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Abstract: This study presents a hybrid data-driven physics model-based framework for real-time monitoring in smart grids. As
the power grid transitions to the use of smart grid technology, it's real-time monitoring becomes more vulnerable to cyber-
attacks like false data injections (FDIs). Although smart grids cyber-physical security has an extensive scope, this study focuses
on FDI attacks, which are modelled as bad data. State-of-the-art strategies for FDI detection in real-time monitoring rely on
physics model-based weighted least-squares state estimation solution and statistical tests. This strategy is inherently vulnerable
by the linear approximation and the companion statistical modelling error, which means it can be exploited by a coordinated FDI
attack. In order to enhance the robustness of FDI detection, this study presents a framework which explores the use of data-
driven anomaly detection methods in conjunction with physics model-based bad data detection via data fusion. Multiple anomaly
detection methods working at both the system level and distributed local detection level are fused. The fusion takes into
consideration the confidence of the various anomaly detection methods to provide the best overall detection results. Validation
considers tests on the IEEE 118-bus system.

 Nomenclature
J(x) WLS cost function – ℝ1 × 1

d number of measurements – ℝ1 × 1

P projection matrix – ℝd × d

αχ significance level – ℝ1 × 1

z vector of measurements – ℝ1 × d

z∗ operating measurement vector – ℝ1 × d

ẑ estimated measurement vector – ℝ1 × d

Z training set – ℝd ×K1

Z^ testing set – ℝd ×K2

K1 number of samples in training set – ℝ1 × 1

K2 number of samples in testing set – ℝ1 × 1

x vector of state variables – ℝ1 ×N

x∗ operating state vector – ℝ1 ×N

x̂ estimated state vector – ℝ1 ×N

N number of states – ℝ1 × 1

ΣSE covariance of measurement vector for state estimator –
ℝd × d

Σ covariance of measurement vector – ℝd × d

e vector of measurement error – ℝ1 × d

eD detectable component of error – ℝ1 × 1

eU undetectable component of error – ℝ1 × 1

II innovation index of measurement – ℝ1 × 1

σ standard deviation of e – ℝ1 × 1

h(x) vector of measurement estimates – ℝd × d

H Jacobian matrix – ℝd ×N

ℬ set of buses j ∍ Yi j ≠ 0
χd, p2 Chi-squared value – ℝ1 × 1

r vector of measurement residuals – ℝ1 × d

CME composed measurement error – ℝ1 × 1

Wt driving noise of O–U process
β decay-rate of O–U process
σn2 variance of noise of O–U process
μo − u(t) long-term mean of O–U process

δCD squared Mahalanobis distance value – ℝ1 × 1

μ mean of measurement vector – ℝ1 × d

τ threshold value to classify abnormal samples – ℝ1 × 1

T set of τ (ℝ1 ×M)
l label of a sample – ℝ1 × 1

α weight value – ℝ1 × 1

M number of buses – ℝ1 × 1

Y label for training samples – ℝ1 ×K1

Y^ label for testing samples – ℝ1 ×K2

ϕm symbol for the mth local CorrDet detector
ΦE symbol for ensemble CorrDet detector
ΦR symbol for CorrDet detector
δZ,m δCD of all training samples with respect to ϕm – ℝ1 ×K1

δzk̂ δCD of the kth testing sample with respect to ΦE – ℝ1 ×M

ΨECD overall decision scores from ensemble CorrDet detector –
ℝ1 ×K2

ΨSE decision scores from state estimator technique – ℝ1 ×K2

Ψfusion fusion decision scores for hybrid data-driven physics
model-based framework – ℝ1 ×K2

1 Introduction
The future power grid, or Smart Grid (SG), will integrate control,
communication and computation aiming to achieve stability,
efficiency and robustness of the physical processes on the system.
These advancements bring many challenges to the SG and
therefore have drawn much attention from academia, industry and
government due to the great impact they will have on society,
economics and the environment. While a great amount of research
has been done towards these objectives, science and technology
related to the cyber-physical security of SGs are still immature.
Additionally, much of the critical infrastructure is currently
transitioning towards the paradigm of SGs by increasing the
dependency of control of physical processes on communication
networks, thus becoming exposed to cyber-threats [1].
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Guaranteeing the reliable operation of power grids is crucial for
today's society and it is done through real-time power system
monitoring. Currently, real-time monitoring is done through a
process called power system state estimation (PSSE) [2], which
provides relevant information on the power grid current operating
point based on the measurements throughout the system. These
measurements are commonly transmitted to a Supervisory Control
and Data Acquisition (SCADA) system, which implements
centralised monitoring and control for the electrical grid, where
PSSE is performed. One important feature of PSSE is its error
processing capability. Measurements that are clearly inconsistent
are discarded in the pre-filtering step, which precedes the state
estimation step. Following state estimation using pre-filtered data,
a post-processing step called bad data analysis is performed. This
step aims at detecting bad data or gross errors (GEs), assuming
they are statistically large errors.

