soils under wet conditions. Berbet and Costa
(2003) found that ranchlands were characterized by variable albedo throughout the entire year depending
on climatic conditions (e.g., dry vs wet periods), whereas forests were characterized by higher and lower
albedo in both dry and wet periods, respectively.

Changes in atmospheric conditions and land mosaics due to LULCC can affect the Earth’s radiation
balance (Gray 2007). Radiative forcing (RF) has been widely used to describe this imbalance as changes
in the fraction of solar energy reflected by the Earth’s surface (Mira et al. 2015), whether anthropogenic
or natural (Lenton and Vaughan 2009). RF can thus be used to compare modifications in radiation
balance due to atmospheric/surface albedo changes or due to GHG emissions. Previous studies (Betts
2000; Akbari et al. 2009) have developed methodologies to relate RF to COx.q, used to calculate
ecosystem-scale contributions to global warming impacts (GWIs) — a common measure for quantifying
RFs of different GHGs and other agents (Fuglestvedt et al. 2003; Forster et al. 2007; Peters et al. 2011).
GWI allows us to directly relate anthropogenic activities to GHG emissions (Haines 2003; Davin et al.
2007; Cherubini et al. 2012; Robertson et al. 2017) and to understand and quantify the impact of an
ecosystem on climate.

Despite escalating efforts to examine the magnitude and dynamics of albedo change due to LULCC,
previous studies have focused on albedo, RF, and GWI differences among the cover types within
landscapes or regions (Haas et al. 2001; Roman et al. 2009; Carrer et al. 2018; Chen et al. 2019). For
example, previous studies have shown that deforestation and expanding agricultural lands have played an
important role in surface cooling of the northern hemisphere due to increased surface albedo and
regeneration of forests after harvesting (Betts 2001; Govindasamy et al. 2001; Lee et al. 2011). Georgescu
et al. (2011) simulated strong cooling effects — equivalent to a reduction in carbon emission of 78 t C ha
' — by increasing the surface albedo of agricultural lands across the central United States. Loarie et al.
(2011) demonstrated that introducing sugar cane production into cropland/pasture landscapes of Brazil

5
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increased albedo and evapotranspiration, which in turn appeared to cool the local climate. Importantly, to
quantify the contribution of LULCC to global warming/cooling, GWI should be computed with reference
to albedo due to pre-existing conditions (i.e., Aa).

Here we examine the spatiotemporal changes of albedo in contrasting managed landscapes as
compared to pre-existing forests through calculations of albedo-induced RF (ARFa,) and GWI (AGWIx,)
under different precipitation regimes (i.e., climatic conditions). We express the relationship between
landscape albedo and GWIx, (Figure 1) as:

[Aa; X Aarea; X Aclimate;] - ARFy, = AGW Iy, (1)
where AGWIy, is net landscape albedo-induced GWI, 4a;is the difference between mean albedo at a
cover type i and mean forest albedo (i.e., the reference), darea;is variation of cover-type proportion for
landscape /, and Aclimate; is the variation of climatic conditions for landscape /. More specifically, we
aim to estimate the magnitude and seasonal changes in albedo so that AGWIa, can be assessed at
ecosystem, landscape, and watershed scales, and included in ecosystem GWI assessments (e.g., Gelfand
and Robertson 2015). We further contextualize our results within landscape carbon production and
storage to highlight the importance of changes in landscape GW1I, from multiple causes, including net
ecosystem production (NEP) and GHG emissions. The framework developed in this study (Equation 1,
Figure 1) can be applied to any landscape to for compute landscape GWIaq. To this end, we selected five
contrasting landscapes in the Kalamazoo River watershed of southwestern Michigan U.S.A. as a proof of
concept to investigate inter- and intra-annual variations of albedo under three different climatic

conditions.

2. Materials and Methods
2.1 Study area

We chose five contrasting landscapes (Figure 2) in the Kalamazoo River watershed, located in
southwest Michigan, USA, for proof of concept. Within the 526,100 ha watershed, the long-term mean

annual temperature is 9.9 °C and the average annual precipitation is 900 mm that is evenly distributed
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throughout the year (Michigan State Climatologist’s Office 2013). The watershed includes portions of 10
counties: Allegan, Ottawa, Van Buren, Kent, Barry, Kalamazoo, Calhoun, Eaton, Jackson, and Hillsdale.
Prior to European settlement, the watershed was dominated by forests (Brown et al. 2000) with
interspersed tallgrass prairies, savannas, lakes, wetlands, and oak openings (Chapman and Brewer 2008).
The watershed however has undergone significant LULCC since then. Present-day forest areas are
secondary successional forests that followed their complete harvest by European settlers in the late 1800s
(Brown et al. 2000). Today, the watershed consists of cultivated crops, deciduous forest stands, pasture-
hay grasslands, inland lakes, wooded wetlands, and urban areas. Dominant soils of the watershed are
Alfisols of medium to coarse texture that allows a continuous recharge of groundwater (Schaetzel et al.
2009).

We randomly selected five 10,000 ha landscapes (Figure 2) (Burton et al. 1998) that represent the
main ecoregions of the watershed, i.e., areas characterized by similar vegetation, with the same type,
quality and quantity of environmental resources (Omernik and Griffith 2014). The Kalamazoo River
watershed includes three U.S. EPA ecoregions: Eastern Temperate Forest (Level I), Mixed Wood Plain
(Level II), and Southern Michigan/Northern Indiana Drift Plain (Level III). At a finer scale, five Level IV
ecoregions (Table S1) exist in the watershed: Battle Creek Outwash Plain (56b), Michigan Lake Plain
(56d), Lake Michigan Moraines (56f), Lansing Loamy Plain (56g), and Interlobate Dead Ice Moraines

(56h). (https://www.epa.gov/eco-research/ecoregion-download-files-state-region-5#pane-20). We used

the five landscapes to represent the five Level IV ecoregions so that each landscape fell within an
individual Level IV ecoregion.

