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a b s t r a c t

A graph Laplacian reaction–diffusion system is introduced to describe a network
mutualistic model of population ecology. By the approach of upper and lower
solutions, we show that the strong mutualistic system occurs blow-up if the
intrinsic growth rates of population are large.
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1. Introduction

Reaction–diffusion systems on complex networks have been used to study population ecology [1–3].
Actually a network is mathematically a graph G = (V, E) consisting of vertices V = {1, 2, . . . , n} and
edges E connecting them. If V has finite vertices, G is called finite graph. If vertex y is adjacent to vertex
x, we write y ∼ x. A graph is weighted if each adjacent x and y is assigned a weight function ωxy. Here
ω : V × V → [0, ∞) satisfies that ωxy = ωyx and ωxy > 0 if and only if x ∼ y. By considering G be the
connected finite graph, we extend some conceptions from continuous space to graph as follows:

dωx :=
∑

y∼x, y∈V

ω(x, y) (1.1)∫
V

fdω (or simply
∫

V

f) :=
∑
x∈V

f(x)dωx (1.2)

Dω,yf(x) := (f(y) − f(x))

√
ω(x, y)

dωx
(1.3)
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∇ωf(x) :=
(
Dω,yf(x)

)
y∼x, y∈V

(1.4)

∆ωf(x) :=
∑
y∼x

(f(y) − f(x))ω(x, y)
dωx

(1.5)

where f : V → R, (1.1)–(1.5) are called graph differential, graph integral, graph directional derivative,
graph gradient, and graph Laplacian, respectively.

For population dynamical models on networks, various methods and techniques have been used to study
the existence and qualitative properties of solutions [4–10]. We develop the upper and lower solutions to deal
with the blow-up problems on networks. We consider a mutualistic model on complex networks:⎧⎪⎨⎪⎩

∂u1
∂t − d1∆ωu1 = u1(a1 − b1u1 + c1u2), (x, t) ∈ V × (0, +∞),

∂u2
∂t − d2∆ωu2 = u2(a2 + b2u1 − c2u2), (x, t) ∈ V × (0, +∞),

u1(x, 0) = u10(x) ≥ ( ̸≡)0, u2(x, 0) = u20(x) ≥ ( ̸≡)0, x ∈ V.

(1.6)

When b1c2 < b2c1, this system is called strong mutualistic. For classical Laplacian diffusion system, the
strong mutualistic population dynamical system occurs blow-up if the intrinsic growth rates of population are
large or the initial data is sufficiently large [11]. Our main aim is to extend the results of classical Laplacian
diffusion system to networks.

2. Preliminaries

Lemma 2.1 (Green Formula). For any pair of functions f : V → R and g : V → R, the graph Laplacian
∆ω satisfies that

2
∫

V

f(−∆ω)g =
∫

V

∇ωf · ∇ωg = 2
∫

V

g(−∆ω)f. (2.1)

In particular, in the case f = g, we have

2
∫

V

f(−∆ω)f =
∫

V

|∇ωf |2. (2.2)

Proof. In view of (1.3) and (1.5), we have∫
V

∇ωf · ∇ωg =
∫

V

∑
y∼x,y∈V

(f(y) − f(x))

√
ω(x, y)

dωx
(g(y) − g(x))

√
ω(x, y)

dωx

=
∑
x∈V

∑
y∼x,y∈V

(f(y) − f(x))(g(y) − g(x))ω(x, y)

=2
∑

x,y∈V

(f(y) − f(x))(g(y) − g(x))ω(x, y).

(2.3)

Consequently, combining (1.5) and (2.3) yields∫
V

f(−∆ω)g = −
∫

V

f(x)
∑

y∼x,y∈V

(g(y) − g(x))ω(x, y)
dωx

=
∑
x∈V

∑
y∼x,y∈V

(−f(x))(g(y) − g(x))ω(x, y)

=
∑

x,y∈V

(f(y) − f(x))(g(y) − g(x))ω(x, y) =
∫

V

g(−∆ω)f.

(2.4)

The two equalities (2.3) and (2.4) complete the proof. □
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Lemma 2.2. Consider the eigenvalue problem{
−∆ωϕ(x) = λϕ(x), x ∈ V,∑

x∈V ϕ(x)dωx = 1.
(2.5)

There exists

λ1 = min
u̸≡0

∫
V

|∇ωu|2

2
∫

V
u2 , here u : V → R (2.6)

and Φ1(x) > 0 satisfies the above equation. λ1 and Φ1 are called the first eigenvalue and eigenfunction of
(2.5). Moreover, λ1 = 0.

