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Next-generation sequencing has allowed genetic studies to collect genome sequencing
data from a large number of individuals. However, raw sequencing data are not usually
interpretable due to fragmentation of the genome and technical biases; therefore, ana-
lysis of these data requires many computational approaches. First, for each sequenced
individual, sequencing data are aligned and further processed to account for technical
biases. Then, variant calling is performed to obtain information on the positions of
genetic variants and their corresponding genotypes. Quality control (QC) is applied to
identify individuals and genetic variants with sequencing errors. These procedures are
necessary to generate accurate variant calls from sequencing data, and many computa-
tional approaches have been developed for these tasks. This review will focus on current
widely used approaches for variant calling and QC.

Introduction

Genome sequencing enables discovery of nearly a complete genome sequence of an individual. While
the first draft for human genome cost $2.7 billion in 2003 [1,2], the cost of genome sequencing has
decreased at a rate faster than that of Moore’s Law [3,4], and it has become considerably inexpensive
as it currently costs less than $1000 to sequence a human genome [5]. Given the rapid decrease in
cost and its ability to detect nearly all genetic variants in an individual genome, genome sequencing
has become very popular in several fields of genetics such as clinical genetics [6,7], cancer genetics
[8,9], population genetics [10,11], and genetic studies for complex diseases and traits [12,13].
Currently, there are several ongoing large-scale whole-genome sequencing (WGS) studies aimed at
identifying genetic variants influencing a diverse range of human diseases and traits such as the
Trans-Omics for Precision Medicine (TOPMed) [14], Genome Sequencing Program (GSP) [15], and
whole-genome sequencing in psychiatric disorders (WGSPD) [16]. Each of these large-scale WGS
studies involves at least 10 000 individuals while some have collected well over 100 000 individuals.

A primary goal of these sequencing-based studies is the identification of genetic elements that vary
among individuals. These genetic elements, such as single nucleotide variants (SNVs) and small inser-
tions or deletions (indels), associated with a disease or trait, may provide clues for understanding the
genetic basis of a disease or trait and for identifying possible therapeutic targets. One key obstacle in
these analyses is the technical noise associated with sequencing technologies. Specifically, technical
biases from the sequencing process can introduce issues such as incorrectly reported sequences.
Several platforms exist for sequencing the human genome, and each has unique technical biases, such
as differing sequencing error rates [17]. These biases must be accounted for to accurately identify
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the genome that differs from a reference genome. Variant calling is one of the most important steps in an ana-
lysis of NGS data because one major goal of genetic studies is to identify genetic variants that influence a
phenotype of interest, and hence, it is important to discover as many true variants as possible in an analysis.
QC is the next step after the variant calling procedure, and its goal is to filter out individuals and genetic
variants with poor sequencing quality and to improve the quality of variant calls. Correct variant calls are
critical in downstream analyses such as an association test to reduce false-positive findings. This review will
discuss common practices used in variant calling and QC in genetic studies and some of the challenges in
those procedures.

Variant calling

Variant calling process

This review will focus on the germline variant caller on SNVs and indels. Germline variants are present in
gametes and can be passed onto offspring, while somatic variants are found in non-germline cells and cannot
be inherited. Variant callers for structural variants (SVs) and somatic variants will be discussed briefly. As there
are many different variant callers and pipelines, we will discuss one based on the genome analysis toolkit
(GATK) pipeline [18-20] developed by the Broad Institute as it is one of the most widely used variant callers
and pipelines; it is the primary variant caller for several large-scale WGS studies such as WGSPD, the
Alzheimer’s disease sequencing project [21], and the Genome Aggregation Database (gnomAD) [22]. This
pipeline consists of several computational steps (Figure 1), which will be discussed below.

Map reads to a reference genome

When a sequencing machine processes a genome, it generates many reads, which are a short fragment of the
genome, typically in length of 100 bp for short read sequencers [17]. Depending on the type of sequencing (e.
g. whole-exome sequencing vs. WGS) and coverage (e.g. low coverage vs. high coverage), millions or billions of
reads can be generated per genome. Information on reads (their sequences and quality scores) is stored in
FASTQ files. We then need to find a location of the genome where each read originated from since this infor-
mation is not retained during the sequencing procedure. For this purpose, we map reads to a reference genome
with a known complete sequence. This procedure aims to identify a location in a reference genome where each
read matches in sequence while tolerating some mismatches. There are many read mappers or aligners [23-25]
such as BWA-MEM [26], a method that is often used in the GATK pipeline. BWA-MEM uses a Burrows-
Wheeler transform-based algorithm [27] to map reads. Read mapping is one of the most time-consuming steps
in the variant calling process. For high-coverage WGS, this step may use more than half of total computational
time required for the entire process [28]. This read mapping information is stored in the binary alignment map
(BAM) files.

