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Abstract

The fork is the tree obtained from the claw K 3 by subdividing one of its edges once, and the antifork
is its complement graph. We give a complete description of all graphs that do not contain the fork
or antifork as induced subgraphs.



1 Introduction

Graphs in this paper are finite, and without loops or parallel edges. The fork is the tree obtained
from a four-vertex path by adding a vertex adjacent to the second vertex of the path. The antifork
is its complement graph; thus, the antifork is obtained from a four-vertex path by adding one more
vertex adjacent to the first three vertices of the path. (See figure 1.)

Figure 1: The fork and the antifork.

Let us say G is uncluttered if no induced subgraph of G is a fork or antifork. Our goal in this
paper is to give a complete description of all uncluttered graphs. The line graph of a triangle-free
graph is uncluttered, and so is its complement; and our main theorem says that every uncluttered
graph can be obtained by piecing together line graphs of triangle-free graphs and their complements.
Before we can make a precise statement we need to explain the “piecing together” process, and that
is the content of the next section. We state our main result in 2.1.

This question was motivated by discussions with T. Karthick, who told us several results about
colouring graphs not containing forks and/or antiforks [1, 2, 3] (note, however, that in [2] “fork” has
a different meaning from its meaning here). In particular, he asked for the best possible “x-bounding
function” for uncluttered graphs. The answer follows from our main result 2.1, and we give a proof
in the final section.

1.1 For every uncluttered graph, its chromatic number is at most twice its clique number.

This is asymptotically best possible, since if H is a triangle-free graph with largest stable set of
cardinality k, then the complement of the line graph of H is uncluttered, with clique number at
most |V (H)|/2 and with chromatic number |V (H)| — k; and we can choose H and k with (|V(H)| —
k)/|V (H)| arbitrarily close to 1.

2 Some safe operations

There are several ways to make larger uncluttered graphs from smaller ones. The most obvious is: if
(1, G2 are both uncluttered, then so is their disjoint union. The complete join of G1, G5 is obtained
from their disjoint union by adding edges between every vertex of G; and every vertex of G5. Since
the complement of an uncluttered graph is also uncluttered, and the complete join of G1,Gs is the
complement of the disjoint union of G1, Gs, it follows that if G, G are both uncluttered, then so is
their complete join. Let us say G is anticonnected if its complement graph G is connected.

If X,Y C V(G) are disjoint, we say X is complete to Y if every vertex in X is adjacent to every
vertex in Y; and X is anticomplete to Y if there are no edges between X and Y. If v € V(G), we
say “v is complete to Y7 meaning that {v} is complete to Y, and so on.



If X C V(G) we denote by G[X] the subgraph induced on X. Two (distinct) vertices u,v of G
are twins if u,v have the same neighbours in V(G) \ {u,v}; (u,v may or may not be adjacent). A
homogeneous set in G means a set X C V(G) such that every vertex of G not in X is either complete
or anticomplete to X; and the homogeneous set is nontrivial if | X| > 2 and X # V(G). If X is a
homogeneous set in G, let Y be the set of vertices in V(G) \ X that are complete to X. Take a new
vertex v, and let H be the graph formed from G \ X by adding the vertex v and making v adjacent
to the vertices in Y. Then we say G is obtained from H by substituting G[X] for v.

Say a vertex v is simplicial if the set of its neighbours is a clique. If v is a simplicial vertex in an
uncluttered graph G, then we may substitute a complete graph for v, and the new graph we obtain
is also uncluttered. Consequently, if G has adjacent simplicial twins, then G can be obtained from
a smaller graph by the operation just described. A vertex v is antisimplicial if it is simplicial in the
complement graph, that is, if the set of all vertices nonadjacent to v is a stable set.

Let G be a graph, let £ > 1 be an integer, and let Yi,..., Y%, Z1,..., Z; be disjoint nonempty
sets of V(G) with union V(G), such that

e Yi,...,Y; are cliques, and Z1,..., Z; are stable sets;
o for 1 <i < j <k, Yj;is anticomplete to Y}, and Z; is complete to Zj;
o for 1 <i,j <k, Y;is complete to Z; if i = j, and otherwise Y; is anticomplete to Z;.

We call such a graph G a candelabrum, with base Z1 U - - U Zy. (See figure 2.)

Figure 2: A candelabrum. (Lines indicate complete pairs, and K, S mark cliques and stable sets.)

Candelabra are uncluttered, but they can also be used to make larger uncluttered graphs. Let
H; be an uncluttered graph, and let Hy be a candelabrum with base Z. Take the disjoint union of
Hy, Hy, and add edges to make V' (H;) complete to Z. Let G be the graph we produce. Then G is
uncluttered (we leave checking this to the reader), and V(Hj) is a homogeneous set of G. We say G
is candled if it can be constructed by this process; that is, if G has an induced subgraph H that is
a candelabrum, with base Z say, and Z is complete to V(G) \ V(H), and V(H) \ Z is anticomplete
to V(G)\ V(H). (Thus V(G) \ V(H) is a homogeneous set, but it might not be nontrivial; it might
even be empty.)

Now we can state our main theorem:

2.1 Let G be an uncluttered graph. Then either



e one of G, G is disconnected; or

e one of G,G has adjacent simplicial twins; or

e one of G, G is candled; or

e one of G, G is the line graph of a triangle-free graph.

The proof of 2.1 will occupy the remainder of the paper, and will be completed in 4.7.

3 Homogeneous sets

In this section we will prove:

3.1 Let G be an uncluttered graph. Suppose that
e (G is connected and anticonnected;
e (G has no adjacent simplicial twins, and no nonadjacent antisimplicial twins; and
e G,G are not candled.

Then G has no nontrivial homogeneous set.

The proof requires several steps, that we carry out in this section. Let us say an anticomponent of a
graph G is a induced subgraph whose complement graph is a component of G. We begin with:

3.2 Let G be uncluttered, and connected and anticonnected, with a nontrivial homogeneous set that
is not a clique or stable set. Then one of G, G is candled.

Proof. Let X be a nontrivial homogeneous set that is not a clique or stable set. By replacing X by
a superset if necessary, we may assume that no proper superset of X is a nontrivial homogeneous set.
Let Z be the set of vertices in V(G) \ X that are complete to X, and let Y be the set of vertices in
V(G) \ X that are anticomplete to X. Let Y7,..., Yy be the vertex sets of the components of G[Y],
and let Zy,..., Z; be the vertex sets of the anticomponents of G[Z].