Each landscape has different proportions of urban, cropland, barren, forest, water, wetland, and
grassland cover types (Table 1). Two of the five landscapes have a higher proportion of forest (FOR;
highest proportion of forest, and FOR, second highest proportion); while the remaining three landscapes
are dominated by cropland (CROP;, CROP», and CROP3, from high to low proportion of cropland,
respectively) (Table 1). Given that forest was the dominant land cover type prior to European settlement

within each landscape (Brown et al. 2000), we considered the average albedo of all forest portions within

7
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each of the five landscapes during the growing season at 10:30 a.m. local time (UTC) as the reference
albedo (e.g., MODIS Terra morning overpass time). Thereafter, in each landscape, changes in albedo (Aa)
were obtained by calculating the difference between mean cropland and mean forest albedos, and then
used to calculate RFaq and GWlag.
2.2 Landscape structure

The landscape structure of the watershed was quantified from a classified land cover map for 2011
(Figure 2) at 30x30 m spatial resolution, which was produced using the Landsat archives from the USGS

Earth Explorer/GLOVIS portals (https://earthexplorer.usgs.gov/). The land cover map was obtained

following the Anderson level I classification scheme and included seven land cover types: 1) urban, 2)
cropland, 3) barren, 4) forest, 5) water, 6) wetland, and 7) grassland. The details of the accuracy
assessment (i.e., producer and user’s accuracy for each class type and the overall accuracy in an error

matrix) of the classification were provided in Chen et al. (2019).

2.3 MODIS Albedo
Albedo datasets were obtained from the most recent collection (V006) of the MCD43A3 MODIS
Bidirectional Reflectance Distribution Function (BRDF) product

(https://doi.org/10.5067/MODIS/MCD43A3.006). MOD43A3 is a daily product at 500500 m spatial

resolution obtained by inversion of a Bidirectional Reflectance Distribution Function (the BRDF) model
against a 16-day moving window of MODIS observations. The BRDF model was then used to derive the
black-sky (associated to direct solar radiation) and white-sky (associated to diffuse radiation) albedos
(Wang et al. 2018). We only considered snow-free, white-sky albedo at a shortwave length of 0.3-5.0 pm
(hereafter, asyo and expressed in percentage). For each image, the “Albedo WSA shortwave” (white-sky
albedo) band was selected and rescaled to 0-1. Only high-quality data were selected within the “full
BRDF inversion” quality band (QA = 0). The “Snow BRDF_Albedo” band in the MCD43A2 product

was used to filter and exclude pixels with snow albedo retrievals (Chrysoulakis et al. 2018).
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2.4 MODIS NDVI

Previous studies (e.g., Campbell and Norman 1998; Bonan 2008; Igbal 2012; Liang et al. 2013; Zhao
and Jackson 2014; Bright et al. 2015; Kaye and Quemada 2017; Sun et al. 2017) have thoroughly
addressed the importance of snow cover on variability/uncertainty of albedo. Here, we focused on albedo
change, RFa, and GWIa, only during the growing season when maximum variability of watershed crop
phenology can be related with changes in climatic conditions and human disturbances at the landscape
level. Therefore, for each year, we identified the “growing season” during March-October by detecting
the greenness onset/offset for the entire Kalamazoo River watershed. To do so, for each year, we used a
16-day composite time series of the normalized difference vegetation index (NDVI) to detect the
inflection points (i.e., dates) when the maximum and minimum change rate of NDVI occurred (Jeong et
al. 2011). We obtained NDVI at a 250x250 m spatial resolution from the most recent collection (V006) of

the MYD13Q1 MODIS product (https://doi.org/10.5067/MODIS/MYD13Q1.006). Finally, we divided

each growing season (March-October) into three periods (hereafter, seasons) — spring, summer, and fall

using astronomical season (e.g., spring equinox, summer solstice, and fall equinox).

2.5 Precipitation data
Daily precipitation data at a 4x4 km spatial resolution were obtained from the Parameter-elevation
Regressions on Independent Slopes Model group (PRISM) AN81d product

(http://www.prism.oregonstate.edu/) over the 2012-2017 time period. We also calculated the cumulative

precipitation of the five landscapes during the growing season from March through October. For the time
period considered (e.g., 2012-2017), we then identified three years as dry, normal and wet years: 2012,
2017 and 2016, respectively. The Midwest of U.S.A. experienced 6 weeks of summer drought during
June-July in 2012 (Mallya et al. 2013), resulting in a growing season precipitation of <490 mm. In 2017,
the watershed received over 750 mm, while this was ~700 mm (i.e., near average) for 2017. All analysis

and processing of albedo, NDVI, and precipitation data were performed on the Google Earth Engine
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(GEE) platform (Gorelick et al. 2017), where the MODIS products were uploaded, filtered to the date of

interest, and clipped to the shape file for each of the five landscapes.

