

1 Article

2

PAST: The Pathway Association Studies Tool to infer 3 biological meaning from GWAS datasets

4 Adam Thrash ^{1,*}, Juliet D. Tang ², Mason DeOrnellis, Daniel G. Peterson, and Marilyn L.
5 Warburton ^{2,*}6 ¹ Institute for Genomics, Biocomputing & Biotechnology, Mississippi State University, Mississippi State, MS,
7 USA; thrash@igbb.msstate.edu8 ² USDA-FS Forest Products Laboratory, Starkville, MS, USA9 ³ Humanities and Fine Arts Division, East Mississippi Community College, Mayhew, MS, USA10 ⁴ Department of Computer Science and Engineering, Mississippi State University, Mississippi State, MS, USA11 ⁵ USDA-ARS Corn Host Plant Resistance Research Unit, Mississippi State, MS, USA12 * Correspondence: marilyn.warburton@usda.gov (MLW); thrash@igbb.msstate.edu (AT)

13 Received: date; Accepted: date; Published: date

14 **Abstract:** In recent years, a bioinformatics method for interpreting GWAS data using metabolic
15 pathway analysis has been developed and successfully used to find significant pathways and
16 mechanisms explaining phenotypic traits of interest in plants. However, the many scripts
17 implementing this method were not straightforward to use, had to be customized for each project,
18 required user supervision, and took more than 24 hours to process data. PAST (Pathway
19 Association Study Tool), a new implementation of this method, has been developed to address
20 these concerns. PAST is implemented as a package for the R language. Two user-interfaces are
21 provided; PAST can be run by loading the package in R and calling its methods, or by using an R
22 Shiny guided user interface. In testing, PAST completed analyses in approximately half an hour to
23 one hour by processing data in parallel and produced the same results as the previously developed
24 method. PAST has many user-specified options for maximum customization. Thus, to promote a
25 powerful new pathway analysis methodology that interprets GWAS data to find biological
26 mechanisms associated with traits of interest, we developed a more accessible, efficient, and
27 user-friendly tool. These attributes make PAST accessible to researchers interested in associating
28 metabolic pathways with GWAS datasets to better understand the genetic architecture and
29 mechanisms affecting phenotype.30 **Keywords:** Metabolic pathway analysis, Genome-wide association study (GWAS), maize (*Zea mays*
31 L.)32

1. Introduction

33 Genome-wide association study (GWAS) of complex traits in maize and other crops has become
34 very popular to identify regions of the genome that influence these traits [1, 2, 3]. In general,
35 hundreds of thousands of single nucleotide polymorphisms (SNPs) markers are each tested using F
36 statistics for association with the trait, which assigns a p-value for the SNP-trait association.
37 Individual marker-trait associations that meet the threshold set for the false discovery rate (FDR, the
38 proportion of false positives among all significant results for some level α) are then studied in more
39 detail to uncover hints as to the genetic architecture of the trait, and how best to improve it in the
40 future. Many true associations may be missed in GWAS, however, because the threshold for FDR
41 could be as low as α divided by the total number of SNPs being tested. In complex, polygenic traits,
42 the effects of genes that exert only small effects on a trait may not meet the FDR threshold, especially
43 if the effect value of the association is influenced by the environment. Additionally, alleles of many
44 genes may be expressed only in specific genetic backgrounds and will only be useful when found in
45 combination with the positive alleles of other genes in the same pathway [3]. These allelic

46 combinations may not exist in the limited number of individuals in the GWAS panel. Thus, the
47 statistical power of GWAS for detecting genes of small effect is limited by the strict levels set for FDR
48 and by insufficient numbers of high-frequency polymorphisms found in most panels.

49 Metabolic pathway analysis focuses on the combined effects of many genes that are grouped
50 according to their shared biological function [4, 5, 6]. This is a promising approach that can
51 complement GWAS to give clues to the genetic basis of a trait. Originally developed to study
52 differences in gene expression data in human disease studies [7], pathway analysis and association
53 mapping have been used in medical research to find biological insights missed when focusing on
54 only one or a few genes that have highly significant associations with a trait of interest [8, 9, 5, 10].
55 Pathway analysis has only just begun to be used as well in plant and animal studies [11, 12]. In
56 addition, biologically relevant pathways can be used to guide interpretation of large data sets
57 produced by other high-throughput approaches like RNA sequencing, proteomics, and
58 metabolomics.

