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Abstract

Many physical problems are described by conformally symplectic systems
(i.e. systems whose evolution in time transforms a symplectic form into a
multiple of itself). We study the existence of whiskered tori in a family f,
of conformally symplectic maps depending on parameters yu (often called
drifts). We recall that whiskered tori are tori on which the motion is a rotation,
but they have as many expanding/contracting directions as allowed by the
preservation of the geometric structure.

Our main result is formulated in an a posteriori format. We fix w
satisfying Diophantine conditions. We assume that we are given (1) a value
of the parameter 1y, (2) an embedding of the torus Kj into the phase space,
approximately invariant under f,, in the sense that f;,) o Ko — Ko o T, (where
T,, is the shift by w) is small (in some norm), (3) a splitting of the tangent
space at the range of K, into three bundles which are approximately invariant
under Df,,, and such that the derivative satisfies ‘rate conditions’ on each of
the components.

Then, if some non-degeneracy conditions (verifiable by a finite calculation
on the approximate solution and which do not require any global property
of the map) are satisfied, we show that there is another parameter pi,, an
embedding K, and splittings close to the original ones which are invariant
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under f,__. We also bound |pes — fio] ||Keo — Kol and the distance of the
initial and final splittings in terms of the initial error.

We allow that the stable/unstable bundles are nontrivial (i.e. not
homeomorphic to a product bundle). On the other hand, we show that
the geometric set up has the global consequence that the center bundle is
necessarily trivial (i.e. homeomorphic to a product bundle).

The proof of the main theorem consists in describing an iterative process that
takes advantage of cancellations coming from the geometry. Then, we show
that the process converges to a true solution when started from an approximate
enough solution. The iterative process leads to an efficient algorithm that is
quite practical to implement.

The a posteriori format of the theorem implies the usual formulation of
persistence under perturbations (the solutions for the original systems are
approximate solutions for the perturbation), but it also allows to justify
approximate solutions produced by any method (for example numerical
solutions or asymptotic formal expansions). As an application, we study the
singular problem of effects of small dissipation on whiskered tori. We develop
formal (presumably not convergent) expansions in the perturbative parameter
(which generates dissipation) and use them as input for the a posteriori
theorem. This allows to obtain lower bounds for the domain of analyticity of
the tori as function of the perturbative parameter.

Even if we state only the theory for maps, our results apply also to flows.

Keywords: whiskered tori, conformally symplectic systems, KAM theory
Mathematics Subject Classification numbers: 70K43, 70K20, 34D35

1. Introduction

Several physical problems are modeled by Hamiltonian systems affected by a dissipation
which enjoys a remarkably geometric property, namely that the symplectic structure (pre-
served by the Hamiltonian evolution) is transformed into a multiple of itself. Such systems are
called conformally symplectic systems.

Examples of physical problems that are described by conformally symplectic systems are:

e Hamiltonian systems with a dissipative effect proportional to the velocity; a concrete
example is given by the spin—orbit problem in Celestial Mechanics with a tidal torque—
see [Cel10, CL0O4, CL09];

e Euler-Lagrange equations of exponentially discounted systems; these models are often
found in finance, when inflation is present and one needs to minimize the cost in present
money—see [Ben88, LR16, ISM11, DFIZ16a, DFIZ16b]. The exponential discount is
also common in control theory finite horizon models—see [MHER95];

e Gaussian thermostats, which are used in computations of non-equilibrium molecular
dynamics—see [DM96b, WLIS];

e Nosé—Hoover dynamics in Statistical Mechanics—see [DM96a, Hoo917*.

4 There are several formulations of the Nosé—Hoover dynamics in the literature. Some of them are not conformally

symplectic.
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Besides the interest in applications, (locally) conformally symplectic systems were also stud-
ied as natural problems by differential geometers (see [Ban02, Agr10, Vai85]). For a detailed
comparison between the conformally symplectic systems and the slightly more general locally
conformally symplectic systems see [CCdIL19a].

Remark 1. Conformally symplectic systems are a very special kind of dissipative systems
(for example, mechanical systems with a friction proportional to a power different from 1
of the velocity are not conformally symplectic). We emphasize that conformally symplectic
systems have the property that they transform the symplectic form into a multiple of itself;
when the dimension of the phase space is greater or equal than 2, then the proportionality coef-
ficient is constant (compare with remark 3). Therefore, conformally symplectic systems enjoy
remarkable properties which are not present in more general dissipative systems.

For example, in [CCL11] it is shown that for conformally symplectic systems in a neigh-
borhood of a Lagrangian invariant torus, the motion is smoothly conjugate to a rotation along
the torus and a constant contraction in the normal direction. This is clearly false in general
dissipative systems. In [CCFdIL14] it is shown how this rigid behavior of conformally sym-
plectic systems leads to quantitative properties of phase locking regions. The existence of
a time-dependent variational principle also leads to very dramatic qualitative properties not
shared by arbitrary dissipative systems [MS17a]. The conformal symplectic properties of a
system also affect the dimension of the parameters one needs to adjust to get a quasiperiodic
solution [CCdIL13].

For us, the most remarkable property of conformally symplectic systems is the so-called
‘automatic reducibility’ that shows that the ‘center’ bundle around a rotational torus allows a
canonically defined system of coordinates in which the derivative is particularly simple. We
will also show in section 4 that the conformal symplectic geometry implies that the ‘center’
bundles around a rotational torus are trivial.

The goal of this paper is to study the existence of whiskered tori in conformally symplec-
tic systems. Whiskered tori were introduced in [Arn64] in Hamiltonian (a.k.a. symplectic)
systems and conjectured to be the key geometrical structures leading to instability for nearly
integrable systems.

We will present more precise definitions of whiskered tori later (see definition 20), but we
indicate that these are tori in which the motion is conjugate to a rotation and which have many
hyperbolic directions (exponentially contracting in the future or in the past under the lin-
earized evolution). Definition 20 includes that the exponential rates characterizing the center
bundle straddle the conformally symplectic constant and that the dimension of the hyperbolic
directions is as large as possible given that the map is conformally symplectic.

The existence of quasi-periodic motions in dissipative systems is very different from the
Hamiltonian case. The dissipation forces many orbits to have the same asymptotic behav-
ior and, hence, the set of asymptotic behaviors is smaller in the dissipative case than in the
Hamiltonian one. Therefore, adding a small dissipation to a Hamiltonian system is a very
singular perturbation. In the Hamiltonian case, under mild non-degeneracy conditions, to find
tori of a certain frequency, it suffices to choose the initial conditions. In the dissipative case,
since many solutions have the same asymptotic behavior one cannot choose the initial condi-
tions to obtain the desired long term behavior in a fixed map. One needs to consider families
and adjust parameters to obtain a torus with a fixed frequency. The results here apply also to
symplectic systems (the case considered in [Arn64, Arn63]), even if the parameter count is
different. Indeed, we find a unified formalism in which one can continue from the symplectic
to the weakly dissipative.

540



Nonlinearity 33 (2020) 538 R C Calleja et al

Our first main result is theorem 21, which is expressed in the format of a posteriori theorems
of numerical analysis. Given a family f,, of conformally symplectic mappings, we formulate an
equation, called invariance equation for the parameterization of a torus, say K, for the param-
eter y in the family and for the splittings of the space. The invariance equation expresses that
the parameterization and the splittings are invariant by the map given by the parameter ;. We
show that, given an approximate enough solution of the invariance equation (depending on
some condition numbers), there exists a true solution close to the approximate one.

Theorem 21 allows us to validate approximate solutions of the invariance equation obtained
by non-rigorous methods (one just needs to verify the accuracy of the solution and the condition
numbers). Notably, one can justify numerical methods or asymptotic expansions. Note that theo-
rem 21 does not assume that the system is close to integrable and it is, therefore, very suitable to
study phenomena that happen near the breakdown of the tori. A result on the local uniqueness of
the solution is given in theorem 35. The a posteriori theorems can also be used to justify computa-
tions in concrete systems of interest. For example in Celestial Mechanics and Astrodynamics, one
is interested in finding objects in N-body problems with very concrete values of the parameters.

It is also important to remark that the condition numbers we introduce just involve averages
of algebraic expressions formed by the approximate solution and its derivatives, hence they
are straightforwardly computable just knowing the approximate solution. They do not involve
any global assumption on the map such as the global twist.

Our second main result is theorem 39. We consider dissipative perturbations of a
Hamiltonian system and study the domain of analyticity in terms of the perturbation param-
eter of the resulting whiskered tori (and the drift and the bundles).

The limit of small dissipation occurs naturally in many problems in Celestial Mechanics
and many of the models for dissipation in common use are conformally symplectic [Cell0,
CL04, CL09]. Examples of dissipations going to zero might appear when a celestial body sub-
ject to tidal torque reaches a synchronous rotation state, or when a satellite is launched from
Earth and reaches an altitude where the atmosphere is absent, thus moving to a region where
the atmospheric drag dissipation is zero [CG18, Cha05]. The limit of small dissipation is also
of interest in finance, where it corresponds to small inflation [Ben88]. In control theory it is
common to consider the limit when the finite horizon is taken to infinity [MHER95]. In the
discounted action model, in the limit of small dissipation the minimizing sets of the action and
the solutions of the Hamilton—Jacobi equation have been considered in [DFIZ16a, DFIZ16b].

If we denote the perturbative parameter by € (which we consider complex), we can study
the analyticity domains for y., K. (see theorem 39). In contrast with the Hamiltonian case, in
the dissipative case, unless one adjusts parameters, one does not expect that there are quasi-
periodic solutions. Hence, we do not expect that perturbative expansions converge and that
there is an open neighborhood of € = 0 contained in the analyticity domain of u., K.. We
conjecture that the domain we obtain in theorem 39 (which indeed does not contain any ball
centered in the origin) is essentially optimal, see section 7.4.

Application to flows. Finally, we note that all the results we will present for maps apply also
to flows in continuous time by taking sections and considering the return map (see the con-
struction in [CCdIL13]). Of course, producing a direct proof for flows by adapting the steps in
the proof for maps presented here is straightforward.

1.1. Comparison with other results in the literature

The literature on the existence of whiskered tori in symplectic systems is very extensive, see
[Gra74, Zeh76, JV97, LY05b, LYO05a].
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One should also mention that there are persistence theorems for whiskered tori that apply
to general systems (not necessarily symplectic). Indeed, the pioneering work [Mos67] already
considered general perturbations (see also [BHTB90, BHS96, BHN, CH17b]). Of course, the
conformally symplectic systems studied in this paper are a particular case of general perturba-
tions and the results of [Mos67, BHTB90, BHS96, BHN, CH17b] apply a-fortiori. The extra
assumption of being conformally symplectic allows us to obtain some results that are false
for more general perturbations. Notably, the results here for weakly dissipative systems could
be false if the dissipation is not conformally symplectic (see remark 1). We also note that, for
conformally symplectic systems there are constraints on the possible exponents on the normal
direction. We discuss these constraints in section 4. We also note that the dynamical and geo-
metrical assumptions have the surprising global consequence that the center bundle is trivial
in the sense of bundle theory (diffeomorphic to a product bundle).

From the point of view of techniques, we note that the papers [Mos67, BHTB90, BHS96,
BHN] are based on transformation theory (i.e. making changes of variables till the system is
in a form which manifestly does have an invariant torus), they also assume that the stable and
unstable bundles are trivial in the sense of bundle theory (the bundle is a product bundle). This
triviality of the bundle allows us to use a global system of coordinates in the center manifold
in which the linearized equation can be reduced to constant coefficients.

This paper is based on making additive corrections to an embedding and by solving the
linearized equations using geometrically natural operations.

From the point of view of computation, transformation theory is hard to implement as algo-
rithms, since it involves operating on functions with many variables (as many variables as the
dimension of the phase space). The algorithms in this paper only require to deal with functions
with as many variables as the dimension of the objects considered.

On the other hand, the transformation theory gives not only the existence of the whisk-
ered tori, but also substantial information on the behavior of orbits in a neighborhood of the
torus [SL12]. A comparison of the transformation theory and methods similar to ours for
Lagrangian tori in conformally symplectic systems appears in [LS15].

An approach for the study of whiskered tori close to ours was described in [FdILS09b].
In particular, it produces an a posteriori method, which was implemented in [FdIL.S09a] for
finite dimensional Hamiltonian systems. Algorithms based on the method of [FdILS09a] and
a more efficient reformulation appear in [HdAILS11]. Generalizations to Hamiltonian lattice
systems appear in [FdILS15] and in [dILS18] for PDE’s, while presymplectic systems are
investigated in [dILX19]. The paper [CH17b] uses similar techniques to give a result on the
persistence of whiskered tori for general systems, while [CH17a] presents implementations of
the algorithms and studies of the phenomena that happen at breakdown.

1.2. The a posteriori format

The method in this paper is not based on transformation theory and on the reduction to nor-
mal forms, but it is rather based on formulating an equation for the parameterization which
expresses the invariance and which is solved by a Newton-like method (compare with
[HCFLM16, Zeh75]).

The solution of the Newton equations uses the contraction on the stable and unstable bun-
dles as well as geometric identities obtained from the fact that the map is conformally symplec-
tic. These identities have the geometric meaning that there is a special system of coordinates
in which the Newton equations are particularly simple. They were used in [dILGJVO05] for
Lagrangian tori of symplectic systems and in [CCdIL13] for conformally symplectic systems.
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In the case of whiskered tori for symplectic systems, they were used in [FAILS09b, FdILS09a]
(a more efficient variation was introduced in [HAILS11, FdILS15]).

The method in this paper allows that the hyperbolic bundles are non-trivial (a situation that
happens near resonances, [HdILO7]). Some other examples were presented in [FAILS09b].
Most methods based on normal forms assume that the bundles are trivial.

In contrast, in this paper, we will show that for conformally symplectic systems (including
symplectic systems) the center bundles of whiskered tori are trivial (see lemma 26): this is a
rather surprising interaction between global geometry and dynamics.

The main result of this paper is stated in an a posteriori format: assuming the existence of
sufficiently approximate solutions with respect to condition numbers, then we conclude that
there are true solutions.

Notice that the a posteriori format implies the usual results of persistence under a small
change of the system. If there is a system which has an invariant whiskered torus, the torus and
its bundles will be approximately invariant for all the approximate systems. Then, applying the
a posteriori theorem we will conclude that the perturbed system also has an invariant torus.
As an immediate consequence of the a posteriori format, we automatically obtain Lipschitz
dependence on the map or on the frequency (just observe that the solution corresponding to
a frequency w satisfies the equation for a frequency w’ up to an error bounded by Clw — «'|).
Validating the Lindstedt series, we obtain sharper differentiability properties. As mentioned in
[CCdIL13], the a posteriori format has several consequences: smooth dependence on param-
eters, Whitney regularity in the frequency, bootstrap of regularity, etc.

The a posteriori format is very well suited for numerical analysis, since it allows one to
validate the approximate solutions produced by a numerical calculation. We also note that
the method of proof leads to a very efficient algorithm. The iterative method is quadratically
convergent, it only requires to discretize functions with a number of variables equal to the
dimension of the torus searched, rather than the dimension of the phase space, the storage
space requirements are small (order O(N), where N is the number of discretization modes) and
the operation count per step is small (O(N In N)). A continuation method based on the algo-
rithm presented here is guaranteed to converge till the boundary of existence of the torus or
till some of the non-degeneracy conditions fail. Hence, a careful continuation algorithm gives
a practical numerical algorithm to detect the breakdown of analyticity (these algorithms were
implemented for Lagrangian rotational tori and models in statistical mechanics in [CdIL10,
CC10]). For conformally symplectic systems, the paper [LS15] includes a comparison of the
method presented here with the transformation method from the point of view of applications.

1.3. Main results of the paper

The proof of our main result on the existence of the whiskered tori, theorem 21, consists in
describing an iterative Newton method to solve the invariance equation when started on an
approximate solution. The Newton step takes advantage of the geometry of the system and of
the existence of hyperbolic directions.

A step of the Newton method involves solving a linearized invariance equation. To solve
this equation, the linearized invariance equation is projected on the hyperbolic and center sub-
spaces. The equations projected on the hyperbolic subspaces can be solved taking advantage
of the contractions (in the future or in the past). As for the equations projected to the center
subspace, we use the so—called automatic reducibility which, near an approximate invariant
torus, constructs a system of coordinates in which the linearized equation along the center
directions takes a particularly simple form, which allows the use of Fourier methods.
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Our second result, theorem 39, is concerned with the limit of small dissipation. The low dis-
sipation limit is very natural in Celestial Mechanics and Astrodynamics since many celestial
bodies experience weak frictions, due to tidal forces or the atmospheric drag [CCO08, Cha05].
In this case, the friction is indeed proportional to the velocity, which makes the system con-
formally symplectic.

We consider systems that depend on a small parameter’ ¢ and the conformal factor is
Ae) =1+ ae®+ O0(|e]**!) for® a € Z1, a € C\ {0}. When € = 0 we recover the symplec-
tic case and small € means small dissipation. We study the analyticity domains in € near e = 0
of the whiskered tori (as well as the domains of the drift and of the stable/unstable bundles).
We note that the domains we obtain do not contain any ball centered at € = 0, and we conjec-
ture that this is optimal, hence we conjecture that indeed the formal power series are divergent.
For full dimensional tori, this has been studied numerically by [BC19].

Inspired by [CCdIL17], we start by constructing Lindstedt series for the problem. Even if
the Lindstedt series, in this case, probably do not converge, a finite order truncation provides
an approximate solution, which can be used as the approximate solution taken as input in the
a posteriori theorem, theorem 21, for some (complex) values of ¢ for which we can verify the
quantitative conditions of theorem 21.

