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ABSTRACT

The PRIMAD model with its six components (i.e., Platform, Re-

search Objective, Implementation, Methods, Actors, and Data) pro-

vides an abstract taxonomy to represent computational experiments

and promote reproducibility by design. In this paper, we employ

a post-hoc assessment of the model applicability to a set of Laser

Interferometer Gravitational-Wave Observatory (LIGO) workflows

from literature sources (i.e., published papers). Our work outlines

potential advantages and limitations of the model in terms of its

levels of abstraction and means of application.
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1 INTRODUCTION

The ability of the scientific community to incrementally build on

experimental results depends strongly on the ability to trust that

those results are not accidental or transient, but rather that they can

be reproduced to an acceptably high degree of similarity by subse-

quent experiments. This notion of reproducibility is magnified both

in importance and difficulty in the setting of computational science

workflows [39, 40]. An increasingly large fraction of scientific en-

deavors depend on or incorporate computational elements, which
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in turn opens the door to reproducibility challenges associated with

the implementation of those computational elements.

In order to reason about and assess reproducibility in the compu-

tational context, the PRIMAD model [21] was proposed. PRIMAD

breaks reproducibility into six named components (i.e., Platform,

Research objective, Implementation, Methods, Actors, and Data),

each of which represents an element of a computational experi-

mentwhere reproducibility can be enforced by design, or conversely

where a lack of such design can allow irreproducibility to seep in

and corrode the overall integrity of the experiment.

To evaluate the efficacy of PRIMAD as a tool for characterizing

the reproducibility of real-world computational science workflows,

we examine computational workflows used to detect gravitational

waves using data from the Laser Interferometer Gravitational-Wave

Observatory (LIGO) [1] and the Virgo Observatory [10]. These com-

putational workflows are designed to detect various astronomical

events, including binary black hole mergers [3ś7] and binary neu-

tron star mergers [8].

There are three factors that make the gravitational-wave search

workflows particularly appropriate for our post-hoc study through

the lens of PRIMAD: (1) LIGO and Virgo have reached a mature

status with findings that have been recognized by the scientific

community at large; (2) gravitational-wave search workflows sup-

port high impact scientific findings (i.e., empirical confirmation of

the existence of gravitational waves) that are subject to the highest

levels of scrutiny from the broader scientific community; and (3) the

workflows consume a large amount of data and have high internal

complexity, leading to reproducibility challenges in terms of the

implementation and data management components of PRIMAD.

We tackle the study of gravitational-wave search workflows in

a post-hoc fashion using literature sources (i.e., published papers),

rather than from the runtime point of view. The study mimics the ef-

fect of scientists in replicating the work done by others as a starting

point for new research. Specifically, we study two gravitational-

wave searches presented by the LIGO Scientific Collaboration and

the Virgo Collaboration, and a third search presented by an indepen-

dent group of scientists1. These are: (1) the O1 Binary Catalogue [9];

1We note that this independent group contained former LIGO Collaboration members.
However, they only had access to publicly available data, code, and information in
their analysis.

Workshop Presentation P-RECS'19, June 24, 2019, Phoenix, AZ, USA

1





ambiguous descriptions. This scenario and its challenges match

such efforts as the Student Cluster Competition [22].

The third scenario explores the impact of varying, to different

degrees, all PRIMAD components of the model except the research

objectives and the data. By using the same data (e.g., the same

initial conditions such as pressure, temperature, and volume in a

molecular dynamic simulation) but allowing limited variability of

implementations and platforms or both, along with published ma-

terial and related artifacts, an independent team is able to produce

result that confirm or disprove the same hypothesis presented in the

published material. The challenges associated with this, and follow-

ing scenarios, depend on the degree of variation in the individual

components of the PRIMAD model that we allow.

The fourth scenario is a scenario that is less constrained than

the previous one. It explores the impact of varying all PRIMAD

components except the research objectives. This scenario incorpo-

rates the additional challenge of collecting new data according to

the data generation description in one or multiple original publi-

cations. The study can be performed by using the same or similar

implementations and platforms. In other words, minor variations in

implementation and platform are acceptable in this scenario. Along

with the published material and related artifacts, an independent

team is able to produce results that confirm or disprove the same

hypothesis.

The fifth scenario studies the ability of a team of actors to repro-

duce the research of another team using a different implementation

(e.g., in molecular dynamics simulations using AMBER rather than

CHARMM). They address the same research objectives, but the level

of variability in workflow outcomes depends upon the changes in

implementation.

