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ABSTRACT

Generation type of power plant (e.g. steam, wind) is an impor-
tant attribute in power grid and energy market studies such as
bidding strategy, audit of generation mix, and accounting for load-
generation matching. Recently, regional transmission organizations
(RTOs) and independent system operators (ISOs) are increasingly
redacting a wide range of grid and market data attributes to protect
their participants’ business interests. Lack of this information can
prevent important power grid research.

We propose techniques to infer power plant generation types
based on publicly-available market data. We develop and evaluate
these techniques on data available from the Midcontinent Inde-
pendent System Operator (MISO). Evaluation shows successful
classification of power plants, achieving 100% precision and 99.5%
recall for wind plants, and 91.7% overall accuracy. On the basis of
generated power, our classification shows 100% precision and 99.8%
recall for wind plants and 93.2% overall accuracy.

Our ultimate goal is to generalize to a wide range of RTOs/ISOs.
We explore three feature types (bid pattern, capability, and opera-
tion), and evaluate their classification value forMISO.We also assess
applicability to other RTOs/ISOs based on available market data.
These studies inform the efficacy of the features for generation-type
inference in other RTOs/ISOs.
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1 INTRODUCTION

Modern power grids incorporate plants of different generation
types (e.g. gas turbine, wind) that generate and sell power every
day. With the adoption of aggressive renewable portfolio stan-
dards (RPS) [6, 7, 25, 33], generation mix is shifting rapidly towards
renewables with variable, correlated generation. These different
operating mixes present new challenges in management (balancing,
regulation, etc.), markets (price stability) and renewable absorp-
tion (curtailment, grid capacity value) [23, 24, 40]. Consequently,
power plant generation type is an important attribute for mod-
eling the dynamics and efficacy of power grids, generation, and
markets. For example, generation-type labels can enable study of
bidding strategy with flexible and inflexible generation[39], help
adapt generation scheduling models to real-world data[10], and
enable load-coupling of load such as data centers to renewable
generation [11, 20, 42]. Power plant generation type is also useful
for auditing actual generation by type.

Because the dynamics of renewables can disrupt power market
pricing and even balancing, accurate modeling of generation mix
as well as generation behavior has become an essential element of
many large-scale load management, demand response, smart grid,
or data center co-management studies. However, generation mix
labels are increasingly difficult to obtain.
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Figure 1: Modern power grids integrate power plants of dif-

ferent generation types with varied behavior. (Images: Pub-

lic Domain)

In the United States, regional transmission organizations (RTOs)
and independent system operators (ISOs) coordinate, control, and
monitor the operation of power grids. According to the Federal
Energy Regulatory Commission (FERC)’s rules[12], RTOs and ISOs
deliver market data to FERC periodically, and usually make some
market data public. Several community efforts seek to create open
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Table 1: Comparison of Data Availability of RTOs/ISOs

RTO/ISO Name Area Plant-level Reports Plant Generation Type

MISO 15 U.S. states and the Canadian province of Manitoba Yes No
PJM All or parts of 14 eastern States and The District Yes No

ERCOT Most of Texas Yes Yes
CAISO California Yes No
ISO-NE Six New England states Yes No
NYISO New York State Yes No
SPP All or parts of 14 central states Yes No

models and data for power grids (e.g. openmod[29], OpenEI[28]).
However, with rising climate-awareness as well as spreading priva-
tization, disclosure of detailed generation mix and market behavior
has come under increasing scrutiny. For example, RTOs and ISOs
have begun to omit several types of information such as per-offer
pricing (LMP) and power-plant generation-type from their public
data releases.

Our survey explored data availability for the seven major RTOs
and ISOs in the United States: the Midcontinent Independent Sys-
tem Operator (MISO), Pennsylvania-New Jersey-Maryland Inter-
connection (PJM), Electric Reliability Council of Texas (ERCOT),
California ISO (CAISO), ISO New England (ISO-NE), New York ISO
(NYISO), and South Power Pool (SPP) (Table 1). All of these markets
report plant-level generation offers publicly, but only one currently
contains generation type of power plants. Many used to, but have
ceased such release. For instance, MISO provided generation type
in market cleared offer reports (settled offers), but since December
2016 no longer provides that data. The stated reason is to łensure
and preserve the confidentiality of cleared offersâĂŹ unitsž. Re-
moval of power plants’ generation type has been noted and already
hinders researchers in applying their models to latest data[9].

Our goal is to infer generation type based on available public
data in order to enable richer smart grid and power market research.
Our high-level approach is to identify features based on domain
knowledge of generator type behavior. Next, we test the efficacy
of each of these resources in various combinations in a feature
vector combined with various machine learning techniques. We
test the accuracy of the classifiers against ground truth (available
for 2015, 2016). We also explore a multi-stage classification process
to see if higher accuracy can be achieved. Our efforts produce a
classifier that infers power plant generation type accurately. Specific
contributions include:

• Study of power plant generation types in market reports of
seven major US RTOs/ISOs reveals that only ERCOT pro-
vides power plant generation type in market reports. This
demonstrates the need for generation-type inference.

