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Abstract

We give a polynomial-time algorithm to test whether a graph contains an induced cycle with length
more than three and odd.



1 Introduction

All graphs in this paper are finite and have no loops or parallel edges. A hole of G is an induced
subgraph of G that is a cycle of length at least four. In this paper we give an algorithm to test
whether a graph G has an odd hole, with running time polynomial in |G|. (|G| denotes the number
of vertices of G.)

The study of holes, and particularly odd holes, grew from Claude Berge’s “strong perfect graph
conjecture” [1], that if a graph and its complement both have no odd holes, then its chromatic
number equals its clique number. For many years, this was an open question, as was the question
of finding a polynomial-time algorithm to test if a graph is perfect. (“Perfect” means every induced
subgraph has chromatic number equal to clique number.) Both questions were settled at about the
same time: in the early 2000’s, two of us, with Robertson and Thomas [6], proved Berge’s conjecture,
and also, with Cornuéjols, Liu and Vuskovié¢ [7], gave a polynomial-time algorithm to test if a graph
has an odd hole or odd antihole, thereby testing perfection. (An antihole of G is an induced subgraph
whose complement graph is a hole in the complement graph of G.)

Excluding both odd holes and odd antiholes is a combination that works well, and has “deep”
structural consequences. Just excluding odd holes loses this advantage, and graphs with no odd holes
seem to be much less well-structured than perfect graphs, in some vague sense. It was only recently
that two of us [15] proved that if a graph has no odd holes then its chromatic number is bounded
by a function of its clique number, resolving an old conjecture of Gyérfas [13]. For a long time, the
question of testing for odd holes has remained open: while we could test for the presence of an odd
hole or antihole in polynomial time, we were unable to separate the test for odd holes from the test
for odd antiholes, and the complexity of testing for an odd hole remained open. Indeed, it seemed
quite likely that testing for an odd hole was NP-complete; for instance, D. Bienstock [2, 3] showed
that testing if a graph has an odd hole containing a given vertex is NP-complete. But in fact we can
test for odd holes in polynomial time.

The main result of this paper is the following:

1.1 There is an algorithm with the following specifications:
Input: A graph G.

Output: Determines whether G has an odd hole.
Running time: O(|G|?).

Remarkably, the algorithm (or rather, the proof of its correctness) is considerably simpler than the
algorithm of [7], and so not only solves an open question, but gives a better way to test if a graph is
perfect. Its running time is the same as the old algorithm for testing perfection. (A recent paper by
Lai, Lu, and Thorup [14] gives a modification of the algorithm of this paper, that would bring the
running time down to O(|G|®).)

Like the algorithm of [7], and several other algorithms that test for the presence of an induced
subdivision of a fixed subgraph, the new algorithm has three stages. Say we are looking for an
induced subgraph of “type T” in the input graph G.

e The algorithm first tests for certain “easily-detected configurations”. These are configurations
that can be efficiently detected and whose presence guarantees that G contains an induced
subgraph of type T.



e The third step is an algorithm that tries to find a subgraph of type T directly; it would not be
expected to work on a general input graph, but it would detect a subgraph of type T if there
happens to be a particularly “nice” one in the input graph. For instance, in [7] we were looking
for an odd hole, and the method was, try all triples of vertices and join them by three shortest
paths, and see if they form an odd hole. This would normally not work, but it would work if
for some shortest odd hole of the graph, there were no vertices in the remainder of the graph
with more than three neighbours in this hole.

e The second step is to prepare the input for the third step; this step is called “cleaning”, and is
where the main challenges lie. In the cleaning step, the algorithm generates a “cleaning list”,
polynomially many subsets X1, ..., X of the vertex set of the input graph G, with the property
that if G does in fact contain an induced subgraph of type T, then for some i € {1,...,k}, such
a subgraph can be found in G\ X; using the method of step 3. This usually means that if G
contains an induced subgraph of type T, then there is one, say H, such that some X; contains
all the vertices of G\ V(H) that have many neighbours in H, and deleting X; leaves H intact.

Cleaning was first used by Conforti and Rao [12] to recognize linear balanced matrices, and
subsequently by Conforti, Cornuéjols and Rao [11] to recognize balanced matrices, and by Conforti,
Cornuéjols, Kapoor and Vuskovié¢ [9] to test for even holes, as well as in [7]. It then became a
standard tool in induced subgraph detection algorithms [4, 5, 8]. This is the natural approach to try
to test for an odd hole, and it seemed to have been explored thoroughly; but not thoroughly enough,
as we shall see. We have found a novel method of cleaning that works remarkably well, and will have
further applications [10, 16].

