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Abstract

Today’s serverless provides łfunction-as-a-servicež with dy-
namic scaling and fine-grained resource charging, enabling
new cloud applications. Serverless functions are invoked as
a best-effort service. We propose an extension to serverless,
called real-time serverless that provides an invocation rate
guarantee, a service-level objective (SLO) specified by the
application, and delivered by the underlying implementa-
tion. Real-time serverless allows applications to guarantee
real-time performance.
We study real-time serverless behavior analytically and

empirically to characterize its ability to support bursty, real-
time cloud and edge applications efficiently. Finally, we use a
case study, traffic monitoring, to illustrate the use and bene-
fits of real-time serverless, on our prototype implementation.
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1 Introduction

Serverless has seen huge growth in usage [18] and received
much attention from the research community [3, 7]. The
core technology behind serverless computation is cloud func-
tions written to perform specific tasks when some conditions
are met. With serverless, users implement functions and
associate them with events. No server deployment and man-
agement are needed. Furthermore, these functions scale to
hundreds of simultaneous invocations. Serverless employs
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millisecond billing so application cost scales with activity.
Applications built upon serverless can be developed and
deployed quickly and support a wide range of load. Some
predict serverless will become a dominant cloud service [8].

Serverless’ dynamic scaling is extremely useful for łburstyž,
low-duty factor applications such as music recognition, in-
formation access, intelligent assistants, internet-of-things
sensor data, or any of a wide range of smartphone applica-
tions. In such applications, demand bursts arise from external
world activity with short-lived computation requirements.

Some bursty applications need more than dynamic scaling;
they have real-time requirements of guaranteed response
latency and application quality. We term these applications
bursty, real-time, and they include an important class of cloud
and edge computing applications. Specific examples include
data network monitoring, augmented reality, video monitor-
ing, and public safety applications such as traffic monitoring.
In such applications, load changes are driven by external
events (e.g. cyber-attacks, car accidents), giving rise to bursti-
ness. Such applications may have a hard deadline for data
analysis to enable subsequent actions. Failure to meet a dead-
line may be unacceptable (death, system failure, ...) or make
the results less valuable (can’t block DoS attack, missed the
criminal’s car, ...) regardless of its quality. Current server-
less system provide no means for application to guarantee
latency, and thus meet real-time constraint. Serverless invo-
cations can fail or be delayed arbitrarily, any applications
guarantees about decision (or computation) quality.

We propose an extension of the serverless interface to in-
crease its range of applications to include those with bursty,
real-time requirements.We call this extension real-time server-

less. It adds both an service-level objective (SLO) for function
invocation rate to the interface, and delivers this SLO. We
show how applications can use real-time serverless to guar-
antee real-time performance, including latency and quality.
We use an analytical model to study benefits, and finally
explore a case study implementing a traffic monitoring ap-
plication on real-time serverless. Specific contributions of
the paper include:

• Definition of the real-time serverless interface and guar-
anteed invocation rate
• Modeling studies that reveal real-time serverless bene-
fits for real-time bursty application
• A traffic monitoring case study that shows how real-
time serverless can be applied
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(a) Serverless (best-effort) (b) Real-time Serverless

Figure 1. Best-effort and Guaranteed Invocation rate

• A prototype implementation that is being deployed to
support a number of new applications (video monitor-
ing, real-time instrument control)

Paper organization: Section 2 outlines real-time serverless
interface, explaining how applications can achieve guaran-
teed performance. In Section 3, we evaluate benefits quantita-
tively and demonstrate on a traffic monitoring. We describe
our initial implementation efforts in Section 5, and close with
related work (Section 6) and summary (Section 7).

