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a b s t r a c t 

A bottom-up method to generate synthetic residential loads realistically, but with minimal computational 

resources, is presented. Six energy services, associated with high electricity use, are considered. Each 

energy service is characterized by number of events on a given day, event start time, and event duration. 

Distributions for number of events, start time and duration are proposed for four demographic categories: 

singles, couples, families and retired people. The distributions are augmented by elasticity parameters 

that allow load control and shaping. The distributions are based on information from focus groups 

and online surveys. In principle, the method can produce data at arbitrary temporal and topological 

resolution, and is thus suitable for a range of applications from machine learning of energy consumption 

patterns to detailed transient power flow analysis. Data can be aggregated as needed, for example 

by meter, by distribution transformer, or by substation transformer. In the present framework, loads 

for individual appliances, associated with individual electric meters, are generated at 1 Hz resolution, 

to explore two important applications that are relevant to the development of control paradigms for 

distribution microgrids. In such microgrids, a distribution feeder may be islanded from the bulk grid. 

The applications considered are aggregated real-time power dispatch and load shedding, both of which 

are needed for effective management of distributed energy resources in a microgrid setting. It is shown 

that aggregated loads can be shaped to follow a desired signal, for example to balance intermittent solar 

generation. Significant load reduction achieved by residents’ behavioral response is also demonstrated. 

Such load reductions could be invoked in the case of low-probability, high-consequence events, and 

could contribute to increased energy resilience at the community level. 

© 2019 Published by Elsevier B.V. 
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. Introduction 

The residential sector was responsible for 37% of the total en-

rgy delivered by the U.S. electric grid in 2015 [1] . This share is set

o grow with the advent of electric vehicles [2] , and with the elec-

rification of many end uses needed to reduce carbon emissions

3] . While the contribution of the residential sector to the electric

oad is the largest, more than either commercial or industrial

oads, its potential for the purposes of providing grid services such
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s storage and demand response currently is largely unexploited.

nlike commercial and industrial loads, residential loads are

sually small and very heterogeneous. Their sheer number, small

ize and diverse use have hitherto made it uneconomical to install

ny kind of control capability, beyond that of the human user and

f simple control devices such as thermostats or programmable

imers. However, pervasive sensors and inexpensive distributed

ntelligence (the so-called Internet of Things) are rapidly changing

his situation. Smart thermostats for home heating and cooling

re now commonplace. Heat-pump water heaters with smart

ontrollers are currently entering the market. Smart white goods

ncluding refrigerators and laundry appliances are sold by most

ajor manufacturers. While this trend is setting the stage for us-

ng residential loads as controllable resources, a general framework
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for this control is still in its infancy. Two necessary components of

the framework are the ability to aggregate and control resources,

and the ability to assess behavior-related responses. 

In this work, the intent is to develop the modeling framework

to simulate the operation of individual appliances on a hypo-

thetical residential feeder of the near-future, with microgrid-like

characteristics. Full electrification of energy services such as cook-

ing, water heating, space heating and cooling is assumed. The

framework is used to demonstrate both control algorithms and

load shedding capabilities in such a setting. 

Historically, the majority of residential load simulations follow

a top-down approach, where measured feeder loads are distributed

more or less equally among individual meters. An example is the

work of Chan et al. [4] , who use a physically-based methodology

for synthesizing the hourly residential heating, ventilation, and

air-conditioning (HVAC) load based on data from a utility. Sig-

nificantly, the simulations are then used to evaluate the effect of

load-management technologies. Calloway and Brice [5] present

a first-order model of an HVAC load, and use it to evaluate the

impact of load curtailment measures on the electric power sys-

tem. The model can be calibrated as a function of the simulated

buildings insulation value, infiltration, thermostat setting and air

conditioner (AC) efficiency. The authors also suggest that this type

of model can be used as a basis for bottom-up approaches. Mod-

eling options for participation of thermostatically controlled loads

(TCLs) in ancillary services were evaluated by Kamgarpour et al.

[6] . In this work, the authors use methods from computer science

and optimal control to produce various measures of control quality,

including trajectory tracking and model error bounds. The balance

of quality of control vs. cost of implementation is also addressed. 

Bottom-up approaches present several advantages, including a

better representation of the behavioral and socio-economic drivers

behind electricity use, and a more realistic representation of power

flow in a distribution feeder simulation. Many bottom-up models

of residential energy consumption have been presented in the

literature. Individual works focus on various aspects of bottom-up

synthesis formulation, calibration, control or forecasting, often

including models from the behavioral sciences. One group of

bottom-up models broadly links technology and behavior to loads,

particularly in aggregation. An early example of such models is

the work by Capasso [7] , who uses several probability functions

to cover the close relationship existing between the demand of

residential customers and the psychological and behavioral factors

typical of the household. It includes psychological factors which

affect individual use of the various electrical appliances. The work

of Walker and Pokosky [8] follows similar principles: specifically,

an availability function which statistically estimates the number of

people in a household available to use an appliance, and a procliv-

ity function which gives the probability that an individual will use

that appliance at any given time of day. These functions are then

used to drive models of the various appliances. In the work by Mu-

ratori et al. [9] , the physical behavior of a dwelling is used to cal-

culate energy consumption for heating and cooling, while energy-

related activity patterns of individuals within the dwelling are used

to construct energy consumption from services such as entertain-

ment and appliances. The model predictions are verified against

metered data. Data for energy consumption can be obtained at

high temporal resolution using this model. An interesting perspec-

tive on constructing energy use patterns for individual households

is provided by Widèn et al. [10] , who focus on energy use resulting

from activities of each individual in a household. To character-

ize activity patterns, hourly diaries were obtained from 464

individuals in 179 households. Output consists of hourly energy

consumption for individual households. Many of the best qualities

of residential load simulators presented in the literature, including

high time resolution, socio-economic factors, seasonal variations
nd correlation between start-time and duration of an activity

ere incorporated recently into a single tool by Fischer et al. [11] .

he tool, SynPro, was calibrated extensively against available data,

nd provides an excellent representation of real loads. Hourly

oad profiles are considered in a study by Ge et al. [12] , who use

ultiple Gaussian distributions to reduce and simplify the data re-

uirements for modelling. The advantage of the method presented

s the requirement for only a very limited number of parameters

o generate a household’s hourly electricity load profile. The model

ssentially fits Gaussian curves to the aggregated loads, so it is not

ble to provide information on individual appliances, and while

t can generate useful load data at a moderate frequency, it is

ot well-suited for implementing or planning demand-response

DR) measures. A bottom-up methodology to construct models of

ndividual residential loads based on the use of inexpensive event

oggers, is proposed by du Preez and Vermeulen [13] . Gotseff and

undstrom [14] use the GridLAB-D agent-based distribution simu-

ation environment to implement models of household electricity

se that can provide high time-resolution data for individual

ppliances. The house model calibration was performed using

ransformer data for cases with similar weather. The modeled

oads matched measured power consumption with respect to met-

ics such as daily average energy, average and standard deviation

f power, power spectral density and load shape. Segmentation of

ouseholds is identified as an essential component of bottom-up

odels to simulate electricity load profiles by Hayn et al. [15] .

ategories based on household size, income and employment

tatus are listed as most significant. A model providing hourly

oads is used to evaluate the effect of technology, combined with

ariff design, on aggregated electricity demand profiles. Bottom-up

odels intended to reconstruct loads are summarized in Table 1 . 

