E2E: Embracing User Heterogeneity to Improve Quality of
Experience on the Web

Xu Zhangl, Siddhartha Sen?, Daniar Kurniawan!, Haryadi Gunawi!, Junchen _]iang1
'University of Chicago, 2Microsoft Research

ABSTRACT

Conventional wisdom states that to improve quality of experience
(QoE), web service providers should reduce the median or other
percentiles of server-side delays. This work shows that doing so
can be inefficient due to user heterogeneity in how the delays impact
QoE. From the perspective of QoE, the sensitivity of a request to
delays can vary greatly even among identical requests arriving at
the service, because they differ in the wide-area network latency
experienced prior to arriving at the service. In other words, saving
50ms of server-side delay affects different users differently.

This paper presents E2E, the first resource allocation system that
embraces user heterogeneity to allocate server-side resources in a
QoE-aware manner. Exploiting this heterogeneity faces a unique
challenge: unlike other application-level properties of a web request
(e.g., a user’s subscription type), the QoE sensitivity of a request to
server-side delays cannot be pre-determined, as it depends on the
delays themselves, which are determined by the resource allocation
decisions and the incoming requests. This circular dependence
makes the problem computationally difficult.

We make three contributions: (1) a case for exploiting user het-
erogeneity to improve QoE, based on end-to-end traces from Mi-
crosoft’s cloud-scale production web framework, as well as a user
study on Amazon MTurk; (2) a novel resource allocation policy
that addresses the circular dependence mentioned above; and (3) an
efficient system implementation with almost negligible overhead.
We applied E2E to two open-source systems: replica selection in
Cassandra and message scheduling in RabbitMQ. Using traces and
our testbed deployments, we show that E2E can increase QoE (e.g.,
duration of user engagement) by 28%, or serve 40% more concurrent
requests without any drop in QoE.

CCS CONCEPTS

« Information systems — Web services; s Human-centered com-
puting;

KEYWORDS:

Web Services, Quality of Experience, Resource Allocation

ACM Reference Format:

Xu Zhang, Siddhartha Sen, Daniar Kurniawan, Haryadi Gunawi, Junchen
Jiang. 2019. E2E: Embracing User Heterogeneity to Improve Quality of
Experience on the Web. In SIGCOMM’19: 2019 Conference of the ACM Special

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

SIGCOMM °19, August 19-23, 2019, Beijing, China

© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-5956-6/19/08...$15.00
https://doi.org/10.1145/3341302.3342089

289

(a) This work
w
w o
8 e g Today
Delay Throughput

(a) User heterogeneity (b) Better QoE and throughput
Figure 1: (a) An example of three requests with different QoE sen-
sitivities to server-side delays, and (b) the potential QoE/throughput
improvement if we leverage user heterogeneity. These figures are illus-
trative; actual figures from our evaluation and trace analysis appear
later (e.g., Figures 3, 6).

Interest Group on Data Communication, August 19-23, 2019, Beijing, China.
ACM, New York, NY, USA, 14 pages. https://doi.org/10.1145/3341302.3342089

1 INTRODUCTION

Improving end-to-end performance is critical for web service providers
such as Microsoft, Amazon, and Facebook, whose revenues depend
crucially on high quality of experience (QoE). More than ten years
have passed since Amazon famously reported every 100ms of la-
tency cost them 1% in sales, and Google found 0.5s of additional
load time for search results led to a 20% drop in traffic [5]. Today,
latency remains critical but the consequences have gotten steeper:
an Akamai study in 2017 showed every 100ms of delay in website
load time hurt conversion rates by 7% [6], and Google reported
higher mobile webpage load times more than double the proba-
bility of a bounce [7]. Naturally, web service providers strive to
cut server-side delays—the only delays they can control—to im-
prove the end-to-end performance of each web request. Following
this conventional wisdom, a rich literature has developed around
reducing web service delays (e.g., [21, 26, 28, 32, 45, 47, 49]).

Our work is driven by a simple observation: although reducing
server-side delay generally improves QoE, the amount of QoE im-
provement varies greatly depending on the external delay of each
web request, i.e., the total delay experienced prior to arriving at
the web service due to ISP routing, last-mile connectivity, and so
forth. In other words, if we define QoE sensitivity as the amount
QoE would improve if the server-side delay were reduced to zero,
there is substantial heterogeneity in QoE sensitivity across users.
This heterogeneity results from two empirical findings. First, as
illustrated in Figure 1(a), QoE typically decreases along a sigmoid-
like curve as delay increases. When the external delay is very short
or very long (e.g., A or C on the curve), QoE tends to be less sen-
sitive to the server-side delay than when the external delay is in
the middle (e.g., B on the curve). We verified this trend using traces
from Microsoft’s cloud-scale production web framework, as well as
a user study we ran on Amazon MTurk to derive QoE curves for
several popular websites (§2.2).

Second, external delays are inherently diverse across user re-
quests to the same web service, due to factors that are beyond the

SIGCOMM ’19, August 19-23, 2019, Beijing, China

control of the web service provider: e.g., ISP routing, last-mile con-
nectivity, DNS lookups, and client-side (browser) rendering and
processing. Our analysis of our traces reveals substantial variabil-
ity in external delays even among requests received by the same
frontend web server, for the same web content (§2.2).

The heterogeneity in QoE sensitivity implies that following the
conventional wisdom of minimizing server-side delays uniformly
across all requests can be inefficient, because resources may be used
to optimize requests that are not sensitive to this delay. Instead, we
should reallocate these resources to requests whose QoE is sensitive
to server-side delay.

At a high level, user heterogeneity is inherent to the Internet’s
loosely federated architecture, where different systems are con-
nected together functionally (client devices, ISPs, cloud providers,
etc.), but delay optimization is handled separately by each system.
Our work does not advocate against this federated architecture;
rather, we argue that web service providers should embrace the
heterogeneity of QoE sensitivity across users to better allocate server-
side resources to optimize QoE. Using our traces, we show that if
we could reshuffle server-side delays among concurrent requests
so that requests with more sensitive QoE get lower server-side
delays, we could increase the average duration of user engagement
(a measure of QoE) by 28% (§2.3).

To explore the opportunities of leveraging user heterogeneity, we
present E2E, a resource allocation system for web services that opti-
mizes QoE by allocating resources based on each user’s sensitivity
to server-side delay.! E2E can be used by any shared-resource ser-
vice; for example it can be used for replica selection in a distributed
database to route sensitive requests to lighter-loaded replicas.

The key conceptual challenge behind E2E is that, unlike static
properties of a request (e.g., basic vs. premium subscription, wireless
vs. wired connectivity), one cannot determine the QoE sensitivity of
an arriving request based solely on its external delay. Instead, QoE
sensitivity depends on the server-side delay as well. As we show in
§3.2, if the server-side delay is large enough, it could cause a seem-
ingly less sensitive request (A) to suffer more QoE degradation than
a seemingly more sensitive request (B). Thus, one cannot prioritize
the allocation of resources without taking into account both the
external delay distribution and the server-side delay distribution.
The latter distribution, in turn, is affected by the resource alloca-
tion itself, which makes the problem circular and computationally
expensive to solve at the timescale of a web serving system.

EZ2E addresses this challenge from both the algorithmic perspec-
tive and the systems perspective. From the algorithmic perspective,
E2E decouples the resource allocation problem into two subprob-
lems, each of which can be solved efficiently: (1) a workload alloca-
tion process, which determines the server-side delay distribution
without considering QoE sensitivity; and (2) a delay assignment
process, which uses graph matching to “assign” the server-side
delays to individual requests in proportion to their QoE sensitivity.
EZ2E solves the two subproblems iteratively until it finds the best
workload allocation and delay assignment (§4).

From the systems perspective, E2E further reduces the cost of
processing each request by coarsening the timescale and the gran-
ularity of resource allocation decisions. Observing that the optimal

'E2E takes an “end-to-end” view of web request delays.

290

X. Zhang et al.

Page Type 1 Page Type 2 Page Type 3
Page loads (K) 682.6 314.1 600.2
Web sessions (K) 564.8 265.7 512.2
Unique URLs (K) 3.8 1.5 3.2
Unique users (K) 521.5 264.2 481.8

Table 1: Dataset summary (date: 02/20/2018)

allocation is insensitive to small perturbations in the external delay
and server-side delay distributions, we allow the system to cache
allocation decisions in a lookup table and only update them when
a significant change is detected in either distribution (§5).

We demonstrate the practicality of E2E by integrating it into two
open-source systems to make them QoE-aware: replica selection
in a distributed database (Cassandra) and message scheduling in a
message broker (RabbitMQ) (§6). We use a trace-driven evaluation
and our testbed deployments to show that (1) E2E can improve
QOE (e.g., duration of user engagement) by 28%, or serve 40% more
concurrent requests without any drop in QoE; and (2) E2E incurs
negligible (4.2%) system overhead and less than 100us delay (§7).

This paper focuses on applying E2E to an individual service, or to
multiple services that serve unrelated requests. In a production web
framework, it is often the case that multiple backend services work
together to complete the same (high-level) web request. Focusing
on individual backend services allows us to develop our key idea
of prioritizing requests based on how sensitive their QoE is to
server-side delays, without the added complexity introduced by
dependencies across services. We discuss these issues in §9.

2 MOTIVATION

We first use our traces to show the prevalence of heterogeneity
in how server-side delays impact the QoE of different users (§2.2).
Then, we analyze the potential QoE improvement that could be
attained by exploiting this heterogeneity for server-side resource
allocation (§2.3).

2.1 Dataset

Our dataset consists of the traces of all web requests served by a

production web framework cluster during one day in February 2018.

The cluster is one of several located in an Eastern US datacenter

serving the major websites and online storefront properties of Mi-

crosoft.? Importantly, the traces include both client-side (browser)

and server-side event logs: the client-side logs record all page ren-
dering events and issued requests, while the server-side logs record
all backend processing operations required to fulfill each request.

Overall, the dataset spans 1.17M unique users and 1.6M page load

events, as summarized in Table 1.

For each web request, we define three delay metrics, shown

visually in Figure 2:

e The total delay (also known as page load time) is the duration
between when a user clicks a link that issues the request and
when the last object associated with the request is rendered.

o The server-side delay is the time to process all server-side opera-
tions on the backend, which may involve multiple steps, such as
fetching product IDs from a database and then querying a product
catalog for HTML description snippets, before aggregating the
results and sending them to the user.

