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Abstract

The fork is the tree obtained from the claw K1,3 by subdividing one of its edges once, and the antifork
is its complement graph. We give a complete description of all graphs that do not contain the fork
or antifork as induced subgraphs.



1 Introduction

Graphs in this paper are finite, and without loops or parallel edges. The fork is the tree obtained
from a four-vertex path by adding a vertex adjacent to the second vertex of the path. The antifork
is its complement graph; thus, the antifork is obtained from a four-vertex path by adding one more
vertex adjacent to the first three vertices of the path. (See figure 1.)

Figure 1: The fork and the antifork.

Let us say G is uncluttered if no induced subgraph of G is a fork or antifork. Our goal in this
paper is to give a complete description of all uncluttered graphs. The line graph of a triangle-free
graph is uncluttered, and so is its complement; and our main theorem says that every uncluttered
graph can be obtained by piecing together line graphs of triangle-free graphs and their complements.
Before we can make a precise statement we need to explain the “piecing together” process, and that
is the content of the next section. We state our main result in 2.1.

This question was motivated by discussions with T. Karthick, who told us several results about
colouring graphs not containing forks and/or antiforks [1, 2, 3] (note, however, that in [2] “fork” has
a different meaning from its meaning here). In particular, he asked for the best possible “χ-bounding
function” for uncluttered graphs. The answer follows from our main result 2.1, and we give a proof
in the final section.

1.1 For every uncluttered graph, its chromatic number is at most twice its clique number.

This is asymptotically best possible, since if H is a triangle-free graph with largest stable set of
cardinality k, then the complement of the line graph of H is uncluttered, with clique number at
most |V (H)|/2 and with chromatic number |V (H)| − k; and we can choose H and k with (|V (H)| −
k)/|V (H)| arbitrarily close to 1.

2 Some safe operations

There are several ways to make larger uncluttered graphs from smaller ones. The most obvious is: if
G1, G2 are both uncluttered, then so is their disjoint union. The complete join of G1, G2 is obtained
from their disjoint union by adding edges between every vertex of G1 and every vertex of G2. Since
the complement of an uncluttered graph is also uncluttered, and the complete join of G1, G2 is the
complement of the disjoint union of G1, G2, it follows that if G1, G2 are both uncluttered, then so is
their complete join. Let us say G is anticonnected if its complement graph G is connected.

If X,Y ⊆ V (G) are disjoint, we say X is complete to Y if every vertex in X is adjacent to every
vertex in Y ; and X is anticomplete to Y if there are no edges between X and Y . If v ∈ V (G), we
say “v is complete to Y ” meaning that {v} is complete to Y , and so on.
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If X ⊆ V (G) we denote by G[X] the subgraph induced on X. Two (distinct) vertices u, v of G
are twins if u, v have the same neighbours in V (G) \ {u, v}; (u, v may or may not be adjacent). A
homogeneous set in G means a set X ⊆ V (G) such that every vertex of G not in X is either complete
or anticomplete to X; and the homogeneous set is nontrivial if |X| ≥ 2 and X 6= V (G). If X is a
homogeneous set in G, let Y be the set of vertices in V (G) \X that are complete to X. Take a new
vertex v, and let H be the graph formed from G \X by adding the vertex v and making v adjacent
to the vertices in Y . Then we say G is obtained from H by substituting G[X] for v.

Say a vertex v is simplicial if the set of its neighbours is a clique. If v is a simplicial vertex in an
uncluttered graph G, then we may substitute a complete graph for v, and the new graph we obtain
is also uncluttered. Consequently, if G has adjacent simplicial twins, then G can be obtained from
a smaller graph by the operation just described. A vertex v is antisimplicial if it is simplicial in the
complement graph, that is, if the set of all vertices nonadjacent to v is a stable set.

Let G be a graph, let k ≥ 1 be an integer, and let Y1, . . . , Yk, Z1, . . . , Zk be disjoint nonempty
sets of V (G) with union V (G), such that

• Y1, . . . , Yk are cliques, and Z1, . . . , Zk are stable sets;

• for 1 ≤ i < j ≤ k, Yi is anticomplete to Yj , and Zi is complete to Zj ;

• for 1 ≤ i, j ≤ k, Yi is complete to Zj if i = j, and otherwise Yi is anticomplete to Zj .

We call such a graph G a candelabrum, with base Z1 ∪ · · · ∪ Zk. (See figure 2.)

S S S S S

K K K K K

Z1 Z2 Z3 Z4 Z5

Y1 Y2 Y3 Y4 Y5

Figure 2: A candelabrum. (Lines indicate complete pairs, and K,S mark cliques and stable sets.)

Candelabra are uncluttered, but they can also be used to make larger uncluttered graphs. Let
H1 be an uncluttered graph, and let H2 be a candelabrum with base Z. Take the disjoint union of
H1, H2, and add edges to make V (H1) complete to Z. Let G be the graph we produce. Then G is
uncluttered (we leave checking this to the reader), and V (H1) is a homogeneous set of G. We say G
is candled if it can be constructed by this process; that is, if G has an induced subgraph H that is
a candelabrum, with base Z say, and Z is complete to V (G) \ V (H), and V (H) \ Z is anticomplete
to V (G) \ V (H). (Thus V (G) \ V (H) is a homogeneous set, but it might not be nontrivial; it might
even be empty.)

Now we can state our main theorem:

2.1 Let G be an uncluttered graph. Then either
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• one of G,G is disconnected; or

• one of G,G has adjacent simplicial twins; or

• one of G,G is candled; or

• one of G,G is the line graph of a triangle-free graph.

The proof of 2.1 will occupy the remainder of the paper, and will be completed in 4.7.

3 Homogeneous sets

In this section we will prove:

3.1 Let G be an uncluttered graph. Suppose that

• G is connected and anticonnected;

• G has no adjacent simplicial twins, and no nonadjacent antisimplicial twins; and

• G,G are not candled.

Then G has no nontrivial homogeneous set.

The proof requires several steps, that we carry out in this section. Let us say an anticomponent of a
graph G is a induced subgraph whose complement graph is a component of G. We begin with:

3.2 Let G be uncluttered, and connected and anticonnected, with a nontrivial homogeneous set that
is not a clique or stable set. Then one of G,G is candled.

Proof. Let X be a nontrivial homogeneous set that is not a clique or stable set. By replacing X by
a superset if necessary, we may assume that no proper superset of X is a nontrivial homogeneous set.
Let Z be the set of vertices in V (G) \X that are complete to X, and let Y be the set of vertices in
V (G) \X that are anticomplete to X. Let Y1, . . . , Yk be the vertex sets of the components of G[Y ],
and let Z1, . . . , Z` be the vertex sets of the anticomponents of G[Z].

(1) Y1, . . . , Yk and Z1, . . . , Z` are homogeneous sets of G.