A second group of models is more focused on using bottom-up

oad simulations to investigate methods to control aggregated

oads. Richardson [16] presents a high-resolution model of domes-

ic electricity use that is based upon a combination of patterns of

ctive occupancy and daily activity profiles that characterise how

eople spend their time performing certain activities. One-minute

esolution synthetic electricity demand data are then created

hrough the simulation of appliance use. The data are validated

sing actual electricity use recorded over the period of a year

ithin 22 dwellings. An approach similar to the present work is

resented by Cole et al. [17] , who use a simulation of hundreds

f houses to show the effect of four control schemes aimed at

anaging distribution feeder loads. Energy management is based

n control of HVAC systems achieved by altering the temperature

etpoint. Household energy use data from the Pecan Street Project

ere used to extract energy use patterns. The work is effective

t showing how control scenarios influence energy use outcomes

including peak shaving and overall energy consumption), how-

ver real-time (i.e. on the order of 1 Hz) is not considered. An

nteresting outcome of these simulations is that peak reduction

s accompanied by overall increase in energy use, due principally

o higher energy consumption that results from pre-cooling, as

ell as, to some extent, to post-event rebound. Small-scale con-

umer models are proposed by Chrysopoulos et al. [18] for the

urpose of bottom-up aggregation of appliance use, simulation of

nergy efficiency scenarios, and assessment of change in consumer

abits resulting from tariff design. As in the work proposed here,

ppliance use is modeled using probability density functions

PDFs) for number of events, event start time, and event duration.

he models can be calibrated with measured data if available.

emand-shaping mechanisms are also included in the models.

arious time-of-use pricing schemes were tested, demonstrating

hat DR can be achieved effectively. As was also the case in the

ork of Cole et al. [17] , the simulations shown that often peak

eduction produced by DR schemes where energy cost reductions
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Table 1 

Survey of load modeling literature. 

Reference Load model Behavior model Calibration Validation Application 

Capasso [7] Appliance load profile Occupancy, resource 

availability, income 

Mail survey Aggregated load 

comparison 

Effect of technology 

Walker and 

Pokosky [8] 

Physical appliance model Occupancy, proclivity to 

use appliance 

Travel data, heuristic Utility data Load estimation for 

resource planning 

Muratori et al. [9] Physics-based models Activity Markov chain Time of use data Comparison with individual 

and collective datasets 

Policy decision support, 

effect of technology 

Widen et al. [10] Baseload and activity- 

based loads 

Activity to end-use 

mapping 

Time of use data with 

multiple data sets 

Comparison to aggregate 

measurements 

Alternative to load 

measurement for modeling 

Fischer et al. [11] Load profile, continuous Demographics, 

frequencey-start-duration 

Time of use data Individual and collective 

load profiles 

Effect of technology and 

extreme event 

Ge et al. [12] Aggregated load shapes Activity times Placement of Gaussian 

functions to fit load profile 

N/A Energy efficiency studies 

du Preez and 

Vermeulen [13] 

Appliance nameplate 

rating, ON-time 

N/A Appliance event logging 

data 

Comparison with average 

aggregated household load 

Residential load modeling 

Gotseff and 

Lundstrom [14] 

GridLAB-D house objects 

(load profile and physics), 

load data 

Occupancy and cooling 

schedules, data-driven 

occupant behavior 

Peak loading conditions on 

summer day 

1-second resolution at 

secondary transformer 

Modeling voltage 

regulation performance of 

batteries in high-PV feeders 

Hayn et al. [15] House with local 

generation and storage, 

with optimization 

Fixed electricity and heat 

load profiles, electric 

vehicle 

Heuristic N/A Effect of technology, 

socio-demographics 
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re offered off-peak often result in an overall increase in energy

se, due to increased energy use in the longer off-peak period.

he aspect of control design is addressed by Bahash and Fathi

19] , who design a Lyapunov-stable sliding mode controller for

he system governed by a set of bilinear equations, using a Monte

arlo model of TCLs. Demand Response-enabled load models were

eveloped by Shao et al. [20] , who considered individual appli-

nces including space cooling and heating, water heating, clothes

ryers and electric vehicles. The loads are physics based, and in-

lude the number of people in the dwelling as a model parameter.

he models and methodology were validated against individual

ppliance loads, as well as in an aggregated sense by comparing

ith the RELOAD database [21] . A load model based on Markov

hain Monte Carlo (MCMC) that combines accurate load electric

haracteristics and user behavior is presented by Collin et al. [22] .

ignificantly, the model is made freely available to the research

ommunity. A model of a system that can aggregate customer

oads based on availability of controllable loads and customer

reference is presented by Iria et al. [23] . The model uses a

-minute time step, with a total of 30 households, and the appli-

nces controlled are inverter-based AC units, hot water heaters and

efrigerators. Jambagi et al. [24] present a bottom-up, high time

nd spatial resolution model based on time use survey data. Their

odel separates individual appliance use, and is therefore suitable

or simulating the implementation of DR schemes. The model also

ccounts for demographic variables such as number of people

n a household. The model is validated using minute-to-minute

olatility, and coincidence factor, and shown good agreement

etween model and real data. Bottom-up models used for the

urposes of developing control tools are summarized in Table 2 . 

In the framework presented here, the existing body of work

s augmented by the collection of data that quantifies the will-

ngness of individuals in households to alter their behavior so

hat certain common benefits can be achieved, including higher

ystem resilience and improved ability to integrate intermittent

enewable resources. Moreover, the data output provided by the

ynthesis tool can be used in conjunction with grid simulation

ools to provide insight into infrastructure-related constraints that

ay affect results from resource optimization, as demonstrated in

he recent work by Ayon et al. [25] . To the best of the authors’

nowledge, no other work combines extremely efficient load

ynthesis, load forecasting and controllability in a single tool. Load

ontrol, in a real setting, would be based on a real-time stream of

ata, either from individual loads or aggregated in some way, and
 c  
ould work within the setting of microgrid or distribution system

anagement. The load synthesis tool presented here effectively re-

laces the live data stream, and provides researchers with a means

f building, calibrating and testing control and load-shedding

chemes in a realistic setting, before field deployment. Sufficient

etail is provided to allow the implementation of the tool, also

roviding access to calibration parameters. Such a framework

ould be especially valuable in the context of distribution-level

icrogrids. 