Mark duplicates and recalibrate base quality scores

These two procedures are additional steps to improve the quality of variant calling in subsequent steps. The
mark duplicates procedure marks reads that are duplicates, which reduces PCR duplication artifacts, and it is
implemented in the Picard software. Identification of duplicate reads is important for downstream analyses that
assume the measurements of a particular genomic position in a sample are independent. In addition, PCR
duplicates can overrepresent certain sequences and can lead to false positives in variant calling if these
sequences harbor an error. The Base Quality Recalibration Score step recalibrates a quality score associated
with each base of a read, which is implemented in GATK. This processing step is meant to refine the quality
score estimates produced by a sequencing machine which may be inaccurate. The GATK method utilizes
known SNVs and covariates from the observed sequencing data, such as the original quality score, positions
within reads, and nucleotide context, to more accurately model quality scores. Quality scores are important for
variant calling, since they provide a measure of the confidence we have in a variant detected in a sequencing
read; therefore, accurate quality scores are essential for these analyses. We apply the previous read alignment
and these two procedures to sequence data of each individual and generate analysis-ready reads that can be
used for a variant caller. These methods utilize read group information that typically indicates which sets of
reads were generated from a single sequencing run. The purpose of this information is to allow for the detec-
tion of technical artifacts arising from multiple sequencing runs. We note that an indel realignment procedure
was part of the GATK pipeline, which performs local realignment to correct potential mapping errors around
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Figure 1. Generation of raw NGS data from a biological sample.

(Top) Sequencing is performed on fragments of the genome, and the data are typically stored in the FASTQ format, which
includes the sequence information and machine-generated quality scores of each reported base. (Middle) Processing of NGS
data includes an alignment step to recover the genomic positions of each sequenced fragment or read. Subsequent
processing addresses technical biases that arise from the sequencing process, such as PCR duplicates and sequencing
errors. (Bottom) Variant calling is performed on processed reads to identify sites of genetic variation. Here, we depict a simple
example of detecting an SNV and a large deletion.
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indels. This process is no longer necessary after the introduction of HaplotypeCaller that performs a haplotype
assembly, which will be discussed next.

Haplotypecaller

Given a BAM file that contains mapping information of sequenced reads of a target genome that we want to
sequence, the goal of a variant caller is to identify variants or positions of the genome that vary among
samples. To achieve this goal, HaplotypeCaller performs a local de novo assembly by building a De Bruijn-like
graph and identifies both SNVs and indels. Once it identifies those variants, the next step is to identify a geno-
type of each variant, which is to infer an allele for each chromosome. HaplotypeCaller calculates the likelihood
of each possible genotype based on the read information and identifies the most likely genotype. The output
file of HaplotypeCaller can be either a variant call format (VCF) file or a genomic VCF (gVCF) file. A VCF file
contains information on all genetic variants detected and corresponding genotypes for individuals as well as
several quality scores and depth information for genotypes. While one may include BAM files of multiple indi-
viduals and call variants together with HaplotypeCaller, which will generate a multi-sample VCF file, it is
recommended that HaplotypeCaller is applied to a BAM file of each individual to generate a gVCF file for
large sample sizes. A gVCF file contains not only genetic variants but also non-variant sites. Multiple gVCF
files can be joint-genotyped using a GenotypeGVCFs command in GATK, which is more efficient than joint
genotyping multiple BAM files using HaplotypeCaller. To further improve the efficiency, one may split many
gVCF files into multiple batches where each batch of gVCF files can be combined into a multi-sample gVCF
file using a CombineGVCFs command in GATK. One can then apply the GenotypeGVCFs to several multi-
sample gVCF files from those batches and perform joint genotyping on a large number of individuals simultan-
eously. More recently, the GenomicsDB format was developed for efficient storage of variants and variant
retrieval in GATK version 4. However, VCF files remain widely used.

Other variant callers and their performance

We focused on methods such as BWA-MEM and GATK due to their current dominance in variant calling
pipelines for human NGS data. However, a number of other read aligners and variant callers for SNVs and
indels have been developed, and several studies have compared their performance using either simulated or real
genome sequencing data [29-33]. In those studies, FreeBayes [34] and Samtools [35] are variant callers that are
most frequently evaluated in addition to GATK. FreeBayes is a haplotype-based variant caller for SNVs and
indels which uses a Bayesian statistical framework, and Samtools also uses a Bayesian method to detect SNV
and indels. Results of those studies that compared the performance of different variant callers are somewhat
discordant as some studies found that Samtools and Freebayes perform better than GATK, while other studies
found the opposite results. This could be due to different genome sequencing data tested, different variant
calling pipelines, or different software versions for variant callers in those studies. A more recent variant calling
method, DeepVariant, utilizes deep learning to call variants from images of aligned short-reads [36]. A recent
study found that the accuracy of SNV calling is similar across DeepVariant and GATK [37]; however, they
observed improved precision in indel calling. As stated before, GATK remains the most widely used tool for
variant calling from human genome sequencing data.