59 More recently, GWAS-based metabolic pathway analysis has been used as a discovery tool to
60 investigate the genetic basis of complex traits in plants. A pathway-based approach was used to
61 study aflatoxin accumulation [13], corn ear worm resistance [14] and oil biosynthesis [15] in maize.
62 Combining GWAS analysis with metabolic pathway analysis considers all genetic sequences
63 positively associated with the trait of interest, regardless of magnitude, and jointly may highlight
64 which sequences lead to mechanisms for crop improvement and which warrant further study and
65 manipulation, for example, by gene editing. While combined GWAS and pathway analyses were
66 highly successful in uncovering associated pathways, the analyses were slow and cumbersome, as
67 the analysis tools were written in a combination of R, Perl, and Bash, and the output of each analysis
68 was manually input into the next analysis. A single, unified and user-friendly tool to accomplish this
69 pathway analysis was lacking.

70 The Pathway Association Study Tool (PAST) was developed to facilitate easier and more
71 efficient GWAS-based metabolic pathway analysis. PAST was designed for use with maize but is
72 usable for other species as well. It tracks all SNP marker - trait associations, regardless of significance
73 or magnitude. PAST groups SNPs into linkage blocks based on linkage disequilibrium (LD) data and
74 identifies a tagSNP from each block. PAST then identifies genes within a user-defined distance of the
75 tagSNPs and transfers the attributes of the tagSNP to the gene(s), including the allele effect, R^2 and
76 p-value of the original SNP-trait association found from the GWAS analysis. Finally, PAST uses the
77 gene effect values to calculate an enrichment score (ES) and p-value for each pathway. PAST is easy
78 to use as an online tool, standalone R script, or as a downloadable R Shiny application. It uses as
79 input TASSEL [16] files that are generated as output from the General Linear or Mixed Linear
80 Models (GLM and MLM), or files from any association analysis that has been similarly formatted, as
81 well as genome annotations in GFF format, and a metabolic pathways file.

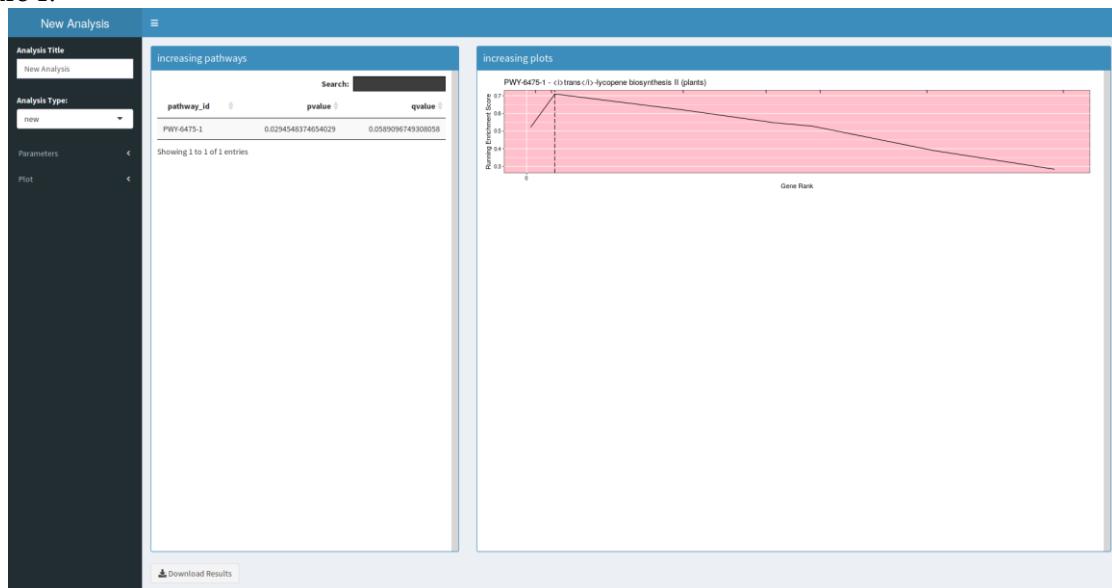
82 2. Results

83 PAST is implemented as an R package and is available through Bioconductor 3.10
84 (<https://doi.org/doi:10.18129/B9.bioc.PAST>), Github (<https://github.com/IGBB/PAST>), and through
85 MaizeGDB. PAST is based on a method developed by our research group [6]. The original method
86 was subsequently used in two other maize studies [14, 15], but required users to customize Perl and
87 R scripts and run BASH scripts. PAST's implementation is completely in R and requires a user to
88 install the package without needing to edit the source code. Two graphical user interfaces are
89 available in the form of R Shiny applications. A generic version is available on Github and upcoming
90 on CyVerse, while a maize-specific version is planned for MaizeGDB [17] (explained below).