. Grassroots load simulation 

The scenario considered in this work is one in which the

lectrification of energy services has already occurred, following

ecarbonization effort s. So, f or example, water heaters consist of

torage tanks with small heat pumps, cooking ranges are electric,

nd space heating and cooling is provided by reverse-cycle heat

umps. In addition, LED lighting has replaced both CFL and in-

andescent lighting. It is also assumed that major appliances are

ontrollable remotely, rather than solely by the home occupants in

anual mode. A bottom-up load simulation framework was chosen

s the basis of the framework presented here for several reasons: 

1. It is compatible with agent-based models such as GridLAB-

D; 

2. It is compatible with the need to model occupant behavior

in response to technology and incentives; 

3. It is compatible with the implementation of control strate-

gies within the same framework; 

4. It correctly captures power flow to and from customers, at

the appropriate time scale and at the appropriate level of

geographic detail; 

Although there are tens of appliances that make up the total

oad measured by a meter, there are a relatively small set that

ominate, either because of their collective energy consumption,

r because they provide a useful means to control either energy

r power demand. Here, the appliances and usage patterns are

haracteristic of conditions prevalent in the Unites States. Specif-

cally, AC units were chosen as a means to provide fast demand

esponse, due to their high power draw, while water heaters

ere chosen for the purposes of peak shifting, due to their high

nergy storage potential. In both cases, the energy service to

he distribution is provided without affecting convenience and

omfort. For the case of the AC units, the temperature remains
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Table 2 

Summary of bottom-up simulations for control algorithm development. 

Reference Load model Behavior model Calibration Validation Application 

Richardson [16] Appliance demand cycle, 

power factor 

Occupancy activity profile Ownership statistics, 

heuristics 

Data from dwelling Resource planning, 

demand-side management 

Cole et al. [17] Reduced-order 

physics-based model with 

weather, AC only 

Occupancy price-sensitivity Pecan Street dataset Annual billing data Load shaping, demand 

response for large synthetic 

community 

Chrysopoulos et al. 

[18] 

Pre-defined applince 

consumption model 

Data-driven activity models Data from instrumented 

houses 

Comparison with measured 

data for individual houses 

Effect of technology, 

customer habits, demand 

response 

Bahash and Fathi 

[19] 

Physics-based TCL model, 

AC only 

Montecarlo Heuristic N/A Control of aggregated TCLs 

Shao et al. [20] Physics-based models, 

controllable and critical 

loads 

N/A House structure-based Comparison with real 

house measured data 

Demand response 

strategies 

Collin et al. [22] Primarily appliance load 

database 

User activity state UK time use survey Aggregated UK data Distribution circuit analysis, 

effect of technology 

evolution, demand-side 

management 

Iria et al. [23] Physics-based models, EV 

state of charge 

Customer activity patterns, 

presence, comfort settings 

Known load parameters Measured data for 30 

houses 

Demand response driven 

by energy aggregator 

optimization algorithm 

Jambagi et al. [24] Typical load profiles Time of use, standard load 

profile, demographics 

Based on smart meter data 

and heuristics 

Comparison to standard 

load profiles 

Demand-side management 

of large numbers 

The present work Markov-chain and physics Activity frequency, 

start-time and duration, 

customer willingness to 

curtail appliance 

automatically or 

behaviorally 

Focus group and online 

survey 

Comparison with typical 

individual meter profiles 

Distribution feeder power 

flow, critical events 
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M  
within the deadband. For the case of the water heaters, sufficient

hot water to satisfy demand is always available, while load shifting

is achieved by better management of tank charging schedules.

To test behavior-driven load shedding, all appliances are used,

including refrigerators, clothes dryers, electric ranges and lighting.

In this case, occupant comfort is affected by the load shedding

measure, but here the assumption is that this is a voluntary

demand reduction enacted by the energy user in a rare emergency

situation, with the intent of enabling the community to survive

the emergency while maintaining service to critical users. 

2.1. Load models 

Each load is modeled according to its physical nature, and to

its interaction with the end user. Air conditioners and heat pumps

for space thermal conditioning are modeled according to: 

M S 
dT 

dt 
= 

˙ Q L − ˙ Q R , (1)

˙ Q L = K 1 [ T a − T (t) ] , (2)

˙ Q R = � × COP × P AC , (3)

where M S is the effective heat capacity of the conditioned space,

T ( t ) is the temperature of the space, T a is the ambient temperature,

t is time, Q L and Q R are the thermal losses from the structure

and thermal gain from the air conditioner or heat pump, K 1 is a

parameter that represents the building’s thermal insulation (whose

distribution is selected heuristically so that individual AC units

cycle 2–3 times per hour), COP is the coefficient of performance,

P AC is the power of the air conditioner’s compressor, and � is a

state function that indicates whether the air conditioner or heat

pump is ON or OFF. 100% penetration of AC units is assumed,

with a mean electric demand of 3 kW for the compressor, and a

standard deviation of 1 kW [26] . In addition, the penetration of

‘smart’ thermostats is assumed to be high, meaning that schedules
re highly representative of life style and generally implemented

orrectly. It should also be noted that is that a first-order model

f an AC unit with fixed COP and no internal or solar gains, and in

rinciple this could significantly under-predict AC capacity during

ot hours. More detailed models could easily include variable

OP and internal gains. Solar gains could be more cumbersome to

mplement, but should be minimal in well-designed houses. Also,

t is assumed here that the response of non-air-mass components

n the thermal model is substantially slower than the timescale

f the real-time control described here, and can be neglected to a

rst approximation. 

In its basic form, the heat pump in cooling mode is controlled

y the switching logic 

f T (t) < T L then � = 0 , (4)

f T (t) > T U then � = 1 , (5)

here T L and T U are the lower and upper deadbands for the

emperature control. When the temperature is within the comfort

eadband, the state function � at a particular timestep is the same

s its previous value, i.e. switching only occurs when the tem-

erature goes outside the deadband. The human interaction with

his device consists of the control of the temperature setpoint,

hile the deadband is automatically set to a narrower range when

uman presence is detected, and wider otherwise. If the house is

ccupied, temperature is controlled to remain within a comfortable

eadband around a temperature setpoint, while if the house in not

ccupied, the deadband is reset to a much wider range. While in

his work the occupied and unoccupied setpoints are fixed, a more

ealistic model could reflect the fact that occupants may adjust

etpoints more dynamically. Moreover, the advent of better inter-

aces may facilitate this process, and perhaps even automate it. 

Refrigerators share a similar model and control logic. The

emperature �( t ) of a refrigerator can be modeled by: 

 R 
d�

dt 
= 

˙ Q L + 
˙ Q D − ˙ Q R , (6)
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˙ 
 L = K 2 [ T (t) − �(t) ] , (7) 

˙ 
 D = K 3 �(t) [ T (t) − �(t) ] , (8) 

˙ 
 R = � × COP R × P C , (9) 

here M R is the effective heat capacity of the refrigerated volume

assumed constant here for simplicity, but this could change as a

onsequence of grocery shopping habits), Q L is heat gain through

he refrigerator walls, Q D is heat gain through the open door, Q R 

s the heat removed by the mechanical refrigeration, and P C is the

lectric power of the refrigerator’s compressor. The constants K 2 
nd K 3 model the refrigerator walls and the convection mechanism

hrough the open door respectively. � indicates the binary state of

he mechanical refrigeration, and its logic is the same as for the

ir conditioner / heat pump. �(t) = 1 when the door is open, zero

therwise. 