Suppose that Y1 is not a homogeneous set; then there exists v ∈ V (G) \ Y1 that has a neigh-
bour and a non-neighbour in Y1, and since G[Y1] is connected, there is an edge yy′ of G[Y1] such
that v is adjacent to y and not to y′. Since X is anticomplete to Y1, it follows that v /∈ X, and
similarly v /∈ Y2, . . . , Yk; so v ∈ Z. Now X is not a clique, so there exist nonadjacent x1, x2 ∈ X.
But then G[{x1, x2, v, y, y′}] is a fork, a contradiction. Thus Y1 is a homogeneous set, and similarly
so are Y2, . . . , Yk; and so are Z1, . . . , Z`, by applying the same argument in the complement graph.
This proves (1).

It follows that for each Yi and each Zj , Yi is either complete or anticomplete to Zj .

(2) Y, Z are both nonempty. Moreover, for 1 ≤ i ≤ k, there exist j, j′ ∈ {1, . . . , `} such that Yi
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is complete to Zj and anticomplete to Zj′, and for 1 ≤ j ≤ `, there exist i, i′ ∈ {1, . . . , k} such that
Zj is complete to Yi and anticomplete to Yi′.

Since X is a nontrivial homogeneous set, X 6= V (G) and so Y ∪ Z 6= ∅. Since G is connected,
it follows that Y 6= ∅, and similarly Z 6= ∅ since G is anticonnected. Since G is connected, for
1 ≤ i ≤ k there exists j ∈ {1, . . . , `} such that Yi is complete to Zj ; and also, since X ∪ {Yi} is not
a homogeneous set from the maximality of X, it follows that there exists j′ ∈ {1, . . . , `} such that
Yi is anticomplete to Zj′ . The same argument in the complement shows the final statement. This
proves (2).

Let i1, . . . , it ∈ {1, . . . , k} be distinct, and let j1, . . . , jt ∈ {1, . . . , `} be distinct. We say the pairs
(i1, j1), . . . , (it, jt) form a matching of order t if for 1 ≤ r, s ≤ t, Yir is complete to Zjs if r = s
and otherwise Yir is anticomplete to Zjs . Similarly the pairs form an antimatching of order t if for
1 ≤ r, s ≤ t, Yir is anticomplete to Zjs if r = s and otherwise Yir is complete to Zjs .

(3) There exist pairs (i, j), (i′, j′) that form a matching of order two.

Choose i ∈ {1, . . . , k} such that Yi is complete to Zj for as many j ∈ {1, . . . , `} as possible; by (2),
we can choose j′ ∈ {1, . . . , `} such that Yi is anticomplete to Zj′ ; by (2) we can choose i′ ∈ {1, . . . , k}
such that Yi′ is complete to Zj′ ; and then from the choice of i, there exists j ∈ {1, . . . , `} such that
Zj is complete to Yi and not to Yi′ . Then (i, j), (i′, j′) forms a matching of order two. This proves
(3).

Choose t ≥ 2 maximum such that there are t pairs (i, j) (with i ∈ {1, . . . , k} and j ∈ {1, . . . , `})
that form a matching or antimatching; and by taking complements if necessary, we may assume the
pairs form a matching. By renumbering, we may assume that (1, 1), . . . , (t, t) form a matching. For
1 ≤ i ≤ t, choose yi ∈ Yi and zi ∈ Zi.

(4) Every vertex in Yt+1 ∪ · · · ∪ Yk is complete or anticomplete to Z1 ∪ · · · ∪ Zt, and every ver-
tex in Zt+1 ∪ · · · ∪ Z` is complete or anticomplete to Y1 ∪ · · · ∪ Yt.

If v ∈ Yt+1 ∪ · · · ∪ Yk has a neighbour in Z1 and a nonneighbour in Z2 say, then G[{v, z1, z2, y1, y2}]
is a fork, a contradiction. Similarly, if v ∈ Zt+1 ∪ · · · ∪Z` has a neighbour in Y1 and a nonneighbour
in Y2, then G[{v, z1, z2, y1, y2}] is an antifork, a contradiction. This proves (4).

Let P be the set of v ∈ Yt+1 ∪ · · · ∪ Yk such that v is complete to Z1 ∪ · · · ∪ Zt, and let P ′ be
the set of v ∈ Yt+1 ∪ · · · ∪ Yk such that v is anticomplete to Z1 ∪ · · · ∪ Zt. Let Q be the set of
v ∈ Zt+1 ∪ · · · ∪Z` such that v is complete to Y1∪ · · · ∪Yt, and let Q′ be the set of v ∈ Zt+1 ∪ · · · ∪Z`

such that v is anticomplete to Y1 ∪ · · · ∪ Yt.

(5) X ∪ Y1 ∪ · · · ∪ Yt ∪ Z1 ∪ · · · ∪ Zt ∪ P ∪Q′ is a homogeneous set.

Let us call this set A. We will show that P ′ is anticomplete to A, and Q is complete to A. Let
v ∈ P ′; then v is anticomplete to X since v ∈ Y ; v is anticomplete to Y1 ∪ · · · ∪ Yt since Y1, . . . , Yt
are vertex sets of components of G[Y ]; and v is anticomplete to Z1 ∪ · · · ∪ Zt by definition of P ′.

4



Since v belongs to some Yi, and Yi is a homogeneous set by (1), and so Yi ⊆ P ′, it follows that v is
anticomplete to P . Also from the maximality of t, v is anticomplete to Q′. This proves that P ′ is
anticomplete to A.

Now let v ∈ Q. We must show that v is complete to A. Certainly v is complete to X and to
Z1∪· · ·∪Zt, and to Y1∪· · ·∪Yt from the definition of Q. Since v belongs to an anticomponent of G[Z]
with vertex set in Q, it follows that v is complete to Q′. It remains to show that v is complete to P .
Suppose not, and let u ∈ P be nonadjacent to v. For 1 ≤ i ≤ t, choose yi ∈ Yi and choose zi ∈ Zi.
If t ≥ 3, G[{v, y1, y2, u, z3}] is a fork, a contradiction, and so t = 2. Let u ∈ Y3 and v ∈ Z3 say;
then Y3 is anticomplete to Z3 by (1), and so the three pairs (1, 2), (2, 1), (3, 3) form an antimatching,
contrary to the maximality of t. This proves (5).

From the maximality of X, (5) implies that the set of (5) is not a nontrivial homogeneous set,
and so P ′, Q = ∅. But then X ∪ P ∪ Q′ is a nontrivial homogeneous set, and the maximality of X
implies that P,Q′ = ∅. If there exist nonadjacent y, y′ ∈ Y1, then G[{y, y′, z1, z2, y2}] is a fork, a
contradiction; so Y1, . . . , Yt are cliques. If there exist adjacent z, z′ ∈ Z1, then G[{z, z′, y1, z2, y2}] is
an antifork, a contradiction. Thus Z1, . . . , Zt are stable sets. But then G is candled, as required.
This proves 3.2.

