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ABSTRACT

The PRIMAD model with its six components (i.e., Platform, Re-
search Objective, Implementation, Methods, Actors, and Data) pro-
vides an abstract taxonomy to represent computational experiments
and promote reproducibility by design. In this paper, we employ
a post-hoc assessment of the model applicability to a set of Laser
Interferometer Gravitational-Wave Observatory (LIGO) workflows
from literature sources (i.e., published papers). Our work outlines
potential advantages and limitations of the model in terms of its
levels of abstraction and means of application.
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1 INTRODUCTION

The ability of the scientific community to incrementally build on
experimental results depends strongly on the ability to trust that
those results are not accidental or transient, but rather that they can
be reproduced to an acceptably high degree of similarity by subse-
quent experiments. This notion of reproducibility is magnified both
in importance and difficulty in the setting of computational science
workflows [39, 40]. An increasingly large fraction of scientific en-
deavors depend on or incorporate computational elements, which
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in turn opens the door to reproducibility challenges associated with
the implementation of those computational elements.

In order to reason about and assess reproducibility in the compu-
tational context, the PRIMAD model [21] was proposed. PRIMAD
breaks reproducibility into six named components (i.e., Platform,
Research objective, Implementation, Methods, Actors, and Data),
each of which represents an element of a computational experi-
ment where reproducibility can be enforced by design, or conversely
where a lack of such design can allow irreproducibility to seep in
and corrode the overall integrity of the experiment.

To evaluate the efficacy of PRIMAD as a tool for characterizing
the reproducibility of real-world computational science workflows,
we examine computational workflows used to detect gravitational
waves using data from the Laser Interferometer Gravitational-Wave
Observatory (LIGO) [1] and the Virgo Observatory [10]. These com-
putational workflows are designed to detect various astronomical
events, including binary black hole mergers [3-7] and binary neu-
tron star mergers [8].

There are three factors that make the gravitational-wave search
workflows particularly appropriate for our post-hoc study through
the lens of PRIMAD: (1) LIGO and Virgo have reached a mature
status with findings that have been recognized by the scientific
community at large; (2) gravitational-wave search workflows sup-
port high impact scientific findings (i.e., empirical confirmation of
the existence of gravitational waves) that are subject to the highest
levels of scrutiny from the broader scientific community; and (3) the
workflows consume a large amount of data and have high internal
complexity, leading to reproducibility challenges in terms of the
implementation and data management components of PRIMAD.

We tackle the study of gravitational-wave search workflows in
a post-hoc fashion using literature sources (i.e., published papers),
rather than from the runtime point of view. The study mimics the ef-
fect of scientists in replicating the work done by others as a starting
point for new research. Specifically, we study two gravitational-
wave searches presented by the LIGO Scientific Collaboration and
the Virgo Collaboration, and a third search presented by an indepen-
dent group of scientists'. These are: (1) the O1 Binary Catalogue [9];

We note that this independent group contained former LIGO Collaboration members.
However, they only had access to publicly available data, code, and information in
their analysis.
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(2) the O2 Binary Catalogue [23]; and (3) the Open Gravitational
Wave Catalogue (1-OGC) [29]. The findings are reported in this
paper and organized in terms of the six components of PRIMAD.

2 THE PRIMAD MODEL

Large-scale scientific applications are composed of complex work-
flows, which in turn are composed of and execute a series of ex-
perimental, computational, and data manipulation steps in one or
multiple scientific domains, with at least one computational ele-
ment. Research teams executes such workflows to gain insights that
(1) confirm or disprove a hypothesis or (2) discover novel behavior
or phenomena.

The PRIMAD Model [21] is a powerful method to describe these
workflows in terms of this 6-component space:

P = Platform / execution environment / context
R = Research objectives / goals
I = Implementation / code / source-code
M = Methods / algorithms
A = Actors / persons
D = Data

The model integrates multiple degrees of abstraction and is mold-
able to fit the characteristics of different scientific studies across
domains.

A platform can be a simple execution environment such as a
virtual machine or container; a more sophisticated combination of
high-end clusters for computing and data processing; or a combina-
tion of remote sensing devices plugged into systems for collecting
data, processing the data in preparation for analysis, analyzing the
data, and displaying the results possibly through data visualization.