• We present two approaches: one-stage classification, which
directly classify all power plants into five classes, and mul-
tistage classification, which consist of classifiers for wind
power plant, run of river power plant, and the rest types of
power plants. The classifiers in both cases are based on three
types of features extracted from market reports: bid pattern,
capability, and operation.

• We evaluate the classifiers, using MISO’s public data from
before and after they redacted generation-type informa-
tion. Comparing the performance of three widely-used ma-
chine learning algorithms, we evaluate the classification al-
gorithm’s accuracy and show that it achieves 91.7% accuracy
by plant count and 93.2% by power generation.

• Exploration of generalization to other RTOs/ISOs - with our
survey we identify which RTOs/ISOs release sufficient data
to enable our classification techniques. We look forward to
evaluation on this further data.

The rest of the paper is organized as follows. In Section 2 we
discuss related work using machine learning for classification in
power market/grid dynamics. Then we propose an algorithm for
classifying generation types of power plants in Section 3 and eval-
uate its efficacy on MISO’s data in Section 4. We summarize and
discuss possible directions for future work in Section 5.

2 RELATED WORK

We review prior work applying machine learning for classification
tasks and applications in power systems.We then discuss ourwork’s
impact on energy market and power grid dynamics research.

Classification Using Machine Learning. Machine learning tech-
nology powers many applications in modern society, especially the
ones related to pattern recognition. And deep learning, a branch
of it, has dramatically advanced the development of areas such as
computer vision and natural language processing[22]. Among dif-
ferent types of data, what our problem involves is panel data, which
combines cross-sectional and time series data, containing observa-
tions of multiple attributes over time for a set of power plants. From
cross-sectional data side, classification tasks are widespread, such
as text sentiment classification[31], credit-risk prediction[18], and
user behaviour analysis[34]. From time series data side, it’s more
difficult to extract discriminative patterns from temporal signals
for classification tasks[15], but several communities have also done
a lot of work on solutions to classification tasks[15, 17, 38]. Our
approach stands between the two sides: we extract both static and
temporal features from the data, and regard it as a classification
task on cross-sectional data.

Machine Learning Applications in Power Systems. In the area
of power systems, machine learning has been used for security
assessment, fault detection, measurement data analytics, and gener-
ation/load forecasting, among which we put more focus on classifi-
cation tasks. Classifiers widely used for classification tasks in power
systems include support vector machine[16, 30], decision tree[21],
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and random forest[21, 27, 37]. To our knowledge, these models have
not been applied to power plant generation type classification. For
input of these classifiers, feature extraction in above tasks typically
relies on domain knowledge about power systems. For example,
features for security assessment include voltage angle/magnitude,
complex generation, and load at bus[16]. Beckel et al. propose to
use electricity consumption data to classify households[2, 3] ac-
cording to some pre-defined properties, and identify four groups
of features from consumption data to reflect household’s pattern:
figures, ratios, temporal properties, and statistical properties[2]. We
extract features from similar angles with different categories and
find that they are efficient for our classification task.

Market and Grid Dynamics. As power grids incorporate more
renewable generation such as wind or solar, and begin to phase out
łdirtyž power plants such as coal-fired ones, studies of power grid
and energy market dynamics with different goals are emerging.
Birge et al. recover market structure from MISO’s data, and discuss
its spatial and temporal variation, providing an analytical tool for
market participants[5]. Many studies focus on the impact of chang-
ing generation mix[4, 11, 14, 19, 39]. For example, Chien et al. char-
acterize the increasing curtailment and uneconomic power in MISO,
which potentially match the increasing load of data centers[11]. We
are personally interested in these studies that explore how hyper-
scale data centers load can be coordinated to increase effectiveness
of renewable generation. However, these studies typically presume
labeled generators, which are usually obtained under contracted
non-disclosure agreement or through simulation settings.

In this paper, we focus on the generation type of power plants
in the power grid, which is an important attribute in market and
power grid models. We model the power plants with a set of well-
defined features reflecting their static and temporal properties, and
apply machine learning classifiers to power plant classification. The
inference of generation type would significantly increase the real-
world data and systems that could be studied, and enhance current
market and power grid models by modeling the power plants better.

3 APPROACH

We introduce our approach for power plant generation type classi-
fication. The approach begins with a feature set designed in accord
with insights into behavioral characteristics of different generation-
type power plants. Next, we select three machine learning models,
trying both one-stage andmultistage classifications. All of this work
is done on MISO market data, and validated with earlier data which
MISO released with generation-types labeled. Finally, we explore
where sufficient data is available for our approach, considering
other RTOs/ISOs in the United States.

