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Abstract— Crowdsourcing is a promising technology to
accomplish a complex task via eliciting services from a large
group of contributors. Recent observations indicate that the
success of crowdsourcing has been threatened by the malicious
behaviors of the contributors. In this paper, we analyze the
attack problem using an iterated prisoner’s dilemma (IPD)
game and propose a reward-penalty expected payoff algorithm
based on zero-determinant (ZD) strategies to reward a worker’s
cooperation or penalize its defection in order to entice the final
cooperation. Both theoretical analysis and simulation studies are
performed, and the results indicate that the proposed algorithm
has the following two attractive characteristics: 1) the requestor
can incentivize the worker to become cooperative without any
long-term extra cost; and 2) the proposed algorithm is fair so
that the requestor cannot arbitrarily penalize an innocent worker
to increase its payoff even though it can dominate the game.
To the best of our knowledge, we are the first to adopt the ZD
strategies to stimulate both players to cooperate in an IPD game.
Moreover, our proposed algorithm is not restricted to solve only
the problem of crowdsourcing dilemma - it can be employed to
tackle any problem that can be formulated into an IPD game.

Index Terms— Crowdsourcing, malicious attack, game theory,
zero-determinant strategies.

I. INTRODUCTION

CROWDSOURCING is a promising technology that takes
advantage of contributions from a large group of par-

ticipants to complete a relatively complicated task [1]–[3].
It has attracted much attention recently, and its success
mainly comes from its openness to the crowds. Neverthe-
less, the prevailing application of crowdsourcing is severely
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hindered by its susceptibility to malicious actions of the
workers. More specifically, greedy workers may inaugurate
attacks to the peering non-greedy ones or even the requestor
to get more profit by performing malicious actions, such
as fabrication and plagiarism, leading to severe damage for
task completion. For example, it is well-known that the
UCSD team failed to keep the first rank to the end in
the DARPA Shredder Challenge 2011 [4] due to the sab-
otages of the malicious workers during the crowdsourcing
process.

Considering that malicious attacks hamper the wide appli-
cation of crowdsourcing, researchers have made a consid-
erable amount of effort to address this challenge in recent
years. For examples, the practicability of launching indi-
vidual and group attacks in crowdsourcing was analyzed
in [5]; Naroditskiy et al. in [6], [7] first adopted the prisoner’s
dilemma (PD) game to model the malicious behaviors between
any two workers, and then employed the iterated prisoner’s
dilemma (IPD) game to formulate and analyze an iterated
version of the problem. Nevertheless, none of the works
mentioned above proposed any effective countermeasures to
address the attack problem. Though the authors in [8]–[11]
put forward mechanisms to detect the malicious behaviors
in various crowdsourcing applications, those schemes are
not systemic or efficient because they function as additional
components of the counterattacks.

In this paper, we employ an IPD game to analyze and
eliminate the malicious attacks in crowdsourcing. Different
from the existing work [6], [7], we consider the interactions
between the requestor (i.e., the crowdsourcer) and any worker
(i.e., the contributor). This distinct perspective of our analysis
is inspired by the facts that the requestor in a crowdsourcing
application acts as an employer, and is certainly a victim of
any sort of malicious attack in the meanwhile. As a victim,
the requestor may receive low-quality results or may need to
spend more time and money to get the final submission, thus it
has sufficient motivation to get rid of the malicious behaviors;
while as an employer who pays remuneration, the requestor is
capable of removing the malicious behaviors with the help of
market power.

However, it is nontrivial to utilize an IPD game to address
the malicious attack problem in crowdsourcing. We summarize
two crucial problems as follows, which need to be gradually
solved in order to analyze and eliminate the malicious behav-
iors via an IPD game.
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1) Can we design an algorithm that can encourage the
worker to be finally cooperative via offering the worker
more short-term payoff without sacrificing the long-term
interest of the requestor?

2) When designing the algorithm mentioned above, can
we guarantee its fairness to both the requestor and the
worker such that the requestor cannot arbitrarily punish
the worker if it dominates the game?

Through answering the above two questions one by one,
we make the following contributions (a preliminary version of
this paper is presented in [12]):
• The malicious attack problem in crowdsourcing is for-

mulated by an IPD game between two heterogeneous
players, i.e., the requestor and the worker.

• Four classic strategies are inspected theoretically and
experimentally so as to explore the most reasonable one
that could be employed by the worker, which turns out
to be the evolutionary strategy.

• For the first problem, we propose a reward-penalty
expected payoff algorithm based on zero-determinant
(ZD) strategies for the requestor. Both the experimental
results and the theoretical analysis on this algorithm
demonstrate that i) it can drive the worker to be finally
cooperative through a higher short-term payoff but with
no long-term extra cost from the requestor; and ii) it is
lively in the long run since it is impartial for both the
requestor and the worker. As a result, the second problem
is also resolved.

• Our proposed algorithm takes advantage of the ZD strate-
gies to drive both players to be finally cooperative in an
IPD game. We claim that this algorithm is not restricted to
solve only the crowdsourcing dilemma problem; it is also
applicable to other iterated two-player-game situations.

The rest of the paper is organized as follows. Section II for-
mulates the attack problem in crowdsourcing with the iterated
prisoner’s dilemma and identifies the conditions for the game
to be valid. Trial studies on the worker’s possible strategies
are presented in Section III with both theoretical analysis
and experimental studies. The reward-penalty expected payoff
algorithm based on the ZD strategies is proposed in Section IV
and analyzed in Section V. In Section VI, we summarize the
most related work; and the paper is concluded in Section VII.

II. GAME MODEL

In this paper, we consider a crowdsourcing scenario where a
requestor launches a crowdsourcing request, provides several
payment offers, and then recruits workers from a large crowd.
This step may be carried out on a crowdsourcing platform
such as Amazon Mechanical Turk [13]. Next all recruited
workers try their best to complete their jobs and obtain the
corresponding payments. We define such a process involving
one interaction of the requestor and the workers as a round of
crowdsourcing. In reality, a worker may attack others such as
its peers and the requestor to be more profitable at each round,
which is assumed to be hard for the requestor to timely detect
due to the lack of evidence or limited computing resource. The
requestor may behave maliciously too, by paying the workers
with lower payments than they deserve at a round, without

Fig. 1. Payoff matrix of the requestor and the worker.

knowing whether or not the workers are honest. By this way,
the requestor and the workers take actions simultaneously
without knowing the exact action of the opponent at each
round of the crowdsourcing. We assume that workers in
this scenario make decisions independently to play against
the requestor, which will never be affected by other peering
workers.

Obviously, an interaction between the requestor and any
recruited worker can be modeled as a simultaneous game;
when the same worker is employed repeatedly, the game
becomes iterated. Here we define that the action of a worker
is cooperation when he1 completes the job without any attack,
or defection when he attacks; and cooperation of the requestor
implies that she pays the worker a normal payoff without any
economic punishment while defection means giving a lower
payment. At each round, the exact action that one player
adopts cannot be known by its opponent. Hence, four combi-
nations of the actions can be derived as rw = (cc, cd, dc, dd),
where r and w represent the actions of the requestor and the
worker, respectively, while c and d denote cooperation and
defection, respectively. Note that since the actions of both
players at each round uniquely denote the game at that round,
we regard the union of the actions as the state of the game at
that round.