91 PAST was tested using data from three previous corn GWAS on kernel color (261,147 SNPs),
92 aflatoxin resistance (261,184 SNPs), and linoleic oil production (558,529 SNPs). All three tests were
93 run on a desktop computer with 32GB of memory, a 4GHz Intel Core i7 with four processors, and
94 solid-state storage. All four processors were used when testing PAST. The kernel color test
95 completed in ~34 minutes; the aflatoxin test completed in ~34 minutes; and the linoleic oil test took
96 ~50 minutes. Using the previous method, these analyses took 24 hours or more, depending on how

97 attentive the user was when starting the next step in the process. The results of the analyses of all
 98 three traits were comparable when generated with PAST or with the previous method.

99 Two versions of an R Shiny application that use PAST have been developed. These R Shiny
 100 applications provides a guided user interface that sets analysis parameters in PAST; they can also
 101 upload a saved set of results to explore again. The version available on Github and planned for
 102 CyVerse allows a user to run a new analysis by selecting their data, annotations, and pathways
 103 depending on the species being studied. The version that is available on MaizeGDB [17] allows a
 104 user to upload their data and select specific versions of the maize annotation and pathways
 105 databases available on MaizeGDB. A screenshot of the generic R Shiny application is provided in
 106 Figure 1.



107
 108 **Figure 1: A screenshot of the R Shiny application running PAST.**

109 **3. Discussion**

110 PAST is run by calling its functions with GWAS data from within an R script or by using an
 111 included R Shiny interface. PAST will allow a new interpretation of GWAS results, which should
 112 identify associated pathways either when one or a few genes are highly associated with the trait
 113 (these would have been identified by the GWAS analysis directly); or when many genes in the
 114 pathway are moderately associated with the trait (these would not necessarily have been identified
 115 by the GWAS analysis). Such an interpretation will add both additional results, and biological
 116 meaning to the association data, as was seen with oil biosynthesis in studies by Li et al. [19, 15].
 117 While PAST may be useful in bringing biologically useful insights to a GWAS analysis, it will not be
 118 able to find order from a chaotic dataset if environmental variation, experimental error, or improper
 119 analysis models were used in the association analysis. For strong data sets, however, it may find
 120 pathways where GWAS found few or no significant associations which, taken in isolation, shed no
 121 real light on the genetic mechanisms underlying the traits under study. PAST may be able to
 122 overcome this limitation and may in addition be able to identify epistatic interactions between genes
 123 in the same pathway [20], a notoriously difficult thing to do in a GWAS analyses of limited sample
 124 size (i.e., a panel of only hundreds of individuals, rather than thousands).

125 The use of metabolic pathway analysis to derive functional meaning from GWAS results has
 126 been used extensively in human disease studies, and methodologies and tools similar to PAST have
 127 been published for use with annotated human pathways. Some methodologies reviewed by Kwak
 128 and Pan [21] include GATES-Simes, HYST, and MAGMA. Two tools for human GWAS pathway
 129 studies have been published: GSA-SNP2 [10] and Pascal (a Pathway scoring algorithm) [22].
 130 However, most of these tools would need to be extensively modified to work with any set of
 131 user-supplied pathways outside human studies. In order to compare PAST to two other tools that
 132 could be used with user-supplied pathways and genes, MAGMA and INRICH were tested with

133 kernel color data. The trans-lycopene biosynthesis pathway is the most important pathway in this
134 trait because it creates carotenoids, intensely yellow and orange pigments in maize grain. MAGMA,
135 which has a bias towards human analysis, did not report the trans-lycopene biosynthesis pathway as
136 significant when testing the kernel color data. INRICH [23] does not show the bias towards human
137 analysis that MAGMA does, but due to extreme difficulties getting the data formatted, INRICH
138 could not be tested at all with the grain color example. PAST detects the trans-lycopene biosynthesis
139 pathway correctly. Similarly, the linoleic acid results obtained using MAGMA were not as accurate
140 as PAST, as compared to the previously published results [15]. In addition, a unique function of
141 PAST will test the pathways associated with an increase in the phenotypic expression of a trait
142 separately from the pathways associated with a decrease in the trait; this cannot be done with other
143 tools tested.