3.1 Dataset

We collected market data from MISO’s website (years 2015-19).
This data includes aggregated wind generation and real-time mar-
ket cleared offers. The aggregated wind generation data contains
hourly total wind generation in MISO’s dispatch region. The real-
time market cleared offer reports include the fields shown in Table
2. In MISO’s real-time market, the delivered power and clearing
prices are calculated for 5-minute intervals based on supply, de-
mand, and security-constrained economic dispatch. This dispatch

involves a complicated market optimization based on locational
marginal pricing (LMP), and critical reliability and stability con-
straints. Power plants can submit hourly updates of their commit
status or EconMax (max MW) operating parameters to the system.
The 2015 and 2016 real-time market cleared offer reports contain
plant generation type, providing ground truth for our study.

3.2 Power Plant Generation Types

Before 2017, MISO provided generation type labels for power plants,
classifying plants into 13 types. These include five major types ś
steam, combustion, run of river, combined cycle, and wind (Table
3) as well as eight less common types including Diesel, Pumped
Storage, Combine Cycle CT, Other Fossil, Other Peaker, Demand
Response Type 1, and Demand Response Type 2. The settled bids
were labeled with a unique generation-type code for each power
plant. The five major plant types, shown in Table 3 account for over
99% of the dispatched energy in MISO real-time market. Therefore,
we focus on these five types of power plants.

(1) Steam Turbines extract thermal energy from pressurized
steam and use it to do mechanical work on a rotating out-
put shaft that drives an electrical generator. Power plants
with steam turbines, including fossil fuel and nuclear power
plants, account for most of the power generation in MISO.
The scale of generation capacities varies from several mega-
watts to over 1,000 megawatts.

(2) Combustion Turbine is another name for gas turbine. It
converts natural gas or other liquid fuels to mechanical en-
ergy, which then drives a generator producing electric power.
A key characteristic of combustion turbines is their ability for
rapid ramp (turn on and off) within minutes. Consequently
single cycle combustion turbine plants usually operate for
peak hours or unscheduled demand, generating even only a
few dozen hours per year. In some cases, they might operate
longer in areas without base-load or other load following
power plants, whose cost of power is often higher than steam
turbines. Both types of operating modes for combustion tur-
bines can be found in MISO.

(3) Run of River Hydroelectricity is a hydroelectric system
that harvests energy from flowing water to generate electric-
ity. It does not require a large dam or reservoir and exploits
the natural flow rate of water instead. Run of river plants
have less negative environmental impact compared with
dam-based hydro-power plants, and thus are an increas-
ing generation source in Midwest and Canada. This type
of power plant is usually built where there are water flows
with substantial flow rate and a grade that speeds river water
significantly. Typical capacity of run of river power plants
range from 100 kilowatts to 50MW or even larger [1].

(4) Combined Cycle plants use both gas and steam turbines to
generate power. Waste heat from the gas turbine is used to
create steam, and then a steam turbine generates extra power.
The combination increases overall efficiency compared with
a single gas turbine. The hybrid structure of combined cycle
power plants brings mixed patterns to generation and bid-
ding. MISO considers a combined cycle plant consisting of
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Table 2: Description of Fields in Real-time Cleared Offers (2016 version, Source: MISO)

Column Name Description

Unit Code Unique numerical identifier for the power plant (unit)
Unit Type A number indicating unit’s generation type (only available for 2015-16 data)
Mkthour Begin Interval start time for real-time offer
Cleared MW/LMP (1-12) Delivered power (MW) in the interval and the cleared price ($/MW)
Economic Max (EconMax) The highest output available from the unit for economic dispatch in the interval
Unit Available Flag Indicates whether unit is available and can be scheduled
Economic/Emergency/Must Run Flag Indicates the unit’s commit status (economic dispatch/emergency scheduling/self-scheduling)
Price/MW (1-10) Bid price and offered power pairs (price curve)
Slope Describes the shape of price curve shape as slope or block

Table 3: MISO Real-timeMarket’s Dispatched Energy (TWh)

and Number of Power Plants by Generation Type (2016)

Unit Type Generation Type Energy Number

4 Steam Turbine 413.17 357
27 Combustion Turbine 54.63 415
41 Run of River 7.90 65
52 Combined Cycle Aggregate 81.17 55
61 Wind 46.83 209

Others Various 2.60 117
Total 606.31 1218

gas turbines and steam turbines as a single unit, while some
other power grids consider them as separate units.

(5) Wind Turbines generate electricity from wind. The wind
turns the propeller-like blades of a turbine around a rotor,
spinning the generator. Because there is no fuel cost, a utility-
scale wind power plant has low generation cost, and often
bids low prices. However, availability of generation capacity
varies, depending on weather patterns. In MISO, wind is the
largest source of renewable power, accounting for about 10%
of the generation[11].

Distinct characteristics of these five major plant types are re-
flected in power plants’ generation offers, providing a foundation
for identifying a power plant’s generation type. We will discuss
more details about how that generation type is reflected in market
offers (bids) in Section 3.4.