Then the payoffs of both the requestor and the worker in
each state can be calculated as follows: 1) when both players
choose cooperation, they can get their normal payoffs of Rr

and Rw; 2) when the requestor adopts cooperation while the
worker chooses defection, the defective worker can get more
profit b than his normal payoff Rw , but the requestor suffers a
loss of m on her normal payoff Rr ; 3) when the requestor turns
to defection while the worker adopts cooperation, the innocent
worker is paid with an economic penalty and receives a payoff
of Rw − a, where a indicates a direct economic loss as well
as other indirect loss such as reputation damage; while the
requestor gains more profit n; 4) when both players select
defection, the requestor obtains a payoff of Rr − m + n and
the worker gets Rw+b−a. Thus, as shown in Fig. 1, the payoff
vector of the requestor is Sr = (Rr , Rr−m, Rr+n, Rr−m+n),
while that of the worker is Sw = (Rw, Rw + b, Rw − a,
Rw + b − a), corresponding to the game states rw =
(cc, cd, dc, dd). Note that all parameters here are positive.

Next, we introduce two theorems to justify why the pro-
posed game model is a PD game in a single round, and an
IPD game when multiple rounds are considered.

Theorem 1: When the parameters in the payoff matrix sat-
isfy n < m, b < a, n < a, and b < m, the interaction between

1We denote the worker as “he” and the requestor as “she” for differentiation.
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the requestor and the worker in a round can be modeled by a
PD game.

Proof: Generally speaking, two conditions need to be
satisfied in a PD game: 1) defection is the dominant strategy
for each player while mutual cooperation brings a higher
payoff than mutual defection; and 2) mutual cooperation
should be superior to all other situations with respect to the
overall payoff.

The first condition indicates that 1) whether c or d is chosen
by its opponent, a player adopting d can earn a higher payoff
than adopting c; and 2) the payoff of each player in state cc
is always larger than that in dd . Hence, the requestor’s payoff
in state rw = dc is higher than that in state rw = cc, which
is larger than her payoff in state rw = dd , and all of them are
greater than that in state rw = cd . Thus, for the requestor’s
payoffs, we have

Rr + n > Rr > Rr − m + n > Rr − m,

which obviously hold when n < m.
Similarly, when b < a, the payoffs of the worker satisfy:

Rw + b > Rw > Rw + b − a > Rw − a.

The second condition implies that the following three rela-
tionships hold for the payoffs of the requestor and the worker:

Rr + Rw > (Rr − m)+ (Rw + b),

Rr + Rw > (Rr + n)+ (Rw − a),

Rr + Rw > (Rr − m + n)+ (Rw + b − a).

It is obvious that they can be satisfied when the constraints
n < a and b < m hold.

From an individual perspective, defection is the most ratio-
nal choice since it can bring more benefit than cooperation for
any player, leading to the Nash equilibrium of the crowdsourc-
ing game as mutual defection; while from a global perspective,
mutual cooperation brings the highest sum of the payoffs,
i.e., social welfare, and thus is defined as the global optimal
state. Therefore, the game between the requestor and the
worker becomes a PD when n < m, b < a, n < a, and b < m
hold. �

As mentioned above, the same worker can be recruited
repeatedly by the same requestor to complete continuous jobs
such as monitoring the traffic condition in a fixed location.
In this case, the game becomes iterated when the constraints
in the following theorem are met.

Theorem 2: When the parameters in the payoff matrix con-
form to n < m, b < a, n < a, and b < m, the interactions
between the requestor and the worker in multiple rounds can
be formulated into an IPD game.

Proof: Besides the two necessary conditions of the PD
game, an IPD game needs to avoid the case that a player
alternating between cooperation and defection results in more
payoff than persisting in cooperation. Thus, the payoff vector
of the requestor should satisfy the following inequality:

2Rr > (Rr + n)+ (Rr − m).

It is clear that given n < m, the above relationship holds.

Similarly, for the worker, his payoff vector should meet:
2Rw > (Rw + b)+ (Rw − a),

which holds when b < a.
Hence, interactions between the requestor and the worker

constitute an IPD when n < m, b < a, n < a, b < m. �
Actually, all parameter constraints mentioned above have

realistic implications. First, n < m and b < a imply that both
players earn lower payoffs in mutual defection than those in
mutual cooperation. It is totally consistent with reality since
the defection of the worker can cause a higher cost of the
requestor to complete the whole crowdsourcing job, while
the defection of the requestor can bring a lower profit for
the worker. Besides, the constraint n < a indicates that the
increased amount of payoff received by the requestor, which is
resulted from the economic punishment on the worker, is less
than the payoff decrement of the worker. This holds true in
reality since the requestor’s punishment on the worker can
bring to him not only the direct economic loss but also indirect
cost such as reputation damage. While b < m reveals that
the worker’s defection behavior produces a payoff increment
which is less than the requestor’s payoff decrement. This
inequality also holds true in practice because a greedy worker
can easily obtain more profit with a fake submission without
consuming too much energy, but it costs the requestor lots of
resources to filter out or fix those intentional errors.

However, it is worth to note that the following study in this
paper is not restricted to the scenarios with n < a and b < m,
but applicable to other cases as long as the general conditions
hold, i.e., n < m and b < a. If neither of the general conditions
is met, the Nash equilibrium state will be coincident with the
global optimal state as mutual defection, and then the problem
of eliciting mutual cooperation vanishes because there is no
motivation for any player to choose cooperation.

III. STRATEGIES FOR THE WORKER

A. Strategies for an Evolutionary Player

Intuitively, a worker tends to employ a strategy that can
maximize his payoff throughout the game. While in practice,
the worker is at a disadvantageous position because he has
limited knowledge about the strategies of the requestor and his
peers. On the contrary, the requestor stays in an advantageous
situation thanks to her global view about the strategies of all
workers, which can help her to better estimate a worker’s
behavior. To handle this situation, a rational worker would
like to adaptively search for the optimal strategy, which refers
to the cooperation probability in our study.

This sort of optimization seeking method relies on the
self-adaptiveness that is similar to the main idea of biological
evolution, i.e., “natural selection” and “survival of the fittest”.
By this means, the global optimal solution is explored in a
stochastic or metaheuristic way. Motivated by this observation,
we give a loose definition of the evolutionary strategy.

Definition 1 (Evolutionary Strategy): A game player
adopts an evolutionary strategy when s/he adjusts it to
maximize the payoff without considering the strategy or
payoff of the opponent.
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In light of the above definition, we present two specific
examples of the evolutionary strategy.