2.6 Statistical analysis

We performed analysis of variance (ANOVA) to examine the change in albedo with land cover type
and landscape structure within the three-year study period and across three seasons. The following linear
model was applied:

asyo = landscape X cover type X year X seasons )

where osno is the snow-free white-sky albedo at the shortwave length at a daily step acquired from
MODIS at 10:30 a.m. local time (UTC); landscape, cover type, year, and season are the five landscapes
(FORy, FOR,, CROP;, CROP,, CROP3), the seven cover types (Table 1) at each landscape, the three
years (dry, wet, and normal), and the three astronomical seasons (spring, summer, and fall), respectively.
We also considered the interaction terms among the independent variables in our ANOVA.

To test the normality of our data we checked the distribution of the residuals. We then carried out

ANOVA and Tukey tests for multiple comparisons using the R-package ‘Ismeans’ (R Core Team 2017).

2.7 Radiative forcing (RF) and global warming impact (GWI)

To quantify the potential of RF caused by changes in albedo, we referred to the direct albedo-induced
RF at the top-of-atmosphere (RF ), where Aa is the change of asno (i.€., the absolute difference between
mean cropland and mean forest albedos in each of the five landscapes). We calculated RF 4, (W m™)
following the algorithms of Carrer et al. (2018):

RFya(t) = =3 Zh_1 SWin T, Aa (3)

where RF 4, is the mean albedo-induced radiative forcing at the top-of-atmosphere over the growing
season (t), &V is the number of days in the growing season, SW;, is the incoming solar radiation at the
surface, T, is the upward atmospheric transmittance and A« is the albedo difference (i.e., between mean

cropland and mean forest albedos). By multiplying both SW;, and 4« by T,, we calculated the
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instantaneous amount of radiation that leaves the atmosphere at 10:30 a.m. UTC. It is worth reiterating
that all the variables (i.e., SWi, 4a, and T,) refer to the specific time of 10:30 a.m. UTC (e.g., MODIS
Terra morning overpass time) and were considered to represent daily means. Negative values of RF 4,
indicate a cooling effect due to the differences between mean cropland and mean forest albedos.

While previous studies (e.g., Lenton and Vaughan 2009; Cherubini et al. 2012) used a global annual
average value of 0.854 for 75, we calculated 7, as the ratio of incoming solar radiation at the top of the
atmosphere (SWro4) to that at the surface (SW;,) at 10:30 a.m. UTC. By assuming a same value of upward
and downward atmospheric transmittances (Carrer et al. 2018), SW;, (W m™) was obtained from a local
eddy covariance (EC) tower located at the Kellogg Biological Station Long-term Ecological Research site
(42°24'N, 85°24’W) (Abraha et al. 2015), while SWroa (W m) was calculated as:

SWroa = Spo cos(8) d 4)
where S),, is the solar constant (1,360 W m™), cos(0) is the cosine of the solar zenith angle, obtained from
the MCD43A2 (V006) MODIS BRDF Albedo Quality product

(https://doi.org/10.5067/MODIS/MCD43A2.006), applying the “BRDF_Albedo LocalSolarNoon” band,

and d is the mean Earth-Sun distance. We then converted RF into the CO; equivalent (COa.q) by using the

GWI algorithms of Bird et al. (2008) and Carrer et al. (2018):

S RFAa(t) i

GWira(t) = AFrfco, TH

)

where GWly, is the COzeq (kg CO2eq m? yr'') GWI due to Aa, represented by MODIS asno acquisitions at
10:30 a.m. UTC, i.e., assuming that the values represent the mean CO».q mitigation impact of each
landscape during the growing season March-October (2), RF 4, is the mean RF due to Aa over the growing
season March-October (2) (Equation 3), S is cropland area (ha) for which we hypothesized the change of
albedo occurred, AF is the CO; airborne fraction (0.48, Muiloz et al. 2010) obtained from the exponential
CO; decay function (see Bird et al. 2008 for more details), and 7H is the time horizon of potential global

warming fixed at 100 years (Kaye and Quemada 2017). Lastly, the parameter rfco, — the marginal RF of
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CO, emissions at the current atmospheric concentration — is kept as a constant (Mufioz et al. 2010;
Bright et al. 2015; Carrer et al. 2018) at 0.908 W kg CO»™..

Negative values of GWly, indicate COxq mitigation. We calculated the annual GW1y, as 1/100 of the
total COxeq to normalize to the 100 year time horizon used in the Kyoto Protocol (Boucher et al. 2009).
Notably, here we assumed that the same land mosaic in each landscape will be maintained for the
duration of 100 years. Previous studies (Betts 2000; Akbari et al. 2009) have also used a constant AF as

opposed to the exponential CO, decay function; however, the computed GWIs are similar (Bright 2015).

3. Results

Two of the five landscapes (FOR; and FOR;) were dominated by forests (Table 1), with a forest
coverage of 57.5% in FOR; and 38.4% in FOR,. Wetlands and croplands accounted for 16.9% and 10.5%
of landscape, respectively, in FOR; (Table 1), but only 10.1% and 26% in FOR, where urban land was
also the highest (13.3%). Croplands were dominant in CROP;, CROP,, and CROP; (Table 1), with
68.1%, 64.5%, and 57.2% of area coverage, respectively. Forest cover ranked the second highest in these
landscapes (14.2%, 16.7%, and 14.8%, respectively). Bare soils, grasslands, and water accounted for
small portions of all five landscapes.