In this way, we obtain that the parameterization and the drift are analytic when ¢ ranges in
a domain which we describe very explicitly. The domain of € where we show that K, . are
analytic is obtained by removing from a ball centered at the origin a sequence of smaller balls
with centers on a curve. The radii of the balls decrease exponentially fast with the distance of
the centers to the origin.

It is interesting to remark that the Lindstedt expansions produce approximate solutions for
all sufficiently small values of €. What determines the shape of the analyticity domain is the
values of € for which we can verify the non-degeneracy conditions (notably the Diophantine
conditions) of theorem 21. This emphasizes the importance of the non-degeneracy conditions
rather than just the smallness of the error.

The study of Lindstedt series followed by a validation step for low—dimensional tori in
Hamiltonian systems was developed in [JAILZ99]. The paper [JAILZ99] considers also the
case of weak hyperbolicity: systems which are perturbations of an integrable one, which does
not have any hyperbolicity, so that the hyperbolicity is generated by the perturbation. We also
mention [Mas05], where Lindstedt series expansions for whiskered tori have been constructed
in a problem of Celestial Mechanics. More recently, [BC19] has computed Lindstedt series for
Lagrangian tori for the dissipative case and determined the domain of analyticity of the tori, as
well as several other properties of the series (monodromy, Gevrey properties). The numerical
results of [BC19] present several interesting conjectures for the singular problem.

1.3.1. Organization of the paper. This paper is organized as follows. In section 2 we provide
basic notions, such as conformally symplectic systems, Diophantine frequency vectors, func-
tion spaces, cocycles, invariant bundles, dichotomies. In section 3, we state the first main
result, theorem 21. In section 4 we present some interactions of the hyperbolicity assumptions

3 Since we are considering analyticity properties, it is natural to take & complex and all the objects considered to be
complex as well. This does not make any difference in the proof, since the Newton step involves just algebraic ma-
nipulations, derivatives and solutions of cohomology equations, which are the same for complex maps. Of course,
if f,,.c is such that for real values of the arguments it gives real values, the parameterizations K. and p. will also be
real for real values of the arguments.

® Throughout this paper we denote by N the set of non-negative integers, Z the set of integers, Z+ the set of posi-
tive integers, R the set of real numbers, R the set of positive real numbers, C the set of complex numbers, T the
standard torus R/Z.
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and the geometry. In particular, in section 4.7 we present the automatic reducibility, a key
ingredient of the proof of theorem 21, and in section 4.6 we prove that the center bundle has
to be trivial. In section 5 we provide the proof of theorem 21, while the proof of the local
uniqueness of the solution is given in section 6. The study of the analyticity domains in the
symplectic limit is presented in section 7. We also call attention to [CCdIL19b], which can
serve as a reading guide for this paper. We conclude the paper with appendix A on the proof of
the so-called closing lemma and its consequences, and appendix B on a remark on the exten-
sion of the results to non-Euclidean manifolds.

2. Some preliminary definitions and standard results

In this section, we collect some definitions and some elementary lemmas that will be used in
the formulation (and proof) of the results. Of course, this section may be considered mainly as
reference and could be skipped in a first reading.

2.1. Conformally symplectic systems

We start by introducing the definition of conformally symplectic mappings and flows (see, e.g.
[Ban02, CCdIL13, WL98]).

Let M = T" x B be a symplectic manifold of dimension 2n with B C R" an open, simply
connected domain with smooth boundary. We assume that M is endowed with the standard
scalar product and a symplectic form 2. We do not assume that €2 has the standard form. In
the study of the small dissipation limit we will assume that €2 is exact, but theorem 21 does not
need the assumption of exactness.

Definition 2. We say that f : M — M is a conformally symplectic diffeomorphism, when
there exists a constant A such that

Fa=aQ. @.1)

Remark 3. When n = 1, any orientable manifold is symplectic for any non-degenerate
2-form. If we allow that A is a function, any diffeomorphism is conformally symplectic.

When n > 2, any function A satisfying (2.1) has to be a constant for a connected manifold
M (see [Ban02)). It suffices to observe that

0=f*dQ =d(f*Q) =d(\Q) =dAAQ.

It is shown in [Ban02] that, when the dimension of the space is 4 or higher, the above im-
plies that d\ = 0 (a simple argument is just to use locally the Darboux form of €2).

Throughout this paper we always consider A constant since the whiskered tori we are con-
cerned with only appear when n > 2.

Remark 4. The constant A will be real when we consider real maps. It will be a complex
constant in section 7 devoted to the analyticity properties in €, where it is natural to consider
complex maps. In the physical applications, the complex maps are such that they take real
values for real arguments.

2.2. Expressions in coordinates

In some computations later, we will find it convenient to use matrix notation for the computa-
tions (recall that we are assuming that the phase space we are considering is Euclidean).
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We will consider the tangent of the phase space endowed with the standard inner product,
which does not depend on the base point (later in section 4.6, we will find it useful to use
metrics depending on the point).

Given a linear operator A : TtM — Ty M (where T, M denotes the tangent space of M at
x), we denote the adjoint A” as the linear operator from 7, M to T,M that satisfies

(u,ATv) = (Au,v) Vu € TTM,v€ TM.
Once we fix the inner product, we can identify the symplectic form €2 with an operator:

Qe (u,v) = (u,J,v) Yu,v € TLM. (2.2)
The asymmetry of the symplectic form means that

JI=—J,.

Using the identification (2.2) between the symplectic form and the operator J,, we see that a
map fis conformally symplectic if and only if

DfT (x)Jy 0 Df (x) = M . (2.3)

In this paper we will not assume that J, is constant or that it has the standard form

—-1d 0
hoods of fixed points, in the study of PDE’s, etc.

Jy = < 0 Id). Non-constant symplectic forms appear naturally in the study of neighbor-

Remark 5. The relation between the operator J, the symplectic form and the metric is
a very useful tool in modern symplectic geometry. We mention the books [BerOl, CdSO1,
MS17b]. A much deeper study of the applications of J as a complex structure is in [MS12].

In this paper, we will indeed use the relation between the operator J and the metric to ob-
tain a result on the global structure of the center bundle, namely, that it is diffeomorphic to a
product bundle, see lemma 26.

2.2.1. Exactness. We say that the symplectic form is exact when there exists a such that

Q=da.
A map fis exact when there exists a single-valued function G, such that
ffa—Aa=dG.

Note that the fact that the mapping is conformally symplectic can be written as
d(f*«a) = f*Q = Ada, which gives d(f*« — Aa) = 0. Hence, exact maps are conformally
symplectic.

When A # 1, the paper [CCdIL13] does not need exactness of the map to produce invari-
ant tori. Nevertheless, in the symplectic case (A = 1) it is well known that the exactness is a
necessary condition to have Lagrangian invariant tori which are homotopically non-trivial (the
case of maximal homotopically trivial tori is discussed in [FdIL15]).

Lower dimensional tori can exist in non-exact symplectic systems, but if the tori have some
non-trivial homotopy, one needs that some cohomology of f*a — « vanishes. The considera-
tions of exactness come into play only when we consider the symplectic limit in section 7.

For simplicity, in this paper, we will assume that f'is exact, even if parts of this assumption
can be weakened to the vanishing of some cohomology class of f*a — « depending on the
topology of the embedding of the torus.
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2.3. Diophantine properties

We will assume that frequency vectors of the whiskered tori satisfy the following Diophantine
inequality.

Definition 6. Letw € RY, d < n, 7 € Ry Let the quantity v(w; 7) be defined as

v(w;T) = sup (\62”"”’ — 1! |k|7T>, (2.4)
keZ4\{0} ’
where - denotes the scalar product and k| = |k| + ... + |kg| with ki, ..., k, the coordinates of

k. We say that w is Diophantine of class 7 and constant v(w; 7), if
v(w;T) < 00

We denote by D, (v, 7) the set of Diophantine vectors of class 7 and constant v.
For A € C, we define the quantity v(\; w, ) as

v(\w,T) = sup e2mikw _ A= kT
(iwr)= sw =K 2.5)

We say that A is Diophantine with respect to w of class 7 and constant ¥(\; w, 7) if

v(Aw,T) < 00.

Note that the quantity (2.5) makes sense for any complex number A. In theorem 21 we
will need only to consider A € R, but in theorem 39, we will use complex A. Note that when
|A| # 1, we have that ¥(\;w, T) < co. But, as A approaches the unit circle, depending on the
limit on the unit circle, the v could either become unbounded or remain bounded.

Note that the definition of A Diophantine with respect to w makes sense even if w itself is
not Diophantine (in particular if |A| # 1, A is Diophantine with respect to w for all w, even
rational ones). Of course, the Diophantine exponents of w and of A with respect to w are
independent.

In our applications, however, it is natural to assume both that w is Diophantine and that A
is Diophantine with respect to w. For simplicity of the notation we will only use a common
exponent that works both for the Diophantine exponent of w and for the exponent of A with
respect to w.

Remark 7. 1In the study of analyticity domains in section 7, we will consider w fixed, but A
will change. Hence, we prefer to think of ¥(A; w, 7) mainly as a function of A and think of w
as a parameter that remains fixed.

2.4. Invariant rotational tori

Let T C M be diffeomorphic to a torus. We say that T is a rotational torus for a map f,
when f(T) =T and the dynamics of f restricted to T is conjugate to a rotation. Precisely,
we start with the following definition of rotational invariant tori, non necessarily of maximal
dimension.

Definition 8. Let f be a differentiable diffeomorphism of M. For 0 <d < n, let
K : T¢ — M be a differentiable embedding. Let w € RY, denote by T,, : T¢ — T¢ the rota-
tion of vector w, namely T, (6) = 6 + w.

We say that K parameterizes a rotational invariant torus, if the following invariance equa-
tion holds:
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foK=KoT,. (2.6)

The relation (2.6) appears frequently in ergodic theory and it is described as ‘The rotation
T, is a factor of f’ or ‘The rotation T, is semiconjugate to f.

As it is well known [Mos67], to find an invariant torus with prescribed frequency of a
conformally symplectic system, we will need to introduce a drift parameter [CCdIL13] and,
precisely, we will consider a family f,, of conformally symplectic mappings. Then, we will
try to find a parameter vector y € RY and an embedding of the torus K in such a way that the
following invariance equation is satisfied:

fuoK=KoT,. 2.7

Note that the equation (2.7) is an equation for both y and K. The equation (2.7) will be the
centerpiece of our analysis. We will develop a quasi-Newton method for it, using the geomet-
ric properties of the map to analyze the linearization of (2.7).

2.4.1. Normalization. The equation (2.7) is underdetermined. Note that if (4, K) is a solution
of (2.7), then, so is (11, K o T,,) for any o € R¥. Note that this lack of uniqueness can be inter-
preted as choosing the origin in the space of the parameterization.

We will show that, in many cases, the choice of the origin of the parameterization is the
only source of local non-uniqueness. By choosing some normalization that fixes the origin,
we will show that one obtains local uniqueness (i.e. the normalized parameterizations of tori
which are close enough coincide) and, hence, one can discuss smooth dependence on param-
eters, etc. Of course, global uniqueness is false unless one makes global assumptions.

In section 6 we give a precise statement of the local uniqueness of the solution of the invari-
ance equation (2.7) under some normalization that fixes the origin of coordinates.

Before starting with the main results let us prove the easy result given by proposition 9.

If w is nonresonant (i.e. for any k € Z% \ {0}, we have w - k € Z), then {T"(6)} is dense
in the torus for any ¢ and the embedding K is almost uniquely determined as stated in the fol-
lowing proposition.

Proposition 9. Let f be a differentiable diffeomorphism of M. Assume that w € R? is
nonresonant. Let K, K, be continuous mappings satisfying (2.6) and their ranges have a non-
empty intersection. Then, there exists 0 € R such that

K1=K20Tg.

Proof. We can find 01,05 € T¢ such that K»(o) = K (02). Applying f to both sides and
using (2.6), we obtain K, (0] + w) = K (02 + w). Repeating the argument, we obtain that for
all j € N, K»(0) + jw) = K (02 + jw), which gives

K2(9)2K1(9+0’2—0’|), 9€{jw+01}jeN. (2.8)

Since {01 + jw}jen is dense in the torus and K|, K; are continuous, we have the equality
(2.8) for all 4 in the torus. O

2.5. Definition of function spaces

To make precise estimates on the quantities involved in the proof, most notably the error
associated to an approximate solution of (2.7), we need to fix a function space and a norm,
precisely the space and norm of analytic functions as in the definition given below.
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Definition 10. For p > 0 we denote by T¢ the set
TS ={z€C?/Z" : Re(z)) €T, [Im(g)| <p. j=1...d}.

Given p > 0 and a Banach space X, we denote by .A,(X) the set of functions from ']I“Z) to X
which are analytic in the interior of ']I‘i and that extend continuously to the boundary of ']I“;.
We endow A, with the norm

Ifllp = sup [f(2)],
ze'H‘;’J

which makes it into a Banach space.

For later use, we introduce the norm of a vector valued function f = (fi,....f,) as

W, = \/|[f1||% +...+ |[f,,||% and the norm of an n; X np matrix valued function F as
IF]lp = supycpez y1=1 \/Z:”:,(Zj"il |Fiill, x;)%. In this way, we have the customary ine-

qualities for the norm of the product of a matrix and a vector.

2.6. Cocycles and invariant bundles

In this section, we recall the standard definitions on growth properties of the products (2.9)
below. These properties are quite standard [SS74, Cop78, MSKO03]. The hyperbolicity of
cocycles—over more general systems than rotation—is treated specially in [CL95]. For a
pedagogical treatment, see also the expository chapters of [DV17].

Later on, in section 4, we will see that there is a deep relation between the growth proper-
ties of the cocycle and the conformal symplectic properties of the map. These properties are
somewhat surprising since they show an interplay between the dynamics and the geometric
properties of the tori. Quite notably, we will establish that the center bundle of a rotational
invariant torus is trivial in the sense of bundle theory. That is, it can be written as a product
bundle.

For the sake of notation, we will assume that M, the phase space, is an Euclidean manifold.
In that way, we can identify the different tangent spaces.

Since we are identifying the spaces, we can think of all the factors Df), o K o Tj,, as analytic
functions from T¢ to n x n matrices.

We will see that in our study of corrections to the invariance equation, to reduce the error
we are led to the study of products of the form

IV =Df, 0 KoT(j 1), X Dfy o KoT(j 2, % xDf, oK. (2.9)
This is a particular case of products of the form

T/ =0T 1w X 70T 2w X+ X7 (2.10)
when we take:

v(0) = Df,, o K(0) . 2.11)
Note that if the torus were invariant, then (2.9) would become

IV =Df} oK,

which makes it clear that the cocycle I'/ has a dynamical interpretation for invariant tori.
An important property of products of the form (2.10) is:
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/" =TV o T, I'. (2.12)

Products of the form (2.10) have been studied extensively in the mathematical literature
under the name of ‘quasiperiodic cocycles’ or ‘cocycles over a rotation’. The property (2.12)
is called the cocycle property. In this section, we will collect some properties of the cocycles,
specially the properties of asymptotic growth and exponential trichotomies [SS74, Cop78].

2.6.1. Exponential trichotomies. The asymptotic growths of the products (2.10) are important
for the study of the invariance equation. To clarify the notation, we denote by » the number of
degrees of freedom, n the dimension of the phase space, d the dimension of the invariant tori.
Notice that some inequalities in (2.14) below hold in the future, namely for j > 0, while oth-
ers hold in the past, namely for j < 0. This will be important in the sequel, e.g. in lemma 23.

Definition 11. We say that the cocycle (2.9) admits an exponential trichotomy when we can
find a decomposition

R" = E, ® E; ® E}, 6 eT? (2.13)
and rates of decay

A< A <AL <,
Ao <1 <Ay

and a constant Cy > 0 that characterize the decomposition:
vVEE) <« |TV(0)0| < CoM |v, j=0
vEEYS < [TV(0)v] < CoMoJo|, j<O

IT/(0)v] < Co(AF) [ol, j=0
(

veky = IT/(0)o| < Co(A7)[v], j<O. (2.14)

Remark 12. For the experts in Sacker—Sell theory, we remark that (2.14) can be expressed
as saying that the Sacher-Sell spectrum is contained in (—oo, A_| U [A\7, AT U [A4, 00). We

anticipate here that in applications A" and A\ are basically A (see section 4.8) and that Ay A
is approximately A (see section 4.3.1).

Note that we can extend definition 11 to a complex strip ’]1";. It is easy to see that in such a
case, the exponential trichotomy holds for real 6 as well as for 6 in an extension in the com-
plex domain.

We remark that the decomposition (2.13) is determined uniquely once one fixes the A’s, but
one could choose several \’s. Later the ambiguity will be eliminated by the requirement that
the dimension of Ej is 2d as in definition 20 and also that A_, A4 and ) are related.

We will refer to Cy and the rates A_, A\_, )\j, A+ as the constants characterizing the split-
ting. We will not introduce the dependence of these quantities on the splitting in the notation.

Even if we assume that the space is Euclidean, we allow that the invariant sub-bundles are
not trivial in the sense of bundle theory. That is, they are not isomorphic to a product bundle.

It will be convenient for notation to consider trichotomies as just a pair of dichotomies

R" = E* @ E*
RY =E' O E, 2.15)

where we denote by E° = E° @ E" (§ stands for the symbols that are not s). We use similar
notations for other symbols.
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The dichotomies in (2.15) are also characterized by rates of growth. If we have both dichot-
omies, we can reconstruct the spaces in the trichotomy taking Ef = Ej N Ep.

2.6.2. General properties of splittings and their distances. Given a splitting of the Euclidean
space as in (2.13), we denote by II}, IIg, ITj the projections corresponding to the spaces in the
splitting. Note that the projections HSH/ ¢/" depend on the whole splitting, but we do not include
this in the notation.