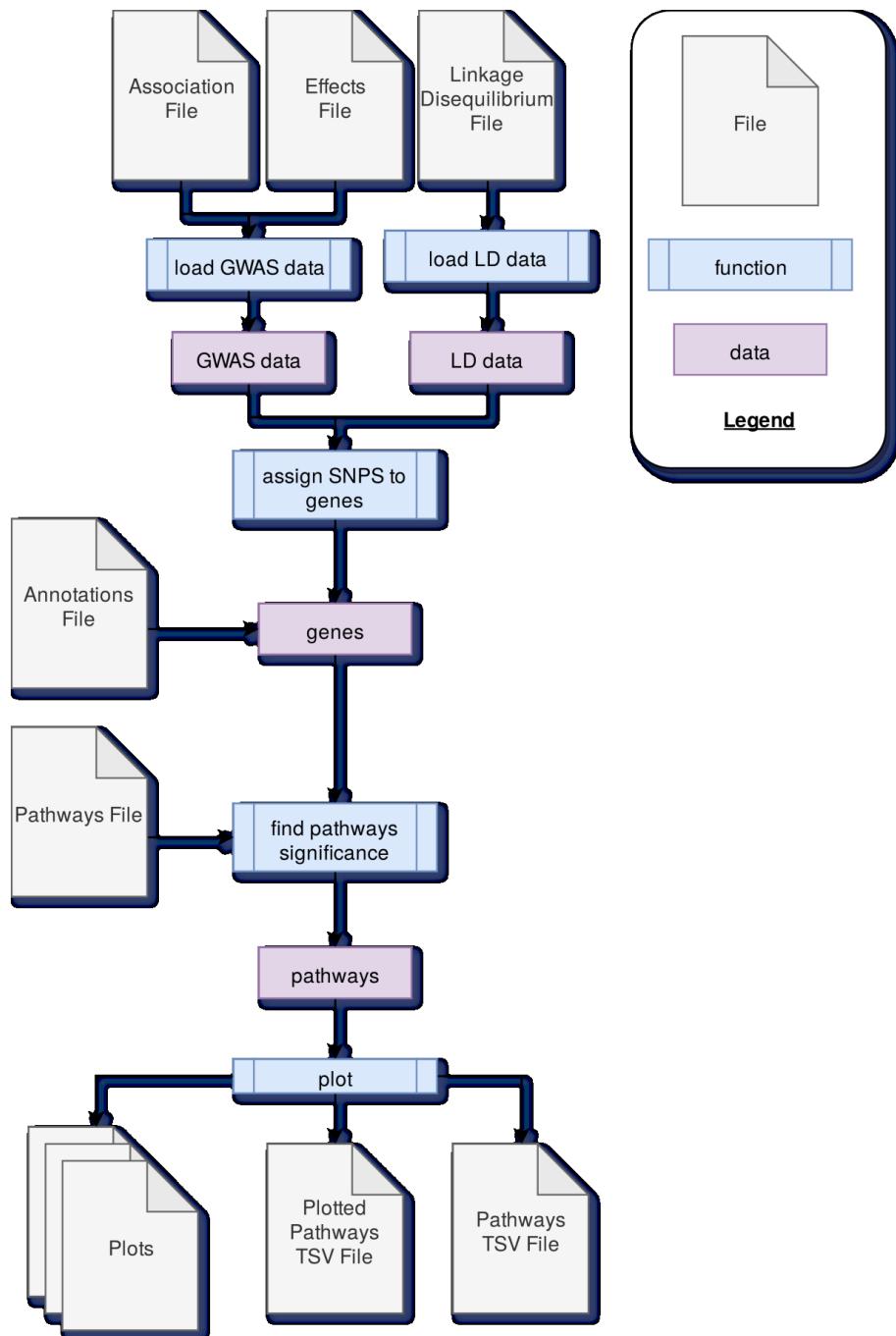
144 MAGMA and INRICH lack a GUI and require the use of command-line tools. In comparison,
145 running PAST does not require familiarity with command-line tools. For users with some familiarity
146 with the R language, PAST can be run via an R script. For users unable to run R scripts, PAST is
147 available as an R Shiny application that allows them to select their input files and parameters via a
148 guided user interface, something that the tested alternatives lacked entirely.

149 An analysis with PAST should be illuminating for any plant species, and while it is expected to
150 work better with outcrossing species due to faster linkage disequilibrium breakdown, it has been
151 run successfully with potato and wheat (data not shown). Because inbreeding and polyploid species
152 have very long LD blocks which may contain multiple, equally linked genes, or homology to more
153 than one genome, the assignment of SNPs to genes may be more complicated. Additional tests will
154 be run to see if these problems negate the use of this tool. PAST will also work with any animal and
155 human datasets. The only requirement for a successful PAST analysis is that annotated
156 pathway/genome databases (or related model organism databases) and GFF annotations must be
157 available.

158 In conclusion, we present PAST, a tool designed to use GWAS data to perform metabolic
159 pathway analysis. PAST is faster and more user-friendly than previous methods, requires minimal
160 or no knowledge of programming languages, and is publicly available at Github and Bioconductor,
161 and soon on CyVerse and MaizeGDB.