Let P be a four-vertex induced path in a graph G. A centre for P means a vertex of V (G)\V (P )
that is complete to V (P ), and an anticentre for P is a vertex of V (G) \ V (P ) that is anticomplete
to V (P ).

3.3 Let G be uncluttered, and let P be a four-vertex induced path in G. If there is a centre and an
anticentre for P then there is a nontrivial homogeneous set in G that is not a clique or stable set.

Proof. Let A be the set of all anticentres for P , and let C be the set of all centres for P . Thus
A,C 6= ∅. Let B be the set of v ∈ V (G)\ (V (P )∪A∪C); thus B is the set of all vertices not in V (P )
with a neighbour and a nonneighbour in V (P ). Now either every vertex in C has a neighbour in A,
or every vertex in A has a nonneighbour in C; and by taking complements if necessary, we assume
the first. Let P have vertices p1-p2-p3-p4 in order.

(1) B is complete to C.

Let b ∈ B and c ∈ C, and suppose that b, c are nonadjacent. Choose a ∈ A adjacent to c. Sup-
pose first that a, b are nonadjacent. Since P is anticonnected, and b ∈ B, there exist nonadjacent
p, p′ ∈ V (P ) such that b is adjacent to p and not to p′; but then G[{p, p′, a, b, c}] is a fork, a contra-
diction. So a, b are adjacent. Let I be the set of i ∈ {1, . . . , 4} such that b, pi are adjacent. Since
G[{a, b, c, p1, p4}] is not a fork, one of 1, 4 ∈ I, and we may assume 1 ∈ I without loss of generality.
If 4 /∈ I, then 2 ∈ I since G[{a, b, c, p2, p4}] is not a fork; so 3 /∈ I since the subgraph induced on
G[{b, p1, p2, p3, p4}] is not an antifork; but then G[{b, c, p1, p2, p4}] is an antifork, a contradiction.
Thus 4 ∈ I. Since b is not a centre, one of 2, 3 /∈ I, and we assume 3 /∈ I without loss of generality.
But then G[{a, b, p1, p3, p4}] is a fork, a contradiction. This proves (1).

Let A′ be the union of the vertex sets of the components of G[A] that are not anticomplete to B,
and let A′′ = A \A′.
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(2) A′ is complete to C.

Let c ∈ C, and suppose that c is not complete to A′. From the definition of A′, there is an in-
duced path Q with one end in B, and all other vertices in A′, such that some vertex of Q is not
adjacent to c. Choose Q minimal, with vertices q1- · · · -qk in order, where qk ∈ B and q1, . . . , qk−1 ∈ A.
From (1), k ≥ 2. From the minimality of Q, it follows that c is nonadjacent to q1 and adjacent to
all of q2, . . . , qk. Choose adjacent qk+1, qk+2 of P such that qk is adjacent to qk+1 and not to qk+2.
(This is possible since qk ∈ B.) Then G[{c, q1, q2, q3, q4}] is an antifork, a contradiction. This proves
(2).

Let X = V (P )∪B∪A′. From (1) and (2), C is complete to X; and from the definition of A′′, A′′

is anticomplete to X. Thus X is a nontrivial homogeneous set satisfying the theorem. This proves
3.3.

3.4 Let G be uncluttered and connected, and let A,B,C,D be disjoint subsets of V (G), with union
V (G), and with the following properties:

• A is a clique and A 6= ∅;

• B is a stable set and |B| ≥ 2;

• A is complete to B and anticomplete to C,D;

• B is complete to C and anticomplete to D.

Then G is candled.

Proof. Let C1, . . . , Ck be the vertex sets of the anticomponents of G[C], and let D1, . . . , D` be the
vertex sets of the components of G[D].

(1) C1, . . . , Ck and D1, . . . , D` are homogeneous sets.

Suppose C1 is not a homogeneous set; then there exist d ∈ V (G) \ C1 and nonadjacent c, c′ ∈ C1

with d adjacent to c and not to c′. Choose a ∈ A and b ∈ B; then G[{a, b, c, c′, d}] is a fork, a
contradiction. Thus C1, . . . , Ck are all homogeneous sets.

Now suppose D1 is not a homogeneous set; then similarly there exists c ∈ C and adjacent
d, d′ ∈ D1 such that c is adjacent to d and not to d′. Since |B| ≥ 2 and B is stable, there exist
nonadjacent b, b′ ∈ B; but then G[{b, b′, c, d, d′}] is a fork, a contradiction. This proves (1).

It follows that for each Ci and each Dj , Ci is either complete or anticomplete to Dj . For 1 ≤ i ≤ k
choose ci ∈ Ci, and for 1 ≤ j ≤ ` choose dj ∈ Dj . Choose a ∈ A and b ∈ B.

(2) For 1 ≤ j ≤ `, there is a unique value of i ∈ {1, . . . , k} such that Dj is complete to Ci.

We assume j = 1 without loss of generality. Since G is connected and A ∪ B ∪ D2 ∪ · · · ∪ D` is
anticomplete to D1, it follows from (1) that there exists i ∈ {1, . . . , k} such that D1 is complete to
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Ci. Suppose there are two such values of i, say i = 1, 2; then G[{a, b, c1, c2, d1} is an antifork, a
contradiction. This proves (2).

(3) For 1 ≤ i ≤ k there is at most one value of j ∈ {1, . . . , `} such that Ci is complete to Dj.

For let i = 1 say, and suppose that C1 is complete to D1, D2 say. Then G[{a, b, c1, d1, d2}] is a
fork, a contradiction. This proves (3).

From (2) and (3) it follows that k ≥ `, and we may renumber such that Di is complete to Ci for
1 ≤ i ≤ `. For 1 ≤ i ≤ k, Di is a clique, since if d, d′ ∈ Di are nonadjacent then G[{a, b, ci, d, d′}] is a
fork; and also Ci is a stable set, since if c, c′ ∈ Ci are adjacent then G[{a, b, c, c′, di}] is an antifork.
Thus the restriction of G to

A ∪B ∪ C1 ∪ · · · ∪ C` ∪D1 ∪ · · · ∪D`

is a candelabrum with base B ∪C1 ∪ · · · ∪C`. Since C`+1 ∪ · · · ∪Ck is complete to B ∪C1 ∪ · · · ∪C`

and anticomplete to A ∪D1 ∪ · · · ∪D`, it follows G is candled. This proves 3.4.

Now we can prove the main result of this section, which we restate:

3.5 Let G be an uncluttered graph. Suppose that

• G is connected and anticonnected;

• G has no adjacent simplicial twins, and no nonadjacent antisimplicial twins;

• G,G are not candled.