The sixth scenario tackles the study of a scientific application

for which the workflow has a substantial change of the platform

and implementation. Specifically, this scenario deals with a major

technological transformation (e.g., from multiprocessor to acceler-

ated platforms). All components of the model space in which the

workflow is executed, with the exception of the research objective,

change sufficiently and thus these variations cannot be ignored.

4 EMPIRICAL SCENARIOS EXHIBITING
REPRODUCIBILITY CONCEPTS IN THE
LIGO PROJECT

Our post-hoc study of the PRIMAD applicability to gravitational-

wave search workflows falls into Scenario V. When we use the term

workflow, we refer to the analysis of a specific set of data using a spe-

cific search pipeline. In practice, this may involve running several

identically-configured workflows on smaller data sets to produce a

single search result. Specifically, we target the gravitational wave

search in three literature sources: (1) the LIGO-Virgo O1 Binary Cat-

alogue [9]; (2) the LIGO-Virgo O2 Binary Catalogue GWTC-1 [23];

and (3) the Open Gravitational Wave Catalogue (1-OGC) [29], pro-

duced independently of the LIGO-Virgo Collaborations. The two

LIGO-Virgo Binary Catalogue papers [9, 23] describe two matched

filtering workflows built on two implementations or source codes

(with PyCBC [2, 28, 31, 42] and GstLAL [2, 25, 26, 37] data analysis

suites, respectively). The LIGO-Virgo O1 Binary Catalogue paper [9]

and its constituent workflows use the dataset from Observing Run

1 of the LIGO detectors (O1). The LIGO-Virgo O2 Binary Catalogue

paper [23] and its constituent analyses use the dataset from Ob-

serving Run 2 of the LIGO detectors (O2) as well as data from the

VIRGO detector. The 1-OGC paper [29, 30] describes a run of the

PyCBC matched filtering workflow on the public LIGO O1 data

using an updated pipeline configuration compared to the analysis

in the LIGO-Virgo O1 Binary Catalogue. The relationships between

the workflows and their parent publications are summarized in the

first two rows of Table 2 together with the six components of the

PRIMAD model.

PRIMAD 

Component

O1 Binary Catalog [9] O2 Binary Catalog [23] 1-OCG [29]

O1BC-PyCBC
O1BC-

GstLAL
O2BC-PyCBC O2BC-GstLAL 1-OGC

(P)latform Proprietary Proprietary Public

(R)esearch

Objective
Discover BBH Mergers

• Discover BBH Mergers

• Re-analyze O2 with improved data quality

• Re-analyze O1 with improved pipelines

• Re-analyze O1 with 

improved pipelines

• Demonstrate 

reproducibility of O1 

result on public data

• Produce and release 

sub-threshold events

(I)mplementation See implementation comparison table

(M)ethod/

Algorithm
Matched filtering

(A)ctors LIGO collaboration authors OGC authors

(D)ata See data comparison table

Table 2: Overview of LIGO analyses considered in our case

study in terms of the 6 PRIMAD model components.

Implementation 

Component
O1BC-PyCBC O2BC-PyCBC O1BC-GstLAL O2BC-GstLAL 1-OGC

Template bank TWB-O1BC

See [15, 36, 39] 

TWB-O2-PyCBC

See [18]

TWB-O1BC

See [15, 36, 39] 

TWB-O2-GstLAL

See [28]

TWB-OGC

See [14, 32, 33] 

Waveform model Delegated to 

multiple refs.

SEOBNRv4 + 

TaylorF2 waveform 

approximant 

Delegated to 

multiple refs.

SEOBNRv4 + TaylorF2 

waveform approximant 

SEOBNRv4 + 

TaylorF2 waveform 

approximant 

Template bank 

decomposition
Delegated to companion papers or proprietary 

15 equally sized 

sub-banks

Noise-filtering 

preprocessing

Delegated to [2] Delegated to [37] Delegated to 

[2]

Delegated to [37] Delegated to [28, 

40]

Single-detector SNR 

threshold/conditio

ns

Delegated to [2] >5.5 Delegated to 

[2]

>4 (LIGO) and >3.5 

(VIRGO)

>4 and >any other 

peaks w/in 1s

Ranking statistic Background using 

time slide method

Improved version 

of statistic used in 

O1-PyCBC

Logarithm of 

likelihood ratio 

Logarithm of likelihood 

ratio + Monte Carlo 

See [37]

Background using 

time slide method

Table 3: Matched filtering implementation across the LIGO

data workflows targeted in our study (i.e., O1BC-PyCBC,

O2BC-PyCBC, O1BC-GstLAL, O2BC-GstLAL, 1-OGC).