2 Real-time Serverless

Serverless computing cannot guarantee performance for
bursty, real-time workloads. We describe the reasons for
this, and then propose the real-time serverless interface pro-
viding a guaranteed invocation rate. Finally we describe how
it can be used to deliver real-time and quality guarantees.
Consider a real-time bursty application (Figure 1a (blue

line)). Its computational requirements to meet its real-time
or quality requirements vary with time. With serverless com-
puting, as defined by all of the major cloud vendors [2, 9, 15],
the application’s ability to acquire compute resources de-
pends on function invocation latencies (each invocation can
viewed as an allocation of compute resources). If the invoca-
tion latencies lag the application requirement, then real-time
and quality requirements (SLO) will not be achieved.
We propose real-time serverless, an interface for applica-

tions to advertise a guaranteed invocation rate, and a service-
level objective (SLO) to deliver that rate. As Figure 1b (right),
with a guaranteed invocation the real-time requirement can
be met. Each real-time serverless function is associated with
the following attributes (YAML format):

<function−name>

lang : <Language o f f u n c t i o n body>

handler : < Lo c a t i on o f f u n c t i o n body>

image: <Docker image r e f e r e n c e >

realt ime : <Guaranteed i n v o c a t i o n r a t e >

timeout : <Runtime l im i t >

l imi t s : <Max r e s ou r c e use >

requests : <Min r e s ou r c e use >

Most of the attributes are compatible to the serverless
interface. We add realtime that allows users to specify the
required invocation rate (in invocations/second). If a function

(a) Real-time Example (b) General Deadlines

Figure 2. Real-time application tasks mapped onto RT
Serverless

declares realtime = ARTS , the number of invocations per
period, Invokes, must satisfy:

Invokes ≥ min[ARTS , Requests] (1)

where Requests is the number of invocation requests in the
period. For example, if an IoT service for a sensor with a data
reporting interval of 100ms wanted to ensure no data was
lost, and all data was processed in a timely fashion, it might
add łrealtime: 10ž. A correct real-time serverless implementa-
tion meets all of guaranteed invocation rates. A guaranteed
invocation rate of zero corresponds to commercial serverless
offerings.

2.1 Using Real-time Serverless

Let’s begin with an example. Consider a real-time task with
a burst compute requirement of three function invocations
for 60 seconds as shown in Figure 2a. The task has a deadline
of 75 seconds after release (the triggering event). A guaran-
teed rate of 0.2 invocations/second ensures that three invo-
cations will be available within 15 seconds to provide the
computation required for the 60-second execution to meet
the real-time deadline.
An application can plan its resource requests to meet re-

quirements based on the size and duration of its tasks and
their deadlines because a guaranteed invocation rate ensures
access to resources growing with slope ARTS . Thus, real-
time serverless enables applications to acquire resources as
a deterministic and linear function of time. Higher compute
demands can be met with proportionally increased ARTS .
Management for real-time tasks in the general case is

shown in Figure 2b; each task with maximum compute re-
quirement,H , that lasts,D seconds and a latency requirement
of D + L0. A guaranteed invocation rate as below will meets
the latency requirement.

ARTS =

H

L0
(2)

Increased invocation rate can meet tighter latency bounds,
and serve applications with quality requirements (e.g. soft
real time). Tuning is easy ś guaranteed invocation rate can
simply be increased until real-time guarantees are met.
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(a) Frame value distribution

vs. ARTS

(b) Fraction of burst frames achiev-

ing a specific fraction of maximum

value

Figure 3. Guaranteed frame value at various guaranteed
invocation rates (D=3,600 and τ=2,607 (1/2 per minute))

3 Bursty Application on RT Serverless

We construct a model of a real-time video analytics appli-
cation. This application performs a low-cost screening of
frames to detect potentially interesting events. When such
events occur, the application triggers a deeper analysis ś a
łburstž of video frames ś analyzed with a higher compute
requirement, and where timely results are critical.

3.1 Modeling

We construct an analytical model for the traffic monitoring
application running on real-time serverless. Each burst in-
creases compute demand 10-100x for durationD frame-times
(framerate = 1/30 second). Bursts arrive as a Poisson process
with rate λ.