For the domestic hot water (DHW) load, the model represents

 heat pump water heater with storage. This type of heater has

he potential to be carbon-free (depending on the source of

lectricity) and also allows energy storage and load management

pportunities. Assuming good stratification, the state of the water

eater can be represented by its state of charge (SOC), which is

elated linearly to the location of the thermocline in the water

ank. The system can be represented by: 

d (SOC) 

dt 
= −K 4 × SOC 

−K 5 �(t) + �COP H × P H , (10) 

here K 4 is a constant that quantifies the quality of the tank

nsulation, K 5 is related to the flow rate during water draw events,

OP H is the coefficient of performance of the heat pump, and P H 
s its electrical power. �(t) = 1 during water draw events, zero

therwise. The control is also similar to the case for thermostatic

evices, however it is based on SOC rather than temperature, as

escribed by: 

f SOC ≥ SOC H then � = 0 , (11) 

f SOC < SOC L then � = 1 , (12) 

As with the AC control, the state of the compressor � does not

witch when the SOC is within the deadband. The mean heating

apacity assumed for the water heaters was 4 kW (a typical value),

ith a COP of 2.2 at typical operating conditions [27] , and a

olume of 250 l. As was the case with K 1 , distributions for the

onstants K 2 − K 5 were chosen to produce realistic behavior of

he system, consistent with typical appliances. 

The model for the clothes dryer is extremely simple: it is either

n or off, and when it is on the power consumption is constant.

nly the resistor (3 kW mean) is modeled, while the motor and

an are neglected for simplicity and because of their small relative

agnitude. Event number, start-time and duration are modeled

y statistical functions as described later, with the only constraint

eing that events cannot overlap. 

For the lighting, the model also assumes either on or off state

t constant power, for each light bulb in the house. The probability

ass function of each light bulb is a Bernoulli distribution inde-

endent of the others. Power for the individual light bulbs (a mix

f 8 W, 16 W and 24 W) is low because LED technology is assumed.

Heating elements in the electric range are modeled using a

arkov-chain approach. During the ‘active’ part of the schedule

i.e. during cooking events), the transition probability matrix can
e defined through probabilities P 01 , which is the probability of

ransition from OFF to ON, and P 10 , which is the probability from

N to OFF, plus their complementaries. This action simulates

ypical thermostatic activation of electric elements in a burner.

ach electric element is associated with an individual power level,

epresenting a small (1 kW), medium (2 kW) and large (3 kW)

lement. Up to three elements can be active at any one time. 

.2. Modelling household energy routines and their elasticity 

The human interactions associated with the energy use models

bove (e.g. occupancy schedules for AC, door opening for refriger-

tors, etc.), are associated with events, characterized by number of

vents per day, event start time and event duration. In turn, these

vents are represented by probability distributions. To add realism

o the simulation, and to afford the framework better portability

o different locations and demographics, customer types were

ssigned to ‘clusters,’ each representing an appliance usage pattern

hat could be considered typical. Similarly to the approach taken

y Fischer et al. [11] , four demographic classes were used to cluster

ustomers: single home occupant, working couples, families with

hildren and retired people. To gather insights about household

outines and the willingness to modify the use of the appliances

hat enable those routines, two semi-structured focus groups, each

ith eight participants, were conducted in Michigan (Plymouth),

nd New Mexico (Albuquerque) [28] . These cities were selected to

nsure climatic variability. The focus group sessions were designed

o build on each other and continuously dive deeper into the be-

iefs and concerns regarding shifting household activities, and their

otential flexibility for the benefit of the individual or the commu-

ity in various emergency scenarios. As shown in Fig. 1 , turning

ff lights as needed, dishwashing, and heating and cooling would

e easier activities to adjust while showering and cooking would

e more difficult. Concerns raised regarding shifting appliance use

uring seasonal emergencies included technical issues that could

revent the utility from turning appliances back on, loss of au-

onomy and privacy. During the discussion new themes emerged:

aving energy was regarded positively. Overall, participants were

illing to take actions to change their household practices above

nd beyond what they would normally do for the welfare of their

ommunities, but required advanced warnings. These insights were

sed to support the design of two statewide surveys ( N = 1500,

rom New York State and Texas), balanced for gender and income. 

The survey contained 70 questions: socio-demographic, and

spects of energy use: heating and cooling, washing, showering,

ntertainment, willingness to participate in energy savings and

nergy curtailment events. A full analysis of the survey data is

eyond the scope of this work, and is discussed in other venues

see e.g. [29] ). However, some of the survey data were used to

nform the model and ensure an adequate level of realism. 

Four demographic clusters were identified, each with its spe-

ific energy patterns: families are households where with three or

ore occupants; retired people are identified by age greater than

4; working singles are non-retired people in households of one

erson; working couples are non-retired people in households of

wo people. While there may still be overlaps between categories

nd some mis-categorization (for example, there may be some

ouseholds of three or more people some of whom are retired),

he data show fairly distinct and self-consistent behaviors. The

roportion of each demographic cluster for the entire sample is

hown in Fig. 2 . As expected, families are the largest individual de-

ographic cluster, forming almost half of the sample population.

hat, compared with the fact that these households are generally

he largest energy users, means that the family demographic

luster is expected to dominate the total electric load. 
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Fig. 1. Focus group results indicating ease / difficulty of shifting household activities in time. 

Fig. 2. Proportion of each of the families, retired people, working singles and working couples demographic clusters, among the 1500 respondents to the survey. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

i  

r  

i  

t  

c  

b  

a

 

p  

s  

t  

t  

5  

t  

o  

i  

s  

t  

e  

o

 

s  

r  

h  

p  

f  

A  

w  
Air conditioning is one of the most energy intensive activity

in the household, in warm regions. Energy consumption is highly

dependent on the temperature setpoint. The ability to control or

curtail air conditioning load is the extent to which temperature

variations are tolerated by house occupants. The distribution of

space temperature setpoints for the four demographic clusters is

shown in Fig. 3 , for the case where the house is occupied, and

for the case that it is not. While all demographics show a similar

distribution of setpoints, there are some clear distinctions. First

consider the case of occupied houses. For families, the setpoint

distribution function is skewed to the left (i.e. to lower temper-

atures), and is broader. Conversely, the distribution for retired

people is skewed to the right and is more narrow. For singles,

the distribution is similar to the one for retired people, but more

skewed to the left. For working couples, the distribution is sym-

metric about the mean and centered in the range 70–72 ◦F. A small

percentage of the population, particularly singles, do not use air

conditioning devices. For the unoccupied case, the trends are sim-

ilar, but the underlying distributions are shifted to the right (i.e.

warmer temperature). A much larger fraction of the population,

on the order of 20%, do not use cooling at all when away. 

Domestic hot water use is another major source of energy con-

sumption, as well as a major opportunity for load shifting. Showers

are usually the largest hot water draw. The temporal distribution

of shower times obtained through the survey are shown in Fig. 4 .

All distributions are bimodal, with morning and evening peaks.