The established procedure to determine the current operating
point for the power grid has been based on iterative numerical
linearisation around the incumbent solution, which is determined
easily by the least-squares approach to finding solutions within the
convex hull. There is always an inherent error in this
approximation procedure that is difficult to quantify, but it has been
sufficiently small for the current requirements of dispatching,
detection of failures, and reliability studies. This linear
approximation and the companion statistical modelling error
approach alone are not compatible to the new demands of cyber-
physical security because its sensitivity and specificity are
theoretically lower bounded by the level and dynamics of the
approximation error, which can be easily explored by coordinated
cyber-attacks.

The increasing dependence on digital monitoring and control of
power systems raises concerns with respect to cybersecurity. One
common type of cyber-threat is false data injection (FDI) attack,
where an attack aims to disrupt the operation of the power grid by
modifying a subset of measurement values. While bad data
analysis is capable of detecting many instances of gross errors via
tests such as the Chi-squared test, largest normalised residual [3] or
innovation-based [4] approaches, intelligent cyber-attacks may be
engineered to be difficult to detect [5], considering the implicit
constraints of physics model-based solutions.

Methods devised to tackle FDI attacks include Generalised
Likelihood Ratio Detector with L-1 Norm Regularisation [6], a
scheme for protecting a selected set of measurements and verifying
the values of a set of state variables independently [7], and the
estimation of the normalised composed measurement error for
detection of malicious data attacks [8]. These solutions all consider
a quasi-static physics measurement model; however, the power
grid is a time-varying system with loads and generation constantly
changing. Thus grid temporal characteristics are not fully explored
for FDI detection.

Considering environment temporal characteristics, machine
learning-based solutions have also been explored for anomaly
detection. The Correlation-based Detection (CorrDet) algorithm [9]
was introduced for landmine detection. The Reed-Xiaoli (RX)
Detector [10] was introduced for target detection of remote sensing
images. Both methods rely on the approach where an incoming
sample is classified as abnormal if its squared Mahalanobis
distance with respect to a background statistic is above some
threshold.

Some artificial intelligence-related FDI detection methods have
been put forward in recent years, which are mainly based on neural
network, deep learning and fuzzy clustering [11, 12]. In [13], the
authors focus on the FDI detection in smart grids using a deep
belief network-based (DBN) method with unsupervised learning to
provide the initial weights. The authors of [14] present an artificial
neural network (ANN) based approach which identifies the FDI by
tracking the measurement data. The uniqueness of the neural
network method is a simple infrastructure but uneasy in the
parameter adjustment. Numerous tests should be utilised to train
the network model. A deep learning method originates from the
neural network, which can solve the overfitting problems well but
the training method is more complex [15]. Unsupervised learning
is performed from the bottom of the restricted Boltzmann machine

to provide initial weights for the network. The backpropagation
algorithm propagates the error from top to bottom and fine-tunes
the model parameters.

Considering hybrid data-driven physics model-based solutions
for FDI detection, the literature review will present seldom
contributions. It is clear that analytic quasi-static model-based
solutions can represent spatial characteristics of the environment,
while data-driven solutions can explore temporal characteristics
which are inherent to the grid operation. Thus they are
complementary solutions. Considering such a rationale, in [16], a
previous work of the authors, an extended Chi-squared test using
information from PSSE and a data-driven CorrDet algorithm [9] is
presented.