Challenges in variant calling

The key challenge in variant calling is distinguishing true genetic variation from technical artifacts. These arti-
facts can arise from the sequencing process or variant calling algorithms. The preprocessing steps discussed
here (duplicate identification and base quality score recalibration) are some ways to address technological
biases. False positives arising from variant calling algorithms are also a concern, especially for variants that are
difficult to identify from short-read sequencing, such as SV. It is notoriously difficult to identify SVs accurately
from short-read sequencing as each read may not span an entire SV. Numerous methods have been developed
for SV calling that use different sources of information such as BreakDancer [38], cn.MOPs [39], CNVNator
[40], DELLY [41], GenomeSTRiP [42], Hydra [43], LUMPY [44], and BreakSeq [45], but no single SV algo-
rithm can identify all types of SVs with high accuracy [46]. Hence, recently a few methods have been developed
to combine the results of multiple SV callers using an overlap approach or a machine learning algorithm and
improve both precision and recall of SV detection [47-49]. In addition, while this review focuses on germline
variant callers, there are also many variant callers for somatic variants such as those that differ between tumor
and normal samples from the same individuals [50].
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Another challenge in variant calling is its computational time; it may take a couple of weeks to perform the
GATK variant calling on high-coverage WGS data of one individual using one CPU core [28]. Although some
procedures in the GATK variant calling pipeline such as BWA-MEM support multiple threads to improve the
computational efficiency, not all procedures support multiple threads and they become a bottleneck in the
variant calling process. To overcome this challenge, a few computational approaches have been developed to
speed up the GATK pipeline [28,51]. Those approaches divide a genome into smaller regions such as chromo-
somes or regions with fixed length (e.g. 10 Mbp) and utilize a high-performance cluster or a cloud-computing
resource such as Amazon Web Service or Google Cloud to simultaneously call variants in those regions and
improve the efficiency of the overall variant calling process. In addition to these approaches, fast variant callers
such as Playtypus [52], Strelka2 [53], and Fuwa [54] have recently been proposed.

Quality control

There are two types of QC; one is individual-level QC that identifies problematic individuals and the other is
variant-level QC that identifies genetic variants with poor sequencing quality. These two procedures can be
performed independently, or one procedure can be performed after the other procedure is performed (e.g. one
may perform variant-level QC after removing problematic individuals if there are many such individuals).

Individual-level QC

Genotype missing rate

This metric indicates the proportion of genotypes that an individual is missing. One may measure genotype
missing rate after setting genotypes with low genotype quality (GQ) to missing; for a VCF generated with the
GATK pipeline, genotypes with GQ <20 (or higher) may be set to missing. If an individual has high genotype
missing rate (>5% or >10%), it may indicate low coverage or poor sequencing quality, and hence, this individ-
ual needs to be removed from the analysis.

Genotype concordance to microarray data

Studies may have already collected microarray genotype data for sequenced individuals, and in this case, one
may compare genotypes between microarray and sequencing over SNVs present in both the platforms. It is
expected that genotype concordance rate between the two genotyping platforms would be high (>99%). If the
rate is ~50%, it may indicate sample swap (mixed up samples), and if the rate is below 90%, it may indicate
contamination, which is discussed below. SNVs that are present in both microarray and sequencing are used to
calculate genotype concordance rate, and it is important to pay attention to strand issues. For example, an SNV
may have A and G alleles in microarray while it has T and C alleles in sequencing due to different strands
genotyped or sequenced between microarray and sequencing. Also, as microarray data are often generated
much earlier than sequencing, reference human genome builds may be different such as microarray data in
hgl18 and sequencing data in hgl9. LiftOver can be performed to change the positions of SNVs in microarray
data to match the reference genome builds of sequencing data.

Contamination

During sample preparation and manipulation for sequencing, DNA from multiple individuals may be present in
the same library, which represents contamination of DNA. It is important to detect this contamination and
remove individuals who are heavily contaminated. One approach to detect contamination is using the genotype
concordance rate as described before because contaminated individuals may have lower genotype concordance rate
to microarray data. Another approach is to use a software called VerifyBamID [55] that calculates a contamination
level of each sequenced individual using either sequencing data only or both sequencing and microarray data.