1) Example 1: Inspired by [14], we present the first type
of evolutionary strategy, denoted as E strategy. Let qt

w be the
cooperation probability of the worker at round t . If the worker
adopts the E strategy, the cooperation probability qt

w should
evolve according to

qt+1
w = qt

w

W t
c

Et
w

, (1)

where W t
c is the worker’s expected cooperation payoff and Et

w
is his expected total payoff at round t . W t

c can be calculated as:
W t

c = pt
r E(cc)+ (1− pt

r )E(cd), (2)

where pt
r is the cooperation probability of the requestor at

round t , E(cc) is the payoff of the worker in state wr = cc
and E(cd) is that in state wr = cd . Similarly, E(dc) and
E(dd) are the payoffs of the worker in states wr = dc and
wr = dd , respectively. Thus, the expected defection payoff
of the worker at round t , denoted as W t

d , can be calculated
likewise:

W t
d = pt

r E(dc)+ (1− pt
r)E(dd). (3)

Now, for the expected total payoff at round t , Et
w in (1) can

be derived by:
Et

w = qt
wW t

c + (1− qt
w)W t

d . (4)

According to the above equation, one can see that the
numerator in (1), qt

wW t
c , is always a part of the denominator,

i.e., Et
w. Therefore, qt

w ∈ [0, 1] holds for all t . Besides,
comparing (2)(3)(4), one can notice that when W t

c > Et
w,

the cooperation probability of the worker increases in the next
round; otherwise it keeps unchanging or decreases. This kind
of evolution path can help the worker to find the optimal
response strategy (i.e., cooperation probability qt

w) according
to the fitness W t

c /Et
w, so as to play against the requestor.

2) Example 2: According to [15], one can utilize the
following equation to denote another type of evolutionary
strategy, denoted as E′ strategy. With the same notation qt

w
mentioned above, when a worker adopts the E′ strategy, his
cooperation probability at round t is determined by:

qt
w =

eAt
c−At

d

1+ eAt
c−At

d
. (5)

In (5), At
c is the worker’s cumulative expected coopera-

tion payoff until the t-th round and can be calculated by
At

c =
∑t

τ=0 W τ
c , where W τ

c is his expected cooperation payoff
at round τ and can be derived according to (2); while At

d is the
worker’s cumulative expected defection payoff until round t ,
calculated by At

d =
∑t

τ=0 W τ
d , where W τ

d is the expected
defection payoff at round τ and calculated according to (3).

Thus, when adopting the E′ strategy, the worker determines
his cooperation probability at round t according to the differ-
ence of his cumulative expected payoffs for cooperation and
defection in all previous rounds of the game. If his cumulative
expected payoff of cooperation is much greater than that of
defection, eAt

c−At
d is much greater than 1 and thus qt

w is close

Fig. 2. Average payoffs of the requestor and the worker when the requestor
adopts classic strategies and the worker adopts the E strategy.

to 1 from the left, which means that the worker cooperates at
round t with a high probability. On the contrary, if At

c is much
less than At

d , eAt
c−At

d is close to 0 and qt
w also approaches 0,

which indicates that the worker defects at round t very likely.

B. Experimental Evaluation on the Evolutionary Strategies

In this section, we carry out a few experimental studies
to testify the potential of the evolutionary strategies. More
specifically, we simulate the game process when the worker
adopts an evolutionary strategy, i.e., either the E strategy or
the E′ strategy, while the requestor utilizes one of the fol-
lowing classic strategies: tit-for-tat (TFT), win-stay-lose-shift
(WSLS), all-cooperation (ALLC), and all-defection (ALLD).
Basically, when the requestor adopts the TFT strategy, she
cooperates in the first round and then chooses the previous
action of the opponent (worker) in each of the following
rounds; when the requestor is a WSLS player, she does not
change her action if and only if this action brought her a
high payoff in the previous round; if the requestor chooses
ALLC, it remains cooperative throughout the game regardless
of the worker’s action; while adopting ALLD strategy indicates
that the requestor chooses defection unconditionally no matter
what action the worker adopts.

We set the parameters in the payoff matrix as Rw =
Rr = 3, a = m = 3, b = n = 2 in these experiments.
Accordingly, the payoff vectors of the requestor and the worker
are Sr = (3, 0, 5, 2) and Sw = (3, 5, 0, 2), respectively.
Each experiment runs 100 times to get the average value
for eliminating the statistical uncertainties. Note that we also
conduct simulations with other parameter settings and obtain
very similar results.

The average payoffs of the requestor and that of the
worker vs. the worker’s initial cooperation probability q0

w when
the worker adopts the E strategy while the requestor adopts
different classic strategies are plotted in Fig. 2. It is easy to
see that the average payoff of the worker is always larger
than or equal to that of the requestor under the four game
scenarios. Particularly, the worker yields a higher payoff when
the requestor adopts WSLS and ALLC, while gets similar
payoffs when the requestor adopts TFT and ALLD.
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Fig. 3. Average payoffs of the requestor and the worker when the requestor
adopts classic strategies and the worker adopts the E′ strategy.

When the worker adopts the E′ strategy, the average payoffs
of the requestor and that of the worker are presented in Fig. 3.
It is clear that no matter what kind of classic strategy the
requestor employs, the worker with the E′ strategy can get an
average payoff that is similar to or higher than the requestor.
More specifically, the worker’s payoff is much higher when
the requestor takes WSLS or ALLC.

C. Analysis on the Evolutionary Strategies

In this section, we present our theoretical analysis on the
above experimental results. We start by giving definitions on
the mixed strategies of the requestor and the worker based on
conditional probabilities.

Definition 2 (The Requestor’s Mixed Strategy pt ):
The mixed strategy of the requestor at round t is
pt = (pt

1, pt
2, pt

3, pt
4), where each element is the requestor’s

conditional probability to cooperate at round t given the
outcome of previous round rw ∈ {cc, cd, dc, dd}.

Definition 3 (The Worker’s Mixed Strategy qt ): The mixed
strategy of the worker at round t is qt = (qt

1, qt
2, qt

3, qt
4),

where each element is the worker’s conditional probability
to cooperate at round t given the outcome of previous round
wr ∈ {cc, cd, dc, dd}.

According to [16], we can calculate the requestor’s expected
payoff Et

r and the worker’s expected payoff Et
w at round t

using the mixed strategies defined above:

Et
r =

D(pt , qt , Sr )

D(pt , qt , 1)
, Et

w =
D(pt , qt , Sw)

D(pt , qt , 1)
. (6)

Given any vector x = (x1, x2, x3, x4), D(pt , qt , x) can be
computed by:

D(pt , qt , x) = det

⎡
⎢⎢⎢⎣

−1+ pt
1qt

1 −1+ pt
1 −1+ qt

1 x1

pt
2qt

3 −1+ pt
2 qt

3 x2

pt
3qt

2 pt
3 −1+ qt

2 x3

pt
4qt

4 pt
4 qt

4 x4

⎤
⎥⎥⎥⎦ .

Since it is very typical for the players in a PD game to have
symmetric payoffs, we assume that Rr = Rw = R, a = m, and
b = n. Based on these assumptions, we derive the following
theorems to analyze the above experimental results.

Theorem 3: If the requestor employs the TFT strategy and
the worker adopts an evolutionary strategy, the expected
payoffs of both players are similar.

Proof: When the requestor employs the TFT strategy, her
mixed strategy at round t can be expressed as pt = (1, 0, 1, 0).
Thus, the requestor’s expected payoff Et

r and the worker’s
expected payoff Et

w at round t can be calculated according
to (6). Thus, we have

Et
r = Et

w =
R − a + b − Rqt

1 − Rqt
3 + 2Rqt

4 + aqt
1 + aqt

3

2qt
4 − qt

3 − qt
1 + qt

1qt
3 − 2qt

1qt
4 + qt

2qt
4 + 1

+−aqt
4 − bqt

1 − bqt
3 + bqt

4 + Rqt
1qt

3 − 2Rqt
1qt

4

2qt
4 − qt

3 − qt
1 + qt

1qt
3 − 2qt

1qt
4 + qt

2qt
4 + 1

+ Rqt
2qt

4 − aqt
1qt

3 + aqt
1qt

4 + bqt
1qt

3 − bqt
1qt

4

2qt
4 − qt

3 − qt
1 + qt

1qt
3 − 2qt

1qt
4 + qt

2qt
4 + 1

.