(1) Y1,...,Yx and Z1,...,Z; are homogeneous sets of G.

Suppose that Y7 is not a homogeneous set; then there exists v € V(G) \ Y7 that has a neigh-
bour and a non-neighbour in Y7, and since G[Y;] is connected, there is an edge yy' of G[Y7] such
that v is adjacent to y and not to y’. Since X is anticomplete to Y7, it follows that v ¢ X, and
similarly v ¢ Ya,...,Yy; so v € Z. Now X is not a clique, so there exist nonadjacent x1,z2 € X.
But then G[{z1,2z2,v,y,y'}] is a fork, a contradiction. Thus Y7 is a homogeneous set, and similarly
so are Yo,...,Y;; and so are Z1,..., 2y, by applying the same argument in the complement graph.
This proves (1).

It follows that for each Y; and each Z;, Y; is either complete or anticomplete to Z;.

(2) Y,Z are both nonempty. Moreover, for 1 < i < k, there exist j,j' € {1,...,¢} such thatY;



is complete to Z; and anticomplete to Zj, and for 1 < j < ¢, there exist i,7' € {1,...,k} such that
Zj is complete to Y; and anticomplete to Y.

Since X is a nontrivial homogeneous set, X # V(G) and so Y U Z # (. Since G is connected,
it follows that Y # (), and similarly Z # () since G is anticonnected. Since G is connected, for
1 <i < k there exists j € {1,...,¢} such that ¥; is complete to Z;; and also, since X U {Y;} is not
a homogeneous set from the maximality of X, it follows that there exists j € {1,...,¢} such that
Y; is anticomplete to Z;;. The same argument in the complement shows the final statement. This
proves (2).

Let i1,...,14; € {1,...,k} be distinct, and let ji,...,5; € {1,...,¢} be distinct. We say the pairs
(t1,71),- - -, (i, jr) form a matching of order t if for 1 < r,s < t, Y; is complete to Zj, if r = s
and otherwise Y;, is anticomplete to Z; . Similarly the pairs form an antimatching of order t if for
1 <r,s<t,Y; is anticomplete to Z;, if r = s and otherwise Y;, is complete to Z;,.

(3) There exist pairs (i,7),(i',j") that form a matching of order two.

Choose i € {1,...,k} such that Y; is complete to Z; for as many j € {1,...,¢} as possible; by (2),
we can choose j' € {1,...,£} such that Y; is anticomplete to Zj:; by (2) we can choose ¢’ € {1,...,k}
such that Yy is complete to Zj/; and then from the choice of i, there exists j € {1,...,¢} such that
Z; is complete to Y; and not to Yj. Then (4,7), (¢, ;') forms a matching of order two. This proves

(3).

Choose t > 2 maximum such that there are ¢ pairs (z,j) (with ¢ € {1,...,k} and j € {1,...,¢})
that form a matching or antimatching; and by taking complements if necessary, we may assume the
pairs form a matching. By renumbering, we may assume that (1,1),..., (¢,¢) form a matching. For
1 <1 <t, choose y; € Y; and z; € Z;.

(4) Every vertex in Yi41 U --- U Yy is complete or anticomplete to Zy U --- U Zy, and every ver-
tex in Zyp1 U--- U Zy is complete or anticomplete to Y1 U --- U Y.

If v € Vi1 U--- UY) has a neighbour in Z; and a nonneighbour in Zs say, then G[{v, z1, 22, Y1, Y2 }]
is a fork, a contradiction. Similarly, if v € Z;41 U---U Zy has a neighbour in Y] and a nonneighbour
in Ys, then G[{v, 21, 22,91, y2}] is an antifork, a contradiction. This proves (4).

Let P be the set of v € Y11 U---UY} such that v is complete to Z; U --- U Z;, and let P’ be
the set of v € Y41 U--- UY} such that v is anticomplete to Z; U --- U Z;. Let @ be the set of
v € Zyiq U---UZp such that v is complete to Y1 U---UY;, and let Q" be the set of v € Z;1 1 U---UZp
such that v is anticomplete to Y1 U--- U Y;.

G) XUV U---UY,UZ U---UZ UPUQ is a homogeneous set.
Let us call this set A. We will show that P’ is anticomplete to A, and @ is complete to A. Let

v € P’; then v is anticomplete to X since v € Y; v is anticomplete to Y7 U --- U Y; since Yi,...,Y};
are vertex sets of components of G[Y]; and v is anticomplete to Z; U --- U Z; by definition of P’.



Since v belongs to some Y;, and Y; is a homogeneous set by (1), and so Y; C P’ it follows that v is
anticomplete to P. Also from the maximality of ¢, v is anticomplete to Q’. This proves that P’ is
anticomplete to A.

Now let v € Q. We must show that v is complete to A. Certainly v is complete to X and to
Z1U---UZy, and to Y1 U- - -UY; from the definition of (). Since v belongs to an anticomponent of G[Z]
with vertex set in @, it follows that v is complete to @’. It remains to show that v is complete to P.
Suppose not, and let u € P be nonadjacent to v. For 1 <14 < t, choose y; € Y; and choose z; € Z;.
If t > 3, Gl{v,y1,y2,u,23}] is a fork, a contradiction, and so t = 2. Let u € Y3 and v € Z3 say;
then Y3 is anticomplete to Z3 by (1), and so the three pairs (1,2),(2,1), (3,3) form an antimatching,
contrary to the maximality of ¢. This proves (5).

From the maximality of X, (5) implies that the set of (5) is not a nontrivial homogeneous set,
and so P’,Q = (0. But then X U P U Q' is a nontrivial homogeneous set, and the maximality of X
implies that P,Q" = ). If there exist nonadjacent y,y’ € Y7, then G[{y, v, 21, 22,y2}] is a fork, a

contradiction; so Yi,...,Y; are cliques. If there exist adjacent z, 2" € Z;, then G[{z, 2/, y1, 22, y2}] is
an antifork, a contradiction. Thus Zi,...,Z; are stable sets. But then G is candled, as required.
This proves 3.2. |

Let P be a four-vertex induced path in a graph G. A centre for P means a vertex of V(G)\ V(P)
that is complete to V(P), and an anticentre for P is a vertex of V/(G) \ V(P) that is anticomplete
to V(P).

