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Abstract

The residual neural network (ResNet) is a popular deep network architecture which has the ability to obtain high-accuracy
results on several image processing problems. In order to analyze the behavior and structure of ResNet, recent work has
been on establishing connections between ResNets and continuous-time optimal control problems. In this work, we show
that the post-activation ResNet is related to an optimal control problem with differential inclusions and provide continuous-
time stability results for the differential inclusion associated with ResNet. Motivated by the stability conditions, we show
that alterations of either the architecture or the optimization problem can generate variants of ResNet which improves the
theoretical stability bounds. In addition, we establish stability bounds for the full (discrete) network associated with two
variants of ResNet, in particular, bounds on the growth of the features and a measure of the sensitivity of the features with
respect to perturbations. These results also help to show the relationship between the depth, regularization, and stability of
the feature space. Computational experiments on the proposed variants show that the accuracy of ResNet is preserved and

that the accuracy seems to be monotone with respect to the depth and various corruptions.

Keywords Deep feedforward neural networks - Residual neural networks - Stability - Differential inclusions - Optimal

control problems

1 Introduction

Deep neural networks (DNNs) have been successful in sev-
eral challenging data processing tasks, including but not
limited to image classification, segmentation, speech rec-
ognition, and text analysis. The first convolutional neural
network (CNN), which was used in the recognition of digits
and characters, was the famous LeNet [25]. The LeNet archi-
tecture included two convolution layers and two fully con-
nected layers. Part of the success of CNNs is their ability to
capture spatially local and hierarchal features from images.
In [22], the authors proposed a deeper CNN architecture,
called AlexNet, which achieved record-breaking accuracy
on the ILSVRC-2010 classification task [32]. In addition to
the increased depth (i.e., the number of layers), AlexNet also
used rectified linear unit (ReLLU) as its activation function
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and overlapping max pooling to downsample the features
between layers. Over the past few years, the most popular
networks: VGG [35], GoogleNet [38], ResNet [16, 17],
FractalNet [23], and DenseNet [18], continued to introduce
new architectural structures and increase their depth. In
each case, the depth of the network seems to contribute to
the improved classification accuracy. In particular, it was
shown in [16, 17] that deeper networks tended to improve
classification accuracy on the common datasets (CIFAR 10,
CIFAR 100, and ImageNet). It is not unusual for DNNs to
have thousands of layers!

Although DNNs are widely successful in application, our
understanding of their theoretical properties and behavior
is limited. In this work, we develop connections between
feedforward networks and optimal control problems. These
connections are used to construct networks that satisfy some
desired stability properties. To test the ideas, we will focus
on the image classification problem. Let D be a set of images
which are sampled from rn distinct classes. The goal of the
classification problem is to learn a function whose output
y € R” predicts the correct label associated with the input
image x € D. The jth component of y represents the prob-
ability of x being in Class j. It is worth noting that the image
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classification problem is an example of a high-dimensional
problem that can be better solved by DNN than other stand-
ard approaches. One possible reason for this is that the map-
ping from images to labels represented by a neural network
may generalize well to new data [1, 24].

As the network depth increases, several issues can occur
during the optimization (of network parameters). Take for
example the (supervised) image classification problem,
where one learns a network by optimizing a cost function
over a set of parameters. Since the parameters are high-
dimensional and the problem is non-convex, one is limited
in their choice of optimization algorithms [4]. In addition,
the size of the training set can affect the quality and stability
of the learned network [4]. The nonconvexity of the opti-
mization problem may yield many local minimizers, and
in [21] it was argued that sharp local minimizer could pro-
duce networks that are not as generalizable as the networks
learned from flatter local minimizers. In [26], the authors
showed that (visually) the energy landscape of ResNet and
DenseNet is well-behaved and may be flatter than CNNs
without shortcuts. Another potential issue with training
parameters of deep networks involves exploding or vanish-
ing gradients, which has been observed in various network
architectures [2]. Some partial solutions have been given by
using ReLU as the activation function [32] and by adding
identity shortcuts [16, 17]. In addition, networks can be sen-
sitive to the inputs in the sense that small changes may lead
to misclassification [3, 13, 39]. This is one of the motiva-
tions for providing a quantitive measure of input-sensitivity
in this work.