A research objective includes a specification of acceptable re-
sult variability provided by the scientist. If the scientist requires
bitwise identical results (e.g., for regulatory reasons or out of tech-
nical necessity as in some techniques from mathematical physics
and experimental mathematics [12]), then this specification must
be incorporated into the research objectives. Alternatively, if the
scientist requires looser tolerances (e.g., convergence to a certain
energy threshold as in ensemble simulations of protein folding tra-
jectories [34]), this specification should be expressed as part of the
research objective.

The implementation can comprise a single executable or source-
code (e.g., from benchmark applications such as the CORAL pro-
curement benchmarks [45], to production-grade applications such
as ALE3D [24]), or multiple software artifacts (e.g., solver packages
such as HYPRE [20]) that support one or more research objectives.

Methods are broadly defined by individual computational algo-
rithms, heuristic techniques, step-by-step procedures, or combina-
tions thereof.

Actors are those who perform the scientific study (e.g., scientists,
users, technicians). They may have designed the overall workflow
or individual parts of it, or simply use it.

Data refers to all the data that are ingested by the initial stage of
a workflow and those data objects that intermediate stages of the
workflow generate.
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3 THEORETICAL SCENARIOS EXHIBITING
REPRODUCIBILITY CONCEPTS

Changes in the six components of the model generate different sce-
narios that exhibit different reproducibility behaviors [16, 19]. We
envision six scenarios of interest (i.e., scenarios that are plausible
for real-world scientific workflows). These scenarios are summa-
rized in Table 1. Note that this table is not meant to be an exhaustive
list.

Platform i Actors Data
(P) (R) (U] (M) (A) (D)
Scenario | same same same same same same
Scenario Il same or same same same different same
Scenario Il same or same same or same or different same
Scenario IV same or same same or or different different
different
Scenario V same or same different or or or
different different different
Scenario VI different same different different different different

Table 1: Overview of six scenarios exhibiting relevant re-
producibility outcomes. Concepts like similar mean some
overlapping while different implies complete disjoint com-
ponent features or items.

The first scenario is one in which the six PRIMAD components
are all the same. In other words, the workflow is replayed using the
same data and the same computational (software and hardware)
environment. The same team of actors is able to produce results
that confirm or disprove the hypothesis previously tested with the
same workflow. Actors can repeat a measure over and over again,
within the expected precision or threshold of acceptable variability.
Challenges associated to this scenario are: (1) the platform availabil-
ity can be an issue when dealing with workflows running on, for
example, leadership class computing clusters; (2) documentation
deficiencies can be an issue when dealing with complex workflows,
for example, those concerning multiscale modeling simulations;
and (3) run-to-run variability can occur, even when all six factors
of the PRIMAD model are held fixed, due to hardware characteris-
tics, platform concurrency, nondeterministic application behavior,
and other factors. Specifically, aspects of the chosen methods or
implementation may be inherently nondeterministic, as in the case
of dynamic multithreading [43].

The second scenario is one whose actors change, (e.g., a different
team in the same or a different institution) and while the platform
may be different, such differences shall be limited (e.g., different op-
erating system version, upgraded library). In other words, by using
the same data and the same or similar computational (software and
hardware) platform, a different team of actors is able to produce
results that confirm or disprove the hypothesis previously tested
with the same workflow. In addition to the challenges of Scenario
1, this scenario is vulnerable to improper documentation dissem-
ination, for example, sharing documentation with incomplete or
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ambiguous descriptions. This scenario and its challenges match
such efforts as the Student Cluster Competition [22].

The third scenario explores the impact of varying, to different
degrees, all PRIMAD components of the model except the research
objectives and the data. By using the same data (e.g., the same
initial conditions such as pressure, temperature, and volume in a
molecular dynamic simulation) but allowing limited variability of
implementations and platforms or both, along with published ma-
terial and related artifacts, an independent team is able to produce
result that confirm or disprove the same hypothesis presented in the
published material. The challenges associated with this, and follow-
ing scenarios, depend on the degree of variation in the individual
components of the PRIMAD model that we allow.

The fourth scenario is a scenario that is less constrained than
the previous one. It explores the impact of varying all PRIMAD
components except the research objectives. This scenario incorpo-
rates the additional challenge of collecting new data according to
the data generation description in one or multiple original publi-
cations. The study can be performed by using the same or similar
implementations and platforms. In other words, minor variations in
implementation and platform are acceptable in this scenario. Along
with the published material and related artifacts, an independent
team is able to produce results that confirm or disprove the same
hypothesis.

The fifth scenario studies the ability of a team of actors to repro-
duce the research of another team using a different implementation
(e.g., in molecular dynamics simulations using AMBER rather than
CHARMM). They address the same research objectives, but the level
of variability in workflow outcomes depends upon the changes in
implementation.