2Examples include: microsoft.com, xbox.com, msn.com, etc..

E2E: Embracing User Heterogeneity to Improve QoE on the Web

Request

(browser) Datacenter

2 =%G

Frontend web
server

(last-mile, ISP)

Shared-resource
service

-

server-side delay

external delay

total delay

Figure 2: The life cycle of a web request, showing the total delay,
server-side delay, and external delay.

e The external delay includes all delays beyond the purview of
server-side operations, e.g., transferring data over the wide-area
network, routing the request to the service, decoding and render-
ing the response in the client-side browser, etc..

We measure these delay metrics for each web request using the
timestamps recorded in our traces. The total delay is measured by
the difference between the first and the last timestamps associated
with the request. The server-side delay is measured by the total
delay of all backend operations (with overlapping delays excluded).
As mentioned above, we assume there is a single backend service;
we discuss complex dependencies between backend services in
§9. Finally, the external delay of a web request is calculated by
subtracting the server-side delay from the total delay; it includes
both wide-area network and datacenter delays, as shown in Figure 2.
Note that this estimate of external delay is conservative because the
actual delay may be smaller if server-side processing overlaps with
wide-area transfers or browser rendering—our results improve as
server-side delay becomes larger relative to external delay.

2.2 QOoE sensitivity and its heterogeneity

Our basic intuition is that the impact of the server-side delay of
arequest on its QoE, i.e., its QoE sensitivity, varies greatly across
users. This follows directly from two observations, which we em-
pirically demonstrate here: the sigmoid-like relationship between
QoE and total delay, and the variability in requests’ external delays.
Sigmoid-like QoE-delay relationship: Figure 3 shows the QoE-
delay relationship of requests to one particular page type. Like
prior work, we estimate QoE by “time-on-site”, measured as the
difference between the start and end timestamps of their web ses-
sion. A web session includes all of the user’s engagement on the
website, such as subsequent clicks and other interactions, with no
period of inactivity greater than 30 minutes. Figure 3 groups the
total delays into equal-sized buckets, each with at least 5,000 users,
and plots the average QoE of users in each bucket. The key property
of this graph is its sigmoid-like shape. Initially the total delay is
small and the QoE is almost insensitive to any change in delay (the
delay is too short for users to perceive); then the QoE starts to drop
sharply with slope peaking at around 2,000 ms (this is the region
where reducing total delay makes a difference); finally, when the
total delay exceeds about 5,800 ms, the QoE becomes insensitive
again (the delay is long enough that a little additional delay, while
noticeable, does not substantially affect QoE). Accordingly, we can
roughly categorize all user requests into three sensitivity classes:
o Too-fast-to-matter (left blue-shaded area): QoE is not sensitive to

server-side delay if total delay is below 2000 ms.

o Sensitive (middle orange-shaded area): QoE is sensitive to server-
side delay when total delay is between 2000 ms and 5,800 ms.

291

SIGCOMM ’19, August 19-23, 2019, Beijing, China

Grade
N w B (6]

QoE (Normalized)
oD O 0 =

L L L L 1 L L L L
0 6 12 18 24 0 6 12 18 24

Page load time (sec.) Page load time (sec.)
(a) Trace analysis (b) MTurk experiment
Figure 3: We observe a non-linear relationship between QoE and
total delay (a), so reducing delay by the same amount can have a
dramatically different impact on QoE. We highlight different sensitiv-
ity regions with different colors. The same QoE-delay relationship is
observed in our MTurk-based user study (b).

o Too-slow-to-matter (right red-shaded area): QoE is not sensitive
to server-side delay if total delay exceeds 5,800 ms.

The sigmoid-like curve may look similar to deadline-driven util-
ity curves commonly used in prior work (e.g., [21, 41]), but there is
a difference. Traditionally, a service deadline is set where the QoE
starts to drop. But our analysis shows that when the total delay
exceeds any threshold, the QoE does not drop to zero immediately,
and instead decreases gradually as total delay increases. As we will
see in §7.4, this difference can cause deadline-driven schemes to
have suboptimal QoE.

We acknowledge that time-on-site may not always reflect how
satisfied users are with the web loading experience. Therefore, we
complement the above analysis with an IRB approved user study>
on Amazon MTurk [1]. We describe the detailed setup in Appen-
dix B and only give a summary here. Following similar work in
the crowdsourcing literature [48], we asked participants to watch
a web page load with different total delays and then to rate their
experience on a scale of 1-5. The total delays were randomly per-
muted per user to avoid any bias due to ordering. We ran this user
study on the same web page as in Figure 3(a) and plot the resulting
QOE curve in Figure 3(b). As the figure shows, the curve from the
user study shares the same sigmoid-like shape as the curve from
our trace analysis. We also repeated the user study on four other
popular websites; all websites yielded similar sigmoid-like QoE
curves, though the boundaries of the three sensitivity regions vary
slightly across the sites.

Although our observations about the QoE-delay relationship do
not seem different from prior work (e.g., [14, 22]), they have deeper
implications when combined with the next empirical observation
on the variability of external delays.

Variability in external delays: The sigmoid-like relationship
between QoE and delay means that the sensitivity of QoE to server-
side delay depends heavily on the external delay. Figure 4 shows
the distribution of external delays among requests for the same web
page received at the same frontend web cluster. We see a substantial
fraction of requests in each of the three sensitivity classes (25% too-
fast-to-matter, 50% sensitive, 25% too-slow-to-matter). The same
kind of distribution holds across web pages and is stable over time
in our traces.* Note that the variance in Figure 4 is unlikely due

30ur study was approved by U. Chicago, IRB18-1096. It does not raise ethical issues.
“The total delay distributions in our traces are consistent with those observed in prior
work [16], though they may still vary with website type (e.g., online shopping vs.
search engine).

SIGCOMM ’19, August 19-23, 2019, Beijing, China

CDF
oM h D=

25%

25%
50%

2468 12 16
Page load time (sec.)
Figure 4: External delays exhibit great variance even among requests
received by the same web server cluster for the same page content.

20

to datacenter-level geographical differences, since our traces use a
global network of edge proxies to route users from the same region
to the same datacenter cluster, although this does not exclude geo-
graphical differences users in the same region. It is also unlikely due
to application-level differences, since the requests are all targeting
the same web page. In practice, a web service provider may see
even greater variability in external delays if its edge proxies are less
widely distributed than our traces (causing each datacenter cluster
to serve a larger geographic region), or if requests are processed
by a more centralized architecture (e.g., in many video streaming
CDNs [51]).

Since external delays are beyond the control of the web service
provider, they are an inherent property of the request from the
perspective of the service provider. This is in contrast to server-side
delays, which the service can influence.

2.3 DPotential for improvement

We now use a trace-driven simulation to demonstrate the opportu-
nity of leveraging the heterogeneity of QoE sensitivity to server-side
delays. Suppose the dataset has n requests R = {r1,...,rp}, and
the server-side delay and external delay of request r; are s; and ¢;,
respectively. Let Q(+) be the QoE function that takes total delay as
input and returns the expected QoE. The current QoE of r; can thus
be denoted by Vl."ld = Q(s;j + ¢;). Table 2 summarizes our notation.
Reshuffling server-side delays: Now, let us consider a simple
analysis to counterfactually estimate the benefit of allocating re-
sources based on QoFE sensitivity. We preserve both the external
delay of each request and the collection of server-side delays, but we
re-assign the server-side delays to requests as follows. We first rank

dx |x=c;’
representing the impact on QoE of a small change in server-side de-
lay. Then, we assign the k'-largest server-side delay to the request
with the kh-smallest derivative (i.e., the k™-least sensitive request
to server-side delay). Let 7 denote the resulting permutation of
server-side delays, i.e, request r; now has server-side delay s ;).
So the new QoE of request r; is V**™ = Q(s(;) + ¢i).

Intuitively, the above re-assignment gives small server-side de-
lays to requests that are sensitive to them, and larger delays to
requests that are less sensitive. If the server-side delays s; are suf-
ficiently small, this assignment can be shown to be optimal, as
follows. The average QoE can be written as % T Qe +ei) =
% 2 Sai)Q'(ei) + % 1 0(ci). Suppose the c; are given and
w.lo.g. ¢ £ -+ < cp, then this expression is maximized when
Sg(1) = = Sg(n)-

Practicality of simulation: To avoid assigning improbable server-
side delays to the requests, we first grouped the requests by page
type within one-minute time windows, and only re-assigned server-
side delays among requests in the same group and 10-second time

all requests in order of their derivative on the QoE curve, —

292

X. Zhang et al.

CDF
oMo o =

; Reshuffled delay
Zero server-side delay - - - -

0 100 200 300
Per-request QoE gain (%)
Figure 5: Potential QoE gains through better allocation of server-side
resources based on QoE sensitivity. By reshuffling server-side delays
(solid yellow line), we achieve significant QoE gains that are close to
the (unrealizable) ideal of zero server-side delays (dashed blue line).

window. In other words, we do not assign the server-side delay of
an off-peak-hour request to a peak-hour request, or the server-side
delay of a simple static page request to a complex page request. We
also verified that the server-side delay distributions exhibit only
negligible changes within a time window. Nonetheless, there are
two important caveats. First, our analysis assumes the server-side
delays can be arbitrarily re-assigned among requests, which of
course is impractical. Second, the analysis uses a very simple algo-
rithm that assumes the set of server-side delays is fixed. In practice,
server-side delays are difficult to predict and depend on how re-
sources are allocated to requests. These issues make it challenging
to achieve the QoE gains predicted by our simulation; later sections
address the issues to extract as much gain as we can manage.

Potential gains in QoE and throughput: Figure 5 shows the
distribution of QoE improvements over all requests, i.e., (O —

Qfld) / Qfld, as predicted by our simulation. We see that a small
fraction of requests (less than 15.2%) suffer a marginally worse QoE
under the new assignment, but a substantial fraction of requests
(over 27.8%) see QoE improve by at least 20%. Overall, the new
average QOE is 15.4% higher than the old QoE. These improvements
are consistent across different page types in the traces. Note that
although the new assignment may worsen tail QoE, requests at
the tail have such small QoE derivatives that the additional degra-
dation is marginal. We conclude that there is substantial room to
improve QoE for a substantial fraction of users, without changing
the distribution of server-side delays.