The entire watershed had an asno of 15.9% during the dry (2012) and wet (2016) years and of 15.6%
during the normal (2017) year (Table S2), yielding an overall average of 15.8% with a low inter-annual
variation. Each cover type contributed differently to asmo at the watershed level. In particular, croplands
and water bodies showed the highest (16.6%) and lowest (12.1%) asmo, respectively, with the highest
values occurring in both 2012 (16.6%=+1.0) and 2016 (16.6%=1.1) for croplands, and the lowest in 2017
(11.9%=3.4) for water. The other cover types showed similar asno values, ranging 15.1-15.6% for barren
and grassland, 15.2% for urban and forests and 15.4% for wetlands. At the landscape level, asmo of forest,
which was considered as reference, was generally lower than that of croplands. In particular, FOR; and
FOR; averaged a low asno of 14.6% and 13.9%, respectively, whereas CROP;, CROP,, and CROP;

recorded higher values of 16.7%, 16.4%, and 16.2%, respectively. However, FOR; and FOR,

12
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demonstrated the highest asno in 2012 (14.7%+0.8 and 14.1%=+2.3, respectively), while CROP;, CROP-,
and CROP3 demonstrated the highest asmo in different years, such as 2016 for CROP; (17.0%=0.8), 2012
and 2016 for CROP; (16.5%=0.6), and 2017 for CROP; (16.3%=1.7). In the forest-dominated landscapes,
all cover types showed higher osuo during the dry year (2012). However, for FOR», asuo values of
cropland and barren were high in the wet year (2016). In the cropland-dominated landscapes, the highest
asuo value (17.1%) was observed in CROP; (£1.1) for croplands in 2017, and in CROP; for both urban
(£0.6) and croplands (£0.8) in 2016.

Our ANOVA model (R?>=0.64) (Table 2) indicated that the variation of asno was significant (p-value
<0.001) among the five landscapes (i.e., ecoregions) (0*=26.6%) by cover type (i.e., landscape mosaics)
(0?=11.1%) and their interactions (w*=5.2%), with year and its interactions explaining <1% of the
variation. However, the variation from season (i.e., seasonality) (w’=15.9%) explained more than cover
type.

Forest-dominated landscapes (FOR; and FOR>) showed lower least square means (LSM) of asuo
(LSMaoisno) than cropland-dominated landscapes (CROP;, CROP; and CROPs) (Figure 3a) over the three
years. A decreasing inter-annual trend (between 2012, 2016, and 2017 growing seasons) characterized
FOR, FOR,, and CROP;, with FOR; showing statistically higher LSMasro in the dry (2012) year;
whereas CROP; showed statistically lower LSMasno in the normal (2017) year. In addition, differences in
LSM between cropland and forest albedos (LSMa,) appeared to be higher in FOR;, FOR», and CROP;
(Figure 3b), but with increasing inter-annual trends, than in CROP; and CROP,. However, only FOR»
showed statistically lower LSMaq in the dry year (2012) (Figure 3b).

Clear seasonal patterns existed in asno and were generally lower in spring and autumn than in the
summer (Figure 4). However, in CROP», the asno of the major cover types (i.e., cropland, forest, urban,
and wetland) was the highest in the spring of the dry year. The asuo of cropland and urban areas in 2017
(a normal year) was also relatively higher in both spring and summer (Figures 4c;-c3). The inter-annual

variability between the wet and normal years (Figures 4b;—b4 and 4c¢i—c4, respectively) appeared similar,
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with small differences between FOR, and FOR: (e.g., the lowest asno occurring in spring in FOR; and in
autumn in FORy).

The mean Aa ranged between 0.4% and 2% (i.e., ~1.2% mean difference between mean cropland and
mean forest albedos) (Figure 4Aa—Ac); however, the intra-annual variability of Aa differed by landscape
and year. We found that forest-dominated landscapes (FOR; and FOR?) had higher Aa. in spring each
year, with the minimum in autumn (FOR;) and summer (FOR>) of every year. Cropland-dominated
landscapes (CROP;, CROP, and CROP3CROP3) showed higher Aa. in spring that was more pronounced
in 2016 for CROP; (Figure 4Ab), in 2016 and 2017 for CROP; (Figure 4Ab-Ac), and in 2012 for CROP;
(Figure 4Aa). However, CROP; in 2012 was characterized by a different Ao trend — lower in spring and
higher in autumn (Figure 4Aa). The summer Ao variability among the five landscapes was lower in the
dry year (Figure 4Aa) and higher in the normal year (Figure 4Ac). Two distinct clusters characterized the
summer of the wet year (Figure 4Ab), with FOR;, FOR; and CROP; having an Aa of > 1% and CROP;
and CROP; of < 0.5%.

All five landscapes had negative RFa, (Table 3; Figure 5a). Among the cropland-dominated
landscapes, CROP; and CROP; had similar lower magnitude RFa, values, with minimum and maximum
values in the wet (2016) and normal (2017) years, respectively. In particular, CROP; had RF, (W m?) of
-1.2in 2016 and -1.9 in 2017, followed by CROP; (-1.3 and -2.0) and CROP; (-2.9 and -3.7). Among the
forest-dominated landscapes, FOR; showed a similar trend, with minimum and maximum magnitude
RF A« 1n 2016 and 2017 (-3.9 and -5.6, respectively), while FOR; had the minimum and maximum
magnitude RF,, in the dry (2012) and normal (2017) years (-2.7 and -2.9, respectively).