For families, both morning and evening peaks occur earlier, and

while the morning peak is higher, the magnitude of the two peaks
s more similar than with other demographic clusters. For the

etired demographic cluster, the broad morning peak occurs later

n the morning, and the evening peak also occurs approximately

wo hours later than with other clusters. Both working singles and

ouples demographics are associated with a sharp morning peak

etween 6 and 7, while working couples are also associated with

 larger than average evening peak between 20 and 21 h. 

Occupancy time is an important parameter because it may be

ossible to shift the time that an appliance provides an energy

ervice, or gets ready to do so by storing energy. The survey shows

hat houses with families are quite likely to be occupied at all peak

imes, with a likelihood of occupancy ranging from approximately

0% in the early afternoon, increasing to approximately 75% in

he late afternoon and evening. For retired people, the probability

f occupancy is always high, ranging from approximately 80%

n the early afternoon to over 90% in the evening. For working

ingles and couples, the probability of occupancy rises from

he mid 30% in the early afternoon to approximately 70% in the

vening, with couples associated with slightly higher probability of

ccupancy ( Fig. 5 ). 

With an expanded goal-expectation theory framework, the

urvey provided data to examine how residents’ willingness to

educe energy consumption and choices of giving up certain major

ousehold appliances relate to personal goals of maintaining

ower for family and neighborhood, expected level of cooperation

rom neighbors, and expected efficacy of energy-saving behaviors.

dditionally, the survey provides data to examined residents’

illingness to allow utilities to automatically control household
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Fig. 3. Space temperature setpoints for occupied mode (top panel) and unoccupied mode (bottom panel), for the four demographic clusters, during the summer season. 

Seasonal differences were not captured in this survey. 

Fig. 4. Distribution of showering time for the four demographic clusters. 

Fig. 5. Probability of occupancy during afternoon and evening peaks for the four demographic clusters. 
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ppliances during normal and extreme conditions. While a de-

ailed study of the survey results is beyond the scope of this

aper, it is interesting to note that the willingness of the popula-

ion to give up certain energy services to maintain basic service

s generally high, as shown in Fig. 6 . Most people are either likely

r certain that they would give up some services. Approximately

0% of the population is as likely as not to give up energy ser-

ices, while only a small percentage is either unlikely to forego

nergy services, or certain they will not (unless, of course, the

ower fails). 
.3. Transforming self-reported data in probability distribution 

unctions 

A probability density function for the start time and one for the

uration were assigned to each combination of appliance and cus-

omer cluster, with shapes based on the survey response data. In

ddition, each cluster / appliance combination also was assigned

ith discrete probability values associated with the number of

vents per day. Start time distributions are a mixture of Gaussians,

runcated at the edges, smoothed so that initial and final values
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Fig. 6. Response to a question on whether the respondent would forego certain energy services to reduce the likelihood of total power failure. 

Fig. 7. Statistical characterization of the domestic hot water draw schedules, by start time, duration and number of events. 
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are continuous in value and slope, and normalized so their integral

over the day is unity. The duration density functions are modeled

using Weibull distributions with varying shape parameters and

scale parameters. The probability mass functions for event number

(where an event is defined as the change of state from OFF to ON)

are defined manually, except for the case where many event num-

bers exist, in which case discretized Weibull distributions are used.

The rationale behind the design of the PDFs for each demo-

graphic cluster / appliance combination is exemplified by the case

for domestic hot water ( Fig. 7 ). For households occupied by single

working people, hot water draws on weekdays are fairly regi-

mented, with a strong morning peak corresponding to showering

and an evening peak corresponding to cooking and dishwashing.

The pattern is similar for working couples, with slightly broader

and earlier morning and evening peaks. Morning and evening

peaks also characterize draws for families, however peaks are

broader and the probability density in the middle of the day is

non-trivial. The pattern for retired people is similar to the pattern

for families, but with later morning and evening peaks due to

less constrained life schedules. During weekends, the patterns for

all categories are modified by later morning peaks and non-zero
ensity in the middle of the day. Weekday duration distributions

or family and retired user clusters are equal to each other, as are

uration distributions for singles and couples. 

The former groups on average utilize longer water draws. The

uration distribution for retired people on the weekend is the

ame as on weekdays, while durations are extended for the other

roups due to more relaxed schedules. Finally, the number of

vents is largest for families, and lowest for singles. Retired people

ave a more uncertain pattern, with widely distributed number of

vents, due to their less constrained lifestyle. 

The rationale for building statistical distributions is similar for

ther energy uses, in this case AC, refrigeration, clothes dryer,

ooking range and lighting. These are not explained in detail here

or brevity. Similarly, distributions for other smaller appliances

re also not listed. Of course, the classes of behaviors models

onsidered here do not represent an exhaustive list. For example,

t would be possible to characterize behaviors related to holidays,

acations, sporting events and others, by simply adding the corre-

ponding distributions, while retaining exactly the same structure.

imilarly, it would be possible to extend the list of appliances

odeled. 
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Fig. 8. Structure of the grassroots load simulator, showing the three principal 

phases of statistical data acquisition, schedule generation and load synthesis. 
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1 An aggregator is any organization or individual that brings energy customers 

together as a group. 
.4. Structure of simulation engine 

The grassroots load simulation is organized as shown in Fig. 8 .

n the first stage, the cumulative density functions (CDFs) asso-

iated with the start, duration and number of events probability

ensity functions discussed in Section 2.3 are read from data files,

nd stored in array structures for quick access. 

In the second stage, schedules for each appliance / meter

ombination are drawn from the CDFs, for the entire duration of

he simulation period, specified in terms of number of days. The

chedule generation follows a relatively simple set of rules. On a
iven day in the simulation period, for a given meter, a schedule

s generated for each appliance, as appropriate to the appliance

see Section 2.1 ), following the steps: 

1. Obtain number of events, by sampling the probability mass

function for the event number for the relevant appliance

and demographic cluster; 

2. Obtain start time and duration by sampling the relevant

CDF, ensuring that the event does not overlap with other

events (except for the case of lights); 

3. If an event extends into the next day, mark the end time

of this event as the minimum start time for events on the

following day. 

All schedules generated are stored in memory, for later access

uring the load generation phase. 

In the load generation phase, the algorithm simulates the

eal operation of the appliances, and produces the corresponding

lectrical load. Accordingly, time is the outer loop variable. At each

imestep (typically one second) all loads on all meters are calcu-

ated, using the appropriate equations discussed in Section 2.1 . 

Appliances are turned on and off according to two criteria: 

1. the physical / human interaction model, for example the

combination of house / AC unit characteristics and out-

side air temperature (physical) and the schedules (human

interaction); 

2. a control signal from an energy aggregator service. 1 

For the present case, aggregator control signals are only applied

o the house AC unit, and to the water heater, for real-time load

ontrol and resource scheduling respectively. However, the same

ogic could be applied to other schedulable or deferrable loads, for

xample to refrigerators. 