Then G has no nontrivial homogeneous set.

Proof. For each nontrivial homogeneous set X, we define its “score” as follows. By 3.2, X is either
a clique or a stable set. If X is stable, its score is the number of components of G[Y ], where Y is the
set of all vertices in V (G) \X that are anticomplete to X. If X is a clique, its score is the number
of anticomponents of G[Z], where Z is the set of vertices in V (G) \X that are complete to X.

Suppose that there is a nontrivial homogeneous set X, and choose X with minimum score. Let
Z be the set of vertices in V (G) \X that are complete to X, and Y the set that are anticomplete
to X. Let Y1, . . . , Yk be the vertex sets of the components of G[Y ], and let Z1, . . . , Z` be the vertex
sets of the anticomponents of G[Z]. By replacing G by its complement if necessary, we may assume
that X is a stable set.

(1) Y1, . . . , Yk are homogeneous sets, and cliques.

If Y1 is not a homogeneous set, then there exists z ∈ Z and y, y′ ∈ Y1, such that z-y-y′ is an
induced path (because G[Y1] is connected). Let x, x′ ∈ X be nonadjacent; then G[{x, x′, z, y, y′}] is
a fork, a contradiction. This proves that Y1 is a homogeneous set. By 3.2, Y1 is either a stable set
or a clique; but G[Y1] is connected, and so Y1 is a clique. This proves (1).

By hypothesis, there are no nonadjacent antisimplicial twins in G; and in particular, vertices in
X are not antisimplicial. Thus Y is not stable, and so we may assume that |Y1| ≥ 2. Let N be
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the set of vertices in Z that are complete to Y1. By hypothesis, there are no adjacent simplicial
twins, and in particular the vertices in Y1 are not simplicial; so N is not a clique. Hence there is an
anticomponent D of N with at least two vertices. Let N ′ = N \D, and Y ′ = Y2 ∪ · · · ∪ Yk. Thus the
six sets X,D,N ′, Z \N,Y1, Y ′ are pairwise disjoint and have union V (G).

(2) D is a homogeneous set, and D is stable.

Since G[D] is anticonnected, if D is not a homogeneous set then there exists v ∈ V (G) \ D and
nonadjacent d, d′ ∈ D, such that v is adjacent to d and not to d′. Since X ∪N ′ ∪ Y1 is complete to
D, it follows that v ∈ (Z \N)∪Y ′. Choose y, y′ ∈ Y1, adjacent; then G[{v, d, d′, y, y′}] is an antifork,
a contradiction. Thus D is homogeneous. By 3.2 is either stable or a clique, and it is not a clique
since G[D] is anticonnected and |D| ≥ 2. This proves (2).

Let U be the set of vertices in Z \N that are complete to D, and let W be the set of vertices in
Z \N that are anticomplete to D. Thus U ∪W = Z \N by (2).

(3) W is a clique.

If w,w′ ∈ W are nonadjacent, choose y ∈ Y1, d ∈ D and x ∈ X; then G[{w,w′, y1, d,x}] is a
fork, a contradiction. This proves (3).

(4) Y ′ is anticomplete to D ∪W , and N ′ is complete to W , and U is anticomplete to W .

From the minimality of the score of X, it follows that the score of D is at least that of X, that
is, at least k. For 2 ≤ i ≤ k, Yi is a homogeneous set by (1), and since D is also a homogeneous set
by (2), it follows that Yi is complete or anticomplete to D. Let C denote the set of vertices not in D
and anticomplete to D. Then C consists of W and some of Y2, . . . , Yk, those Yi that are anticomplete
to D. In particular, since W is a clique by (3), the score of D is one more (for W ) than the number
of i ∈ {2, . . . , k} such that Yi is anticomplete to D ∪W . Since the score of D is at least k, it follows
that Y2, . . . , Yk are all anticomplete to D ∪W . This proves the first assertion of (4).

For the second assertion of (4), let y ∈ Y1, d ∈ D,x ∈ X and w ∈ W ; then for n ∈ N ′, if n is
nonadjacent to w then G[{y, d, x, w, n}] is an antifork. This proves that N ′ is complete to W .

For the third assertion, let u ∈ U , and let y, d, x, w be as before; if u,w are adjacent then
G[{y, d, x, u, w}] is an antifork, a contradiction. This proves (4).

If N ′ = ∅, then the four sets W,X,D ∪ U, Y (in this order) satisfy the hypotheses of 3.4, a
contradiction. Thus N ′ 6= ∅. If Y ′ = ∅, then the four sets X,Y1,W ∪U,N ′∪D satisfy the hypotheses
of 3.4 applied in G, a contradiction. So Y ′ 6= ∅. Choose y ∈ Y1, y′ ∈ Y ′, d ∈ D, x ∈ X, n ∈ N ′
and w ∈ W ; then y-d-x-w is a four-vertex induced path, and n is a centre and y′ is an anticentre,
contrary to 3.3. This proves 3.5.
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4 Graphs without homogeneous sets

In view of 3.1, henceforth we can restrict our attention to uncluttered graphs with no nontrivial
homogeneous set. First here is a useful lemma.

4.1 Let G be a graph with no nontrivial homogeneous set, and let A ⊆ V (G), not a clique, with
A 6= V (G). Then there exist v ∈ V (G) \ A and nonadjacent a, a′ ∈ A, such that v is adjacent to a
and not to a′.

Proof. Since A is not a clique, there is an anticomponent X of G[A] with at least two vertices.
Since X 6= V (G) and X is not a nontrivial homogeneous set, there is a vertex v ∈ V (G) \X with a
neighbour and a nonneighbour in X. Since X is an anticomponent of G[A], it follows that v /∈ A.
Since G[X] is anticonnected, and v has a neighbour and a nonneighbour in X, there exist nonadjacent
a, a′ ∈ X such that v is adjacent to a and not to a′. This proves 4.1.

If X is a subgraph of G, or a set of vertices of G, we say that X is dominating if every vertex
not in X has a neighbour in X. The diamond is the graph with four vertices and five edges, and a
triangle is a clique of cardinality three. We begin with:

4.2 Let G be an uncluttered graph with no nontrivial homogeneous set. Then every diamond in G
is dominating. Moreover, every triangle that is contained in a diamond of G is dominating.