In this work, a hybrid data-driven physics model-based
framework for FDI detection on system real-time monitoring is
presented. Fig. 1 illustrates the presented framework, which
explores both temporal and spatial characteristics of the
environment in a distributed multi-agent architecture. An ensemble
CorrDet (ECD) algorithm is presented to address drifting load
scenarios and numerical issues. The CorrDet algorithm is used to
learn the background statistics (e.g. mean and covariance for
normal samples) over the whole power grid topology, consisting of
a series of buses where feature (measurement) values are measured
in a single bus or between two buses. ECD detector can be
considered as a set of CorrDet detectors for each local
environment. Therefore, an ECD detector learns a series of
background statistics, one for each bus. There are several
advantages for using an ECD detector compared to CorrDet
detector. FDI is sparse, thus learning the background statistics on
each bus, instead of the whole power system topology, allows for a
more sensitive anomaly detection while embedding local
environmental spatial characteristics to the data-driven solution.
More specifically, spatially neighbouring buses are more highly
correlated and easier to be affected by an attack while buses that
further away have a lower correlation. Thus, learning a full
covariance overall measurements of all buses are unnecessary
(nearly sparse covariance), especially when training data is limited.
Instead, local, fewer dimensional measurement sets offer a more
accurate statistic estimation and a computationally cheaper, more
sensitive anomaly detection. ECD detector is also a scalable
solution as even when more buses are added to the grid, we could
just add a local CorrDet detector to that bus and include the result
of this local detector in the ECD algorithm. Second, learning the
background statistics on the whole power system topology is
usually more challenging than learning on a bus. The latter allows
a distributed local environmental model learning on the much
smaller dimensional data (usually several measurements) than the
former (usually several hundreds of measurements). To avoid the
numerical issues due to large dimensions, a much larger training
set would be necessary for the CorrDet detector to achieve the
same performance; otherwise, estimated background statistics are
often ill-posed. Third, ECD detector is more robust and secure than
CorrDet detector, since the classification of the anomaly for ECD
detector is an aggregated decision of a series of local CorrDet
detectors, as a committee, allowing for a small number of failed
local CorrDet detections, while CorrDet detector is a single
detector. Finally, a good feature of ECD detector is FDI
localisation. For instance, if an FDI happens on a measurement
between two buses and the corresponding two local CorrDet
detectors flags the sample as abnormal, it can also be inferred that
the FDI is a measurement between the two buses, while CorrDet
detector cannot find the location where false data was injected.

In order to create a hybrid between physics model-based and
data-driven solutions, a decision level fusion solution is presented.
On such, several data-driven and physics-based methods for the
FDI attacks detection on SG real-time monitoring are combined
producing one output. The fusion considers the confidence of each
anomaly detection method, creating the hybrid method that proves
to perform better than any of the individual detection methods.

The contributions of this paper towards the state-of-the-art are
as follows:
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• Decision level fusion is used to create a hybrid physics-based
data-driven anomaly detection that considers the confidence of
individual anomaly detection methods.

• A data-driven ECD anomaly detection method is presented,
which works in a distributed fashion, allowing for more
sensitive local detection on the spatial domain.

• Using a physics-based bad data detection method considering
the Innovation Concept to improve the data-driven detection
method.

The remainder of the paper is organised as follows. In Section 2,
background information of the challenges and existing solutions
are presented. Section 3 presents the proposed framework,
discussing each component and how they are used to build the
framework. The results of numerical tests used to evaluate the
method's performance are shown in Section 4. Finally, Section 5
presents the conclusions of this work.

2 Background, challenges, existing solutions and
their limitations
2.1 SG system

PSSE plays a crucial role in SG real-time monitoring, as it is
responsible for estimating unknown system state variables based
mostly on measurements of voltage, power and current. As SG
evolution exposes the system to cyber-attacks, it becomes
increasingly important to develop countermeasures [17–22]. Most
research [23–25] in this area focuses on improving bad data
detection schemes or improving the security of the communication
system. An analysis of the state-of-the-art physics model-based
solutions for FDI detection on SGs real-time monitoring will show
that these apply residual-based approaches for cyber-attack
detection, while ignoring the inherent masked error component
[26]. Still, as cited in [27], a stealthy attack requires the corruption
of several measurements. This relates to the fact that a stealthy
attack must have the attack vector fitting the measurement model,
which is equivalent to shifting the result of the state estimation to a
physically possible but wrong solution. Cyber-attacks with such
characteristics are hard to discover when applying the classical bad
data approaches, which may cause the cyber-attack to remain
undetected [28].

The authors of [29] proposed an interval forecasting method to
predict the possible largest variation bounds of each state variable

based on a worst-case analysis based on the forecasting
uncertainties of renewable energy sources, and electric loads.
Works such as [30] also use extreme learning machine-based
(ELM) one-class-one-network (OCON) and prediction methods to
improve the resilience of the power system, exploiting the spatial
correlation of power data within subnets.

While power systems are ideally in a steady-state, there are
constant variations to load and generation. Current bad data
analysis techniques in power systems work in a quasi-steady state,
only considering a single snapshot of the system. In theory,
temporal changes on the system could add more information for
bad data detection that current techniques are not using. In [16], the
authors begin to make use of this temporal data by developing an
extended Chi-squared test that combines the classical PSSE
method with a data-driven CorrDet algorithm that takes into
account past data. This extended Chi-squared test does not work as
well when introduced to more realistic load variation and stealthier
FDI attacks.