�
Theorem 4: If the requestor employs the WSLS strategy and

the worker adopts an evolutionary strategy, we can find a
constant T , such that ∀t ≥ T , the worker’s expected payoff
Et

w is larger than the requestor’s expected payoff Et
r .

Proof: If the requestor employs the WSLS strategy, her
mixed strategy at any round τ is pτ = (1, 0, 0, 1). Thus,
according to (6), we have

Eτ
r = −

2R − 2a + b − 2Rqτ
1 − 2Rqτ

2 + Rqτ
3 + Rqτ

4 + 2aqτ
1

2qτ
1 + 2qτ

2 − qτ
3 − qτ

4 − 2qτ
1 qτ

2 + qτ
1 qτ

3 + qτ
2 qτ

4 − 2

− 2aqτ
2 − bqτ

1 − bqτ
2 + bqτ

3 + 2Rqτ
1 qτ

2 − Rqτ
1 qτ

3

2qτ
1 + 2qτ

2 − qτ
3 − qτ

4 − 2qτ
1 qτ

2 + qτ
1 qτ

3 + qτ
2 qτ

4 − 2

− (−Rqτ
2 qτ

4 − 2aqτ
1 qτ

2 + bqτ
1 qτ

2 − bqτ
1 qτ

3 )

2qτ
1 + 2qτ

2 − qτ
3 − qτ

4 − 2qτ
1 qτ

2 + qτ
1 qτ

3 + qτ
2 qτ

4 − 2
,

Eτ
w = −

2R − a + 2b − 2Rqτ
1 − 2Rqτ

2 + Rqτ
3 + Rqτ

4 + aqτ
1

2qτ
1 + 2qτ

2 − qτ
3 − qτ

4 − 2qτ
1 qτ

2 + qτ
1 qτ

3 + qτ
2 qτ

4 − 2

− aqτ
2 − aqτ

3 − 2bqτ
1 − 2bqτ

2 + 2Rqτ
1 qτ

2 − Rqτ
1 qτ

3

2qτ
1 + 2qτ

2 − qτ
3 − qτ

4 − 2qτ
1 qτ

2 + qτ
1 qτ

3 + qτ
2 qτ

4 − 2

− (−Rqτ
2 qτ

4 − aqτ
1 qτ

2 + aqτ
1 qτ

3 + 2bqτ
1 qτ

2 )

2qτ
1 + 2qτ

2 − qτ
3 − qτ

4 − 2qτ
1 qτ

2 + qτ
1 qτ

3 + qτ
2 qτ

4 − 2
.

Next, we can calculate their difference as

Eτ
w − Eτ

r =
(a + b)(1− qτ

1 )(qτ
2 + qτ

3 − 1)

(1− qτ
2 )(2(qτ

1 − 1)− qτ
4 )+ qτ

3 (qτ
1 − 1)

. (7)

Since the cooperation probability certainly resides in [0, 1],
we have qτ

1 , qτ
2 , qτ

3 , qτ
4 ∈ [0, 1], and thus it is clear that the

denominator of the above equation is non-positive. Besides,
the denominator can be transformed from the denominator
of Eτ

r and Eτ
w; thus it should not be zero. In this case,

the denominator of (7) is negative.
While for the numerator of (7), we know that (a + b) and

(1 − qτ
1 ) are non-negative, and thus the comparison between

Eτ
w and Eτ

r is determined by the value of (qτ
2 + qτ

3 − 1). Note
that qτ

2 is the worker’s cooperation probability at round τ when
the outcome at round τ−1 is wr = cd , where the cooperation
probability of the requestor pτ−1

r is exactly 0. Thus according
to (2), we obtain that the expected cooperation payoff of
the worker is W τ−1

c = pτ−1
r E(cc) + (1 − pτ−1

r )E(cd) =
E(cd) = R−a, and the expected defection payoff is W τ−1

d =
pτ−1

r E(dc)+ (1− pτ−1
r )E(dd) = E(dd) = R + b − a.

Next, we consider the situation where the worker adopts
the E strategy. In this case, his cooperation probability evolves
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according to (1), which leads to

qτ
2 = qτ

w = qτ−1
w

W τ−1
c

Eτ−1
w
= qτ−1

w
R−a

R−a+b(1−qτ−1
w )

. (8)

Because ∀τ , qτ
w ∈ [0, 1], R − a is always less than R − a +

b(1 − qτ−1
w ). Thus, when τ increases , qτ

2 always decreases.
qτ

3 has the same trend after similar computation process.
When the worker adopts the E′ strategy, his cooperation

probability will evolve according to (5). As mentioned above,
the worker’s expected cooperation payoff W τ

c is always less
than his expected defection payoff W τ

d at any round τ ; thus the
cumulative expected cooperation payoff Aτ

c should be less than
the cumulative expected defection payoff Aτ

d as τ increases.
Therefore we have

qτ
2 = qτ

w =
eAτ

c−Aτ
d

1+ eAτ
c−Aτ

d
= e

∑τ
x=0(R−a)−∑τ

x=0(R+b−a)

1+ e
∑τ

x=0(R−a)−∑τ
x=0(R+b−a)

.

(9)

It is clear that qτ
2 becomes smaller and smaller as τ increases.

Similar results can be obtained for qτ
3 .

Therefore, ∃T such that ∀t ≥ T, qt
2 + qt

3 < 1 holds, which
causes the numerator of (7) to be negative. Thus the value
of (7) is positive, leading to Eτ

w > Eτ
r . �

Corollary 1: In the case where the worker gets a payoff of
zero when the outcome is wr = cd, the requestor’s expected
payoff when adopting the WSLS strategy is always less than
the worker’s expected payoff when adopting an evolutionary
strategy.

Proof: When the worker adopts the E strategy, if E(cd) =
R-a = 0, according to (8), for ∀t, qt

2 = 0; the same
argument holds for qt

3. Thus we have Et
r < Et

w based on (7).
When the worker adopts the E′ strategy, according to (9),
we have qt

2 < 1
2 ; similarly, qt

3 < 1
2 . Therefore, we also get

Et
r < Et

w . �
Note that Corollary 1 can help explain the observed phe-

nomena of WSLS vs. E and WSLS vs. E′ in Figs. 2 and 3,
respectively.

Theorem 5: If the requestor employs the ALLC strategy and
the worker adopts an evolutionary strategy, the expected payoff
of the worker is always larger than that of the requestor.

Proof: When the requestor employs the ALLC strategy,
her mixed strategy at any round t is pt = (1, 1, 1, 1). Thus,
the expected payoffs of the players are:

Et
r =

R − a − Rqt
1 + Rqt

3 + aqt
1

qt
3 + 1− qt

1
,

Et
w =

R + b − Rqt
1 + Rqt

3 − bqt
1

qt
3 + 1− qt

1
.

Then

Et
w − Et

r =
(a + b)(1− qt

1)

qt
3 + 1− qt

1
.