Proof. Suppose that there is a diamond D that is not dominating. Let v1, v2 be the two vertices
of D that have degree three in D; so there is a set A of G, not a clique, such that v1, v2 /∈ A and
A is complete to {v1, v2}, and A ∪ {v1, v2} is not dominating. Choose such a set A, maximal. Since
A is not a nontrivial homogeneous set, 4.1 implies that there exist v ∈ V (G) \ A and nonadjacent
a, a′ ∈ A such that v is adjacent to a and not to a′. Thus v 6= v1, v2. If v is nonadjacent to both
v1, v2, then G[{v, v1, v2, a, a′}] is an antifork, a contradiction; so we may assume that v is adjacent
to v1. Since A ∪ {v1, v2} is not dominating, there is a vertex w that is anticomplete to A ∪ {v1, v2}.
Now there are four possibilities: w may or may not be adjacent to v, and v may or may not be
adjacent to v2. Suppose first that v is not adjacent to v2, and so v-a-v2-a

′ is an induced four-
vertex path, P say. Now v1 is a centre for P , so by 3.3, w is not an anticentre, and therefore w is
adjacent to v. But then G[{w, v, v1, a, v2}] is an antifork, a contradiction. So v is adjacent to v2.
If w, v are nonadjacent, then we can add v to A, contrary to the maximality of A. Thus v, w are
adjacent; but then G[{w, v, v1, v2, a′}] is an antifork, a contradiction. This proves that every diamond
is dominating.

Now let T be a triangle, contained in a diamond; thus some vertex v ∈ V (G) \ T has exactly
two neighbours in T . Suppose that T is not dominating, and let w be anticomplete to T . Since
the diamond G[T ∪ {v}] is dominating, w is adjacent to v; but then G[T ∪ {v, w}] is an antifork, a
contradiction. This proves 4.2.

4.3 Let G be an uncluttered graph with no nontrivial homogeneous set, such that G is not the line
graph of a bipartite graph. Then for every nondominating triangle T in G, there is a unique maximal
clique including T , say C, and it is not dominating. Moreover, for each v ∈ C, if C is not the only
maximal clique containing v, then there is exactly one other maximal clique containing v, say Cv,
and Cv ∩ C = {v}, and Cv is not dominating.
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Proof. Let C be a maximal nondominating clique including T ; and let S be the set of vertices
that are anticomplete to C. Thus S 6= ∅. Let A be the set of vertices in V (G) \ C with exactly one
neighbour in C, and let B be the set of vertices in V (G)\C with at least two neighbours in C. Thus
A,B,C, S are pairwise disjoint and have union V (G).

(1) B is complete to C ∪ S.

No triangle included in C is dominating, and hence by 4.2, no triangle included in C is contained
in a diamond. Consequently every vertex in B is complete to C. From the maximality of C, B is
complete to S. This proves (1).

Every vertex in A has a unique neighbour in C. For each c ∈ C, let Ac be the set of vertices in
A that are adjacent to c. Thus A =

⋃
c∈C Ac.

(2) There is at most one c ∈ C with Ac = ∅.

For otherwise the set of c ∈ C with Ac = ∅ is a nontrivial homogeneous set, which is impossi-
ble. This proves (2).

(3) |B| ≤ 1, and B is anticomplete to A.

Suppose first that B is not a clique. By 4.1, there is a vertex v ∈ V (G) \ B and nonadjacent
b, b′ ∈ B′ such that v is adjacent to b and not to b′. By (1), v ∈ Ac for some c ∈ C. Choose c1, c2 ∈ C
different from c; then G[{v, b, b′, c1, c2}] is an antifork, a contradiction. This proves that B is a clique.

Suppose that some b ∈ B has a neighbour in A. Since G is anticonnected (because it has no
nontrivial homogeneous set), it follows that b has a nonneighbour; and since b is complete to C ∪ S
and B is a clique, it follows that b has a nonneighbour in A. By (2), there are at least two vertices
c ∈ C such that Ac 6= ∅; and so there exist distinct c1, c2 ∈ C, and ai ∈ Aci for i = 1, 2, such
that b is adjacent to a1 and nonadjacent to a2. (To see this, choose a neighbour a ∈ A of b and a
nonneighbour a′ ∈ A of b. If a, a′ both belong to Ac1 say, choose a′′ ∈ Ac2 , and replace one of a, a′

by a′′.) Choose c3 ∈ C \ {c1, c2}. Since G[{b, c1, c3, a1}] is a diamond, the triangle G[{b, c1, c3}] is
dominating by 4.2, and yet a2 has no neighbour in this triangle, a contradiction.

Thus B is anticomplete to A, and so B is a homogeneous set; and hence |B| ≤ 1. This proves
(3).

(4) For each c ∈ C, Ac is a clique; and if B 6= ∅ then S is a clique.

Suppose that c ∈ C and Ac is not a clique; then by 4.1, there exists v /∈ Ac and nonadjacent
a, a′ ∈ Ac such that v is adjacent to a and not to a′. Thus v ∈ A ∪ S, by (3); and so there exists
c′ ∈ C \ {c} nonadjacent to v. But then G[{c, c′, a, a′, v}] is a fork, a contradiction. Thus each Ac

is a clique. Now suppose that B = {b} say, and S is not a clique. Then by 4.1, there exists v /∈ S
and nonadjacent s, s′ ∈ S such that v is adjacent to s and not to s′. Thus v ∈ Ac for some c ∈ C.
Choose c′ ∈ C \ {c}. Then G[{b, s, s′, v, c′}] is a fork, a contradiction. This proves (4).

(5) B = ∅.
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Suppose that B 6= ∅, and so |B| = 1 by (3). Let B = {b} say. Define Ab = S; thus C ∪ {b} is
a clique D say, and every vertex not in D belongs to one of the sets Ad (d ∈ D), and has a unique
neighbour in D; and each set Ad (d ∈ D) is a clique by (4). We claim:

• for all distinct d1, d2 ∈ D, each vertex in Ad1 has at most one neighbour in Ad2 ; and

• for all distinct d1, d2, d3 ∈ D, if ai ∈ Adi for i = 1, 2, 3, and a1 is adjacent to both a2, a3, then
a2, a3 are adjacent.

To see the first claim, suppose that v ∈ Ad1 has two neighbours a, a′ ∈ Ad2 . By (4), a, a′ are adjacent.
Choose d3 ∈ D \ {d1, d2}; then G[{v, a, a′, d2, d3}] is an antifork, a contradiction. This proves the
first claim.

For the second claim, suppose that d1, d2, d3 ∈ D are distinct, and ai ∈ Adi for i = 1, 2, 3, and
a1 is adjacent to a2, a3, and a2, a3 are not adjacent. Since |C| ≥ 3 it follows that |D| ≥ 4; choose
d4 ∈ D \ {d1, d2, d3}. Then G[{a1, a2, a3, d1, d4}] is a fork, a contradiction. This proves the second
claim.

Let H be the subgraph of G obtained by deleting the edges of the cliques Ad ∪ {d} (d ∈ D).
From the two bullet claims above, it follows that each component of H is a clique. (D itself is one
such component.) Thus we have found two sets of cliques of G; the sets Ad ∪ {d} (d ∈ D), and the
components of H. Each vertex of G belongs to exactly one clique in the first set, and exactly one in
the second; and every edge of G belongs to one of the cliques in one of the sets. Consequently G is
the line graph of a bipartite graph, a contradiction. This proves that B = ∅, and so proves (5).

