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Abstract 27 

Context 28 

Albedo can be used to quantify ecosystem and landscape contributions to local and global climate. 29 

Such contributions are conventionally expressed as radiative forcing (RF) and global warming impact 30 

(GWI). We contextualize our results within landscape carbon production and storage to highlight the 31 

importance of changes in albedo for landscape GWI from multiple causes, including net ecosystem 32 

production (NEP) and greenhouse gas (GHG) emissions. 33 

Objective 34 

To examine the spatiotemporal changes in albedo (Δα) in contrasting managed landscapes through 35 

calculations of albedo-induced RF (RFΔα) and GWI (GWIΔα) under different climatic conditions. 36 

Methods 37 

We selected five contrasting landscapes within the Kalamazoo River watershed in southern Michigan 38 

USA as proof of concept. The daily MCD43A3 MODIS (V006) product was used to analyze the inter- 39 

and intra-annual variations of growing season albedo. In addition, the variations of RFΔα and GWIΔα were 40 

computed based on landscape composition and climate. 41 

Results 42 

The RFΔα (-5.6 W m-2) and GWIΔα (-1.3 CO2eq ha-1 yr-1) were high in forest-dominated landscapes, 43 

indicating cooling effects and CO2eq mitigation impacts similar to crops. The CO2eq mitigation of 44 

cropland-dominated landscapes was on average 52% stronger than forest-dominated landscapes. In the 45 

landscape with the highest proportion of forest, under dry and wet conditions CO2eq mitigation was 46 

reduced by up to 24% and ~30%, respectively; in one cropland-dominated landscape wet conditions 47 

reduced CO2eq mitigation by 23%. 48 

Conclusions 49 



 
 

3 
 

Findings demonstrate that quantifying spatiotemporal changes in albedo in managed landscapes and 50 

under different climatic conditions is essential to understand how landscape modification affects RFΔα and 51 

GWIΔα and thereby contributes to ecosystem-level GWI. 52 

Keywords: Albedo, Land mosaics, Radiative forcing, Global warming impact, Cropland, Forest   53 



 
 

4 
 

1. Introduction 54 

Decoupling the causes and consequences of ecosystem functions and services at multiple spatial 55 

scales represents an important scientific frontier in landscape ecology (Raudsepp-Hearne et al. 2010; 56 

Antón et al. 2011; Chen et al. 2013; Yuan and Chen 2015; Seidl et al. 2016). Land use and land cover 57 

change (LULCC) caused by human activities (e.g., land use), natural disturbances (e.g., wildfires) and 58 

global warming directly affects regional and global climate through the exchange of energy, carbon, 59 

water, and greenhouse gases (GHGs) between the land surface and the atmosphere (Bright et al. 2015; 60 

Bonan 2016). Management activities and disturbances such as cultivation, burning, and grazing not only 61 

influence GHG emissions but also alter the surface radiation balance (Pielke et al. 2011; Shao et al. 2014). 62 

Unfortunately, little effort has been directed towards investigating resulting changes in surface radiation 63 

balance (e.g., changes in albedo) at landscape scales (Euskirchen et al. 2002; Chen et al. 2004).  64 

Albedo — the ratio of solar radiation reflected by a surface to the total incoming solar radiation (e.g., 65 

surface radiation balance) — is a measurable physical variable that can be used to quantify ecosystem and 66 

landscape contributions to local and global climate (Dickinson 1983; Picard et al. 2012; Brovkin et al. 67 

2013; Li et al. 2016; Storelvmo et al. 2016). Changing albedo has been proposed as one of several 68 

geoengineering options for climate change mitigation (Lenton and Vaughan 2009; Goosse 2015) and 69 

albedo is also important for understanding exchanges of energy and mass between terrestrial surfaces and 70 

the atmosphere (Merlin 2013). Albedo is in its early stages of incorporation into climate models, but it is 71 

useful for deriving different mechanisms to lower climate warming by potentially increasing the 72 

reflectance of energy back into the atmosphere (Lenton and Vaughn 2009). Although LULCC (e.g., 73 

conversions from forest to biofuel, grassland, and cropland) can significantly alter albedo (Bala et al. 74 

2007; Cai et al. 2016), the magnitude of changes depends on vegetation type and canopy structure (see 75 

also Bennett et al. 2006; Tian et al. 2018). 76 

Albedo is also highly correlated with leaf wetness, soil moisture, and soil water content (Henderson-77 

Sellers & Wilson 1983; Wang et al. 2004) — which are strongly related to precipitation and its temporal 78 

distribution — and as well with plant phenology and vegetation structure (Luyssaert et al. 2014), plant or 79 
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tree height (Betts, 2001), and agricultural practices (Houspanossian et al. 2017) — this last scarcely 80 

considered (Zhang et al. 2013, Jeong et al. 2014). For example, Culf et al. (1995) reported decreased 81 

albedo in forests as a function of darker leaves and darker soils under wet conditions. Berbet and Costa 82 

(2003) found that ranchlands were characterized by variable albedo throughout the entire year depending 83 

on climatic conditions (e.g., dry vs wet periods), whereas forests were characterized by higher and lower 84 

albedo in both dry and wet periods, respectively.  85 

Changes in atmospheric conditions and land mosaics due to LULCC can affect the Earth’s radiation 86 

balance (Gray 2007). Radiative forcing (RF) has been widely used to describe this imbalance as changes 87 

in the fraction of solar energy reflected by the Earth’s surface (Mira et al. 2015), whether anthropogenic 88 

or natural (Lenton and Vaughan 2009). RF can thus be used to compare modifications in radiation 89 

balance due to atmospheric/surface albedo changes or due to GHG emissions. Previous studies (Betts 90 

2000; Akbari et al. 2009) have developed methodologies to relate RF to CO2eq, used to calculate 91 

ecosystem-scale contributions to global warming impacts (GWIs) — a common measure for quantifying 92 

RFs of different GHGs and other agents (Fuglestvedt et al. 2003; Forster et al. 2007; Peters et al. 2011). 93 

GWI allows us to directly relate anthropogenic activities to GHG emissions (Haines 2003; Davin et al. 94 

2007; Cherubini et al. 2012; Robertson et al. 2017) and to understand and quantify the impact of an 95 

ecosystem on climate. 96 

Despite escalating efforts to examine the magnitude and dynamics of albedo change due to LULCC, 97 

previous studies have focused on albedo, RF, and GWI differences among the cover types within 98 

landscapes or regions (Haas et al. 2001; Román et al. 2009; Carrer et al. 2018; Chen et al. 2019). For 99 

example, previous studies have shown that deforestation and expanding agricultural lands have played an 100 

important role in surface cooling of the northern hemisphere due to increased surface albedo and 101 

regeneration of forests after harvesting (Betts 2001; Govindasamy et al. 2001; Lee et al. 2011). Georgescu 102 

et al. (2011) simulated strong cooling effects — equivalent to a reduction in carbon emission of 78 t C ha-103 