3.3 Let G be uncluttered, and let P be a four-vertex induced path in G. If there is a centre and an
anticentre for P then there is a nontrivial homogeneous set in G that is not a clique or stable set.

Proof. Let A be the set of all anticentres for P, and let C be the set of all centres for P. Thus
A,C # 0. Let B be the set of v € V(G)\ (V(P)UAUC); thus B is the set of all vertices not in V(P)
with a neighbour and a nonneighbour in V' (P). Now either every vertex in C' has a neighbour in A,
or every vertex in A has a nonneighbour in C; and by taking complements if necessary, we assume
the first. Let P have vertices pi-ps-p3-p4 in order.

(1) B is complete to C.

Let b € B and ¢ € C, and suppose that b, c are nonadjacent. Choose a € A adjacent to c. Sup-
pose first that a,b are nonadjacent. Since P is anticonnected, and b € B, there exist nonadjacent
p,p’ € V(P) such that b is adjacent to p and not to p’; but then G[{p,p’, a,b,c}] is a fork, a contra-
diction. So a,b are adjacent. Let I be the set of i € {1,...,4} such that b, p; are adjacent. Since
G[{a,b,c,p1,p4}] is not a fork, one of 1,4 € I, and we may assume 1 € I without loss of generality.
If 4 ¢ I, then 2 € I since G[{a,b,c,p2,ps}] is not a fork; so 3 ¢ I since the subgraph induced on
G[{b,p1,p2,p3,p4}] is not an antifork; but then G[{b,c,p1,p2,p4}] is an antifork, a contradiction.
Thus 4 € I. Since b is not a centre, one of 2,3 ¢ I, and we assume 3 ¢ I without loss of generality.
But then G[{a,b, p1,ps,ps}] is a fork, a contradiction. This proves (1).

Let A’ be the union of the vertex sets of the components of G[A] that are not anticomplete to B,
and let A” = A\ A'.



(2) A" is complete to C.

Let ¢ € C, and suppose that ¢ is not complete to A’. From the definition of A’, there is an in-
duced path QQ with one end in B, and all other vertices in A’, such that some vertex of @ is not

adjacent to ¢. Choose () minimal, with vertices ¢1- - - - -¢; in order, where ¢, € B and ¢q1,...,qx_1 € A.
From (1), £ > 2. From the minimality of @, it follows that ¢ is nonadjacent to ¢; and adjacent to
all of ga,...,qr. Choose adjacent qx+1,qr+2 of P such that g is adjacent to giy+; and not to qxio.

(This is possible since ¢ € B.) Then G[{c, q¢1, q2, 3, q4}] is an antifork, a contradiction. This proves

(2).

Let X = V(P)UBUA'. From (1) and (2), C is complete to X; and from the definition of A", A”
is anticomplete to X. Thus X is a nontrivial homogeneous set satisfying the theorem. This proves
3.3. |

3.4 Let G be uncluttered and connected, and let A, B,C, D be disjoint subsets of V(G), with union
V(G), and with the following properties:

e A s a clique and A # 0;

e B is a stable set and |B| > 2;

e A is complete to B and anticomplete to C, D;
e B is complete to C' and anticomplete to D.

Then G is candled.

Proof. Let C1,...,C} be the vertex sets of the anticomponents of G[C], and let Dy, ..., D, be the
vertex sets of the components of G[D].

(1) C1,...,Ck and Dy, ..., Dy are homogeneous sets.

Suppose C1 is not a homogeneous set; then there exist d € V(G) \ C; and nonadjacent ¢, € C;
with d adjacent to ¢ and not to ¢’. Choose a € A and b € B; then G[{a,b,c,c,d}] is a fork, a
contradiction. Thus C1, ..., C} are all homogeneous sets.

Now suppose D;p is not a homogeneous set; then similarly there exists ¢ € C and adjacent
d,d € D; such that c is adjacent to d and not to d’. Since |B| > 2 and B is stable, there exist
nonadjacent b,b’ € B; but then G[{b,¥, ¢,d,d'}] is a fork, a contradiction. This proves (1).

It follows that for each C; and each Dj, C; is either complete or anticomplete to D;. For 1 <1i <k
choose ¢; € C, and for 1 < j </ choose dj € D;. Choose a € A and b € B.

(2) For 1 < j </, there is a unique value of i € {1,...,k} such that D; is complete to C;.

We assume j = 1 without loss of generality. Since G is connected and AU BU Dy U ---U Dy is
anticomplete to D, it follows from (1) that there exists i € {1,...,k} such that D; is complete to



C;. Suppose there are two such values of i, say ¢ = 1,2; then G[{a,b,c1,co,d1} is an antifork, a
contradiction. This proves (2).

(3) For 1 <i <k there is at most one value of j € {1,...,¢} such that C; is complete to D;.

For let ¢ = 1 say, and suppose that C} is complete to D1, Dy say. Then G[{a,b,ci,di,ds}] is a
fork, a contradiction. This proves (3).

From (2) and (3) it follows that k& > ¢, and we may renumber such that D; is complete to C; for
1<i</{ Forl<i<k, D;isa clique, since if d,d" € D; are nonadjacent then G[{a,b, ¢;,d,d'}] is a
fork; and also Cj is a stable set, since if ¢, € C; are adjacent then G[{a,b, ¢, c,d;}] is an antifork.
Thus the restriction of G to

AUBUC,U---UC,UDyU---UDy

is a candelabrum with base BUC) U ---U Cy. Since Cpy1 U--- Uy is complete to BUC, U --- U Cy
and anticomplete to AU Dy U ---U Dy, it follows G is candled. This proves 3.4. |

Now we can prove the main result of this section, which we restate:
3.5 Let G be an uncluttered graph. Suppose that
e (G is connected and anticonnected;
e (G has no adjacent simplicial twins, and no nonadjacent antisimplicial twins;

e G,G are not candled.
Then G has no nontrivial homogeneous set.

Proof. For each nontrivial homogeneous set X, we define its “score” as follows. By 3.2, X is either
a clique or a stable set. If X is stable, its score is the number of components of G[Y], where Y is the
set of all vertices in V(G) \ X that are anticomplete to X. If X is a clique, its score is the number
of anticomponents of G[Z], where Z is the set of vertices in V(G) \ X that are complete to X.