It is clear that the above equation is non-negative because
qt

1, qt
3 ∈ [0, 1]. Therefore, we have Et

w ≥ Et
r . �

Theorem 6: If the requestor employs the ALLD strategy and
the worker adopts an evolutionary strategy, the expected payoff
of the requestor is similar to that of the worker when t is very
large.

Proof: When the requestor adopts the ALLD strategy, her
mixed strategy is pt = (0, 0, 0, 0), and the expected payoffs
of both players are:

Et
r =

R − a + b − Rqt
2 + Rqt

4 + aqt
2 − bqt

2 + bqt
4

qt
4 + 1− qt

2
,

Et
w =

R − a + b − Rqt
2 + Rqt

4 + aqt
2 − aqt

4 − bqt
2

qt
4 + 1− qt

2
.

Thus we have

Et
w − Et

r =
−(a + b)qt

4

qt
4 + 1− qt

2
.

It is obvious that the value of the above equation is non-
positive, and whether it is zero is determined by qt

4, which
is the worker’s cooperation probability given that the pre-
vious outcome is wr = dd . According to (2), W t−1

c =
0 · E(cc) + 1 · E(cd) = E(cd) = R − a, and according
to (3), W t−1

d = 0 · E(dc)+ 1 · E(dd) = E(dd) = R + b − a.
Therefore, when the worker adopts the E strategy, qt

4 = qt
w =

qt−1
w

W t−1
c

Et−1
w
= qt−1

w
R−a

R−a+b(1−qt−1
w )

, and thus limt→∞ qt
4 = 0,

resulting in Et
w = Et

r ; when the worker adopts the E′ strategy,

qt
4 = qt

w = exp(At
c−At

d )

1+exp(At
c−At

d )
= exp(

∑t
x=0(R−a)−∑t

x=0(R+b−a))

1+exp(
∑t

x=0(R−a)−∑t
x=0(R+b−a))

,

and we can also get limt→∞ qt
4 = 0, leading to Et

w = Et
r . �

Corollary 2: In the case where the worker gets a zero payoff
when the outcome is wr = cd, the requestor employing the
ALLD strategy has a similar expected payoff compared to that
of the worker adopting an evolutionary strategy.

Proof: We start by considering that the worker adopts
the E strategy. If E(cd) = 0, we have for ∀t, qt

4 =
qt
w = qt−1

w
W t−1

c

Et−1
w
= qt−1

w
E(cd)

Et−1
w
= 0, which means Et

w =
Et

r at each round t . When the worker adopts the E′ strat-
egy, given that E(cd) = 0, we have qt

4 = qt
w =

exp(
∑t

x=0(R−a)−∑t
x=0(R+b−a))

1+exp(
∑t

x=0(R−a)−∑t
x=0(R+b−a))

= exp(−∑t
x=0 b)

1+exp(−∑t
x=0 b)

, which is

close to zero when t is large. Thus we have Et
w ≈ Et

r . �
Note that Corollary 2 can justify the results of ALLD vs.

E and ALLD vs. E′ in Figs. 2 and 3, respectively.
In summary, both the experimental results and the theo-

retical analysis indicate that the payoff of the worker when
adopting an evolutionary strategy is never less than that of
the requestor. Even though the situation with ALLD strategy
is unfavorable for the worker, a rational and interest-driven
requestor would never take this stubborn strategy. While from
the perspective of the worker, he is employed by the requestor
and stays at a disadvantageous position, lacking the global
information of the opponent; thus, getting the above expected
payoffs seems to be good enough for him. In the following we
assume that the worker adopts an evolutionary strategy due to
its great potential.

D. Cooperativeness of the Worker

With such a powerful evolutionary strategy adopted by
the worker, we explore his cooperativeness when playing
against the requestor with several intuitive strategies such
as TFT, WSLS, ALLC, ALLD, E and E′, which turn out
to be all failures in eliciting the final cooperation from the
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worker (detailed in [12]). In fact, when the worker is an
E-strategy player, the cooperation probability evolves accord-
ing to qt+1

w = qt
w

W t
c

Et
w
, where

W t
c = pt

r ∗ E(cc)+ (1− pt
r ) ∗ E(cd) = Rw − a + apt

r ,

W t
d = pt

r ∗ E(dc)+ (1− pt
r ) ∗ E(dd) = Rw − a + apt

r + b,

Et
w = qt

w ∗W t
c + (1− qt

w)

∗ W t
d = Rw − a + apt

r + b(1− qt
w).

It is clear that for ∀t, W t
c = Rw − a + apt

r , Et
w = Rw − a +

apt
r + b(1 − qt

w), so W t
c ≤ Et

w for pt
r , qt

w ∈ [0, 1]. Hence

limt→∞ qt+1
w = qt

w
W t

c
Et

w
= 0. When the worker employs the E′

strategy, qt
w evolves according to qt

w = eAt
c−At

d

1+eAt
c−At

d
, where

At
c =

t∑
τ=0

W τ
c =

t∑
τ=0

(Rw − a + apτ
r ),

At
d =

t∑
τ=0

W τ
d =

t∑
τ=0

(Rw − a + apτ
r + b).

Then it is easy to see that At
c − At

d becomes smaller and
smaller when t increases, and hence eAt

c−At
d approaches to

zero gradually. Thus, limt→∞ qt
w = 0.

From the above analysis, we can find that if W t
c does not get

increased, the evolutionary worker should always defect. This
is because when the worker adopts an evolutionary strategy,
he adjusts his cooperation probability only based on his own
obtained payoff regardless of the strategy or payoff of his
opponent. Therefore, only if the external environment faced by
the worker changes, such as the payoff matrix getting changed,
his cooperation probability can switch to another evolutionary
path. Yet, once the requestor increases the worker’s payoff
when he is cooperative, it costs the requestor more to get the
whole job done in the long run. This challenge elicits the
following problem.

Problem 1: Does there exist an algorithm that can stim-
ulate the cooperation of the worker via only increasing
his short-term payoff without extra long-term cost of the
requestor?

IV. ZD STRATEGIES BASED ALGORITHM

To solve the above problem, we propose a novel algorithm
to help the requestor drive the worker to become cooperative
via increasing the short-term payoff of the worker without
extra long-term expense of the requestor. The proposed algo-
rithm is based on ZD strategies, including the pinning strategy
and the extortion strategy, which are introduced as follows with
respect to our problem scenario.

A. Introduction and Analysis of the ZD Strategies

The ZD strategies [16] proposed by Press and Dyson
can help us produce a revolutionary recognition of the IPD
problem. By this means, a ZD player can unilaterally set
the opponent’s expected payoff or form an extortionate linear
relationship between the expected payoffs of both players in
an IPD game. As a matter of fact, ZD strategies can be applied

to any iterated two-player game scenario. Hence, the requestor
can have unilateral priority to play against the worker by
taking advantage of the ZD strategies. Next, we introduce the
theoretic basis for applying the ZD strategies in our algorithm
to tackle Problem 1.

A linear relationship of the expected payoffs can be obtained
according to (6):

∀t, αEt
r + β Et

w + γ = D(pt , qt , αSr + βSw + γ 1)

D(pt , qt , 1)
. (10)

When the strategy of the requestor pt satisfies (−1+ pt
1,−1+

pt
2, pt

3, pt
4) = αSr +βSw+γ 1, the numerator in the right side

of (10) is zero. Hence, a linear relationship between the two
expected payoffs exists,

∀t, αEt
r + β Et

w + γ = 0. (11)

Based on (11), two special kinds of ZD strategies can be
derived, i.e., pinning strategy and extortion strategy, where the
former can help the ZD player set the payoff of the opponent
to a fixed value, while the latter can facilitate the ZD player
to extortionately control the payoff of the opponent at a low
level. The details are presented as follows.