Proof. Let us multiply the first equation of (2.5) by u, and integrate over V . We have −
∫

V
u∆ωu =

∫
V

λu2.

By (2.2), we obtain λ =
∫

V
|∇ωu|2

2
∫

V
u2 . Hence we deduce that λ1 = minu ̸≡0

∫
V

|∇ωu|2

2
∫

V
u2 where the minimum can

be attained by taking u(x) = 1∑
x∈V

dωx
. Therefore by taking λ1 = 0 and Φ1 = 1∑

x∈V
dωx

such that λ1 and
Φ1 satisfy (2.5). □

Definition 2.1. Assume that û1 and û2 are continuous with respect to t in V × [0, T ], and differentiable
with respect to t in V × (0, T ]. If (û1, û2) satisfies⎧⎪⎨⎪⎩

∂û1
∂t − d1∆ωû1 ≤ û1(a1 − b1û1 + c1û2), (x, t) ∈ V × (0, T ],

∂û2
∂t − d2∆ωû2 ≤ û2(a2 + b2û1 − c2û2), (x, t) ∈ V × (0, T ],

û1(x, 0) ≤ u10(x), û2(x, 0) ≤ u20(x), x ∈ V,

(2.7)

(û1, û2) is called a lower solution of (1.6). Moreover, if (ũ1, ũ2) satisfies (2.7) by reversing all the inequalities,
(ũ1, ũ2) is called an upper solution of (1.6).

Lemma 2.3 (Comparison Principle). Assume that (u1, u2) is a solution of (1.6). If (û1, û2) is a lower solution
of (1.6), then (u1, u2) ≥ (û1, û2) in V × [0, T ].

Proof. By setting z1 = (u1 − û1)e−Kt, z2 = (u2 − û2)e−Kt, we have

∂z1

∂t
− d1∆ωz1 ≥ (−K + b11)z1 + b12z2, for (x, t) ∈ V × (0, T ], (2.8)

∂z2

∂t
− d2∆ωz2 ≥ b21z1 + (−K + b22)z2, for (x, t) ∈ V × (0, T ], (2.9)

where

b11 = a1 − b1(u1 + û1) + c1u2, b12 = c1û1,

b21 = b2û2, b22 = a2 − c2(u2 + û2) + b2u1.
(2.10)

Notice that zi(x, t) (i = 1, 2) are continuous on [0, T ] for each x ∈ V and V is finite, we can find
(x0, t0) ∈ V × [0, T ] such that

z1(x0, t0) = min
x∈V

min
t∈[0,T ]

z1(x, t).

The above equation implies
z1(x0, t0) ≤ z1(y, t0), for any y ∈ V.

In view of the definition of ∆ω, we have
∆ωz1(x0, t0) ≥ 0. (2.11)



4 Z. Liu, J. Chen and C. Tian / Applied Mathematics Letters 106 (2020) 106402

Meanwhile it follows from the differentiability of z1(x, t) in (0, T ] that

∂z1

∂t
(x0, t0) ≤ 0, for i = 1, 2. (2.12)

By substituting (2.11) and (2.12) into (2.8), we have

((−K + b11)z1 + b12z2) (x0, t0) ≤ 0. (2.13)

Suppose that z1(x0, t0) = −δ < 0 on the contrary. By choosing

K = |z2(x0, t0)|
δ

|b12(x0, t0)| + |b11(x0, t0)| + 1,

we deduce that ((−K + b11)z1 + b12z2) (x0, t0) > 0, which contradicts (2.13). Hence, we have z1(x0, t0) ≥ 0,
which means minx∈V mint∈[0,T ] z1(x, t) ≥ 0. Therefore, we obtain z1(x, t) ≥ 0 for (x, t) ∈ V × [0, T ]. On the
other hand, by employing a similar argument to (2.9) we can obtain z2(x, t) ≥ 0 for (x, t) ∈ V × [0, T ]. The
above conclusions imply that

ui ≥ ûi (i = 1, 2) for (x, t) ∈ V × [0, T ]. □ (2.14)

3. Blow-up

Theorem 3.1. Let w(x, t) be a solution of{
d ∂w

∂t − ∆ωw = w(a + bw), (x, t) ∈ V × (0, T ],
w(x, 0) ≥ ( ̸≡)0, x ∈ V,

(3.1)

where d, a, and b are constants and satisfying d > 0 and b ≥ 0. Then we have the following blowup properties:

(i) If a ≥ λ1, the solution of (3.1) blows up for any nontrivial initial data.
(ii) If a < λ1, the solution of (3.1) blows up for large enough initial data.