In both the old algorithm to check perfection, and the new algorithm of this paper, we first test
whether G' contains a “pyramid” or “jewel” (easily-detected induced subgraphs that would imply
the presence of an odd hole) and we may assume that it does not. Then we try to search for an odd
hole directly, and to do so we exploit the properties of an odd hole of minimum length, a so-called
shortest odd hole. (These properties hold in graphs with no pyramid or jewel, but not in general
graphs, which is why we test for pyramids and jewels first.)

Let C be a shortest odd hole. A vertex v € V(G) is C-magor if there is no three-vertex path of
C' containing all the neighbours of v in V(C) (and consequently v ¢ V(C)); and C' is clean (in G)
if no vertices of G are C-major. If G has a shortest odd hole that is clean, then it is easy to detect
that G has an odd hole, and this was done in theorem 4.2 of [7]. More exactly, there is a poly-time
algorithm that either finds an odd hole, or deduces that no shortest odd hole of G is clean. Call
this procedure P. The complicated part of the algorithm in [7] was generating a cleaning list, a list
of polynomially-many subsets of V(G), such that if G has an odd hole, then there is a shortest odd
hole C' and some X in the list such that X NV (C) = () and every C-major vertex belongs to X.
Given that, we take the list X1,..., X} say, and for each of the polynomially-many graphs G \ X,
we run procedure P on it. If it ever finds an odd hole, then G has an odd hole and we are done. If
not, then G has no odd hole and again we are done.

So, the key is generating the cleaning list. For this, [7] uses

1.2 For every graph G not containing any “easily-detected configuration”, if C' is a shortest odd
hole in G, and X is an anticonnected set of C-major vertices, then there is an edge uwv of C such
that u,v are both X -complete.



(Anticonnected means connected in the complement, and X -complete means adjacent to every vertex
in X.) But to arrange that 1.2 is true, it is necessary to expand the definition of “easily-detected
configuration” to include some new configurations. It remains true that if one is present then the
graph has an odd hole or odd antihole and we can stop, and if they are not present then 1.2 is true.
The problem is, if one of these new easily-detected configurations is present, it guarantees that G
contains an odd hole or an odd antihole, but not necessarily an odd hole.

But there is a simpler way. Here is a rough sketch of a new procedure to clean a shortest odd hole
C in a graph G with no pyramid or jewel. Let z be a C-major vertex such that there is a gap in C
between two neighbours of z, as long as possible. (We can assume there is one.) Let the neighbours
of x at the ends of this gap be di,ds; thus there is a path D of C between dy, ds such that every
C-major vertex either has a neighbour in its interior, or is adjacent to both ends. We can assume
that the C-distance between dy, ds is at least three. Also, we have a theorem that there is an edge
f of C such that every C-major vertex nonadjacent to = is adjacent to one of the ends of f.

For the algorithm, what we do is: we guess z,d;,ds and f (more precisely, we enumerate all
possibilities for them). Eventually we will guess correctly. We also guess the two vertices neighbouring
fin C, say c1,cq, where f = cocs and ¢y, ¢2, c3, ¢4 are in order in C. When we guess correctly, every
C-major vertex either

e is adjacent to both di,ds; or
e is different from ¢y, c9, c3, ¢4 and is adjacent to one of co, c3; or

e is adjacent to x and has a neighbour in the interior of D.

We can safely delete all common neighbours of dy, ds except x; deleting these vertices will not remove
any vertices of C'. Also, we can safely delete all vertices different from cq, o, c3, ¢4 that are adjacent
to one of cg, 3. So now in the graph that remains after these deletions, say G’, all C-major vertices
different from x satisfy the third bullet above.

We do not know the path D, and so we cannot immediately identify the set of vertices satisfying
the third bullet. (For this sketch, let us assume that D has length less than half that of C; if it is
longer there is a slight complication.) But we know (it is a theorem of [7]) that D is a shortest path
between di,dy in the graph obtained from G’ by deleting all C-major vertices; and so it is also a
shortest path between d1, ds in the graph G” obtained from G’ by deleting z and all its neighbours
(except d1,ds). The algorithm computes G”, and then finds the union of the interiors of the vertex
sets of all shortest paths between dy,dy in G”, say F. It is another theorem of [7] that no vertex of
C'\ V(D) has a neighbour in F; so it is safe to delete from G’ all vertices of G’ except dy, ds that are
not in F' and have a neighbour in F. But then we have deleted all the C-major vertices, and now
we just test for a clean shortest odd hole.

