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Abstract: In recent years, a bioinformatics method for interpreting GWAS data using metabolic 14 
pathway analysis has been developed and successfully used to find significant pathways and 15 
mechanisms explaining phenotypic traits of interest in plants. However, the many scripts 16 
implementing this method were not straightforward to use, had to be customized for each project, 17 
required user supervision, and took more than 24 hours to process data. PAST (Pathway 18 
Association Study Tool), a new implementation of this method, has been developed to address 19 
these concerns. PAST is implemented as a package for the R language. Two user-interfaces are 20 
provided; PAST can be run by loading the package in R and calling its methods, or by using an R 21 
Shiny guided user interface. In testing, PAST completed analyses in approximately half an hour to 22 
one hour by processing data in parallel and produced the same results as the previously developed 23 
method. PAST has many user-specified options for maximum customization. Thus, to promote a 24 
powerful new pathway analysis methodology that interprets GWAS data to find biological 25 
mechanisms associated with traits of interest, we developed a more accessible, efficient, and 26 
user-friendly tool. These attributes make PAST accessible to researchers interested in associating 27 
metabolic pathways with GWAS datasets to better understand the genetic architecture and 28 
mechanisms affecting phenotype. 29 

Keywords: Metabolic pathway analysis, Genome-wide association study (GWAS), maize (Zea mays 30 
L.) 31 

1. Introduction 32 

Genome-wide association study (GWAS) of complex traits in maize and other crops has become 33 
very popular to identify regions of the genome that influence these traits [1, 2, 3]. In general, 34 
hundreds of thousands of single nucleotide polymorphisms (SNPs) markers are each tested using F 35 
statistics for association with the trait, which assigns a p-value for the SNP-trait association. 36 
Individual marker-trait associations that meet the threshold set for the false discovery rate (FDR, the 37 
proportion of false positives among all significant results for some level α) are then studied in more 38 
detail to uncover hints as to the genetic architecture of the trait, and how best to improve it in the 39 
future. Many true associations may be missed in GWAS, however, because the threshold for FDR 40 
could be as low as α divided by the total number of SNPs being tested. In complex, polygenic traits, 41 
the effects of genes that exert only small effects on a trait may not meet the FDR threshold, especially 42 
if the effect value of the association is influenced by the environment. Additionally, alleles of many 43 
genes may be expressed only in specific genetic backgrounds and will only be useful when found in 44 
combination with the positive alleles of other genes in the same pathway [3]. These allelic 45 
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combinations may not exist in the limited number of individuals in the GWAS panel. Thus, the 46 
statistical power of GWAS for detecting genes of small effect is limited by the strict levels set for FDR 47 
and by insufficient numbers of high-frequency polymorphisms found in most panels.  48 

Metabolic pathway analysis focuses on the combined effects of many genes that are grouped 49 
according to their shared biological function [4, 5, 6]. This is a promising approach that can 50 
complement GWAS to give clues to the genetic basis of a trait. Originally developed to study 51 
differences in gene expression data in human disease studies [7], pathway analysis and association 52 
mapping have been used in medical research to find biological insights missed when focusing on 53 
only one or a few genes that have highly significant associations with a trait of interest [8, 9, 5, 10]. 54 
Pathway analysis has only just begun to be used as well in plant and animal studies [11, 12]. In 55 
addition, biologically relevant pathways can be used to guide interpretation of large data sets 56 
produced by other high-throughput approaches like RNA sequencing, proteomics, and 57 
metabolomics.  58 

More recently, GWAS-based metabolic pathway analysis has been used as a discovery tool to 59 
investigate the genetic basis of complex traits in plants. A pathway-based approach was used to 60 
study aflatoxin accumulation [13], corn ear worm resistance [14] and oil biosynthesis [15] in maize. 61 
Combining GWAS analysis with metabolic pathway analysis considers all genetic sequences 62 
positively associated with the trait of interest, regardless of magnitude, and jointly may highlight 63 
which sequences lead to mechanisms for crop improvement and which warrant further study and 64 
manipulation, for example, by gene editing. While combined GWAS and pathway analyses were 65 
highly successful in uncovering associated pathways, the analyses were slow and cumbersome, as 66 
the analysis tools were written in a combination of R, Perl, and Bash, and the output of each analysis 67 
was manually input into the next analysis. A single, unified and user-friendly tool to accomplish this 68 
pathway analysis was lacking. 69 