3.3 Problem Formulation

We define the power plant classification problem as identifying
power plant generation type based on its behavior in the power
market. This means assigning generation-type labels to each of the
power plants.

A power plant’s behavior in the power market is extracted from
market reports. More specifically, we focus on five labels - steam
turbine, combustion turbine, run of river, combined cycle aggregate,
and wind because these five generation types account for nearly
all generation in MISO (99.6% in 2016). Power plants are denoted
asłunitsž in the real-time market cleared offer reports.

?

?

? ?

Energy 
Market

Bid 
Pattern

Capability Operation (𝒙𝟏, 𝒙𝟐, … )

Classifier

Power Plants

Generation-type Labels

Feature VectorsFeatures

Figure 2: Overview of Problem and Approach

Our high-level approach is to identify features based on do-
main knowledge of generator type behavior. For example, the ramp
rate characteristics of gas turbines. Next, we test the efficacy of
each of these resources in various combinations in a feature vector
combined with various machine learning techniques. We test the
accuracy of the classifiers against ground truth (available for 2015,
2016). We also explore a multi-stage classification process to see if
higher accuracy can be achieved.

3.4 Defining Features

To extract the features of power plants, we begin by analyzing
real-time cleared offers. These offers reflect production, bid price,
and operation status. Based on knowledge of typical generator
operation for each type, we construct features which we believe will
be predictive of generation type. For example, generators with fuel
cost will exhibit a lower bound on bid prices set by their fuel cost.
Others may be unrestricted price takers. Another example, steam
turbines’ ramp rate will be limited by intrinsic physical properties
such as thermal mass.

3.4.1 Bid Pattern. Bid pattern can be indicative of generation type.
Bids are constrained by operating cost, which for steam, combus-
tion, and combined cycle means that fuel cost imposes a non-zero
floor on bidding. Specifically, we expect that run-of-river and wind
generators that have no per-MW incremental costs can econom-
ically bid prices all the way down to zero. Furthermore, their in-
flexibility in generation - production driven by natural phenomena
such as the rate of water flow in the river ś means that they are
eager to garner whatever revenue they can; even at a very low
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price. Such generators are often called łprice takersž because they
bid so low, or in the market clearing they accept the prices set by
the equilibrium set by other bidders. To exploit this knowledge, we
define a feature, called łlow bidderž, when a generator bids either
łnopricež or < $5 per MWh in 95% of the days.

To capture the notion of the fuel-cost limit, we define a second
feature called łaverage bid startž. This feature is the mean value of
the price for the first step in the bid curve over all of the operating
hours. A low first step indicates a willingness to generate power at
that low price. Generators that have fuel cost will generally require
a higher initial price.

These features are documented in Table 4.

Table 4: Bid Pattern-related Features

Feature How to Measure

Low Bidder Boolean Variable (0/1)
Average Bid Start Mean(Price1(t))

From the market reports, we find that 310 of 1218 power plants
match the łlow bidderž pattern, and 66% of them are wind power
plants. Within the wind power plants, 91% of them match this
łlow bidderž feature, which suggest that this feature can be used for
identifying wind power plants. This phenomenon is consistent with
the fact that wind power plants have very low fuel cost and long-
term observation[35]. On the contrary, some combustion turbine
power plants, which may only operate during peak hours, usually
start bidding at a high price, even higher than $300/MWh.

(a) Breakdown of Power Plants with łLow Bidderž

(b) Breakdown of Wind Power Plants

Figure 3: Breakdown of Power Plants with łLow Bidderž by

Type and Breakdown of Wind Power Plants by Bid Pattern

3.4.2 Capability. In our work, a power plant’s capability refers to
two terms: maximum generation capacity and ramp rate (rate of
changing output). Such properties are largely determined by the
generator type, and thus they reflect generation type. For example,
because of the intense energy released by nuclear reaction, a nuclear
power plant’s generation capacity can reach over 1000MW,which is
much higher than the run of river power plant’s capacity (typically
less than 100 MW). However, the run of river power plant has much
higher ramp rate than the nuclear power plant’s, as it’s easier to
adjust flow of water than to control nuclear reaction.

We define four features to capture power plants’ difference in
capability: generation capacity (Figure 4) with two related statistical
features, and ramp rate (Table 5). Power plant’s generation capacity
is estimated by the maximum of Economic Max over time1, while
ramp rate is estimated by maximum difference in generation be-
tween two consecutive 5-minute intervals. In order to measure the
flexibility of capacity, the coefficient of variation (CV) and relative
range of economic max are added, describing dispersion and range
of capacity under economic dispatch.