1 — by increasing the surface albedo of agricultural lands across the central United States. Loarie et al. 104 

(2011) demonstrated that introducing sugar cane production into cropland/pasture landscapes of Brazil 105 
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increased albedo and evapotranspiration, which in turn appeared to cool the local climate. Importantly, to 106 

quantify the contribution of LULCC to global warming/cooling, GWI should be computed with reference 107 

to albedo due to pre-existing conditions (i.e., Δα).  108 

Here we examine the spatiotemporal changes of albedo in contrasting managed landscapes as 109 

compared to pre-existing forests through calculations of albedo-induced RF (ΔRFΔα) and GWI (∆GWIΔα) 110 

under different precipitation regimes (i.e., climatic conditions). We express the relationship between 111 

landscape albedo and GWIΔα (Figure 1) as: 112 

[∆𝛼𝛼𝑖𝑖 × ∆𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑙𝑙 × ∆𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑙𝑙] → ∆𝑅𝑅𝑅𝑅∆𝛼𝛼 → ∆𝐺𝐺𝐺𝐺𝐺𝐺∆𝛼𝛼  (1) 113 

where ∆GWIΔα is net landscape albedo-induced GWI, Δαi is the difference between mean albedo at a 114 

cover type i and mean forest albedo (i.e., the reference), Δareal is variation of cover-type proportion for 115 

landscape l, and Δclimatel is the variation of climatic conditions for landscape l. More specifically, we 116 

aim to estimate the magnitude and seasonal changes in albedo so that ΔGWIΔα can be assessed at 117 

ecosystem, landscape, and watershed scales, and included in ecosystem GWI assessments (e.g., Gelfand 118 

and Robertson 2015). We further contextualize our results within landscape carbon production and 119 

storage to highlight the importance of changes in landscape GWIΔα from multiple causes, including net 120 

ecosystem production (NEP) and GHG emissions. The framework developed in this study (Equation 1, 121 

Figure 1) can be applied to any landscape to for compute landscape GWIΔα. To this end, we selected five 122 

contrasting landscapes in the Kalamazoo River watershed of southwestern Michigan U.S.A. as a proof of 123 

concept to investigate inter- and intra-annual variations of albedo under three different climatic 124 

conditions. 125 

2. Materials and Methods  126 

2.1 Study area  127 

We chose five contrasting landscapes (Figure 2) in the Kalamazoo River watershed, located in 128 

southwest Michigan, USA, for proof of concept. Within the 526,100 ha watershed, the long-term mean 129 

annual temperature is 9.9 °C and the average annual precipitation is 900 mm that is evenly distributed 130 
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throughout the year (Michigan State Climatologist’s Office 2013). The watershed includes portions of 10 131 

counties: Allegan, Ottawa, Van Buren, Kent, Barry, Kalamazoo, Calhoun, Eaton, Jackson, and Hillsdale. 132 

Prior to European settlement, the watershed was dominated by forests (Brown et al. 2000) with 133 

interspersed tallgrass prairies, savannas, lakes, wetlands, and oak openings (Chapman and Brewer 2008). 134 

The watershed however has undergone significant LULCC since then. Present-day forest areas are 135 

secondary successional forests that followed their complete harvest by European settlers in the late 1800s 136 

(Brown et al. 2000). Today, the watershed consists of cultivated crops, deciduous forest stands, pasture-137 

hay grasslands, inland lakes, wooded wetlands, and urban areas. Dominant soils of the watershed are 138 

Alfisols of medium to coarse texture that allows a continuous recharge of groundwater (Schaetzel et al. 139 

2009).  140 

We randomly selected five 10,000 ha landscapes (Figure 2) (Burton et al. 1998) that represent the 141 

main ecoregions of the watershed, i.e., areas characterized by similar vegetation, with the same type, 142 

quality and quantity of environmental resources (Omernik and Griffith 2014). The Kalamazoo River 143 

watershed includes three U.S. EPA ecoregions: Eastern Temperate Forest (Level I), Mixed Wood Plain 144 

(Level II), and Southern Michigan/Northern Indiana Drift Plain (Level III). At a finer scale, five Level IV 145 

ecoregions (Table S1) exist in the watershed: Battle Creek Outwash Plain (56b), Michigan Lake Plain 146 

(56d), Lake Michigan Moraines (56f), Lansing Loamy Plain (56g), and Interlobate Dead Ice Moraines 147 

(56h). (https://www.epa.gov/eco-research/ecoregion-download-files-state-region-5#pane-20). We used 148 

the five landscapes to represent the five Level IV ecoregions so that each landscape fell within an 149 

individual Level IV ecoregion.  150 

Each landscape has different proportions of urban, cropland, barren, forest, water, wetland, and 151 

grassland cover types (Table 1). Two of the five landscapes have a higher proportion of forest (FOR1 152 

highest proportion of forest, and FOR2 second highest proportion); while the remaining three landscapes 153 

are dominated by cropland (CROP1, CROP2, and CROP3, from high to low proportion of cropland, 154 

respectively) (Table 1). Given that forest was the dominant land cover type prior to European settlement 155 

within each landscape (Brown et al. 2000), we considered the average albedo of all forest portions within 156 
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each of the five landscapes during the growing season at 10:30 a.m. local time (UTC) as the reference 157 

albedo (e.g., MODIS Terra morning overpass time). Thereafter, in each landscape, changes in albedo (Δα) 158 

were obtained by calculating the difference between mean cropland and mean forest albedos, and then 159 

used to calculate RFΔα and GWIΔα.  160 

2.2 Landscape structure 161 

The landscape structure of the watershed was quantified from a classified land cover map for 2011 162 

(Figure 2) at 30×30 m spatial resolution, which was produced using the Landsat archives from the USGS 163 

Earth Explorer/GLOVIS portals (https://earthexplorer.usgs.gov/). The land cover map was obtained 164 

following the Anderson level I classification scheme and included seven land cover types: 1) urban, 2) 165 

cropland, 3) barren, 4) forest, 5) water, 6) wetland, and 7) grassland. The details of the accuracy 166 

assessment (i.e., producer and user’s accuracy for each class type and the overall accuracy in an error 167 

matrix) of the classification were provided in Chen et al. (2019). 168 

2.3 MODIS Albedo  169 

Albedo datasets were obtained from the most recent collection (V006) of the MCD43A3 MODIS 170 

Bidirectional Reflectance Distribution Function (BRDF) product 171 

(https://doi.org/10.5067/MODIS/MCD43A3.006). MOD43A3 is a daily product at 500×500 m spatial 172 

resolution obtained by inversion of a Bidirectional Reflectance Distribution Function (the BRDF) model 173 

against a 16-day moving window of MODIS observations. The BRDF model was then used to derive the 174 

black-sky (associated to direct solar radiation) and white-sky (associated to diffuse radiation) albedos 175 