1) Pinning Strategy: In light of (11), when α = 0,
Et

w = − γ
β holds. That is, when the requestor’s strategy pt

meets (−1+ pt
1,−1+ pt

2, pt
3, pt

4) = βSw + γ 1, the requestor
can set the expected payoff of the worker Et

w to a certain
value unilaterally. More specifically, to set the appropriate
value of pt , we need to solve the following equations,

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−1+ pt
1 = β Rw + γ,

−1+ pt
2 = β(Rw + b)+ γ,

pt
3 = β(Rw − a)+ γ,

pt
4 = β(Rw + b − a)+ γ.

Here, pt
2 and pt

3 can be represented using pt
1 and pt

4 as:

pt
2 =

apt
1 − b(1+ pt

4)

a − b
, pt

3 =
b(1− pt

1)+ apt
4

a − b
. (12)

Accordingly, the expected payoff of the worker at round t is:

Et
w =

(1− pt
1)(Rw + b − a)+ pt

4 Rw

1− pt
1 + pt

4
. (13)

Theoretically, given pt
2, pt

3 ∈ [0, 1], the equations in (12)
have feasible solutions only when pt

1 is left close to 1 and pt
4

is right close to 0. According to (13), Et
w is a weighted average

of Rw + b − a and Rw; therefore Rw + b − a ≤ Et
w ≤ Rw.

We denote the maximum and the minimum of Et
w in this

pinning strategy as max p and min p , respectively.
2) Extortion Strategy: According to (11), when α = φ,

β = −φχ, γ = φ(χ(Rw + b − a) − (Rr − m + n)),
the linear relationship between the expected payoff of the
requestor and that of the worker Et

r − (Rr − m + n) =
χ(Et

w − (Rw + b − a)) can be obtained, where χ ≥ 1 is
called the extortion ratio and φ is employed to ensure that the
elements of pt are in [0, 1]. In other words, if the requestor
chooses the strategy pt satisfying (−1+pt

1,−1+pt
2, pt

3, pt
4) =

φ[(Sr − (Rr − m + n)) − χ(Sw − (Rw + b − a))], she can
enforce an extortion relationship between her payoff and that
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of the worker. Similarly, the specific strategy of the requestor
can be solved by the following equations:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−1+ pt
1 = φ[m − n − χ(a − b)],

−1+ pt
2 = φ[−n − χa],

pt
3 = φ[m + χb],

pt
4 = 0.

(14)

It is clear that the existence of a feasible solution is determined
by any χ and a sufficiently small φ. Specifically, to ensure that
the elements of pt ∈ [0, 1], φ should satisfy:

0 ≤ φ ≤ φ, (15)

where φ = min{ 1
m+χb , 1

n+χa , 1
χ(a−b)−(m−n) }.

According to [16], when the worker unconditionally defects,
i.e., qt = (0, 0, 0, 0), he gets the minimum payoff,

min Et
w = Et

w|qt=(0,0,0,0) = Rw + b − a; (16)

while when he unconditionally cooperates, i.e., qt =
(1, 1, 1, 1), the maximum payoff can be obtained,

max Et
w = Et

w|qt=(1,1,1,1)

= Rwn + am − an + χ(Rwa − a2 + ab)

n + χa
. (17)

Note that (17) is monotonically decreasing with respect to the
extortion ratio χ . Since it is beneficial to the requestor when
χ ≥ 1, the maximum of Ew is obtained when χ = 1, i.e.,

max Et
w = Et

w|qt=(1,1,1,1),χ=1

= Rw + a

n + a
(m − n + b − a). (18)

Remarkably, when m− n = a− b, max Et
w = Rw . We denote

the maximum and minimum of Et
w in the extortion strategy

as maxe and mine, respectively.

B. Algorithm Design

The main idea of our proposed algorithm is to coerce the
worker to be cooperative by properly setting his expected
payoff using ZD strategies. According to the above analysis,
we have Et

w ∈ [min, max] at any round t , where min =
min p, max = max p when the pinning strategy is adopted
and min = mine, max = maxe when the extortion strategy
is employed. Thus, our proposed algorithm can utilize the ZD
strategies to set the worker’s expected payoff from min to
max at each round. Generally speaking, when the worker is
likely to be cooperative in a round, his expected payoff in that
round can be improved and vice versa. The detailed steps of
our algorithm are elaborated in Algorithm 1, which involves
an M-round preparatory stage to obtain rational initial values
of the parameters. Note that the larger the M , the more precise
the parameter values.

In order to estimate the worker’s action at the (t + 1)-th
round based on his action at the t-th round, we employ a
state transition probability vector Ps = (Pcc, Pcd , Pdc, Pdd),
where Pij , i, j ∈ {c, d} is the statistical transition probability
from state i to state j calculated from the previous rounds.
A simple calculation method is to get the ratio of the number

of rounds at which the worker’s action changes from state i
to j to the total number of rounds. In practice, the worker
cannot know the requestor’s real strategy at each round, and
thus it is not practical to use (2) to compute W t

c , or further
to get Et

w according to (4)2. To make the proposed algorithm
practicable, we employ the following equations to compute:

wt
c = f t

r E(cc)+ (1− f t
r )E(cd), (19)

wt
d = f t

r E(dc)+ (1− f t
r )E(dd), (20)

wt = f t
wwt

c + (1− f t
w)wt

d , (21)

where f t
r and f t

w are the cooperation frequency of the
requestor and that of the worker in the previous M + t
rounds, respectively. When the worker adopts the E strategy,
his cooperation probability evolves according to:

qt+1
w = qt

w

wt
c

wt . (22)

While if he employs the E′ strategy, the corresponding coop-
eration probability changes based on:

qt
w =

eλt
c−λt

d

1+ eλt
c−λt

d
, (23)

where λt
c =

∑t
τ=0 wt

c and λt
d =

∑t
τ=0 wt

d .
To initialize E0

w (Step 1 in Algorithm 1), we compute w0

with f 0
r and f 0

w obtained from the first M rounds and assign it
to E0

w. After that, the requestor adjusts the worker’s expected
payoff Et

w at round t according to the prediction of the
worker’s cooperativeness. When the worker’s previous move
is cooperation (Step 3), if Pcc > Pcd , the requestor regards
the worker friendly in the current round and sets a higher
expected payoff Et

w = Et−1
w + (max − Et−1

w )/2 (Steps 4-6);
if not, a lower Et

w is given (Steps 7-9), which equals Et
w =

Et−1
w −(Et−1

w −min)/2. Similarly, when the worker’s previous
move is defection, if Pdc > Pdd , the requestor gives the worker
a higher Et

w (Steps 12-14), and vice versa (Steps 15-18).
Actually, the expected payoff at round t is directly reflected
in wt for the worker, and he can conclude that his move
at round t results in the change of wt , where cooperation
causes the change of wt

c and defection is responsible for the
change of wt

d . At the end of each round, the value of the
state transition probability updates (Steps 20-22) by including
the action change of the worker in the current round. When
the total number of rounds is reached, the whole process
terminates.