Suppose that there is a nontrivial homogeneous set X, and choose X with minimum score. Let
Z be the set of vertices in V(G) \ X that are complete to X, and Y the set that are anticomplete
to X. Let Y7,...,Y) be the vertex sets of the components of G[Y], and let Zi, ..., Z; be the vertex
sets of the anticomponents of G[Z]. By replacing G by its complement if necessary, we may assume
that X is a stable set.

(1) Y1,...,Yx are homogeneous sets, and cliques.

If Y7 is not a homogeneous set, then there exists z € Z and y,y’ € Yp, such that z-y-y' is an
induced path (because G[Y1] is connected). Let z,2" € X be nonadjacent; then G[{z,2’, z,y,y'}] is
a fork, a contradiction. This proves that Y7 is a homogeneous set. By 3.2, Y] is either a stable set
or a clique; but G[Y1] is connected, and so Y; is a clique. This proves (1).

By hypothesis, there are no nonadjacent antisimplicial twins in G; and in particular, vertices in
X are not antisimplicial. Thus Y is not stable, and so we may assume that |Y;| > 2. Let N be



the set of vertices in Z that are complete to Y;. By hypothesis, there are no adjacent simplicial
twins, and in particular the vertices in Y; are not simplicial; so IV is not a clique. Hence there is an
anticomponent D of N with at least two vertices. Let N' = N\ D, and Y/ =Y, U---UY}. Thus the
six sets X, D, N', Z \ N,Y1,Y’ are pairwise disjoint and have union V(G).

(2) D is a homogeneous set, and D is stable.

Since G[D] is anticonnected, if D is not a homogeneous set then there exists v € V(G) \ D and
nonadjacent d,d’ € D, such that v is adjacent to d and not to d’. Since X U N’ UY} is complete to
D, it follows that v € (Z\ N)UY’. Choose y,y" € Y1, adjacent; then G[{v,d,d’,y,y'}] is an antifork,
a contradiction. Thus D is homogeneous. By 3.2 is either stable or a clique, and it is not a clique
since G[D] is anticonnected and |D| > 2. This proves (2).

Let U be the set of vertices in Z \ N that are complete to D, and let W be the set of vertices in
Z \ N that are anticomplete to D. Thus UUW = Z\ N by (2).

(3) W is a clique.

If w,w" € W are nonadjacent, choose y € Y1, d € D and =z € X; then G{w,w,y1,dz}] is a
fork, a contradiction. This proves (3).

(4) Y’ is anticomplete to D UW , and N’ is complete to W, and U is anticomplete to W.

From the minimality of the score of X, it follows that the score of D is at least that of X, that
is, at least k. For 2 < ¢ < k, Y; is a homogeneous set by (1), and since D is also a homogeneous set
by (2), it follows that Y; is complete or anticomplete to D. Let C' denote the set of vertices not in D
and anticomplete to D. Then C' consists of W and some of Y3, ..., Y;, those Y; that are anticomplete
to D. In particular, since W is a clique by (3), the score of D is one more (for W) than the number
of i € {2,...,k} such that Y; is anticomplete to D U W. Since the score of D is at least k, it follows
that Y, ..., Yy are all anticomplete to D U W. This proves the first assertion of (4).

For the second assertion of (4), let y € Y1,d € D,z € X and w € W; then for n € N’ if n is
nonadjacent to w then G[{y,d,z,w,n}] is an antifork. This proves that N’ is complete to W.

For the third assertion, let uw € U, and let y,d,x,w be as before; if u,w are adjacent then
G[{y,d,z,u,w}] is an antifork, a contradiction. This proves (4).

If N’ = (), then the four sets W, X, D U U,Y (in this order) satisfy the hypotheses of 3.4, a
contradiction. Thus N # (). If Y/ = (), then the four sets X,Y;, WUU, N’ U D satisfy the hypotheses
of 3.4 applied in G, a contradiction. So Y’ # (). Choose y € Y1,y €Y', de D,z € X, n & N’
and w € W; then y-d-z-w is a four-vertex induced path, and n is a centre and 3’ is an anticentre,
contrary to 3.3. This proves 3.5. |



4 Graphs without homogeneous sets

In view of 3.1, henceforth we can restrict our attention to uncluttered graphs with no nontrivial
homogeneous set. First here is a useful lemma.

4.1 Let G be a graph with no nontrivial homogeneous set, and let A C V(G), not a clique, with
A # V(Q). Then there exist v € V(G) \ A and nonadjacent a,a’ € A, such that v is adjacent to a
and not to a’.

Proof. Since A is not a clique, there is an anticomponent X of G[A] with at least two vertices.
Since X # V(@) and X is not a nontrivial homogeneous set, there is a vertex v € V(G) \ X with a
neighbour and a nonneighbour in X. Since X is an anticomponent of G[A], it follows that v ¢ A.
Since G[X] is anticonnected, and v has a neighbour and a nonneighbour in X, there exist nonadjacent
a,a’ € X such that v is adjacent to a and not to a’. This proves 4.1. |

If X is a subgraph of G, or a set of vertices of G, we say that X is dominating if every vertex
not in X has a neighbour in X. The diamond is the graph with four vertices and five edges, and a
triangle is a clique of cardinality three. We begin with:

4.2 Let G be an uncluttered graph with no nontrivial homogeneous set. Then every diamond in G
1s dominating. Moreover, every triangle that is contained in a diamond of G is dominating.

Proof. Suppose that there is a diamond D that is not dominating. Let vy, vy be the two vertices
of D that have degree three in D; so there is a set A of G, not a clique, such that vy,v2 ¢ A and
A is complete to {v1,v2}, and AU {v1,v2} is not dominating. Choose such a set A, maximal. Since
A is not a nontrivial homogeneous set, 4.1 implies that there exist v € V(G) \ A and nonadjacent
a,a’ € A such that v is adjacent to a and not to a’. Thus v # v1,ve. If v is nonadjacent to both
v1,v9, then G[{v,v1,v2,a,a’}] is an antifork, a contradiction; so we may assume that v is adjacent
to v1. Since AU {v1,v2} is not dominating, there is a vertex w that is anticomplete to A U {v1,v2}.
Now there are four possibilities: w may or may not be adjacent to v, and v may or may not be
adjacent to vo. Suppose first that v is not adjacent to v, and so v-a-vs-a’ is an induced four-
vertex path, P say. Now v is a centre for P, so by 3.3, w is not an anticentre, and therefore w is
adjacent to v. But then G[{w,v,v1,a,v2}] is an antifork, a contradiction. So v is adjacent to vs.
If w,v are nonadjacent, then we can add v to A, contrary to the maximality of A. Thus v, w are
adjacent; but then G[{w, v, v1, va,a’'}] is an antifork, a contradiction. This proves that every diamond
is dominating.