(Wang et al. 2018). We only considered snow-free, white-sky albedo at a shortwave length of 0.3-5.0 µm 176 

(hereafter, αSHO and expressed in percentage). For each image, the “Albedo_WSA_shortwave” (white-sky 177 

albedo) band was selected and rescaled to 0-1. Only high-quality data were selected within the “full 178 

BRDF inversion” quality band (QA = 0). The “Snow_BRDF_Albedo” band in the MCD43A2 product 179 

was used to filter and exclude pixels with snow albedo retrievals (Chrysoulakis et al. 2018). 180 

https://earthexplorer.usgs.gov/
https://doi.org/10.5067/MODIS/MCD43A3.006
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2.4 MODIS NDVI 181 

Previous studies (e.g., Campbell and Norman 1998; Bonan 2008; Iqbal 2012; Liang et al. 2013; Zhao 182 

and Jackson 2014; Bright et al. 2015; Kaye and Quemada 2017; Sun et al. 2017) have thoroughly 183 

addressed the importance of snow cover on variability/uncertainty of albedo. Here, we focused on albedo 184 

change, RFΔα and GWIΔα only during the growing season when maximum variability of watershed crop 185 

phenology can be related with changes in climatic conditions and human disturbances at the landscape 186 

level. Therefore, for each year, we identified the “growing season” during March-October by detecting 187 

the greenness onset/offset for the entire Kalamazoo River watershed. To do so, for each year, we used a 188 

16-day composite time series of the normalized difference vegetation index (NDVI) to detect the 189 

inflection points (i.e., dates) when the maximum and minimum change rate of NDVI occurred (Jeong et 190 

al. 2011). We obtained NDVI at a 250×250 m spatial resolution from the most recent collection (V006) of 191 

the MYD13Q1 MODIS product (https://doi.org/10.5067/MODIS/MYD13Q1.006). Finally, we divided 192 

each growing season (March-October) into three periods (hereafter, seasons) — spring, summer, and fall 193 

using astronomical season (e.g., spring equinox, summer solstice, and fall equinox). 194 

2.5 Precipitation data 195 

Daily precipitation data at a 4×4 km spatial resolution were obtained from the Parameter-elevation 196 

Regressions on Independent Slopes Model group (PRISM) AN81d product 197 

(http://www.prism.oregonstate.edu/) over the 2012-2017 time period. We also calculated the cumulative 198 

precipitation of the five landscapes during the growing season from March through October. For the time 199 

period considered (e.g., 2012-2017), we then identified three years as dry, normal and wet years: 2012, 200 

2017 and 2016, respectively. The Midwest of U.S.A. experienced 6 weeks of summer drought during 201 

June-July in 2012 (Mallya et al. 2013), resulting in a growing season precipitation of <490 mm. In 2017, 202 

the watershed received over 750 mm, while this was ~700 mm (i.e., near average) for 2017. All analysis 203 

and processing of albedo, NDVI, and precipitation data were performed on the Google Earth Engine 204 

https://doi.org/10.5067/MODIS/MYD13Q1.006
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(GEE) platform (Gorelick et al. 2017), where the MODIS products were uploaded, filtered to the date of 205 

interest, and clipped to the shape file for each of the five landscapes. 206 

2.6 Statistical analysis 207 

We performed analysis of variance (ANOVA) to examine the change in albedo with land cover type 208 

and landscape structure within the three-year study period and across three seasons. The following linear 209 

model was applied: 210 

𝛼𝛼𝑆𝑆𝑆𝑆𝑆𝑆 = 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 × 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 × 𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦 × 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠   (2) 211 

where αSHO is the snow-free white-sky albedo at the shortwave length at a daily step acquired from 212 

MODIS at 10:30 a.m. local time (UTC); landscape, cover type, year, and season are the five landscapes 213 

(FOR1, FOR2, CROP1, CROP2, CROP3), the seven cover types (Table 1) at each landscape, the three 214 

years (dry, wet, and normal), and the three astronomical seasons (spring, summer, and fall), respectively. 215 

We also considered the interaction terms among the independent variables in our ANOVA. 216 

To test the normality of our data we checked the distribution of the residuals. We then carried out 217 

ANOVA and Tukey tests for multiple comparisons using the R-package ‘lsmeans’ (R Core Team 2017).  218 

2.7 Radiative forcing (RF) and global warming impact (GWI) 219 

To quantify the potential of RF caused by changes in albedo, we referred to the direct albedo-induced 220 

RF at the top-of-atmosphere (RFΔα), where Δα is the change of αSHO (i.e., the absolute difference between 221 

mean cropland and mean forest albedos in each of the five landscapes). We calculated RFΔα (W m-2) 222 

following the algorithms of Carrer et al. (2018):  223 

𝑅𝑅𝑅𝑅∆𝛼𝛼(𝑡𝑡) = − 1
𝑁𝑁
∑ 𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖 𝑇𝑇𝑎𝑎 𝛥𝛥𝛥𝛥𝑁𝑁
𝑑𝑑=1     (3) 224 

where RFΔα is the mean albedo-induced radiative forcing at the top-of-atmosphere over the growing 225 

season (t), N is the number of days in the growing season, SWin is the incoming solar radiation at the 226 

surface, Ta is the upward atmospheric transmittance and Δ𝛼𝛼 is the albedo difference (i.e., between mean 227 

cropland and mean forest albedos). By multiplying both SWin and Δ𝛼𝛼 by Ta, we calculated the 228 
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instantaneous amount of radiation that leaves the atmosphere at 10:30 a.m. UTC. It is worth reiterating 229 

that all the variables (i.e., SWin, Δα, and Ta) refer to the specific time of 10:30 a.m. UTC (e.g., MODIS 230 

Terra morning overpass time) and were considered to represent daily means. Negative values of RFΔα 231 

indicate a cooling effect due to the differences between mean cropland and mean forest albedos. 232 

While previous studies (e.g., Lenton and Vaughan 2009; Cherubini et al. 2012) used a global annual 233 

average value of 0.854 for Ta, we calculated Ta as the ratio of incoming solar radiation at the top of the 234 

atmosphere (SWTOA) to that at the surface (SWin) at 10:30 a.m. UTC. By assuming a same value of upward 235 

and downward atmospheric transmittances (Carrer et al. 2018), SWin (W m-2) was obtained from a local 236 

eddy covariance (EC) tower located at the Kellogg Biological Station Long-term Ecological Research site 237 

(42°24´N, 85°24´W) (Abraha et al. 2015), while SWTOA (W m-2) was calculated as:  238 