Similarly, we can also support more concurrent requests, i.e.,
higher throughput, while maintaining a similar level of QoE. To
estimate the gain in throughput, we apply our reshuffling of server-
side delays to peak hours (higher throughput but worse QoE) and to
off-peak hours (lower throughput but better QoE). Figure 6 shows
the throughput and QoE during these two periods of time. We ran-
domly select web requests from two peak hours (4pm and 9pm) and
three off-peak hours (12am, 3am, 10pm), all in the Eastern Time
Zone. For every 10 minutes, we pick the last 10-second window,
reshuffle the server-side delays within the time window, and mea-
sure the new QoE as above. We can see that the new average QoE
during peak hours is similar to (even higher than) the old QoE dur-
ing off-peak hours. In other words, if we only apply our approach
during peak hours, we could support 40% more users without any
drop in average QoE.

Now, there are two contributing factors that suggest why these
potential gains can be realized over existing systems.

1. Existing systems are agnostic to user heterogeneity. Figure 7 shows
the distribution of server-side delays in a 10-second window for
requests whose external delays fall into different ranges. We see

E2E: Embracing User Heterogeneity to Improve QoE on the Web

STFf 1
N —_—
% 6 L e s
g \
5.5+ 1
<

w 4 r Reshuffled delay —
S . Current Policy —

06 07 08 09 1

Throughput (Normalized)
Figure 6: Potential throughput improvement with similar QoE,
achieved by reshuffling server-side delays during peak hours and
off-peak hours.

7
> o | |
3

Server-side
delay (sec.)

At]

1 2 3 4 5 6 7
External delay (sec.)
Figure 7: Current server-side delays are uncorrelated with external
delays, showing that the existing resource allocation policy is agnostic
to QOE sensitivity. (Candlesticks show {5, 25, 50, 75, 95} percentiles.)
1

CDF
ok o ®

. Page Type 1 — -

Page Type2 ——

St Page Type 3

0 0.5 1 1.5 2
Stdev over mean of server-side delay

Figure 8: Server-side delays are highly variable, and not just at the

tail. This holds for different page types.

that there is little correlation between the external delay and
the corresponding server-side delay, which suggests that current
resource allocation and processing of these requests is agnostic
to QoE sensitivity. Our discussions with the Microsoft product
teams represented in our traces corroborate this finding.

2. Server-side delays are highly variable. Figure 8 shows that thereis a
substantial variability in server-side delays even among requests
for the same page type. Part of this variance is due to tail per-
formance (as observed in prior work), but the lower percentiles
also show substantial variance. This variance in server-side de-
lays creates the “wiggle room” that makes the improvements in
Figure 5 possible.

2.4 Summary of key observations

The findings in this section can be summarized as follows:

o The variability of external delays across users and the sigmoid-
like relationship between QoE and page load time give rise to
heterogeneity in the QoE sensitivity of users to server-side delays.

e Our trace-driven simulation shows that by allocating server-side
delays based on the QoE sensitivity of each request, one could
potentially improve QoE by 20% with the same throughput, or
improve throughput by 40% with the same QoE.

e Existing server-side resource allocation is largely agnostic to
external delays, while server-side delays exhibit high variance,
which together create the opportunity to significantly improve
QoE over current schemes.

293

SIGCOMM ’19, August 19-23, 2019, Beijing, China

.

Delay

QoE model §

Resource
allocation policy
Decisions
Requests / (replica/priority)
mE—f—— 9

Frontend web server

Figure 9: Overview of EZE.
3 E2E: OVERVIEW

The next few sections describe E2E, a general resource allocation
system for web services that realizes the potential QoE and through-
put gains of leveraging user heterogeneity.

3.1 Architecture

Figure 9 illustrates the main components of E2E and how it interacts
with a web service system. Typically, a web request is first received
by a frontend web server (Figure 9 depicts only one web server,
but there may be multiple), which then forwards the request to
a backend infrastructure service (e.g., a distributed database or a
message broker) whose compute/network resources are shared
across requests. E2E provides a resource allocation policy for the
shared service that makes a decision for each request, e.g., telling it
which replica to route the request to in a distributed database, or
what priority to assign the request in a message broker. Figure 9
depicts only one shared-resource service, but in general E2E can
serve multiple services (or multiple applications within a service)
simultaneously, provided these services do not interact on the same
request. We discuss interrelated services, such as those used to
aggregate results for a high-level web request, in §9.

E2E takes as input three variables: an offline-profiled QoE model
(such as the ones in Figure 3), an external delay model from the
frontend web servers, and a server-side delay model from the shared-
resource service. The external delay model provides the distribution
of external delays across requests and an estimate of the current
request’s external delay. This external delay is then tagged as an
additional field on the request and on any associated sub-requests
(similar to [21]). The server-side delay model provides an estimate
of the server-side delay of a request based on the decision and the
current workload. Based on these inputs, E2E returns a decision
per request for how to allocate resources to it. We discuss how
server-side delays and external delays are estimated in §6.

Figure 10 gives two illustrative examples of how E2E might affect
resource allocation policies, for a distributed database and a message
broker. In particular, E2E can improve the requests’ QoE in two
ways. First, E2E can assign more QoE-sensitive requests to decisions
that have lower server-side delays, e.g., a less loaded replica in a
distributed database. Second, E2E can allocate resources to affect the
server-side delays, in order to reduce the delays for QoE-sensitive
requests. Even if E2E cannot predict server-side delays exactly, it
can still create a discrepancy between the delays experienced by
requests of different QoE sensitivities. For instance, as illustrated
in Figure 10(a), E2E can assign uneven loads across the replicas of
a distributed database, so that less loaded replicas are available to
process QoE-sensitive requests with faster response times.

External delay model Server-side delay model

E2E controller

Shared-resource service
(distributed database/
message broker)

SIGCOMM ’19, August 19-23, 2019, Beijing, China

. Requests sensitive to server-side delay

Eﬁ'@ % 0 Requests insensitive to server-side delay

‘UDl\DA@ QDD\DD‘E& _Om00m0] _OODOEE]

Default policy Default policy
(Load balanced) (FIFO)

(a) Replica selection in distributed database (b) Scheduling in message broker

New policy
(Aware of QoE sensitivity)

New policy
(Aware of QoE sensitivity)

Figure 10: Examples of how E2E may allocate resources differently
in (a) a distributed database and (b) a message broker.

51 S2

s1 Better overall QoE if B
gets shorter delay (left)

Delay Delay

(a) Scenario 1: QE(s; = A) + QoE(s, = B) > QoE(s, = A) + QoE(s; = B)

' '
5y A

Better overall QoE if A
gets shorter delay (right)

v,

s1'
AN

Delay

Delay
(b) Scenario 2: QoE(s;" = A) + QoE(s," = B) < QoE(s," = A) + QoE(s,' = B)

Figure 11: Illustration of how allocating resources based solely on
requests’ external delays can lead to suboptimal QoE. Scenarios 1 and 2
have the same pair of requests but different server-side delays. We use
the assignment of server-side delays to represent resource allocation.
In scenario 1, assigning the shorter server-side delay (sz) to B and
the longer one (s1) to A leads to better overall QoE. But in scenario 2,
giving the shorter delay (s;) to A leads to worse overall QoE.

The next two sections present E2E’s resource allocation policy
and control interface, using the distributed database and message
broker as two concrete examples of a shared-resource service. In
general, E2E makes very few assumptions about how a shared
service processes requests or physically shares its resources; it
only requires the service to expose an API for controlling decisions
(e.g., the replica to select, the priority of a request, etc.). Also, our
work places less emphasis on the prediction of external/server-side
delays, or the implementation of a control plane on which E2E’s
resource allocation policy may run. Existing work already addresses
and provides general solutions for these aspects (e.g., [20, 21, 41]).

3.2 Key challenge

The key challenge behind E2E is that the optimal decision for a
request cannot be determined from the request alone. Instead, the
decision depends on the external delay distribution of other requests
as well as the server-side delay distribution, which itself'is a function
of these decisions. Figure 11 illustrates a simple example where
prioritizing requests purely based on external delay can lead to a
bad decision, and shows how to improve it by taking the server-side
delays and other requests’ external delays into account. The key
observation is that the non-convexity of the QoE-delay curve may
cause the sensitivity of a request’s QoE to flip depending on the
external delay and the magnitude of the server-side delay.

294

X. Zhang et al.

Term l Brief description

ri; R | request; vector of requests

ci; C | external delay of r;; vector of external delays

si; S server-side delay of r;; vector of server-side delays

Q(-) | QoE model; Q(d) returns the QoE of total delay d

zi; Z | allocation decision of rj; vector of decisions

G(-) | server-side delay model; G(Z) returns the server-side delay
vector of decision vector Z

Table 2: Summary of terminology

This property makes it challenging to design a scalable decision-
making policy. In particular, the circular dependence between server-
side delays and resource allocation decisions makes the problem
algorithmically expensive; and the need to account for other re-
quest’s external delays adds processing overheads.

The above makes E2E conceptually different from many other
request scheduling problems where each request has an innate
property that indicates its urgency, such as subscription type (e.g.,
premium vs regular users) or the application’s delay sensitivity
(e.g., video streaming vs. web pages). Notably, Timecard [41] and
DQBarge [21], two closely related systems to ours, use the external
delay to directly determine the processing deadline of each request
in isolation, without considering other requests or the global impact
on available resources (see §8).

4 E2E: DECISION POLICY
This section describes E2E’s decision-making policy for allocating
resources to requests.

4.1 Problem formulation

We start by formulating the problem of E2E. Table 2 summarizes
our terminology. We use r;, c;, s;, z; to denote the jth request, its ex-
ternal delay, server-side delay, and allocation decision, respectively.
Given n concurrent requests ry,..., 7, whose external delays c;..., ¢
are provided by the external delay model, E2E finds the decision
vector Z=(z1,..., z,) that maximizes

3 0ler + 61, 2),
i=1

where Q(d) is the QoE of a request with total delay d, as estimated

by the QoE model; and G(z, Z) is the server-side delay of a request

assigned to decision z given that the complete decision vector is

Z, as estimated by the server-side delay model. We assume that

the QoE, external delay, and server-side delay models are known

and provided as input; we discuss their implementation in §6. For
now we assume the server-side delay model G(-) returns precise

(noise-free) estimates; we relax this assumption at the end of §4.3.
Unfortunately, solving this problem is computationally hard,

because it has to take two dependencies into account:

1. The amount of resource allocated by z; to a request i depends on
how much impact the resource would have on the request’s QoE.
But this impact is not linear: as more resources are given to the
request, the improvement to its QoE may increase or diminish
(since Q is non-linear with respect to server-side delay G(z;)).