It follows that C is a maximal clique of G, and is nondominating. Moreover, every edge of C
is not contained in any other maximal clique; and every vertex c ∈ C is contained in at most two
maximal cliques, namely C and Ac ∪ {c} if Ac 6= ∅. To complete the proof of the theorem, we only
need to show that the cliques Ac ∪ {c} are not dominating. Suppose then that c ∈ C, and Ac ∪ {c}
is dominating. We have already shown that every clique including a nondominating triangle is itself
nondominating; and consequently all triangles included in Ac ∪ {c} are dominating. But Ac is not
dominating (because there is a vertex in C anticomplete to Ac), so |Ac| ≤ 2.

(6) |Ac| = 2.

Suppose that |Ac| ≤ 1; and hence |Ac| = 1, since Ac ∪ {c} is dominating and so is not anticom-
plete to S, since S 6= ∅. Let Ac = {a}; then for the same reason, a is complete to S. Also Ac ∪{c} is
not anticomplete to any vertex in Ac′ for c′ ∈ C \ {c}; and so a is complete to Ac′ for all c′ ∈ C \ {c}.
Let c′ ∈ C \ {c}, and let a′ ∈ Ac′ , and s ∈ S. Since a′, s are both adjacent to a, and there exists
c′′ ∈ C \ {c, c′}, and G[{s, a, a′, c, c′′}] is not a fork, it follows that a′, s are adjacent; and so Ac′ is
complete to S for all c′ ∈ C\{c}. If c1, c2 ∈ C\{c} are distinct, and there exist a1 ∈ Ac1 and a2 ∈ Ac2

nonadjacent, then G[{a1, a2, a, s, c1}] is an antifork, a contradiction; so all the sets Ac′ (c′ ∈ C) are
complete to each other. Hence they are all homogeneous sets, and so is S; so they all have cardinality
at most one. But then G is the line graph of a bipartite graph, a contradiction. This proves (6).

Let Ac = {p, q} say. For each d ∈ C \ {c}, let Pd be the set of vertices in Ad adjacent to p, and
define Qd similarly.
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(7) For each d ∈ C \ {c}, Pd, Qd are disjoint subsets of Ad with union Ad.

Since Ac ∪ {c} is dominating, it follows that Pd ∪ Qd = Ad for each d ∈ C \ {c}. If some v ∈ Ad

is adjacent to both p, q, choose c′ ∈ C \ {c, d}; then G[{v, p, q, c, c′}] is an antifork, a contradiction.
This proves (7).

Let Sp, Sq be the sets of vertices in S adjacent to p, q respectively.

(8) Sp, Sq are disjoint subsets of S with union S; and Pd is complete to Sp, and Qd is complete
to Sq, for each d ∈ C \ {c}.

Certainly Sp ∪ Sq = S since Ac ∪ {c} is dominating. If v ∈ S is adjacent to both p, q, choose
d ∈ C \ {c}, and then G[{v, p, q, c, d}] is an antifork, a contradiction. This proves the first assertion.

Let d ∈ C \{c}, and suppose v ∈ Pd and s ∈ Sp are nonadjacent. Choose c′ ∈ C \{c, d}, and then
G[{v, s, p, c, c′}] is a fork, a contradiction. Thus Pd is complete to Sp, and similarly Qd is complete
to Sq, for each d ∈ C \ {c}. This proves (8).

Let P = {p} ∪ Sp ∪
⋃

d∈C\{c} Pd, and define Q similarly.

(9) P,Q are cliques.

Suppose P is not a clique, say, and choose p1, p2 ∈ P , nonadjacent. Thus p1, p2 6= p. If p1 ∈ S, then
by (8), p2 ∈ S, and G[{p1, p2, p, c, d}] is a fork where d ∈ C \ {c}. Thus p1, p2 /∈ S, and so we may
assume that pi ∈ Pci for i = 1, 2, where c1, c2, c ∈ C are distinct. But then G[{p1, p2, p, q, c1}] is a
fork, a contradiction. This proves (9).

(10) For each d ∈ C \ {c}, Pd is anticomplete to Sq, and Qd is anticomplete to Sp.

Let v ∈ Pd, and suppose v is adjacent to u ∈ Sq. Choose d′ ∈ C \ {c, d}; then G[{u, v, p, d, d′}]
is a fork, a contradiction. This proves (10).

(11) For each d ∈ C \ {c}, Pd is anticomplete to Q \Qd.

Suppose that v ∈ Pd and u ∈ Qd′ are adjacent, where d′ ∈ C \ {c, d}. Choose s ∈ S; then s is
adjacent to exactly one of p, q. If s is adjacent to p, then s ∈ P , and by (9) s is adjacent to v;
and by (10), s is nonadjacent to u. But then G[{u, v, s, q, d′}] is a fork, a contradiction. Thus s is
adjacent to q and not to p, and hence adjacent to u and not to v. But then G[{u, v, s, p, d}] is a fork,
a contradiction. This proves (11).

(12) Every vertex of Sp has at most one neighbour in Sq and vice versa.

Suppose v ∈ Sp is adjacent to u,w ∈ Sq. Then G[{v, u, w, q, c}] is an antifork, a contradiction.
This proves (12).
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From (11), since Pd is complete to Qd, it follows that Pd is a homogeneous set, and so |Pd| ≤ 1,
and similarly |Qd| ≤ 1. Let H be the subgraph obtained from G by deleting the edges of the three
cliques C,P,Q. By (11), every edge of H either has both ends in Ad ∪ {d} for some d ∈ C, or has
one end in Sp and the other in Sq; and hence by (12), every component of H is a clique, and has at
most one vertex in common with C,P or Q. Consequently G is the line graph of a bipartite graph,
a contradiction. This proves 4.3.

4.4 Let G be an uncluttered graph with no nontrivial homogeneous set, such that G is not the line
graph of a bipartite graph. Then either every triangle is dominating, or no clique is dominating.