To implement the proposed algorithm, a key problem is
how to solve pt in order to get an appropriate Et

w satisfying
our algorithm at each round. When the pinning strategy is
employed, the requestor can derive the appropriate pt accord-
ing to (12) and (13). While when the extortion strategy is
utilized, the requestor needs to first infer the strategy of the
worker, i.e., cooperation probability qt , and then the desirable
pt can be calculated as follows. According to Et

r = D(pt ,qt ,Sr )
D(pt ,qt ,1)

and (14), the expected payoff of the requestor at round t ,
Et

r , with respect to χ and φ, can be easily calculated. And
once an appropriate φ is given, χ can be solved through

2In the previous section, we employ qt
w and pt

r to compute Wt
c and Et

w in
order to precisely analyze the problem in an ideal condition.
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Algorithm 1 Reward-Penalty Expected Payoff Algorithm
Based on ZD Strategies

Require: pt : the requestor’s strategy at round t and its initial
value is the one used in the last round of the preparatory
stage; Ps = (Pcc, Pcd , Pdc, Pdd ): the state transition prob-
ability of the worker, and its initial value is statistically
calculated by the data collected in the preparatory stage;
N : the total number of rounds.

1: Initialize(E0
w)

2: for t = 1 to N do
3: if The worker’s previous move is c then
4: if Pcc > Pcd then
5: Calculate pt which makes
6: Et

w ← Et−1
w + (max − Et−1

w )/2
7: else  Pcc ≤ Pcd .
8: Calculate pt which makes
9: Et

w ← Et−1
w − (Et−1

w − min)/2
10: end if
11: else  The worker’s previous move is d .
12: if Pdc > Pdd then
13: Calculate pt which makes
14: Et

w ← Et−1
w + (max − Et−1

w )/2
15: else  Pdc ≤ Pdd .
16: Calculate pt which makes
17: Et

w ← Et−1
w − (Et−1

w − min)/2
18: end if
19: end if
20: if The current round terminates then
21: Update Ps
22: end if
23: end for

Et
r − (Rr − m + n) = χ(Et

w − (Rw + b − a)), which in
turn determines the appropriate pt in the extortion strategy.

Notably, the proposed algorithm can not only prevent the
malicious attack initiated by a single worker but also resist
the attack from multiple workers in a crowdsourcing scenario.
Because we counter the malicious attack of the worker with the
game model between the requestor and any one of the workers,
by which the worker can be stimulated to cooperate eventually,
the powerful Algorithm 1 can also lead to the workers’ full
cooperation when faced with simultaneous attacks launched by
multiple workers. Note that since the collusion among several
workers may complicate the basic problem model, we leave
this as our future work.

V. EVALUATION ON THE PROPOSED ALGORITHM

A. Simulation Study

To evaluate the performance of the above algorithm, we sim-
ulate the whole game process with the same parameters as
in the previous simulations. We test our algorithm based on
both the pinning strategy and the extortion strategy and obtain
very similar results. Hence, we only present the results of the
pinning strategy in this section to avoid redundancy. As before,
we first investigate the situation where the worker adopts the
E strategy. Considering that both players adopt evolutionary

Fig. 4. Cooperation probability of the E worker and average payoffs.

strategies in the preparatory M rounds and their cooperation
probabilities in the M-th round are almost the same, we set
p0

r = q0
w in this simulation study.

The cooperation probability of the worker and average
payoffs of both the requestor and the worker are presented
in Fig. 4. The left side demonstrates the evolution of the
worker’s cooperation probability changing over time with
different initial cooperation probabilities of the requestor and
the worker, i.e., different p0

r and q0
w, and it evolves into 1 as

t increases. Note that there are some differences among the
situations with smaller p0

r , q0
w and larger ones. The existence

of concave part exactly shows the effect of our proposed
algorithm as otherwise all the curves will decrease to zero.
The underlying reason is that a smaller q0

w results in a huge
reward space for the expected payoff when he cooperates;
while a larger one leads to a higher initial expected payoff and
a smaller reward space. In this case, with the decrease of the
large q0

w, the power of penalty increases gradually and finally
drives the worker to be cooperative. In the right side of Fig. 4,
the bar graph presents the average values of the actual payoffs
of both players with different p0

r and q0
w. It is clear that the

actual payoff of the worker is no more than Rw = 3, which
means that the requestor does not need additional expense to
induce the worker to be cooperative finally. In addition, as the
initial cooperation probabilities increase, the payoffs decrease
slightly. The reason lies in that a larger q0

w causes a trough on
the evolution of qt

w, during which the payoffs are lower.
Next, we explore the performance of our proposed algorithm

when the worker adopts the E′ strategy, which is not related to
the initial cooperation probability. Accordingly, we investigate
the impact of the difference between the worker’s initial
expected cooperation payoff and defection payoff. As shown
in Fig. 5, the left-side subgraph presents the evolution path of
the worker’s cooperation probability, when W 0

c − W 0
d varies,

while the right one plots the average payoff of the requestor
and that of the worker. It is clear that our proposed algorithm
is also effective when the worker adopts the E′ strategy.
More specifically, the cooperation probability of the worker
increases to 1 and the worker’s average actual payoff is no
more than Rw = 3 under all situations, which means that with
the help of our proposed algorithm, the requestor can drive
the worker to be fully cooperative without extra cost.

Authorized licensed use limited to: TEXAS CHRISTIAN UNIVERSITY. Downloaded on May 21,2020 at 01:57:57 UTC from IEEE Xplore.  Restrictions apply. 



HU et al.: SOLVING THE CROWDSOURCING DILEMMA USING THE ZD STRATEGIES 1787

Fig. 5. Cooperation probability of the E′ worker and average payoffs.

B. Theoretical Analysis

Actually, the above experimental results can be verified the-
oretically, which are summarized into the following theorems.

Theorem 7: In the proposed algorithm, the cooperation
probability of the worker can increase to 1 when the number
of game rounds increases, which indicates that the worker
eventually cooperates.

Proof: When the worker adopts the E strategy, one can see
that the increase of qt+1

w happens only when wt
c > wt at round

t according to (22). We can combine with the calculation of
wt+1 in (21) to transfer the condition wt

c > wt to wt
c > wt

d .
On the other hand, when the worker chooses the E′ strategy,

qt
w increases only when λt

c−λt
d increases at round t compared

to that at round t − 1 according to (23). Considering that
λt

c =
∑t

τ=0 wt
c and λt

d =
∑t

τ=0 wt
d , one can conclude that

the increase of λt
c − λt

d is possible only when wt
c > wt

d .
Next, we need to prove that the relationship wt

c > wt
d holds

when our proposed algorithm is applied. We need to consider
the following two circumstances:

1) Once the worker’s action at round t + 1 is estimated to
be c, he can obtain Et+1

w that is higher than Et
w as a

reward. The increase of Et+1
w can result in the increase

of wt+1 = (M+t)wt+Et+1
w

M+t+1 when we have wt ≈ Et
w. And

the cooperation frequency of the worker from round t
to t + 1 satisfies f t+1

w = f t
w(M+t)+1

M+t+1 = f t
w + 1− f t

w
M+t+1 .

According to the definition of wt+1, we have

wt+1
c = wt+1 − (1− f t+1

w )wt+1
d

f t+1
w

= wt+1 − (1− f t
w − 1− f t

w
M+t+1 )wt+1

d

f t
w + 1− f t

w
M+t+1

.