As for RF 4, all five landscapes showed negative values of GWIa, (Table 3; Figure 5b), which had
inter- and intra-annual trends similar to RFa, (Figure 5b). In particular, CROP; and CROP; had similar
lower magnitude GW1Ixq, (Mg COxeq ha! yr') values, with minimum (CROP; and CROP;: -0.3) and
maximum (CROP;: -0.5 and CROP»: -0.4) values in the wet (2016) and normal (2017) years, respectively,
followed by CROP; (-0.7 and -0.9, respectively). FOR; showed a similar trend, with minimum and
maximum magnitude GWIx, in 2016 and 2017 (-0.9 and -1.3, respectively), with statistically higher
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GWIjq in 2017, while FOR; had the minimum and maximum magnitude GWI,, in the dry (2012) and
both wet and normal (2016 and 2017) years (-0.6 and -0.7, respectively) (Table 3; Figure 5b).

Taking the normal year (2017) as our baseline, the percentage changes between the normal and dry
years (e.g., diff 2017-2012), and the normal and wet years (e.g., diff 2017-2016) showed reduced Aa, RFaq, and
GWI,, values (Table 3). In particular, the decrease in Aa was higher in FOR,, CROP; CROP; (28.5%,
9.2%, and 19.4%, respectively) for diffz017-2012 and in CROP; and CROP; (12.6% and 34.3%, respectively)
for diff017.2016. FOR: decreased the least from baseline in both RFa, and GWIa, compared to all other
landscapes, which had the highest decrease in diff2017-2016 — FOR1 (29.9%), CROP; (32.1%), CROP,
(33.4%), and CROP; (23.3%). Statistically, reductions in Aa, RF ., and GWIx, values were all significant

in FOR1 (fOI‘ bOth diff2017_2012 and diffzon.zom) and in CROPz (fOI‘ diffzon.zom).

4. Discussion

The main finding of our study is that RFa, and GWIa. play an important role in climate change
impact due to landscape mosaics. In particular, we found that forests have lower albedo than croplands,
which is in consistent with previous studies. In all five landscapes LULCC from forest to cropland
showed a cooling effect with negative RFa, and GWIx, values. The results also show that the difference
between mean cropland and mean forest albedos during the three years produces on average ~64%, 65%,
and 28% stronger CO..q mitigation impacts in the landscape with the highest proportion of forest (FOR/)
than in cropland-dominated landscapes (CROP;, CROP,, and CROPs, respectively), presumably due to
the lower proportion in cropland (e.g., 10.5% of cropland area) in FOR,. Additionally, dry climatic
conditions in 2012 result in the highest albedo in almost all landscapes, although only significantly higher
in one of the forest-dominated (FOR) landscapes, supporting a consensus that dry surfaces reflect more
than wet surfaces. Over the growing season, albedo peaks in summer in all cover types, with lower albedo

in spring and autumn due to changes in plant phenology.
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4.1 Inter- and intra-annual changes in albedo

We compared ospo values among major cover types (i.e., urban, cropland, forest, and wetland),
disregarding those with lower proportions (i.e., grassland, water, and barren) due to their negligible
contributions to the total landscape asno. We observed that croplands and forests had on average 7.8%
higher and 0.7% lower albedo than other land covers, respectively. This is in line with previous studies
that examined snow-free albedo variations among ecosystems (Jiao et al. 2017, Chen et al. 2019) and
across the conterminous United States (Barnes and Roy 2010). Bonan (2008) showed that forests have
lower surface albedo than other cover types, contributing to climate warming. Our study indicated that in
forest-dominated landscapes (FOR; and FOR>) the average of inter-annual variation of asxo was ~2.8%
lower than that in cropland-dominated landscapes (Table S2; Figure 3a). Analysis of variance also
revealed that the five landscapes (i.e., ecoregions), cover types (i.e., landscape mosaics), and seasons (i.e.,
seasonality) contributed significantly to the overall variation of asmo. Specifically, we found that besides
the five landscapes, seasons (~16%) contributed by 5% more than cover type (11%) towards variation of
asno (Table 2).

Changes in asno due to LULCC have been widely studied (Chrysoulakis et al. 2018); however, its
dynamics at ecosystem-to-landscape scales remain unexplored. For example, Zheng et al. (2019)
investigated how vegetation changes affect albedo trends without considering the integrated effect of both
cover type and seasonality, while Matthews et al. (2003) investigated the cooling/warming effects of
albedo change resulting from deforestation, but failed to consider realistic land cover change scenarios. A
number of agricultural management practices are known to mitigate climate change (summarized in
Smith et al. 2008 and Eagle et al. 2012), including GHG emission reductions and soil carbon storage, but
the potential contribution of albedo change as an ecosystem-scale mitigation factor has not been much
addressed. For example, tillage practices, harvest timing, residue management, and winter cover crops can
all affect surface reflectance in annual cropping systems (Bright et al. 2015; Poeplau and Don 2015; Kaye

and Quemada 2017; Robertson et al. 2017) and thus GWL
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To our knowledge, no effort has been made to understand albedo mitigation in terms of both RF and
GWI in the context of landscape mosaics characterized by diverse land use type and intensity. Using the
framework listed in Equation 1 and Figure 1, we were able to integrate spatial (e.g., five landscapes
within ecoregions) and temporal (e.g., inter- and intra-annual) changes as main drivers of asmo variations.
Regardless of land composition, cropland-dominated landscapes showed a higher intra-annual variability
of asuo than forests under dry, wet, and normal climatic conditions (Figure 4 a—c), likely due to the higher
disturbances that croplands experience (i.e., fragmentation, land management, crop variety, and crop
seasonality). For example, asuo can be altered by the differences in leaf structure/properties (Miller et al.
2016) and leaf wetness (Luyssaert et al. 2014), by the difference in management of both perennial and
annual crops and by agricultural practices (Bright et al. 2015; Kaye and Quemada 2017; Robertson et al.
2017).