The Pathway Association Study Tool (PAST) was developed to facilitate easier and more 70 
efficient GWAS-based metabolic pathway analysis. PAST was designed for use with maize but is 71 
usable for other species as well. It tracks all SNP marker - trait associations, regardless of significance 72 
or magnitude. PAST groups SNPs into linkage blocks based on linkage disequilibrium (LD) data and 73 
identifies a tagSNP from each block. PAST then identifies genes within a user-defined distance of the 74 
tagSNPs and transfers the attributes of the tagSNP to the gene(s), including the allele effect, R2 and 75 
p-value of the original SNP-trait association found from the GWAS analysis. Finally, PAST uses the 76 
gene effect values to calculate an enrichment score (ES) and p-value for each pathway. PAST is easy 77 
to use as an online tool, standalone R script, or as a downloadable R Shiny application. It uses as 78 
input TASSEL [16] files that are generated as output from the General Linear or Mixed Linear 79 
Models (GLM and MLM), or files from any association analysis that has been similarly formatted, as 80 
well as genome annotations in GFF format, and a metabolic pathways file. 81 

2. Results 82 

PAST is implemented as an R package and is available through Bioconductor 3.10 83 
(https://doi.org/doi:10.18129/B9.bioc.PAST), Github (https://github.com/IGBB/PAST), and through 84 
MaizeGDB. PAST is based on a method developed by our research group [6]. The original method 85 
was subsequently used in two other maize studies [14, 15], but required users to customize Perl and 86 
R scripts and run BASH scripts. PAST’s implementation is completely in R and requires a user to 87 
install the package without needing to edit the source code. Two graphical user interfaces are 88 
available in the form of R Shiny applications. A generic version is available on Github and upcoming 89 
on CyVerse, while a maize-specific version is planned for MaizeGDB [17] (explained below). 90 

PAST was tested using data from three previous corn GWAS on kernel color (261,147 SNPs), 91 
aflatoxin resistance (261,184 SNPs), and linoleic oil production (558,529 SNPs). All three tests were 92 
run on a desktop computer with 32GB of memory, a 4GHz Intel Core i7 with four processors, and 93 
solid-state storage. All four processors were used when testing PAST. The kernel color test 94 
completed in ~34 minutes; the aflatoxin test completed in ~34 minutes; and the linoleic oil test took 95 
~50 minutes. Using the previous method, these analyses took 24 hours or more, depending on how 96 
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attentive the user was when starting the next step in the process. The results of the analyses of all 97 
three traits were comparable when generated with PAST or with the previous method. 98 

Two versions of an R Shiny application that use PAST have been developed. These R Shiny 99 
applications provides a guided user interface that sets analysis parameters in PAST; they can also 100 
upload a saved set of results to explore again. The version available on Github and planned for 101 
CyVerse allows a user to run a new analysis by selecting their data, annotations, and pathways 102 
depending on the species being studied. The version that is available on MaizeGDB [17] allows a 103 
user to upload their data and select specific versions of the maize annotation and pathways 104 
databases available on MaizeGDB. A screenshot of the generic R Shiny application is provided in 105 
Figure 1. 106 

 107 

Figure 1: A screenshot of the R Shiny application running PAST. 108 

3. Discussion 109 

PAST is run by calling its functions with GWAS data from within an R script or by using an 110 
included R Shiny interface. PAST will allow a new interpretation of GWAS results, which should 111 
identify associated pathways either when one or a few genes are highly associated with the trait 112 
(these would have been identified by the GWAS analysis directly); or when many genes in the 113 
pathway are moderately associated with the trait (these would not necessarily have been identified 114 
by the GWAS analysis). Such an interpretation will add both additional results, and biological 115 
meaning to the association data, as was seen with oil biosynthesis in studies by Li et al. [19, 15]. 116 
While PAST may be useful in bringing biologically useful insights to a GWAS analysis, it will not be 117 
able to find order from a chaotic dataset if environmental variation, experimental error, or improper 118 
analysis models were used in the association analysis. For strong data sets, however, it may find 119 
pathways where GWAS found few or no significant associations which, taken in isolation, shed no 120 
real light on the genetic mechanisms underlying the traits under study. PAST may be able to 121 
overcome this limitation and may in addition be able to identify epistatic interactions between genes 122 
in the same pathway [20], a notoriously difficult thing to do in a GWAS analyses of limited sample 123 
size (i.e., a panel of only hundreds of individuals, rather than thousands). 124 