The sixth scenario tackles the study of a scientific application
for which the workflow has a substantial change of the platform
and implementation. Specifically, this scenario deals with a major
technological transformation (e.g., from multiprocessor to acceler-
ated platforms). All components of the model space in which the
workflow is executed, with the exception of the research objective,
change sufficiently and thus these variations cannot be ignored.

4 EMPIRICAL SCENARIOS EXHIBITING
REPRODUCIBILITY CONCEPTS IN THE
LIGO PROJECT

Our post-hoc study of the PRIMAD applicability to gravitational-
wave search workflows falls into Scenario V. When we use the term
workflow, we refer to the analysis of a specific set of data using a spe-
cific search pipeline. In practice, this may involve running several
identically-configured workflows on smaller data sets to produce a
single search result. Specifically, we target the gravitational wave
search in three literature sources: (1) the LIGO-Virgo O1 Binary Cat-
alogue [9]; (2) the LIGO-Virgo O2 Binary Catalogue GWTC-1 [23];
and (3) the Open Gravitational Wave Catalogue (1-OGC) [29], pro-
duced independently of the LIGO-Virgo Collaborations. The two
LIGO-Virgo Binary Catalogue papers [9, 23] describe two matched
filtering workflows built on two implementations or source codes
(with PyCBC [2, 28, 31, 42] and GstLAL [2, 25, 26, 37] data analysis
suites, respectively). The LIGO-Virgo O1 Binary Catalogue paper [9]
and its constituent workflows use the dataset from Observing Run
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1 of the LIGO detectors (O1). The LIGO-Virgo O2 Binary Catalogue
paper [23] and its constituent analyses use the dataset from Ob-
serving Run 2 of the LIGO detectors (O2) as well as data from the
VIRGO detector. The 1-OGC paper [29, 30] describes a run of the
PyCBC matched filtering workflow on the public LIGO O1 data
using an updated pipeline configuration compared to the analysis
in the LIGO-Virgo O1 Binary Catalogue. The relationships between
the workflows and their parent publications are summarized in the
first two rows of Table 2 together with the six components of the
PRIMAD model.

01 Binary Catalog [9] 02 Binary Catalog [23]
PRIMAD i el i gz m
Component

01BC-

01BC-PyCBC GstLAL 02BC-PyCBC 02BC-GstLAL 1-0GC

(P)latform Proprietary Proprietary Public
* Re-analyze O1 with
improved pipelines

* Discover BBH Mergers + Demonstrate

(R)esearch

Gl Discover BBH Mergers

« Re-analyze 02 with improved data quality
* Re-analyze O1 with improved pipelines

reproducibility of O1
result on public data
+ Produce and release
sub-threshold events

()mplementation See implementation comparison table

(M)ethod/

Algorithm Matched filtering

(A)ctors LIGO collaboration authors 0GC authors

(D)ata See data comparison table

Table 2: Overview of LIGO analyses considered in our case
study in terms of the 6 PRIMAD model components.

Implementation
Component 01BC-PyCBC 02BC-PyCBC 01BC-GstLAL 02BC-GstLAL

Template bank TWB-01BC TWB-02-PyCBC TWB-01BC TWB-02-GstLAL TWB-0GC
See [15, 36, 39] See [18] See [15,36,39] See [28] See [14, 32, 33]
Waveform model  Delegated to SEOBNRv4 + Delegatedto  SEOBNRvA + TaylorF2  SEOBNRva +
multiple refs. TaylorF2 waveform  multiple refs.  waveform approximant  TaylorF2 waveform

approximant approximant

Template bank
decomposition

15 equally sized

Delegated to companion papers or proprietary ub-banke

Noise-filtering Delegated to [2]  Delegated to [37]  Delegatedto  Delegated to [37] Delegated to [28,

preprocessing 2] 40]
Single-detector SNR Delegated to[2]  >5.5 Delegatedto >4 (LIGO) and >3.5 >4 and >any other
threshold/conditio 2] (VIRGO) peaks w/in 1s
ns
Ranking statistic  Background using  Improved version  Logarithmof  Logarithm of likelihood Background using
time slide method  of statistic usedin likelihood ratio  ratio + Monte Carlo  time slide method
01-PyCBC See [37]

Table 3: Matched filtering implementation across the LIGO
data workflows targeted in our study (i.e., O1BC-PyCBC,
02BC-PyCBC, O1BC-GstLAL, 02BC-GstLAL, 1-OGC).