Load files are produced for individual meters, and for the

ggregated load from all meters, by appliance. So, for example the

oad history for the water heater behind meter i can be produced,

s well as the aggregated load from all water heaters that the

eeder substation meter observes. Disaggregated loads are seldom

vailable for such large number of meters, but they could be

seful to train machine learning algorithms used for appliance

oad disaggregation (see e.g. [30,31] ) 

. Characteristics of individual and aggregated loads 

The load profiles over the course of a week, for each of the

ix appliances or devices modeled for a typical, belonging to the

family’ demographic cluster, is shown in Fig. 9 . 

It is evident that many of the loads (dryer, air conditioner,

ange) are very intermittent in nature, while others (lights, re-

rigerator) turn on and off very frequently, reflecting the event

robability defined in the statistical distributions discussed previ-

usly. Some of these loads are large (e.g. dryer and air conditioner),

nd present opportunities for aggregated control. Others, such as

ED lighting, are small and their external control would result in

nacceptable loss of quality of service. However, they must be

onsidered as part of the overall load when used within power

ow calculations. 

The aggregated load, as would be measured at the distribution

eeder but showing the contribution of each appliance category,

ver the course of one week, is shown in Fig. 10 . The total load

or a typical meter is also shown for comparison. The difference in

ature between loads at individual meters and aggregated feeder

oads is evident. Aggregated loads are consistent and relatively
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Fig. 9. Loads on a typical meter, with loads 1–6 associated with dryer, AC, domestic 

hot water, refrigerator, cooking range and lights respectively. Days 1 (0–24 h) and 7 

(144–168 h) correspond to Sunday and Saturday respectively. 
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predictable from day to day (when categorized by weekday /

weekend), while individual meter loads are not, as is the case in

real life. This comparison highlights the necessity of the grassroots

approach to capture the potentially highly localized power flow

conditions along the feeder, especially for cases with a relatively

small number of customers. It should also be noted that not all

appliances are considered here. For example, electronics, miscella-

neous loads, TVs, dishwashers, cloth washers are missing, but the

overall result would be similar to what is shown here, because the

underlying life patterns are similar. Moreover, these generally tend

to be smaller loads than the ones considered here. 

Another interesting feature is the ratio between the feeder

peak (approximately 2 MW) and the individual meter peak (ap-

proximately 12 kW) of 167. Given that there are 10 0 0 meters, it is

clear that, at least over the course of one week, individual meter

peaks do not coincide. However, this also highlights the fact that if

all meter peaks could be made to coincide (e.g. by a cyber-attack

on smart appliance controls or by poorly designed DR algorithms),

severe problems could arise. The model could be used to simulate

such scenarios. 

The proportions of electricity load due to each class of appli-

ance are consistent with the data reported in the recent Residential

Energy Consumption Survey (RECS) [32] . Discrepancies may be

due to climatic differences for our small sample, demographic dif-

ference, and our assumption of high electrification of energy uses. 

Finally, inspection of the load duration curve reveals that the

peak 12.5% of the load could be eliminated by shifting loads by

a total of 3 h over the course of one week. 25% of the peak load

could be removed by shifting loads for a total of 14 out of 168 h.
Fig. 10. Aggregated loads on feeder for one week, and associated load duration curve (LD

oad. 
oth measures are easily achievable without loss of quality of

ervice, given adequate controls. 

. Controls for aggregated resources 

Demand-response (DR) programs that use residential resources,

rimarily TCLs such as AC units or water heaters, are relatively

ommonplace [33,34] . These typically involve simple actions

uch as turning off devices for a specified period. In some cases,

verride capabilities allow the customer to stop the DR event at

heir premises, usually with some form of penalty, if the quality

f service (QoS) reduction is unacceptable. Such traditional DR

rograms are based on pre-Internet-of-Things communications.

ew connectivity between devices and networked computing and

ptimization resources make it possible to improve on existing

R actions to make them useful to distribution system operators,

tilities and to customers themselves. More recently, DR schemes

hat take advantage of IoT capabilities have been introduced, but

till the prevailing operating principle is to reset the temperature

35] , sometimes at the expense of comfort. 

The approach used here to achieve real-time control of the

ggregated load of many AC units and water heaters is similar to

hat proposed by Mathieu et al. [36] for a variety of TCLs. In this

pproach, comfort is not sacrificed, because the TCLs always op-

rate within their user-defined deadband. Here we show that the

pproach performs as intended in a quasi-experimental setting,

y combining it with the bottom-up load model. Air condition-

rs are attractive because they are high-powered, meaning that

seful aggregated response is possible, and because they possess

n inherent storage capacity associated with the effective heat

apacity of the space they are conditioning, which however is

elatively small. The combination of high power and low energy

apacity makes AC units suitable for responding to high-frequency

vents (with characteristic times on the order of seconds to tens

f seconds), like cloud-driven intermittency of photovoltaic (PV)

eneration. Water heaters, specifically of the heat pump type, are

ttractive because of the large storage capacity, combined with

aily periods in which hot water use is limited. Water heaters are

articularly well suited for shifting loads, for example to reduce

eak load on a distribution transformer, or to reduce demand on a

esource-constrained islanded feeder as is the case here. 

Consider first a fleet of 10 0 0 AC units, with a mean electric

emand of 3 kW, and assume that all are available to participate

n a real-time DR program (with response time on the order of

econds to a few minutes). The aggregated uncontrolled simulated

oad of all AC units for the period from 12:00 (noon) to 16:00 on

ay 1 (a Sunday) is shown in Fig. 11 . 
C). The load for a typical meter is also shown for comparison with the aggregated 
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Fig. 11. Aggregated total simulated loads on feeder for noon to 16:00 on day 1 (a Sunday, with mild temperatures ranging from 17 ◦C to 30 ◦C), and aggregated simulated 

AC load. 

Fig. 12. Capacity of the aggregated AC loads to respond to a control signal, showing the total aggregated load, the load increase and reduction capacity of available AC units, 

and a sinusoidal control signal. 
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To achieve load control without affecting the QoS, it is neces-

ary to control AC units associated with a space where the tem-

erature is within the comfort deadband. AC units that are active

ON) can be turned off to reduce load, while units that are inactive

OFF) can be turned on to increase load. An additional constraint

s that a compressor cannot be switched unless it has been in the

urrent state for a minimum amount of time (the deadtime), and

he space temperature is within the deadband margins. 

The objective is to shape the total feeder load to respond to

ome external control signal, for example to the power production

f a substation-sited PV array. It is unreasonable to expect that

 given resource will be able to provide unlimited frequency

esponse, since the resource may not have adequate energy, power

r ramping capacity. Therefore, first the total feeder load is filtered

sing an infinite impulse response (IIR) recursive bandpass time-

eries digital filter [37] . The filtered load is shown in Fig. 12 , along

ith a sinusoid representing the desired load shape. The available

esponse capacity, in terms of the total power of units available to

witch in either direction, is also shown. 