Proof. We define F (t) =
∫

V
Φ1(x)w(x, t). Deriving F (t) with respect to t and using (3.1), we have

dF ′(t) =
∫

V

Φ1(x)
(
∆ωw + w(a + bw)

)
=

∫
V

w∆ωΦ1(x) +
∫

V

Φ1(x)w(a + bw) (3.2)

= (a − λ1)F (t) + b

∫
V

Φ1(x)w2

= (a − λ1)F (t) + b

∫
V

Φ1(x)w2
∫

V

Φ1(x)

≥ (a − λ1)F (t) + bF 2(t), (3.3)

here (3.2) is due to the Green Formula of Lemma 2.1, (3.3) follows from Hölder’s inequality.
(i) In the case a ≥ λ1, from (3.3), we immediately obtain that F (t) blows up for any nontrivial initial

data.
(ii) In the case a < λ1, we can choose sufficiently large initial data w(x, 0) such that

F (0) =
∫

V

Φ1(x)w(x, 0) >
λ1 − a

b
.

It follows from (3.3) that F (t) blows up for sufficiently large initial data. □
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Theorem 3.2. If b1c2 < b2c1 holds, then we have the following blowup properties: If min
{

a1
d1

, a2
d2

}
≥ 1, the

solution of (1.6) blows up for any nontrivial initial data satisfying that for all x ∈ V , min{u10(x), u20(x)} ̸≡ 0.

Proof. We define (û1(x, t), û2(x, t)) = (δ1w(x, t), δ2w(x, t)). In order to guarantee (û1(x, t), û2(x, t)) to be
a lower solution of (1.6), we need to show (û1(x, 0), û2(x, 0)) ≤ (u10(x), u20(x)) and{

∂w
∂t − d1∆ωw ≤ w(a1 − b1δ1w + c1δ2w), (x, t) ∈ V × (0, T ],
∂w
∂t − d2∆ωw ≤ w(a2 + b2δ1w − c2δ2w), (x, t) ∈ V × (0, T ].

(3.4)

Since b1c2 < b2c1, we have b1
c1

< b2
c2

. By setting sufficiently small positive δ1, δ2, for example, δ1 = ε,
δ2 = 1

2 ( b2
c2

+ b1
c1

)ε such that {
−b1δ1 + c1δ2 > 0,

b2δ1 − c2δ2 > 0.
(3.5)

We set

d = max
{

d1
−1, d2

−1}
, a = min

{
a1

d1
,

a2

d2

}
, b = min

{
−b1δ1 + c1δ2

d1
,

b2δ1 − c2δ2

d2

}
. (3.6)

To show (3.4), it suffices to show{
d−1

1
∂w
∂t − ∆ωw ≤ w(a + bw), (x, t) ∈ V × (0, T ],

d−1
2

∂w
∂t − ∆ωw ≤ w(a + bw), (x, t) ∈ V × (0, T ].

(3.7)

Hence we only need to show if w is a solution of{
d ∂w

∂t − ∆ωw = w(a + bw), (x, t) ∈ V × (0, T ],
w(x, 0) ≥ ( ̸≡)0, t ∈ V,

(3.8)

then w satisfies ∂w
∂t ≥ 0 for t ∈ (0, T ]. By applying comparison principle (Lemma 2.3), we can obtain that

w(x, t) ≥ 0 for t ∈ (0, T ] and x ∈ V . Then using the definition of ∆ω in (1.5),

∆ωw(x, t) =
∑
y∼x

(w(y, t) − w(x, t))ω(x, y)
dωx

≥
∑
y∼x

−w(x, t)ω(x, y)
dωx

= −w(x, t)
∑
y∼x

ω(x, y)
dωx

= −w(x, t).
(3.9)

In view of the condition a ≥ 1 and Lemma 2.2 λ1 = 0, we have a ≥ max{λ1, 1}. For t ∈ (0, T ], we can
compute

d
∂w

∂t
(x, t) = ∆ωw(x, t) + w(x, t)(a + bw(x, t)) ≥ 0. (3.10)

Hence (û1(x, t), û2(x, t)) is a lower solution of (1.6) provided (û1(x, 0), û2(x, 0)) ≤ (u10(x), u20(x)). We choose
the initial data of w be the function w(x, 0) = min{u10(x), u20(x)} and ε enough small such that δ1 < 1 and
δ2 < 1, which guarantees that (û1(x, 0), û2(x, 0)) ≤ (u10(x), u20(x)) holds. By applying Theorem 3.1 to w,
we have (û1(x, t), û2(x, t)) blows up. By Lemma 2.3, the system (1.6) blows up. □
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