In the table, the artifacts are executed on proprietary or public
platforms. We consider proprietary platforms to be those platforms
that are only the actors of the workflow have access to. In contrast
we consider platforms to be public when they are accessible to a
broader set of potential actors (e.g., the Open Science Grid (OSG) [35,
38]).

The research objective of the workflows is to detect binary merg-
ers using the data gathered by the LIGO and Virgo detectors. The
workflows may also re-analyze previous data with improved meth-
ods and tuning to re-assess the significance of previous events, or
discover previously undetected events; this is considered similar
enough to the core research objective to be considered the same
within the context of PRIMAD.
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Data
LA e O2BCEAL “
01

Observing Runs 01 01+02 01+02+Virgo 01 (public
subset only)

# days available  51.5 118 51.5 118 (15 w/ Virgo) 51.5

for coincident

analysis

Metadata used

to decide Proprietary (data quality flags for vetoing events) Public

keep/discard

# days after 48.6 Delegated to 48.6 Delegated to 48.1

quality filtering refs. refs.

# days after 46.1 48.3

duration

filtering

Table 4: Data details across the targeted LIGO workflows tar-
geted in our study (i.e., 01BC-PyCBC, 02BC-PyCBC, O1BC-
GstLAL, 02BC-GstLAL, 1-OGC).

The descriptions of matched filtering workflows provide nu-
merous details in terms of implementation choices (e.g., choices
of signal-to-noise ratio (SNR) thresholds for detecting significant
matches) and data management choices (e.g., choices for how de-
tector instrument noise is filtered and mitigated). The abundance
of details concerning implementation and data variations across
the matched filtering studies are summarized in Table 3 and Table 4
respectively.

Descriptions of the search pipeline implementation are listed
in the leftmost column of Table 3. These sub-components define
the particular way that a workflow (e.g., the O1BC-PyCBC work-
flow) implements matched filtering (i.e., the method component).
Specifically, we have highlighted the following implementation sub-
components: the template bank used, the waveform model used
to generate the template bank, the policy used to decompose the
template bank into sub-banks, any additional noise reduction or
filtering steps performed, the signal-to-noise ratio threshold for
selecting candidate matches (i.e., events that could potentially be
binary black holes), and the ranking statistic used rank candidate
events.

For the template bank component, we abbreviate the banks used
for each workflow. TWB-OGC refers to the template bank used in
the 1-OGC search workflows, the properties of which are defined
in [14, 32, 33]. TWB-O1BC refers to the common template bank
used in both the O1BC-PyCBC and O1BC-GstLAL workflows, the
properties of which are defined in [15, 36, 41]. TWB-O2BC-PyCBC
refers to the template bank used for the O2 Binary Catalogue Py-
CBC workflow, the properties of which are defined in [17]. TWB-
O2BC-GstLAL refers to the template bank used for the O2 Binary
Catalogue GstLAL workflow, the properties of which are defined
in [26].

We find that for some components of the workflow, details are
predominantly delegated to one or more cited publications. In other
cases, configuration of the workflow is only available by examining
the workflow’s source code or the configuration files used in a
specific analysis. We also find that some workflow configuration
files are public (e.g. [27, 30]), but others require proprietary access.
Even for configuration and software repositories that are public, it
can be difficult to determine which versions were used for a partic-
ular analysis. Similarly for Table 4, we describe sub-components
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of the Data PRIMAD component in the leftmost column. The sub-
components we describe include: the source of the raw input data
(i.e., which observing runs the data comes from), the number of
coincident days of data available (i.e., data from when both LIGO
detectors were operating), the choice of metadata used to filter data
prior to the matched filtering search, the number of days of observa-
tion data remaining after filtering for data quality, and the number
of days of observation data remaining after filtering insufficiently
long-lasting events (i.e., filtering based on event duration). These
details are largely provided across the chosen workflows, unless
those details are proprietary.

Across all of the workflows described in the LIGO papers used
for our study, the high-level method that is implemented is matched
filtering [11], that is, the procedure of matching a stream of data
from the LIGO detectors against template waveforms derived from
numerical general relativity. Matches against these templates may
indicate the presence of astronomical events such as binary black
hole mergers, and thus are evaluated for statistical significance.

5 DISCUSSION AND CONCLUSIONS

We conclude with a reflection on PRIMAD, beginning with general
benefits and challenges of the model itself. Then we evaluate our
post-hoc application of PRIMAD to the LIGO workflows, which
informs best practices for future runtime applications of PRIMAD
in the execution of scientific workflows.