𝑆𝑆𝑆𝑆𝑇𝑇𝑇𝑇𝑇𝑇 = 𝑆𝑆𝑝𝑝𝑝𝑝 cos(𝜃𝜃) 𝑑𝑑       (4) 239 

where Spo is the solar constant (1,360 W m-2), cos(θ) is the cosine of the solar zenith angle, obtained from 240 

the MCD43A2 (V006) MODIS BRDF Albedo Quality product 241 

(https://doi.org/10.5067/MODIS/MCD43A2.006), applying the “BRDF_Albedo_LocalSolarNoon” band, 242 

and d is the mean Earth-Sun distance. We then converted RF into the CO2 equivalent (CO2eq) by using the 243 

GWI algorithms of Bird et al. (2008) and Carrer et al. (2018): 244 

𝐺𝐺𝐺𝐺𝐺𝐺∆𝛼𝛼(𝑡𝑡) = 𝑆𝑆 𝑅𝑅𝑅𝑅∆𝛼𝛼(𝑡𝑡)

 𝐴𝐴𝐴𝐴 𝑟𝑟𝑟𝑟𝐶𝐶𝐶𝐶2

1
𝑇𝑇𝑇𝑇

       (5) 245 

where GWIΔα is the CO2eq (kg CO2eq m-2 yr-1) GWI due to Δα, represented by MODIS αSHO acquisitions at 246 

10:30 a.m. UTC, i.e., assuming that the values represent the mean CO2eq mitigation impact of each 247 

landscape during the growing season March-October (t), RFΔα is the mean RF due to Δα over the growing 248 

season March-October (t) (Equation 3), S is cropland area (ha) for which we hypothesized the change of 249 

albedo occurred, AF is the CO2 airborne fraction (0.48, Muñoz et al. 2010) obtained from the exponential 250 

CO2 decay function (see Bird et al. 2008 for more details), and TH is the time horizon of potential global 251 

warming fixed at 100 years (Kaye and Quemada 2017). Lastly, the parameter rfCO2 — the marginal RF of 252 

https://doi.org/10.5067/MODIS/MCD43A2.006
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CO2 emissions at the current atmospheric concentration — is kept as a constant (Muñoz et al. 2010; 253 

Bright et al. 2015; Carrer et al. 2018) at 0.908 W kg CO2
-1.  254 

Negative values of GWIΔα indicate CO2eq mitigation. We calculated the annual GWIΔα as 1/100 of the 255 

total CO2eq to normalize to the 100 year time horizon used in the Kyoto Protocol (Boucher et al. 2009). 256 

Notably, here we assumed that the same land mosaic in each landscape will be maintained for the 257 

duration of 100 years. Previous studies (Betts 2000; Akbari et al. 2009) have also used a constant AF as 258 

opposed to the exponential CO2 decay function; however, the computed GWIs are similar (Bright 2015). 259 

3. Results  260 

Two of the five landscapes (FOR1 and FOR2) were dominated by forests (Table 1), with a forest 261 

coverage of 57.5% in FOR1 and 38.4% in FOR2. Wetlands and croplands accounted for 16.9% and 10.5% 262 

of landscape, respectively, in FOR1 (Table 1), but only 10.1% and 26% in FOR2 where urban land was 263 

also the highest (13.3%). Croplands were dominant in CROP1, CROP2, and CROP3 (Table 1), with 264 

68.1%, 64.5%, and 57.2% of area coverage, respectively. Forest cover ranked the second highest in these 265 

landscapes (14.2%, 16.7%, and 14.8%, respectively). Bare soils, grasslands, and water accounted for 266 

small portions of all five landscapes. 267 

The entire watershed had an αSHO of 15.9% during the dry (2012) and wet (2016) years and of 15.6% 268 

during the normal (2017) year (Table S2), yielding an overall average of 15.8% with a low inter-annual 269 

variation. Each cover type contributed differently to αSHO at the watershed level. In particular, croplands 270 

and water bodies showed the highest (16.6%) and lowest (12.1%) αSHO, respectively, with the highest 271 

values occurring in both 2012 (16.6%±1.0) and 2016 (16.6%±1.1) for croplands, and the lowest in 2017 272 

(11.9%±3.4) for water. The other cover types showed similar αSHO values, ranging 15.1-15.6% for barren 273 

and grassland, 15.2% for urban and forests and 15.4% for wetlands. At the landscape level, αSHO of forest, 274 

which was considered as reference, was generally lower than that of croplands. In particular, FOR1 and 275 

FOR2 averaged a low αSHO of 14.6% and 13.9%, respectively, whereas CROP1, CROP2, and CROP3 276 

recorded higher values of 16.7%, 16.4%, and 16.2%, respectively. However, FOR1 and FOR2 277 
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demonstrated the highest αSHO in 2012 (14.7%±0.8 and 14.1%±2.3, respectively), while CROP1, CROP2, 278 

and CROP3 demonstrated the highest αSHO in different years, such as 2016 for CROP1 (17.0%±0.8), 2012 279 

and 2016 for CROP2 (16.5%±0.6), and 2017 for CROP3 (16.3%±1.7). In the forest-dominated landscapes, 280 

all cover types showed higher αSHO during the dry year (2012). However, for FOR2, αSHO values of 281 

cropland and barren were high in the wet year (2016). In the cropland-dominated landscapes, the highest 282 

αSHO value (17.1%) was observed in CROP3 (±1.1) for croplands in 2017, and in CROP1 for both urban 283 

(±0.6) and croplands (±0.8) in 2016. 284 

Our ANOVA model (R2=0.64) (Table 2) indicated that the variation of αSHO was significant (p-value 285 

<0.001) among the five landscapes (i.e., ecoregions) (ω2=26.6%) by cover type (i.e., landscape mosaics) 286 

(ω2=11.1%) and their interactions (ω2=5.2%), with year and its interactions explaining <1% of the 287 

variation. However, the variation from season (i.e., seasonality) (ω2=15.9%) explained more than cover 288 

type. 289 

Forest-dominated landscapes (FOR1 and FOR2) showed lower least square means (LSM) of αSHO 290 

(LSMαSHO) than cropland-dominated landscapes (CROP1, CROP2 and CROP3) (Figure 3a) over the three 291 

years. A decreasing inter-annual trend (between 2012, 2016, and 2017 growing seasons) characterized 292 

FOR1, FOR2, and CROP2, with FOR1 showing statistically higher LSMαSHO in the dry (2012) year; 293 

whereas CROP2 showed statistically lower LSMαSHO in the normal (2017) year. In addition, differences in 294 

LSM between cropland and forest albedos (LSMΔα) appeared to be higher in FOR1, FOR2, and CROP3 295 

(Figure 3b), but with increasing inter-annual trends, than in CROP1 and CROP2. However, only FOR2 296 

showed statistically lower LSMΔα in the dry year (2012) (Figure 3b). 297 

Clear seasonal patterns existed in αSHO and were generally lower in spring and autumn than in the 298 

summer (Figure 4). However, in CROP2, the αSHO of the major cover types (i.e., cropland, forest, urban, 299 

and wetland) was the highest in the spring of the dry year. The αSHO of cropland and urban areas in 2017 300 