Table 5: Capability-related Features

Feature How to Measure

Generation Capacity Max{EconMax(t)}

Capacity’s Dispersion EconMax’s Coefficient of Variation
Capacity’s Range EconMax’s Ranдe/Mean

Maximum Ramp Rate Max{|Cleared MWi+1 −MWi |}

3.4.3 Operation. The generation type influences a power plant’s
operation. Within the operation information contained in MISO’s
real-time cleared offers, there are three types of commit status:
economic, which means the power plant is available for economic
dispatch; emergency, which means the power plant will not be
scheduled unless the RTO/ISO calls for Max Emergency generation;
must run, which means a power plant will always supply electricity
to the power grid. łEmergencyž is usually set for combustion turbine
power plants for its rapid start, while nuclear power plants are
usually set as łMust Runž because they are averse to being turned
off and on[36]. For each power plant, We compute the ratios of
three status and define them as features.

In addition to commit status, we define the łdispatched inter-
valsž feature with the mean value of 5-minute intervals in which
electricity is dispatched. This feature reflect the how often a power
plant is producing power, which also indicates a power plant’s type.
For example, many combustion turbine power plants only operate
during load peak hours, while steam turbine power plants usually
produce power in more intervals as base-load power plants because
it takes much longer for them to start up or shut down.

With MISO’s hourly wind generation, we can compute the cor-
relation between each power plant’s hourly generation and the
hourly grid total, defining a feature called łcorrelation with windž:

CORi,wind =

{

cov(Geni ,W ind )
var (Geni )var (W ind )

,var (Geni ),var (Wind) , 0

0,otherwise

1Similar as [11], we exclude the power plants that do not bid Economic Max.
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(a) Steam Turbine
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(b) Combustion Turbine
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(c) Run of River
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(d) Combined Cycle

0 200 400 600 800 1000 1200
Generation Capacity Estimated by EconMax (MW)

0.000

0.002

0.004

0.006

0.008

0.010

Fr
eq

ue
nc

y 
/ 1

00

(e) Wind

Figure 4: Distribution of Generation Capacity (MW) by Gen-

eration Type

whereGeni denotes the array of power plant i’s hourly generation,
andWind denotes the array of hourly total wind generation. On the
one hand, as each wind power plant contributes to the aggregated
generation, we expect that the average correlation coefficient be-
tween a wind power plant’s generation and total wind generation
will be positive. On the other hand, as other types of power plants
such as steam and combustion may compensate decreased wind
generation by increasing generation, a negative correlation may
indicate that a power plant is not driven by wind. This inference
is verified by calculating all correlation coefficients between each
power plant’s generation and total wind generation (Figure 5).

These operation-related features are documented in Table 6.
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Figure 5: Distribution of Correlation Coefficient with Total

Wind Generation by Generation Type

Table 6: Operation-related Features

Feature How to Measure

EconRatio Ratio of łEconomicž hours
EmerRatio Ratio of łEmergencyž hours
MustRatio Ratio of łMust Runž hours
Dispatched Intervals Mean of Dispatched Intervals
Correlation with Wind Correlation Coefficient

3.5 Classifier Approaches

Considering the dataset size and the distributions on different fea-
tures, we consider support vector machine (SVM), decision tree, and
random forest approaches for classifiers. All of these approaches
support nonlinear classification. We consider both one-stage and
multistage classification. To implement this, we use scikit-learn[32]
and use grid search for parameter tuning. We build the feature
space from the features, and represent each power plant i , as a
vector Xi = (x1, ...,xn ), where xk denotes the value of k-th feature.
After classification, the power plant i is assigned a label yi , where
yi ∈ {steam, combustion, run of river, combined cycle, wind}. We
apply each of these approaches and evaluate their efficacy on accu-
racy, precision and recall.

Support vector machine (SVM)[13] is a learning model based
on maximizing the gap between two classes. It is widely-used and
is a robust and accurate method[41], which does not require large-
scale training data. łSupport vectorsž define hyperplanes that split
two classes of data. In order to adapt SVM for nonlinear classifi-
cation, we map the data into a higher dimensional space with the
radial basis function (RBF) kernel.

Decision tree is a tree-like model of decisions and correspond-
ing consequences, whose leaves represent the classes that divide
samples. Each split uses a feature and value, selected based on
specific standards (e.g. Gini impurity). Typical applications limit
maximum tree depth and minimum number of samples to justify
splitting a node. Significant advantages of decision tree include
good interpretability, few data preparation requirements, and abil-
ity to handle different types of data.

Random forest is an ensemble of decision trees. Each decision
tree is trained on data sampled randomly and independently, and
only a random subset of features can be selected during each round
candidate split in tree construction, which completes an internal fea-
ture selection. After training, the classification result is determined
by averaging different trees’ prediction (scikit-learn implementa-
tion). The import of randomness decreases the correlation between
decision trees in the forest, and thus decreases the possibility of
overfitting and makes it more robust with respect to noise[8].

Decision tree and random forest support multi-class classifica-
tion inherently, while SVM is extended through one-vs-one strategy
in scikit-learn, which constructs one classifier per pair of classes.
We evaluate the performance of each type of classifier in Section 4.