In the table, the artifacts are executed on proprietary or public

platforms. We consider proprietary platforms to be those platforms

that are only the actors of the workflow have access to. In contrast

we consider platforms to be public when they are accessible to a

broader set of potential actors (e.g., the Open Science Grid (OSG) [35,

38]).

The research objective of the workflows is to detect binary merg-

ers using the data gathered by the LIGO and Virgo detectors. The

workflows may also re-analyze previous data with improved meth-

ods and tuning to re-assess the significance of previous events, or

discover previously undetected events; this is considered similar

enough to the core research objective to be considered the same

within the context of PRIMAD.
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Data 

Component
O1BC-PyCBC O2BC-PyCBC O1BC-GstLAL O2BC-GstLAL 1-OGC

Observing Runs O1 O1+O2 O1 O1+O2+Virgo O1 (public 

subset only)  

# days available 

for coincident 

analysis 

51.5 118 51.5 118 (15 w/ Virgo) 51.5

Metadata used 

to decide 

keep/discard

Proprietary (data quality flags for vetoing events) Public 

# days after 

quality filtering

48.6 Delegated to 

refs.

48.6 Delegated to 

refs.

48.1

# days after 

duration 

filtering

46.1 48.3

Table 4: Data details across the targeted LIGOworkflows tar-

geted in our study (i.e., O1BC-PyCBC, O2BC-PyCBC, O1BC-

GstLAL, O2BC-GstLAL, 1-OGC).

The descriptions of matched filtering workflows provide nu-

merous details in terms of implementation choices (e.g., choices

of signal-to-noise ratio (SNR) thresholds for detecting significant

matches) and data management choices (e.g., choices for how de-

tector instrument noise is filtered and mitigated). The abundance

of details concerning implementation and data variations across

the matched filtering studies are summarized in Table 3 and Table 4

respectively.

Descriptions of the search pipeline implementation are listed

in the leftmost column of Table 3. These sub-components define

the particular way that a workflow (e.g., the O1BC-PyCBC work-

flow) implements matched filtering (i.e., the method component).

Specifically, we have highlighted the following implementation sub-

components: the template bank used, the waveform model used

to generate the template bank, the policy used to decompose the

template bank into sub-banks, any additional noise reduction or

filtering steps performed, the signal-to-noise ratio threshold for

selecting candidate matches (i.e., events that could potentially be

binary black holes), and the ranking statistic used rank candidate

events.

For the template bank component, we abbreviate the banks used

for each workflow. TWB-OGC refers to the template bank used in

the 1-OGC search workflows, the properties of which are defined

in [14, 32, 33]. TWB-O1BC refers to the common template bank

used in both the O1BC-PyCBC and O1BC-GstLAL workflows, the

properties of which are defined in [15, 36, 41]. TWB-O2BC-PyCBC

refers to the template bank used for the O2 Binary Catalogue Py-

CBC workflow, the properties of which are defined in [17]. TWB-

O2BC-GstLAL refers to the template bank used for the O2 Binary

Catalogue GstLAL workflow, the properties of which are defined

in [26].

We find that for some components of the workflow, details are

predominantly delegated to one or more cited publications. In other

cases, configuration of the workflow is only available by examining

the workflow’s source code or the configuration files used in a

specific analysis. We also find that some workflow configuration

files are public (e.g. [27, 30]), but others require proprietary access.

Even for configuration and software repositories that are public, it

can be difficult to determine which versions were used for a partic-

ular analysis. Similarly for Table 4, we describe sub-components

of the Data PRIMAD component in the leftmost column. The sub-

components we describe include: the source of the raw input data

(i.e., which observing runs the data comes from), the number of

coincident days of data available (i.e., data from when both LIGO

detectors were operating), the choice of metadata used to filter data

prior to the matched filtering search, the number of days of observa-

tion data remaining after filtering for data quality, and the number

of days of observation data remaining after filtering insufficiently

long-lasting events (i.e., filtering based on event duration). These

details are largely provided across the chosen workflows, unless

those details are proprietary.

Across all of the workflows described in the LIGO papers used

for our study, the high-level method that is implemented is matched

filtering [11], that is, the procedure of matching a stream of data

from the LIGO detectors against template waveforms derived from

numerical general relativity. Matches against these templates may

indicate the presence of astronomical events such as binary black

hole mergers, and thus are evaluated for statistical significance.