We can think of II7 both as mappings from R" to R" or as mappings from R" to Eg. The
advantage of the former is that we can compose mappings corresponding to different split-
tings. We will not always emphasize the interpretation that is taken.

The space of possible splittings is related to the Grassmannian [MS74]. In this paper, in an itera-
tive step, we will need to refine the splittings. Hence, it will be important for us to give an efficient
description of the splittings close to another one and also give precise definitions of how close
splittings are and define the convergence. Of course, for our applications, some smoothness consid-
erations will be needed and the norms involved in the measure of distances will be smooth norms.

2.6.3. Explicit description of a neighborhood of splittings. Given a splitting E and another
splitting E close to it, we can write uniquely each of the spaces in E as the graph of a func-
tion from the corresponding space in E to the complementary spaces in E. That is, we can find
linear functions A§ : E§ — EJ (recall that EY denotes the sum of the spaces in the splitting
which are not indexed by o) in such a way that

Ej ={veR"v=x+Ajx|xeEj}. (2.16)

In the sequel we fix once and for all an analytic splitting that we will call the ‘reference
splitting’, and we will describe all the splittings we use in terms of the A? as in (2.16).

In our application, we will see that we can take as the reference splitting the initial approxi-
mate splitting in the hypothesis of theorem 21. Under the assumption that the initial error is
small enough, we will see that all the splittings that appear during the iterative procedure are
inside the neighborhood of maps that can be described as in (2.16).

It is useful to think of (2.16) as providing a system of coordinates of a neighborhood of the
reference splitting in the (highly nonlinear) space of all splittings.

2.6.4. Several notions of distance among bundles and splittings. In Grassmannian geometry
[MS74] it is customary to define the distance between subbundles of an ambient bundle, by
fixing a metric in the ambient bundle (in our case, the ambient bundle will be the tangent space
to the phase space) and introducing the orthogonal projection Pﬁe, where Ey is the fiber of a
bundle E over 6.

For p > 0, the distance between two subbundles E, E of the ambient bundle is defined as:

dist,(E,E) = || Pz, — P3|l - (2.17)

Note that the intrinsic distance between two bundles depends just on the bundles them-
selves and they do not depend on whether they are part of a splitting.

The distance between two splittings of the tangent space into bundles can be measured by
the maximum of the distances between the corresponding bundles that give the splitting. Later
we will discuss other notions of distance among splittings.

In our case, we will consider bundles based on a parameterization as || - || ,, analytic norms
in a complex extension of the torus as in definition 10. This will induce an analytic distance
between bundles based on a parameterization.
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Other equivalent ways of measuring the distance among splittings. It is clear that (2.17) sat-
isfies the triangle inequality and it is indeed a distance. As we will see later, for our application
there will be other quantities (not distances) which bound (2.17) from above and below, but
which are easier to compute. We will also need to study upper bounds for the distance between
splittings and how they change when the problem changes. We will try to work with the pro-
jections corresponding to the splitting II? and not with the orthogonal projections.

We can also use as a measure of the distance between the reference splitting and a splitting
given by (2.16), the quantity

max 1Ag1]s (2.18)

where again || - || stands for a smooth norm. Note that we are thinking of the linear maps A§
as mappings from Ef to R".

More generally, if we fix a reference splitting, given two splittings E{, EJ that can be
parameterized by giving the mappings Ag,, A7, as above, the quantity

max [[Ag; —Ag,|| (2.19)

gives a measure of the distance of the splittings.

Note that (2.18) and (2.19) are not distances. Nevertheless, they can be used in place of a
distance in the sense that, in a small neighborhood in the space of splittings, there are con-
stants that bound one in terms of any of the others. The reason for this equivalence is that there
are algebraic expressions giving each of Pz, TI%, AJ in terms of the others, see [DV17].

2.6.5. Standard properties of splittings satisfying (2.14). One of the consequences of (2.14)
(see [Cop78]) is that the splittings depend continuously on 6 (actually in Holder fashion) and,
hence that the projections I1?, o = s, u, ¢, are uniformly bounded, see [SS74]. Using the fact
that the dynamics on the base is a rotation, we will later bootstrap the regularity of the split-
tings to analytic (see [HdIL19]). The Holder continuity remains valid (and is optimal) if the
dynamics on the base is more complicated than a rotation.

Another (slightly non-trivial’, see [SS74]) consequence of (2.14) is that the bundles char-
acterized by (2.14) are invariant in the sense that:

W(G)Eg = Eg-i-w .

2.6.6. Approximately invariant splittings. Given a splitting Ej @ Ej ® Ej and a cocycle, v(6),
we define

ve? =T, (0T . (2.20)
The splitting is invariant under the cocycle if and only if
fyg"” =0, o#o .

Again, we note that we can think of the fy""’/ either as linear maps in R” or, more geometri-
cally, as maps from E? to E7. Thinking of them as maps in R” allows us to compare maps in
different spaces and will be useful in perturbative calculations.

Hence, it is natural to measure the lack of invariance of the splitting under the cocycle ~y by

"The result would be trivial if the characterization was valid for any C rather than a different number. The key of
the proof is to show that one can redefine the norms in such a way that Cy = 1 and that the norm of the operators is
also small.
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Zp(V.E) = ,nax g llp» (2.21)
ool
where || - ||, is the supremum on T4, The choice of a smooth norm is consistent with what we
will do in the paper, but of course, other smooth norms could also be considered.

We note that given a splitting specified with some finite error and some ~y also specified
with a finite error, it is possible to obtain error bounds for (2.21) with finite calculations. In
particular, they can be verified with computer assisted proofs.

The following definition taken from [DV17], formulates a notion of approximately invari-
ant splittings and approximately hyperbolic cocycles.

Definition 13. Given a cocycle «y and a 3-splitting E = Ej; ® Ej @ Ejj, we can write the
cocycle in blocks as in (2.20).

We say that the splitting is n approximately invariant if

max 1767 llo < - (2.22)

o0l €{scu}
ool

We say that the cocycle is approximately hyperbolic with respect to the splitting E, if the
cocycle

% 0 0
Yo = 0 v 0
0 0 "

satisfies the trichotomy properties in definition 11, with ~5*? defined in (2.20).

We again note that the notion of measurements of approximate invariance involves the use
of a smooth norm to measure the distance.

2.7 The closing lemma for approximately invariant splittings

In this section, we present and prove a result generalizing slightly and making more precise
proposition 5.2 of [FdILS09a]. The main result in this section is lemma 15 that roughly says
that if a splitting is approximately invariant (with a sufficiently small error) for a cocycle and
the cocycle is approximately hyperbolic for this splitting in the sense of definition 13, then
there is a true invariant splitting. The proof of lemma 15 will be given in appendix A, where
we present very detailed estimates.

For the applications we have in mind, it will be important that the size of the corrections of
the bundles needed to make them invariant can be bounded by the error in the invariance and
that the constants involved in the lemma can be chosen uniformly in a neighborhood of split-
tings and cocycles. We have included these precisions in the statement of lemma 15.

The ideas of the proof are standard among the specialists in hyperbolic dynamical sys-
tems. The basic idea is that we use the parameterization of splittings by the mappings Ag as
in (2.16), formulate an invariance equation and manipulate it in a form that can be shown to
be a contraction in appropriate spaces. After that, we will need to estimate the changes in the
hyperbolicity characteristics.

If we fix a reference splitting E = E* ® E° @ E", we can parameterize all the splittings
close to it by a triple of linear functions as in (2.16). Note that we are not assuming that
the reference splitting is invariant, but we will assume it is approximately invariant. The
results described below will hold for a sufficiently small neighborhood of the splittings in the
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Grassmannian space. More precisely, we will consider splittings that can be expressed as in
(2.16) with sufficiently small ||AZ].

Remark 14. 1In our application to KAM theorem, we can take as the reference splitting the one
in the first iterative step. As we will show, if the error in the first approximation is small enough, all
the splittings remain in this neighborhood. This smallness condition in the first approximation will
be one of the conditions that appear in the final smallness conditions of our main result.

Lemma 15. Ler v be an analytic cocycle over a rotation defined on ']I‘Z. Assume that
7], < My for some M, > 0.

Assume that we have fixed an analytic reference 3-splitting E¢ defined on ']Tﬁ. Assume that
the cocycle is approximately hyperbolic and that the splitting is 1y approximately invariant
with ny sufficiently small.

We denote by U a sufficiently small neighborhood of this splitting, so that all the splittings
can be parameterized as graphs of linear maps Ag as in (2.16) with ||Aj||, < M, for some
M, > 0.

Let E be an analytic 3-splitting in the neighborhood U.

Assume that E is n) approximately invariant under ~y and that ~y is approximately hyperbolic
for the reference splitting in the sense of definition 13.

Assume that 0 is sufficiently small (depending only on the neighborhood U and M>).

Then, there is a locally unique splitting E invariant under -y close to E in the sense that

dist,(E,E) < Cn

Jor some constant C > 0.
The splitting E satisfies a trichotomy in the sense of definition 11.
The constant C can be chosen uniformly depending only on M|, M.

We stress that lemma 15 does not require any non-resonance condition on the frequency w,
but it is quite important that the dynamics in the base is a rotation.

Note that there is no domain loss. The changes required are in same spaces where we
assumed the error. This is because the proof of lemma 15 will be just an application of the
contraction mapping theorem, so it does not incur in any loss of domain. If the dynamics on
the base of the cocycle was not a rotation, we could not be using analytic regularity.

The proof of lemma 15 is given in appendix A. It is based on formulating a functional
equation for the quantities A? given in (2.16). For future use, it is convenient to mention now
that after some manipulation one is led to solve the following equations for the dichotomy
between s, § spaces:

) Ao (08 +5"43) 5] =45,
R N FE- . N A
55 + b — A A (V) =46 (2.23)
and the following equations for the dichotomy between u, i spaces:
A A+ A () = A

(1) [y (7 + viak) — 57| = A (224
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2.71. Estimating the change of hyperbolicity properties in terms of the change in the
cocycles. Inlemma 15 we showed that given an approximately invariant splitting satisfying
the hyperbolicity conditions in definition 13 there is a truly invariant splitting; we estimated
the distance between the approximately invariant splitting and the truly invariant one and the
diagonal blocks of the cocycle.

The goal of this section is to obtain estimates on the hyperbolicity properties of the new
cocycles in terms of the size of the changes. Estimates are, of course, not unique and we find
it interesting to provide several versions which may be useful in different circumstances. In
our case, hyperbolicity properties involve rates and constants and there are trade—offs among
them. Note that in contrast to [SS74] we do not study optimal rates, but only bounds on the
rates.

In lemma 16 we provide simple, but generally applicable, estimates and in lemma 17 we
provide more quantitative estimates. We will use lemma 16 to justify the repeated application
of our Newton step and to obtain estimates of the change of the splitting and the diagonal
blocks of the whole process. Then, we can apply lemma 17 to obtain information on the
change experienced in the whole Newton process.

We now need to introduce the following notation. Given  as in (2.11), we denote
75(0) = (0 + jw) so that

I (0) = T5(6). (2.25)

where T = I and I'}"() = Ty o Ty, (6).
We will assume that for some Cp, £ € R

T, < Co€™ . (2.26)

Note that multiplying the generator of the cocycle by a constant number a (hence the I'}" in
(2.26) is multiplied by @"/), we can arrange that the quantity £ which measures the growth
of the cocycle satisfies & < 1. The multiplication by a constant does not change the invariant
spaces and only changes the smallness conditions by a constant. B

We want to investigate conditions on ||y — ||, such that we can ensure that I" obtained by
iterating as in (2.25) satisfies (2.26) for other constants Co, .

A general estimate on changes of hyperbolicity properties is given by the following result,
whose proof is given in appendix A.

Lemma 16. Assume that I" obtained from a cocycle v satisfies (2.26). Let ¢* > 0 and let 4
be a cocycle such that

Iy =3l < &%

then, there exist Co and € such that ||f’"||p < Coé™.
A more quantitative estimate on changes of hyperbolicity properties is given by the follow-
ing result, whose proof is given in appendix A.

Lemma17. With the notations of lemma 16, let a = ||y — 7|| , be small enough, say a < 4L

Co®
Then, we can take & = & + Ca with an explicit constant C.
Furthermore, recalling that p is the drift parameter entering in (2.21), the quantity
Co = Co(Co, pi, @) in lemma 16 can be bounded as

Cy < 4C§a§1i ) (2.27)
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An important corollary of lemma 15 is the following.

Corollary 18. If the reference splitting is approximately hyperbolic in the sense of defini-
tion 13 for some cocycle 'yg, then for all the ~’s in a neighborhood of 'yg, there is a (locally
unique) invariant splitting which is hyperbolic and the hyperbolicity constants can be chosen
uniformly.

Remark 19. The estimates on the hyperbolicity constants in (2.27) of lemma 17 involve
choices. One can make Cy change or A’s change.

Much of the theory (e.g. [SS74]) is concerned with the optimal A’s. Note that, even for
constant 2 x 2 cocycles, the optimal A can change with a fractional power of the perturbation.
Once we choose a slightly less optimal A’s we can make the change to be linear in the pertur-
bation. Of course, the range of validity, may be smaller if the chosen upper bound is close to
the optimal one.

Note that, the Cy depends on the choice of metrics—but the rates A\, do not. Indeed, it
is customary in the theory that deals with perturbations to observe that we can choose an
‘adapted metric’ such that Cy = 1. Of course, the size of the perturbations allowed is meas-
ured in this metric and, when Cy increases, the adapted metric becomes more inequivalent to
the original one and the perturbations allowed may decrease.

Numerical explorations [HAILO7, HdILO6a] suggest that if one fixes a metric and studies
the optimal rates A’s and the optimal Cy, there is a very interesting scenario for the loss of
hyperbolicity called ‘bundle collapse’. In this scenario, the rates A’s remain bounded and the
Cy explodes. This scenario empirically presents remarkable scaling properties. The bundle
collapse scenario is particularly important in the breakdown of KAM tori in conformally sym-
plectic systems (see [CF12]). The papers [HAILO7, HdILO6a] presented numerical conjectures
of the blow-up of the optimal values of the rates and of the geometric properties of the bun-
dles. These conjectures were recently proved in several cases in [BS08, OT17, FT18, Tim18].

We think it would be interesting to study the breakdown of hyperbolicity in conformally
symplectic systems. It seems possible that the limit of zero dissipation will have some inter-
actions with the previously studied phenomena. For these numerical implementations, the a
posteriori results and the fast algorithms developed here are likely to be useful.

2.8. Whiskered tori
The main result of this paper concerns whiskered tori, which are defined as follows.

Definition 20. Let f, be a conformally symplectic system with conformal factor A of a
symplectic manifold M (compare with [BT]).

We say that K : T — M is a whiskered torus when:

(1) K is the embedding of a rotational torus, thatis, f, o K = K o T,,.

(2) The cocycle Df,, o K over the rotation T, admits a trichotomy as in definition 11 with the
rates A, A7, A\ AT, A

[RAT I RATRAT )

(3) The spaces E€ have dimension 2d.

Somewhat surprisingly there are relations between the conformal symplectic properties,
the rates and the properties of the bundles. They will be explored in section 4. Notably we
will show that if an embedding satisfies definition 20, then it is isotropic, there are relations
between the rates of growth and, more surprisingly, the E¢ bundle is trivial.
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3. Statement of the main result, theorem 21

The main result of this paper is an a posteriori result about solutions of a parameterized ver-
sion of (2.7).

As motivation for the hypothesis of theorem 21, assume that K, p satisfy approximately
(2.7) with a small error term e, i.e.

JuocK—KoT,=e.

If we want that K + A, u + (3 for some corrections A, (3 is a better solution, the Newton—
Kantorovich method would prescribe to choose A, (3 satisfying

Df, o KA —AoT, + (Duf,) o KB = —e. 3.1

If one tries to solve (3.1) by iterating, one is quickly led to the cocycles that were discussed
in section 2.6. Hence, it is clear that the asymptotic growth of the cocycles plays a role.

As it turns out, the geometry of the problem plays also a very important role and one of
the most surprising facts is that the conformal symplectic geometry leads to constraints on
the rates of growth. These interactions of the geometry with the dynamics will be explored
in section 4. We anticipate that the most important results will be a surprising triviality result
for the bundle of vectors with intermediate slow decay and the ‘automatic reducibility’ that
constructs a natural system of coordinates in which the linearized equations are very simple.
In this paper we go beyond the results in previous papers and show in lemma 26 that the center
bundle is trivial.

Using the geometry, we will show that the equations (3.1) can be solved. As mentioned
in section 1, the result is a very efficient algorithm. Of course, the a posteriori format of the
theorem gives an analytical support to the results.

Given the important role played by the geometry, it is clear that the limit when the geom-
etry changes from conformally symplectic to symplectic is very singular. In section 7 we will
study this singular limit in which the dissipation becomes weak.

The following theorem 21 on the persistence of whiskered tori is the main result of this
paper. Later, we will use it to obtain information on the analyticity properties of the tori under
dissipative perturbations (see theorem 39).

We will consider specially the case 0 < |A| < 1, but theorem 21 can be stated as well for
|A| > 1, just taking the inverse of the mapping. In the discussion of analyticity properties with
respect to perturbations, we will need to consider even complex values. We will also consider
the case A = 1, but, as pointed out in [CCdIL17], the case of complex A with [A\| = 1, A # 1
requires special considerations. Indeed, when A is a root of unity, we do not expect that the
solutions persist in general. Indeed, for generic perturbations, it is impossible to find even
formal asymptotic expansions.

Theorem 21. Let w € Dy(v,7), d < n, as in (2.4), let M be as in section 2.1 and let
fut M =M pe R, be a family of real analytic, conformally symplectic mappings as in
(2.1) with 0 < A < 1. We make the following assumptions.