The use of metabolic pathway analysis to derive functional meaning from GWAS results has 125 
been used extensively in human disease studies, and methodologies and tools similar to PAST have 126 
been published for use with annotated human pathways. Some methodologies reviewed by Kwak 127 
and Pan [21] include GATES-Simes, HYST, and MAGMA. Two tools for human GWAS pathway 128 
studies have been published: GSA-SNP2 [10] and Pascal (a Pathway scoring algorithm) [22]. 129 
However, most of these tools would need to be extensively modified to work with any set of 130 
user-supplied pathways outside human studies. In order to compare PAST to two other tools that 131 
could be used with user-supplied pathways and genes, MAGMA and INRICH were tested with 132 
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kernel color data. The trans-lycopene biosynthesis pathway is the most important pathway in this 133 
trait because it creates carotenoids, intensely yellow and orange pigments in maize grain. MAGMA, 134 
which has a bias towards human analysis, did not report the trans-lycopene biosynthesis pathway as 135 
significant when testing the kernel color data. INRICH [23] does not show the bias towards human 136 
analysis that MAGMA does, but due to extreme difficulties getting the data formatted, INRICH 137 
could not be tested at all with the grain color example. PAST detects the trans-lycopene biosynthesis 138 
pathway correctly. Similarly, the linoleic acid results obtained using MAGMA were not as accurate 139 
as PAST, as compared to the previously published results [15]. In addition, a unique function of 140 
PAST will test the pathways associated with an increase in the phenotypic expression of a trait 141 
separately from the pathways associated with a decrease in the trait; this cannot be done with other 142 
tools tested. 143 

MAGMA and INRICH lack a GUI and require the use of command-line tools. In comparison, 144 
running PAST does not require familiarity with command-line tools. For users with some familiarity 145 
with the R language, PAST can be run via an R script. For users unable to run R scripts, PAST is 146 
available as an R Shiny application that allows them to select their input files and parameters via a 147 
guided user interface, something that the tested alternatives lacked entirely.  148 

An analysis with PAST should be illuminating for any plant species, and while it is expected to 149 
work better with outcrossing species due to faster linkage disequilibrium breakdown, it has been 150 
run successfully with potato and wheat (data not shown). Because inbreeding and polyploid species 151 
have very long LD blocks which may contain multiple, equally linked genes, or homology to more 152 
than one genome, the assignment of SNPs to genes may be more complicated. Additional tests will 153 
be run to see if these problems negate the use of this tool. PAST will also work with any animal and 154 
human datasets. The only requirement for a successful PAST analysis is that annotated 155 
pathway/genome databases (or related model organism databases) and GFF annotations must be 156 
available. 157 

In conclusion, we present PAST, a tool designed to use GWAS data to perform metabolic 158 
pathway analysis. PAST is faster and more user-friendly than previous methods, requires minimal 159 
or no knowledge of programming languages, and is publicly available at Github and Bioconductor, 160 
and soon on CyVerse and MaizeGDB. 161 

4. Materials and Methods  162 

PAST processes data through four main steps. First, GWAS output data is loaded into PAST. 163 
This data comes in the form of statistics that reflect the effects of specific loci (e.g., SNPs) with a 164 
trait(s) of interest and LD data between loci. Second, the SNPs are associated with genes based on 165 
LD and genomic distance between SNPs and genes. Once SNPs are assigned to genes, the allelic 166 
effects and p-values of the SNPs are then transferred to the genes. The genes and their effects are 167 
used to find significant pathways and calculate a running enrichment score, which is plotted in a 168 
rugplot for each pathway in the fourth step. A flowchart in Figure 2 shows the process. 169 
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Figure 2: The process through which PAST processes GWAS output data to identify metabolic pathways 171 

significantly associated with a trait of interest. 172 

4.1 Loading Data 173 

During the process of loading data, the GWAS dataset is filtered to account for any non-biallelic 174 
data. Any data with more or fewer than two alleles associated with that marker is discarded. Data 175 
without an R2 value (coefficient of determination of the SNP/trait association) is removed as well, 176 
since later calculations rely on the R2 value. The effects data (the magnitude of the effect of each SNP 177 
allele on the phenotype or trait) is associated with the statistics data in order to collect all data about 178 
a marker into a single dataframe. 179 

The LD data is filtered to drop rows where the loci are not the same, and then unneeded 180 
columns from the TASSEL output are dropped. Only data about the locus, the positions, the sites, 181 
the distance between the sites, and the r2 value (coefficient of determination for LD) is retained. The 182 
remaining data is split into groups based on the locus.  183 
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4.2 Assigning Genes 184 

Genes are assigned the attributes of linked SNPs according to the method described in Tang et 185 
al [6]. SNPs are parsed into linked groups by identifying all pairs of SNPs with LD data that exceed a 186 
set cutoff r2 for linkage. SNP blocks occur when multiple SNPs are linked to one SNP in common. 187 
SNPs that are only linked to one other SNP are considered singly linked SNPs, and SNPs not linked 188 
to any other SNPs are unlinked. In all cases, PAST follows an algorithm to identify one tagSNP to 189 
represent all linked SNPs in order to reduce the dimensionality of the dataset and identify which 190 
allele effect, p and R2 to transfer to the physically linked gene(s). Unlinked SNPs are by default 191 
identified as the tagSNP. For SNPs that are linked to a single other SNP, if both have the same effect 192 
sign (positive or negative), PAST identifies the one associated with the largest effect (absolute value) 193 
as the tagSNP. If the effects are equal, the second (more downstream) SNP is used. If, however, the 194 
effect signs are different, the SNP with the lowest p-value is used. If the p-values are the same and 195 
the signs are different, the SNP is labeled as problematic, since no assignment can be made, and no 196 
tagSNP is identified; these are dropped from the analysis. (To date, these have fortunately been 197 
found to be very rare.) 198 