(a normal year) was also relatively higher in both spring and summer (Figures 4c1-c3). The inter-annual 301 

variability between the wet and normal years (Figures 4b1–b4 and 4c1–c4, respectively) appeared similar, 302 
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with small differences between FOR1 and FOR2 (e.g., the lowest αSHO occurring in spring in FOR1 and in 303 

autumn in FOR2).  304 

The mean Δα ranged between 0.4% and 2% (i.e., ~1.2% mean difference between mean cropland and 305 

mean forest albedos) (Figure 4Δa–Δc); however, the intra-annual variability of Δα differed by landscape 306 

and year. We found that forest-dominated landscapes (FOR1 and FOR2) had higher Δα in spring each 307 

year, with the minimum in autumn (FOR1) and summer (FOR2) of every year. Cropland-dominated 308 

landscapes (CROP1, CROP2 and CROP3CROP3) showed higher Δα in spring that was more pronounced 309 

in 2016 for CROP1 (Figure 4Δb), in 2016 and 2017 for CROP2 (Figure 4Δb-Δc), and in 2012 for CROP3 310 

(Figure 4Δa). However, CROP2 in 2012 was characterized by a different Δα trend — lower in spring and 311 

higher in autumn (Figure 4Δa). The summer Δα variability among the five landscapes was lower in the 312 

dry year (Figure 4Δa) and higher in the normal year (Figure 4Δc). Two distinct clusters characterized the 313 

summer of the wet year (Figure 4Δb), with FOR1, FOR2 and CROP3 having an Δα of ≥ 1% and CROP1 314 

and CROP2 of ≤ 0.5%.  315 

All five landscapes had negative RFΔα (Table 3; Figure 5a). Among the cropland-dominated 316 

landscapes, CROP1 and CROP2 had similar lower magnitude RFΔα values, with minimum and maximum 317 

values in the wet (2016) and normal (2017) years, respectively. In particular, CROP2 had RFΔα (W m-2) of 318 

-1.2 in 2016 and -1.9 in 2017, followed by CROP1 (-1.3 and -2.0) and CROP3 (-2.9 and -3.7). Among the 319 

forest-dominated landscapes, FOR1 showed a similar trend, with minimum and maximum magnitude 320 

RFΔα in 2016 and 2017 (-3.9 and -5.6, respectively), while FOR2 had the minimum and maximum 321 

magnitude RFΔα in the dry (2012) and normal (2017) years (-2.7 and -2.9, respectively). 322 

As for RFΔα, all five landscapes showed negative values of GWIΔα (Table 3; Figure 5b), which had 323 

inter- and intra-annual trends similar to RFΔα (Figure 5b). In particular, CROP1 and CROP2 had similar 324 

lower magnitude GWIΔα (Mg CO2eq ha-1 yr-1) values, with minimum (CROP1 and CROP2: -0.3) and 325 

maximum (CROP1: -0.5 and CROP2: -0.4) values in the wet (2016) and normal (2017) years, respectively, 326 

followed by CROP3 (-0.7 and -0.9, respectively). FOR1 showed a similar trend, with minimum and 327 

maximum magnitude GWIΔα in 2016 and 2017 (-0.9 and -1.3, respectively), with statistically higher 328 
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GWIΔα in 2017, while FOR2 had the minimum and maximum magnitude GWIΔα in the dry (2012) and 329 

both wet and normal (2016 and 2017) years (-0.6 and -0.7, respectively) (Table 3; Figure 5b). 330 

Taking the normal year (2017) as our baseline, the percentage changes between the normal and dry 331 

years (e.g., diff 2017-2012), and the normal and wet years (e.g., diff 2017-2016) showed reduced Δα, RFΔα, and 332 

GWIΔα values (Table 3). In particular, the decrease in Δα was higher in FOR2, CROP1 CROP2 (28.5%, 333 

9.2%, and 19.4%, respectively) for diff2017-2012 and in CROP1 and CROP2 (12.6% and 34.3%, respectively) 334 

for diff2017-2016. FOR2 decreased the least from baseline in both RFΔα and GWIΔα compared to all other 335 

landscapes, which had the highest decrease in diff2017-2016 — FOR1 (29.9%), CROP1 (32.1%), CROP2 336 

(33.4%), and CROP3 (23.3%). Statistically, reductions in Δα, RFΔα, and GWIΔα values were all significant 337 

in FOR1 (for both diff2017-2012 and diff2017-2016) and in CROP2 (for diff2017-2016).  338 

4. Discussion  339 

The main finding of our study is that RFΔα and GWIΔα play an important role in climate change 340 

impact due to landscape mosaics. In particular, we found that forests have lower albedo than croplands, 341 

which is in consistent with previous studies. In all five landscapes LULCC from forest to cropland 342 

showed a cooling effect with negative RFΔα and GWIΔα values. The results also show that the difference 343 

between mean cropland and mean forest albedos during the three years produces on average ~64%, 65%, 344 

and 28% stronger CO2eq mitigation impacts in the landscape with the highest proportion of forest (FOR1) 345 

than in cropland-dominated landscapes (CROP1, CROP2, and CROP3, respectively), presumably due to 346 

the lower proportion in cropland (e.g., 10.5% of cropland area) in FOR1. Additionally, dry climatic 347 

conditions in 2012 result in the highest albedo in almost all landscapes, although only significantly higher 348 

in one of the forest-dominated (FOR1) landscapes, supporting a consensus that dry surfaces reflect more 349 

than wet surfaces. Over the growing season, albedo peaks in summer in all cover types, with lower albedo 350 

in spring and autumn due to changes in plant phenology. 351 
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4.1 Inter- and intra-annual changes in albedo 352 

We compared αSHO values among major cover types (i.e., urban, cropland, forest, and wetland), 353 

disregarding those with lower proportions (i.e., grassland, water, and barren) due to their negligible 354 

contributions to the total landscape αSHO. We observed that croplands and forests had on average 7.8% 355 

higher and 0.7% lower albedo than other land covers, respectively. This is in line with previous studies 356 

that examined snow-free albedo variations among ecosystems (Jiao et al. 2017, Chen et al. 2019) and 357 

across the conterminous United States (Barnes and Roy 2010). Bonan (2008) showed that forests have 358 

lower surface albedo than other cover types, contributing to climate warming. Our study indicated that in 359 

forest-dominated landscapes (FOR1 and FOR2) the average of inter-annual variation of αSHO was ~2.8% 360 

lower than that in cropland-dominated landscapes (Table S2; Figure 3a). Analysis of variance also 361 

revealed that the five landscapes (i.e., ecoregions), cover types (i.e., landscape mosaics), and seasons (i.e., 362 

seasonality) contributed significantly to the overall variation of αSHO. Specifically, we found that besides 363 

the five landscapes, seasons (~16%) contributed by 5% more than cover type (11%) towards variation of 364 