2.2 CorrDet and ECD detectors

The CorrDet detector is capable of training a data-driven anomaly
detector; however it is not very efficient and may suffer from
numerical issues when the number of measurements is large.
Therefore, the ECD detector is proposed. For the CorrDet detector,
only one set of parameters (sample mean, sample covariance
matrix and detection threshold) are estimated for the whole power
system. These parameters, especially covariance matrix,
characterise the correlations among all measurements on all buses.
The required number of training samples rapidly grows when the
number of measurements increases. Therefore, the detector
parameters, especially the covariance matrix, are usually not well-
trained, resulting in numerical issues and bad detection
performance when the number of training samples is limited.
However, learning a full covariance matrix for all measurements is
actually not necessary since the covariance matrix is sparse. The
reason is that the farther two buses are, the less correlation their
measurements will have. In other words, if an FDI happens on one
measurement, the most probable affected buses are usually the one
or two that the measurement is linked to. Thus, this challenge can
be tackled by considering the detection at a smaller spatial scale.
More specifically, instead of training the detector parameters at the
scale of all measurements of all buses, we can train a set of

Fig. 1  Distributed multi-agent architecture
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detectors, which trains measurements associated on every single
bus.

Typically, the number of measurements that are linked to each
bus is less than ten, while the total number of measurements is
several hundred. The reduced dimensionalities for each local
CorrDet detector yields more accurate estimation of normal sample
means and covariance matrices and finally a more sensitive
detection. By looking at which local CorrDet detector(s) reports an
anomaly, we can further infer the possible position where the FDI
happens.

3 Hybrid physics model-based data-driven
framework
3.1 Physics model

In modern Energy Management Systems (EMS), the State
Estimation (SE) process is the core process for situational
awareness of a power system and is used in many EMS
applications, including the detection of bad data. The common
approach to SE is using the classical Weighted Least Squares
(WLS) method described in [2]. In this approach, the system is
modelled as a set of non-linear algebraic equations based on the
physics of the system:

z = h(x) + e (1)

where z ∈ ℝ1 × d is the measurement vector, x ∈ ℝ1 ×N is the vector
of state variables, h:ℝ1 ×N → ℝ1 × d is a continuously non-linear
differentiable function, and e ∈ ℝ1 × d is the measurement error
vector. Each measurement error, ei is assumed to have zero mean,
standard deviation σi and Gaussian distribution. d is the number of
measurements and N is the number of states.

In the classical WLS approach, the best estimate of the state
vector in (1) is found by minimising the cost function J(x):

J(x) = ∥ z − h(x) ∥ΣSE
−1

2 = [z − h(x)]′ΣSE
−1 [z − h(x)] (2)

where Σ is the covariance matrix of the measurements. In this
paper, we consider the standard deviation of each measurement to
be 1% of the measurement magnitude, which has been shown to
improve the detection of bad data [31]. The covariance submatrix
for zero injection measurements is calculated, as shown in (4) and
(5). In order to solve this problem, (1) is linearised at a certain
point x∗ in (3) and the optimal states are found through an iterative
process

Δz = HΔx + e (3)

σ(Pi) = ∑
j ∈ ℬ

σ2(Pi j) (4)

σ(Qi) = ∑
j ∈ ℬ

σ2(Qi j) (5)

where H = δh/δx is the Jacobian matrix of h at the current state
estimate x∗, Δz = z − h(x∗) = z − z∗ is the correction of the
measurement vector and Δx = x − x∗ is the correction of the state
vector. ℬ is the set of buses j ∍ Yi j ≠ 0. The WLS solution is the
projection of Δz onto the Jacobian space by a linear projection
matrix P, i.e. Δz = PΔẑ. Letting r = Δz − Δẑ be the residual
vector, the P matrix that minimises J(x) will be orthogonal to the
Jacobian range space and to r; Δẑ = HΔx̂. This is in the form

⟨Δẑ, r⟩ = (HΔx̂)′ΣSE
−1 (Δz − HΔx̂) = 0. (6)

Solving (6) for Δx^:

Δx̂ = (H′ΣSE
−1H)−1H′ΣSE

−1Δz . (7)

At each iteration, a new incumbent solution xnew∗  is found and
updated following xnew∗ = x∗ + Δx̂. Equation (7) is solved each
iteration until Δx̂ is sufficiently small to claim convergence of the
solution. Once the SE converges, the Innovation Concept is used
for the detection of bad data in the measurement vector z [4, 8]. In
the Innovation Concept, the Innovation Index (II) in (8) is defined
as the ratio of the detectable and undetectable components of the
measurement error and can be calculated using the projection
matrix, P, of the WLS solution (9)

IIi =
∥ eDi ∥ΣSE

−1

∥ eUi ∥ΣSE
−1

= 1 − Pii

Pii
. (8)

P = (H′ΣSE
−1 H)−1H′ΣSE

−1 . (9)

The II and the measurement residual, r, are used to calculate the
Composed Measurement Error (CME) for each measurement, as
shown in the following equation:

CMEi = ri 1 + 1
IIi2

. (10)

The measurements are considered to be i.i.d, so the statistical Chi-
squared test is used, as shown in the following equation:

∑
i = 1

d CMEi
σi

2

> χαχ,d
2 (11)

for d degrees of freedom and significance level αχ. In this paper,
the common significance level of 0.05 is used [32]. If the sum of
normalised CME values is greater than the Chi-squared distribution
value, then bad data with (1 − αχ) confidence level is detected. We
call this statistical test CME Chi-Square Test (CMECST).