162 4. Materials and Methods

163 PAST processes data through four main steps. First, GWAS output data is loaded into PAST.
164 This data comes in the form of statistics that reflect the effects of specific loci (e.g., SNPs) with a
165 trait(s) of interest and LD data between loci. Second, the SNPs are associated with genes based on
166 LD and genomic distance between SNPs and genes. Once SNPs are assigned to genes, the allelic
167 effects and p-values of the SNPs are then transferred to the genes. The genes and their effects are
168 used to find significant pathways and calculate a running enrichment score, which is plotted in a
169 rugplot for each pathway in the fourth step. A flowchart in Figure 2 shows the process.



170

171 **Figure 2: The process through which PAST processes GWAS output data to identify metabolic pathways**
 172 **significantly associated with a trait of interest.**

173 *4.1 Loading Data*

174 During the process of loading data, the GWAS dataset is filtered to account for any non-biallelic
 175 data. Any data with more or fewer than two alleles associated with that marker is discarded. Data
 176 without an R^2 value (coefficient of determination of the SNP/trait association) is removed as well,
 177 since later calculations rely on the R^2 value. The effects data (the magnitude of the effect of each SNP
 178 allele on the phenotype or trait) is associated with the statistics data in order to collect all data about
 179 a marker into a single dataframe.

180 The LD data is filtered to drop rows where the loci are not the same, and then unneeded
 181 columns from the TASSEL output are dropped. Only data about the locus, the positions, the sites,
 182 the distance between the sites, and the r^2 value (coefficient of determination for LD) is retained. The
 183 remaining data is split into groups based on the locus.

184 **4.2 Assigning Genes**

185 Genes are assigned the attributes of linked SNPs according to the method described in Tang et
186 al [6]. SNPs are parsed into linked groups by identifying all pairs of SNPs with LD data that exceed a
187 set cutoff r^2 for linkage. SNP blocks occur when multiple SNPs are linked to one SNP in common.
188 SNPs that are only linked to one other SNP are considered singly linked SNPs, and SNPs not linked
189 to any other SNPs are unlinked. In all cases, PAST follows an algorithm to identify one tagSNP to
190 represent all linked SNPs in order to reduce the dimensionality of the dataset and identify which
191 allele effect, p and R^2 to transfer to the physically linked gene(s). Unlinked SNPs are by default
192 identified as the tagSNP. For SNPs that are linked to a single other SNP, if both have the same effect
193 sign (positive or negative), PAST identifies the one associated with the largest effect (absolute value)
194 as the tagSNP. If the effects are equal, the second (more downstream) SNP is used. If, however, the
195 effect signs are different, the SNP with the lowest p -value is used. If the p -values are the same and
196 the signs are different, the SNP is labeled as problematic, since no assignment can be made, and no
197 tagSNP is identified; these are dropped from the analysis. (To date, these have fortunately been
198 found to be very rare.)

199 The tagSNP within blocks of SNPs is identified by first counting the number of positive and
200 negative effects in each linkage block. If the number of positive effects is greater, then the SNP with
201 largest positive effect is chosen. If the number of negative effects is greater, then the SNP with the
202 largest negative effect is noted. Ties between the number of negative and positive effects are broken
203 by checking the sign of the SNP in common defining the block. The tagSNP is then the one with the
204 largest effect and the same sign, and it is marked to indicate the number of SNPs in the block. Once
205 all blocks have been reduced to a single tagSNP, the tagSNP is used to locate the nearby gene(s).

206 Once tagSNPs have been identified, the annotation files are checked to look for genes within a
207 physical distance window provided by the user. The effect and the p -value of the tagSNP is
208 transferred to the gene. The SNP-gene assignments are grouped by gene name, and if more than one
209 SNP block or unlinked SNP was found to be linked to the same gene, each gene is tagged by
210 counting the number of negative effect and the number of positive effect associations in the blocks
211 linked to the same gene. If there are more negative effects, the most negative effect and p -value is
212 assigned to the gene. If there are more positive effects, the positive effect and p -value is assigned to
213 the gene. If there are more than one equally positive or equally negative effects, the effect with the
214 lowest p -value is chosen and assigned to the gene. If there are an equal number of negative and
215 positive effects, the effect with the greatest absolute value is selected. The number of linked SNPs is
216 set to the total number of SNPs (SNPs within blocks plus blocks within genes) linked to that gene.
217 Once all the blocks of genes have been processed, the effects of each gene are used to find significant
218 pathways.

219 **4.3 Finding Significant Metabolic Pathways**

220 Significant pathways are found by using a previously described method [4, 6, 7]. User-input
221 determines the minimum number of genes that a pathway must contain to be retained for processing
222 (to avoid small sample size bias), the number of times the effects data are randomly sampled with
223 replacement to generate a null distribution of ES, and the pathways database that is being used.