(H1) Approximate solution:

Let (Ko, po) with K : T¢ - M, Ky € A, and iy € R4 define an approximate whiskered
torus with frequency w for f,, such that

Hfuo oKy —Kpo Tw”p <<€ (3.2)
for some £ > 0.
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To ensure that the composition of f,, and K can be defined, we will assume that the range
of Ky is well inside the domain of f,, for all y sufficiently close to p.

We will assume that there is a domain U C C"/Z" x C" such that for all py such that
Il — ol < fu has domain U. Moreover, we assume that the range of Ky is inside the
domain U:

dist(Ko(T4),C"/Z" x C"\U) > . (3.3)

(H2) Approximate splitting:

For all the points in the torus, there exists a splitting of the tangent space of the phase
space, depending analytically on the angle 6 € 'ﬂ“;.

These bundles are approximately invariant under the cocycle v(0) = Df,,, o Ko(8), namely
the quantity in (2.21) is smaller than &, for some &, > 0.

(H3) Spectral condition for the bundles (exponential trichotomy):

For all 6 € ']Tg the spaces in (H2) are approximately hyperbolic for the cocycle v(0) (see
definition 13). We recall that this just entails that the diagonal cocycles have different rates of
growth and hyperbolicity constant that satisfy (2.14).

(H3') Since we are dealing with conformally symplectic systems and are interested in the

almost symplectic limit, we will also assume®’:

A<My <AL, AN <A AT <ALA.

c
(H4) We assume that the dimension of the center subspace’’ is 2d.
(H5) Non—degeneracy!:
Denote by J. the operator J restricted to the center space (we will show in lemma 23 that
J. is a non-degenerate matrix).
Let

N(#) = (DK(0)"DK(0)) ", (3.4)
P(9) = DK(0)N(0),

x(0) = DK(0)T(J°) ' o K(0)DK(0) .
Let M, S be auxiliary quantities defined as

M(0) = [DK(0) | (J°) ' o K(0) DK(0)N(8)] (3.5)
and
S(0) = PO+ w)'Df, o K(0)(J) ™" 0 K(O)P(O) — N(6 +w) x (0 + w)N(@ +w) Alds.  (3.6)

We assume that the following non—degeneracy condition is satisfied, precisely that the ma-
trix S defined below is invertible:

8 As we will show in section 4, the interaction between conformally symplectic systems and the exponential tri-
chotomy implies further restrictions which follow from the present assumptions.

9 Note that we have used X for the conformal factor and ), for the different bounds on rates. Even if these are con-
ceptually very different things, we will show that they are related. This justifies using similar letters.

10 The content of this assumption is that the dimension of the center bundle is exactly twice the dimension of the
invariant torus. As we will show later, the dimension has to be at least twice.

"' The idea of the condition is that a very explicit 2d x 2d matrix is invertible. We will formulate it here in detail,
but the main point is that the condition can be verified with a finite computation on the approximate solution and the
approximate bundles given in (H1) and (H2).
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( s S(W§)0 4 A§
(A= 1)Id, AS

- ) det S # 0, 3.7)

where the bar denotes the average, Zc, Zg denotethefirstd andthe lastd rows ofthe2d x d matrix
A = [AS|AS] = M~ o TD,ify, o K, (Wy)° is the solution of \(Wg)® — (W5)° o T, = —(A5)",
where (Zg)o = Zg —XE

Let 1) be an explicit number (see the discussion later for the values that come from the
proof). Assume that for some §, 0 < § < p, we have

E <&, £,

where &, £ are explicit functions given along the proof and depending on the following
quantities:

v, 7, Cos A A, AE A T,

¢ e
|DKoln | (DKS DK0) S| marx. — sup D7l 68
T=0L2 ol <o
Then, there exists an exact solution (K, . ), such that
fuoK.—K,0T, =0
with
[Ke — Kollp—2s < CES™T,  |pe — po] < CE, (3.9)

where C is a constant whose explicit expression can be obtained from the proof and which
depends on the same variables as &, E™.

Furthermore, the invariant torus K, is hyperbolic in the sense that there exists an invariant
splitting

7;(‘,(9)/\/1 =E) ® Ey D Ey,

that satisfies definition 11.
The splitting of the invariant torus Il is close to the original one 1l in the sense that, for
some constant C > 0, one has

[T/ = T0/ ) 25 < C(E6™T + &) (3.10)

(as remarked above, this is equivalent to the analytic Grassmannian distance).

Moreover, the hyperbolicity constants corresponding to the invariant splitting of the invari-
ant torus (which we denote by a tilde) can be taken to be close to those of the approximately
invariant splitting of the approximate invariant torus assumed to exist in (H1) and (H2):

e — Ai| S C(ESTT + &),

~ (3.11)

NE= A< CETT+8).

The proof of theorem 21 is postponed to section 5, since we devote section 4 to discuss

some properties stemming from the geometry of conformally symplectic systems. Later in

this paper, we will present other results. Notably, we will study the domain of analyticity of
the tori for the small dissipation regime (see theorem 39).
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We also obtain explicit estimates on the new hyperbolicity constants Cy, but they are too
cumbersome to state now (see lemma 17 for more detailed estimates on the new hyperbolicity
constants).

3.1. Some remarks and comments on the statement of theorem 21

We collect in this section some useful comments on the content of theorem 21 and comparisons
with other results in the literature.

e Note that the non-degeneracy quantities in (3.8) are quantities that can be estimated just
on the approximate solution. For j < 2, the only global property of the function needed
is an estimate on supj,,_ o<y, |1P’f;.[ls and we do not need delicate global properties of
the map such as a global twist condition.

e Note that theorem 21 is stated without any reference to an integrable system. We just need
an approximate solution of the invariance equation.

e We are not assuming that any of the invariant bundles are trivial (but we will show that the
center bundle is trivial as a consequence of the other hypotheses).

e The twist non-degeneracy condition (H5) is just that a very explicit 2d X 2d matrix is
non-degenerate. This matrix is formed by the derivatives of the approximate solution,
performing algebraic operations and averages. It can be computed with a finite number of
computations from the approximate solution.

e The above formulation gives a very transparent proof of several ‘small twist results’. One
can construct perturbative expansions that satisfy the invariance equation to arbitrarily
high powers of the perturbation parameter. At the same time (performing calculations)
one can prove that the twist, hyperbolicity, etc, start to grow like a finite power of the
perturbation. Then, the theorem will imply the existence of a solution.

Another application included in this paper is that we will prove small hyperbolicity
assumptions, see theorem 39.

Another non-degeneracy assumption we will need is that the matrix M introduced in
(3.5) is invertible if the initial error is small enough. We will also show that the iterative
procedure maintains the uniform bounds in M~!. In computer assisted proofs, and more
explicit treatments, it is advantageous to obtain precise estimates for M~ at the initial
step.

e The hypothesis (H5) is analogue to the Kolmogorov non-degeneracy condition.We note
that if A = 1—the symplectic case—then, the condition just becomes S being invertible.
For an integrable system, this is the Kolmogorov non-degeneracy condition.

e The condition (H5) is not a global property of the map. It is only a numerical condition
evaluated on the approximate solution. It can be readily computed by taking derivatives,
performing algebraic operations and taking averages.

e It is possible to use the method of [Mos67] or the method of [Yoc92, Sev99] to obtain
the result under much weaker non—degeneracy conditions than (HS5) such as Riissmann
non-degeneracy conditions.

The proof of this result is particularly transparent taking advantage of the a posteriori
format which gives very easily the dependence on parameters.

e We note that, thanks to lemma 15, instead of the approximate invariance of the splitting
included in (H2), we could have assumed that the approximately invariant torus has an
invariant splitting.

We have chosen the present formulation to emphasize that all the hypotheses of theorem
21 can be verified from an approximate solution with just a finite precision computation.
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e We have treated separately the smallness conditions in the invariance of the torus £ and
the smallness condition in the invariance of the hyperbolic splitting &,. As we will see,
the error in the invariance of the hyperbolic splitting can be eliminated with a contraction
point argument. Eliminating the error £ requires a Nash—Moser iteration to beat the small
divisors that appear.

e The proof of theorem 21 will be based on describing an iterative process which leads to a
very efficient algorithm. To obtain an algorithm from the proof of theorem 21, one needs
to present also descriptions of the discretizations of the bundles and finite calculations
that allow to verify the hypotheses. These algorithmic details are presented in [HAILS11]
for the symplectic case and they do not need to be modified in our case.

e The error in the hyperbolicity plays a very different role than the error in the invariance
in the iterative process. We could think of the hyperbolicity as a preconditioner for the
Newton method for the invariance equation. As we will see, the iterative step has an
upper triangular structure. The error in the invariant splittings can be eliminated without
affecting the embeddings. On the other hand, if we modify the embedding K and the drift
i, we modify Df), o K and have to correct for the invariant embedding. This elementary
remark will be important for the study of Lindstedt series in section 7.

e The conformal symplectic properties of the map imposes many relations between the
properties of the invariant splitting. These will be discussed in section 4.

e Notice that when |A| # 1, the invariant torus is normally hyperbolic since the center direc-
tion, as remarked above, has the conformal factor A as the multiplier.

This observation allows one to obtain several results, slightly weaker than theorem 21.

(i) Using a posteriori formulations of the theory of normally hyperbolic invariant mani-

folds [BLZ08, CZ11], we obtain from the hypotheses on the approximate invariance
and the approximate invariant splitting that there are smooth invariant tori for all
perturbations (no need to adjust the drift!). Of course, we do not know that the motion
in the manifold will be conjugate to a rotation.
If we change the drift, using the theory of [Mos66] we obtain, under some non-degen-
eracy conditions that, for appropriate choices of the drift, the motion on the torus is
conjugate to a rotation. We refer to [CCFdIL14] for more details on the argument
and for an application of this strategy to discuss phase locking and other situations
when the motion is not conjugate to a rotation. Notice that this method produces only
finitely differentiable objects and not analytic ones as the present method. Also, the
algorithms they give rise are very different.

(i1) An alternative approach is in [CH17b], which deals with normally hyperbolic tori
using the fact that in the stable and unstable directions we can use an iterative method
to solve the linearized invariance equation. For the tangent directions one needs to
adjust parameters to solve the conjugacy equation. Notice that this method is different
from the normally hyperbolic method, since it produces analytic manifolds but needs
to adjust parameters. This technique leads to very efficient numerical methods that
have been implemented in [CH17a].

(iii) Note that the above mentioned approaches do not require (and do not take advantage
of) the conformally symplectic geometry. This generality is useful for some models
of friction in which the friction does not lead to a conformally symplectic system. The
limit of weak dissipation in such cases seems a challenging problem.

(iv) On the other hand, we note that these methods have estimates that blow up as A goes
to 1, whereas the method of this paper leads to a comfortable study of the small
dissipation limit. Indeed, one of the main results of this paper is the study of the
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analyticity domain in the zero dissipation limit, see section 7. One of our motivations
was precisely the studies in celestial mechanics where the dissipation is indeed small
and the zero dissipation limit is very relevant.

e It is important to remark that Ay, A_, A+, A\ appearing in (H3) are only upper bounds.
Hence, they are not uniquely defined. When we consider such values optimal, we obtain
the Sacker—Sell spectrum [SS74]. The pairing rule provides relations between the bounds,
but they become equalities for the optimal values.

4. Some consequences of the geometry

4.1. Introduction

In this section, we present consequences of the conformally symplectic systems and the tri-
chotomy assumptions for an (approximately) invariant torus with an (approximately) invariant
splitting.

The geometrically natural arguments (leading to the sharper results) happen when the torus
is invariant and the bundle is invariant. The main reason is that we need to compare vectors
and forms in f(K(6)) and in K(f + w). An alternative to invariance, is that 2 is constant. Of
course, our iterative process to improve approximate solutions, needs to take advantage of
the geometry for the approximate solutions, which are slightly weaker than the geometrically
natural ones.

Hence we will introduce provisionally the hypothesis (HI) below to be able to carry out
geometrically natural arguments. In section 4.9, we show how to remove this assumption.

(HI) Assume either:

(HLA) K is an embedding of the torus satisfying (2.6) and E is a splitting of the
tangent bundle to the phase space invariant under the cocycle Df o K(0)
under the rotation w.

(HLB) The phase space is Euclidean and the symplectic form {2 is constant.

In many practical applications the case B) in the alternative above holds.

Of course, in the iterative step of the KAM theorem, we cannot assume (HI.A), that the
torus is invariant. The assumption (HI.A) is natural in the development of Lindstedt series that
will take place in section 7.

The removal of (HI.A) in section 4.9 will be obtained just by examining carefully the geo-
metrically natural argument and adding some extra terms that are controlled by the invariance
error and its derivatives.

4.2. The results in this section

The first result we will present is the well known pairing rule [DM96b, WL98], which relates
the stable/unstable exponential rates (see section 4.3).

In section 4.4 we show the isotropic property of invariant tori, namely that the symplectic
form restricted to the torus is zero.

We will also show that, because of the conformally symplectic structure, we have that the
symplectic form restricted to the center is non-degenerate, see lemma 23 in section 4.5.

A rather remarkable result obtained here is that the center bundle has to be trivial, see
section 4.6. This solves a question raised in [FdILS09a], which constructed examples where
the stable and unstable bundles were non-trivial. The automatic reducibility is discussed in
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section 4.7 and some consequences in section 4.8. Geometric identities for approximately
invariant tori are presented in section 4.9.

4.3. Geometry and rates

The conformal symplectic properties of the maps imply constraints on the rates assumed in
(H3). In this section, we develop two of them: the pairing rule and the rigidity of rates in the
center. These properties will not be used in the proof of theorem 21 and, hence, can be omit-
ted, but we include them since the method of proof is useful in other parts of the paper.

4.3.1. The pairing rule. 'The paper [DM96b] studies the effect of the geometry on eigenvalues
of a finite number of particles subject to a scalar potential at constant kinetic energy; the paper
[WLO8] studies the effect on the Lyapunov exponents of cocycles. In our case, we want to
study the relation with the optimal rates appearing in (H3), which are known also as Sacker—
Sell spectrum [SS74]. We note that the paper [WL98], since it worked with general cocycles,
did not take advantage of the fact that, for diffeomorphisms, the factor has to be a constant
when n > 2 (see the argument after definition 2). Therefore, some of the formulas in [WL98§]
can be simplified for the applications of this paper. We will revisit a more detailed comparison
with these papers in [CCdIL19b].
The key observation is that since

Q(Df" (x)u, Df" (x)v) = N"Q(u,v),
then, if |Df"(x)v| < C\" |v] for any n > 0, we should have
|Df" (x)u| > CIN' A" Q(u,v) |v\*1

for some positive constant C. That is, if there is a vector that decreases exponentially fast,
there should be others which grow faster than the rates.

Hence, if there is a vector with Lyapunov multiplier smaller than A, there should be another
one with Lyapunov multiplier bigger than A By reversing the argument we obtain that the
set of Lyapunov multipliers {)\,-}izi | should satisfy the pairing rule

Ai digd = A “4.1)

(compare with the corresponding formula in [WL98], which involves an integral of log \).
We remark that our desired result is different than that of [WL98], since we want to obtain
uniform bounds rather than Lyapunov exponents.

In our case, we can obtain uniform bounds on the growth, using corollary 25 below and
other elementary arguments.

Remark 22. There are more general arguments in Sacker—Sell theory, relating the edge
of the Sacker—Sell spectrum and the supremum of Lyapunov exponents of all measures (see
[SS74]). We will not emphasize those arguments, since we will not use them.

We note that for every x and any u € E¥, |u| = 1, there exists v € E, |[v| = 1, such that
Q(u,v) # 0 (see corollary 25 below). Using the continuity and compactness of T¢ and the
spheres in the unit bundle, we obtain

inf inf inf | (u,0)| = ¢

x€K(T4) uEE;‘((_\_),|u|:l UEE;((X),|ZI|:1

for some positive constant (. Therefore, given u € Elf((x)’ we can choose v € Ej((x) such that
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|DF" (K (x))u| = CCONZ)"|ul - (4.2)

Using that the bounds (4.2) are uniform, we see that given u € E}‘((x),
Df(K(x))u and obtain

IDF " (K (x))ul < €TINS ul -

we can apply them to

Therefore, under the assumption that A+ is optimal, we obtain that we should have

AT <
By applying a similar argument to the bounds along the stable direction, we obtain the other
inequality, A\™'A_ = A4, which leads to (4.1), that is \_\T' = X for the optimal values.

4.4. Isotropic properties of rotational invariant tori

The isotropic property means that the symplectic form restricted to the invariant torus is zero.
To establish that rotational tori are indeed isotropic, we note that by the invariance equa-
tion (2.7) we have

KfQ=T,K*Q.
Since f, is conformally symplectic, according to (2.1) we have
AK*Q =T K*Q (4.3)
and if [\| # 1, we obtain by iterating the relation (4.3) (either in the future or in the past) that
K*Q =0,
thus proving that the tori are isotropic.
In the case that A = 1 (this is a case that has been discussed in [BHS96]), it is required that
w is non-resonant and that the symplectic form is exact. We note that, under the non-resonant
hypothesis, we obtain that K*() is given by a constant matrix. Moreover, if 2 = do, we have
K*Q) = K*da = dK*«. The only exact form on the torus with a constant matrix is 0. Note
that in the case that || # 1 we do not need that the symplectic form is exact, nor that w is
nonresonant to conclude that the rotational tori are isotropic.
In section 4.5, we will see that approximately invariant tori are also approximately iso-
tropic. In the A = 1 case it requires that w is Diophantine.

In coordinates, the isotropic property of the invariant torus, using the matrix J defined in
section 2.2, is written as

DK (0)Jx)DK(0) =0. (4.4)

The equation (4.4) can be interpreted geometrically as saying that any vector in the range of
DK (0) is orthogonal to any vector in the range of Jx ) DK (6).