The video application is a serverless function that pro-
cesses a single burst frame. It is deployed on real-time server-
less with guaranteed invocation rate ARTS . For each burst
frame, an invocation is triggered in FIFO order, returning
an instance used for invocation until burst frame processing
finishes. Each frame can be thought of as a real-time task,
and thus if ARTS matches the framerate, then all frames are
processed immediately (in effect, they meet a deadline with
no slack). For simplicity, we use the interframe interval as
the time unit (frame-time).
Many video analysis applications are not hard real-time,

but rather have a softer notion deadline where delayed re-
sults are still of some value. We can model such a property
with a value function that decays with increased delay (or
slack in a real-time terminology), as a function of delay L(i )
for frame i in a burst. We use a simple decaying value func-
tion as an exemplar:

Vframe (i ) = Vmaxe
−
L (i )
τ (3)

where Vmax = 1 is the maximum frame value and τ is time
constant of value decay with latency1. L(i ) is the frame’s
waiting time before processing. For burst, the overall value
is

1As value function is used to represent application quality, we use the term

value and quality interchangeably.

BurstValue =

D−1∑

i=0

Vframe (i ) (4)

The FIFO model implies that for a burst at t = 0, the frame
arriving at t = i’s invocation will begin at latest at i

ARTS
as

L(i ) = i (
1

ARTS

− 1) (5)

Current serverless offerings (no SLO) can be modeled with
ARTS = 0, which gives a worst case is a value of zero.

3.2 Designing for Application Quality

To illustrate how real-time serverless enables designing ap-
plications with guaranteed quality, we use the above analysis,
consider a single burst of duration D, vary ARTS , and plot
the distribution of frame values in Figure 3a.
With ARTS = 1 the maximum value is achieved for all

frames ś invocations are granted fast enough to keep up
with the burst. As ARTS decreases, the distribution shifts to
lower value (left), with all frames achieving at least 40% of the
maximum value with ARTS = 0.6, and decaying as decreases
to ARTS = 0.1. At ARTS = 0 (no invocation rate guarantee),
provided by current commercial serverless systems, invoca-
tions can be held up for long periods of time, producing low
application value guarantee (blue, distribution at left).

By choosing a guaranteed invocation rate, an application
can ensure a guaranteed application quality for each frame,
as shown in Figure 3b. At a givenARTS , we show the fraction
of burst frames achieving a particular fraction of maximum
value. To achieve 50% of max value for even 50% of frames
requires ARTS of 0.5 instances/frame-time. At the high end,
achieving 90% of max value 50% of the time requires ARTS =

0.85, and 0.9 for 100% of the frames. With proper choice
of ARTS , applications are able to meet any target quality,
unlocking simple, rational design for quality.

Figure 4. Prob. of # of Overlapping Bursts (vs Duty Factor).

3.3 Overlapping Bursts

For higher burst rates overlapping bursts can present new
challenges. For example, a łperson of interestž appears in
one camera while another camera views a traffic accident.
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Figure 5.Guaranteed Invocation Rate to achieve Burst Value
Fraction (varied Duty Factor).

Figure 6. Traffic Monitoring trace (objects of interest): two
rush hour periods, and higher daytime load.

We call such cases burst interference, and study how they can
impact quality.2

Burst interference reduces achieved application quality. To
maintain quality, bursty, real-time applications must increase
their requested ARTS . The duration (D) and arrival rate (λ)
drive this increase, so we vary duty factor (DF = D · λ)
to explore increases in required guaranteed invocation rate
(see Figure 4). For many monitoring systems a duty factor of
1% may be typical, probability of interference is extremely
low (0.005% for two and 0.00002% for three bursts). Even
with duty factors 10-25 times higher, the probability of > 2
simultaneous bursts is very low.
In Figure 5, we plot the value achieved from for various

ARTS . Increasing guarantee invocation rate can provide ef-
fective service for multiple concurrent bursts. At ARTS = 2,
two concurrent bursts can be handled with full value. And,
at ARTS = 3 invocations per frame-time is sufficient to guar-
antees maximum value for the three-burst cases. So, main-
taining quality (100% of burst value) for a 25x increase in
duty factor requires only a 3-fold increase in a guarantee
ARTS . So, even for multiple concurrent bursts, an application
is still able to achieve desired quality by simply adjusting
ARTS ; and, it appears due to statistical multiplexing, high
value can be maintained at a low-cost!