The control is implemented following previous work by the au-

hors and others [38–40] , and reflects a simple proportional control

trategy. The assumption is that each AC unit is associated with

 smart thermostat capable of reporting its status to the outside

orld in real-time, of receiving external signals from a load aggre-

ator, and of performing some relatively simple calculations. The

ontrol strategy is implemented according to the following steps: 

 

1. At timestep k the substation reports its control error E
- namely the difference between a desired load and the

current load; 

2. The load aggregator calculates the maximum positive and

negative response capacities (i.e. the capacity to increase or

reduce load respectively), P and N respectively, from infor-

mation about the reported state of each smart thermostat

(temperature of the space, deadband, ON/OFF status and

time in present state); 

3. Noting that R is the maximum ramping rate of the system

(i.e. the rate of change of load), obtained by multiplying

the aggregated power of all the AC units operating at a

given time by the high frequency cutoff, the load aggregator

calculates the fraction F of AC compressors that must be

switched according to: 

F = 

{ 

min (R , E ) 
P , if E > 0 

max (−R , E ) 
−N , otherwise 

(13) 

and broadcasts this number to all thermostats; 

4. Each thermostat calculates a random number I between

0 and 1 from a uniform distribution. If I < F then the

compressor is switched from ON to OFF at timestep k + 1

if the error is positive, or from OFF to ON otherwise. This

process guarantees that the expected fraction of ACs turned

or on off is F . The variance from F is proportional to the
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Fig. 13. System response to the probabilistic control strategy for aggregated loads. 
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inverse of the number of ACs. For example, for 10 0 0 units,

the highest possible standard deviation is 1 . 6 × 10 −2 , so

the typical contribution to the control error of this random

process is negligible. Moreover, this can be calculated easily

by having access to the number of thermostats participating.

The response of the system to this control strategy is shown in

Fig. 13 , for a signal with frequency of 0.0 0 05 s −1 , corresponding

to a period of 20 0 0 s. Noting that the response of a system to

a sinusoidal input of varying frequency is the basis of the con-

struction of a transfer function, the sinusoid exemplified here is

representative since its frequency is on the order of magnitude of

a typical renewable resource such as wind or PV. Higher and lower

frequencies were also tested successfully, with good magnitude

and phase response. 

The filtered controlled power matches the control signal well

between 14 and 16 h, while between 12 and 14 h the system

cannot match the load exactly when a load reduction is called for.

It is interesting to note that the capacity for load increase is sig-

nificantly higher than that for load reduction, which occasionally

is close to zero. This is a consequence of the fact that the call for

cooling is lower than the design maximum for the systems. It is

also interesting to note that there is a periodicity in the power

increase or reduction capacity, induced by the use and release of

AC compressors. 

Now consider a fleet of 10 0 0 water heaters of the heat pump

variety. With a typical heat storage capacity of 42 MJ (obtained

using a typical capacity of 250 l of water with a 40 ◦C temperature

difference between char ged and dischar ged state), and assuming

a COP of 2.2 [41] , 10 0 0 units are equivalent to an electric storage

system of 5.3 MWh capacity, and therefore useful for distribution-

level load shifting. For example, it could be useful to move electric

load from the early part of the morning (i.e. when heaters would

normally recharge after morning showers, to the middle of the

day, when maximum PV-derived electricity is usually available. To

achieve this, in addition to the aggregated control capability, it is

also necessary to prevent the heaters from recharging as soon as

the SOC reaches the lower deadband setpoint of 0.9. The simplest

way to do this is to schedule the lower deadband setpoint as a

function of time of day. The operation of the water heaters, in the

context of the other appliances, is shown in Fig. 14 , for the case of

constand deadband and for the case of variable deadband, with no

other external control applied. 

The variable deadband case presents several clear differences

in comparison to the constant deaband case, notably: 
• at 4:00 h, when the heaters are charged in preparation for

morning showers, 
• in the period from 8:00 to 10:00 h, when water heating

loads are reduced by a factor of over two, 
• in the period from 16:00 to 20:00 h, when loads are

reduced by a factor of approximately two, 
• in the period from 20:00 to 22:00 h, when loads are

increased. 

The rebound observed at 4:00 h in the variable deadband

ase is a well-known effect that can be dealt with using well-

stablished methods [42–44] . 

Operating in the variable deaband mode, control is then im-

lemented in a similar way as for the AC units, for the purpose of

dding a controlled load of up to 500 kW in the period from 11:00

o 14:00 h, and of removing a late-afternoon load between the

ours of 14:45 and 18:15. Two strategies are are adopted: in the

rst strategy, an additional hot water control signal is ramped up

inearly to 500 kW between 11:00 and 11:30 h, then maintained

onstant between 11:30 and 13:30, then ramped down to zero

inearly between 13:30 and 14:00 h; subsequently, a load control

ignal is ramped down to -250 kW between 15:45 and 16:00 h,

aintained constant until 18:00 h, and ramped up to 0 kW be-

ween 18:00 and 18:15 h. In the second strategy, the initial load

ddition is identical, while the late afternoon load reduction is

mplemented by simply by adding a control signal of 0 kW, which

as the effect of removing intermittency in the frequency range

onsidered. The outcome of the two strategies is shown in Fig. 15 . 

The second strategy appears to be more successful than the

rst, in the sense that the late afternoon load reduction of 250 kW

nly lasts approximately 30 min, rather than the desired 2.5 h.

he reason is simple: there are no heaters that can be turned

ff. On the other hand, the second strategy appears to be largely

uccessful in reducing intermittency for the majority of the 2.5 h

etween 15:45 and 18:15 h. It should be noted, however, that the

ct of adding a controlled load in the middle of the day automat-

cally has the effect of reducing load later in the afternoon, since

ater draws utilize previously stored energy. 

. Load shedding in critical conditions 

Utility distribution feeders with microgrid-like characteristics

re currently being considered as elements of a more resilient

rid. Examples of such feeders are the one at Borrego Springs

n California [45] , and Ameren’s Technology Applications Center

icrogrid in Illinois [46] . In addition to distributed generation and
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Fig. 14. Load profiles for a single weekday, with constant deaband (top) and variable deadband (bottom). The DHW load is shown in orange. (For interpretation of the 

references to color in this figure legend, the reader is referred to the web version of this article.) 
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torage, distribution-level controls manage loads via a combina-

ion of technologies including smart breakers, smart meters and

ome energy management systems. Utility distribution microgrids

an island from the bulk grid and deliver services to customers

olely from feeder-sited generation and storage resources, owned

y customers, third parties or by the utility itself. In the case

f extended periods of islanding from the bulk grid, it may be

ecessary to curtail some of the loads to enabled continued supply

f power to critical loads, including medical facilities, food storage

nd distribution facilities or water services [25,47] . 