4.5. Non degeneracy of the symplectic form restricted to the center bundle of a rotational
invariant torus

The following result shows that there are many cases where the symplectic form €2 has to van-
ish. As a corollary, we will deduce that the symplectic form is non-degenerate when restricted
to the center bundle Ej,.
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Lemma 23. Let Ej, Ej, Ej be an invariant splitting around a rotational torus with growth
rates as in (H3) and (H3'). Then,

Qs,c) =0 Vse€E)cecEy

Qu,c) =0 VYueEyceE;

Q(s1,82) =0 Vsy1,5 € Ej

Qui,up) =0 Yuy,up € Ey. 4.5)

Proof. Lets € EY, ¢ € ES; then, one finds that
Q(s,c) =0,

since the following bounds hold for a suitable constant C and for j > 1:

1
Qs.)| = |5 DS 5. D, 0

1 . .
= |Q(Dflj s,Dflj c)|

AT/
< C

whose limit tends to zero as j goes to infinity for A_ and A} as in (H3) and (H3'), i.e. using
that A_\} < A_.
A similar argument holds for the unstable bundle,

|Qu, )| = |)\Q(Df;l u,Df;1 o)
=X |QDf,;7 u.Df;7 )|
< COMA Y,
whose limit goes to zero as j tends to infinity under the condition (H3’), i.e. using that
MiA < (A )PP <A<
Next we prove the third of (4.5); for any sy, s, € E}, we have:

sios)| = \1 ODf, 51,1, 52)

A

1 . .
= |Q(Dfl{ sl,Dfl{ sz)|

A2
< C — )

which goes to zero for j — oo due to (H3) and (H3'), since \2 /A < A\_A-/\ < 1. The
fourth equation in (4.5) holds under the assumption A% < 1, which is guaranteed by (H3')
and recalling that A < 1. In fact,we have:

|Q(uy,uz)| = |/\ Q(Df;1 ul,Df;1 uz)‘
=\ |Q(Dflf ul,Dfl;j u2)|
<C(AN). O
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As we will see, the above results lead to some automatic non-degeneracy conclusions
which will be important to develop structures on the theorem.

Corollary 24. In the hypotheses of lemma 23 we have that ) restricted to Ej is
non-degenerate.

Proof. To conclude that §2 restricted to Ej is non—degenerate, we observe that if for some
w € Ej, we have that

Qe,w) =0 Ve € Ep;

then, using that
Q(s,w) =0, Qu,w)=0, VsekE) YuckEy,

we obtain that (v, w) = 0 for any v € Tp. M. Therefore, since (2 is non-degenerate in the
whole space, we conclude that w = 0. |

Corollary 25. Ifv € ES and for any u € E¥ we have that Q(v,u) = 0, thenv = 0. If it € E¥
and for any 0 € ES we have that Q(i1,0) = 0, then it = 0.

Proof. The proof of corollary 25 is identical with that of corollary 24. We note that the hy-
potheses of corollary 25 and the results of lemma 23 imply that Q (v, u) = 0 for any u € T.M
which, by the non-degeneracy of €2, implies the conclusion of corollary 25. O

Corollary 25 can be interpreted as saying that some of the matrix elements giving €2 are not
degenerate. This will be useful later when we discuss pairing rules for exponents.

4.6. Triviality of the center bundle

The main goal of this section is to show that the bundle Ej based on a rotational invariant torus
satisfying our hypotheses (notably that the dimension of the fibers of the bundle is 2d) is trivial
in the sense of bundle theory. That is, we will show that Ej is isomorphic to a product bundle
(namely, a trivial bundle in the language of bundle theory).

Furthermore, we show that there is a natural system of coordinates on Ej, see lemma 26.
In this system of coordinates, the linearization of the invariance equation (2.7) restricted to
the center space becomes a constant coefficient equation and, hence, can be solved by using
Fourier methods, see lemma 27 in section 4.9.

Note that the triviality of Ej is in contrast with the stable and unstable bundles, which can
be nontrivial (see examples in [FAILS09a]). Note also that the proof works when the phase
space is a non-Euclidean manifold (see appendix B) and it applies a-fortiori for symplectic
systems.

Lemma 26. Assume that K is an approximate solution of (2.7). Then, we can find a linear
operator

By : Range(DK(0)) — Ej,

such that the center bundle is given by

E; = {v+ Bgv : v € Range(DK(0))} . (4.6)
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Notice that (4.6) shows that Ej is the range under Id + By of the tangent bundle of the
torus. This shows that Ef is a trivial bundle.

Proof. We start by remarking that, as it is standard, if we fix a Riemannian metric g, we can
identify the 2-form €, with a linear operator J(x) : T,M — T, M by requiring

gx(u, J(x)v) = Qy(u,v) Yu,v € TM. 4.7)

Of course, the operator J depends on the metric chosen (we omit the dependence on the
metric from the notation, unless it can lead to error). It will be advantageous for us to choose
the metric so that the operator J has extra properties.

We will choose a metric g, such that the spaces E¢, E, E¥ are orthogonal under g,. A possi-
bly degenerate (i.e. assigning zero length to non-zero vectors) metric can be easily constructed
in coordinate patches. By adding constructions in different coordinate patches, we can ensure
that the resulting metric is not degenerate.

We denote by J, the operator corresponding via (4.7) with €, using the metric con-
structed above, which makes the splitting orthogonal. The properties established in (4.5)
imply that if we decompose the operator J, in blocks corresponding to the decomposition
T.M = ES @ E} @ EY, then we have the block structure:

Je 0 0
=10 0 Jv|. (4.8)
0 J“ 0

The inverse of the operator J, also has the same structure as (4.8).

The key of the construction is that the metric g is globally defined in a neighborhood of the
approximately invariant torus and, therefore, so are the operators J and J~ .

We also note that we established in section 4.4 that the form € restricted to the tangent
space vanishes for invariant tori (we will see that it is small for approximately invariant tori in
many cases). Thus, we obtain that

Qi (o) (Range(DK (9)). Range(DK (8)) = (Ji, Range(DK (9)). Range(DK (6)))

is very small (identically zero for exactly invariant tori). In particular, we obtain that the opera-

tor .7;& g) Maps Range(DK(6)) into a linearly independent space.
Using that the dimension of the center manifold is 2d as in assumption (H4), we obtain
that:

Range(DK(6)) ® ~,C(C((,)Range(DK(H)) =Ej.

Since N;(C( 0) is a linear operator, we obtain that the center bundle can be expressed as in (4.6).

O

4.7 Automatic reducibility

A key ingredient in the proof of our main result on whiskered tori is the so—called automatic
reducibility: in a neighborhood of an invariant torus, one can construct a change of coordinates
such that the linearization of the invariance equation (2.7) becomes a constant coefficient
equation.
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This technique is presented in full detail in [CCdIL13] for Lagrangian tori in conformally
symplectic systems (see [dILGIV05] for symplectic systems), but we will present the details
again.

It will be important to note that there is also a version of approximate reducibility when the
torus is only approximately invariant, see section 4.9. The proof of the results in section 4.9
will be based on walking through the arguments in this section and checking how they are
affected by the error in the invariance equation.

We will assume that the tangent space of M at K(6), say Tg )M with 6 € T¢, admits an
invariant splitting as

Tk)yM =Ey ® Ej ® Ejp .
Taking the derivative of (2.7) we obtain
Df, 0o K(0)DK(8) —DK o T,,(0) =0. (4.9)

This implies that the range of DK(6) is contained in Ef.
Let Q?{(e) denote the symplectic form (2 restricted to Ef with

Qk ). 0) = (u,J50 K(0)v), Vu,v € Ep,
where Jj is the 2d x 2d matrix representing Q;(( g) On the center space. Let J¢ be the 2n X 2n

matrix of the embeddings of the center space into the ambient space.
As indicated above, we have that Range(DK (0)) C Ej. Hence, we can write (4.4) as

DK”(0)J¢ o K(0)DK(#) = 0. (4.10)

Let us introduce the 2d x 2d matrix M(6) on Ej, obtained juxtaposing the two matrices
DK(0), (J°)~' o K(0) DK(O)N(0):

M(0) = [DK(9) | (/)" o K(6) DK(O)N(6)]. @.11)

where we have introduced the normalization factor N as in (3.4). For typographic reasons, we
will write

v() = (J°) ' o K(0) DK(O)N(0) . (4.12)

Note that, because of (4.10) we have that the range of M has dimension 2d and, due to our
assumption on the dimension of the center, we obtain that

Range(M(0)) = Ej . (4.13)
Because of (4.13), we know that there exists a matrix 5(6) such that
Df,, o K(0)M(0) = M(6 + w) B(6), (4.14)

where B(0) is required to be upper triangular with constant matrices on the diagonal.
The goal now is to identify the matrix B. We observe that (4.9) identifies the first column

of B to be I?)d .
To identify the second column of B(6), by (4.13), we know that
Df,, o K(0)v(0) = DK(0 + w)S(0) +v(6 +w)U(0), (4.15)

with §(6) as in (3.6) and for some function U = U(6) that we compute as follows. According
to [CCdIL13], we multiply (4.15) on the right by DK (6 + w)J¢ o K(6 + w). Using (4.10),
we obtain
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DKT (0 + w)J° o K(0 + w) Df,, o K(0) v(6)
= DK" (0 + w)J 0 K(0 + w)(J(0 +w)) "' DK(0 + w)N (0 + w)U(0)
= DK" (6 + w)DK(6 + w)N(0 + w)U(0)

=U().
(4.16)

Working on the other side, using the conformally symplectic property (2.3) and the invari-
ance property of the center foliation, we obtain:

Dfy () Dfpa(x) = M -

Therefore, J5, Df,, (x)(Jf )~ = ADf,, " (x).

Hence, we see that the left hand side of (4.16) can be computed as

DK(6 +w)J* o K(6 +w) Df, o K(6) ()" o K(9)DK()N(6)
= ADK" (0 + w)Df,, " o K(0)DK(0)N(6)
= ADK™(9)DK(0)N(6),
where we have used (4.9).

Therefore, we conclude that U(0) = AId,.

The matrix S can be computed in similar way (it just suffices to multiply in the right to
compute the projections): it does not require any change from the calculations in [CCdIL13].
The result is given by (3.6).

In conclusion, we can write (4.14) as

(4.17)

Df, o K(0)M(6) = M(0 + w) (Idd S<9)> .

0 Aldg

We note that the average of the matrix S(#) computed here is the matrix S appearing in
(H5) in theorem 21. Hypothesis (H5) is just that the matrix S in (3.7) — which is a d x d
matrix—is invertible. Again, we emphasize that this is a condition that is computed out of the
approximate solution taking derivatives, performing algebraic operations and taking averages.

4.8. Consequences of automatic reducibility

In section 4.7 we showed that the preservation of the geometric structure yields that we can
find a matrix M(#) mapping Ej to itself in such a way that we have on Ej:

1d, 5(9)>

M71(0+M)Df#oK(9) M(0) = <0 Mdy

This shows that we can choose A\, AT as close as desired to |\| (at the price of choosing an
appropriate proportionality constant).

d, B(0)
0 Id,

For some A’s it is possible to do a further linear change of variables A(x) = (

in such a way that the matrix is even simpler. Computing
Id; —B(O@+w)) (Ids S(0)\ (1ds B(0)\ (Ids S(0) — AB(6 +w) + B(0)
0 Id, 0 Ady 0 Id; ) \ O Aldy ’
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one is led to solve the following equation for B given S:

S(0) —AB(0+w)+B(#) =0. (4.18)
The equation (4.18) can be solved when |A| # 1 or, for A € C, when A is Diophantine with
I 0
respect to w. In such a case, we can reduce the cocycle derivative to ( Od \Id ) and, hence,
d

we can take AT = A\ = |A].

Nevertheless, when A is close to one, the B appearing in the last change of variables
may be very large, since equation (4.18) includes small divisors. This means that if we take
At =\ = |\, in (H3) we can take a very large constant.

The limit of A close to one appears naturally in many physical problems and will be con-
sidered in great detail in section 7 (see also [CCdIL17]). We note that this is a singular limit
because some part of the normal hyperbolicity is lost. It can be controlled precisely because
the geometry forces that this loss of hyperbolicity is done in a very specific way.

4.9. Geometric properties for approximately invariant tori

Of course, in the iterative procedure, we will not be dealing with invariant tori but with approx-
imately invariant tori. Hence, it will be important for us to show that the geometric identities
we developed for invariant tori — notably the automatic reducibility—hold approximately.

The main result of this section is to show that indeed, this is the case, see lemma 28. The
reason is that, to obtain the main equation (4.14), we just took derivatives of the invariance
equation and applied algebraic transformations. Hence, if the invariance equation holds up to
an error, we obtain that (4.14) will hold up to errors which can be estimated by derivatives of
the error in the invariance equation. A subtle point in the derivation is the use of the isotropic
properties of the torus. We will also show that if the torus is approximately invariant, then it
has to be approximately isotropic (with quantitative bounds).

As a preliminary result, we recall the following classical lemma which gives the solution of
a cohomological equation and which will be needed in the proof of lemma 28.

Lemma 27. Let \ € [Ag, A, | for some 0 < Ag < 1 and let w € Dy(v,T).
Consider a cohomological equation of the form

w(p +w) — Aw(p) = n(p) (4.19)

for some functions w and n withn € A, p > 0, and with zero average:

/T[’n(e)dG:O.

Then, there is one and only one solution of (4.19) with zero average. Moreover; if p € A,_s
for some 0 < § < p, then we have

lellp—s < Cva|nll,, (4.20)

where C is a constant that depends on Ag and the dimension of the space, but it is uniform in
A and it is independent of the Diophantine constant v.

The proof of lemma 27 can be found, e.g. in [CCdIL13], see also [Riis75, Riis76a, Riis76b].

Lemma 28. Consider an approximately invariant torus, satisfying (3.2) for some o and
with f,, being a family of conformally symplectic maps.
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Assume that the cocycle over T, given by v(0) = Df,,, o K(8) admits an invariant splitting
which is hyperbolic and whose center dimension is 2d.
Assume furthermore that for some constant C > 0:

IDK | [Nl (7 0 K) 1], < C,

4.21
Cllell,6* < 1. @.21)
Then, defining the matrix M as in (3.5), we have in the center direction
_ Id, S(0)
Df o KOM©) =m0+0) (g 1) +n @)
where
1€kl p—5 < C5™"je]], . (4.23)

Proof. The proof is basically walking through the proof of the invariant case.
The first step is to study how the approximate invariance modifies the invariance properties.

We note that (2.3) gives that, defining a(0) = DK’ (6)Jk DK (6), we have:
a(f +w) — Aa(0) = DK" (0 + w)Jk(g+)DK (0 + w) — ADK" (6)Jx 9 DK (6)
— (DK"(0)Df™, o K(8) — De” (0)) Jx (o) (Dfy © K(6) DK(8) — De(6))
— ADK" (0)Jx(9yDK(0)

— (DK (O)DS}, 0 K(0) = D' (0)) [, k09 + Uxo10) — )]
(Df,, o K(0) DK(0) — De(8)) — ADK” (0)Jx(9yDK ()

= DK (0)Dfy;, © K(0)Jy, (k(6))Pfuo © K(0)DK(0)

— ADK" (0)Jx(9)DK(0) + ¢;(0)
=e(0),

(4.24)
where the expression for e; is just products of derivatives of the invariance equation (with
other terms).

Hence, we can bound e; by using the Cauchy estimates for De and the smallness assump-
tions and obtain

lerllp—s < C5~"lell, -

We note that (4.24) shows that a satisfies a cohomology equation of the form considered in
lemma 27. Therefore, we can obtain estimates on a as ||a|| ,—25 < CI~7 v ||e]|,.

Again, we can interpret the estimates on a as approximate orthogonality relations.

We now walk through the calculations used in the computation leading to (4.17).

The first column in (4.17) is just the derivative of the invariance equation and we can use
Cauchy estimates to get the estimates (4.23) for the first column.

To study the second column, we see that (4.15) is still true, since it only depends on the
property that Range(DK (6 + w)), Range(v(6 + w)) span Ef, ., which is an easy consequence
of the approximate orthogonality.

As before, we multiply (4.15) by DK” (6 + w)J¢ o K(0 + w). We can follow the calcul-
ations used in (4.16) adding and subtracting the terms that we have estimated. [l
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5. Proof of theorem 21

We now proceed to the proof of theorem 21. As standard in KAM theorem in an a posteriori
format, the proof can be divided into two parts. The first one is an algorithm that, given an
approximate solution, produces a much more approximate one in a slightly weaker sense of
approximation and with slightly worse quality properties. In a second part, we show that, if we
start with a sufficiently small error, we can repeat the procedure infinitely, the solution indeed
converges in some appropriate sense, and the limit inherits properties such as the hyperbolic-
ity and twist, see the following proposition 29 in section 5.1.

The iterative algorithm will be discussed in section 5.1. At the end of the step, the error will
be roughly the square of the original error, but measured in a norm corresponding to functions
in a smaller domain than that of the original approximation (there is also a factor depending
on the loss of domain). This iterative algorithm will be affected by condition numbers (hyper-
bolicity properties, twist, etc) and we need to estimate how they deteriorate.

We note that the step we will discuss in this paper will be numerically very efficient. It
does not require that the system is close to integrable, it only requires to handle functions of
the dimension of the torus, the storage requirement is small and the operation count is small.

We anticipate that to be able to carry out the step and obtain estimates, we will need to
introduce inductive assumptions. One—very standard in KAM theory—requires that A, the
correction to K, is small enough in its domain so that the range of K 4+ A is well inside the
domain of f (so that we can define f o (K 4+ A) and study Taylor expansions in A). In our
case, we will also need another inductive assumption that guarantees that the hyperbolicity
constants are still bounded. As it is well known, once we fix the domain loss, the first inductive
assumption can be guaranteed by the requirement that the error is small enough (so that the
correction A is small enough). As for the assumption on the uniformity of the hyperbolicity,
using lemma 16, it will amount to the block diagonal cocycles remaining in a neighborhood.