In an earlier version of this paper, we proved the result by a more complicated method that also
seems to us novel and worth recording. It was necessary to first test for two more easily-detected
configurations; but then, instead of constructing the set F' above, the algorithm just guesses the
component (F’ say) of G” that contains the interior of D, and deletes all neighbours of = that have
neighbours in this component except di, ds. This might delete some of the hole C, but we proved a
theorem that enough of C remains that we can still use it in an algorithm to detect an odd hole. In
particular, there is an odd path P of C of length at least three, with both ends adjacent to z, such
that the ends of P both have neighbours in F’ and its internal vertices do not; and we can exploit
this to detect the presence of an odd hole.



2 The easily-detected configurations

Let v9 € V(G), and for i = 1,2,3 let P; be an induced path of G between vy and v;, such that
e P, P, P53 are pairwise vertex-disjoint except for vy;

® vy,V9, V3 # g, and at least two of Pj, Py, P3 have length at least two;

® vy, V9, v3 are pairwise adjacent; and

o for 1 <i < j <3, the only edge between V(F;) \ {vo} and V(P;) \ {vo} is the edge v;v;.

Figure 1: A pyramid. Throughout, dashed lines represent paths, of indeterminate length.

We call the subgraph induced on V(P U P, U Ps) a pyramid, with apez vy and base {v1,ve,vs}. If

G has a pyramid then G has an odd hole (because two of the paths Py, P>, P3 have the same length
modulo two, and they induce an odd hole). It is shown in theorem 2.2 of [7] that:

2.1 There is an algorithm with the following specifications:

Input: A graph G.

Output: Determines whether there is a pyramid in G.

Running time: O(|G|?).

If X C V(G), we denote the subgraph of G induced on X by G[X]. If X is a vertex or edge of G,
or a set of vertices or a set of edges of G, we denote by G\ X the graph obtained from G by deleting
X. Thus, for instance, if b1bs is an edge of a hole C, then C'\ {b1,b2} and C'\ b1by are both paths,
but one contains b1, by and the other does not. If P is a path, the interior of P is the set of vertices
of the path P that are not ends of P.

We say that G[V(P) U {v1,...,v5}] is a jewel in G if vy, ..., v5 are distinct vertices, vve, vovs,
U3y, V45, UsU1 are edges, vivs, vavy, V104 are nonedges, and P is a path of G between vy, v4 such that
v2, U3, U5 have no neighbours in the interior of P. (We do not specify whether vs is adjacent to v, vs,
but if it is adjacent to one and not the other, then G also contains a pyramid.)
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Figure 2: A jewel. Throughout, dotted lines represent possible edges.

Again, if G contains a jewel then it has an odd hole; and it is shown in theorem 3.1 of [7] that:
2.2 There is an algorithm with the following specifications:
Input: A graph G.

Output: Determines whether there is a jewel in G.

Running time: O(|G|%).
It is proved in theorem 4.2 of [7] that:
2.3 There is an algorithm with the following specifications:
Input: A graph G containing no pyramid or jewel.
Output: Determines one of the following:

1. G contains an odd hole;

2. there is no clean shortest odd hole in G.

Running time: O(|G|?).

Let us say a shortest odd hole C is heavy-cleanable if there is an edge uv of C' such that every
C-major vertex is adjacent to one of u,v. We deduce:

2.4 There is an algorithm with the following specifications:
Input: A graph G containing no pyramid or jewel.
Output: Determines one of the following:

1. G contains an odd hole;

2. there is no heavy-cleanable shortest odd hole in G.

Running time: O(|G|?).



Proof. List all the four-vertex induced paths ci-ca-c3-c4 of G. For each one, let X be the set of all
vertices of G different from ¢y, ..., ¢4 and adjacent to one of cg, c3. We test whether G\ X has a clean
shortest odd hole, by 2.3. If this never succeeds, output that G has no heavy-cleanable shortest odd
hole.

To see correctness, note that if G has a heavy-cleanable shortest odd hole C then C' is clean in
G\ X for some X that we will test (assuming we have not already detected an odd hole); and when
we do so, 2.3 will detect an odd hole. If G does not have a heavy-cleanable shortest odd hole, then
two things might happen: either 2.3 detects an odd hole for some choice of X, or it never detects
one. In either case the output is correct. This proves 2.4. |

Let us say that a graph G is a candidate if it has no jewel or pyramid, and no heavy-cleanable
shortest odd hole (and consequently no hole of length five). By combining the previous results we
deduce:

2.5 There is an algorithm with the following specifications:
Input: A graph G.
Output: Determines one of the following:

1. G contains an odd hole;
2. G is a candidate.

Running time: O(|G|?).