3.6 Classification Procedure

With the extracted feature sets and classifiers, we propose two
classification approaches: one-stage classification and multistage
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classification. The feature selection and performance will be evalu-
ated in Section 4.

3.6.1 One-stage Classification. In one-stage classification, the fea-
ture vectors representing power plants are directly classified into
five classes (wind, steam turbine, combustion turbine, run of river,
and combined cycle) by a machine learning classifier (Figure 6).

Figure 6: One-stage Classification

3.6.2 Multistage Classification. Our multistage classification uses
three stages (Figure 7). In the first stage, we separate wind tur-
bines from others mainly based on the łlow bidderž pattern and
correlation with total wind generation. In the second stage, the
non-wind power plants are further separated into run of river vs
other types, using another subset of features. Finally, the remaining
power plants are classified into steam, combustion, and combined
cycle. The classifier in each stage is trained with corresponding
classes of power plants from labeled data.

Figure 7: Multistage Classification

3.7 Transferrability

An important goal is for our generation-type inference to be widely
usable, to be łtransferrablež to other RTOs/ISOs. To assess feasibil-
ity, we checked whether the data needed to support the classifier
features is available. Table 7 shows the results for several RTOs/ISOs.
Across the group, there are significant differences in the informa-
tion available. For example, while PJM, ERCOT, ISO-NE, and NYISO
provide data that appears sufficient for all three of our feature types
(bid-pattern, capability, and operations), SPP and CAISO only pro-
vide limited information in plant-level market reports and thus
present challenges for applicability of the classifiers.

While differing in advance time (e.g. day-ahead, real-time), the
reports from PJM, ERCOT, NYISO and ISO-NE include similar at-
tributes. All lack the power dispatch quantity for 5-minute intervals,
potentially an important obstacle. In addition, PJM’s reports lack
the commit status flag. Therefore, transferring classification capabil-
ity will require workarounds. Significant new feature opportunities
include no-load and start-up cost.

None of these RTOs/ISOs except ERCOT provide the generation
type of power plants, the objective of our classification, in plant-
level offer reports.2 This means we will have to train supervised
learning classifiers on data from other RTOs/ISOs and apply those
classifiers to these RTOs/ISOs’ generators.

4 EVALUATION

For both one-stage classification and multistage classification, the
machine learning classifiers are trained on 80% of the 2016 data
with 20% reserved as a validation set. We use the 2015 data as a test
set. We also present inference results for 2018 and 2019.

4.1 Metrics

We evaluate classifier performance on standard metrics for classi-
fication tasks: accuracy, precision, and recall. Two weightings are
considered ś the number of power plants and power generation.

For the two-class classification, the confusion matrix has four
quadrants: true positives (TP), false positives (FP), true negatives (TN),
and false negatives (FN) (Table 8). For example, in the first stage
of multistage classification, TP denotes the number of correctly
classified wind plants. FP counts the number of plants with other
generation types that are misclassified as wind. FN counts the
number of wind plants that are misclassified as other types, and
finally, TN denotes the number of correctly classified power plants
with generation types other than wind.

Accuracy is the percentage correctly classified, that is:

Accuracytwo−class =
TP +TN

TP + FP + FN +TN

Precision and recall of a specific class are defined as:

PrecisionClassA =
TP

TP + FP

RecallClassA =
TP

TP + FN

which respectively denote the probability that a sample classified
as Class A truly belongs to Class A, and probability that a sample
belonging to Class A is classified as Class A.

For classification problem with K classes, the corresponding con-
fusion matrix consist of K2 elements, and each element ni j denotes
the number of samples with specific true label i and predicted label
j. The overall accuracy is defined as:

AccuracyK−class =

K
∑

i=1

nii

ntotal

The above metrics can be directly applied to classification of
power plants. If we associate generation with each plant, we can

2Note that generation type of power plant is listed in PJM’s documentation, but they
have since removed this from historical and current data.
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Table 7: Data-availability to Derive Features in Other RTOs/ISOs

RTO/ISO Name Bid Pattern Capability Operation Possibility of Transfer Main Modification

PJM Yes Yes Partial Strong Remove commit status, dispatched intervals
ERCOT Yes Yes Partial Strong Remove dispatched intervals
CAISO Partial No Partial Low
ISO-NE Yes Yes Partial Strong Remove dispatched intervals
NYISO Yes Yes Partial Strong Remove dispatched intervals
SPP Yes No No Low

Table 8: Confusion Matrix of Two-class Classification

Predicted Label
Class A Class B

True Label
Class A TP FN

Class B FP TN

weight results based on power generation in similar fashion with
the same metrics.

4.2 One-Stage Classification Results

To isolate their benefits, we divide the features into three subsets:

• Subset 1: Basic features from capability and bid pattern,
including generation capacity, correlation with wind gener-
ation, maximum ramp rate, and average bid start.

• Subset 2: Statistical features from capability and operation,
including EconMax’s coefficient of variation and relative
range, mean value of operating intervals.