3.2 Data-driven machine learning

In addition to the spatial information that is used in physics based-
model, data-driven machine learning algorithms (CorrDet and ECD
algorithms) are proposed to take advantage of both temporal and
spatial information. CorrDet algorithm is proposed to estimate the
sample statistics globally, while ECD algorithm combines local
CorrDet estimates, where spatially remote correlations are ignored,
but the spatially neighbouring correlations are reserved.

3.2.1 CorrDet anomaly detection: The machine learning layer of
the proposed smart power grid framework uses the knowledge of
already verified data to learn the normal state of a properly
functioning grid. It is then able to detect any anomalies introduced
into the system at any point forward and alerts the cloud layer, as
shown in Fig. 1, to identify the anomaly, isolate it from the
remainder of the system and take appropriate action to prevent
contamination of the system, with regards to both power
distribution in other subsystems, and data assimilation by the
machine learning system itself.

A machine learning layer is implemented using the CorrDet
Anomaly Detection [9, 10, 33] algorithm described in (12), where z
is the new incoming data, μ is the mean and Σ−1 is the inverse
covariance matrix of normal samples. Equation (12) calculates the
squared Mahalanobis distance, δCD(z), of a given data z, from the
mean, μ of the distribution

δCD(z) = (z − μ)TΣ−1(z − μ) . (12)

The anomaly detector is trained with the first k number of
incoming samples to generate the μ and Σ−1. It then accepts new
data and uses (12) to determine its squared Mahalanobis distance
and compares it to a threshold value τ.
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l(z) = 1, if δCD(z) ≥ τ

0, if δCD(z) < τ .
(13)

If the result is below the threshold, the new data is considered to be
normal data (label l(z) = 0), but if the result is above the threshold,
the new data is flagged as an anomaly (label l(z) = 1).

In order to select this threshold τ for Mahalanobis distance, we
conduct an experiment to vary τ as a function of standard deviation
(σthr) and mean (μthr) of Mahalanobis distance values of all the
normal samples in training dataset as shown in (14). We use F1-
score as the performance metric to choose the value of η of (14)
that results in the highest F1-score for training data to decide the
optimal value of τ.

τ = μthr + η ∗ σthr . (14)

The μ and Σ−1 statistics can be updated over time with
measurement values from normal test samples to make the model
more adaptive and learn the behaviour of data over time.

3.2.2 Ensemble CorrDet algorithm: The sample data zi is
usually a set of hundreds of measurements at time i, which can be
represented as zt = [zt1, zt2,…, ztd], where d is the number of
measurements and each element zt j denotes the jth measurement
value at the time t. In this work, the dissimilarity comes from the
abnormal behaviours of one or several measurements in the power
system.

In other words, an abnormal sample is caused by at least one
measurement value that is abnormal. There are a variety of reasons
for a measurement to be abnormal, including an FDI. For instance,
Fig. 2 shows the normalised real power flow values from bus 5 to
bus 3 (zt, 340) from time t = 1 to t = 10, 000. There are two
measurements z9161 and z9385 in zt, 340 that are far different than the
rest, which can be detected as abnormal measurements. Therefore,
the samples z9161 and z9385, containing the abnormal measurement
z9161, 340 and z9385, 340, are detected as abnormal samples.

Since buses are connected via transmission lines, spatially
neighbouring buses are more highly correlated and easily affected
once being attacked while buses that are farther away have less
correlation. Thus, learning a full covariance overall measurements
of all buses is unnecessary (nearly sparse covariance) when
training data is limited. Instead, it is proposed to use local regions
with fewer measurements. These regions have smaller dimensions
and offer a more accurate normal statistic estimation while being
computationally cheaper and provide more sensitive anomaly
detection. Based on the CorrDet algorithm, a spatial-temporal,
regional CorrDet anomaly detection method is proposed, named
Ensemble CorrDet (ECD).

ECD detector is defined as a set of local CorrDet detectors on
data samples with a few, spatial neighbouring measurements,
compared to full measurements in the CorrDet detector. To be more
specific, let ΦE be the ECD detector, ΦR the CorrDet detector with
full dimensionality and ϕm the local CorrDet detector with reduced
dimensionality where m = 1:M and M is the number of buses. So
ΦE = {ϕm}m = 1:M. Assume that the total number of measurements
is d. There are mj, mj < d, measurements on each bus m, where
each bus is considered as a local, spatial region, corresponding to
one local CorrDet detector, ϕm.