Sequencing statistics

These measures include a variety of statistics describing each sequenced individual. For example, they are the
number of SNVs/indels (known/novel), transition/transversion ratio (Ti/TV) (known/novel), the number of sin-
gletons, and the number of multi-allelic variants that each individual carries. The known number of SNVs or
known Ti/Tv ratio is calculated from SNVs present in dbSNP while the novel number of SNVs or novel Ti/Tv
ratio is calculated from those not present in dbSNP. In a homogeneous population, any individual whose statistics
show outlier patterns may have sequencing problems and may need to be removed. The Ti/Tv ratio is expected to
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be around two for WGS data; the known Ti/Tv ratio may be slightly above two while the novel Ti/Tv ratio may
be lower than two (e.g. 1.4-1.8). Very low novel Ti/Tv ratio may indicate problems with sequencing.

Identical-by-descent (IBD) analysis

This analysis identifies a pair of individuals who are duplicates (e.g. sequenced twice or twins) or who are
related (e.g. parent/child relationship and siblings). One often uses PLINK [56] ‘--genome’ option to calculate
IBD estimates quantified with a 7r value between every pair of individuals or one may use other software to cal-
culate relationship among pairs of individuals such as KING [57]. When calculating 7 value in PLINK, it is
important to use a set of independent SNVs, since SNVs in high linkage disequilibrium (LD) will lead to
common haplotypes that will be identified as IBD though they were not due to a recent common ancestor; one
may perform LD-pruning with ‘--indep’ or ‘--indep-pairwise’ option. If 7r value is close to 1, it suggests duplicate
samples, and hence, one of the duplicates will need to be removed. For 7r value close to 0.5, it suggests the first
degree of the relationship while 7r value close to 0.25 suggests the second degree of relationship. For case-control
studies where only unrelated individuals are expected, one individual from each pair of related individuals needs
to be removed. The individual in these pairs who has the disease or trait of interest is often prioritized. For
family-based studies, a study may use 7 values to check whether a known pedigree structure is consistent with
the pedigree structure inferred from 7 values. If there is inconsistency, it is important to correct the issue by
checking whether there is an error in the known pedigree structure or whether wrong individuals are sequenced.

Principal component analysis

Principal component analysis (PCA) is often applied to identify the ethnicity of sequenced individuals
(Figure 2). One of the most widely used tools for PCA is EIGENSTRAT [58]. Using the reference data set such
as 1000 Genomes data set [59], principal components (PCs) estimated from PCA cluster sequenced individuals
according to their ethnicities. One may draw PCA plots using these PCs (e.g. PC1 vs. PC2), and these plots will
allow a study to identify outliers in terms of ethnicity. Those outliers may need to be removed from further
analysis. When performing PCA, it is important to perform LD-pruning and remove related individuals since
both local LD structure and direct relatedness can be a stronger source of variation in the genetic data than the
population-level ancestry differences that are of interest. For family-based studies, founders who are unrelated
may be included in PCA.

Sex check

One can check whether sex inferred from sequencing data using X chromosome is consistent with known sex
from sample annotation using ‘--check-sex’ option in PLINK. If there is inconsistency, one may need to check
possible sample swap.

Variant-level QC

There are two main types of variant-level QC; one is a filtering approach based on several filters and the other
is a classification approach using a machine learning model. One may use a combination of both by including
only variants that pass both types of QC.

Filtering approach

This QC calculates several statistics about each variant and removes it if it fails one of the filters. This approach
has been widely used in GWAS based on microarray data [60,61]. The main advantage of this approach is its
simplicity, and the main disadvantage is that the threshold for each filter is usually arbitrarily determined. The
following filters are often used.

« Genotype missing rate: Similar to genotype missing rate for each individual, one may also calculate the
missing rate for each variant and remove it if it is too high (e.g. >5% or >10%).

o Hardy-Weinberg Equilibrium (HWE) P-value: This P-value measures the deviation from HWE that com-
pares the frequency of observed genotypes from sequencing data and expected the frequency of genotypes
from HWE for each SNV. SNVs with low HWE P-values (e.g. <1 x 10*) will need to be removed since they
significantly deviate from HWE. It is important to note that HWE P-values need to be estimated in a homo-
geneous population that consist of unrelated and healthy controls. If there are individuals from different
populations or related individuals, minor allele frequency estimation for HWE P-values may not be accurate.
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Figure 2. Principal component analysis (PCA) of 1000 Genomes data set.