In view of this, we just need to find a poly-time algorithm to test candidates for odd holes.

3 Heavy edges

Let C' be a graph that is a cycle, and let A C V(C'). An A-gap is a subgraph of C composed of a
component X of C'\ A, the vertices of A with neighbours in X, and the edges between A and X.
(So if |A| > 2, the A-gaps, if they exist, are the paths of C of length > 2, with both ends in A and
no internal vertex in A.) The length of an A-gap is the number of edges in it (so if A consists just
of two adjacent vertices, the A-gap has length |E(C)| — 1). We say that A is normal in C' if every
A-gap is even (and consequently if C' has odd length then A # ().

The following is proved in theorem 7.6 of [7]:

3.1 Let G be a graph containing no jewel or pyramid, let C' be a shortest odd hole in G, and let X
be a stable set of C-magor vertices. Then the set of X -complete vertices in C is normal.

Also we have:

3.2 If G is a graph containing no pyramid, and C is a shortest odd hole in G, then every C'-major
vertex has at least four neighbours in V(C).

Proof. Let v be C-major, and suppose it has at most three neighbours in V(C'). Let A be the set
of neighbours of v in C. Every A-gap is even (since adding v gives a hole shorter than C'), and since
C' is odd, some edge of C is not in a A-gap, that is, some two neighbours of v in V(C) are adjacent.
Since v is C-major, it has exactly three neighbours in V(C'), and they are not all three consecutive;
but then G[V(C) U {v}] is a pyramid, a contradiction. This proves 3.2. |



3.3 Let G be a graph containing no jewel or pyramid, let C' be a shortest odd hole in G, and let x,y
be nonadjacent C-magjor vertices. Then every induced path between x,y with interior in V(C') has
even length.

Proof. Let the vertices of C' in order be ¢1,ca,...,cn,c1. By 3.1 applied to {z,y}, some vertex
of C' is adjacent to both z,y, say ¢,. Suppose that there is an odd induced path P between z,y
with interior in V' (C). Since x has only one neighbour in the interior of P, and x has at least four
neighbours in V' (C), not all consecutive (because G contains no jewel), it follows that the interior of
P has at most n —4 vertices, and so P has length at most n—3. But ¢, ¢ V(P), and since adding ¢,
does not give an odd hole (because such an odd hole would be shorter than C), it follows that ¢, has
a neighbour in the interior of P. Thus we may assume that the interior of P equals {c;, ¢, ..., ¢t} for
some even k > 2. If both z,y have a neighbour in the set {cgi2,...,cn—2}, there is an induced path
Q@ between x,y with interior in {cg49,...,cn—2}, and its union with one of z-¢,-y, P is an odd hole of
length less than that of C, a contradiction. Thus one of z,y has no neighbours in {cxy2,...,cn—2},
say x. By 3.2, x has at least four neighbours in V' (C); so it has exactly four, and is adjacent to both
Ck+1,Cn—1. Hence the neighbours of x in V(C') are ¢,_1, ¢y, cg11, and exactly one of ¢1,¢c,. But k is
even, since P has odd length, so the path cxi1-cxia-----cp—1 of C is odd; and since adding = does
not make an odd hole shorter than C| it follows that cx11,cn,—1 are adjacent, and so k =n — 3. But
then the four neighbours of = in C' are consecutive, and so the subgraph induced on V(C)U{x} is a
jewel, a contradiction. This proves 3.3.

If X CV(G), we say an edge uv of G is X -heavy if u,v ¢ X, and every vertex of X is adjacent
to at least one of u,v. We need:

3.4 Let G be a graph containing no jewel or pyramid or 5-hole, and let C be a shortest odd hole in
G. Let X be a set of C-major vertices, and let o € X be nonadjacent to all other members of X.
Then there is an X -heavy edge in C'.