PRIMAD is a general model to guide reproducibility. It helps
meet an acute need in the scientific community to ground repro-
ducibility, yet it is inherently abstract due to its applicability across
all scientific domains, leading to challenges in establishing a useful
level of specificity. When researchers want to share their findings,
many research teams (or actors) make best efforts at including all
relevant information to enable reproducibility. Without standard-
ization, the decisions about what constitutes “relevant information”
are inevitably ad-hoc, and may not be uniform from publication
to publication or across multiple workflows within a single pub-
lication. Thus, PRIMAD offers a framework with which to build
sustainable reproducibility in an uniform fashion across scientific
domains.

Challenges arise in identifying how specific the components of
PRIMAD need to be defined in order to guarantee both consistent
applicability across workflows in a specific domain and desired
levels of reproducibility. For example, the division between im-
plementation and methods is disputable. Minor adjustments to an
algorithm would generally fall into implementation, yet it is hard
to determine when changes are substantial enough to call it a new
algorithm and thus a change in methods. In other cases, the ef-
fects of the actors on reproducibility may be difficult to document.
Even within the same research group with consistent leadership,
research objectives, and computational environments, changes in
team members and shifts in member responsibility can introduce
unacknowledged sources of variability. It appears to be a difficult
problem to appropriately document the knowledge and experience
that is applied to the elements of a workflow. Finally, different
datasets may play different roles within a workflow. As a partial
remedy, we propose a differentiation between input data (including
initial parameters), intermediary data (which depends heavily on
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methodology and implementation), and output artifacts (having
direct relevance to the research objective). In order to meet these
challenges, we recommend that each field of science develop its
own domain-appropriate refinement to PRIMAD.

The LIGO workflows demonstrate scientific research performed
with a clear desire for reproducibility. Therefore, even though the
authors do not apply an explicit reproducibility framework, we
were able perform a post-hoc evaluation of the workflows with the
PRIMAD model. In particular, we find that out of the six PRIMAD
components, the implementation and data components are given
the most attention in terms of documented details, as summarized
in Table 3 and Table 4. One PRIMAD component not described with
the same level of details as the other components is the platform
used in the workflows. This may be due to multiple factors such
as: (1) use of proprietary platforms; (2) prioritization of implemen-
tation or data management details over platform details; and (3)
the technical challenge of tracking all the platform components on
which a workflow manager deploys jobs. Uncertainty in the reason
for incomplete information is one of a few limitations we found
in post-hoc application of PRIMAD. Non-uniform descriptions of
PRIMAD components and the necessity of citation chasing to fill
in details also arise, though are mitigated by documentation efforts
of actors within a study and overlap of actors between studies.

Challenges listed above can be mitigated by moving from a post-
hoc to a runtime application of PRIMAD from the early stages of
scientific experimentation. The PRIMAD components should be pe-
riodically referred to as a checklist for assessing the reproducibility
of workflows, both as they are developed and during the transition
from experimentation to publication. Moreover, rather than ham-
pering scientific progress by imposing requirements inconsistent
with a particular scientific workflow, we demonstrated with the
various scenarios in Section 4 how such a framework can be a guide
to ensure the desired level of reproducibility.

A wide adoption of PRIMAD would be most achievable through
involvement of all contributors to the scientific process. That is,
tools that researchers use to do computational experiments must:
(1) be aware of the PRIMAD components; and (2) provide users with
access to details about their experiments, organized in terms of the
PRIMAD components, so that those details can be disseminated in
publications. In particular, we look at the role of workflow man-
agers in the computational components of a scientific workflow.
In the case of the PyCBC matched filtering pipelines, the actors
used Pegasus [13, 18] to distribute constituent jobs to participat-
ing computing centers [44]. In the long run, workflow managers
such as Pegasus can play a key role in tracking, for example, which
computational platforms their jobs run on so that future research
teams can attempt to reproduce results on similar platforms, and
therefore automatically, deploying the PRIMAD model at runtime.

As part of our study of gravitational-wave search pipelines, both
from the LIGO collaboration and from others, we have identified
the various implementation and data components that need to be
identified in order for an outside actor to reproduce the results of
these pipelines. We feel this axis of classification can serve as a
foundation for describing all (or a large number of) gravitational-
wave search pipelines and lowering the barriers for reproducing
the results outside of the LIGO collaboration.
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