Now let T be a triangle, contained in a diamond; thus some vertex v € V(G) \ T has exactly
two neighbours in 7. Suppose that T’ is not dominating, and let w be anticomplete to T'. Since
the diamond G[T U {v}] is dominating, w is adjacent to v; but then G[T'U {v, w}] is an antifork, a
contradiction. This proves 4.2. |

4.3 Let G be an uncluttered graph with no nontrivial homogeneous set, such that G is not the line

graph of a bipartite graph. Then for every nondominating triangle T in G, there is a unique mazimal
clique including T, say C, and it is not dominating. Moreover, for each v € C, if C is not the only
mazximal clique containing v, then there is exactly one other maximal clique containing v, say C,,
and C, N C = {v}, and C, is not dominating.



Proof. Let C be a maximal nondominating clique including 7'; and let S be the set of vertices
that are anticomplete to C. Thus S # ). Let A be the set of vertices in V(G) \ C with exactly one
neighbour in C, and let B be the set of vertices in V(G) \ C with at least two neighbours in C. Thus
A, B,C, S are pairwise disjoint and have union V(G).

(1) B is complete to C' U S.

No triangle included in C is dominating, and hence by 4.2, no triangle included in C' is contained
in a diamond. Consequently every vertex in B is complete to C. From the maximality of C, B is
complete to S. This proves (1).

Every vertex in A has a unique neighbour in C. For each ¢ € C, let A, be the set of vertices in
A that are adjacent to c. Thus A = o Ac.

(2) There is at most one ¢ € C with A, = 0.

For otherwise the set of ¢ € C with A. = () is a nontrivial homogeneous set, which is impossi-
ble. This proves (2).

(3) |B| <1, and B is anticomplete to A.

Suppose first that B is not a clique. By 4.1, there is a vertex v € V(G) \ B and nonadjacent
b,/ € B’ such that v is adjacent to b and not to b’. By (1), v € A, for some ¢ € C. Choose ¢1,co € C
different from ¢; then G[{v,b, b, 1, c2}] is an antifork, a contradiction. This proves that B is a clique.

Suppose that some b € B has a neighbour in A. Since G is anticonnected (because it has no
nontrivial homogeneous set), it follows that b has a nonneighbour; and since b is complete to C' U S
and B is a clique, it follows that b has a nonneighbour in A. By (2), there are at least two vertices
¢ € C such that A, # 0; and so there exist distinct ¢1,¢2 € C, and a; € A, for i = 1,2, such
that b is adjacent to a; and nonadjacent to as. (To see this, choose a neighbour a € A of b and a
nonneighbour a’ € A of b. If a,a’ both belong to A., say, choose a” € A.,, and replace one of a,a’
by a”.) Choose c3 € C\ {c1,ca}. Since G[{b,c1,c3,a1}] is a diamond, the triangle G[{b,c1,c3}] is
dominating by 4.2, and yet ao has no neighbour in this triangle, a contradiction.

Thus B is anticomplete to A, and so B is a homogeneous set; and hence |B| < 1. This proves

(3).
(4) For each c € C, A is a clique; and if B # 0 then S is a clique.

Suppose that ¢ € C and A, is not a clique; then by 4.1, there exists v ¢ A. and nonadjacent
a,a’ € A, such that v is adjacent to a and not to a’. Thus v € AU S, by (3); and so there exists
¢ € C\ {c} nonadjacent to v. But then G[{c,,a,d’,v}] is a fork, a contradiction. Thus each A,
is a clique. Now suppose that B = {b} say, and S is not a clique. Then by 4.1, there exists v ¢ S
and nonadjacent s,s” € S such that v is adjacent to s and not to s’. Thus v € A, for some ¢ € C.
Choose ¢ € C'\ {c}. Then G[{b,s,s’,v,c'}] is a fork, a contradiction. This proves (4).

(5) B = 0.
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Suppose that B # (), and so |B| = 1 by (3). Let B = {b} say. Define A, = S; thus C' U {b} is
a clique D say, and every vertex not in D belongs to one of the sets Ay (d € D), and has a unique
neighbour in D; and each set Ay (d € D) is a clique by (4). We claim:

o for all distinct dy,d2 € D, each vertex in Ay, has at most one neighbour in Ag4,; and

o for all distinct dq,ds,ds € D, if a; € Ag, for i = 1,2,3, and a; is adjacent to both as, a3, then
ag, a3 are adjacent.

To see the first claim, suppose that v € Ay, has two neighbours a,a’ € Ag,. By (4), a,a’ are adjacent.
Choose d3 € D\ {dy,ds}; then G[{v,a,d,ds,ds}] is an antifork, a contradiction. This proves the
first claim.

For the second claim, suppose that di,ds,ds € D are distinct, and a; € Ag, for i = 1,2,3, and
ay is adjacent to ag,as, and ag, a3 are not adjacent. Since |C| > 3 it follows that |D| > 4; choose
dy € D\ {dy,da,ds}. Then G[{a1,a2,as,d;,ds}] is a fork, a contradiction. This proves the second
claim.

Let H be the subgraph of G obtained by deleting the edges of the cliques Ay U {d} (d € D).
From the two bullet claims above, it follows that each component of H is a clique. (D itself is one
such component.) Thus we have found two sets of cliques of G; the sets Az U {d} (d € D), and the
components of H. Each vertex of G belongs to exactly one clique in the first set, and exactly one in
the second; and every edge of G belongs to one of the cliques in one of the sets. Consequently G is
the line graph of a bipartite graph, a contradiction. This proves that B = (), and so proves (5).