2. The resource allocation among a set requests depends on the
server-side delay distribution, which is itself a function of the
resource allocation.

E2E: Embracing User Heterogeneity to Improve QoE on the Web

Slots

.Sx

Replicas

X @ s
d IKY

(a) Obtain server-side delays of the
decision allocation from G(+)

Requests Slots

€1 . . Sx
cy . Q(CZ + Sx) . Sx
C3 . . Sy

(b) Construct a bipartite graph
between requests and decisions

SIGCOMM ’19, August 19-23, 2019, Beijing, China

Requests Slots Requests Replicas
1 Sx 1
C2 Sx C2
C3 Sy C3

(c) Find a maximum
bipartite matching

(d) Translate bipartite matching
into replica selection decisions

Figure 12: Running our request-decision mapping algorithm on an example replica selection scenario with three requests (c1, c, c3) and two
replicas (x, y). The given decision allocation is two requests for replica x and one request for the replica y. The final request-decision assignment is
optimal for the decision allocation if and only if the corresponding bipartite matching is maximum.

Mathematically, this problem is NP-hard; the proof is beyond
the scope of this paper (readers can refer to [46]), but the basic
hardness lies in the non-convexity of function Q.

4.2 Two-level decision-making policy

Our approach to addressing the above intractability is to decouple
the problem into two levels, as shown in Algorithm 1). The bottom
level finds the best request-decision mapping for a given decision
allocation, where a decision allocation is the number of requests
assigned with each possible decision (e.g., in a distributed database
the possible decisions are the different replicas). The top level uses a
simple hill-climbing search to try different decision allocations, find
the best request-decision mapping for each allocation (by invoking
the bottom level), and repeating until a decision allocation with
the best QoE is found. The rationale behind this search strategy
is that requests are functionally identical, so the server-side delay
model depends only on the decision allocation—e.g., the number of
requests assigned to each replica, not which specific requests are
assigned—allowing us to drastically reduce the search space from
all possible resource allocations to all possible decision allocations.
Since the number of possible decisions is typically small (e.g., the
number of replicas or priority levels), this is a large savings.

On the other hand, finding the best request-decision mapping
for a given decision allocation can be done optimally and efficiently,
by viewing it as a graph matching problem. We present the details
of this algorithm next.

4.3 Request-decision mapping algorithm

For a given decision allocation, we compute the optimal assignment

of requests to decisions by following a four-step process, illustrated

in Figure 12 through the example of a replica selection scenario:

1. Figure 12(a): Create n “slots” corresponding to the decision allo-
cation and obtain their server-side delays from G(-). In this case
there are three slots, two for replica x and one for replica y, with
server-side delays sy, sx, Sy-

. Figure 12(b): Construct an n-to-n bipartite graph where nodes
on the left are requests and nodes on the right are slots, and the
weight of the edge from request r; to slot s is Q(c; +), i.e., the
expected QOE of the request if assigned with this decision.

. Figure 12(c): Find a maximum bipartite matching, i.e., a subgraph
where each node has exactly one edge and the total weight is
maximized.

. Figure 12(d): Translate the matching to a request-decision as-
signment: each request is assigned the decision corresponding

295

Algorithm 1: E2E’s two-level decision-making policy.

Input: 1) A vector of n requests (r1, . . ., rp),
2) external delay of r; is ¢;,
3) Number of possible decisions k
Output: Decision vector Z = (zy, . .
/* Initialize decision allocation
1(n,0,...,0) > W
/* Find the best decisions and QoE under W
2 RequestDecisionMappingAlgorithm(W) — Z
3 Zi Q(Ci + G(Zi, Z)) —q
4 while HillClimbing(W) — W’ # ¢ do
5 RequestDecisionMappingAlgorithm(W’) — Z’
6 2i0(ci+G(z;,Z2') — ¢
/* Update Z if hillclimbing step improves QoE
7 if O’ > Q then
8 L Z'—Z,q —q

., Zn), zj is decision of r;
*/

*/

to the slot it is linked to. In this example the final decisions are:

c2 = X,03 = X,¢1 = U.
The key insight is to cast the problem of maximizing the QoE of a
request-decision mapping to that of maximizing a matching in a
bipartite graph, for which polynomial-time algorithms exist [24, 30].
The polynomial is cubic in the number of requests, so care must be
taken to ensure an efficient implementation; this is addressed in §5.

In practice, the server-side delay model G(-) estimates a distri-
bution of the server-side delay, not an exact value, so the request-
decision mapping algorithm (Figure 12) needs to be modified as
follows. Instead of labeling each slot with a fixed value in Fig-
ure 12(a) (e.g., sx), we label it with a probability distribution f(s)
(provided by G(+)), and label the edge in Figure 12(b) between re-
quest r; and the slot with the expected QoE over this distribution,

ie., fooo Qlc; +5) fx(s)ds.
5 E2E: DECISION OVERHEAD

E2E’s has to make a resource allocation decision for each request,
and this decision might change if one or more of the input variables
(QoE model, external delay model, server-side delay model) changes.
This overhead can quickly become unscalable if left unchecked.
Our idea for reducing the decision-making overhead is to coarsen
the granularity of decisions along two dimensions: (1) spatially
grouping requests with similar characteristics, and (2) temporally
caching decisions that are updated only when a significant change

SIGCOMM ’19, August 19-23, 2019, Beijing, China

occurs in the input variables. Although these are heuristics with
no formal guarantees, we find that they work well in practice (§7).
Coarsening spatial granularity: We coarsen decisions spatially
by grouping requests into a constant number of buckets based on
their external delays. Specifically, we split the range of external
delays into k intervals, and all requests whose external delays fall
in the same interval are grouped in the same bucket. We then run
E2E’s decision-making policy over the buckets rather than indi-
vidual requests, and assign the same final decision to all requests
in a bucket. This coarsening ensures that the running time of the
decision-making process is always constant, rather than growing
with the cube of the number of requests (the fastest bipartite match-
ing algorithm [24, 30]). To minimize the amount of QoE degradation
caused by making decisions at the bucket level, the external delay
intervals satisfy two criteria: (1) they evenly split the request popu-
lation, and (2) the span of any interval does not exceed a predefined
threshold §. Our evaluation shows these criteria are effective.
Coarsening temporal granularity: We have empirically ob-
served that the same decision assignment can yield close-to-optimal
QoE even if some of the inputs to E2E’s decision-making policy
have changed slightly. Therefore, E2E caches its decision assign-
ment in a decision lookup table that the shared-resource service can
query for every new request. The keys in this table are the buckets
of the external delays, and the corresponding value is the decision
assigned to each bucket. The exact definition of decisions varies
across use cases. For instance, in a distributed database, the decision
of a specific external delay bucket is the probability of sending a
request to each of the replicas, if the request’s external delay falls
in the bucket. The lookup table is only updated when one of the
input variables has changed by a “significant amount”. The policy
for deciding this is orthogonal and not something we prescribe;
e.g., it could be if the J-S divergence [37] between the new and old
distributions exceeds a certain threshold.

Fault tolerance of E2E controller: In E2E, a request needs to
wait for its resource allocation decision from the E2E controller,
which can therefore become a single point of failure for the whole
system. This can be mitigated in three ways. First, if the E2E con-
troller fails, the shared-resource service can still make QoE-aware
decisions by looking up the request’s external delay in the most
recently cached decision lookup table (see above). Second, the E2E
controller is replicated with the same input state (QoE model, ex-
ternal delay model, server-side delay model), so when the primary
controller fails, a secondary controller can take over using standard
leader election [15, 27]. Finally, in the case of total E2E failure, the
shared-resource service can simply bypass E2E and use its default
resource allocation policy.

6 USE CASES

We demonstrate E2E’s practical usefulness by integrating it into two
popular web infrastructure services, depicted in Figure 13: replica
selection in a distributed database and message scheduling in a
message broker. In both cases, E2E makes minimal changes to the
shared-resource service and only relies on the control interface
exposed by them. We evaluate E2E’s overhead in §7.3.

Use case #1: Distributed database. We choose Cassandra [2] as
the distributed database, and use E2E to select the replica for each re-
quest (this operation is common to other distributed databases, and

296

X. Zhang et al.

E2E Controller
Replica | ‘
Selector =

Distributed Database
(Cassandra)

E2E Controller

Message
Scheduler

Message Broker
(RabbitMQ)

(b) Use case #2: Message
scheduling in a message broker

i

-
-

Client Publisher

Consumers

(a) Use case #1: Replica selection
in a distributed database

Figure 13: Use cases of E2E

not specific to Cassandra). In particular, we made two changes. First,
we modified the existing replica selection logic (getReadExecutor
of ReadExecutor) of the Cassandra client. Our new logic stores
the decision lookup table (§5) received from the E2E controller in a
local data structure. When a new request arrives, it looks up the
request’s external delay in the table to get the selected replica’s
IP. Second, we modified the client service callback function (in
RequestHandler) to keep track of the load (number of concurrent
requests) and the observed (server-side) delay of each replica. In
practice, the replication level, i.e., the number of replicas for each
key, is usually much smaller than the total number of servers. A sim-
ple replication strategy, adopted by Cassandra and other databases
like MongoDB [3], is to divide the servers into replica groups and
store a copy of the entire database in each group. This replication
strategy is a good fit for E2E, which now simply has to choose a
replica group for each incoming request. It also allows E2E to affect
server-side delays by ensuring that some replica groups are less
loaded and used to process QoE-sensitive requests.