224 For each gene effects column (observed and randomly sampled), the effects are sorted and
225 ranked from best to worst; whether this is in increasing or decreasing order depends on the trait
226 under study and whether the researcher is interested in pathways associated with an increase in the
227 trait (i.e., yield) or a decrease in the trait (i.e., disease progression). The ES running sum statistic for
228 each pathway increases for genes in the pathway and decreases for genes that are not. The amount of
229 increase for genes in the pathway corresponds to the effect for that gene and is weighted by the
230 absolute value of the effect. The pathway ES is the largest positive value calculated for the running
231 sum statistic.

232 Pathway significance is determined by comparing the observed ES with the ES for the null
233 distribution. The mean and standard deviation for the null distribution are used to normalize the
234 observed ES so that z scores can be obtained. P-values are computed from the z scores using the

235 (1-pnorm) function. Since multiple hypothesis testing is still a concern, an FDR-adjusted p-value
236 (known as q-value) is calculated using the qvalue package in R [18].

237 **4.4 Plotting**

238 Based on user input, the pathways can be filtered for significance (either p-value or q-value), or
239 the top n (or all) pathways can be selected. Rugplots for each pathway in the set of significant
240 pathways are plotted as the last step. The x-axis shows the rank of each gene effect value; the y-axis
241 shows the value of the ES running sum statistic as each consecutive gene effect value is processed.
242 An x-intercept line indicates the highest point of the ES. Small hatch marks at the top of the image
243 indicate the rank position of the effect of all genes in the pathway; every gene in the annotated gene
244 file is ranked from highest to lowest value, but only the genes in the pathway being plotted are
245 highlighted with a hatch mark. An example rugplot is provided in Figure 3.

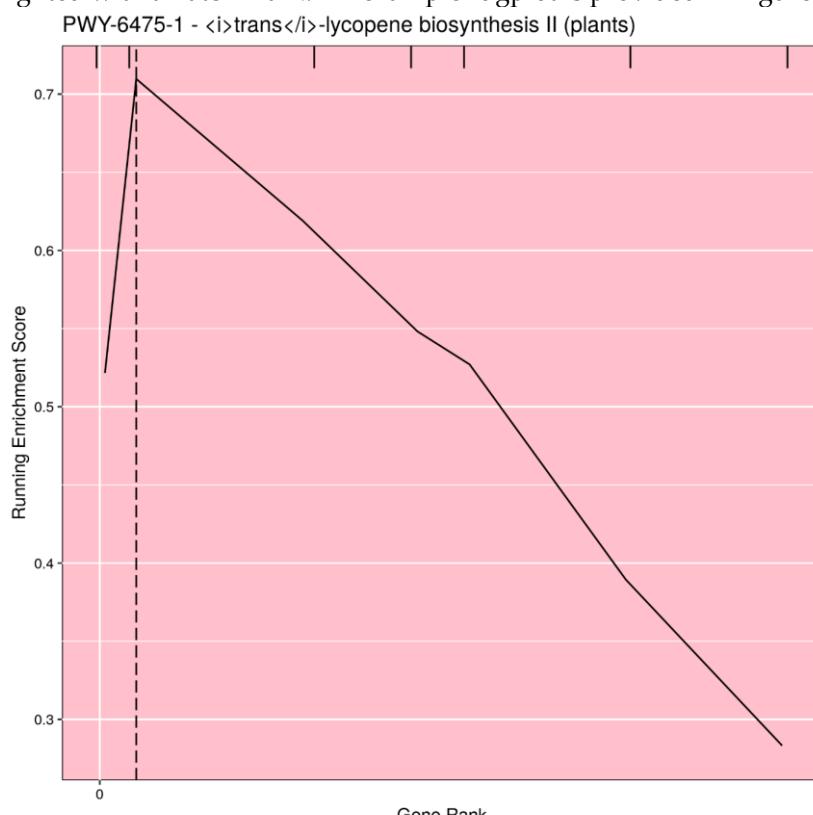


Figure 3: Example of the rugplot graphic generated by PAST for one significantly associated metabolic pathway. The x-axis shows the rank of each gene effect value; the y-axis shows the value of the enrichment score (ES) running sum statistic as each consecutive gene effect value is processed. The x-intercept line indicates the highest point of the ES. Small hatch marks at the top of the image indicate the rank position of the effect of all genes in the pathway.