For ΦR, the learning process consists of estimating μ and Σ−1

from normal training samples zi (zi ∈ ℝ1 × d). A similar strategy is
proposed to learn the ECD detector. The learning of ΦE involves
the estimation of a set of local CorrDet detectors, ϕm. For each ϕm,
similarly, the learning process consists of estimating its μm and Σm

−1

from the normal training samples with selected measurements zi,m
(zi,m is a 1 × mj vector). The threshold value τm for each ϕm is
estimated using the same strategy of CorrDet detector as shown in
(14). For the new incoming samples, a set of squared Mahalanobis
distances, ΦE, are computed and compared with the corresponding
set of thresholds, T, where T = {τm}m = 1:M. If at least one squared

Mahalanobis distance in ΦE is greater than its corresponding
threshold, this incoming sample is classified as an anomaly.
Otherwise, it is classified as normal samples. This voting process is
visualised in Fig. 3. 

Let K1 and K2 the number of training and testing samples,
respectively. Let Z (Z ∈ ℝd ×K1) and Z (Z ∈ ℝd ×K2) the training
and testing samples, respectively. Let Y (Y ∈ ℝ1 ×K1) and Y
(Y ∈ ℝ1 ×K2) the corresponding labels. δZ,m (δZ,m ∈ ℝ1 ×K1) denotes
the squared Mahalanobis distances of all training samples with
respect to mth CorrDet detector, ϕm. δzk (δzk ∈ ℝ1 ×M) denotes the
squared Mahalanobis distances of the kth testing sample with
respect to all CorrDet detectors, ΦE. The pseudo code for the
proposed ECD algorithm is shown in Fig. 4. 

3.3 Fusion of physics model-based data-driven detection
methods

In order to employ the anomaly detection capabilities of both state
estimator solution and the ECD algorithm, we fuse the results from
both the methodologies, as shown in Fig. 1. In the ECD algorithm,
each sample in the testing set will have M CorrDet distances, one
for each region as its decision score. We need an overall ECD
decision score for each sample to combine it with the decision
score from state estimator (ΨSE, zk). SE decision score is calculated
as shown in the following equation:

ΨSE = ∑
i = 1

d CMEi
σi

2

. (15)

To find the overall ECD decision score (ΨECD, zk) for each testing
sample, we consider the squared Mahalanobis distance of local

Fig. 2  Normalised real power flow values from bus 5 to bus 3 for all
samples t = 1 to t = 10, 000

 

Fig. 3  Voting strategy for ECD detector
 

IET Smart Grid
This is an open access article published by the IET under the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/3.0/)

5



CorrDet detector, which led us to decide whether that sample is
anomalous or normal. This is achieved by considering the decision
score of the region whose local CorrDet detector detected an
anomaly. In the case that there are multiple local CorrDet detectors
that detect an anomalous sample, the maximum decision score is
selected from these multiple local CorrDet detectors. If there was
no anomaly detected from any local CorrDet detectors, the
minimum of all decision scores from local CorrDet detectors is
considered as the ECD decision score.

We normalise the decision scores obtained from state estimator
and ECD detector by subtracting by their corresponding mean
value and dividing by their corresponding standard deviation to
form ΨECDnormalised and ΨSEnormalised. For each testing sample, we add
the normalised decision scores from the state estimator and ECD
detector, and create a new decision score termed as fusion decision
score (Ψfusion, zk). Fusion decision scores, which are calculated as
shown in (16), are compared with ground truth values to show the
improvement in fused model performance compared to individual
detectors

Ψfusion = ΨECDnormalised +ΨSEnormalised . (16)

In order to decide whether an incoming test sample is anomalous or
normal, we define a threshold (τfusion) based on the fusion decision
scores of training set using (14). We compare the fusion decision
score of the test sample (Ψfusion, zk) with (τfusion) as shown in (17) to
predict whether it is anomalous or normal

zk =
anomalous, Ψfusion, zk ≥ τfusion
normal, Ψfusion, zk < τfusion .