Use case #2: Message broker. We choose RabbitMQ [4] as the
message broker (other message brokers can work with E2E in a
similar way). RabbitMQ manages its resource by using priority
queues and associating each request with a priority level. Requests
with high priority are served before requests with low priority.
Similar to the Cassandra implementation, we made two changes
to integrate E2E. First, we wrote the E2E controller logic in a
python script and pass it to RabbitMQ as the default scheduling
policy (through queue_bind) when the RabbitMQ service is ini-
tialized. Second, we modified the per-request callback function
(confirm_delivery)to track each request’s progress and the queue-
ing delay in the message broker.

Implementation details: E2E requires three models as input in
order to run. We describe our realizations of these models below,
though other approaches are certainly possible.

e QoFE model: Our E2E prototype uses the QoE models derived from
the Microsoft traces and our MTurk user study, shown in Figure 3
and detailed in Appendix B. The QoE model needs to be updated
only when the web service changes its content substantially; we
do not update it in our prototype.

o External delay model: Our E2E prototype builds the external delay
distribution from per-request external delay measurements in
recent history. The external delays are currently provided by
our traces and are not calculated in real-time for each request,
though the latter is necessary in a production deployment (see
§9). We use batched updates to reduce the overhead of keeping
the distribution up-to-date. Specifically, we found in our traces

E2E: Embracing User Heterogeneity to Improve QoE on the Web

that it is sufficient to update the external delay distribution every
10 seconds, because a 10-second time window usually provides
enough requests to reliably estimate the distribution, and the
distribution remains stable within this window.

Server-side delay model: Our prototype builds the server-side
delay model offline, by measuring the service delay distributions
induced by different resource allocations. For instance, to build a
server-side delay model for the distributed database, we measure
the processing delays of one server under different input loads:
{5%, 10%,..., 100%} of the maximum number of requests per second.
For the message broker the profiling is slightly more complicated:
we have to consider both the number of requests at each priority
level and the total number of requests at higher priority levels. In
practice we need not profile all possible allocations: it is sufficient
to sample some of them and extrapolate the others. Also, the
requests are homogeneous in both of our uses cases, as is typically
the case in web services. For services that serve heterogeneous
requests (e.g., both CPU-intensive and memory-intensive jobs),
or where the effects of different resource allocations do not easily
extrapolate to each other, more advanced techniques may be
required to ensure the profiling is efficient.

7 EVALUATION

We evaluate E2E using a combination of trace-driven simulations
and real testbed experiments. Our key findings are:

o E2E can substantially improve QoE: Users spend 11.9% more web
session time (more engagement) compared to the default resource
allocation policy in our traces; this improvement accounts for
77% of the best-possible improvement if server-side delays were
zero. (§7.2)

e E2E has low system overhead: E2E incurs only 0.15% additional
server-side delay and requires 4.2% more compute resources per
request. (§7.3)

e EZE can tolerate moderate estimation errors (up to 20%) on the
external delays, while still retaining over 90% of the QoE im-
provement attainable if there are no errors. (§7.4)

7.1 Methodology

Both our trace-driven simulator and our testbeds use the external
delay model derived from our traces (Table 1) and the QoE model
from Figure 3. The simulator is described in more detail in §2.3.
Testbed setup: To complement our trace-driven simulations, which
unrealistically assume the server-side delay distribution is fixed,
we create two real testbeds on Emulab—one for Cassandra and one
for RabbitMQ, as described in §6. We feed requests from our traces
to each testbed in chronological order with their recorded external
delays, and use the actual testbed processing time as the server-
side delays. To show the impact of system load, we speed up the
replay by reducing the interval between two consecutive requests
by a speedup ratio (e.g., a speed-up ratio of 2 means we halve the
interval between every two consecutive requests). In the Cassandra
(distributed database) testbed, each request is a range query for
100 rows in a table of 5 million keys, which are replicated to three
replicas (three Emulab nodes), so each replica has a copy of each
key. The key size is 70B and the value size is 1KB. In the RabbitMQ
(messaging broker) testbed, each request is a 1KB message sent
to RabbitMQ (one Emulab node), and a consumer pulls a message

297

SIGCOMM ’19, August 19-23, 2019, Beijing, China

from RabbitMQ every 5ms. Each Emulab node has one 3.0GHz Intel
Xeon processor, 2GB RAM, and 2x146GB HDD storage, and are
connected to each other by a 1Gbps Ethernet link.

We do not claim that this testbed is a faithful replication of the
production system that generated our traces. Rather, we use the
testbeds to allow resource allocation policies to affect the server-
side delay distributions, as opposed to being constrained by the
fixed server-side delays in our traces. We use the traces only to
reflect the real external delays of users issuing requests to a service.
Baselines: We compare E2E against two baseline policies:

o Default policy (unaware of the heterogeneity of QoE sensitivity):
In the simulator, it simply gives each request its recorded server-
side delay. In RabbitMQ, it uses First-In-First-Out (FIFO) queueing.
In Cassandra, it balances load perfectly across replicas.

o Slope-based policy (aware of the heterogeneity of QoE sensitivity
but suffers from the problem described in §3.2): In the simulator, it
gives the shortest server-side delay to the request whose external
delay has the steepest slope in the QoE model, and so forth (see
§2.3). In RabbitMQ, it gives the highest priority to the request
whose external delay has the steepest slope in the QoE model,
and so forth. In Cassandra, it is the same as E2E’s policy, except it
replaces the request-decision mapping algorithm with the slope-
based algorithm above.

Metric of QoE gain: We measure the QoE gain of E2E (and its
variants) by the relative improvement of their average QoE over

that of the default policy, i.e., (Op2E — Qdefault)/ (Qdefault)-

7.2 End-to-end evaluation

Overall QoE gains: Figure 14 compares the QoE gains of E2E and
the slope-based policy over the existing default policy, in our traces
and our testbeds. For page types 1 and 2 we use time-on-site as the
QoE metric (with Figure 3(a) as the QoE model), and for page type
3 we use user rating as the QoE metric (with Figure 3(b) as the QoE
model). Using user rating vs. time-on-site has negligible impact on
our conclusions, as they lead to very similar QoE models (Figure 3).

Figure 14(a) shows that in our traces, E2E achieves 12.6-15.4%
better average QoE than the default policy, whereas the slope-
based policy has only 4-8% improvement. This suggests that E2E
addresses the limitation of the slope-based policy discussed in §3.2.
To put these gains into perspective, we consider an idealized policy
(labeled “idealized” in the figure) that cuts all server-side delays to
zero (i.e., the best a web service could possibly do by cutting server-
side delays). We see that the QoE gain of E2E already accounts for
74.1-83.9% of the QoE gain of this idealized policy.

Figure 14(b) also compares the QoE of E2E and the baseline
policies when feeding requests of page type 1 to the Cassandra and
RabbitMQ testbeds. We used a 20X speedup ratio to sufficiently
load the systems (we explore the tradeoff between system load and
QoE gain below). The results show similar gains in QoE, with both
systems achieving a large fraction of the best possible gains.
Better QoE-throughput tradeoffs: Figure 15 compares the QoE
of E2E and the default policy under different loads, in our traces
and our testbeds. E2E strikes a better QoE-throughput tradeoff than
both the default policy and the slope-based policy.

Figure 15(a) shows the results for different hours of the day in our
traces (12am, 4am, 3pm, 8pm, 10pm all in US Eastern Time), which

SIGCOMM ’19, August 19-23, 2019, Beijing, China

Idealized mm
E2E(this work) ==
Slope-based mm

20
15

QoE gain (%)
)

5
0
1 2 3 Cassandra RabbitMQ
Page type
(a) Our traces (b) Testbed

Figure 14: Overall QoE improvement of E2E and the slope-based
policy over the default policy.

. Our traces Cassandra RabbitMQ

2

N

©-6 =

g = =
S E2E —
33 Slope-based - -
w Default —
6 7 8 9 1 6 7 8 9 1 6 7 8 9 1

Throughput (Normalized)
(@) (b) ©
Figure 15: QoE improvement of E2E under different levels of loads.
Throughput is normalized against the highest per-hour throughput
(a) and the total testbed capacity (b, c).

exhibit a natural variation in load. Compared to the off-peak hour
(leftmost, at 0.6), the peak hour (rightmost, at 1.0) sees 40% more
traffic and, as a result, has 20.1% lower QoE. E2E achieves similar
QOoE during the peak hour as the default policy does during the
off-peak hour. In other words, E2E achieves 40% higher throughput
than the default policy without a drop in QoE.

Figures 15(b) and (c) compare the QoE of E2E with those of the
baseline policies in our testbeds, while varying the load (speedup
ratio 15X to 25X, normalized as 0.6 to 1 throughput). E2E always
improves QoE, though to varying degrees. E2E’s gain is marginal
under low load, since all decisions have similar, good performance
(e.g., all replicas have low read latency when Cassandra is under-
loaded). As the load increases, however, E2E’s gain grows rapidly:
at system capacity, E2E achieves 25% QoE gain over the default
policy. This can be explained as follows (using Cassandra as an
example). The default policy (perfect load balancing) drives every
replica to a moderately high load, so all requests are affected by
bad tail latencies. In contrast, E2E allocates load unevenly so that at
least one replica is fast enough to serve the QoE-sensitive requests.

7.3 Microbenchmarks

We examine the overheads incurred by E2E in computing cost,
decision delay, and fault tolerance.

System overhead: We compare the total resource consumption
of running each testbed with and without E2E. Figure 16 shows
the additional overhead of E2E in CPU and RAM usage. We see
that the overhead of E2E is several orders of magnitude lower than
the total overhead of running the Cassandra or RabbitMQ testbeds
themselves. Moreover, the CPU and RAM overheads grow more
slowly than those of the testbed service as the load increases.
Decision delay: Figure 17 shows the effectiveness of our two
decision delay-reduction optimizations (§5), using the Cassandra
testbed (with speedup ratio 20x). We see that (1) spatial coarsening

298

X. Zhang et al.

= S
< 2 PE————
o] &
o 10 o 10
o 2
> 10° 2 10°
e Qo Total overhead —

. g _1 |Additional overhead --
O 10" 2 10"

120 160 200 120 160 200

Requests per second Requests per second
(a) (b)
Figure 16: The additional overhead of EZE vs. the total overhead of
running the testbeds.