Author Contributions: Conceptualization, Juliet Tang and Marilyn Warburton; Data curation, Adam Thrash and Juliet Tang; Formal analysis, Juliet Tang and Marilyn Warburton; Funding acquisition, Daniel Peterson and Marilyn Warburton; Investigation, Marilyn Warburton; Methodology, Adam Thrash, Juliet Tang and Marilyn Warburton; Project administration, Marilyn Warburton; Resources, Daniel Peterson and Marilyn Warburton; Software, Adam Thrash and Mason DeOrnellis; Supervision, Adam Thrash and Marilyn Warburton; Validation, Adam Thrash and Marilyn Warburton; Visualization, Adam Thrash; Writing – original draft, Adam Thrash and Marilyn Warburton; Writing – review & editing, Adam Thrash, Juliet Tang, Mason DeOrnellis, Daniel Peterson and Marilyn Warburton.

Funding: This research was funded in part through USDA Agricultural Research Service Agreements 58-6066-6-046 and 58-6066-6-059, USDA National Institute of Food and Agriculture Multi-State Hatch project 17810, and National Science Foundation grant DBI-1659630.

263 **Acknowledgments:** The authors gratefully acknowledge helpful suggestions from Dr. Andy Perkins and Mr.
264 Mark Arick II; and Drs. Peter Bradbury, Brandon Monier, and Mr. Terry Casstevens for their thoughtful
265 manuscript review and suggestions.

266 **Conflicts of Interest:** The authors declare no conflict of interest. The funders had no role in the design of the
267 study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to
268 publish the results.

269 **References**

1. Rafalski, J.A.: Association genetics in crop improvement. *Current Opinion in Plant Biology* **13**(2), 174–180 (2010). doi:10.1016/j.pbi.2009.12.004. Accessed 2019-03-26TZ
2. Yan, J., Warburton, M., Crouch, J.: Association Mapping for Enhancing Maize (L.) Genetic Improvement. *Crop Science* **51**(2), 433 (2011). doi:10.2135/cropsci2010.04.0233. Accessed 2019-03-26TZ
3. Xiao, Y., Liu, H., Wu, L., Warburton, M., Yan, J.: Genome-wide Association Studies in Maize: Praise and Stargaze. *Molecular Plant* **10**(3), 359–374 (2017). doi:10.1016/j.molp.2016.12.008. Accessed 2019-03-26TZ
4. Wang, K., Li, M., Bucan, M.: Pathway-Based Approaches for Analysis of Genomewide Association Studies. *The American Journal of Human Genetics* **81**(6), 1278–1283 (2007). doi:10.1086/522374. Accessed 2019-03-26TZ
5. Weng, L., Macciardi, F., Subramanian, A., Guffanti, G., Potkin, S.G., Yu, Z., Xie, X.: SNP-based pathway enrichment analysis for genome-wide association studies. *BMC Bioinformatics* **12**(1), 99 (2011). doi:10.1186/1471-2105-12-99. Accessed 2019-03-26TZ
6. Tang, J.D., Perkins, A., Williams, W.P., Warburton, M.L.: Using genome-wide associations to identify metabolic pathways involved in maize aflatoxin accumulation resistance. *BMC Genomics* **16**(1) (2015). doi:10.1186/s12864-015-1874-9. Accessed 2019-03-26TZ
7. Subramanian, A., Tamayo, P., Mootha, V.K., Mukherjee, S., Ebert, B.L., Gillette, M.A., Paulovich, A., Pomeroy, S.L., Golub, T.R., Lander, E.S., Mesirov, J.P.: Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles. *Proceedings of the National Academy of Sciences* **102**(43), 15545–15550 (2005). doi:10.1073/pnas.0506580102. Accessed 2019-03-26TZ
8. Carlson, C.S., Eberle, M.A., Kruglyak, L., Nickerson, D.A.: Mapping complex disease loci in whole-genome association studies. *Nature* **429**(6990), 446–452 (2004). doi:10.1038/nature02623. Accessed 2019-03-26TZ
9. Torkamani, A., Topol, E.J., Schork, N.J.: Pathway analysis of seven common diseases assessed by genome-wide association. *Genomics* **92**(5), 265–272 (2008). doi:10.1016/j.ygeno.2008.07.011. Accessed 2019-03-26TZ
10. Yoon, S., Nguyen, H., Yoo, Y.J., Kim, J., Baik, B., Kim, S., Kim, J., Kim, S., Nam, D.: Efficient pathway enrichment and network analysis of GWAS summary data using GSA-SNP2. *Nucleic Acids Research* **46**(10), 60–60 (2018). doi:10.1093/nar/gky175. Accessed 2019-03-26TZ
11. Pegolo, S., Mach, N., Ramayo-Caldas, Y., Schiavon, S., Bittante, G., Cecchinato, A.: Integration of GWAS, pathway and network analyses reveals novel mechanistic insights into the synthesis of milk proteins in dairy cows. *Scientific Reports* **8**(1), 566 (2018). doi:10.1038/s41598-017-18916-4. Accessed 2019-03-26TZ
12. Duarte, D.A.S., Newbold, C.J., Detmann, E., Silva, F.F., Freitas, P.H.F., Veroneze, R., Duarte, M.S.: Genome-wide association studies pathway-based meta-analysis for residual feed intake in beef cattle. *Animal Genetics* **50**(2), 150–153 (2019). doi:10.1111/age.12761. Accessed 2019-03-26TZ
13. Warburton, M.L., Tang, J.D., Windham, G.L., Hawkins, L.K., Murray, S.C., Xu, W., Boykin, D., Perkins, A., Williams, W.P.: Genome-Wide Association Mapping of and Aflatoxin Accumulation Resistance in Maize. *Crop Science* **55**(5), 1857 (2015). doi:10.2135/cropsci2014.06.0424. Accessed 2019-04-05TZ
14. Warburton, M.L., Womack, E.D., Tang, J.D., Thrash, A., Smith, J.S., Xu, W., Murray, S.C., Williams, W.P.: Genome-Wide Association and Metabolic Pathway Analysis of Corn Earworm Resistance in Maize. *The Plant Genome* **11**(1), 0 (2018). doi:10.3835/plantgenome2017.08.0069. Accessed 2019-03-26TZ
15. Li, H., Thrash, A., Tang, J.D., He, L., Yan, J., Warburton, M.L.: Leveraging GWAS data to identify metabolic pathways and networks involved in maize lipid biosynthesis. *The Plant Journal* (2019). doi:10.1111/tpj.14282. Accessed 2019-03-26TZ
16. Bradbury, P.J., Zhang, Z., Kroon, D.E., Casstevens, T.M., Ramdoss, Y., Buckler, E.S.: TASSEL: software for association mapping of complex traits in diverse samples. *Bioinformatics* **23**(19), 2633–2635 (2007). doi:10.1093/bioinformatics/btm308. Accessed 2019-04-11TZ