It follows that C' is a maximal clique of G, and is nondominating. Moreover, every edge of C
is not contained in any other maximal clique; and every vertex ¢ € C is contained in at most two
maximal cliques, namely C' and A, U {c} if A. # (). To complete the proof of the theorem, we only
need to show that the cliques A, U {c} are not dominating. Suppose then that ¢ € C, and A, U {c}
is dominating. We have already shown that every clique including a nondominating triangle is itself
nondominating; and consequently all triangles included in A. U {c} are dominating. But A, is not
dominating (because there is a vertex in C anticomplete to A.), so |A.| < 2.

(6) [Ac| = 2.

Suppose that |A.] < 1; and hence |A.| = 1, since A, U {c} is dominating and so is not anticom-
plete to S, since S # (). Let A. = {a}; then for the same reason, a is complete to S. Also A.U{c} is
not anticomplete to any vertex in Ay for ¢ € C'\ {c}; and so a is complete to A for all ¢ € C'\ {c}.
Let ¢ € C'\ {c}, and let ' € A., and s € S. Since d/, s are both adjacent to a, and there exists
d" e C\{cd}, and G[{s,a,d’,c,d"}] is not a fork, it follows that o', s are adjacent; and so Ay is
complete to S for all ¢ € C\{c}. If ¢1,c2 € C\{c} are distinct, and there exist a; € A., and ag € A,
nonadjacent, then G[{a1,as,a, s,c1}] is an antifork, a contradiction; so all the sets A» (¢ € C) are
complete to each other. Hence they are all homogeneous sets, and so is S so they all have cardinality
at most one. But then G is the line graph of a bipartite graph, a contradiction. This proves (6).

Let A. = {p,q} say. For each d € C \ {c}, let P; be the set of vertices in A; adjacent to p, and
define Q4 similarly.
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(7) For each d € C\ {c}, Py, Qq are disjoint subsets of Ay with union Ag.

Since A. U {c} is dominating, it follows that Py U Qg = Ay for each d € C'\ {c}. If some v € Ay
is adjacent to both p,q, choose ¢ € C'\ {¢,d}; then G[{v,p,q,c,c'}] is an antifork, a contradiction.
This proves (7).

Let S, Sy be the sets of vertices in S adjacent to p, g respectively.

(8) Sp, Sy are disjoint subsets of S with union S; and Py is complete to Sp, and Qg is complete
to Sy, for each d € C'\ {c}.

Certainly S, U S, = S since A, U {c} is dominating. If v € S is adjacent to both p,q, choose
d € C\ {c}, and then G[{v,p, q,c,d}] is an antifork, a contradiction. This proves the first assertion.

Let d € C'\ {c}, and suppose v € P; and s € S, are nonadjacent. Choose ¢ € C'\{¢,d}, and then
Gl{v, s,p,c,c'}] is a fork, a contradiction. Thus P, is complete to Sp, and similarly @4 is complete
to Sy, for each d € C'\ {c}. This proves (8).

Let P ={p}uUS,U UdEC\{c} Py, and define @ similarly.
(9) P,Q are cliques.
Suppose P is not a clique, say, and choose p1,ps € P, nonadjacent. Thus pi,p2 # p. If p1 € S, then
by (8), p2 € S, and G[{p1,p2,p,c,d}] is a fork where d € C'\ {c}. Thus p1,p2 ¢ S, and so we may
assume that p; € P, for i = 1,2, where ¢;, c2,c € C are distinct. But then G[{p1,p2,p,¢,c1}] is a
fork, a contradiction. This proves (9).

(10) For each d € C'\ {c}, Py is anticomplete to S,, and Qq is anticomplete to Sp.

Let v € P4, and suppose v is adjacent to u € S;. Choose d' € C'\ {¢,d}; then G[{u,v,p,d,d'}]
is a fork, a contradiction. This proves (10).

(11) For each d € C'\ {c}, Py is anticomplete to Q \ Qq.

Suppose that v € Py and v € Qg are adjacent, where d' € C \ {¢,d}. Choose s € S; then s is
adjacent to exactly one of p,q. If s is adjacent to p, then s € P, and by (9) s is adjacent to v;
and by (10), s is nonadjacent to u. But then G[{u,v,s,q,d’}] is a fork, a contradiction. Thus s is
adjacent to ¢ and not to p, and hence adjacent to u and not to v. But then G[{u,v, s,p, d}] is a fork,
a contradiction. This proves (11).

(12) Every vertex of S, has at most one neighbour in Sy and vice versa.

Suppose v € S, is adjacent to u,w € S;. Then G[{v,u,w,q,c}] is an antifork, a contradiction.
This proves (12).
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From (11), since Py is complete to Qg, it follows that P, is a homogeneous set, and so |Py| < 1,
and similarly |Qg| < 1. Let H be the subgraph obtained from G by deleting the edges of the three
cliques C, P,Q. By (11), every edge of H either has both ends in Ay U {d} for some d € C, or has
one end in S, and the other in Sy; and hence by (12), every component of H is a clique, and has at
most one vertex in common with C, P or (). Consequently G is the line graph of a bipartite graph,
a contradiction. This proves 4.3. |

4.4 Let G be an uncluttered graph with no nontrivial homogeneous set, such that G is not the line
graph of a bipartite graph. Then either every triangle is dominating, or no clique is dominating.

Proof. Let A be union of the vertex sets of all dominating cliques, and let B be the union of
the vertex sets of all nondominating triangles. By 4.3, every vertex of a nondominating triangle
only belongs to nondominating cliques, so A N B = (). Suppose there is a nondominating triangle
T, and a dominating clique C. Thus C C A, and T C B. Every triangle is either dominating or
nondominating, and so is a subset of one of A, B. Consequently, every vertex of T has at most one
neighbour in C'; and hence exactly one since C' is dominating; and since no vertex in C has more than
one neighbour in 7T, it follows that there are three vertices c1, co, c3 such that t; is adjacent to ¢; for
i=1,2,3, where T' = {t;,t2,t3}. By 4.3, {c1,c2,c3} is dominating. Since T is nondominating, there
is a vertex y that is anticomplete to T'; and since {c1, c2, c3} is dominating, we may assume that y is
adjacent to ¢;. If y is nonadjacent to ¢ then G[{y, c1,t1,t3,c2}] is a fork, a contradiction. But if y is
adjacent to cg, then since the triangle {y, c1,co} has a vertex in A, it follows that y,c1,c2 € A, and
in particular {y, c1, c2} is dominating; and this is impossible since ¢3 has no neighbour in {y, c1, c2}.
This proves 4.4. |

The claw is the complete bipartite graph K 3, and its centre is its vertex of degree three. Thus
if T' is a nondominating triangle in G, and v has no neighbour in 7', then v is a claw centre in G,
and vice versa. Let us say an anticlaw is a four-vertex graph whose complement is a claw.