When M + t is large enough, we have

wt+1
c ≈ wt+1 − (1− f t

w)wt+1
d

f t
w

>
wt − (1− f t

w)wt+1
d

f t
w

= wt
c,

where the equality holds because wt+1
d = wt

d .
2) Once the worker’s action at round t + 1 is estimated to

be d , we have Et+1
w < Et

w, which leads to wt+1 < wt .

Then f t+1
w = f t

w(M+t)
M+t+1 = f t

w − f t
w

M+t+1 . Considering that
wt+1

c does not change, we have

wt+1
d = wt+1 − f t+1

w wt+1
c

1− f t+1
w

= wt+1 − ( f t
w − f t

w
M+t+1 )wt+1

c

1− f t
w + f t

w
M+t+1

.

When M + t is large enough, we have

wt+1
d ≈ wt+1 − f t

wwt+1
c

1− f t
w

<
wt − fwwt+1

c

1− f t
w

= wt
d .

Considering the above two situations, one can see that at
any round t either wt

c increases when wt
d remains unchanged,

or wt
d decreases when wt

c keeps constant. Therefore, ∃T ∈ N
+

such that ∀ t > T , wt
c > wt

d . �
Theorem 8: In the proposed algorithm, the worker’s actual

payoff is never more than Rw in the long run.
Proof: As shown in Theorem 7, qt

w increases to 1 eventu-
ally. If qt

w → 1, it is easy to prove that the worker’s expected
payoff Et

w → Rw according to Algorithm 1 (Steps 6 and 14).
Considering that Et

w is determined by the requestor’s strat-
egy pt , we can get pt when Et

w → Rw via solving

(1− pt
1)(Rw + b − a)+ pt

4 Rw

1− pt
1 + pt

4
= Rw. (24)

It it clear that when pt
1 = 1, pt

4 �= 0, the above equation holds.
And pt

1 = 1 implies that the requestor remains cooperative
when the outcome of the last round is mutual cooperation.
On the other hand, the cooperation probability of the worker
increases to 1, so the outcome of the game stays at mutual
cooperation once rw = cc is achieved. Therefore, when
t →∞, pt

r = 1.
Then, as t increases, the worker’s actual payoff is

lim
t→∞

wt
c−(1−pt

r )(Rw+b−a)
pt

r
= lim

t→∞wt
c = lim

t→∞
wt−(1−qt

w)wt
d

qt
w

qw→1=
lim

t→∞wt = lim
t→∞

Mw0+∑t
1 Et

w
t = Rw . �

Problem 2: Since the worker becomes cooperative eventu-
ally, what if a greedy requestor intends to earn a higher payoff
by maliciously defecting?

The above problem can be solved by the following theorem.
Theorem 9: In the proposed algorithm, the actual payoff of

the requestor is never more than Rr in the long run.
Proof: As analyzed in Theorem 8, when qt

w → 1, pt
1→ 1

holds, which indicates that the requestor keeps cooperation
after rw = cc is reached and she never defects in the long
run. Therefore, her actual payoff will never larger than Rr . �

Theorem 9 verifies that Algorithm 1 is lively because of
its fairness for both players. To be specific, even though the
requestor can utilize powerful ZD strategies, she cannot arbi-
trarily defect for higher payoffs once the worker cooperates.
The ultimate outcome of the game then can be wr = cc
under the impact of the proposed algorithm, which not only
increases the payoffs of both players but also is impartial to
them, making the algorithm easily accepted by both players
in the long term.
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VI. RELATED WORK

The research on thwarting the malicious behaviors in
crowdsourcing has been thriving in recent years. In [10],
Wang et al. proposed a two-phase method, i.e., collecting
“ground truth” and comparing/contrasting, to detect and char-
acterize malicious workers. A practical and empirical method
was presented in [11] for adversary attack detection in crowd-
sourcing. In [8], Zhang et al. studied the malicious data
injection attacks in crowdsourcing-based cooperative spectrum
sensing by concurrently employing external detectors to test
the truthfulness and considering the worker’s long-term rep-
utation. Lasecki et al. [5] indicated that some workers might
curiously obtain the private information of other participants
and proposed possible methods to deal with these threats in
Amazon’s Mechanical Turk platform. Xu et al. [9] detected
spammers in crowdsourced online Q&A community to distin-
guish the malicious spammers from the normal users.

Game-based approaches have been receiving more and
more attention in recent years. Researchers in [7] and [17]
respectively made use of PD and IPD to analyze the attack
problem in crowdsourcing, and demonstrated that the existence
of malicious behaviors in crowdsourcing is the norm and
repeated interactions cannot improve or solve the crowd-
sourcing dilemma. In [18], Anta et al. modeled the actions
of the workers, either normally performing the task or sub-
mitting fabricated results for saving cost, as a game in
crowdsourcing computing, and derived the required condi-
tions for the existence of the Nash Equilibrium where the
requestor could obtain the correct computing results. In an
Android-based crowdsourcing recommendation system named
RecDroid, Rashidi and Fung [19] tackled the malicious attack
problem between the system users and the server using a
static Bayesian game, where the system server has incomplete
information about the users. Focusing on vehicular crowd-
sensing scenarios, Xiao et al. [20] formulated a static game
and a dynamic game, with the first one considering both the
accumulative sensing tasks and the best-quality ones to achieve
tradeoff between the sensing quality of the vehicles and the
overall payment of the server, and the second one involving
Q-learning-based sensing and payment strategies. The same
two games were also considered in [21], which adopted a
Stackelberg game to model the interactions between the server
and the users in mobile crowdsensing, where the equilibria of
the static game and a deep Q-network based payment strategy
for the dynamic game were proposed to solve the problem of
fake sensing attacks.

In this paper, we adopt the ZD strategies to set the expected
payoff of the worker so as to elicit the final cooperation. A ZD
player can unilaterally set the opponent’s expected payoff to
a fixed value or enforce a linear relationship between the
expected payoffs of both players. Although some studies [22]
challenged the evolutionary stability of the ZD strategies, they
are still broadly investigated. In [23], an extension of the
ZD strategies from the two-player game to the multi-player
game was proposed; while in [24], Rong et al. studied the
influence of the strategy selection timescale, which was also
mentioned in [16].

VII. CONCLUSION

In this paper, we propose a novel algorithm to resist
malicious behaviors of the workers in crowdsourcing. We start
by modeling the interactions between the requestor and a
worker as an iterated two-player game. Next, we consider that
the worker adopts evolutionary strategies and demonstrate its
power by simulation studies and theoretical analysis. To play
against the powerful opponent, we propose a novel algorithm
for the requestor to entice the worker’s cooperation by chang-
ing the expected payoff of the worker based on ZD strategies.
Both theoretical analysis and simulation studies demonstrate
that our proposed algorithm can force the worker to cooperate
in the long run by only increasing his short-term payment
without any increase on the overall payoff, which is proved to
be lively since it is fair for both players. In our future research,
we will consider the impact of colluding workers on the coop-
eration probabilities of both the initiator and the workers in
crowdsourcing applications; we will also investigate ZD based
incentive strategies to tackle other crowdsourcing challenges
as well as other problems that can be modeled as two-player
or multiple-player games.
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