4 A Traffic Monitoring Example

We study a real-world bursty application, real-time video
traffic monitoring. The application does video counting and

2Bursts are independent, identically distributed Poisson arrivals for conve-

nience. We leave more complicated cases for future work.

Burst Duration (frames) Burst Demand per Frame

Mean, StDev MinśMax Mean, StDev MinśMax

Night 116, 186 30ś2,445 21, 3 20ś80

Day 120, 216 30ś2,323 20, 3 20ś80

Rush hours 917, 1293 30ś7,464 48, 23 20ś200

Overall 197, 503 30ś7,464 24, 11 20ś200

Table 1. Burst Statistics for Traffic Monitoring Example

tracking, processing real traffic videos [19] using a Glimpse-
like [4] pipeline. Each vehicle entering initiates a burst of
analysis, producing characteristics captured in Table 1.
Trace activity varies with time of day and other traffic

fluctuation. Our 24-hour trace has 3 distinct periods: rush
hour (high burst demand), daytime (medium burst demand),
and nighttime (low burst demand) as illustrated in Figure 6.

We rerun experiments in Section 3.2 using simulation on
the trace and plot the results in Figure 3. Clearly, due to the
complicated statistics properties, the distribution of frame
value in Figure 7a is much noisier than the results we get
in Figure 3a. However, the effect of adding the guaranteed
allocation rate still remains. AtARTS > 0, the application can
ensure many frames to achieve high value. Guaranteed value
also increases asARTS , although comparing to the analytical
data, it is much slower due to extreme high computation
demand during rush hours. Figure 7b reveals application
value is a monotonically increasing and continuous function
of guaranteed allocation rate. Thus, the traffic monitor can
use the guaranteed allocation rate as a tuning parameter to
meet desired object counting quality. This confirms real-time
serverless’ capacity of providing a mean for quality design
as we introduce in Section 3.2

5 Implementing Real-time Serverless

5.1 Worst-case Resource Approach

A strong invocation rate guarantee has significant implica-
tions for resource management. The fact that serverless invo-
cations have bounded, short durations means that serverless
invocations can always be reclaimed predictably. Specifically,
from the real-time serverless interface, a function can be
characterized by a tuple (realtime, timeout) = (ARTS ,RRTS )

indicating its guaranteed allocation rateARTS and invocation
maximum runtime RRTS . All instances allocated for function
invocation at the time t can be reused no later than t +RRTS .
Given application an ARTS guarantee, we can bound the
resource requirement as

CARTS ,RRTS
= ARTS · RRTS (6)

Thus, themaximum resource cost for a real-time serverless
function grows linearly with allocation rate and invocation
duration. This confirms basic feasibility of real-time server-
less implementation. Further efficiency gains are possible by
exploiting statistical workload characterizations to reduce
resource requirements [11, 21, 23]. We study how to do this
for real-time serverless extensively in [16].
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(a) Frame value distribution vs. ARTS (b) Fraction of burst frames achieving a

specific fraction of maximum value (FIFO)

Figure 7. Traffic Monitoring application Value on RT Serverless (simulation)

5.2 Real-time Serverless Prototype

Figure 8. Real-time Serverless Implementation. Modules
(orange) are added to OpenFaaS.

We have built a real-time serverless prototype as an exten-
sion of OpenFaaS, an open-source implementation of server-
less platform [17]. The primary extensions are admission

control and predictive container management. The admission
control unit accepts or rejects the deployment of functions
with guaranteed invocation rate, based on the system state
and requested guarantees. The predictive container manager
provisions containers to meet the guarantees. The system is
depicted in Figure 8.