αSHO (Table 2). 365 

Changes in αSHO due to LULCC have been widely studied (Chrysoulakis et al. 2018); however, its 366 

dynamics at ecosystem-to-landscape scales remain unexplored. For example, Zheng et al. (2019) 367 

investigated how vegetation changes affect albedo trends without considering the integrated effect of both 368 

cover type and seasonality, while Matthews et al. (2003) investigated the cooling/warming effects of 369 

albedo change resulting from deforestation, but failed to consider realistic land cover change scenarios. A 370 

number of agricultural management practices are known to mitigate climate change (summarized in 371 

Smith et al. 2008 and Eagle et al. 2012), including GHG emission reductions and soil carbon storage, but 372 

the potential contribution of albedo change as an ecosystem-scale mitigation factor has not been much 373 

addressed. For example, tillage practices, harvest timing, residue management, and winter cover crops can 374 

all affect surface reflectance in annual cropping systems (Bright et al. 2015; Poeplau and Don 2015; Kaye 375 

and Quemada 2017; Robertson et al. 2017) and thus GWI.  376 
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To our knowledge, no effort has been made to understand albedo mitigation in terms of both RF and 377 

GWI in the context of landscape mosaics characterized by diverse land use type and intensity. Using the 378 

framework listed in Equation 1 and Figure 1, we were able to integrate spatial (e.g., five landscapes 379 

within ecoregions) and temporal (e.g., inter- and intra-annual) changes as main drivers of αSHO variations. 380 

Regardless of land composition, cropland-dominated landscapes showed a higher intra-annual variability 381 

of αSHO than forests under dry, wet, and normal climatic conditions (Figure 4 a–c), likely due to the higher 382 

disturbances that croplands experience (i.e., fragmentation, land management, crop variety, and crop 383 

seasonality). For example, αSHO can be altered by the differences in leaf structure/properties (Miller et al. 384 

2016) and leaf wetness (Luyssaert et al. 2014), by the difference in management of both perennial and 385 

annual crops and by agricultural practices (Bright et al. 2015; Kaye and Quemada 2017; Robertson et al. 386 

2017). 387 

The LSM multi-comparison analysis showed that dry conditions led FOR1 to yield statistically higher 388 

αSHO compared to wet and normal conditions. On the other hand, CROP2 showed significantly lower αSHO 389 

under normal conditions than under dry and wet conditions (Figure 3a), indicating a different albedo 390 

response of forest- and cropland-dominated landscapes to changes in climatic conditions. All other 391 

landscapes showed higher αSHO in the dry year (2012) than in the normal and wet years, although not 392 

statistically different. 393 

4.2 Albedo-induced radiative forcing (RFΔα) and global warming impact (GWIΔα) 394 

We obtained RFΔα (W m-2) values that were more representative of the entire growing season through 395 

the years 2012, 2016, and 2017. We found that the five landscapes had a negative RFΔα, indicating a 396 

cooling effect. However, such effect was stronger in FOR1 where it ranged between -3.9 W m-2 and -5.6 397 

W m-2 (Table 3; Figure 5a), followed by CROP3 (-2.9 W m-2 and -3.7 W m-2) and FOR2 (-2.7 W m-2 and -398 

2.9 W m-2), while CROP1 and CROP2 were almost similar (ranging between -1.2 W m-2
 and -1.9 W m-2, 399 

respectively). In other words, land mosaics in the landscape with the highest proportion of forest (e.g., 400 

FOR1) leads to a maximum RFΔα of -5.6 W m-2 (i.e., a cooling effect), which is similar to that 401 
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hypothesized by Jiao et al. (2017) under the simulated scenario of global deforestation of evergreen 402 

broadleaf forests (local magnitude of RFTOA at -5.6 W m-2). Moreover, in this study we were able to 403 

investigate RFΔα dynamics across three contrasting precipitation regimes — dry (2012), wet (2016), and 404 

normal (2017). The inter-annual analysis specifically showed that within each landscape, the cooling 405 

effect was lower in 2016 and higher in 2017, with the exception of FOR2, which had a lower cooling 406 

effect in 2012 and a higher one in 2017 (e.g., slightly higher than in 2016). In sum, accurate quantification 407 

of landscape contribution to the global warming potentials needs input from both landscape composition 408 

and climate that directly regulate ecosystem properties. 409 

The GWIΔα computations enabled us to estimate the CO2eq mitigation caused by the differences 410 

between mean cropland and mean forest albedos. Standardized to the same areas, the greatest contribution 411 

of albedo change to GWI occurred in the FOR1 (GWIΔα = -1.3 Mg CO2eq ha-1 in 2017; Table 3; Figure 412 

5b), whereas the least contribution occurred in CROP2 (-0.3 Mg CO2eq ha-1 yr-1).  These contributions to 413 

GWI are of the same order of magnitude as many crop management components. For example, in this 414 

same watershed a corn-soybean-wheat rotation managed with a legume cover crop had a net GWI of 0.4 - 415 

0.6 Mg CO2eq ha-1 yr-1 (Robertson et al 2000), without considering albedo change due to historical 416 

LULCC. Likewise, the net GWI of conventional and no-till cropping systems were similar in magnitude 417 

without consideration of albedo; 0.3 to 0.9 Mg CO2eq ha-1 yr-1, respectively (Gelfand et al. 2013). In 418 

several landscapes (FOR1, FOR2, and CROP3), GWIΔα was sufficient to offset the GWI costs of both N2O 419 

emissions (0.4 Mg CO2eq ha-1 yr-1) and farming inputs for an alfalfa cropping system (~0.8 Mg CO2eq ha-1 420 

yr-1) (Gelfand et al. 2013). 421 

Surprisingly, the results of inter-annual variation among the three growing seasons showed that the 422 

CO2eq mitigation impact between forest- and cropland-dominated (FOR1, CROP3) landscapes was 423 

statistically different in 2012 and 2016 for FOR1 (Table 3, Figure 5a) and in 2016 for CROP3, suggesting 424 

that changes in climate conditions, as seen in our study from dry to normal and from wet to normal, can 425 

affect the CO2eq mitigation impacts of landscapes. Overall, in one of the forest-dominated landscapes 426 

(FOR1) the percent decrease of CO2eq mitigation due to dry and wet conditions was higher than that of the 427 
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cropland-dominated landscape CROP3 under wet conditions (e.g., lower albedo). Specifically, we found 428 

that both dry and wet conditions in FOR1 could significantly reduce CO2-eq. mitigation by up to 24% and 429 