The iterative process is discussed in section 5.1.8. The main, well known, idea is that if
we fix a sequence of domain losses that goes to zero not too fast (e.g. exponentially fast), if
the original error of the invariance is small enough, the error of the invariance decreases very
fast in the iterative step such that the ranges of the K do not get close to the boundary of the
domain of f and the block diagonal cocycles do not move out of the neighborhood specified
in lemma 16.

5.1. Results on the iterative step

The main result of this section is proposition 29 that specifies how, given an approximate solu-
tion with some non-degeneracy properties (if some quantitative assumptions are satisfied),
we produce a more approximate one with only slightly worse non-degeneracy assumptions.
The quantitative assumptions, that allow to perform the step, are standardly called inductive
assumptions, since we will use an inductive argument to show that they can be satisfied for all
steps of the iteration.

Proposition 29. Lerw € Dy(v,7), d < n, and let f, : M — M, p € R?, be a family of
real-analytic, conformally symplectic maps as in theorem 21 with 0 < X < 1.

Let (K,p), K:T? - M, K € A,, be an approximate solution of the invariance equa-
tion (2.6):

fuoK(0) = KoT,(0) = e(0) (5.1)
for some function e = e(0). Denote £ = ||e|| .
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Let Ejy ® Ey ® E}y be an approximately invariant, hyperbolic splitting based on K. Denote
by &, the quantity appearing in (H2) of theorem 21.

Assume that (K, p, EY, Eg, E) satisfy assumptions (H2)-(H3)-(H3')-(H4)-(HS) of theo-
rem 21.

We will assume that €, &, are sufficiently small depending on the quantities in (3.8) and on
n with n as in (H1). The constants C denote expressions depending only on the quantities in
(3.8), and the formulas for C will be made explicit along the proof.

Then, we have the following results.

~ 0.0

(1) There exists an exact invariant splitting based on K, say Ez/ /" Denote by 7, ° the pro-
Jjections of Df, o K(0) corresponding to the invariant splitting. Then, we have:

dist, (E/ ", EJ/ ") < ¢&,
176" =57 llp < C& -

(2) Assume that 6 is such that

(5.2)

C5~7|le]l, + dist(K(T5), C*"\D) > n/2. (5.3)
Then, we have that K' = K + A, u' = p + B for suitable corrections A, B3, satisfy
fﬂl [e] K/(e) — Kl o Tw(a) = 6/(0)
with
le'l,—5 < CS72 |le]l3 -
Moreover, the corrections can be bounded as
JAll—s < C57€
DA p—s < C5'7E (5.4)
Bl<CE.
(3) Furthermore, the splitting E;/ </u s approximately invariant for Df,yp o (K + A).

(3.1) The error in the change of the invariance is smaller than C§~7E.
(3.2) The block diagonal cocycles corresponding to Dfy,43 o (K + A) (which we denote

by 4g°?) satisfy

196°7 = 76 " llp—s < CO " lellp + &n -

5.1.1. Overview of the argument. We look for a correction (A, 3), such that K’ = K + A,
i = p + B satisfy (5.1) with an error quadratically smaller.
Expanding the composition to first order in A, 3 we obtain:

fur 0 K'(0) = K'(6 + ) = £, 0 K(0) + Df, o K(6) A(0)
+D.f,oK(8)p
— K0 +w)— A0 +w)
+o(|Al%) +o(BP) .
Taking into account (5.1), the new error is quadratically smaller if (A, 8) satisfies

Dfy 0 K(0) A(0) + Dyfy 0 K(0) 5 — A0 +w) = —e(0) (5.5
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or, more generally, if
Df, o K(0) A(0) + Dyf, 0o K(0) B — A0 +w) +e(6) =0(le]7) . (5.6)

Finding corrections by solving (5.5) can be thought of as an infinite dimensional version of
Newton method. The small modification (5.6) is called a quasi-Newton method, since as we
will see, the errors are also reduced quadratically.

To establish part (1) in proposition 29, we just invoke the lemma 15 to change the assumed
approximately invariant splitting into an exactly invariant splitting.

We project (5.5) on the hyperbolic and center spaces, using the invariant splitting (2.13).

Due to the invariance of the splitting, we have that

11/ (Df 0 K(0) A0)) = Dfy o K(9) A7),

where AS/</%(9) = HSG/L/U “A(0). Therefore, (5.5) is equivalent to the three equations:

Df, 0 K(0) A//"(0) + TU/*D,f, 0 K(0)8 — A</"(0 + w) = —e¥/</(0),
(5.7
where we have defined e*/</*() = H“;/J:Z) “e(0).

Note that in the three linear equations (5.7), we have four unknowns given by A*, A€, A*
and B, which we solve using a substitution method. We will first solve (approximately) the
equation for A¢, which will determine both A€ and g.

Then, we will solve the equations for A®, A*.

It is convenient for us to start by solving the equation in the center space since it is the equa-
tion that allows to determine the (3, which also enters in the equations in the stable/unstable
directions. The alternative of solving the stable/unstable equations with a floating parameter
seems more cumbersome.

The equation in the center can be solved approximately, using the automatic reducibility
established in section 4.7. Note that the automatic reducibility depends on the geometry. We
will also use a non—degeneracy condition (as in (H5)); from the analysis point of view, it is
the most delicate equation since it involves small divisors (here we use the assumption that the
frequency is Diophantine) and it entails a loss of domain. In contrast, the equations along the
stable/unstable directions can be solved by soft methods (iteration and contraction) and do not
involve any loss of domain.

Along the argument, we will make some side remarks about an efficient numerical imple-
mentation, which just need to implement the correction step. Of course, to be convincing
one needs to monitor also the condition numbers (which we make explicit) to ensure that the
numerical solutions produced correspond to the true ones. We anticipate that all the opera-
tions required are algebraic operations on the approximate solutions, taking derivatives, shift-
ing and solving cohomology equations. If we discretize the parameterization with N terms,
a Newton step requires O(N ln N) operations, either in a grid discretization or in a Fourier
discretization. Of course, one can generate a grid from a Fourier series by using FFT. The
procedure gets quadratic convergence, but does not need to store (much less solve) an N x N
matrix. Indeed, the storage required is only O(N).

Once we have the estimates on the correction, the nonlinear estimates for the error can be
obtained by elementary methods such as adding and subtracting terms and applying Taylor’s
theorem to first order (the corrections have been chosen precisely to cancel out the first order
approximation).
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5.1.2. Approximate solution of the linearized invariance equation in the center space. As for
the center subspace, we will construct an approximate solution of the Newton equation in the
center direction. That is, we will construct a function that solves the projection of the linear-
ized equation up to a quadratically small error (which does not affect the quadratic conv-
ergence of the method). The construction of this approximate solution, which will take the
rest of the section, is somewhat subtle, since it requires taking advantage of some geometric
properties and of the Diophantine properties of the frequency. This solution will also involve
a loss of domain and we will obtain estimates for the correction only in a slightly smaller
domain than the domain of the error.
The linearized equation (5.5) on the center subspace is

Df,, o K(0) A°(0) + 115, ,D,f 0 K(0)5 — A°(0 +w) = —e(0) . (5.8)

We will take advantage of the geometry, see section 4.9, to find an explicit linear change
of variables that approximately reduces the equation in (5.8) to constant coefficients differ-
ence equations. These equations can be solved using Fourier coefficients (but they need the
Diophantine conditions on the frequency). Let us introduce W* such that we can write A€ as

A =M W*
with M as in (3.5) and satisfying (4.22).
Using (5.8) and (4.22), we obtain that the Newton equation projected in the center is equiv-
alent to:

0 \d,
+ Er(O)WE(0) + g, Dyfy 0 K(0) B = —e(0) .

Since the above equation is hard to solve, we argue heuristically that the term & is com-
parable to &£ because of (4.23), hence the term EgW* is second order. Hence, we omit it and
consider the following equation (5.9). As we will see, the equation (5.9) is readily solvable,
admits tame estimates and, indeed, omitting the term EgW* does not change the fact that the
error remaining after the iterative step is quadratic in the original error (we will obtain esti-
mates for the W° and we have estimates for & in (4.23)):

M0+ w) (Id”’ S(e)) We(O) — M(0 + w) W0 + w)

Id;, SO
M0+ w) ( Od Aidi) WeO) — MO+ w) W0+ w) + 115, ,D,f, o K(O) = —e(0) .
(5.9)
Multiplying (5.9) on the left by M~ (6 + w), we obtain:
Id, S(¢ ~ ~
< o Ai di) We(B) — W o T, (0) = —&(0) — A°(9)8, (5.10)
where ¢(0) = M~ 0 T,,(0)e*(0), A°(0) = M~ 0 T,(0) Ty D, f, o K(0).
Writing (5.10) in components we obtain
Wi(0) — WS o T, (0) = —S(0) W5(0) — & (0) — AS(0
1(6) 1 (0) (0) W3(0) —€1(0) 1(0)8 .11

AWS(0) — W5 o T,,(6) = ~25(0) — A3(6)5.

where A¢ = [A¢|AS] with AC AS denoting the first d and the last d rows of the 2d x d matrix
AC.
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Denoting by W¢ the average of W¢ and setting (W¢)? = W¢ — W<, we obtain
(W§)°(0) — (W)° o T, (6) = —(SW5)°(0) — (7)°(6) — (A5)°(60)8
AW3)°(6) — (Ws)° o T (8) = —(25)°(6) — (45)°(6)55 . (5.12)
5) =

Since (W5)? is an affine function of 3, we can write (W5)? = (W¢)% 4+ B(Wf)? for some func-
tions W, W;. Therefore, the second equation in (5.12) can be split as

AW (0) — (W)® o T, (0) = —(25)°()

. . -~ (5.13)
AW (0) = (Wy)° o Ty (0) = —(45)"(0) -
On the other hand, taking the average of (5.11) we obtain
SWE -+ (SOWE) + A7) B = —S(We)0 - &
(5.14)

(A — 1)W5 + A58 = &5 .

Provided that the non—degeneracy condition (3.7) in (H5) is satisfied, equations (5.14) yield
W5 and $ as the solution of the finite dimensional system:

5 SO + A5\ (Wg) _ (—S(We)° —&
(A= D)ldy A9 B —é5 '

Using lemma 27, we can solve (5.13) to get (W5)°, (W¢)°, which provide (W5)° and finally we
solve the first of (5.12) in order to compute (W¢)°. This yields the solution of (5.10), which
allows to find the correction (A€, 3) on the center subspace.

Note that this correction (A€, ) does not eliminate completely the error in the center direc-
tion, but reduces it to W¢&p.

Note that we obtain W5 solving a small divisor equation and then we obtain 3, W{ by per-
forming algebraic equations and applying a contraction argument. The solutions of the two
equations (5.12) are of the form (4.19) with the right hand sides having zero averages due to
the choices of 5 and W{. Hence, the estimate (6.8) of lemma 27 holds and with computations
analogous to those of [CCdIL13], we obtain the following estimates:

[Welp—s < CO77 el (5.15)

1Bl < Clle][, - (5.16)

Then, A€ is obtained multiplying M and W* and, hence, under the assumption that | M|| ,—s
(which we will prove holds inductively) is bounded by a constant, we obtain that:

|A[p—s < €O le]], - (5.17)

5.1.3. Uniqueness properties of the approximate solutions in the center direction. 1t will be
important for future studies (e.g. for the local uniqueness in theorem 35) to note that the W¢,
out of which we construct A€, is obtained applying lemma 27.

We observe that, by following the procedure indicated in the previous paragraph, we obtain
that the W* solving the equation (5.12) is unique up to adding a constant to W{. The estimates
claimed in (5.15) correspond to taking WY with zero average.

This lack of uniqueness of the corrections has a geometric interpretation related to the
underdetermination of (2.7) remarked at the beginning of section 2.4.1. Since A® = MW¢,
with M introduced in (4.11), we have that adding a constant o to W* is tantamount to adding to
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A° the quantity DKo . That is, we are changing the corrections by adding to them a movement
along the space of solutions.

Note that the above statement of uniqueness refers only to the solutions of (5.12). If our
goal was to improve the accuracy of the solutions, we have a flexibility of changing the A€ by
other terms that are much smaller than the error.

5.1.4. Solutions of the linearized equation in the hyperbolic directions. Let us now consider
the stable subspace. Let 8’ = T,,(6), such that we can write (5.7) as

Dfy (K 0 T—(0)) AT—o(0)) + g Dyufiu (K 0 T (07)) 8 — AMO') = —?EgGi)g,)
where

&0 =IyeoT_,(0).
We proceed now to solve (5.18) for the stable subspace. For any /3, we can write

AN0) =€ (0") + Dfu(K o T, (0')) A (T-,(6")) + 1y Dyfu (K © T—w(9’))5ﬂ,
.19
which leads to the solution for A in the form ( )

N@) =2(0) + 3 (DKo T-al0) -+ X Df(K o0 T (0)) (T (0)

k=1
+ 10 Dyfy(K o T (67)) 8

+ 3 (DIulK 0 T-ws(0) X o % DFu(K © T (60) Wy Dyfys (K 0 T—a11(9)) ) 5.
k=1
(5.20)

By the variations of parameters formula, we guess a solution of the form (5.20). Then, wé
observe that the series in (5.20) converges uniformly in .A,, because of the bounds assumed in
(2.14). Hence, we can substitute (5.20) in (5.19) and rearrange the terms, so that we can verify
that (5.19) is satisfied by (5.20).

Due to the growth conditions (2.14) and due to the fact that D,f,, is a bounded operator,
we obtain that

18%1, < € (&0, + 181 [T Dfu o K1l ) - 32X 5.21)
k=0

for some constant C > 0.
Concerning the unstable subspace, from (5.7) we can write in a similar way for any 3:

A'(0) = (D)™ (K(0)) [—€"(6) — T, Dufu (K (0))8 + A" (T, (6))],

which leads to the expression

(o}

A(0) = = 3 (D) (K(0)) x . x (D)~ (K 0 Tie(6))) € (Tis(9))

k=0

=3 (D) KO)) X o ¢ (D) (K 0 Tua(60)) Ty uDufu(K © Ties(9)) ) 8.
k=0 (5.22)
From (5.22) and (2.14) we obtain:

1871, < € (112", + 18] T Dufu o Kllp) - > A (5.23)
k=0
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for some constant C > 0. Expressions (5.21) and (5.23) lead to
A%, < Cllell, 1A%, < Cllell, -

Remark 30. In numerical implementations, it may be advantageous to solve (5.18) by add-
ing an equation that makes the cocycle diagonal. The effort required is not that much, since
the linearizing transformation can be computed iteratively. In this case, we can use the Fourier
methods to compute the solutions (see [HAILO6b]).

5.1.5. Linear estimates for the step. Notice that, in all the cases above, we have obtained esti-
mates for the corrections in terms of the error. The most delicate ones are those in the center
direction since they involve the small divisors.

We have that for all 0 < § < p, the corrections satisfy (5.4), namely:

[Allp—s < C5 e[,
IDA|,—5 < C6 el (5.24)
1Bl < Clle|l,, -

The first line of (5.24) is wasteful in the stable and unstable directions. The second line can
be obtained from the first line estimates for || Al| p—15 and then, using Cauchy estimates for
the derivative.

5.1.6. Nonlinear estimates for the step. Let us now conclude the proof of part (2) of proposi-
tion 29.
We see that, under the assumption (5.3), we have that we can define the composition

futp(K + A)and that (K + A)('H‘zf 5) is away from the boundary of the domain of the func-
tion f.
We can write the error of K’ = K+ A, i/ = p+ B as

fuspo (K+A)—(K+A)oT, =f, 0K+ Df, o KA+D,f, o KB+ &r
—KoT,—AoT,
=&r + ErW,

where &7 is the Taylor remainder of the expansion of the composition and we note that the cor-
rection A has been chosen precisely to cancel the error. The Taylor estimates are elementary

I€lp-6 < CUIAIL +18%) < CO77le]l;

and the estimates for Eg—the error in the approximate reducibility—are in (4.23), while the
estimates for W can be obtained from (5.24).

Remark 31. The algorithm we have implemented uses an invariant splitting to solve the
linearized equation. Of course, after the step, we need to apply the closing lemma 15 to obtain
a new invariant splitting. The algorithm we presented is very efficient from the theoretical
point of view. Nevertheless in a numerical implementation, it is wasteful to obtain an exact
splitting at each step. In numerical implementations it suffices to obtain invariant splittings up
to an error comparable to the error in the invariance equation. Refining the splittings to more
accuracy does not lead to significant improvements of the step.

Hence, in numerical implementations, it would be advantageous to develop a Newton
method for the invariant splittings and for the invariance equation, simultaneously.
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A rigorous presentation and estimates for the Newton method for the invariance of the
torus, and the splittings (which also allows some elliptic directions) can be found in [DV17].

5.1.7 Change in the non-degeneracy conditions after an iterative step. Now, we estimate the
changes on the non-degeneracy conditions induced by the change of the i, K in the iterative

step. Since we start with an invariant splitting, we have that 75 = 0. Hence, denoting by
45 the cocycle associated to K’ = K + A, p/ = p + f3, then

196 =67 l, < CUIDfu o Kll, [Allp + I1DuDf, 0 Kl 1B]) < CO77E,

thus yielding 3.1 of proposition 29.
The results of proposition 32 below give part 3.2 of proposition 29, beside implying the
estimate (3.10) of theorem 21.

Proposition 32. With the notations and assumptions of proposition 29, we have the fol-
lowing bounds.