N

Figure 3: The claw and the anticlaw.

We need one more lemma.
4.5 Let G be a graph with no claw or anticlaw. Then for one of G, G, say H, either

e cach component of H is a path or cycle, and hence H is the line graph of a triangle-free graph,
or

o |V(H)| <9, and H is the line graph of a bipartite graph.

Proof. The net is the graph on six vertices consisting of three pairwise adjacent vertices t1,t2, t3,
and three more vertices s1, s2, s3, where for 1 < ¢ < 3 s; has degree one and ¢; is its unique neighbour.
The antinet is the complement graph of the net.
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Figure 4: The net and the antinet.
We begin with:

(1) If G contains a net as an induced subgraph, then G is a net, and so G is the line graph of
a bipartite graph.

Suppose that sq, s9, s3,1t1,t9,t3 are distinct vertices of G forming a net in the notation above. Let
W = {s1,s2,s3,t1,ta,t3}. If W = V(G) the claim holds, so we assume there exists v € V(G) \ W.
Since G[{v,t1,t9,t3}] is not an anticlaw, v is adjacent to one of ¢, to, t3, say t1. Since G[{v,t1, s2, s3}]
is not a claw, v is nonadjacent to one of s, s3, say sa2. Since G[{v, s1, S2,t1}] is not an anticlaw, v is
nonadjacent to sj. Since G[{v, s1,t1,t3}] is not a claw, v is adjacent to t3. But then G[{v,t1, s2,t3}]
is an anticlaw, a contradiction. This proves (1).

From (1) we may assume G contains no net as an induced subgraph, and by taking complements
we may also assume that G contains no antinet.

Figure 5: The bull.

The bull is the graph with five vertices t1,...,t5, where t;-to-t3-t4 is an induced path and t5 is
adjacent to ts,t3 and nonadjacent to t1,t4. Note that the complement of a bull is a bull.

(2) We may assume that G contains a bull as an induced subgraph.

Suppose first that G has no triangle. Then G has maximum degree at most two, since it has
no claw or triangle, and the theorem holds. So we may assume that G has a triangle, and (by taking
complements) G has a stable set of cardinality three. Choose a triangle T', and a set S of three pair-
wise nonadjacent vertices, with S U7 minimal. Let S = {s1, s2,s3} and T = {t1,t2,t3}. Certainly
|SUT| < 6; suppose that equality holds. If ¢; is adjacent to at most one of s, s2, $3, say not to s, s3,
then {1, s9, s3} is a stable set, contradicting the minimality of SUT. So each t; is adjacent to at least
two of s1, 52, 3. By the same argument in the complement, each s; is nonadjacent to at least two of
t1,to,t3; but this is impossible. Thus |S U T| < 5; and so equality holds, since |SNT| < 1. We may
assume that s3 = t3. Now each of s1, s9 is adjacent to one of t1, to, since it is not an anticlaw centre;
but each of t1,t> is adjacent to at most one of s, ss, since it is not a claw centre. Consequently
G[S UT] is a bull. This proves (2).
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Let W = {t1,...,t5}, and let G[W] be a bull in G, with notation as in the definition of a bull. For
each vertex v € V(G) \ W, let W (v) denote the set of neighbours of v in W. Define A;, Ag, By, Bo
by:

o Aj is the set of v € V(G) \ W with W (v) = {t1,t5};
) ={ta,ts };
v) = {t1,t2,ta};

)

(@)

o A, is the set of v € V(G) \ W with W (v
(@)

e By is the set of v € V(G) \ W with W (v) = {t1,t3,14}.

(
(
e By is the set of v € V(G) \ W with W (
(

(See figure 6.)

Figure 6: For step (3) of the proof of 4.5.

We claim:
(3) A1 U Ay U By U By :V(G)\W.

Let v € V(G) \ W. Assume first that t5 € W(v). Since G[{v,ts5,t1,t4}] is not a claw, one of
ti,ts ¢ W(v), say t1. Since G[{v,ts,t3,t1}] is not an anticlaw, t3 ¢ W (v). Since G[{v,t1,t2,t3}] is
not a claw, to ¢ W(v). Since G[W U {v}] is not a net, t4 € W(v). But then v € A3. Now assume
that t5 ¢ W(v). We apply the same argument in the complement to deduce that v € By U By. This
proves (3).

(4) FEach of A1, Ag, B1, By has cardinality at most one.

If there exist u,v € Aj, nonadjacent, then G[{u,v,t1,t2}] is a claw, a contradiction; and if there
exist u,v € Ay adjacent, then G[{u,v,t1,t4}] is an anticlaw, a contradiction. Similarly |As| < 1; and
by taking complements it follows that |By|,|Bz| < 1. This proves (4).

(5) The pairs (A1, Aa), (A1, Ba), (A2, B1) are complete, and the pairs (B, B2), (A1, B1), (A2, Ba) are
anticomplete.

If there exist u € A; and v € Ay, nonadjacent, then G[{u,v,ts,t2}] is a claw; so A; is complete

to As. By taking complement it follows that B; is anticomplete to By. If there exists © € Ay and
v € By, adjacent, then G[{u,v,t;,t3}] is an anticlaw, a contradiction; so A; is anticomplete to B,
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and from the symmetry A, is anticomplete to Bo. By taking complements it follows that Aj is
complete to Bg, and Aj is complete to B;. This proves (5).

From (4) and (5) it follows that |[V(G)| < 9, and G is an induced subgraph of the line graph of
K3 3. This proves 4.5. |

We use 4.5 to prove the next result:

4.6 Let G be an uncluttered graph with no nontrivial homogeneous set. Then one of G, G is the line
graph of a triangle-free graph.