The tagSNP within blocks of SNPs is identified by first counting the number of positive and 199 
negative effects in each linkage block. If the number of positive effects is greater, then the SNP with 200 
largest positive effect is chosen. If the number of negative effects is greater, then the SNP with the 201 
largest negative effect is noted. Ties between the number of negative and positive effects are broken 202 
by checking the sign of the SNP in common defining the block. The tagSNP is then the one with the 203 
largest effect and the same sign, and it is marked to indicate the number of SNPs in the block. Once 204 
all blocks have been reduced to a single tagSNP, the tagSNP is used to locate the nearby gene(s). 205 

Once tagSNPs have been identified, the annotation files are checked to look for genes within a 206 
physical distance window provided by the user. The effect and the p-value of the tagSNP is 207 
transferred to the gene. The SNP-gene assignments are grouped by gene name, and if more than one 208 
SNP block or unlinked SNP was found to be linked to the same gene, each gene is tagged by 209 
counting the number of negative effect and the number of positive effect associations in the blocks 210 
linked to the same gene. If there are more negative effects, the most negative effect and p-value is 211 
assigned to the gene. If there are more positive effects, the positive effect and p-value is assigned to 212 
the gene. If there are more than one equally positive or equally negative effects, the effect with the 213 
lowest p-value is chosen and assigned to the gene. If there are an equal number of negative and 214 
positive effects, the effect with the greatest absolute value is selected. The number of linked SNPs is 215 
set to the total number of SNPs (SNPs within blocks plus blocks within genes) linked to that gene. 216 
Once all the blocks of genes have been processed, the effects of each gene are used to find significant 217 
pathways. 218 

4.3 Finding Significant Metabolic Pathways 219 

Significant pathways are found by using a previously described method [4, 6, 7]. User-input 220 
determines the minimum number of genes that a pathway must contain to be retained for processing 221 
(to avoid small sample size bias), the number of times the effects data are randomly sampled with 222 
replacement to generate a null distribution of ES, and the pathways database that is being used. 223 

For each gene effects column (observed and randomly sampled), the effects are sorted and 224 
ranked from best to worst; whether this is in increasing or decreasing order depends on the trait 225 
under study and whether the researcher is interested in pathways associated with an increase in the 226 
trait (i.e., yield) or a decrease in the trait (i.e., disease progression). The ES running sum statistic for 227 
each pathway increases for genes in the pathway and decreases for genes that are not. The amount of 228 
increase for genes in the pathway corresponds to the effect for that gene and is weighted by the 229 
absolute value of the effect. The pathway ES is the largest positive value calculated for the running 230 
sum statistic. 231 

Pathway significance is determined by comparing the observed ES with the ES for the null 232 
distribution. The mean and standard deviation for the null distribution are used to normalize the 233 
observed ES so that z scores can be obtained. P-values are computed from the z scores using the 234 
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(1-pnorm) function. Since multiple hypothesis testing is still a concern, an FDR-adjusted p-value 235 
(known as q-value) is calculated using the qvalue package in R [18].  236 

4.4 Plotting 237 

Based on user input, the pathways can be filtered for significance (either p-value or q-value), or 238 
the top n (or all) pathways can be selected. Rugplots for each pathway in the set of significant 239 
pathways are plotted as the last step. The x-axis shows the rank of each gene effect value; the y-axis 240 
shows the value of the ES running sum statistic as each consecutive gene effect value is processed. 241 
An x-intercept line indicates the highest point of the ES. Small hatch marks at the top of the image 242 
indicate the rank position of the effect of all genes in the pathway; every gene in the annotated gene 243 
file is ranked from highest to lowest value, but only the genes in the pathway being plotted are 244 
highlighted with a hatch mark. An example rugplot is provided in Figure 3. 245 

 246 

Figure 3: Example of the rugplot graphic generated by PAST for one significantly associated metabolic 247 

pathway. The x-axis shows the rank of each gene effect value; the y-axis shows the value of the 248 

enrichment score (ES) running sum statistic as each consecutive gene effect value is processed. The 249 

x-intercept line indicates the highest point of the ES. Small hatch marks at the top of the image indicate 250 

the rank position of the effect of all genes in the pathway. 251 
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