~30% (i.e., percentage change), respectively; while the CO2eq mitigation’s decreasing in CROP3 was 430 

significant under wet conditions (e.g., 23.3%), which, in both cases, is still enough to offset 11% of the 431 

total CO2eq emissions of conventionally tilled corn systems in the same area and under the same climatic 432 

conditions (i.e., 2012 and 2016) (Abraha et al. 2019). Surprisingly the high decrease in Δα (e.g., FOR1: 433 

9% vs 6.1% and CROP3: 6% vs 1%) under wet conditions did not lead to a high decrease in CO2eq 434 

mitigation. 435 

4.3 Assumptions, limitations and uncertainties 436 

The methodology used in this study represents an analytical approach as a proof of concept of the 437 

effects of landscape patches and climatic conditions on RFΔα and GWIΔα in the context of forest- and 438 

cropland-dominant landscapes. However, certain assumptions can be made on the application of our 439 

approach. The first is that RFΔα is related to land mosaics (e.g., patch composition) derived by land 440 

transformation (Muñoz et al. 2010). In fact, the focus of the present study is to measure the changes in 441 

RFΔα and GWIΔα due to conversion of forests to croplands, assuming the existing croplands were forests 442 

in the past. We then considered Δα using the baseline (forest), which is treated as a reference cover type 443 

of the five landscapes, since it was the dominant land cover type of the pre-European settlements (Brown 444 

et al. 2000).  445 

A second assumption is related to using in-situ incoming radiation (SWin) for the calculation of 446 

upward atmospheric transmittance (Ta). While the literature (Lenton and Vaughan 2009; Muñoz et al. 447 

2010; Cherubini et al. 2012) refers to Ta as the annual global mean (Ta = 0.854) for a constant zenith 448 

angle of 60°, here we calculated Ta for a given day as the ratio SWin/SWTOA, with SWin obtained from in-449 

situ measurements within the study area (Abraha et al. 2015), specifically at the FOR2 landscape. By 450 

avoiding such a default value for Ta (e.g., 0.845), we reduced the error by ~30%. We then assumed that 451 

SWin would be the same at all five landscape locations. In fact, unlike previous studies, we calculated 452 
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RFΔα and GWIΔα on a relatively small area (i.e., not global/regional) for which the uncertainty error 453 

carried by a constant Ta would not have been significant.  454 

A third assumption is related to the time horizon (TH) fixed at 100 years, which is the same time 455 

horizon used in the Kyoto Protocol (Boucher et al. 2009). By calculating the annual GWIΔα as 1/100 of 456 

the total CO2eq, we assumed that, in each landscape, the same land mosaic will be maintained for the 457 

duration of 100 years. This choice of TH is a limitation because short time horizons can overemphasize 458 

the impacts of albedo, while long time horizons can de-emphasize the impacts (Anderson-Teixeira et al. 459 

2012). 460 

Another limitation of the study is the use of a growing season (March-October) time frame for RFΔα 461 

and GWIΔα rather than an annual period. Previous studies (Campbell and Norman 1998; Bonan 2008; 462 

Iqbal 2012; Liang et al. 2013; Zhao and Jackson 2014; Bright et al. 2015; Kaye and Quemada 2017; Sun 463 

et al. 2017) have addressed the importance of snow cover to variability/uncertainty of albedo between 464 

forest and cropland because of the capability of forest stands of masking the snow (e.g., lowing the 465 

albedo). Nevertheless, our use of growing season values allowed to better isolate the human disturbance 466 

on the landscape through agricultural activities by focusing on the crop phenology and its relation with 467 

climatic conditions. Had we included wintertime albedo, our forest-cropland differences would have been 468 

even greater, however, since deciduous forest stands have higher wintertime albedo than cropland due to 469 

the presence of bare branches (Bonan 2008; Anderson et al. 2011) during winter. On the other hand, from 470 

the remote sensing perspective, MODIS snow-albedo retrievals have been demonstrated to be less 471 

accurate than acquisitions during the growing season (Wang et al., 2014).   472 

There are also uncertainties associated with user-defined data (Muñoz et al. 2010), such as 473 

considering Δα as the difference between croplands and forest albedos. AF (i.e., CO2 airborne fraction) 474 

and rfCO2 (the marginal RF of CO2 emissions at the current atmospheric concentration) are estimated to 475 

embed errors of ±15% and ±10%, respectively, in the GWI estimation (Forster et al. 2007; Akbari et al. 476 

2009). It is also worth mentioning the uncertainties related to the scale-dependency. In fact, there is a 477 

mismatch between the spatial representativeness of MODIS acquisition pixels (e.g., 500×500 m) and that 478 
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of Landsat (30×30 m), which leads to intrinsic variability of the measurements (Chrysoulakis et al. 2018; 479 

Chen et al. 2019). However, as already emphasized in previous studies (Mira et al. 2015; Moustafa et al. 480 

2017), validation techniques provide a reasonable estimate of albedo from MODIS products across 481 

homogeneous landscapes (e.g., the two forest- and the three cropland-dominated landscapes).  482 

Lastly, we did not consider the effect of spatial autocorrelation that may affect the significance of the 483 

statistic test (Fletcher and Fortin 2018). Nevertheless, the aim of this study is not to attempt spatial 484 

predictions (Feilhauer et al. 2012) of RFΔα and GWIΔα. 485 

5. Conclusions 486 

1. There are significant contributions (R2=0.64) to the overall variation in albedo due to landscapes 487 

(i.e., ecoregions), cover types (i.e., landscape mosaics), and seasons (i.e., seasonality). Variation in 488 

seasons contributes more than landscape composition (~16% and 11%, respectively) in variations of 489 

albedo. 490 

2. By integrating spatial (e.g., five landscapes within ecoregions) and temporal (e.g., inter- and intra-491 

annual) patterns as main drivers of albedo variation, we found that cropland-dominated landscapes 492 

produce a higher intra-annual variability of albedo under dry, wet, and normal climatic conditions, likely 493 

due to more frequent disturbances (i.e., management activities). Forest-dominated landscapes have higher 494 

albedo in dry and wet years than that in normal years, whereas only one crop-dominated landscape shows 495 

statistically lower albedo under normal conditions than that under dry and wet ones. This indicates a 496 

different response to changes in climatic conditions from forest- and cropland-dominated landscapes. 497 

3. The cooling effect of RFΔα occurs in all landscapes but is higher in the landscape with the highest 498 

proportion of forests (FOR1) (e.g., higher differences between mean cropland and mean forest albedos). 499 

The pattern of GWIΔα across the five landscapes is similar to that of RFΔα, with CO2eq mitigation relative 500 

to pre-existing forest vegetation higher in FOR1 and lower in CROP1 and CROP2.  501 

4. We found that in the landscape with the highest proportion of forest (FOR1) both dry and wet 502 

conditions can significantly reduce CO2eq mitigation by up to 24% and ~30%, respectively; while the 503 
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reduction of CO2eq mitigation is significant only in one of the cropland-dominated landscapes (CROP3) 504 

under wet conditions (e.g., 23.3% decrease). 505 
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Tables 749 