5
B 10° 12,\
87, o 108
;,—,»EJO Decision delay (y1) === | & £
0F QoE gain (y2) 6 o
S &0t] gain (y. o
g3 \ 45
5 10-1 \ 2 O
S A AW
E2E Spatial Spatial + temporal
(basic) coarsening coarsening

Figure 17: Per-request delay reduction due to spatial and temporal
coarsening (§5).

;\310 F T » T q
c
‘©
(o]
L w/o failure - - - -
8 8t ‘ ‘ ‘ | w/ failure
0 5 10 15 20 25 30 35
Time (sec.)

Figure 18: EZE can tolerate loss of the controller.

(bucketization of external delays) reduces the decision delay by
four orders of magnitude, and (2) temporal coarsening (caching E2E
decisions in a lookup table) reduces the decision delay by another
two orders of magnitude. The resulting per-request response delay
is well below 100us, less than 0.15% of Cassandra’s response delay.
At the same time, we see that these reductions in decision-making
delay only have a marginal impact on QoE. Note that E2E does not
need to make a decision on the arrival of each request, due to these
optimizations. Instead, decisions are made periodically and cached
in the local memory of each Cassandra client; so when a request
arrives, its decision can be read directly from the client’s memory.
Fault tolerance: Finally, we stress test our prototype of E2E by dis-
connecting the E2E controller from the Cassandra testbed. Figure 18
shows a time-series of the QoE gain of requests. We disconnect
the controller at the 25th second. First, we see that Cassandra’s
replica selection still uses the latest E2E’s decisions cached in the
lookup table, so although the QoE gain drops (as the lookup table
becomes stale), it is still better than the default policy. At the 50th
second, a backup controller is automatically elected, and by the
75th second, the new controller starts to make the same decisions
as if the controller was never disconnected.

7.4 In-depth analysis

Operational regime: Figure 19 tests E2E’s performance across
a wide range of workloads, along three dimensions that influence
E2E’s performance. We synthetically generate requests by drawing
external delays and server-side delays from two normal distribu-
tions, respectively, and test them on the trace-driven simulator

E2E: Embracing User Heterogeneity to Improve QoE on the Web

30
S
=20
5
w10 Our traces Our traces ur traces
o
e}
0
0 2 4 .6 81 b5 1 15 2 5 1 15 2

(a) Server delay / (b) Std over mean of (c) Std over mean of
external delay external delay server side delay

Figure 19: The impact of three key workload dimensions on E2E’s
effectiveness. The red spot shows where the workload in our traces lies.

12]
o\o ——"'“""""--m_
c£8
®©
o
w4 RabbitMQ ——
] 0 Cassandra -----
0% 5% 10% 15% 20% 0% 5% 10% 15% 20%

(a) Relative prediction error
(External delay)

Figure 20: Sensitivity of QoE improvement to prediction errors in
external delay and requests per second.

(b) Relative prediction error

using the QoE model from Figure 3. Although the server-side and
external delays in our traces do not exactly follow normal distri-
butions, modeling them in this way allows us to test E2E’s perfor-
mance under different distribution conditions. For instance, we can
test the impact of increasing the mean of server-side delay on E2E’s
performance while keeping the external delay distribution fixed.
We set the default mean and variance of each distribution to
match those of the page type 1 requests in our traces, and vary
one dimension at a time. We see that at the beginning, E2E does
not yield any QoE gain, since there is no variability in the external
and server-side delays for it to exploit. Then, the QoE gain of E2E
starts to grow almost linearly with the server-side/external delay
ratio, external delay variance, and server-side delay variance, which
confirms that E2E is able to utilize the variance in external and
server-side delays. To put this in the perspective of our traces, the
workload in our traces is on the “fast-growing” part of all curves
(red spots in Figure 19). This means we will see more QoE gain if
the workload moves to the right in any of these dimensions.
Robustness to prediction errors: Figure 20 shows the impact
that prediction errors, in the external delays and the number of
requests per second (RPS), have on E2E’s performance. We feed
page type 1 requests to the Cassandra testbed (speedup ratio 20x),
and inject a controllable error on the actual value to obtain the
estimated value. Figure 20(a) shows that even if the external delay
prediction is off by 20% on each request, E2E still retains over 90% of
its QoE gain. Predicting the external delay with 20% (or 100-200ms)
error seems reasonable for most users [41]. Figure 20(b) shows that
EZ2E retains 91% of its QoE gain if the RPS is predicted with 10%
error. Empirically, we find that 10% prediction error is possible
when using the RPS history from the last 10 seconds (not shown).
QoE fairness: A natural concern is that E2E may create a less
fair QoE distribution. As an example, we use the QoE distributions
of E2E and the default policy from Figure 14(a) and page type 1.
We calculate Jain’s Fairness Index of the requests’ QoE values, and

299

SIGCOMM ’19, August 19-23, 2019, Beijing, China

e
o

Y
o

e —

E2E (our work) ——
Timecard —4&—

QoE Gain (%)
[6)]

0

2.0 5.9

3.4
Total delay deadline
set by Timecard (sec.)

Figure 21: E2E vs. Timecard (with different total delay deadlines).

find that E2E’s Jain index (0.68) is lower but still very close to that
of the default policy (0.70). This is because E2E only deprioritizes
requests that are insensitive to QoE; these requests experience only
a marginal improvement in QoE when using the default policy.
E2E vs. deadline-driven scheduling: Unlike E2E, some prior
work (e.g., [21, 41]) models the impact of total delay on QoE as a
hard deadline: QoE drops to zero immediately after the total delay
exceeds the deadline. We use Timecard [41] as a canonical exam-
ple of a deadline-driven scheduling policy, and compare E2E to it.
Timecard sets a total delay deadline and, given the external delay
of each request, tries to maximizes the number of requests served
by the deadline. We compare E2E with Timecard under total de-
lay deadlines of 2.0, 3.4, and 5.9 seconds, using RabbitMQ as the
testbed. As Figure 21 shows, the QoE gain of E2E is consistently
better than Timecard under different deadline settings. This is be-
cause the deadline-driven scheduler is agnostic to the different QoE
sensitivities of requests that have already exceeded the deadline.

8 RELATED WORK

We briefly survey the most related work on web QoE, cloud resource
allocation, and web performance measurements.

Web QoE modeling/optimization: QoE has been intensively
studied in the context of web services (e.g., [10, 22]), mobile apps
(e.g., [9]), video streaming (e.g., [11, 23]), and measurement tools
(e.g., [48]). Prior work (e.g., [14, 25, 39]) has observed a similar non-
linear relationship between page loading time and QoE. Although
E2E uses a specific QoE model (based on our trace analysis), it
can benefit from more precise models of how page loading time
affects QoE. Unlike prior QoE optimization techniques that tune
client-side knobs [16, 38] or provide server-side resources for indi-
vidual sessions (e.g., [42, 43]), E2E intelligently allocates server-side
resources shared across a large number of heterogeneous users.
Web service resource allocation: There is a large literature
on cutting the tail/median server-side delays through better web
resource management, including distributed databases (e.g., [45,
49]), partition-aggregation workloads (e.g., [28, 32]), and caching
(e.g., [12, 13]). Cloud providers optimize WAN latency through bet-
ter server selection (e.g., [18, 35]) and WAN path selection [44, 50].
E2E is conceptually compatible with many existing resource sharing
techniques (e.g., replica selection and message scheduling). What
distinguishes E2E is that it does not seek to minimize the median or
tail performance; instead, it takes into account the QoE sensitivity
of different users when allocating server-side resources.
End-to-end performance analysis: There have been attempts to
measure the contribution of cloud, WAN, and client-side devices to
end-to-end delays [19, 20, 40]. Our observations on heterogeneous
QOE sensitivity corroborate some prior work (e.g., [20]) that show

SIGCOMM ’19, August 19-23, 2019, Beijing, China

that cloud-side delays are not a constant fraction of end-to-end
delays for all users. These studies offer useful insights for improv-
ing web service infrastructure [17, 31, 36] and building real-time
resource management systems [8, 21, 41].

The works most closely related to E2E are Timecard [41] and
DQBarge [21], which share with us the high-level idea of making
server-side decisions based on the QoE of end users [29]. In particu-
lar, they estimate the “slack” time between receiving a request and
its end-to-end delay deadline, and utilize this slack to maximize the
quality of the response. Although they allocate different resources
to different requests, they optimize individual requests in isolation,
which can cause resource contention when the system is under
stress or many requests have low slack time. In contrast, E2E opti-
mizes QoE and resource allocation across requests, by harnessing
their inherent heterogeneity. We also empirically show that when
the QoE curve is like Figure 3, a deadline-based QoE model can be
less effective than E2E (§7.4).

EZ2E is similar to work (e.g., [33, 34]) that considers requests
with soft deadlines: i.e., QoE decreases gradually to zero after the
total delay exceeds a time threshold. These soft-deadline-driven
schedulers set the same threshold for all requests and do not take the
heterogeneity of web requests into account, whereas the resource
allocation in E2E considers different QoE sensitivities.

9 DISCUSSION

Incentives of other service providers: One concern about us-
ing E2E is that another service provider (e.g., an ISP) may try to
manipulate the external delays of its users to get better service
from E2E, by making them look more urgent. However, we prove
in Appendix A that it is impossible to improve a group of users’ QoE
without reducing at least some of their external delays. In other words,
EZ2E creates an incentive for other service providers to reduce their
delays, rather than gaming E2E by deliberately adding delays.
Security threat: In theory, E2E may introduce a new attack, in
which a large group of users hurt the QoE of other users by mak-
ing themselves look more urgent, thus starving the other users of
resources (similar to a Denial-of-Service attack). We can envision
several detection/mitigation techniques for such an attack, such as
detecting abnormal changes to the external delay distribution, or
adding randomization to the actual server-side delays. We leave
investigation of these security issues to future work.

Interaction with existing policies: A web service provider often
integrate multiple resource allocation policies. Conceptually, E2E is
compatible with other prioritization schemes; they can be included
as input into E2E’s decision-making policy (e.g., by upweighting
the Q(-) values of premium traffic), or E2E can be applied separately
to each priority class (e.g., premium users vs. basic users).
Complex request structures: In a real web framework like Mi-
crosoft’s, a high-level web request usually results in calls to multiple
backend services, and the request is not complete until it hears a
response from all the backend services [12]. A straightforward way
to handle this request structure is to apply E2E to each service in
isolation. However, this approach is suboptimal, because it may
cause a service to prioritize requests whose server-side delays are
determined by other backend services. For example, in Figure 11(a),
E2E prioritizes request B over A, since prioritizing A would cause B
to suffer a significant QoE drop. But if B also depends on another,

300

X. Zhang et al.

much slower service, speeding up B will not have a direct impact on
the user’s QoE. In this case, it would have been better to prioritize
A, whose QoE could actually have been improved. We can see that
an optimal resource allocation scheme for requests with complex
structure needs to take these backend service dependencies into
account. We leave this problem to future work.