Proof. Suppose that neither of G, G is the line graph of a triangle-free graph. Suppose first that
G contains a claw and an anticlaw. Then since there is a nondominating triangle, it follows from
4.4 that no clique is dominating. If a € V(G) is a claw centre, then it is in at least three maximal
cliques, and so by 4.3 it is in no triangle (since all triangles are nondominating), and hence the set
of neighbours of a is stable. By taking complements, if b € V(@) is an anticlaw centre, then the set
of vertices nonadjacent to b is a clique.

(1) There do not exist a claw centre a and an anticlaw centre b with a # b.

Suppose there exist such a,b. By taking complements if necessary, we may assume that a,b are
nonadjacent. Since b is an anticlaw centre, the set of vertices of G nonadjacent to b is a clique C' say.
Now |C| > 3 since b is an anticlaw centre; and a € C. Thus a belongs to a triangle, and so belongs
to at most two maximal cliques by 4.3, contradicting that a is a claw centre. This proves (1).

(2) There do not exist both a claw and an anticlaw in G.

Suppose there is both a claw and an anticlaw. Then by (1), there is a vertex ¢ that is the unique claw
centre and the unique anticlaw centre. Let A be its set of neighbours and let B =V (G) \ (AU {c}).
Since ¢ is not in a triangle, A is stable, and similarly B is a clique. Since ¢ is a claw centre, |A| > 3,
and similarly |B| > 3. Let b € B. If b has no neighbour in A, then the stable set {b, ¢} is a dominating
clique of G, a contradiction to 4.4 applied to G. If b has at least two nonneighbours in A, say a1, as,
let b be adjacent to ag € A and then G[{b, a1, a2, as, c}] is a fork, a contradiction. But b has at most
two neighbours in A since b is not a claw centre; so |A| = 3 and b has exactly two neighbours in A.
By the same argument applied in the complement, |B| = 3 and every vertex in A has exactly two
nonneighbours in B, which is impossible by counting edges between A and B. This proves (2).

From (2), and taking complements if necessary, we may assume there is no claw in G. By 4.5 we
may assume that there is an anticlaw in G, that is, there is a nondominating triangle. Consequently
every clique is nondominating, by 4.4. By 4.3 every vertex that is in a triangle is in at most two
maximal cliques. But if a vertex v is not in any triangle, then since there is no claw it follows that v
has degree at most two, and so v is in at most two maximal cliques. This proves that every vertex
is in at most two maximal cliques. Let C,...,C} be the maximal cliques of G, and make a graph
H with vertex set {1,...,t}, where distinct ¢,j are adjacent if C; N C; # 0. If |C; N Cj| > 2 for
some distinct 7, j, then C; N Cj is a nontrivial homogeneous set of G, which is impossible; so G is the
line graph of H. It remains to show that H is triangle-free. Suppose not; then we may assume that
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C4, Cy, C3 pairwise intersect. Choose v1 € Co N C3, and define vy, v3 similarly. Then vy ¢ C4, since
every vertex belongs to at most two of Cy,Cy, Cs, and similarly ve ¢ Co and vs ¢ Cs. But vy, v9 are
adjacent, because they both belong to Cs, and similarly vy, ve,v3 are pairwise adjacent; and hence
there is a maximal clique containing all three of vy, ve,v3. It is different from C7,Cs, Cs, and so v;
belongs to three different maximal cliques, a contradiction. This proves that H is triangle-free, and
so proves 4.6. |

By combining 4.6 and 3.1, we deduce our main result, which we restate:
4.7 Let G be an uncluttered graph. Then either

e one of G,G is disconnected; or

e one of G,G has adjacent simplicial twins; or

e one of G, G is candled; or

e one of G, G is the line graph of a triangle-free graph.

Proof. If G has a nontrivial homogeneous set, then by 3.1 either one of G, G is disconnected, or one
of G, G has adjacent simplicial twins, or one of G, G is candled, and in each case the theorem holds.
If G has no nontrivial homogeneous set, then by 4.6, one of G, G is the line graph of a triangle-free
graph, and again the theorem holds. This proves 4.7. |

5 Karthick’s question

We denote the chromatic number of a graph G by x(G), and the cardinality of its largest clique by
w(G). Let us deduce from 2.1 a result we stated earlier, that answers a question of Karthick. We
restate it:

5.1 For every uncluttered graph G, x(G) < 2w(QG).

Proof. We proceed by induction of |V (G)|. We may apply 2.1. If G is the disjoint union of two
graphs G, Go, then

X(G) = max(x(G1), x(G2)) < max(2w(G1), 2w(G2)) = 2w(G)
as required. If G is the disjoint union of Gp, Gg, then
X(G) = x(G1) + x(G2) < 2w(Gy) + 2w(G2) = 2w(G)

as required.
If G has a simplicial vertex v, then we can extend any colouring of G\ {v} to a colouring of G if
we have at least w(G) colours. Consequently

X(G) < max(x(G\ {v}),w(G)) < max(2w(G \ {v}),w(G)) < 20(G)
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as required. If G has nonadjacent twins wu, v, then

X(G) = x(G\ {u}) < 2w(G \ {u}) = 2w(G)

as required. So we may assume that G has no simplicial vertex and no two nonadjacent twins.
Consequently neither G nor G has adjacent simplicial twins.

If G is candled, let Y1,..., Yy, Z1, ..., Z; be as in the definition of “candled”; then any two vertices
in Z; are nonadjacent twins, and so each Z; has cardinality one. But then the vertices in each Y; are
simplicial, a contradiction. If G is candled, again let Y7,...,Y}, Z1,...,Z; be as in the definition;
then any two vertices in Y; are nonadjacent twins in G, so each Y; has cardinality one; but then the
vertices in each Z; are simplicial in G, a contradiction.

If G is the line graph of a triangle-free graph H, then x(G) is the edge-chromatic number x'(H)
of H, and w(G) is the maximum degree 6(H) of H. By Vizing’s theorem, x'(H) < A(H) + 1, so
X(G) € w(G) +1 < 2w(G) (because we can assume that w(G) > 0). Finally, if G is the line graph of
a triangle-free graph H, then x(G) is the size 7(H) of the smallest set of vertices of H that meets
every edge of H, and w(G) is the size pu(H) of the largest matching in H. But 7(H) < 2u(H), and
so again x(G) < 2w(G). This proves 5.1. |
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