Proof. We proceed by induction on | X|. If X is stable then by 3.1 some vertex of C' is X-complete
(because the null set is not normal), and both edges of C' incident with it are X-heavy, as required.
We assume then that x1,x9 € X are adjacent. From the inductive hypothesis, some edge u;v; of C
is (X \ {zi})-heavy, for i = 1,2; so we may assume that for ¢ = 1,2, z; has no neighbour in w;v;
(because otherwise u;v; is X-heavy). Consequently ujv; and wugvy are distinct edges. Since xg,x1
both have neighbours in {ug,v2}, 3.3 implies that they have a common neighbour in {us,vs}; so we
may assume that xg,z1 are both adjacent to vg, and similarly zg, xo are both adjacent to v;. Since
the subgraph induced on {zg, 1, x2,v1,v2} is not a 5-hole, and vy # v, it follows that vy, vy are
adjacent. Since 1 has no neighbour in {ui,v;}, it follows that u; # ve, and similarly uy # v1, so
u1, V1,02, us are in order in C'. We claim that vivy is X-heavy; for suppose not. Then there exists
x € X nonadjacent to vy, ve; and so x # xg, x1, 2. Since ujv; is (X \ {z1})-heavy, it follows that x
is adjacent to u1, and similarly to ug; but then the subgraph induced on {z,u;,v1,v2,u2} is a 5-hole,
a contradiction. This proves 3.4. |

4 The odd holes algorithm

We can now give the algorithm to detect an odd hole. We first present it in as simple a form as
we can, but its running time will be O(]G|'2). Then we show that with more care we can bring the



running time down to O(|G|?).

Let C be a hole and = € V(G) \ V(C). An z-gap is an induced path of C' with length at least
two, with both ends adjacent to x and with its internal vertices nonadjacent to x. Thus if P is a
x-gap then G[V(P) U {v}] is a hole. We need the following, theorem 4.1 of [7]:

4.1 Let G be a graph containing no jewel or pyramid, and let C' be a clean shortest odd hole in G.
Let u,v € V(C) be distinct and nonadjacent, and let Ly, Ly be the two subpaths of C joining u,v,
where |E(L1)| < |E(L2)|. Then:

e L1 is a shortest path in G between u,v, and
o for every shortest path P in G between u,v, P U Ly is a shortest odd hole in G.

Here then is a preliminary version of the algorithm. We are given an input graph G. First we
apply the algorithm of 2.5, and we may assume it determines that G is a candidate.

Next we enumerate all induced four-vertex paths c¢i-co-c3-c4 of G, and all induced three-vertex
paths di-z-dg of G. (They might overlap.) For each choice of ¢1-¢o-c3-c4 and di-z-dg, and each vertex
ds of G (thus we are checking all 8-tuples (cy, ¢, 3, ¢4, d1, z,d2,d3)), we do the following:

e Compute the set X; of all vertices adjacent to both d; and do that are different from =,
and compute the set X9 of all vertices that are adjacent to one of cg9,c3 and different from
c1, ¢, c3,cq4. Check that x € Xo, and none of ¢y, ..., cq,d1,d2 belongs to X7 U Xy (and if not,
move on to the next 8-tuple). Let G’ be the graph obtained from G by deleting X7 U Xs.
Compute the set Y of all vertices of G’ that are different from and nonadjacent to x in G.

e If d3 ¢ Y, move on to the next 8-tuple. Otherwise, check that the distances in G[Y U {dy,d2}]
between dj, d3 and between dy, d3 are finite and equal (and if not, move on to the next 8-tuple).

e For each y € Y, compute the distance in G[Y U {d;,dz2}] to di, to d2 and to ds. For i = 1,2,
let F; be the set of all y € Y with the sum of the distances to d; and to dg minimum; that is,
the set of interiors of shortest paths in G[Y U {d1, d2}] between d3 and d;. Let X3 be the set
of all vertices of G’ different from d, do, d3, z that are not in F; U Fy and have a neighbour in
FLUhbUu {dg}

e Use the algorithm of 2.3 to determine either that G\ (X7 U X2 U X3 U {z}) has an odd hole,
or that it has no clean shortest odd hole. If it finds that there is an odd hole, we output this
fact and stop. If after examining all choices of 8-tuple we have not found that there is an odd
hole, we output that there is none, and stop.

Let us see that this algorithm works correctly. (If = is a vertex of G, N[z] denotes the set
consisting of = and all its neighbours.) Certainly, if the input graph has no odd hole then the output
is correct; so we may assume that G is a candidate and C' is a shortest odd hole in G. Since C' is not
heavy-cleanable, there is a C-major vertex x with an x-gap of length at least three; and so there is
one, x say, with an z-gap in C' of maximum length, at least three. Let this x-gap have ends d, do;
so di,do are adjacent to x, and there is a path D of C between di,ds such that z has no neighbour
in its interior. Since z is C-major, the C-distance between dy,ds is at least three (because the path
of C joining dj, ds different from D contains all the neighbours of v in V(C')). From the choice of z,



every other C-major vertex is either adjacent to both di, ds, or has a neighbour in the interior of D.
Since C'is a shortest odd hole, it follows that D has even length; let d3 be its middle vertex.