Deployment at scale: E2E must face the following issues when
deployed in a large-scale production system.

o Multiple agents: For a web service to scale, it typically uses dis-
tributed agents (e.g., Cassandra clients or RabbitMQ message bro-
kers), each making resource-allocation decisions independently.
In E2E, although each agent might see a different subset of web
requests, its decisions are based on a global decision lookup table
built upon the global external delay distribution. In the unlikely
event that the requests are load balanced poorly across the agents,
it is possible for the resulting decisions to be suboptimal: e.g., in
the case of RabbitMQ), if one message broker only sees insensitive
requests, those requests will be at the head of its queue (there
are no sensitive requests to place ahead of them). We have not
investigated such scenarios in our current evaluation.

o Real-time external delay estimation: Our current prototype relies
on the external delays provided by our traces, but a real deploy-
ment would need to compute the external delay in real-time for
each request. E2E could accomplish this by borrowing ideas from
Timecard [41] and Mystery Machine [20]. Like Timecard, the
WAN:-induced delay of a request could be derived from the round-
trip time of the TCP handshake packets and the TCP sliding
window size. To estimate the browser rendering time of a request,
EZ2E could use a model trained on historical traces (Mystery Ma-
chine) or on traces and the system configuration (Timecard).
Timecard provides more accurate estimates but requires user
permission to access the system configuration. Mystery Machine
does not need user cooperation but has lower accuracy, especially
for first-time users. Since E2E is not very sensitive to the accuracy
of the external delay estimates (Figure 20(a)), Mystery Machine’s
method could allow E2E to scale out and support more requests.

10 CONCLUSION

We have described E2E, a resource allocation system that opti-
mizes QoE by exploiting user heterogeneity. E2E gives any shared-
resource service an end-to-end view of request delays, allowing it
to prioritize the handling of these requests based on how sensitive
their QoE is to delay. E2E can be used by multiple services if the
services do not interact on the same request. As we have discussed,
many web frameworks coordinate multiple services to complete a
single (high-level) request. Extending E2E to handle such complex
request dependencies is our primary direction of future work.

ACKNOWLEDGEMENTS

We thank Jen Guriel, Bhavesh Thaker, Amiya Gupta, Nitin Suvarna,
Sharon Whiteman, and others on Microsoft’s web framework teams.
We thank Yizhuo Zhang at USTC for helping us run the MTurk
study, Varun Gupta at University of Chicago and Yuedong Xu at
Fudan University for helpful discussions about resource allocation,
and Dikaimin Simon for help on building the prototype. We also
thank the anonymous reviewers, and our shepherd, Phillipa Gill.
This project was supported in part by NSF Grant CNS-1901466.

E2E: Embracing User Heterogeneity to Improve QoE on the Web

REFERENCES

[9

=

[10

[11

[12

[13

[14

[15]

[16]

[17

[18

[19]

[20

[
=

[22]

[23

[24

[25

Amazon Mechanical Turk. https://www.mturk.com/.
Apache Cassandra. https://cassandra.apache.org.
MongoDB. https://www.mongodb.com/.
RabbitMQ. https://www.rabbitmq.com/.
Marissa Mayer at Web 2.0.
marissa-mayer-at-web-20.html, 2006.
Akamai online retail performance report: Milliseconds are criti-
cal. https://www.akamai.com/uk/en/about/news/press/2017-press/
akamai-releases-spring-2017- state- of- online-retail- performance-report.jsp,
2017.

Find out how you stack up to new industry benchmarks for mo-
bile page speed. https://www.thinkwithgoogle.com/marketing-resources/
data-measurement/mobile-page-speed-new-industry-benchmarks/, 2018.
Victor Agababov, Michael Buettner, Victor Chudnovsky, Mark Cogan, Ben Green-
stein, Shane McDaniel, Michael Piatek, Colin Scott, Matt Welsh, and Bolian
Yin. Flywheel: Google’s data compression proxy for the mobile web. In NSDI,
volume 15, pages 367-380, 2015.

Vaneet Aggarwal, Emir Halepovic, Jeffrey Pang, Shobha Venkataraman, and
He Yan. Prometheus: Toward quality-of-experience estimation for mobile apps
from passive network measurements. In Proceedings of the 15th Workshop on
Mobile Computing Systems and Applications, page 18, 2014.

Athula Balachandran, Vaneet Aggarwal, Emir Halepovic, Jeffrey Pang, Srinivasan
Seshan, Shobha Venkataraman, and He Yan. Modeling web quality-of-experience
on cellular networks. In Proceedings of the 20th annual international conference
on Mobile computing and networking, pages 213-224, 2014.

Athula Balachandran, Vyas Sekar, Aditya Akella, Srinivasan Seshan, Ion Stoica,
and Hui Zhang. Developing a predictive model of quality of experience for
internet video. In ACM SIGCOMM Computer Communication Review, volume 43,
pages 339-350. ACM, 2013.

Daniel S Berger, Benjamin Berg, Timothy Zhu, Siddhartha Sen, and Mor Harchol-
Balter. Robinhood: Tail latency aware caching—dynamic reallocation from cache-
rich to cache-poor. In 13th {USENIX} Symposium on Operating Systems Design
and Implementation ({OSDI} 18), pages 195-212, 2018.

Daniel S Berger, Ramesh K Sitaraman, and Mor Harchol-Balter. Adaptsize: Or-
chestrating the hot object memory cache in a content delivery network. In NSDI,
pages 483-498, 2017.

Enrico Bocchi, Luca De Cicco, and Dario Rossi. Measuring the quality of experi-
ence of web users. ACM SIGCOMM Computer Communication Review, 46(4):8-13,
2016.

Mike Burrows. The Chubby lock service for loosely-coupled distributed systems.
In OSDI, 2006.

Michael Butkiewicz, Daimeng Wang, Zhe Wu, Harsha V Madhyastha, and Vyas
Sekar. Klotski: Reprioritizing web content to improve user experience on mobile
devices. In NSDI, volume 1, pages 2-3, 2015.

Matt Calder, Manuel Schréder, Ryan Stewart Ryan Gao, Jitendra Padhye, Ratul
Mahajan, Ganesh Ananthanarayanan, and Ethan Katz-Bassett. Odin: Microsoft’s
scalable fault-tolerant CDN measurement system. In 15th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 18), 2018.

Fangfei Chen, Ramesh K Sitaraman, and Marcelo Torres. End-user mapping: Next
generation request routing for content delivery. In ACM SIGCOMM Computer
Communication Review, volume 45, pages 167-181. ACM, 2015.

Yingying Chen, Ratul Mahajan, Baskar Sridharan, and Zhi-Li Zhang. A provider-
side view of web search response time. In ACM SIGCOMM Computer Communi-
cation Review, volume 43, pages 243-254, 2013.

Michael Chow, David Meisner, Jason Flinn, Daniel Peek, and Thomas F Wenisch.
The mystery machine: End-to-end performance analysis of large-scale internet
services. In OSDI, pages 217-231, 2014.

Michael Chow, Kaushik Veeraraghavan, Michael J Cafarella, and Jason Flinn.
DQBarge: Improving data-quality tradeoffs in large-scale internet services. In
OSDI, pages 771-786, 2016.

Diego Neves da Hora, Alemnew Sheferaw Asrese, Vassilis Christophides, Renata
Teixeira, and Dario Rossi. Narrowing the gap between QoS metrics and web QoE
using above-the-fold metrics. In International Conference on Passive and Active
Network Measurement, pages 31-43. Springer, 2018.

Florin Dobrian, Vyas Sekar, Asad Awan, Ion Stoica, Dilip Joseph, Aditya Ganjam,
Jibin Zhan, and Hui Zhang. Understanding the impact of video quality on user
engagement. In ACM SIGCOMM Computer Communication Review, volume 41,
pages 362-373, 2011.

Michael L Fredman and Robert Endre Tarjan. Fibonacci heaps and their uses
in improved network optimization algorithms. Journal of the ACM (JACM),
34(3):596-615, 1987.

Qingzhu Gao, Prasenjit Dey, and Parvez Ahammad. Perceived performance
of top retail webpages in the wild: Insights from large-scale crowdsourcing of
above-the-fold QoE. In Proceedings of the Workshop on QoE-based Analysis and
Management of Data Communication Networks, pages 13-18, 2017.

http://glinden.blogspot.com/2006/11/

301

[26

[27

[28

™~
25,

[30

[31]

[32

@
&

(34

[35

[40

[41

[42

[43

[44

[45

=
&

[47

[48

SIGCOMM ’19, August 19-23, 2019, Beijing, China

Mingzhe Hao, Huaicheng Li, Michael Hao Tong, Chrisma Pakha, Riza O Suminto,
Cesar A Stuardo, Andrew A Chien, and Haryadi S Gunawi. MittOS: Supporting
millisecond tail tolerance with fast rejecting SLO-aware OS interface. In Proceed-
ings of the 26th Symposium on Operating Systems Principles, pages 168-183. ACM,
2017.

Patrick Hunt, Mahadev Konar, Flavio Paiva Junqueira, and Benjamin Reed.
Zookeeper: Wait-free coordination for internet-scale systems. In USENIX ATC,
2010.

Virajith Jalaparti, Peter Bodik, Srikanth Kandula, Ishai Menache, Mikhail Ry-
balkin, and Chenyu Yan. Speeding up distributed request-response workflows.
In ACM SIGCOMM Computer Communication Review, volume 43, pages 219-230,
2013.

Junchen Jiang, Xi Liu, Vyas Sekar, Ion Stoica, and Hui Zhang. Eona: Experience-
oriented network architecture. In Proceedings of the 13th ACM Workshop on Hot
Topics in Networks, page 11. ACM, 2014.