5 DISCUSSION AND CONCLUSIONS

We conclude with a reflection on PRIMAD, beginning with general

benefits and challenges of the model itself. Then we evaluate our

post-hoc application of PRIMAD to the LIGO workflows, which

informs best practices for future runtime applications of PRIMAD

in the execution of scientific workflows.

PRIMAD is a general model to guide reproducibility. It helps

meet an acute need in the scientific community to ground repro-

ducibility, yet it is inherently abstract due to its applicability across

all scientific domains, leading to challenges in establishing a useful

level of specificity. When researchers want to share their findings,

many research teams (or actors) make best efforts at including all

relevant information to enable reproducibility. Without standard-

ization, the decisions about what constitutes łrelevant informationž

are inevitably ad-hoc, and may not be uniform from publication

to publication or across multiple workflows within a single pub-

lication. Thus, PRIMAD offers a framework with which to build

sustainable reproducibility in an uniform fashion across scientific

domains.

Challenges arise in identifying how specific the components of

PRIMAD need to be defined in order to guarantee both consistent

applicability across workflows in a specific domain and desired

levels of reproducibility. For example, the division between im-

plementation and methods is disputable. Minor adjustments to an

algorithm would generally fall into implementation, yet it is hard

to determine when changes are substantial enough to call it a new

algorithm and thus a change in methods. In other cases, the ef-

fects of the actors on reproducibility may be difficult to document.

Even within the same research group with consistent leadership,

research objectives, and computational environments, changes in

team members and shifts in member responsibility can introduce

unacknowledged sources of variability. It appears to be a difficult

problem to appropriately document the knowledge and experience

that is applied to the elements of a workflow. Finally, different

datasets may play different roles within a workflow. As a partial

remedy, we propose a differentiation between input data (including

initial parameters), intermediary data (which depends heavily on
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methodology and implementation), and output artifacts (having

direct relevance to the research objective). In order to meet these

challenges, we recommend that each field of science develop its

own domain-appropriate refinement to PRIMAD.

The LIGO workflows demonstrate scientific research performed

with a clear desire for reproducibility. Therefore, even though the

authors do not apply an explicit reproducibility framework, we

were able perform a post-hoc evaluation of the workflows with the

PRIMAD model. In particular, we find that out of the six PRIMAD

components, the implementation and data components are given

the most attention in terms of documented details, as summarized

in Table 3 and Table 4. One PRIMAD component not described with

the same level of details as the other components is the platform

used in the workflows. This may be due to multiple factors such

as: (1) use of proprietary platforms; (2) prioritization of implemen-

tation or data management details over platform details; and (3)

the technical challenge of tracking all the platform components on

which a workflow manager deploys jobs. Uncertainty in the reason

for incomplete information is one of a few limitations we found

in post-hoc application of PRIMAD. Non-uniform descriptions of

PRIMAD components and the necessity of citation chasing to fill

in details also arise, though are mitigated by documentation efforts

of actors within a study and overlap of actors between studies.

Challenges listed above can be mitigated by moving from a post-

hoc to a runtime application of PRIMAD from the early stages of

scientific experimentation. The PRIMAD components should be pe-

riodically referred to as a checklist for assessing the reproducibility

of workflows, both as they are developed and during the transition

from experimentation to publication. Moreover, rather than ham-

pering scientific progress by imposing requirements inconsistent

with a particular scientific workflow, we demonstrated with the

various scenarios in Section 4 how such a framework can be a guide

to ensure the desired level of reproducibility.

A wide adoption of PRIMAD would be most achievable through

involvement of all contributors to the scientific process. That is,

tools that researchers use to do computational experiments must:

(1) be aware of the PRIMAD components; and (2) provide users with

access to details about their experiments, organized in terms of the

PRIMAD components, so that those details can be disseminated in

publications. In particular, we look at the role of workflow man-

agers in the computational components of a scientific workflow.

In the case of the PyCBC matched filtering pipelines, the actors

used Pegasus [13, 18] to distribute constituent jobs to participat-

ing computing centers [44]. In the long run, workflow managers

such as Pegasus can play a key role in tracking, for example, which

computational platforms their jobs run on so that future research

teams can attempt to reproduce results on similar platforms, and

therefore automatically, deploying the PRIMAD model at runtime.

As part of our study of gravitational-wave search pipelines, both

from the LIGO collaboration and from others, we have identified

the various implementation and data components that need to be

identified in order for an outside actor to reproduce the results of

these pipelines. We feel this axis of classification can serve as a

foundation for describing all (or a large number of) gravitational-

wave search pipelines and lowering the barriers for reproducing

the results outside of the LIGO collaboration.
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