By 3.4 there is an edge cacs of C' such that all C-major vertices nonadjacent to = are adjacent
to one of co,c3. Let c1-co-c3-c4 be a path of C. As the algorithm examines in turn each 8-tuple, it
eventually will examine the 8-tuple (c1, 2, ¢3, ¢4, d1, z,d2,ds), and we will show that in this case the
algorithm will determine that there is an odd hole.

Thus, suppose that the algorithm is now examining the “correct” 8-tuple. Let X7, X2, G',Y be
as in the first bullet above. It follows that X7, Xo are disjoint from V(C) and so C'is a shortest odd
hole in G'. Let G" = G’ \ (N[z] \ V(C)). Then YV (G”) and C is a clean shortest odd hole in G”.
Since d3 is the middle vertex of D, the subpaths of D joining d3 to di, ds both have length less than
|C|/2, and so, by the first statement of 4.1 applied to G”, these two subpaths are shortest paths
joining their ends with interior in Y. Moreover, by the second statement of 4.1 applied to G”, for
every choice of a shortest path L; in G'[Y U{d, d2}] joining ds, d; (for i = 1,2), no vertex of L; \ {d;}
belongs to or has a neighbour in V(C) \ V(D); and so the set X3 defined in the third bullet above
contains no vertex in V(C). But X; U Xy U X3 U {z} contains every C-major vertex, and so C is a
clean shortest odd hole in G\ (X1 U X2 U X3 U{z}); and hence when we apply the algorithm of 2.3
to this subgraph, it will determine that it (and hence G) has an odd hole. This completes the proof
of correctness. For the running time: there are |G|® 8-tuples to check. For each one, the sequence of
steps above takes time O(|G|?*); and so the total running time is O(|G|'2).

Now let us do it more carefully, to reduce the running time. In order to explain the method,
let us consider more closely a shortest odd hole C in a candidate G. As before, there is a C-major
vertex & with an z-gap of length at least three; and so there is one, x say, with an z-gap in C of
maximum length, at least three. Let this z-gap have ends di,do; so dy,ds are adjacent to x, and
there is a path D of C' between di,ds such that z has no neighbour in its interior. By 3.4, there is
an edge cacy of C such that both x and all C-major vertices nonadjacent to x are adjacent to one
of ¢9,c3. Since x is adjacent to one of co, 3, not both co, c3 belong to the interior of D; and since
di1,ds are nonadjacent, we may assume by exchanging di, ds or co, c3 if necessary that ¢, c3,dy, x, do
are all distinct except that possibly co = d;. Now there are six possibilities:

1. ¢o # d; (and hence c3 does not belong to the interior of D), and D has length less than |C|/2;
2. ¢ # dy (and hence c¢3 does not belong to the interior of D), and D has length more than |C|/2;
3. ¢a = dy, and c3 does not belong to the interior of D, and D has length less than |C|/2;

4. ¢g = dy, and c3 does not belong to the interior of D, and D has length more than |C|/2;

5. ¢z belongs to the interior of D (and hence ¢; = d;), and D has length less than |C|/2; and

(@)

. c3 belongs to the interior of D (and hence c¢a = d;), and D has length more than |C|/2.

Let us say C is of type i if it satisfies the the ith statement above, where 1 < i < 6. (Thus C' may
have more than one type.) To minimize running time, it seems best to design separate algorithms
to test for the six types separately. We need the following lemma:

4.2 There is an algorithm with the following specifications:



Input: A graph G, and two disjoint subsets A, B of V(G), and a vertex h ¢ AU B with no neighbour
in AU B. Also for each v € AU B, an induced path R, between v and h, containing no vertex
in AU B except v.

Output: Determines whether there exist a € A and b € B such that R, U Ry is an induced path.
Running time: O(|G?).

Proof. For each a € A, compute the set S, of all vertices of G\ {h} that either belong to V (R, \{h})
or have a neighbour in this set. (This takes time O(|G|?) for each a € A.) Now for each a € A and
each b € B, test whether S, is disjoint from V(R \ {h}). If so, R, U Ry is an induced path, and
otherwise it is not. This proves 4.2. |

Now to handle the six types of shortest odd hole. We begin with:
4.3 There is an algorithm with the following specifications:
Input: A candidate G.
Output: Determines either that G has an odd hole, or that G has no shortest odd hole of type 1.
Running time: O(|G|%).