Table 1 Land cover composition of the five landscapes. Bold values indicate the cover type dominating 750 

the landscape. 751 

752  
Landscape 

Cover type FOR1 FOR2 CROP1 CROP2 CROP3 

 ha (%) 

Urban  513 (5.2) 1330 (13.3) 545 (5.5) 1047 (10.5) 1341 (13.4) 

Cropland 1035 (10.5) 2597 (26.0) 6807 (68.1) 6442 (64.5) 5713 (57.2) 

Barren 530 (5.4) 286 (2.9) 49 (0.5) 62 (0.6) 64 (0.6) 

Forest 5672 (57.5) 3833 (38.4) 1415 (14.2) 1670 (16.7) 1477 (14.8) 

Water 410 (4.2) 922 (9.2) 56 (0.6) 43 (0.4) 442 (4.4) 

Wetland 1669 (16.9) 1012 (10.1) 1101 (11.0) 693 (6.9) 917 (9.2) 

Grassland 30 (0.3) 12 (0.1) 21 (0.2) 35 (0.4) 38 (0.4) 
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Table 2 Statistical results of analysis of variance (ANOVA) based on the linear model in Equation 1 (dependent variable: αSHO).  753 

Variable DF SS MS F p  ω² R2 

landscape 4 1.869 0.467 3689.660 *** 0.266  

seasons 2 1.118 0.559 4414.651 *** 0.159 

cover type 6 0.779 0.130 1024.423 *** 0.111 

landscape × cover type 24 0.371 0.015 121.891 *** 0.052  

landscape × seasons 8 0.142 0.018 140.167 *** 0.020  

landscape × cover type × seasons 48 0.079 0.002 12.962 *** 0.011  

year × seasons 4 0.048 0.012 94.672 *** 0.007  

cover type × seasons 12 0.030 0.003 19.844 *** 0.004  

landscape × year 8 0.022 0.003 21.210 *** 0.003  

landscape × year × seasons 16 0.020 0.001 9.684 *** 0.003  

year 2 0.013 0.007 51.367 *** 0.002  

landscape × cover type × year 48 0.015 0 2.505 *** 0.002  

cover type × year 12 0.002 0 1.278  0  

cover type × year × seasons 24 0.003 0 1.047  0  

landscape × cover type × year × seasons 96 0.011 0 0.887  0 0.64 

Residuals 19779 2.505 0 
   

 

ω2 indicates variance in the dependent variable αSHO accounted for by the independent variables landscape, cover type, 754 
year, seasons, and their interactions. Significance codes: “***” p < 0.001, “**” p < 0.0.1, “*” p < 0.05, “.” p < 0.1, “ ” p > 0.1.  755 
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Table 3 Mean change of Δα (%), RFΔα (W m-2), and GWIΔα (Mg CO2eq ha-1 yr-1) for each landscape in 2012, 2016, and 2017 growing seasons. 756 

Negative values for RFΔα and GWIΔα indicate cooling effects and CO2eq mitigation impacts due to albedo change, respectively. Percentage changes 757 

(%) between 2017 (baseline) and the two extreme climatic years (i.e., diff 2017-2012 and diff 2017-1016, respectively) are also shown. Values with 758 

significant decrease (e.g., percent change) are highlighted in bold texts. 759 

760 
 2012 2016 2017 diff2017-2012  diff2017-2016 

 Δα RFΔα GWIΔα Δα RFΔα GWIΔα Δα RFΔα GWIΔα Δα RFΔα / GWIΔα Δα RFΔα / GWIΔα 
FOR1 1.2 (±0.8) -4.2 -1.0 

 
1.2 (±0.8) -3.9 -0.9 

 
1.3 (±0.6) -5.6 -1.3 

 
9.0 24.0 6.1 29.9 

FOR2 0.8 (±0.3) -2.7 -0.6 
 

1.0 (±0.4) -2.9 -0.7 
 

1.1 (±2.0) -2.9 -0.7 
 

28.5 9.0 7.8 1.4 

CROP1 0.5 (±0.2) -1.7 -0.4 
 

0.5 (±0.3) -1.3 -0.3 
 

0.5 (±0.3) -2.0 -0.5 
 

9.2 15.6 12.6 32.1 

CROP2 0.5 (±0.3) -1.7 -0.4 
 

0.4 (±0.2) -1.2 -0.3 
 

0.6 (±1.4) -1.9 -0.4 
 

19.4 9.9 34.3 33.4 

CROP3 0.9 (±0.3) -3.2 -0.7 
 

0.9 (±0.6) -2.9 -0.7 
 

0.9 (±0.5) -3.7 -0.9 
 

6.0 14.9 1.0 23.3 
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Figure captions 761 

Fig. 1 Schematic diagram showing the relationship between landscape albedo and GWIΔα.  762 

Fig. 2 Locations of the five landscapes (FOR1, FOR2, CROP1, CROP2, CROP3) within the Kalamazoo 763 

River watershed in the southwest Michigan (USA). Each landscape falls within a unique Level IV 764 

ecoregion defined by the United States Environmental Protection Agency (US EPA). Basemap sources: 765 

Esri, HERE, Garmin, USGS, Intermap, INCREMENT P, NRCAN, Esri Japan, METI, Esri China (Hong 766 

Kong), NOSTRA, © OpenStreetMap contributors, and the GIS User Community. 767 

Fig. 3 Least square means (LSM) multi-comparison analysis of αSHO (a) and ΔαSHO (b) in 2012, 2016, and 768 

2017 for each landscape. Boxes indicate the LSM; whiskers represent the lower and upper limits of the 769 

95% family-wise confidence level of the LSM. Boxes sharing the same letters are not significantly 770 

different (intra- and inter-annual, as well as within and among the five landscapes) according to the Tukey 771 

HSD test. 772 

Fig. 4 Mean αSHO (%) by cover type and season in 2012 (a1–a4), 2016 (b1–b4), and 2017 (c1–c4) for the 773 

five landscapes. Mean of the difference between mean cropland and mean forest albedos (ΔαSHO) for the 774 

same years (Δa, Δb, and Δc, respectively) is also shown. 775 

Fig. 5 Bar chart of RFΔα (W m-2) due to the difference between mean cropland and mean forest albedos at 776 

the top-of-atmosphere across five landscapes at 10:30 a.m. local time (UTC) during the 2012, 2016, and 777 

2017 growing seasons (a). Panel (b) shows GWIΔα (Mg CO2eq ha-1 yr-1) due to the difference between 778 

mean cropland and mean forest albedos. Negative values for RFΔα and GWIΔα indicate cooling effects and 779 

CO2eq mitigation impacts, respectively. Bars sharing the same letters are not significantly different (intra- 780 

and inter-annual, as well as within and among the five landscapes) according to the Tukey HSD test. 781 
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