(17)

4 Case study
4.1 Dataset description

For this work, the IEEE 118-bus system [34] illustrated in Fig. 5
was used to generate the training and testing data. Errors are
introduced at random in 5% of the dataset samples and true labels
are assigned during this process. Error detection based on physics-
based models is performed as a post-processing step to PSSE using
CMECST. The dataset consists of 10,000 samples with 712
measurements, of which 21 measurements are zero-injection
measurements. Zero-injection measurements are not modelled as
equality constraints in the PSSE process. The standard deviation of
zero-injection measurements is calculated as shown in (4) and (5)
to avoid any gain matrix singularity issues in PSSE process. The
types of measurements considered were a combination of standard
SCADA measurements, i.e. bus voltage magnitudes, real and
reactive power injections, and real and reactive power flows. The

measurement set data was generated using the power flow options
in the MATPOWER package in MATLAB [35]. PSSE uses all 712
measurements while the ECD detector will only use 691
measurements, excluding the zero-injection measurements. A
drifting load profile was considered for the generation of the
measurement set. The drift was modelled by the Ornstein–
Uhlenbeck (O–U) process – a mean-reverting process [36, 37].
This is a stochastic process similar to a random walk, but has a
tendency to drift back towards the original load. The mean loading
condition is updated periodically to model physical reality as aptly
as possible. This presents a greater challenge to the data-driven
solution since there will be greater variations from the mean vector.
A detailed discussion of O–U process is included in the subsequent
section.

4.1.1 O-U process: The O-U process Xt is defined by the
following stochastic differential (SDE):

dXt = − β(Xt − μo − u) dt + σndWt (18)

where Xt is a random variable, Wt is the driving noise, β is the
decay-rate, σn2 variance of the noise, and μo − u is the long term
mean.

Equation (18) can be solved using Ito's formula and the solution
is given by (19). It can be seen from (19) that limt →∞ Xt = μo − u.

Xt = e−βtX0 + μo − u 1 − e−βt + σn∫
0

t
eβ t0 − t dWt0 (19)

4.2 Experimental results

The anomaly detection problem can be treated as a classification
problem, as our goal is to classify testing samples into normal and
anomalous classes based on the models trained on training
samples. To evaluate the performance of strategies included in this
paper, we make use of classification metrics [38] such as Receiver
Operating Characteristics (ROC) curves and Area Under Curve
(AUC) score, which are defined based on True Positive Rate (TPR)
and False Positive Rate (FPR) of a classification model. ROC
curves represent the classification performance of a classifier by
varying thresholds and calculating TPR and FPR values for each
threshold for decision scores. In our analysis, we plot ROC curves
using Ψfusion values and ground truth values.

In our dataset, we used 30% of samples for training and 70% of
the samples for testing the model's anomaly detection abilities. In
order to reduce the bias of our models, we repeated model training
and testing for different combinations of samples in the data for ten
times. For each combination, we obtained a ROC curve for testing
samples to understand the model performance. In Fig. 6, we show

Fig. 4  Procedure 1: ECD algorithm
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the ROC curves for multiple experiments conducted along with a
mean ROC curve (averaged over FPR) and variation of mean AUC
score (averaged over FPR) for each of the methodologies proposed
in this paper. 

In Fig. 6, we can notice that mean AUC score for ECD detector
(0.95) is better than mean AUC score for state estimator (0.94), but
the mean AUC score for fusion results (0.97) is much better than
both ECD algorithm and state estimator method anomaly detection
methodologies. The proposed hybrid data-driven physics model-
based anomaly detection methodology improved mean AUC score
by 3.2% compared to state estimator results.

We can also notice that ECD detector performs much better
compared to state estimator solution and CorrDet detector as
shown in Fig. 7. One reason is due to the fact that using all the
measurements in CorrDet detector incurs numerical issues, but
when we look at ECD detector, we are reducing the measurements

for individual detectors, thereby reducing the numerical issues
which improve the anomaly detection capabilities.

For an anomaly detection problem, FPR should be fairly low, or
the model ends up wrongly classifying many normal samples as
anomalous. Hence, we also show the performance of the presented
anomaly detection methodologies specifically for FPR values less
than 0.2 through corresponding mean ROC curves and variation of
mean AUC scores for multiple experiments in Fig. 7. The optimal
threshold (τfusion) for fusion decision scores (Ψfusion) also lies in this
region as to maximise F1-score, FPR value has to be fairly low.

In Fig. 7, instead of absolute AUC score, we show the relative
AUC score, which is the ratio of AUC score by 0.2 (area in the
curve for FPR values between 0 and 0.2). The presented hybrid
data-driven physics model-based anomaly detection methodology
improved mean AUC score by 6.75% compared to state estimator
results for FPR values <0.2.

Fig. 5  IEEE 118-bus system
 

Fig. 6  ROC curve comparison
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From Figs. 6 and 7, we can observe that the performance
improvement from the presented hybrid data-driven physics model-
based anomaly detection methodology compared to state estimator
prediction is larger in the ROC space where FPR is <0.2 compared
to overall ROC space, which is a favourable outcome.