316 17. Portwood JL, Woodhouse MR, Cannon EK, Gardiner JM, Harper LC, Schaeffer ML, et al. MaizeGDB 2018:
317 the maize multi-genome genetics and genomics database. *Nucleic Acids Research*. 2019;47:D1146–54.

318 18. Li, H., Peng, Z., Yang, X., Wang, W., Fu, J., Wang, J., Han, Y., Chai, Y., Guo, T., Yang, N., Liu, J.,
319 Warburton, M.L., Cheng, Y., Hao, X., Zhang, P., Zhao, J., Liu, Y., Wang, G., Li, J., Yan, J.: Genome-wide
320 association study dissects the genetic architecture of oil biosynthesis in maize kernels. *Nature Genetics*
321 45(1), 43–50 (2013). doi:10.1038/ng.2484. Accessed 2019-03-26TZ

322 19. Liu, Y., Maxwell, S., Feng, T., Zhu, X., Elston, R.C., Koyutürk, M., Chance, M.R.: Gene, pathway and
323 network frameworks to identify epistatic interactions of single nucleotide polymorphisms derived from
324 GWAS data. *BMC Systems Biology* 6(3), 15 (2012). doi:10.1186/1752-0509-6-S3-S15. Accessed 2019-03-26TZ

325 20. Kwak, I.-Y., Pan, W.: Adaptive gene- and pathway-trait association testing with GWAS summary
326 statistics. *Bioinformatics* 32(8), 1178–1184 (2016). doi:10.1093/bioinformatics/btv719. Accessed
327 2019-04-05TZ

328 21. Lamparter, D., Marbach, D., Rueedi, R., Kutalik, Z., Bergmann, S.: Fast and Rigorous Computation of Gene
329 and Pathway Scores from SNP-Based Summary Statistics. *PLOS Computational Biology* 12(1), 1004714
330 (2016). doi:10.1371/journal.pcbi.1004714. Accessed 2019-04-05TZ

331 22. Lee PH, O'Dushlaine C, Thomas B, Purcell SM.: INRICH: interval-based enrichment analysis for
332 genome-wide association studies. *Bioinformatics*. 2012;28:1797–9.

333 23. 18. Storey, J.D., Bass, A.J., Dabney, A., Robinson, D.: qvalue. publisher: Bioconductor.
334 http://bioconductor.org/packages/qvalue/ Accessed 2019-03-26TZ

© 2020 by the authors. Submitted for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license (<http://creativecommons.org/licenses/by/4.0/>).