(i) Let 8’ be the quantity S in (3.7) after one iterative step, namely with K, y replaced by
K' =K+ A, i/ = pu+ Bas in proposition 29. Let 0 < § < p; then:

15"l < 1ISl, + €~ lell, (5.25)

for a suitable constant C > 0.
(ii) The changes in the projections are bounded as

T/ — 1/ ,_s < C|IK' — K|, < C5 ]|, - (5.26)

(iii) The changes in the diagonal cocycles are bounded by

1967 =36 llp—s S C(6TE+ &) . (5.27)

Proof. We note that the matrix S is an algebraic expression of the derivatives of K and
the derivatives of f, evaluated at K. The projections of the above quantities are taken on the
center directions. We can estimate all the changes by adding and subtracting, so that we get
only terms in which one changes. The derivatives of K change by the derivatives of A, which
can be bounded using Cauchy estimates from the estimates for A. Hence, the change of these
terms can be bounded by Cé~ " ||e]| 5, thus leading to (5.25).

The change in the projections is also estimated already and come from the application of
lemma 15, thus leading to (5.26).

The changes of the term Df},1 5 can be bounded by the size of 8 and the size of A multi-
plied by the second derivatives of f with respect to its arguments. The terms change by quanti-
ties that are smaller than the previous one. The estimate in (5.27) is obtained by the sum of the
norms of D?*f,, o K A and D,,Df,, o K 3 and using (5.2). O

5.1.8. lteration of the iterative step. It is a classical argument in KAM theory that, if the initial
error is small enough, the inductive step can be iterated infinitely and that it converges to the
true solution. We can also estimate the difference between the limit and the initial approximate
solutions.

Remark 33. It is important to note that assumptions of smallness in lemma 16 are inde-
pendent of the p considered. In the applications, we will be considering a sequence of correc-
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tions in a sequence of decreasing domains. We will just need that the norms of the corrections
(in the smallest domain) are sufficiently small.

Remark 34. If we assume that
DKo = D, < a

for some o > 0 we obtain that (3.7) and that the || (DKJ-TDK;)*1 l|,; are bounded by a value
slightly bigger than the original one, say twice.

Similarly, if ||Ko — Kj| ,, are sufficiently small, we can ensure that the range of Kj is inside
the domain of f,, and at a distance bigger than 1/2 from the boundary of the domain.

Provided that during the iteration the DK does not leave the neighborhood more than at the
distance «, we can use the bounds corresponding to the chosen values of the condition numbers.

Recalling the definition of M in (4.11), we notice that M; — My is an algebraic expression
of DK and DKj. By the mean value theorem, M; — My is bounded by DK; — DKy and hence
it is small, if DK; is close to DKj.

We will just repeat the standard argument. We start by fixing the sequences of domains
where we will be doing estimates. Let §;, pj41 be defined as

o .
Gt = 5550 =00, j20.

We take g to be 1/2 of the total loss of domain that we allow in the conclusions of theorem
21. The p; will be the sizes of the domains where we will carry out estimates in the jth step.

We recall that to perform the iterative step, we need to make two inductive assumptions
that ensure that we can define the composition. We will also need to assume that we are in
the region when all the hyperbolicity constants are uniform (slightly worse than those in the
original problem) and we will also assume that other non-degeneracy conditions are satisfied.

The important thing to observe is that, if we can carry out j steps, the conditions for being
able to carry out the next step and remaining in the neighborhood are implied by

1Ko = Kjll; <

|DKy — DK, < a 29

for some o > 0, which is independent of j, see remarks 33 and 34.

We will assume that for j steps, we have been able to carry out the step and remain in the
set of analytic functions where we have (5.28) and, hence, we can perform the iteration. We
will show that, if the initial error is small enough, the error has decreased so much after the jth
step that we can apply again the result. Note that this is very similar to the estimates that one
carries out in the elementary Newton Method.

Denoting by ), = ||ex| 5, We have:

< C(S;‘QE%?I
— (C67T23T) 2(’171)7’ 2 1

CoyT237) A2 o7 (=D 2(h=2) 427 2

< (
< (C T23T 2T )2 —1 50
(,{080)2" 1

0s

where
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Ry = C(S(;T 24T .

Starting from K, = Kj—; + Ajp—1, a bound on K, — Ky, its derivative and pj, — g is
obtained as follows:

h h
18— Kollp, = || 3o <D 1l
=0 "j=0

h
< C Z(SETZT(jJrZ) (5080)2/7180,
j=0

h h
1K= DKol = | ooy <D Ipa,
j=0 j=0

h
<C 250*"'*12(7'4-1)(]-‘1-2) (F&oé‘o)zj_l&‘o,
=0

h h

= o] = ‘ Zﬁj‘ < Z |3j]

Jj=0 Jj=0
h h .

<C ) 5 <C D (rogo)* ' <2Ce, (5.29)

J=0 Jj=0

provided that kogp is smaller than 1/2.
The important points of the above estimates are:

1 The bound for €, can be made as small as we want by making ¢ sufficiently small.
Hence, by imposing some smallness assumption in €p, we can ensure that K does not
leave a neighborhood of K.

2 In particular, under suitable smallness assumptions on ¢ (independent of %), the range of
Kh('ﬂ‘ﬁh) is /2 away from the boundary of the domain of f,.

3 Under suitable smallness assumption on €y (independent of h), ||DK), — DKy||,, is so
small that we have the estimates on the hyperbolic splitting assumed in lemma 16. The K},
are also in the region where we have uniform bounds on the non-degeneracy constants.

4 Since ||Apll,; < ndn decreases very fast, much faster than an exponential, we obtain that
by taking €y sufficiently small, we recover the assumption (4.21).

5 Putting together the above two remarks, we obtain that under a finite number of smallness
assumptions on €y, we obtain that we can iterate the procedure infinitely and remain in the
neighborhood where we have uniform estimates for all the non-degeneracy assumptions.

6 Since ), || Anll,; < €ndn < Ceo, we obtain that the Kj, converge in A, and they satisfy
the conclusions of theorem 21, including the estimates (3.9).

We conclude by noticing that (3.11) come from the fact that, due to lemma 17, the estimates

A+ — Axl,|AF — AF| are bounded by a constant times ||y — 7| ,; with the same argument as
in (5.27), we obtain (3.11).
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6. Local uniqueness of the solution

In this section we give a result on the local uniqueness of the solution of the invariance equa-
tion, see theorem 35.

Theorem 35. Letw € Dy(v, 1), d < n; let M be as in section 2.1 and let f,, : M — M,
w € R4, be a family of real analytic, conformally symplectic maps with 0 < X < 1.

Let (KM, M), (K, ) be solutions of (2.7) and assume that

M=) [K®(0) = KD (0)]1 df = 0. (6.1)
’H‘{I
Recall that we defined M on the central bundle using J°, where M is as in (3.5) and [-]; means
that we take the first component.
Assume that the non-degeneracy condition (H5) is satisfied at (KW, (). Let We, W5, W*
be the projections of M~ (0)(K® (0) — K()(0)) on the center, stable, unstable subspaces.
Let 0 < § < p and assume that the following inequalities are satisfied:

Cv o™ max(| W pras, 0@ — uV]) < 1

. . (6.2)
C W lprs + W lp1s) < 1.

Then, we have:
K — K(2), M(l) — M(Z) .

Remark 36. The normalization condition (6.1) has a very transparent geometric interpreta-
tion. Remember that the M is a linear change of variables in the torus that selects the tangent
and the symplectic conjugate. The normalization chosen roughly imposes that the average of
the increase in phase of K is the same as that of KV, since the average over the angles of
the difference of the two solutions in the parametric coordinates is zero (compare with sec-
tion 2.4.1).

Remark 37. Note that if we take K()(§) = K() (6 + &), then

Ly 10) KOO +0) - KDO)] 0| ~1d.
do Jpa o=0

Therefore, the finite dimensional implicit function theorem shows that given any K® close
to KO, there is a unique o such that K o T, satisfies the normalization (6.1). The estimates
on o show that if there existed a solution K@ close to K, then, we could, without loss of
generality, get a normalized solution by composing it with a translation. This normalized
translation satisfies similar hypothesis of proximity to K as the original K®.

Hence, the normalization can be interpreted as fixing the element in the family of solutions
mentioned at the beginning of section 2.4.1.

Proof. Assume that (K", (1), (K®), 11(2)) satisfy the invariance equations
y
fu oKW =kWoT,  fook® =k®oT,.
Let us define the quantity R as

R=Ff,0K? —f,0,0 KD —Df, 0y o KD (K® — KDY = D, f, ) 0o KV (u® — D).
(6.3)
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By Taylor’s theorem, setting the constant C as
~ 1
C=3 {llDwa) o KW||,—5 + IDAf,00 0 KV 5 + [|D Dyuf ) o K(1)||,,,5},

one has the quadratic estimates
IRllp-5 < C (IK® = KW|T 4 5@ = uDOP). (64
Projecting (6.3) on the center subspace, one obtains
H%(Z)(e){K@) oT, —KVorT, - Df, o KM (K@ — gy - Dyf,m o KO (u® — My}
— )R =0

Let W = W(0) be defined'? by: 65
K2 (0) — K" (9) = M(©O)W(6),
where we intend that M(6) is computed for K, i.e.
M(0) = [DKD(9) | (7)™ o kKM (0) DKM (0) (DKM ()" DKM (6))7] .
Let We(0) = Ty, (O)W(O); similarly to (6.4), one has that
T gy Rllp—s < C (IWF[12 + @ — uDP) . (6.6)

Using the automatic reducibility' (4.14) on the center subspace, we obtain:
B(O)W(8) = W(0 +w) + M1 (0 + w) Uiy ) (Dyufyur 0 KV (0)) (1 — V)
+ M (0 + W)y R(0) = 0. (6.7)

Hence, the W* is a solution of the equation (6.7) By the remarks in section 5.1.3 we obtain
that the solutions are unique up to adding a constant vector to Wi. The estimates for the zero
average solution are obtained from (6.7). We note that using (6.5), we obtain that the average
of W§ should be bounded by the size of R. Hence, we obtain that the W* used here satisfies:

IWelpms < Cv6 7 Moy Rllpe (1 — 1P| < € [Ty )Rl -
6.8
Next, we recall Hadamard’s three circle theorem [Ahl76], which gives (6.8)
1 1
[Welp < CIWEI) a5 1WAl 405 - (6.9)

Hence, from (6.6), (6.8) and (6.9), we obtain

max([|W¥| 5. |1 — ) < Cv8 " [y )Rl pms
< Cvs™™ max(|[We|2, [p® — pDP)
< Cvs 7 max(|Welpras |1 — pO]) max(|Wel, a5, | — )
< max(|| W p-2s, [1® — uV)),

12 Notice that the formulas are the same as in the iterative step. Therefore, even if we use the same letters as in

the study of the iterative step the interpretation of the letters is slightly different. In the iterative step, W was an
unknown to be found. Here, it is a known quantity and our goal is to show that it satisfies some equations and that
we have estimates for it.

13 Note that because (K m, u<1)) is an exact solution of (2.7), the approximate reducibility is exact.
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if the first inequality in (6.2) holds. This allows to conclude that W* = 0 and p(1) = 5.
We now project on the hyperbolic subspaces; let

W =TTy o MK — KD,
where i = s or h = u. From section 5.1.4, we have that
[WH'l,—s < C IR, -
From (6.4), knowing that W° = 0 and p; = pu,, we have
IRl p—s < C (W15 + IWII7) -
From Hadamard’s three circle theorem, we have:
IWSIIZ + IWENS < CUWS s Wl o—s + W llpss Wl —s)
< C([[Wilpts + Wl p1s) IRl p—s
S CUIW* lpas + Wl prs) (W15 + [W2) -

This relation, together with the second inequality in (6.2), leads to W* = W* = 0. |

7. Domains of analyticity of Lindstedt expansions of whiskered tori

In this section we investigate the domains of analyticity of whiskered tori in conformally
symplectic systems in the limit of small dissipation. The discussion below proceeds along the
lines of [CCdIL17]. We develop an asymptotic expansion (Lindstedt series) and use this as a
starting point for the application of theorem 21.

The perturbative expansions for the parameterization of the torus are not very different
from the treatment in [CCdIL17]—the main difference is that the equation that needs to be
studied in the iterative step requires to consider the hyperbolic directions, but this will be very
similar to the treatment in section 5.1.4.

The construction of expansions of invariant bundles will be based on a perturbative treat-
ment of the equations (2.23) and (2.24).

It is interesting to note that the Lindstedt series have a triangular structure. The series of the
parameterization of the torus solve the invariance equation by themselves; on the other hand
the series for the parameterization of the invariant spaces require the series of parameteriza-
tion of the torus.

The formal expansions of K, i, A? constructed to order N by the Lindstedt method produce
objects that satisfy the invariance equations up to an error which has norm less than Cy|e[N*!.
We apply theorem 21 for € in a domain such that the Diophantine properties of A are good
enough. We conclude that there exist exactly invariant K, ;4 solutions and that the distance
between K, y and the formal expansions to order N are bounded in the domain, namely the
formal series expansions obtained by Lindstedt series are an asymptotic expansion of the true
solution.

71. Description of the set up

Consider a family of mappings f,_. : M — M, such that
Jiee 2= A,
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where in this section the conformal factor A is assumed to be an analytic function of a small
parameter € and it is such that A(0) = 1, thus allowing to recover the symplectic case for
¢ = 0. In particular, we assume that A = A(¢) takes the form

Ae) = 1 + ae” + 0(Je|*™)

for some a > 0 integer and o € C \ {0}

72. Some standard definitions

In our results, we will show that some functions depending on a parameter € are analytic in €.
The stronger (and most natural) way to study the dependence is to consider the functions for
fixed € taking values in a Banach space of functions. The analyticity is taken to mean that the
function can be expressed as a Taylor series in the neighborhood of each point. Other seem-
ingly weaker definitions turn out to be equivalent ([HP74, chapter III]).

As standard, given a sequence B; of elements in a Banach space, a formal power series in €

is an expression of the form B2® = " &/B; (the sum is not meant to converge). We denote

j
[SN] _ N )
by Bs = Zj:O €ij.

In our application, we will consider series in which the Banach spaces are just C* (in
the case of K., the maps take values in the phase space and in the case of AZ, it is a space of

bundle maps).

73. Description of the domains of analyticity

Recalling definition 6, we introduce the following sets, where the Diophantine constants
behave in such a way that one can start an iterative convergent procedure (see [CCdIL17]).

Definition 38. For A >0, N€Zy, weRY let the sets G = G(A;w,7,N) and
A = A(A;w, 7,N) be defined as

G(A;w,7,N) = {e € C: v(\(e);w, ) |\e) — 1IN < A},

AAw, T, N)={XeC: v(\w,T) |A— I\N'H <A},

For ryg € R, let
Gr(A;w,T,N)=GN{eecC: |g|<r}. (7.1)

74. Statement of the main result on domains of analyticity, theorem 39

We will prove that the parameterization and the drift are analytic in a domain G, as in (7.1)
for a sufficiently small ry. This domain is obtained by removing from a ball centered at zero a
sequence of smaller balls whose center lies along smooth lines going through the origin. The
radii of the balls which have been removed decrease faster than any power of the distance of
their center from the origin. As in [CCdIL17], we conjecture that this domain is essentially
optimal.

Theorem 39. Let w € Dy(v,7), d < n, be as in (2.4), let M be as in section 2.1, and
let fue with p €T with T' C C? open, € € C, be a family of conformally symplectic maps
with conformal symplectic factor that depends analytically on g, \e = 1 + ag® + O(e*+") for
a€R, a#0,aeN.
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(Al) Assume that for pv = po,€ = 0 the map f,,0 admits a whiskered invariant torus.
This assumption amounts to the following requirements:
(Al.1) There exists an embedding Ky : T — M, K, € A, for some p > 0, such that
JuooKo=KooT, . (7.2)

(A1.2) There exists a splitting Tx(0)M = Ej ® E§ ® Ej. This splitting is invariant
under the cocycle vy = Df,, 0 © Ko(0) and satisfies definition 11. The ratings of
the splitting satisfy the assumptions (H3), (H3') and (H4) of theorem 21.

(A2) We assume that the function f,, -(x) is analytic in all of its arguments and that the ana-
lyticity domains are large enough. That is:

(A2.1) Both the embedding Ko(0) and the splittings Ey*" considered as a function of ¢
are in A, for some py > 0.

(A2.2) Assume that there is a domain U C C"/Z" x C" such that for |e| < €* and all
powith | — po| < p*, we have that f,, . is defined in U and we also have (3.3).

(A3) The invariant torus satisfies the twist condition (H5) of theorem 21.
Then, we have:
(B.1) We can compute formal power series expansions

o0 o0
K£°°} _ Z EjKj /14;[.;00} _ Z Ej,LLj
Jj=0 J=0

satisfying (2.7) in the sense of formal power series, which means that for any 0 < p’ < p
and N € N, we have

HICM[SN]’E o KLSN} _ KEKN] ° Tpr, < CN‘E‘NJFI )

(B.2) We can compute four formal power series expansions
oo
AT = g EJAJ‘-’, o=s,8,uli,
j=0

A7 (0) + E§(0) — Eg (0)

and the A7 € A, in such a way that the operators satisfy the equation (2.23) and
(2.24) for invariant dichotomies in the sense of formal power series.

(B.3) For the set G, as in (7.1) with ry sufficiently small and for 0 < p’ < p, there is
K.:Gy = Ay, pie 2 Gy — C4, analytic in the interior of Gy, taking values in Ay
which extends continuously to the boundary of Gy, such that for € € G,, the invari-
ance equation is satisfied exactly:

fucoK.—K.0T,=0.