For comparison, the same dataset is evaluated on four other
algorithms including K-nearest neighbour (KNN) [12], support
vector machine (SVM) for FDI detection [12], Gaussian Naive
Bayes (GNB) [39] and adaptive boosting with a decision tree
(ADA) [40]. The authors in [12] do not consider the effects of
concept drift in the data, whereas we have considered drifting load
profile in our analysis which also poses more challenges for FDI
detection. In order to have a fair comparison, the same training
samples and testing samples are used as in the experiments of ECD
detector. More specifically, the dataset is split into 30% for training
and the rest 70% for testing. The AUC value of ROC curve is used
for evaluation by taking the average of AUC values of ten
repetitive experiments where each experiment has different training
and testing samples.

KNN and SVM are two typical machine learning methods that
were introduced for FDI detection in [12]. Since the exact
hyperparameter values are not fully disclosed in [12] and the
hyperparameter values depend on the dataset as well, a series of
experiments with different hyperparameter values (e.g. K value in
KNN) and other parameter settings (e.g. linear or non-linear SVM)
are conducted.

For KNN, the number of neighbours K is selected as 1, 3 or 5.
The classification results on testing dataset show that almost all
testing samples are classified as normal samples, especially when
K is larger. The reason is that the dataset used in this work has
fewer abnormal samples (around 5%), which better models real
anomaly detection scenarios, while the number of abnormal
samples is more (around 30%) in [12]. Therefore, KNN, a
classification algorithm cannot be simply applied for the more
challenging anomaly detection problem, since most of the
neighbouring training samples are normal samples because of the
low abnormal/normal ratio. The scores of detecting using KNN are
estimated using weighted KNN, where the scores are the
normalised inverse of distances of neighbouring normal or
abnormal samples. The ROC curves of KNN are shown in Figs. 6
and 7, where the AUC is much worse than the presented method.

Similarly, the SVM with linear and RBF kernels are used for
FDI detection. The SVM with the non-linear kernel (RBF) has
better performance than linear SVM. Therefore, the ROC curve of
SVM with RBF is shown in Figs. 6 and 7, where the average AUC
value is around 0.72, better than the weighted KNN algorithm, but
still worse than the presented method. The probable reason for
better performance than KNN is that the SVM used for comparison
is a class-weighted SVM, where the weights are proportional to the
number of samples in each class. Therefore, SVM can address the
imbalanced dataset by assigning higher misclassification penalties
to training samples of the minority class (abnormal samples).

In addition, two popular machine learning algorithms are picked
for additional comparison. The Gaussian Naive Bayes algorithm
can address the imbalanced dataset challenge by introducing the

class prior, the probability of each class, inferred from the training
set. The Adaboost with decision tree uses the decision tree as the
base algorithm, with a maximum depth of 500 and a total of 500
estimators. Both algorithms show a slight improvement compared
to KNN, but still worse than SVM based on the average AUC
scores shown in Fig. 6. Therefore, the presented ECD algorithm
and its fusion method both show a much better performance-
boosting than these typical machine learning algorithms in the
literature.

The novelty and advantage of ECD detector over the four
methods in comparison are that ECD detector both has localisation
and ensemble attributes. Localisation acts as a feature selection,
corresponding to each bus. Ensemble then accumulates the
detection results from all local CorrDet detectors. Therefore, both
local and overall statistics are fully captured by ECD detector,
leading to an improved detection sensitivity through localisation
and ensemble attributes, which the four algorithms in comparison
lack.

5 Conclusion
This paper presents a hybrid physics model-based data-driven
framework for the detection of FDI attacks on SG real-time
monitoring. The physics model-based solution uses the state-of-
the-art Innovation Concept of bad data detection and the novel,
data-driven ECD algorithm is introduced to exploit both spatial and
temporal characteristics of the SG. The ECD algorithm uses
information from distributed, local CorrDet detectors to make a
decision on whether or not there is an FDI in the system. By doing
this, the data-driven solution not only uses temporal information,
but spatial information as well. Decision level fusion is used to
combine the information that each individual anomaly detection
method contains, considering the confidence that each method has
for a given sample.

The hybrid FDI detection framework was tested on the IEEE
118-bus system. Test results show that the fusion of the individual
techniques has the best overall performance, detecting FDI attacks
at a high rate without many false alarms, which can cause issues in
a similar fashion to an undetected FDI attack. The presented hybrid
framework improved mean AUC score for the testing set by 6.75%
compared to physics model-based results. The presented
framework also outperforms other popular machine learning
algorithms mentioned in the literature for FDI attacks. The fusion
of physics model-based data-driven solutions and of temporal and
spatial information has been shown to be an improvement on the
detection of FDI attacks on the SG, opening up opportunities for
future research in this area.
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