To demonstrate the prototype, we ran the Traffic Monitor-
ing application discussed in Section 3. Each video frame is
processed by a single cloud function invocation. The Traffic
Monitoring application is run with different invocation rate
guarantees in the real-time serverless prototype, and report
achieved throughput and application value (see Figure 9).
To demonstrate performance isolation, a competitive back-
ground best-effort cloud function workload large enough to
fill the system is running. The prototype achieves the guaran-
teed invocation rate in all cases. Experiments were run on the
UChicago RIVER system, which includes 2x Intel Xeon Gold
6138 20-core processors (80 threads total), 2.0GHz, 37.5MB
cache, 512GB DRAM and a complement of IO devices.

Figures 9a,9b, and 9c show how the function request and
invocation rates vary as the guaranteed invocation rate is
increased. With no guaranteed rate (ARTS = 0), the system
fails to provide enough invocations for the application to
catch up with computation bursts, especially during rush

hour periods. At (ARTS = 0.3), shown in Figure 9b, the situa-
tion improves, and finally in Figure 9c, with ARTS = 1, the
SLO of 1 invocation per frame-time, application can adapt to
burst demand (the invocation and request curves are nearly
identical), enabling to higher application quality.

Figure 10, shows how our real-time serverless prototypes
delivers on the promise of manageable quality. Despite a com-
petitive background load, the prototype allows application
to increase their quality by increasing ARTS .

Our prototype exposed one interesting challenge - dealing
with ad hoc invocation request loss. Requests can be dropped
when various resources and wait timeouts (reflected in differ-
ence between Figure 10 and 7b). Such discarding a problem
for real-time serverless, producing an ad hoc priority and
scheduling outcome that can violate application guarantees.
We are solving these problems in future implementations

6 Related Work

Serverless is growing rapidly with numerous commercial
offerings [2, 9]. Many new applications explore how to use
serverless [5, 7, 24]. There are alsomanyOpen-source projects
such as Knative [14] and OpenFaaS [17]. There are efforts to
reduce FaaS overhead [1, 6, 22], but generally such efforts in-
crease variability of performance and we know of none that
provide SLO’s for invocation latency or rate. The existing
systems all deliver invocations on a best-effort basis with
significant documented variability [20], and cannot provide
application real-time guarantees.

Numerous efforts to extend the serverless model focus on
how to support traditional 3-tier elements that enable busi-
ness logic (distributed computing or systems) and databases
[10, 13]. These efforts propose richer naming and communi-
cation services for invocations and efficient data access but
no performance guarantees. Other efforts seek to add more
general, flexible programming to cloud functions [12] These
important directions are distinct from our goal to enable
guarantees of performance for bursty, real-time applications
built on function-as-a-service, benefiting from the benefits
of rapid dynamic scaling and fine-grained resource billing.
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(a) ARTS = 0 invocation/frame-time (b) ARTS = 0.3 invocation/frame-time (c) ARTS = 1 invocation/frame-time

Figure 9. Real-time serverless prototype with Traffic Monitoring application

Figure 10. Frame value distribution vs. ARTS on OpenFaas
RTS Prototype

7 Summary and Future Work

The serverless computing model has enabled a broad range
of new applications and provides new levels of application
convenience. However, today’s serverless gives best-effort
service, making it unable to support bursty, real-time because
it cannot guarantee application quality.

We have shown that the addition of guaranteed function
invocation rate, producing real-time serverless can solve this
problem. Enabling applications to provide quality guarantees,
and conveniently tune their quality. Further, our analysis
of real-time serverless for a variety of burstiness properties
highlights its scalability and promising cost-effectiveness.
We have built a prototype system, and are working with
leaders on a number of application.
We have shown the power of the real-time serverless

model. Open questions remain about the cost of its imple-
mentation.What are the best approaches? How do their costs
and properties vary as a function of the underlying system
and user applications? These interesting questions provide
an exciting future research space.
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