PCA is performed after LD-pruning using EIGENSTRAT software. X-axis is PC2 and Y-axis is PC3. There are 26 populations
from five super population codes (East Asian (EAS), European (EUR), African (AFR), Ad Mixed American (AMR), South Asian
(SAS)). Each of the five super population codes is indicated with a different symbol (square for EAS, circle for EUR, triangle for
AFR, + for AMR, and X for SAS).

In addition, genotypes among case individuals may not follow HWE, so their genotypes should not be
included in the estimation of HWE P-values.

« Genotype concordance rate to microarray data: If microarray data are available, one may calculate genotype
concordance rate between sequencing and microarray data for each SNV and remove those with low concord-
ance rate. This filter, however, can only test those SN'Vs present in both sequencing and microarray data.

o Mendelian error rate: In family-based studies where there are trios or pairs of sequenced individuals, one
may calculate Mendelian error rate of each SNV that indicates whether transmission of alleles from parents
to offspring follows Mendelian inheritance patterns. SNVs with high Mendelian error rate will need to be
removed (Figure 3).

o Allele balance of heterozygous calls (ABHet): This statistic measures the balance between reads supporting a
heterozygous genotype. Specifically, it is calculated as the number of reads with a reference (or alternative)
allele from an individual divided by the total number of reads from the individual for a heterozygous geno-
type (e.g. A/C and G/T). Ideally, ABHet should be near 0.5, and a study may remove an SNV with many indi-
viduals who have heterozygous genotypes with ABHet values much greater or smaller than 0.5 (Figure 3).

Classification approach
This approach attempts to determine whether a specific variant has high or low sequencing quality using a
machine learning model. One example is Variant Quality Score Recalibration (VQSR) from GATK that uses a
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Figure 3. Quality control measures for genetic variants.

(Top left) A genomic position with a possible heterozygous A/G genotype. Its ABHet value, a measure of allelic balance,
deviates from 0.5. As a result, this variant may be filtered out since it is likely due to a sequencing error. (Top right) The same
genotype call but with ABHet exactly equal to 0.5, indicating that we are more confident in this identified variant. (Bottom left)
An identified variant that does not follow Mendelian inheritance and is thus labeled a Mendelian error since the G allele could
not be inherited from either parent. This variant could be either a sequencing error or de novo mutation and may be filtered out.
(Bottom right) An identified variant that follows Mendelian inheritance, which provides more confidence in this call.

Gaussian mixture model [18]. To train their model, it needs a training set that contains true positives (variants
that are highly validated to be true), and it uses SNVs found in known databases such as HapMap [62], Omni
2.5M SNP Chip, and 1000 Genomes [59]. After training the model and applying it to sequence data, a study
may filter out variants depending on its desired sensitivity level. One potential issue with the classification
approach is that the known databases may not be accurate, which may cause inaccurate classification of variants.
Another issue is that those databases may not be available for certain species other than human. Lastly, the
classification approach based on VQSR may require more computational resources than the filtering approach.

Validating variants

Even with these preprocessing and QC methods, false positives can still occur. There are several experiments
for validating identified genetic variants. For example, PCR amplification of regions containing a putative SNV,
indel, or SV breakpoints can be verified by Sanger sequencing. This sequencing method is slow and expensive
compared with NGS; however, it has lower error rates and, furthermore, the targeted PCR amplification yields
high coverage for validating a variant. As another example, fluorescence in situ hybridization can be used to
validate SVs, such as CNVs. This method utilizes fluorescent probes that hybridize with genomic sequences
and can be visualized at the chromosomal level.

Summary

e Genome sequencing has become increasingly popular in several fields of genetics due to the
rapid decrease in sequencing cost and its ability to discover nearly a complete genome
sequence of an individual genome.
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e Variant calling from sequencing data involves many processing steps to accurately identify
genetic variants. The GATK best practice pipeline is one of the most widely used variant
calling approaches, which consists of read alignment, duplicate read identification, base
quality score recalibration, and HaplotypeCaller.

e Quality control (QC) is performed after a variant calling to detect and remove individuals and
genetic variants with sequencing errors.

¢ |Individual-level QC removes individuals with high genotype missing rate, low genotype con-
cordance rate to microarray data, contamination, outlier patterns in sequencing statistics, or
wrong sex. It also identifies related individuals using the IBD analysis and population outliers
using PCA.

e Variant-level QC can be performed using the traditional filtering approach and/or the classifi-
cation approach using machine learning algorithms. The filtering approach uses several filters
such as genotype missing rate, HWE P-values, genotype concordance rate to microarray
data, Mendelian error rate, and ABHet.
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