• Subset 3: Features from operation, including ratios of three
commit status.

Table 9 presents improvement in accuracy for classifiers as fea-
tures are added. Improvement shows the features are effective.
The average results are given for decision tree and random forest
because of their randomness. Among the classifiers, the ranking
changes as we add features. With the full feature set, random forest
performs best achieving 91% accuracy, followed by SVM at 85.6%
and decision tree at 85.1%. Random forest outperforms decision tree
robustly, reflecting its advantage as an ensemble of decision trees.

Table 9: Changes of Overall Accuracy on Test Set in One-

stage Classification

Classifier Subset 1 Subset 1, 2 Subset 1, 2, 3

SVM 79.4% 83.7% 85.6%
Decision Tree 80.0% 82.3% 85.1%
Random Forest 82.5% 87.6% 91.0%

We show confusion matrices for each of the top two classifiers,
SVM and random forest, in Figure 8. It’s noteworthy that random
forest achieves 99.5% accuracy and 100% recall on wind power
plants, showing that our approach identifies wind power plants

effectively. The confusion matrices indicate that random forest out-
performs SVM on precision and recall for all types of power plants.
They also clearly identify the areas where confusion (incorrect clas-
sification) is occurring. Because of its good performance, we select
random forest for further analysis. From the matrix, we find 40%
of combined cycle plants are misclassified as steam or combustion
power plants, which we will discuss in Section 4.4.

(a) SVM

(b) Random Forest

Figure 8: Confusion Matrices for One-stage Classifiers: SVM

and Random Forest. (CC = Combined Cycle)

We revisit the results of the random forest classifier, using the
actual power generation over the year to weight the results. This
weighting is useful because we are often interested in the fraction
of power generated that comes from different sources ś fuel mix
or generation type mix. The results of this weighted assessment is
presented in Figure 9, showing that random forest achieves 91.6%
overall accuracy on classifying the power generated.
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Figure 9: Confusion Matrix for One-stage Random Forest

Classifier, weighted by Power Generation (TWh)

In the weighted generation, several generation types including
combustion and run of river are challenging for precision and recall,
achieving poorer results than in the base assessment that used
numbers of power plants. The reason for the difference is that each
plant has a different amount of generation. Thus, weighting with
power generation shifts the balance between correct and incorrect
classification. For example, in test set, 93.3% (56 of 60) of run of river
power plants bid Economic Max < 100MW, but the one with most
generation, which is misclassified as steam turbine power plants,
account for about 11% of the generation.

4.3 Multistage Classification Results

Given our positive experience with random forest, we select it for
each stage in the multistage classification. We analyze the complete
feature set described in Section 3.4, and begin by selecting the most
important features using scikit-learn’s feature łimportancež output.

In the first stage, plants are classified into two classes: wind and
non-wind. The most important features selected by importance
include low price pattern, correlation with total wind generation,
CV and relative range of Economic Max, and average dispatched
intervals. For wind power plants, the precision and recall achieve
100% and 99.5% respectively (Figure 10). These excellent results
provide a strong basis for later stages.

Table 10: Confusion Matrix of Stage 1 (Wind)

Predicted Label
Wind Non-Wind

True Label
Wind 190 1

Non-wind 0 889

In our second stage, the non-wind power plants are classified
into run of river and non-run of river types. The result corresponds
closely to our results in the one-stage classification, with 94.3%
precision and 83.3% recall for run of river. The most important
features include maximum and coefficient of variation of Economic
Max, average bid price start, average running intervals, and ratio
of łMust Runž hours. Typically, a run of river power plant operates
in most intervals with stable capacity and low bid start, consistent
with the properties of river water flow.

Table 11: Confusion Matrix of Stage 2 (RoR = Run of River)

Predicted Label
Run of River Non-RoR

True Label
Run of River 50 10

Non-RoR 3 826

Finally, for the last three types (steam, combustion, and combined
cycle), our results show that all of the remaining features are needed
to achieve the best performance. The overall confusion matrices
of power plants and generation are shown in Figure 10. At 91.7%
and 93.2% overall accuracy respectively, these results are slightly
better than the results using one-stage classification (91.0% and
91.6%). In particular, the power weighted results are 1.6% better,
with improvements on precision and recall of combustion turbine,
run of river, and combined cycle (Table 12).