Proof. List all 6-tuples (cg,c3,d1,x,ds,ds) of distinct vertices of G such that caocs is an edge, and
di-z-do is an induced path. Now we test each such 6-tuple in turn, as follows. Let X7 be the set
of common neighbours of dy, ds different from x, and let X5 be the set of all vertices different from
T, co,C3,d1, dy that are adjacent to one of co,c3. Let C7 be the set of all vertices of G different from
¢, c3, ¢ that are adjacent to co and not to c3, and let Cy be the set that are adjacent to c3 and not
to ca. Let G’ be the graph obtained from G by deleting X; U Xo U (Nz] \ {d1,d2}).

Find the distance in G’ between d1, do, say t. If ¢ is infinite move on to the next 6-tuple. If ¢ is
finite, for each v € V(G’) compute the distance between v and d; for i = 1,2 (setting the distance to
be infinite if there is no path), and let Y be the set of v € V(G) different from d;,ds with the sum
of these two distances equal to t. Let X3 be the set of vertices of G different from z,d;, ds that are
not in Y and have a neighbour in Y.

Let G" = G\ (X1 U X2 U X3U{z}). For each v € Cy Uy, if there is a path of G between v and
d3 such that all its vertices except v belong to V(G”), find such a path R, of minimum length. Let
C] be the set of v € C} such that R, exists and has even length, and let C} be the set of v € C4
such that R, exists and has odd length. Define C}, CY/ similarly. Apply 4.2 to test whether there
exist ¢; € C] and ¢4 € C) such that the paths R.,, R., are both defined and have union an induced
path between cj, ¢4 with interior in V(G”). If so output that G has an odd hole. Otherwise apply
4.2 again to test whether there exist ¢; € Cf and ¢4 € CJ such that the paths R, R., are both
defined and have union an induced path between ¢, ¢y with interior in V/(G”). If so output that G
has an odd hole. Otherwise move on to the next 6-tuple. When all 6-tuples have been tested, if no
odd hole is found, return that G has no shortest odd hole of type 1.

To see the correctness, suppose that C'is a shortest odd hole of type 1 in G, and let co, ¢3, dy, do, x, D
be as in the definition of type. Let d3 be the vertex of C that is the middle vertex of the even path
C \ {c2,c3}. When the algorithm tests the 6-tuple (co,cs,dy,x,da,ds), let X1, X9, C1,Cy be as in
the description of the algorithm. From the choice of s, c3, every C-major vertex nonadjacent to x
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belongs to X5. From the first assertion of 4.1, D is a shortest path between di,ds in G, of length
t say. By the second assertion of 4.1, if L is a shortest path between di,ds in G’, then no vertex in
V(C) \ V(D) has a neighbour in V(L) \ {d1,dz2}; and so X3 NV (C) = (. Let ¢; € C; and ¢4 € C4
such that c¢j-co-cs-¢4 is a path of C. Thus C \ {c1,c4} is a subgraph of G”. Moreover, the paths
R.,, R., exist, and by the first assertion of 4.1 they both have length (|V(C)| — 3)/2; and by the
second assertion of 4.1, the union of R, , R., is an induced path between c;,cs. Then adding ca, c3
gives an odd hole, as required. This proves 4.3. |

The algorithms for type 3 and type 5 are small modifications of this.

4.4 There is an algorithm with the following specifications:

Input: A candidate G.

Output: Determines either that G has an odd hole, or that G has no shortest odd hole of type 3.
Running time: O(|G|%).

Proof. Enumerate all 7-tuples (c1, ¢3, ¢4, dy, x, da, d3) of distinct vertices such that ¢i-dq-cs-c4 is an
induced path and dj-z-ds is an induced path. Set co = d;. For each such 7-tuple, let X; be the set
of common neighbours of dy, ds, and let X5 be the set of vertices different from cq, co, c3, ¢4 that are
adjacent to one of cg, c3. Let G’ be the graph obtained from G by deleting X7 U XU (N[z]\{c1,d2}).

Find the distance in G’ between ¢y, do, say t. If ¢ is infinite move on to the next 6-tuple. If ¢ is
finite, for each v € V(G’) compute the distance between v, ¢; and between v,ds, and let Y be the
set of v € V(@) different from c;, dy with the sum of these two distances equal to ¢. Let X3 be the
set of vertices of GG different from x, ¢, ds that are not in Y and have a neighbour in Y.