The results from the Texas and New York survey indicate that

pproximately 80% of respondents are either likely or certain

o limit certain energy-consuming to assist the grid operator to

reserve power service. Such curtailment could be enacted in

everal ways, depending on the energy service in question. For

xample, loads from air conditioning could be reduced either

y automatically resetting a temperature setpoint on a smart

hermostat, or by asking the customer to do so, for example via

 smart phone app. Similarly, curtailment of hot water energy

emand could be implemented by asking customers to reduce the

mount of showers or other hot water uses, or by automatically

hanging the temperature setpoint of the hot water heater. 
To illustrate the effect of load curtailment measures based

n a combination of behavioral changes and automated schemes

mplemented on individual appliances, load curtailment requests

ere enacted between 8 and 11 and between 16 and 19 on day 1

a Sunday). For participating households (assumed 75% of the total,

ased on survey results [48] ), the load curtailment on each energy

ervice during a curtailment event was implemented as follows: 

1. Laundry (clothes dryer): use of the clothes dryer is reduced

to 10% of the base value as a result of behavior modification

prompted by a smart phone request from the distribution

operator; 

2. Space heating & cooling (AC unit): the temperature setpoint

is raised or lowered by 3 ◦C for cooling or heating con-
ditions respectively, implemented via direct command to

smart thermostat or behavior modification; 

3. Domestic hot water (heat pump water heater): hot water

draws (primarily from showering) are reduced to 30% of

their original value, as a result of a request from the dis-

tribution operator via smart phone resulting in behavior

modification; 

4. Food refrigeration (refrigerator): no change; 
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Fig. 15. Operating parameters for DHW load control for a single weekday, for the case of variable SOC deadband. The aggregated load is filtered using a time series digital 

filter with lower and upper setpoints of 0.0 0 0 05 s −1 and 0.02 s −1 . The control gain is set to zero except of the periods of interest, between 11:00 and 14:00 h, and between 

15:45 and 18:15 h. Note that, while in both cases control in the first period is successful (the yellow control signal curve coincides with the green response curve and 

the error is zero), control in the second period is only partially successful due to the absence of heaters that can be turned off. The second strategy, in which only the 

intermittency is controlled in the second period, is more successful, as indicated by the smaller error (purple shading). (For interpretation of the references to color in this 

figure legend, the reader is referred to the web version of this article.) 

Fig. 16. Load profiles by energy service for curtailment events between 8 and 11 h 

and between 16 and 19 h. 
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5. Cooking (electric range): the frequency of cooking events is

reduced to 50% of its original value as a results of behavior

modification resulting from a request by the distribution

system operator, delivered via smart phone; 

6. Lighting (LED lights) the combined frequency and duration

of ‘lights on’ events is reduced to 50% of its original value as

a results of behavior modification resulting from a request

by the distribution system operator, delivered via smart

phone. 

The curtailment in use of the energy services is based on

a reasonable interpretation of survey and focus group results,

explained in detail by Chen et al. [48] and by Abreu et al. [28] .

The outcome of the load curtailment request is shown in Fig. 16 ,
or two three-hour events, the first between 8 and 11 (DR1), and

he second between 16 and 19 (DR2). During curtailment events,

he clothes dryer power use is negligible, as expected. The AC

oad, resulting from cooling in both cases, is reduced substantially.

he spikes at the beginning and end of the curtailment event

re due to the forced sudden change in temperature deadbands,

nd could be eliminated simply by letting the temperature drift

aturally at the beginning of curtailment, and by preventing all AC

nits from turning on together at the end of the event. The end of

urtailment rebound is a well-known effect of DR schemes and can

e reduced using well-established methods [44] . The DWH load

s reduced in both DR events, but more so in the afternoon one,

ue to expected higher use. The refrigerator load is unchanged,

s would be expected. The cooking load is reduced substantially

s a result of behavioral change (customers use alternative food

reparation strategies during curtailment events). Lighting load,

lthough very small to start with, is reduced due to customers

aying more attention to energy waste. 

The simulations show that load can be reduced to approx-

mately one half of the regular value by resorting to customer

ehavior change, assisted by automation where possible, for peri-

ds of time lasting on the order of hours. Whether such reductions

ould be sustained for several days is an open question, that re-

uires more detailed human behavior models that account for the
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bility of users to go without energy services, as well as interac-

ions with other users and the system interface, i.e. social factors.

hile validation is not practical in this case due to lack of infras-

ructure, the results have a basis in reality. The information that

an be provided by models of this type can enable the designer

f a community microgrid to explore scenarios quantitatively with

etter confidence than just by arbitrary assumptions. 

. Discussion and conclusions 

A bottom-up model of residential electrical load resulting

rom uses of energy services, that includes both physical and

ehavioral models, is combined with realistic strategies for high-

emporal-resolution load control and load shedding, in a complete

ramework designed for co-simulation using power flow simulation

ools. The bottom-up load simulation methodology is similar other

fforts, for example the SynPro tool developed by Fisher et al. [11] .

nlike the case of other studies, where the emphasis was to pro-

uce accurate load simulations for certain settings, the emphasis

f the work presented here was to demonstrate the effectiveness

f control of aggregated resources at the scale of a small community

or the purpose of real-time control and emergency load shedding,

n a realistic setting that incorporates user behavior. The ability to

imulate individual loads realistically is critical to conducting sim-

lations of power flow on a distribution feeder, especially in the

ase where advanced demand-response mechanisms are studied,

r where the effects of high penetration of distributed resources

re of interest. Both use cases, real-time control and load shed-

ing, are critical for community microgrid applications. A detailed

uantitative calibration of the models, followed by a validation

tep, is not the purpose of this work, as this has been done before.

n contrast, it is shown here that it is possible to obtain realistic

ehavior predictions from well-designed surveys that include hith-

rto unexplored questions on willingness of energy users to forego

ull control of their appliances to benefit the performance of their

ommunity’s grid, or even to allow its stability in the face of

nusual circumstances. Moreover, it is also shown that the level of

esponse of both real-time control and load shedding is substan-

ial and can make a substantial impact on the controllability and

tability of the system, at much lower cost than simply by using

attery storage. 

The ability to use air conditioners, controlled via smart ther-

ostats, to offset variability due to high-penetration PV, or simply

o improve the behavior of the load at the feeder, has been

emonstrated in the context of operations of a variety of appli-

nces. The energy contained in the air mass and the building

tructure provides enough reserve to control loads over a range

f frequencies, ranging from 0.003 s −1 to 0.0 0 05 s −1 . Response at

igher frequencies is limited by the switching dead-time of the

C compressors, while response at lower frequencies is limited by

he ability of the structures and air mass contained within them

o store sensible energy. 

For the case of heat-pump water heaters, it was shown that

he collective ability to absorb substantial amount of energy (over

 MWh e ) in a highly controlled way can be achieved with relatively

ow control effort. This could be useful, for example, to absorb

igh levels of PV electricity production around solar noon, thereby

educing reverse power feed from the feeder into the transmission

rid (the belly of the ‘duck curve’). Control of the release of the

ccumulated energy in the afternoon is more difficult, due to

he unavailability of devices that can be turned off. However, the

fternoon load is naturally reduced compared to the case where

eak energy absorption if not implemented. To achieve better

ontrol, more sophisticated algorithms could be implemented,

owever this is beyond the scope of the present study. 
Finally, the framework presented here can easily be used in

onjunction with distribution system simulations such as GridLAB-

 or OpenDSS, or with real-time hardware-in-loop systems, for

he purpose of sizing and optimizing system components and for

esigning protection systems. The model presented here applies

o residential loads only, while in a typical situation, commercial

nd sometimes light industrial loads could also be present on the

eeder. These could also be co-simulated alongside the residential

oads using relevant models. 
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