Moreover, the above solutions admit the formal series in (B.1) as an asymptotic
expansion, namely for 0 < p’ < p, N € N, one has:

IKEM — K|l < Cule™ [V — pe| < CleM
The proof of theorem 39 is very similar to the main theorem in [CCdIL17] and we sketch
in the following sections just the main ingredients of the proof.
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75. Proof of theorem 39

By hypothesis we can find an embedding Ko : T¢ — M satisfying (7.2). Since f,,0 is sym-
plectic, one has

S0t =

Substituting K£<N}’ /A[SN} in (7.2), and equating the coefficients with the same power of €, we

obtain recursive relations for the terms Kj, ;.
Indeed, the first order in € is

(Df o0 © Ko)Ki — Ky 0 Ty, + (Dpufe0 © Ko)pt1 + Defpp0 0 Ko =0.

More generally, for any order j, we obtain that

(Df o0 © Ko)Kj — Kj o Ty + (Dpfpue0 © Ko)pj = R;, (7.3)

where R; is a polynomial in Ko, ..., Kj_1, ft1s - - - s ftj—1, Defiup0 © Kos .. s Difyg0 0 Ko.

It is important to note that the coefficients multiplying the unknowns Kj, u; in (7.3) are
Df 0 © Ko and D, f,,, 0 o Ko, respectively. These coefficients do not depend on j and they can
be evaluated on the zero order approximation.

Equation (7.3) can be analyzed separately in the center bundle and in the stable and unsta-
ble bundles. The solution in the center bundle is given in [CCdIL17] (to which we refer for
full details) and yields y;, ch.

Using that the zero order corresponds to a whiskered torus in the Hamiltonian case which
is exactly invariant, we obtain that the coefficient (Df,,, o o Ko) is exactly reducible (see lemma
28 and the discussion around it).

That is, defining the matrix M, as in (3.5), we have in the center direction,

1d, s0(9)> ‘

0 1d, (7.4)

Dfuo0 © KoMo(0) = Mo(6 + w) <
Note that, in our case, using that Kj is exactly invariant, there is no &g term (see (4.23)).

In the hyperbolic directions, equation (7.3) can be solved using the contraction principle.
The solution of (7.3) gives the proof of (B.1).

To establish (B.2), we just observe that, once we have the expansions in powers of € for the
K;, pj, we can obtain the power series expansion in € for Df,,, 0 o K;, hence for the v’s, which
are obtained from Df,,,o o Ko by taking projections on fixed spaces. We also note that, if we
take projections over the original splittings, we have that A%(¥) = 0. Also, the approximate
invariance of the initial splitting tells that 455(0) ~35:(0) A uit(0) '~u.(0) are small.

If we substitute the expansions for A” and equate terms of order €/ in (2.23) and (2.24),
we obtain that these equations are satisfied in the sense of formal power series if and only if
for all j we have

5.5\—1 s 5.8 S| _ gs i
(V90) [A0+wﬂe,0 *79,0} =Ap; + R

5,5 .5 Ky 5.8 —1 __ 4§ 17
V8 w0+ 70 w0A0—wi (Vo wo) ™ =Ab,;+ Ryp,
iu 7] u u,u —1 _ su I
[79744),0 + 'Yefw, 970.),/'} (’Yefw,O) - AO,/' + Ru,@,j
uuy—1 i 7] wit| Al 17
(’Yg,o) [ O+wj V0.0 — ’79,0} =Ag,; + Ru,e,j’ (7.5)

where the R{T,e o RZ’H ; are explicit polynomial expressions involving only Ag, for [ <j— 1.

Notice that only the  coefficients enter.
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Remark 40. We note that all the equations in (7.5) have the form of fixed points of an
operator, some of whose power is a contraction. Note that finding the A”(/) does not entail

R®

loosing any domain of analyticity. Because the structure of the R, ;.

we can solve the equa-

tions recursively and proceed to find solutions which have the same domain as the R((Tk}, 7

The domain of the -y can be taken to be as close to the domain of Kj as desired.

We fix N sufficiently large (say 5). Then, by choosing ¢ sufficiently small, all assump-
tions of theorem 39 are satisfied. We note that if we take the approximate solution as
(K, u) = ( <M ,u([fN]) and as the approximate splitting the results of the expansion, we have
that &, € < Cyple|V *+1 for an analytic norm in a fixed radius p slightly smaller than the ana-
lytic domain of the original radius.

Since we assume that the torus in the Hamiltonian case is non degenerate, we get that the
non-degeneracy conditions are uniform for || small. If we choose a § < p/2, we can obtain
the smallness conditions of theorem 21 for small enough |¢|. Also the assumption of the range
of K being inside the domain of f,, . is uniform for |¢| small enough.

We also note that the non-degeneracy conditions for theorem 21 are uniform in the sets

{a- <lel<aying (7.6)

for sufficiently small 0 < a_ < a4. As we argued before, the condition that ¢ is small enough
ensures that the non-degeneracy conditions are uniform. The intersection with G ensures that
the Diophantine properties are uniform.

Therefore, the iterative procedure in the proof of theorem 21 is uniform for all the € in the
sets (7.6). We also recall that the iterative step to prove theorem 21 consists just in performing
algebraic operations, shifting functions and solving cohomology equations. In all these opera-
tions, it is clear that if the data depend analytically on €, so does the correction.

Putting together the two remarks above, we obtain that the procedure leads to a sequence
of functions all of which are analytic in € and which converge uniformly in sets of the form
(7.6). Therefore the solution will be analytic in sets of the form (7.6). Due to the local unique-
ness of the solution, we obtain that the suitably normalized solutions in different patches that
overlap have to agree.

Remark 41. Note that the conditions of smallness in €, so that we can apply theorem 21
to the truncated series, depend on the size of the coefficients and the domain loss. It would
be interesting to try to optimize the choices of the orders of truncation and the domain losses
depending on e—similar calculations are often done in the study of Birkhoff normal forms.

We conclude by writing the Lindstedt series in (B.2) associated to (2.23) and (2.24). We
start from the first of (2.23). We expand A® as

o0
o= E EJAf,J-,
J=0

and we expand vy, " as

(o]
on __ j~ O] ; —
W= gl ifo=n,
j=0

V=Ygl ifo#n.
=1

588



Nonlinearity 33 (2020) 538 R C Calleja et al

Inserting the above series expansions in the first of (7.5) and equating same orders of &/, j > 1,
one obtains:

f94 = (’Yéij))ilAf9+w,j’7;j) - (IY;:O) 1’75’5 S. 9)(A0 1> ’Aé,j—l) - (77)
Equation (7.7) can be solved by iteration to obtain:

1,358

5,5 1 1 5,8 5.5 i 5,8
f9,} (/70 0) {( 9+w 0) As@+2w,j/79+w,0 - (’YO-i—w,O) ’YO-i—w,/ Rs,0+w,j} /79,0
- (fyg’:,]) 7011 + Rs 0

5.8 —1 pl 5,8
= Zl X .. X (7€+(k71)w.0) RS gt ('Yo+(k71)w,o) X..o.ox1

o0
§5\—1 15 15 :
- Z(V;,so) X X (’yéj—(kfl)w,o) (Vo3 k) ’Y;ikw‘/ (’Y;i(k,l)w,o) XX,

k=0
where 1 x ... X ('Ygi(k—l)wo) =l and ('Ye+(k Nwo) X --- x 1 =1for k= 0. We remark
that the products of 1 x .. (*yeJr(k l)wO) by (79+(k71)w0) X ... x | are contractions.

The other equations in (2.23) and (2.24) are treated in the same way; we omit the details and
provide just the final results. Analogously, the second equation in (2.23) gives the following
solution:

= Zl X oo XY po0 Rgefkw,j (vé’ikw,o)’l XX ('Y(s;’iw,o)fl

X 5.8 —1 X —1
F D X X 0 Vo e yes (T yw) ™ X X (0 00) T

where 1 x ... x v5%, o= 1and ('Vg’ikw,o) Uxox (fyg’iw’o)*l =1 for k = 0. As for the
first equation in (2.24), we obtain:

u,u

- Z Ix...x 75‘ uka Ri,efkw,j (/Ygﬁkw,o)il XX (gt wo)f1

u,u

o0
—1 u =1
+ Zl XX uka 79 (k+1)w,j (76 (k+1)w,,-) XX (Yl ) s

where 1 X ... X ’yg“kwo = land (’y‘e”‘kwo)_l XX (Y9t o) ' = 1 for k = 0. The second
equation in (2 24) is solved as follows:
u, u u,u 1pll il
Z( ('70.:,.(/( 1w, 0) Ry o1k (79+(k—1)w,j) X...oxl
=
—1 1 i
Z Yo'0) X (Vo) Votkey 'ygi(k—l)w,o Xoox
k=0

it,it

DX X (Y o) = Land gy % - x L= 1fork=0.

where (v44)~
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Appendix A. Proof of the closing lemma and its consequences

In this Appendix we provide the proof of lemma 15 and of some of its consequences, precisely
lemma 16 and lemma 17.

A.1. Proof of lemma 15

Assume that we have a splitting in the neighborhood of the reference splitting, so that we can
describe the splitting by the functions AJ as in (2.16). Let v be a cocycle over a rotation.

Our first task is to formulate a functional equation for the A7 that is equivalent to their
graphs being invariant. Then, we will transform this equation into a contraction mapping
theorem. These constructions are very standard in the theory of hyperbolic systems [Ano69,
HPS77].

We see that for a vector in the graph of A (which we write as x + AZx with x € Ef), we
have that its image under 9 = ~(6), expressed in components, is:

Yolx+AGx) = (1575 +757AGx) + (7§ 7x + 957 AGx) . (A1)
The point (A.1) is in the graph of A7,  forall x € E7, if and only if the matrices Ag satisfy:

010 (V57 + 75 7AG) =57 + 50 AG (A2)

Conversely, since the derivation of (A.2) is just algebra, we see that if (A.2) holds, all the
points in the graph of A7 will be transformed into maps in the graph of Ag .

Hence, our treatment will be based on discussing (A.2), manipulating it algebraically till it
becomes a contraction. Note that (A.2) is a very general calculation and that it applies to any
dichotomy.

To guess the algebraic transformations that make (A.2) into a contraction in our cases, it is
useful to remark that v7%, 4% will be assumed to be sufficiently small and that the cocycles
generated by v”>” and (fy& ’&) ~! have different contraction/growth rates, see (2.14).

Hence, (A.2) is heuristically a small perturbation of

A Y87 =9 "AG - (A.3)

The rearrangements of the equation (A.2) that are useful to reformulate it as a contraction
are different depending on the cases we consider. Note that we need to study two dichoto-
mies: 0 = 5,6 = § and 0 = u, 6 = it. Hence, we will need two equations for each of the two
dichotomies.
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The manipulations needed can be understood by looking at (A.3). We want to isolate one
of the A? appearing in (A.3) in such a way that the RHS is a contraction. Once we get that the
main part is a contraction, it will follow that the (arbitrarily) small terms omitted from (A.3)
do not affect the contraction properties.

For the dichotomy between s, § spaces we use:

03" (A (O +25°43) 5] =45,

5.5 5,8 s § 5 s 5.5 -1 K (A4)
[%LN T A0 — AﬂefwAe—w} (707w> =4
For the dichotomy corresponding to u, it, we obtain the pair of equations:
AT A+ A ] ()T = 4
(A.5)

(vg) ™" [ b (VAL — WZ’f‘} = Aj .

The two systems (A.4) and (A.5) can be dealt with by the same methods. So, we will only
discuss (A.5). It will be important to note that the estimates that we obtain for the solutions
depend only on the constants Cy and the rates entering into (2.14).

We realize that, if we eliminate from (A.5) the blocks of « that can be made small by
assuming that the splitting is almost invariant, then we are led to consider the fixed point of
the operator N defined as

- (L)

(")~ 405"

In the following we present some (rather arbitrary) choices that work.

Note that A is a linear operator and that powers of it are obtained by multiplying the argu-
ments by cocycles in the right and in the left (and by shifting the arguments).

Due to the rate conditions, there exists an L > 0 such that, by iterating Ny, L times,
we can make the Lipschitz constant of the iterate (in the analytic norm) smaller than 1/2,
Lip(NV{) < 1/2—where the Lipschitz constant is in the space A,,.

If we consider the ball ||Aj]|,, ||A§|l, < M for some M, > 0, we can find smallness condi-
tions on ||y"#|| ,, ||[7"*|| ,, such that the contraction of Aj in this ball is smaller than 3/4.

We recall that the splitting E is n-approximately invariant and that the distance between
the splittings can be measured by (2.18). Using that (Ap)~ is a contraction, it follows that A
has a unique fixed point. We conclude with the standard fixed point estimates which, together
with (2.22), lead to

max |Ag]| < Cn.

A.2. Proof of lemma 16

There exists N € N such that [TV, < 1 (indeed just take N = [|1n(ﬁ)|/|ln(£)|] + 1.
Now, there exists an €* > 0 such that ||y — 7|, < €* implies that

~ 1
™M, < =
=, < 2
We recall that fﬁzfz, we  write

11€+Nk _ I‘f;[NkI"a’k = T'§ o Tyro TH¥. Then, we have:

DM =T Mo Ty, such  that
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1 k 1 Nk+¢
TNk+£ <(-= = [ L nai
F < (5) s 1= (g ) 5mw 2o, 1T

Hence we obtain the desired result with & = (1/2)'/, Cy = 2 supg gy [IT* -

A.3. Proof of lemma 17

The method of proof is very similar to perturbation arguments of semigroups [HP74].
The first observation is that, using the operators A7 as in (2.16), we can identify the approx-
imately invariant spaces E§ with the invariant ones Ej. Let the invariant cocycle be

497 E§ — Eg,,, -
We will only consider the case of the forward cocycles. The case of the inverse requires

only to change w to —w and to consider the inverse cocycle.
Adding and subtracting appropriate terms, using the notation in (2.9) and (2.10), we have

~0,0

T =% w-1yw 76

~0.,0

k—1
= ety W YW ety 0 [550 = 8] Wi
=0

k—1

_ Tk k ~ 0.0 0,0 T

=T+ ZO Ll [79+jw - 70+jw} Iy, (A.6)
=

where we define I' and T to be the identity, and we intend that 7] e g7 = 0for
j=0and ’Yg-f(k—l)w . "Yg-f(j-i-l)w = 0 for j = k — 1. Note that (A.6) is a discrete version of
Duhamel formula, so that the rest of the argument is very similar to the arguments in perturba-
tion theory of semigroups. _

We will consider (A.6) as a fixed point equation for I'* lying in an appropriate space of
sequences with an appropriate norm. We therefore write (A.6) as

[ =T+£I. (A7)
We will show that the operator £ given by

k—1
Tk — k ~ 0,0 oo | 1
(LT =>"Th, [Voﬂw ~Yorjw| Lo
—
is a contraction in a space of sequences endowed with a norm that captures the rate.

Iterating (A.7) we obtain

T=T+LT+LT+ .. +LT+ . (A.8)

The above treatment is very similar to perturbation theory of semigroups in the Physics litera-
ture; equation (A.8) is known as the Dyson expansion.

To study (A.7) we introduce appropriate norms in spaces of sequences of operators,
precisely:

1Tl = sup (£41T¥1,)
keN
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we suppress the A, from the notation for ||T'|| since it will be fixed in this argument. On the
other hand, the~§ will be important for us.
We fix £ < £ and estimate £ in the norm. We introduce the quantity a as

a= 777 =", -

We note that for any choice of ¢ for which we can show that £ is a contraction, we show that
there is a solution of (A.7) in the space of functions with rate § (and of course, that the solution
is unique). Obviously the T" produced by the recursion (A.8) is a solution. Therefore, we show
that the (A.8) has growth with exponent & :

k—1
LT (1€ * < EF DT ITEllpall T,
j=0

k—1
<& ot Uadl T

j=0
k—1

= Coa Yy & IEHH|T|g(¢ )
j=0
-, 1 -

< Coat ! T

Hence, if we take £/€ < % and
Coa ™' < 1/4,

we ensure that || £|| is a contraction.

The estimate of the constant Cy follows from the fact that || £|| = Coaé ! 1715 e < 1/2.

Appendix B. Non-Euclidean manifolds

In this section, we discuss how one can adapt the results for non-Euclidean manifolds. For
lower dimensional tori, this is interesting because there are examples with lower dimensional
tori with a non-trivial topology of the neighborhoods (in Lagrangian tori, this cannot happen).

In non-Euclidean manifolds, we run into two problems.

One is that for approximately invariant tori, 7r,ox(6) # Tk(6+w) and, hence for tori in a
non-Euclidean manifold we cannot write Df), o K(6) = DK(6 + w), which is a very sugges-
tive notation for effects of iterations. This problem has appeared very frequently in dynamics.
A standard way of fixing the problem is to construct connectors ) [HPPS70] which identify
the tangent spaces of close enough points'*. Hence, the cocycles one should consider are

0+nw O+w
Dfjy 0 K(O+ma)SKC) e X Dy o K(0+ w)sg(o,j(e)) .

Note, however, that if the bundles are not trivial, these cannot be identified with matrix
cocycles.

14 A very natural definition of connectors is y = exp,(v) with v sufficiently small; we fix x and the derivative of
the exponential mapping at v identifies the tangent space at x with the tangent space at y. The chain rule gives that
S§38% = 8%, when x is sufficiently close to y,z and y, z are sufficiently close.
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A second problem is that f,, o K(6) transforms Qk(g) into a multiple of €2, (k()). Even if
one identifies the tangent spaces, it is not clear what are the geometric properties of the prod-
uct (2.9).

There are standard ways of correcting this. For example [GEdILO8] uses the Global
Darboux theorem from [Mos65, Wei73] to change slightly the map in such a way that approxi-
mate cocycles are exactly conformally symplectic. As shown in [GEdILO08] these changes do
not alter the quadratic convergence of the algorithm because the size of the required changes
can be bounded by the error in the invariance equation.

In our case, this problem appears only in section 4.
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