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1. Introduction

Reaction—diffusion systems on complex networks have been used to study population ecology [1-3].
Actually a network is mathematically a graph G = (V, E) consisting of vertices V. = {1,2,...,n} and
edges E connecting them. If V' has finite vertices, G is called finite graph. If vertex y is adjacent to vertex
x, we write y ~ x. A graph is weighted if each adjacent x and y is assigned a weight function wg,. Here
w: VxV —[0,00) satisfies that wyy = wy, and wy, > 0 if and only if # ~ y. By considering G be the
connected finite graph, we extend some conceptions from continuous space to graph as follows:

dyx = Z w(z,y) (1.1)

y~x, yev
| #do orsimply [ 1) = 3 Jadr (1.2)
Dy fa) = () = S [ 2] (1.3
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Vo f(z) = (Dw,yf(x))ywt, eV (1.4)
Auf(e) = Y (1) - 7)) (15)

where f: V — R, (1.1)—(1.5) are called graph differential, graph integral, graph directional derivative,
graph gradient, and graph Laplacian, respectively.

For population dynamical models on networks, various methods and techniques have been used to study
the existence and qualitative properties of solutions [4-10]. We develop the upper and lower solutions to deal
with the blow-up problems on networks. We consider a mutualistic model on complex networks:

8u1 —di1Ayuy = ul(al —biug + Cl’UQ), (Jf, t) eV x (0, +OO),

8u2 dQAwUQ = Ug(ag —+ b2u1 — CQUQ), (SC, t) cV x (O, +OO), (16)

Ul(iﬂ,o) =u10(z) = (#)0, uz(2,0) = ug(z) = (#)0, zeV.
When bicy < bacq, this system is called strong mutualistic. For classical Laplacian diffusion system, the
strong mutualistic population dynamical system occurs blow-up if the intrinsic growth rates of population are
large or the initial data is sufficiently large [11]. Our main aim is to extend the results of classical Laplacian
diffusion system to networks.

2. Preliminaries

Lemma 2.1 (Green Formula). For any pair of functions f : V — R and g: V — R, the graph Laplacian

A, satisfies that
2 [ f-ang= [ Vor-veg=2 [ o-a0r. (21)

In particular, in the case f = g, we have

2 [ f-aur - /V V1P (2.2)

Proof. In view of (1.3) and (1.5), we have

/wa Vg = / >« (@)y] 25 (g (y) - gl [ A0

y~zT, yGV

=3 3 (W) — F@)(gly) — g(@)w(,y) (2.3)

zeV y~zx,ycV

=2 > (f(y) — F@)(9(y) — g(x))w(@,y).

z,ycVv

Consequently, combining (1.5) and (2.3) yields

[ r=s00== [ 10 X () - o) 22

ywm,yGV

=3 > (—f@)(9) - g(x))w(z,y) (2.4)

ze€V y~a,yeV

= Y () - F@)9w) — g@)w(z,y) = /V g(=A)].

z,yeVv

The two equalities (2.3) and (2.4) complete the proof. [
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Lemma 2.2. Consider the eigenvalue problem

_Aw(b(x) = A¢($>7 HAIS V, (2 5)
Y owey P(x)dur = 1. '
There exists )
— .
Al =min —————, hereu: V =R (2.6)
uZ0 2 fV ’LL2

and d1(x) > 0 satisfies the above equation. A\ and ¥, are called the first eigenvalue and eigenfunction of
(2.5). Moreover, Ay = 0.

Proof. Let us multiply the first equation of (2.5) by u, and integrate over V. We have — fv uA,u = fv Au?.

Veoul? Veoul?
By (2.2), we obtain A = M Hence we deduce that Ay = min,zg M where the minimum can
2f u? 2fv u?

1%
be attained by taking u(z) = ——~——. Therefore by taking A\; = 0 and # = ——-—— such that \; and
2 sev @ Dsev @
ey WT cey 4T
@, satisfy (2.5). O ) ©

Definition 2.1. Assume that @; and @9 are continuous with respect to ¢t in V' x [0, 7], and differentiable
with respect to ¢ in V' x (0, 7. If (41, G2) satisfies

D dy Aty < iy (ay — by + eriia), (z,t) €V x (0, T,
92— dyAytiy < Go(az + oty — c2lin), (z,t) € V x (0,71, (2.7)
G1(x,0) < wugg(x), da(z,0) < ugy(x), z eV,

(@1, 12) is called a lower solution of (1.6). Moreover, if (11, Uz) satisfies (2.7) by reversing all the inequalities,
(@11, U2) is called an upper solution of (1.6).

Lemma 2.3 (Comparison Principle). Assume that (u1,us) s a solution of (1.6). If (Gi1, G2) is a lower solution
of (1.6), then (u1,us) > (i1, 02) in V x [0,T].

Proof. By setting 21 = (u1 — 1)e K, 290 = (ug — G1a)e %!, we have
15)
% —d1Ayz > (—K + bll)zl + biozo, for (.’lﬁ,t) eV x (O,T], (28)
0
g —doAyze > barz1 + (=K + bag)ze, for (x,t) € V x (0,T], (2.9)
where
bii = a1 — bi(ug +11) + crug, bia = c10y,
A ) (2.10)
b1 = ballp, bao = ag — ca(ug + Uz) + bouy.
Notice that z;(z,t) (i = 1,2) are continuous on [0,7] for each € V and V is finite, we can find

(0,t0) € V x [0,T] such that

z1(20,to) = min min z1(z, ).