(a) Number of Power Plants

(b) Power Generation Weighted

Figure 10: Confusion Matrices of Multistage Classification

Results using Random Forest (Generation Unit: TWh)

We applied our classifier to MISO’s 2018 and 2019 (through No-
vember 10, 20193) generation and present the results in Table 13.
Where possible, we use other data items from MISO to validate
our results. First, in 2018, the energy (52.18 TWh) generated by the
classifier-labeled wind plants matches the total wind generation
(50.23 TWh) in MISO’s annual generation fuel mix. The total en-
ergy (572.72 TWh) generated by the plants the classifier labeled as

3This is the latest data available as of this time of writing.
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Table 12: Precision andRecall of Different Generation Types

(TWh) on 2015’s Data, by Multistage Classification

Type Actual Classified Precision Recall

Wind 43.22 43.13 100% 99.8%
Steam 452.10 473.39 95.1% 99.6%

Combustion 50.06 46.17 74.6% 68.9%
Run of River 6.64 4.89 92.0% 67.9%

Combined Cycle 72.90 57.23 87.2% 68.5%

steam, combustion, and combined cycle matches the total gener-
ation (564.84 TWh) by coal, gas, and nuclear. Second, the growth
in generation fractions of both gas and wind turbines is consistent
with reported trends in generation mix change in MISO[26]. These
close matches indicate that the classifiers are effective. Of course
our inference results cannot be fully validated for 2018 and 2019, as
their raison d’etre is that MISO does not release enough information
for us to do so. This shows the value of our work, providing plant-
level generation type labels that enable detailed grid modeling by
generation type in studies of real-world power grids.

Table 13: Inference Results on 2018 and 2019 Generation

(RoR - Run of River, CC - Combined Cycle, Unit: TWh)

Wind Steam Combustion RoR CC

2018 52.18 459.98 49.70 5.65 63.04
2019 (to Nov 10) 49.60 352.39 52.54 5.26 66.85

4.4 Discussion

Some aspects of the data are challenging for classification. We
discuss some of our efforts to improve accuracy and several intrinsic
challenges in the generation-type classification task.

4.4.1 Balanced Weights. Assigning different weights to different
classes is a common solution to data imbalance[43]. We tried as-
signing balanced weights to two minor classes, run of river and
combined cycle, and observed an increase in recall. However, the
changes caused plants with other generation types to be misclas-
sified as run of river or combined cycle, producing a decrease in
precision. After some experimentation, we conclude that assigning
balanced weights is not productive with our current feature set.

4.4.2 Identifying Combined Cycle Power Plants. Among the five
major generation types, recall for combined cycle power plants is
relatively low. About 40% of combined cycle plants are misclassified
as steam turbine or combustion power plants. There are two possi-
ble explanations. First, the features we used may not be designed
well enough to differentiate combined cycle plants from other types.
In short, we may need additional features (or additional data) to
increase classification accuracy. A second possibility is that the
labels may be overlapping ś on the basis of behavior. MISO chooses
to label combined cycle plants as a distinct class. However, a better
approach might be to assign labels for the stages of generation
that are being combined ś combustion turbine and steam turbine.

At present, the combined cycle plants have attributes similar as
steam turbine power plants’ or combustion turbine power plants’,
producing lower accuracy.

4.4.3 Transferrability. The results of one-stage classification and
multistage classification are close. However, we get further under-
standing of what features work for specific classes by dividing the
classification stages. In addition, the results in Section 4.2 show
that our approach can achieve high accuracy with only a subset
of features. This suggests that our features and classifiers can be
transferred to similar data from other RTOs/ISOs.

4.4.4 Benefits for Power Grid Research. The high accuracy of our
power plants classifier means that generation type can be effec-
tively determined for power plants ś even when RTOs/ISOs do not
report it. This accuracy holds when weighted by the quantity of
power as well. This enables a wide range of power grid modelling
research, exploring challenges such as - what have been the impact
of rising renewable fraction to date, what fraction of renewable
power is absorbed by the grid (versus curtailed), what will happen
if renewable fraction increases further, how load variation patterns
help or hurt renewable absorption, when large-scale storage will
become necessary, when it might be economically viable, and more.
Specifically, the classification data may enable study of current
grids in detail, enabling setting parameters generation mix more
precisely. Another possibility is that models such as [39] can be
verified on more real data with classified power plants.

5 SUMMARY AND FUTUREWORK

We present the design, implementation, and evaluation of an ap-
proach for automated classification of power plants by generation
type. Using three types of features derived from MISO power mar-
ket data (bid pattern, capability, operation), our multistage approach
achieves high accuracy on 1081 power plants in MISO (91.7% overall
accuracy) and corresponding generation amounts (93.2% overall
accuracy). The one-stage classification achieves similar results. Pre-
cision and recall for the classifiers are also assessed. The ultimate
objective is to generalize this approach to fill critical information
gaps at other ISOs. To that end we survey the data available for 6
other major RTOs/ISOs in the United States, and conclude that our
approach can be adapted to four with minor modifications.

Future directions include application and adaptation of the clas-
sification scheme to other ISOs - both within the United States,
and more broadly from around the world. We will adapt our ap-
proach and evaluate its performance on data from other major
RTOs/ISOs. Further, the generation mix by fuel type is available in
many RTOs/ISOs’ data, while plant-level fuel type is unavailable.
We have shown the feasibility of inferring a power plant’s genera-
tion type with supervised learning methods. Perhaps it is possible
to infer generation-type with unsupervised learning.
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