The LSM multi-comparison analysis showed that dry conditions led FOR; to yield statistically higher
asno compared to wet and normal conditions. On the other hand, CROP, showed significantly lower asuo
under normal conditions than under dry and wet conditions (Figure 3a), indicating a different albedo
response of forest- and cropland-dominated landscapes to changes in climatic conditions. All other
landscapes showed higher asuo in the dry year (2012) than in the normal and wet years, although not

statistically different.

4.2 Albedo-induced radiative forcing (RFAa) and global warming impact (GWiAa)

We obtained RFa, (W m?) values that were more representative of the entire growing season through
the years 2012, 2016, and 2017. We found that the five landscapes had a negative RF,,, indicating a
cooling effect. However, such effect was stronger in FOR; where it ranged between -3.9 W m™ and -5.6
W m (Table 3; Figure 5a), followed by CROP; (-2.9 W m™ and -3.7 W m™) and FOR; (-2.7 W m™ and -
2.9 W m?), while CROP; and CROP; were almost similar (ranging between -1.2 W m2and -1.9 W m™,
respectively). In other words, land mosaics in the landscape with the highest proportion of forest (e.g.,

FOR)) leads to a maximum RFa, of -5.6 W m™ (i.e., a cooling effect), which is similar to that
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hypothesized by Jiao et al. (2017) under the simulated scenario of global deforestation of evergreen
broadleaf forests (local magnitude of RFroa at -5.6 W m2). Moreover, in this study we were able to
investigate RFA, dynamics across three contrasting precipitation regimes — dry (2012), wet (2016), and
normal (2017). The inter-annual analysis specifically showed that within each landscape, the cooling
effect was lower in 2016 and higher in 2017, with the exception of FOR,, which had a lower cooling
effect in 2012 and a higher one in 2017 (e.g., slightly higher than in 2016). In sum, accurate quantification
of landscape contribution to the global warming potentials needs input from both landscape composition
and climate that directly regulate ecosystem properties.

The GWIa, computations enabled us to estimate the CO».q mitigation caused by the differences
between mean cropland and mean forest albedos. Standardized to the same areas, the greatest contribution
of albedo change to GWI occurred in the FOR; (GWIaq = -1.3 Mg COx¢q ha'! in 2017; Table 3; Figure
5b), whereas the least contribution occurred in CROP; (-0.3 Mg COx¢q ha! yr'!). These contributions to
GWI are of the same order of magnitude as many crop management components. For example, in this
same watershed a corn-soybean-wheat rotation managed with a legume cover crop had a net GWI of 0.4 -
0.6 Mg COscq ha'! yr'! (Robertson et al 2000), without considering albedo change due to historical
LULCC. Likewise, the net GWI of conventional and no-till cropping systems were similar in magnitude
without consideration of albedo; 0.3 to 0.9 Mg COaq ha'! yr'!, respectively (Gelfand et al. 2013). In
several landscapes (FOR, FOR», and CROP3), GWIx, was sufficient to offset the GWI costs of both N,O
emissions (0.4 Mg COxeq ha'! yr'!') and farming inputs for an alfalfa cropping system (~0.8 Mg COscq ha™!
yr'!) (Gelfand et al. 2013).

Surprisingly, the results of inter-annual variation among the three growing seasons showed that the
COseq mitigation impact between forest- and cropland-dominated (FOR;, CROP3) landscapes was
statistically different in 2012 and 2016 for FOR, (Table 3, Figure 5a) and in 2016 for CROP3, suggesting
that changes in climate conditions, as seen in our study from dry to normal and from wet to normal, can
affect the CO,¢q mitigation impacts of landscapes. Overall, in one of the forest-dominated landscapes
(FOR}) the percent decrease of CO»q mitigation due to dry and wet conditions was higher than that of the
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cropland-dominated landscape CROP; under wet conditions (e.g., lower albedo). Specifically, we found
that both dry and wet conditions in FOR; could significantly reduce CO,..q mitigation by up to 24% and
~30% (i.e., percentage change), respectively; while the CO».q mitigation’s decreasing in CROP; was
significant under wet conditions (e.g., 23.3%), which, in both cases, is still enough to offset 11% of the
total CO»eq emissions of conventionally tilled corn systems in the same area and under the same climatic
conditions (i.e., 2012 and 2016) (Abraha et al. 2019). Surprisingly the high decrease in Aa (e.g., FOR;:
9% vs 6.1% and CROP3: 6% vs 1%) under wet conditions did not lead to a high decrease in COxq

mitigation.

4.3 Assumptions, limitations and uncertainties

The methodology used in this study represents an analytical approach as a proof of concept of the
effects of landscape patches and climatic conditions on RFa, and GW1,, in the context of forest- and
cropland-dominant landscapes. However, certain assumptions can be made on the application of our
approach. The first is that RF, is related to land mosaics (e.g., patch composition) derived by land
transformation (Mufioz et al. 2010). In fact, the focus of the present study is to measure the changes in
RF A« and GW1I,, due to conversion of forests to croplands, assuming the existing croplands were forests
in the past. We then considered Aa using the baseline (forest), which is treated as a reference cover type
of the five landscapes, since it was the dominant land cover type of the pre-European settlements (Brown
et al. 2000).