The above equation implies

Zl(I07t0) < Zl(yato)a for any y € V.

In view of the definition of A,,, we have
szl(xo,to) > 0. (2.11)
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Meanwhile it follows from the differentiability of z1(z,¢) in (0,7] that

82:1
ot

By substituting (2.11) and (2.12) into (2.8), we have

(w0, t9) <0, fori=1,2. (2.12)

((7K + 611)21 + b122§2) (IEo,to) S 0. (213)
Suppose that z1(xg,t0) = —d < 0 on the contrary. By choosing

2o9(xo,

Mwm(%o,to)\ + [b11 (o, to)| + 1,

we deduce that ((—K + b11)21 + b1222) (z0,to) > 0, which contradicts (2.13). Hence, we have z1(xg, %) > 0,
which means mingey mingepo, 77 21(,t) > 0. Therefore, we obtain z;(x,t) > 0 for (x,t) € V x [0,7]. On the
other hand, by employing a similar argument to (2.9) we can obtain zy(z,t) > 0 for (z,t) € V x [0, T]. The
above conclusions imply that

K =

w > ; (i=1,2) for (z,t) € V x [0,7]. O (2.14)

3. Blow-up

Theorem 3.1. Let w(x,t) be a solution of

{d%f - Ayw=w(a+bw), (z,t)€V x(0,T], (3.1)

w(zx,0) > (#)0, z eV,
where d, a, and b are constants and satisfyingd > 0 and b > 0. Then we have the following blowup properties:
(i) If a > A1, the solution of (3.1) blows up for any nontrivial initial data.
(it) If a < A1, the solution of (3.1) blows up for large enough initial data.
Proof. We define F(t) = [,, ¢1(x)w(x,t). Deriving F(t) with respect to t and using (3.1), we have
dF'(t) = / P (z) (Apw + w(a + bw))
v
= / wA,, @1 () —|—/ & (x)w(a + bw) (3.2)
v v
= (= WFW +b [ B’

— (a-\)F +b/ 1 (x / (@)

> (a— \)F(t) +bF(t (3.3)

here (3.2) is due to the Green Formula of Lemma 2.1, (3.3) follows from Hoélder’s inequality.

(i) In the case a > Ay, from (3.3), we immediately obtain that F(¢) blows up for any nontrivial initial
data.

(ii) In the case a < A1, we can choose sufficiently large initial data w(x,0) such that

/\1—(1

F(0) = /V @ (z)w(x,0) > 5

It follows from (3.3) that F'(t) blows up for sufficiently large initial data. O
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Theorem 3.2. Ifbicy < bacy holds, then we have the following blowup properties: If min {%, Z—;} > 1, the
solution of (1.6) blows up for any nontrivial initial data satisfying that for allx € V, min{ujg(x), uge(x)} # 0.

Proof. We define (41 (x,t),d2(x,t)) = (01w(x,t),d2w(x,t)). In order to guarantee (&1 (x,t), d2(z,t)) to be
a lower solution of (1.6), we need to show (@1 (z,0),d2(x,0)) < (uig(x), use(x)) and

%—’f —diAyw < wlag — bdw + c1dw), (z,t) € V x (0,7, (3.4)
%&U — do Ayw < w(ag + badiw — cadqw), (z,t) € V x (0,T].
Since bica < bacy, we have % < %. By setting sufficiently small positive d1, do, for example, §; = ¢,
do = %(’;—5 + i—i)a such that
—b16 dg >0,
101 + €102 (3.5)
bad1 — €209 > 0.
We set
—b1d 0o bady — 20
d:max{dl_l,dg_l},a:min ﬁ,% , b= min Lt e 2, 201 — @202 1 (3.6)
d1 dQ dl d2
To show (3.4), it suffices to show
dit 2L — Ayw <w(a+bw), (z,t)€V x(0,T], (37)
d;l%—’f—Awwa(a—kbw), (x,t) € V x (0,T]. '
Hence we only need to show if w is a solution of
d2e — Ayw =w(a+bw), (z,t)€V x(0,7], (3.8)
w(zx,0) > (#)0, teV, '
then w satisfies %—'f > 0 for ¢t € (0,T]. By applying comparison principle (Lemma 2.3), we can obtain that
w(z,t) >0 for t € (0,T] and = € V. Then using the definition of A, in (1.5),
w(z,y
Aufa.t) = 3wl t) - wla, 1) LY
Y~z “
(3.9)
w(z,y) w(z,y)
> — —_— = — = — .
il yzN; w(x’t) dwx w(1.7t)y§’\l:x dwx U}(l',t)

In view of the condition @ > 1 and Lemma 2.2 A\; = 0, we have a > max{\;,1}. For t € (0,T], we can

compute

daa—?:(ac,t) = Ayw(z,t) +w(z, t)(a+ dw(z,t)) > 0. (3.10)

Hence (11 (z,t), 42 (x, t)) is a lower solution of (1.6) provided (@ (z,0), tia(x,0)) < (u10(x), uo(z)). We choose
the initial data of w be the function w(x,0) = min{uio(x), uzo(x)} and e enough small such that 6; < 1 and
d2 < 1, which guarantees that (@;(x,0),t2(2,0)) < (u10(z), uz(z)) holds. By applying Theorem 3.1 to w,

we have (41 (z,t), Ga(z,t)) blows up. By Lemma 2.3, the system (1.6) blows up. O
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