Proof. Let A be union of the vertex sets of all dominating cliques, and let B be the union of
the vertex sets of all nondominating triangles. By 4.3, every vertex of a nondominating triangle
only belongs to nondominating cliques, so A ∩ B = ∅. Suppose there is a nondominating triangle
T , and a dominating clique C. Thus C ⊆ A, and T ⊆ B. Every triangle is either dominating or
nondominating, and so is a subset of one of A,B. Consequently, every vertex of T has at most one
neighbour in C; and hence exactly one since C is dominating; and since no vertex in C has more than
one neighbour in T , it follows that there are three vertices c1, c2, c3 such that ti is adjacent to ci for
i = 1, 2, 3, where T = {t1, t2, t3}. By 4.3, {c1, c2, c3} is dominating. Since T is nondominating, there
is a vertex y that is anticomplete to T ; and since {c1, c2, c3} is dominating, we may assume that y is
adjacent to c1. If y is nonadjacent to c2 then G[{y, c1, t1, t3, c2}] is a fork, a contradiction. But if y is
adjacent to c2, then since the triangle {y, c1, c2} has a vertex in A, it follows that y, c1, c2 ∈ A, and
in particular {y, c1, c2} is dominating; and this is impossible since t3 has no neighbour in {y, c1, c2}.
This proves 4.4.

The claw is the complete bipartite graph K1,3, and its centre is its vertex of degree three. Thus
if T is a nondominating triangle in G, and v has no neighbour in T , then v is a claw centre in G,
and vice versa. Let us say an anticlaw is a four-vertex graph whose complement is a claw.

Figure 3: The claw and the anticlaw.

We need one more lemma.

4.5 Let G be a graph with no claw or anticlaw. Then for one of G,G, say H, either

• each component of H is a path or cycle, and hence H is the line graph of a triangle-free graph,
or

• |V (H)| ≤ 9, and H is the line graph of a bipartite graph.

Proof. The net is the graph on six vertices consisting of three pairwise adjacent vertices t1, t2, t3,
and three more vertices s1, s2, s3, where for 1 ≤ i ≤ 3 si has degree one and ti is its unique neighbour.
The antinet is the complement graph of the net.
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Figure 4: The net and the antinet.

We begin with:

(1) If G contains a net as an induced subgraph, then G is a net, and so G is the line graph of
a bipartite graph.

Suppose that s1, s2, s3, t1, t2, t3 are distinct vertices of G forming a net in the notation above. Let
W = {s1, s2, s3, t1, t2, t3}. If W = V (G) the claim holds, so we assume there exists v ∈ V (G) \W .
Since G[{v, t1, t2, t3}] is not an anticlaw, v is adjacent to one of t1, t2, t3, say t1. Since G[{v, t1, s2, s3}]
is not a claw, v is nonadjacent to one of s2, s3, say s2. Since G[{v, s1, s2, t1}] is not an anticlaw, v is
nonadjacent to s1. Since G[{v, s1, t1, t3}] is not a claw, v is adjacent to t3. But then G[{v, t1, s2, t3}]
is an anticlaw, a contradiction. This proves (1).

From (1) we may assume G contains no net as an induced subgraph, and by taking complements
we may also assume that G contains no antinet.

Figure 5: The bull.

The bull is the graph with five vertices t1, . . . , t5, where t1-t2-t3-t4 is an induced path and t5 is
adjacent to t2, t3 and nonadjacent to t1, t4. Note that the complement of a bull is a bull.

(2) We may assume that G contains a bull as an induced subgraph.

Suppose first that G has no triangle. Then G has maximum degree at most two, since it has
no claw or triangle, and the theorem holds. So we may assume that G has a triangle, and (by taking
complements) G has a stable set of cardinality three. Choose a triangle T , and a set S of three pair-
wise nonadjacent vertices, with S ∪ T minimal. Let S = {s1, s2, s3} and T = {t1, t2, t3}. Certainly
|S∪T | ≤ 6; suppose that equality holds. If t1 is adjacent to at most one of s1, s2, s3, say not to s2, s3,
then {t1, s2, s3} is a stable set, contradicting the minimality of S∪T . So each ti is adjacent to at least
two of s1, s2, s3. By the same argument in the complement, each sj is nonadjacent to at least two of
t1, t2, t3; but this is impossible. Thus |S ∪ T | ≤ 5; and so equality holds, since |S ∩ T | ≤ 1. We may
assume that s3 = t3. Now each of s1, s2 is adjacent to one of t1, t2, since it is not an anticlaw centre;
but each of t1, t2 is adjacent to at most one of s1, s2, since it is not a claw centre. Consequently
G[S ∪ T ] is a bull. This proves (2).
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Let W = {t1, . . . , t5}, and let G[W ] be a bull in G, with notation as in the definition of a bull. For
each vertex v ∈ V (G) \W , let W (v) denote the set of neighbours of v in W . Define A1, A2, B1, B2

by:

• A1 is the set of v ∈ V (G) \W with W (v) = {t1, t5};

• A2 is the set of v ∈ V (G) \W with W (v) = {t4, t5};

• B1 is the set of v ∈ V (G) \W with W (v) = {t1, t2, t4};

• B2 is the set of v ∈ V (G) \W with W (v) = {t1, t3, t4}.

(See figure 6.)

A1 A2

B1 B2

t1
t2 t3

t4

t5

Figure 6: For step (3) of the proof of 4.5.

We claim:

(3) A1 ∪A2 ∪B1 ∪B2 = V (G) \W .

Let v ∈ V (G) \ W . Assume first that t5 ∈ W (v). Since G[{v, t5, t1, t4}] is not a claw, one of
t1, t4 /∈ W (v), say t1. Since G[{v, t5, t3, t1}] is not an anticlaw, t3 /∈ W (v). Since G[{v, t1, t2, t3}] is
not a claw, t2 /∈ W (v). Since G[W ∪ {v}] is not a net, t4 ∈ W (v). But then v ∈ A2. Now assume
that t5 /∈W (v). We apply the same argument in the complement to deduce that v ∈ B1 ∪B2. This
proves (3).

(4) Each of A1, A2, B1, B2 has cardinality at most one.

If there exist u, v ∈ A1, nonadjacent, then G[{u, v, t1, t2}] is a claw, a contradiction; and if there
exist u, v ∈ A1 adjacent, then G[{u, v, t1, t4}] is an anticlaw, a contradiction. Similarly |A2| ≤ 1; and
by taking complements it follows that |B1|, |B2| ≤ 1. This proves (4).

(5) The pairs (A1, A2), (A1, B2), (A2, B1) are complete, and the pairs (B1, B2), (A1, B1), (A2, B2) are
anticomplete.

If there exist u ∈ A1 and v ∈ A2, nonadjacent, then G[{u, v, t5, t2}] is a claw; so A1 is complete
to A2. By taking complement it follows that B1 is anticomplete to B2. If there exists u ∈ A1 and
v ∈ B1, adjacent, then G[{u, v, t1, t3}] is an anticlaw, a contradiction; so A1 is anticomplete to B1,
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and from the symmetry A2 is anticomplete to B2. By taking complements it follows that A1 is
complete to B2, and A2 is complete to B1. This proves (5).

From (4) and (5) it follows that |V (G)| ≤ 9, and G is an induced subgraph of the line graph of
K3,3. This proves 4.5.