Let G = G\ (X7 UXyU X3 U {z}). Find a shortest path between c¢;,ds in G”, and a shortest
path between ¢4, d3 in G”, and test whether their union is an odd induced path between c1,c4. If so
output that G has an odd hole and otherwise move on to the next 7-tuple. If no odd hole is found
after testing all 7-tuples, output that G has no odd hole of type 3. The proof of correctness is like
that for 4.3 and we omit it. This proves 4.4. |

Similarly we have:
4.5 There is an algorithm with the following specifications:
Input: A candidate G.
Output: Determines either that G has an odd hole, or that G has no shortest odd hole of type 5.
Running time: O(|G|?).
4.6 There is an algorithm with the following specifications:
Input: A candidate G.
Output: Determines either that G has an odd hole, or that G has no shortest odd hole of type 2.

Running time: O(|G|%).
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Proof. Enumerate all 6-tuples (cg,cs,d1,x,ds,ds) of distinct vertices where cocs is an edge and
di-z-do is an induced path. We test each 6-tuple in turn as follows. Let X7 be the set of common
neighbours of di, ds different from z, and let X5 be the set of all vertices different from =z, co, c3, d1, do
that are adjacent to one of ¢y, c3. Let C] be the set of all vertices of G different from co, c3, x that
are adjacent to co and not to c3,ds, and let C4 be the set that are adjacent to c3 and not to co, ds.
Let G’ be the graph obtained from G by deleting X7 U Xo U (N[z] \ {d1,dz2}). If d3 ¢ V(G’) move
on to the next 6-tuple. Find the distance in G’ between d1, d3, and between ds, d3, and check that
they are finite and equal (to ¢ say); if not move on to the next 6-tuple. For each v € V(G’) find its
distance in G’ to di,ds and ds; let Y7 be the set of v # dy, dy with the sum of its distances to dy, d3
equal to ¢, and let Y5 be the set of v # dj, ds with the sum of its distances to ds, d3 equal to t. (Thus
ds € Y1,Y5.) Let X3 be the set of vertices of G different from z,d;,ds that are not in Y and have a
neighbour in Y.

Let G = G\ (X1 U X2 U X3 U {x}). For each v € Cy, if there is a path of G between v and dy
such that all its vertices except v belong to V(G”), find such a path R, of minimum length. For
each v € Cy, if there is a path of G between v and ds such that all its vertices except v belong to
V(G"), find such a path R, of minimum length. Let C] be the set of v € C} such that R, exists
and has even length, and let C7 be the set of v € Cy such that R, exists and has odd length. Define
C, CY similarly. Apply 4.2 in the graph obtained from G[C; U Cy UV (G")] by identifying di, da, to
test whether there exist ¢; € Cf and ¢4 € C} such that the paths R.,, R., are both defined and are
disjoint and have no edges joining them. If so output that G has an odd hole. Otherwise apply 4.2
again to test whether there exist ¢; € C{ and ¢4 € CJ such that the paths R.,, R, are both defined
and are disjoint and have no edges joining them. If so output that G has an odd hole. Otherwise
move on to the next 6-tuple. When all 6-tuples have been tested, if no odd hole is found, return that
G has no shortest odd hole of type 2.

To see the correctness, suppose that C'is a shortest odd hole of type 2 in G, and let cg, ¢3, dy, do2, x, D
be as in the definition of type. Let d3 be the vertex of C that is the middle vertex of the even path D.
When the algorithm tests the 6-tuple (co, c3,d1, z,d2,ds), let X, Xo,C1,Cy be as in the description
of the algorithm; then it follows from 4.1 as before that the output is correct. This proves 4.6. |

Similar modifications handle the remaining two cases, and we omit them. In summary we have:
4.7 There is an algorithm with the following specifications:
Input: A candidate G.
Output: Determines whether G has an odd hole.
Running time: O(|G|%).

Proof. If G has an odd hole, then it has a shortest odd hole of one of the six types; and by running
the algorithms just described we can detect it. |

Our main result 1.1 follows immediately from this and 2.5. One final remark: we have an
algorithm to determine whether G has an odd hole, but what about actually finding an odd hole?
One could obviously do this with an extra factor of |G| in the running time, just by deleting vertices
and running 4.7 repeatedly, to find a maximal subset of the vertex set whose deletion does not destroy
all odd holes. But we can do better, and in fact it is easy to adapt the current algorithm to find
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an odd hole instead of just detecting the existence of one, with running time O(|G|?). We omit the

details.
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