Roy Jonker and Anton Volgenant. A shortest augmenting path algorithm for
dense and sparse linear assignment problems. Computing, 38(4):325-340, 1987.
Rupa Krishnan, Harsha V Madhyastha, Sridhar Srinivasan, Sushant Jain, Arvind
Krishnamurthy, Thomas Anderson, and Jie Gao. Moving beyond end-to-end
path information to optimize CDN performance. In Proceedings of the 9th ACM
SIGCOMM conference on Internet measurement, pages 190-201. ACM, 2009.
Gautam Kumar, Ganesh Ananthanarayanan, Sylvia Ratnasamy, and Ion Stoica.
Hold’em or fold’em?: Aggregation queries under performance variations. In
Proceedings of the Eleventh European Conference on Computer Systems, page 7,
2016.

Peng Li, Binoy Ravindran, and E Douglas Jensen. Utility accrual resource access
protocols with assured timeliness behavior for real-time embedded systems.
In ACM SIGPLAN/SIGBED Conference on Languages, Compilers, and Tools for
Embedded Systems, 2005.

Peng Li, Haisang Wu, Binoy Ravindran, and E Douglas Jensen. A utility accrual
scheduling algorithm for real-time activities with mutual exclusion resource
constraints. IEEE Transactions on Computers, 55(4):454-469, 2006.

Hongqiang Harry Liu, Raajay Viswanathan, Matt Calder, Aditya Akella, Ratul
Mahajan, Jitendra Padhye, and Ming Zhang. Efficiently delivering online services
over integrated infrastructure. In NSDI, volume 1, page 1, 2016.

Xi Liu, Florin Dobrian, Henry Milner, Junchen Jiang, Vyas Sekar, Ion Stoica,
and Hui Zhang. A case for a coordinated internet video control plane. ACM
SIGCOMM Computer Communication Review, 42(4):359-370, 2012.

Christopher D Manning, Christopher D Manning, and Hinrich Schiitze. Founda-
tions of statistical natural language processing. MIT Press, 1999.

Ravi Netravali, Ameesh Goyal, James Mickens, and Hari Balakrishnan. Polaris:
Faster page loads using fine-grained dependency tracking. In NSDI, pages 123—
136, 2016.

Ravi Netravali, Vikram Nathan, James Mickens, and Hari Balakrishnan. Vesper:
Measuring time-to-interactivity for web pages. In 15th USENIX Symposium on
Networked Systems Design and Implementation (NSDI), 2018.

Lenin Ravindranath, Jitendra Padhye, Sharad Agarwal, Ratul Mahajan, Ian Ober-
miller, and Shahin Shayandeh. ApplInsight: Mobile app performance monitoring
in the wild. In OSDI, volume 12, pages 107-120, 2012.

Lenin Ravindranath, Jitendra Padhye, Ratul Mahajan, and Hari Balakrishnan.
Timecard: Controlling user-perceived delays in server-based mobile applica-
tions. In Proceedings of the Twenty-Fourth ACM Symposium on Operating Systems
Principles, pages 85-100, 2013.

Sanae Rosen, Bo Han, Shuai Hao, Z Morley Mao, and Feng Qian. Push or request:
An investigation of HTTP/2 server push for improving mobile performance.
In Proceedings of the 26th International Conference on World Wide Web, pages
459-468. International World Wide Web Conferences Steering Committee, 2017.
Vaspol Ruamviboonsuk, Ravi Netravali, Muhammed Uluyol, and Harsha V Mad-
hyastha. Vroom: Accelerating the mobile web with server-aided dependency
resolution. In Proceedings of the Conference of the ACM Special Interest Group on
Data Communication, pages 390-403. ACM, 2017.

Brandon Schlinker, Hyojeong Kim, Timothy Cui, Ethan Katz-Bassett, Harsha V
Madhyastha, Italo Cunha, James Quinn, Saif Hasan, Petr Lapukhov, and Hongyi
Zeng. Engineering egress with edge fabric: Steering oceans of content to the
world. In Proceedings of the Conference of the ACM Special Interest Group on Data
Communication, pages 418-431. ACM, 2017.

P Lalith Suresh, Marco Canini, Stefan Schmid, and Anja Feldmann. C3: Cutting
tail latency in cloud data stores via adaptive replica selection. In 12th USENIX
Symposium on Networked Systems Design and Implementation, pages 513-527,
2015.

Madeleine Udell and Stephen Boyd. Maximizing a sum of sigmoids. Optimization
and Engineering, 2013.

Balajee Vamanan, Jahangir Hasan, and TN Vijaykumar. Deadline-aware datacen-
ter tep (d2tcp). ACM SIGCOMM Computer Communication Review, 42(4):115-126,
2012.

Matteo Varvello, Jeremy Blackburn, David Naylor, and Konstantina Papagiannaki.
Eyeorg: A platform for crowdsourcing web quality of experience measurements.
In Proceedings of the 12th International on Conference on emerging Networking

SIGCOMM ’19, August 19-23, 2019, Beijing, China

EXperiments and Technologies, pages 399-412, 2016.

Zhe Wu, Curtis Yu, and Harsha V Madhyastha. Costlo: Cost-effective redundancy
for lower latency variance on cloud storage services. In NSDI, pages 543-557,
2015.

Kok-Kiong Yap, Murtaza Motiwala, Jeremy Rahe, Steve Padgett, Matthew Holli-
man, Gary Baldus, Marcus Hines, Taeeun Kim, Ashok Narayanan, Ankur Jain,
Victor Lin, Colin Rice, Brian Rogan, Arjun Singh, Bert Tanaka, Manish Verma,
Puneet Sood, Mukarram Tariq, Matt Tierney, Dzevad Trumic, Vytautas Valancius,
Calvin Ying, Mahesh Kallahalla, Bikash Koley, and Amin Vahdat. Taking the
edge off with Espresso: Scale, reliability and programmability for global internet
peering. In Proceedings of the Conference of the ACM Special Interest Group on
Data Communication, pages 432-445. ACM, 2017.

Minlan Yu, Wenjie Jiang, Haoyuan Li, and Ion Stoica. Tradeoffs in CDN designs
for throughput oriented traffic. In Proceedings of the 8th international conference
on Emerging networking experiments and technologies, pages 145-156. ACM, 2012.

[49]

[50

[51

Appendices are supporting material that has not been peer re-
viewed.

A INCENTIVE TO IMPROVE LATENCY

We show that it is impossible to improve a group of users’ QoE
without reducing at least some of their external delays. Formally,
this can be expressed by the following theorem.

THEOREM 1. For n requestsri, . ..,rn, suppose S and S’ are the
server-side delay vector when the external delay vector is C and C’,
respectively. Then 3.; Q(c] +s7) > ¥; Q(c; + ;) only if there is an r;
such that ¢} < c;.

Proor. Our proof is by contradiction. Suppose that 33; Q(c; +
s7) > X; Qe + ;) and for all i, ¢] > ¢; (i.e, no request has a better
external delay). Then

Z O(ci +55) > Z Q(ci +s}) (S isbetter than S given C)
i i

(Q is monotonic)

> Z O(c) +s7)

which contradicts the assumption.

B USER STUDY ON WEB QUALITY OF
EXPERIENCE

We provide more details about our user study, which measures
the relationship between page load time (PLT) and quality of user
experience. We conduct this study on participants hired through
Amazon MTurk [1], a crowdsourcing marketplace.

Test procedure: Before entering the study, participants have to
fill out a questionnaire about their basic information, such as age
group, nationality, gender, time spent online per day, and primary
use of internet. Each participant is asked to rate their experience
of the same web page when it is loaded with different PLTs. Since
the actual PLT of a page may be affected by many factors—e.g., the
participants’ browsers, operating systems, and network conditions—
we show each participant a video recording of the web page being
loaded at a certain speed, rather than letting them load the web
page. This ensures that all the participants experience the same
PLTs. The videos of different PLTs are played in a random order.
After watching a video, the participants rate the video with a score
ranging from 1 to 5 (with 1 being the least satisfactory and 5 being
the most satisfactory), and this score is regarded as the QoE for the
PLT shown in the video.

302

X. Zhang et al.

Video recording: In our study, we need to show videos of certain
PLTs. To avoid uncontrollable WAN and server-side delays, we first
download all web page content on a local machine, and then load
the pages on this machine. This reduces the factors affecting PLT to
(1) the browser rendering time on the machine, which is a function
of system configuration (e.g., operating system, computer hardware,
browser version, etc.) but remains fixed, and (2) the web data packet
arrival rate. Since the data packets are loaded from the local machine
itself, we can achieve the desired PLT by tuning the per-packet delay
using a Chrome developer tool called NoThrottling. This allows us
to load each web page at the desired PLT, and record a video of
the loading process. These are the videos that are downloaded and
shown to the participants during the study.

Results: We ran the user study on the three page types in our traces
(Table 1), as well as four other web pages: a Google search results
page and the homepages of Amazon, CNN News, and YouTube.
For each page, we use 50 MTurk participants. Figure 22 shows
the results for the four web pages. We can see that although the
websites have different PLT sensitivities, a sigmoid-like relationship
between QoE and PLT exists for all of them.

5 —— 5 —
Mean Mean
4+ Error 4
(] (0]
83| 83t
0] 0]
2 r 2 r
1 L L L L L L 1

0 5 10 15 20 25 30 0
Page load time (sec.)

5 101520 25 30 35
Page load time (sec.)

(a) Amazon (b) CNN
5 ; : 5 ——
Mean Mean
4 Error g 4 Error i
S S
®3 1 ®3
G} 0]
2+ 1 2t
1 L L L L
0 5 10 15 20 25 0 5 10 15 20 25 30
Page load time (sec.) Page load time (sec.)
(c) Google (d) YouTube

Figure 22: The relationship between page load time and user rating
in different websites.

Response validation: A common problem in crowdsourcing is
the validation of participants’ responses. We filtered invalid re-
sponses in two ways:

e Engagement: Spending too long or too short on a video may
indicate that the participant is distracted or unengaged. We set
time thresholds for identifying such participants, and remove any
response that takes more than 35 seconds or less than 2 seconds.

e Outliers: We view the average of all responses as the “ground
truth”. We drop responses from participants whose ratings con-
sistently deviate from the ground truth by 3, across all videos.