We use 4.5 to prove the next result:

4.6 Let G be an uncluttered graph with no nontrivial homogeneous set. Then one of G,G is the line
graph of a triangle-free graph.

Proof. Suppose that neither of G,G is the line graph of a triangle-free graph. Suppose first that
G contains a claw and an anticlaw. Then since there is a nondominating triangle, it follows from
4.4 that no clique is dominating. If a ∈ V (G) is a claw centre, then it is in at least three maximal
cliques, and so by 4.3 it is in no triangle (since all triangles are nondominating), and hence the set
of neighbours of a is stable. By taking complements, if b ∈ V (G) is an anticlaw centre, then the set
of vertices nonadjacent to b is a clique.

(1) There do not exist a claw centre a and an anticlaw centre b with a 6= b.

Suppose there exist such a, b. By taking complements if necessary, we may assume that a, b are
nonadjacent. Since b is an anticlaw centre, the set of vertices of G nonadjacent to b is a clique C say.
Now |C| ≥ 3 since b is an anticlaw centre; and a ∈ C. Thus a belongs to a triangle, and so belongs
to at most two maximal cliques by 4.3, contradicting that a is a claw centre. This proves (1).

(2) There do not exist both a claw and an anticlaw in G.

Suppose there is both a claw and an anticlaw. Then by (1), there is a vertex c that is the unique claw
centre and the unique anticlaw centre. Let A be its set of neighbours and let B = V (G) \ (A ∪ {c}).
Since c is not in a triangle, A is stable, and similarly B is a clique. Since c is a claw centre, |A| ≥ 3,
and similarly |B| ≥ 3. Let b ∈ B. If b has no neighbour in A, then the stable set {b, c} is a dominating
clique of G, a contradiction to 4.4 applied to G. If b has at least two nonneighbours in A, say a1, a2,
let b be adjacent to a3 ∈ A and then G[{b, a1, a2, a3, c}] is a fork, a contradiction. But b has at most
two neighbours in A since b is not a claw centre; so |A| = 3 and b has exactly two neighbours in A.
By the same argument applied in the complement, |B| = 3 and every vertex in A has exactly two
nonneighbours in B, which is impossible by counting edges between A and B. This proves (2).

From (2), and taking complements if necessary, we may assume there is no claw in G. By 4.5 we
may assume that there is an anticlaw in G, that is, there is a nondominating triangle. Consequently
every clique is nondominating, by 4.4. By 4.3 every vertex that is in a triangle is in at most two
maximal cliques. But if a vertex v is not in any triangle, then since there is no claw it follows that v
has degree at most two, and so v is in at most two maximal cliques. This proves that every vertex
is in at most two maximal cliques. Let C1, . . . , Ct be the maximal cliques of G, and make a graph
H with vertex set {1, . . . , t}, where distinct i, j are adjacent if Ci ∩ Cj 6= ∅. If |Ci ∩ Cj | ≥ 2 for
some distinct i, j, then Ci ∩Cj is a nontrivial homogeneous set of G, which is impossible; so G is the
line graph of H. It remains to show that H is triangle-free. Suppose not; then we may assume that

16



C1, C2, C3 pairwise intersect. Choose v1 ∈ C2 ∩ C3, and define v2, v3 similarly. Then v1 /∈ C1, since
every vertex belongs to at most two of C1, C2, C3, and similarly v2 /∈ C2 and v3 /∈ C3. But v1, v2 are
adjacent, because they both belong to C3, and similarly v1, v2, v3 are pairwise adjacent; and hence
there is a maximal clique containing all three of v1, v2, v3. It is different from C1, C2, C3, and so v1
belongs to three different maximal cliques, a contradiction. This proves that H is triangle-free, and
so proves 4.6.

By combining 4.6 and 3.1, we deduce our main result, which we restate:

4.7 Let G be an uncluttered graph. Then either

• one of G,G is disconnected; or

• one of G,G has adjacent simplicial twins; or

• one of G,G is candled; or

• one of G,G is the line graph of a triangle-free graph.

Proof. If G has a nontrivial homogeneous set, then by 3.1 either one of G,G is disconnected, or one
of G,G has adjacent simplicial twins, or one of G,G is candled, and in each case the theorem holds.
If G has no nontrivial homogeneous set, then by 4.6, one of G,G is the line graph of a triangle-free
graph, and again the theorem holds. This proves 4.7.

5 Karthick’s question

We denote the chromatic number of a graph G by χ(G), and the cardinality of its largest clique by
ω(G). Let us deduce from 2.1 a result we stated earlier, that answers a question of Karthick. We
restate it:

5.1 For every uncluttered graph G, χ(G) ≤ 2ω(G).

Proof. We proceed by induction of |V (G)|. We may apply 2.1. If G is the disjoint union of two
graphs G1, G2, then

χ(G) = max(χ(G1), χ(G2)) ≤ max(2ω(G1), 2ω(G2)) = 2ω(G)

as required. If G is the disjoint union of G1, G2, then

χ(G) = χ(G1) + χ(G2) ≤ 2ω(G1) + 2ω(G2) = 2ω(G)

as required.
If G has a simplicial vertex v, then we can extend any colouring of G \ {v} to a colouring of G if

we have at least ω(G) colours. Consequently

χ(G) ≤ max(χ(G \ {v}), ω(G)) ≤ max(2ω(G \ {v}), ω(G)) ≤ 2ω(G)
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as required. If G has nonadjacent twins u, v, then

χ(G) = χ(G \ {u}) ≤ 2ω(G \ {u}) = 2ω(G)

as required. So we may assume that G has no simplicial vertex and no two nonadjacent twins.
Consequently neither G nor G has adjacent simplicial twins.

If G is candled, let Y1, . . . , Yk, Z1, . . . , Zk be as in the definition of “candled”; then any two vertices
in Zi are nonadjacent twins, and so each Zi has cardinality one. But then the vertices in each Yi are
simplicial, a contradiction. If G is candled, again let Y1, . . . , Yk, Z1, . . . , Zk be as in the definition;
then any two vertices in Yi are nonadjacent twins in G, so each Yi has cardinality one; but then the
vertices in each Zi are simplicial in G, a contradiction.

If G is the line graph of a triangle-free graph H, then χ(G) is the edge-chromatic number χ′(H)
of H, and ω(G) is the maximum degree δ(H) of H. By Vizing’s theorem, χ′(H) ≤ ∆(H) + 1, so
χ(G) ≤ ω(G) + 1 ≤ 2ω(G) (because we can assume that ω(G) > 0). Finally, if G is the line graph of
a triangle-free graph H, then χ(G) is the size τ(H) of the smallest set of vertices of H that meets
every edge of H, and ω(G) is the size µ(H) of the largest matching in H. But τ(H) ≤ 2µ(H), and
so again χ(G) ≤ 2ω(G). This proves 5.1.
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