A second assumption is related to using in-situ incoming radiation (SWiy) for the calculation of
upward atmospheric transmittance (T,). While the literature (Lenton and Vaughan 2009; Muiioz et al.
2010; Cherubini et al. 2012) refers to T, as the annual global mean (T, = 0.854) for a constant zenith
angle of 60°, here we calculated T, for a given day as the ratio SWi/SWroa, with SWi, obtained from in-
situ measurements within the study area (Abraha et al. 2015), specifically at the FOR; landscape. By
avoiding such a default value for T, (e.g., 0.845), we reduced the error by ~30%. We then assumed that

SWi» would be the same at all five landscape locations. In fact, unlike previous studies, we calculated
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453  RFaqand GWIy, on a relatively small area (i.e., not global/regional) for which the uncertainty error

454  carried by a constant T, would not have been significant.

455 A third assumption is related to the time horizon (TH) fixed at 100 years, which is the same time
456  horizon used in the Kyoto Protocol (Boucher et al. 2009). By calculating the annual GWIx, as 1/100 of
457  the total COxeq, we assumed that, in each landscape, the same land mosaic will be maintained for the

458  duration of 100 years. This choice of TH is a limitation because short time horizons can overemphasize
459  the impacts of albedo, while long time horizons can de-emphasize the impacts (Anderson-Teixeira et al.
460  2012).

461 Another limitation of the study is the use of a growing season (March-October) time frame for RFq
462  and GWI,, rather than an annual period. Previous studies (Campbell and Norman 1998; Bonan 2008;
463  Igbal 2012; Liang et al. 2013; Zhao and Jackson 2014; Bright et al. 2015; Kaye and Quemada 2017; Sun
464  etal. 2017) have addressed the importance of snow cover to variability/uncertainty of albedo between
465  forest and cropland because of the capability of forest stands of masking the snow (e.g., lowing the

466  albedo). Nevertheless, our use of growing season values allowed to better isolate the human disturbance
467  on the landscape through agricultural activities by focusing on the crop phenology and its relation with
468  climatic conditions. Had we included wintertime albedo, our forest-cropland differences would have been
469  even greater, however, since deciduous forest stands have higher wintertime albedo than cropland due to
470  the presence of bare branches (Bonan 2008; Anderson et al. 2011) during winter. On the other hand, from
471  the remote sensing perspective, MODIS snow-albedo retrievals have been demonstrated to be less

472  accurate than acquisitions during the growing season (Wang et al., 2014).

473 There are also uncertainties associated with user-defined data (Muiioz et al. 2010), such as

474  considering Aa as the difference between croplands and forest albedos. AF (i.e., CO; airborne fraction)
475  and rfcoz (the marginal RF of CO, emissions at the current atmospheric concentration) are estimated to
476  embed errors of £15% and £10%, respectively, in the GWI estimation (Forster et al. 2007; Akbari et al.
477  2009). It is also worth mentioning the uncertainties related to the scale-dependency. In fact, there is a
478  mismatch between the spatial representativeness of MODIS acquisition pixels (e.g., 500x500 m) and that
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of Landsat (30x30 m), which leads to intrinsic variability of the measurements (Chrysoulakis et al. 2018;
Chen et al. 2019). However, as already emphasized in previous studies (Mira et al. 2015; Moustafa et al.
2017), validation techniques provide a reasonable estimate of albedo from MODIS products across
homogeneous landscapes (e.g., the two forest- and the three cropland-dominated landscapes).

Lastly, we did not consider the effect of spatial autocorrelation that may affect the significance of the
statistic test (Fletcher and Fortin 2018). Nevertheless, the aim of this study is not to attempt spatial

predictions (Feilhauer et al. 2012) of RFaq and GWlag.

5. Conclusions

1. There are significant contributions (R?=0.64) to the overall variation in albedo due to landscapes
(i.e., ecoregions), cover types (i.e., landscape mosaics), and seasons (i.€., seasonality). Variation in
seasons contributes more than landscape composition (~16% and 11%, respectively) in variations of
albedo.

2. By integrating spatial (e.g., five landscapes within ecoregions) and temporal (e.g., inter- and intra-
annual) patterns as main drivers of albedo variation, we found that cropland-dominated landscapes
produce a higher intra-annual variability of albedo under dry, wet, and normal climatic conditions, likely
due to more frequent disturbances (i.e., management activities). Forest-dominated landscapes have higher
albedo in dry and wet years than that in normal years, whereas only one crop-dominated landscape shows
statistically lower albedo under normal conditions than that under dry and wet ones. This indicates a
different response to changes in climatic conditions from forest- and cropland-dominated landscapes.

3. The cooling effect of RF, occurs in all landscapes but is higher in the landscape with the highest
proportion of forests (FOR;) (e.g., higher differences between mean cropland and mean forest albedos).
The pattern of GWI,, across the five landscapes is similar to that of RFaq, with CO2q mitigation relative
to pre-existing forest vegetation higher in FOR; and lower in CROP; and CROP:.

4. We found that in the landscape with the highest proportion of forest (FOR;) both dry and wet

conditions can significantly reduce CO;q mitigation by up to 24% and ~30%, respectively; while the
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reduction of COxq mitigation is significant only in one of the cropland-dominated landscapes (CROP3)

under wet conditions (e.g., 23.3% decrease).
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749  Tables
750  Table 1 Land cover composition of the five landscapes. Bold values indicate the cover type dominating

751  the landscape.

752
Landscape
Cover type FOR1 FOR:2 CROP; CROP: CROP3
ha (%)
Urban 513(5.2) 1330(13.3) 545(5.5) 1047 (10.5) 1341 (13.4)
Cropland 1035 (10.5) 2597 (26.0) 6807 (68.1) 6442 (64.5) 5713 (57.2)
Barren 530 (5.4) 286 (2.9) 49 (0.5) 62 (0.6) 64 (0.6)
Forest 5672 (57.5) 3833 (38.4) 1415(142) 1670(16.7) 1477 (14.8)
Water 410 (4.2) 922 (9.2) 56 (0.6) 43 (0.4) 442 (4.4)
Wetland 1669 (16.9) 1012 (10.1) 1101 (11.0) 693 (6.9) 917 (9.2)
Grassland 30(0.3) 12 (0.1) 21(0.2) 35(0.4) 38 (0.4)
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753  Table 2 Statistical results of analysis of variance (ANOVA) based on the linear model in Equation 1 (dependent variable: asmo).

Variable DF SS MS F P og R?
landscape 4 1.869 0.467 3689.660 HAK 0.266
seasons 2 1.118 0.559 4414.651 Hokx 0.159
cover type 6 0.779 0.130 1024.423 HAK 0.111
landscape x cover type 24 0.371 0.015 121.891 Hxk 0.052
landscape X seasons 8 0.142 0.018 140.167 ok 0.020
landscape x cover type X seasons 48 0.079 0.002 12.962 Hxk 0.011
year X seasons 4 0.048 0.012 94.672 ok 0.007
cover type x seasons 12 0.030 0.003 19.844 HHk 0.004
landscape x year 8 0.022 0.003 21.210 ok 0.003
landscape x year x seasons 16 0.020 0.001 9.684 HHk 0.003
year 2 0.013 0.007 51.367 HAK 0.002
landscape x cover type X year 48 0.015 0 2.505 HHk 0.002
cover type x year 12 0.002 0 1.278 0
cover type x year X seasons 24 0.003 0 1.047 0
landscape X cover type x year x seasons 96 0.011 0 0.887 0 0.64
Residuals 19779 2.505 0

754 o indicates variance in the dependent variable asto accounted for by the independent variables landscape, cover type,

755 ear, seasons, and their interactions. Significance codes: “***” p <0.001, “**” p <0.0.1, “*’ p <0.05, “” p<0.1,“”p>0.1.
y g p p p p p
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756  Table 3 Mean change of Aa (%), RFaq (W m?), and GWIa, (Mg COszeq ha! yr!) for each landscape in 2012, 2016, and 2017 growing seasons.
757  Negative values for RFa, and GWIy, indicate cooling effects and CO,eq mitigation impacts due to albedo change, respectively. Percentage changes
758 (%) between 2017 (baseline) and the two extreme climatic years (i.e., diff 20172012 and diff2017-1016, TeSpectively) are also shown. Values with

759  significant decrease (e.g., percent change) are highlighted in bold texts.

760
2012 2016 2017 diff2017-2012 diff2017-2016

Au RFAu GWIA& Ao( RFAQ( GWlAa Au RFAu GWIA& Ao( RFAQ( / GWIA& Au RFAQ( / GWIA&
FOR| 12(x08) 42 10 | 12(x08) 3.9 09 | 1.3(06) -56 13| 9.0 240 | 6.1 29.9
FOR, 0.8 (*03) -27 0.6 | 1.0(04) 2.9 07| 11200 2.9 07| 285 90| 78 1.4
CROP; 0.5 (%0.2) -1.7 -0.4 | 0.5(%0.3) -1.3 -0.3 | 0.5(*0.3) -2.0 -0.5 9.2 15.6 12.6 32.1
CROP,  05(x03) -17 04| 04x02) -12 2031|0614  -19 04| 194 9.9 | 343 334
CROP;  0.9(£03)  -32 0.7 ] 0906 2.9 0.7 ] 0905 3.7 09| 60 149 | 1.0 233
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Figure captions

Fig. 1 Schematic diagram showing the relationship between landscape albedo and GWlj.

Fig. 2 Locations of the five landscapes (FOR;, FOR,, CROP;, CROP,, CROP;) within the Kalamazoo
River watershed in the southwest Michigan (USA). Each landscape falls within a unique Level [V
ecoregion defined by the United States Environmental Protection Agency (US EPA). Basemap sources:
Esri, HERE, Garmin, USGS, Intermap, INCREMENT P, NRCAN, Esri Japan, METI, Esri China (Hong

Kong), NOSTRA, © OpenStreetMap contributors, and the GIS User Community.

Fig. 3 Least square means (LSM) multi-comparison analysis of asno (a) and Aasno (b) in 2012, 2016, and
2017 for each landscape. Boxes indicate the LSM; whiskers represent the lower and upper limits of the
95% family-wise confidence level of the LSM. Boxes sharing the same letters are not significantly
different (intra- and inter-annual, as well as within and among the five landscapes) according to the Tukey

HSD test.

Fig. 4 Mean asuo (%) by cover type and season in 2012 (a—a4), 2016 (bi—bs), and 2017 (c1—c4) for the
five landscapes. Mean of the difference between mean cropland and mean forest albedos (Aasuo) for the

same years (Aa, Ab, and Ac, respectively) is also shown.

Fig. 5 Bar chart of RFa, (W m) due to the difference between mean cropland and mean forest albedos at
the top-of-atmosphere across five landscapes at 10:30 a.m. local time (UTC) during the 2012, 2016, and
2017 growing seasons (a). Panel (b) shows GWIx, (Mg COx¢q ha-1 yr!) due to the difference between
mean cropland and mean forest albedos. Negative values for RFa, and GWI,, indicate cooling effects and
COyq mitigation impacts, respectively. Bars sharing the same letters are not significantly different (intra-

and inter-annual, as well as within and among the five landscapes) according to the Tukey HSD test.
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