Recently, there have been several works addressing the
architecture of neural networks as the forward flow of a
dynamical system. By viewing a neural network as a dynam-
ical system, one may be able to address issues of depth,
scale, and stability by leveraging previous work and theory
in differential equations. In [45], the connection between
continuous dynamical systems and DNNs was discussed.
In [14], the authors proposed several architectures for deep
learning by imposing conditions on the weights in residual
layers. The motivation for the architectures in [14] directly
came from the ordinary differential equation (ODE) for-
mulation of ResNets (when there is only one activation per
residual layer). For example, they proposed using a Ham-
iltonian system, which should make the forward and back
propagation stable in the sense that the norms of the fea-
tures do not change. There could be more efficient ways to
compute the back propagation of DNNs based on Hamilto-
nian dynamics, since the dynamics are time-reversible [5].
Reversible networks have several computationally beneficial
properties [12]; however, layers such as batch normalization
[19] may limit their use. The main idea of batch normali-
zation is to normalize each training mini-batch by reduc-
ing its internal covariate shift, which does not preserve the

Hamiltonian structure (at least directly). In a similar direc-
tion, ResNet-based architectures can be viewed as a control
problem with the transport equation [27]. In [33], the authors
designed networks using a symmetric residual layer which is
related to parabolic and hyperbolic time-dependent partial
differential equations, which produced similar results to the
standard ResNet architecture. In [44], the authors formulated
the population risk minimization problem in deep learning
as a mean-field optimal control problem and proved opti-
mality conditions of the Hamilton—Jacobi—Bellman type and
the Pontryagin type. It is worth noting that some theoretical
arguments connecting a ResNet with one convolution and
one activation per residual layer to a first-order ODE are
provided in [40].

In image classification, the last operation is typically an
application of the softmax function so that the output of
the network is a vector that represents the probability of
an image being in each class; however, in [43] a harmonic
extension is used. The idea in [43] is to learn an appropriate
interpolant as the last layer, which may help to generalize
the network to new data. In [30], the authors proposed a
Lipschitz regularization term to the optimization problem
and showed (theoretically) that the output of the regularized
network converges to the correct classifier when the data sat-
isfies certain conditions. In addition, there are several recent
works that have made connections between optimization in
deep learning and numerical methods for partial differential
equations, in particular, the entropy-based stochastic gradi-
ent descent [6] and a Hamilton—Jacobi relaxation [7]. For
a review of some other recent mathematical approaches to
DNN, see [42] and the citations within.

1.1 Contributions of this Work

In this work, we connect the post-activation ResNet (Form
(a) in [17]) to an optimal control problem with differential
inclusions. We show that the differential system is well-
posed and provide explicit stability bounds for the optimal
control problem in terms of learnable parameters (i.e., the
weights and biases). In particular, we provide a growth
bound on the norm of the features and a bound on the sen-
sitivity of the features with respect to perturbations in the
inputs. These results hold in the continuous-time limit (i.e.,
when the depth of the network goes to infinity) and in the
discrete setting where one includes all other operations such
as batch normalization and pooling.

Since the stability results measure how sensitive the
feature space is to perturbations on the input image, these
results likely relate to the output accuracy. Based on the the-
ory, we investigate two variants of ResNet that are developed
in order to improve the two stability bounds. The variants are
constructed by altering the architecture of the post-activation
ResNet and the associated optimization problem used in the
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training phase. We show in the continuous-time limit and
in the discrete network that the variants reduce the growth
rate bounds by decreasing the constants in the stability con-
ditions. In some cases, the constants become invariant to
depth. Computational experiments on the proposed variants
show that the accuracy of ResNet is preserved. It is also
observed that for the image classification problem, ResNet
and its variants monotonically improve accuracy by increas-
ing depth, which is likely related to the well-posedness of
the optimal control problem.

1.2 Overview

This paper is organized as follows. In Sect. 2, we analyze
the forward stability of ResNet and its two variants in con-
tinuous-time by relating them to optimal control problems
with differential inclusions. In Sect. 3, we prove the for-
ward stability of the variants in the discrete setting, which
includes the full network structure. In Sect. 4, experimental
results are presented and show that the variants preserve
the same accuracy as ResNet, with stronger stability bounds
theoretically.

2 Continuous-Time ResNet System

The standard (post-activation) form of a residual layer can
be written as an iterative update defined by:

M=o — T AL o(ATX" + B + T DY), (1)

where x" € R? s a vector representing the features in Layer
n, A" € R4 (fori = 1,2) are the weight matrices, b € R
(fori = 1,2) are the biases, and ¢ is the rectified linear unit
(ReLU). The parameter = > 0 can be absorbed into the
weight matrix A”; however, when scaled in this way, the
iterative system resembles a forward Euler update applied
to some differential equation. The connection between the
residual layers (for a single activation function) and differ-
ential equations has been observed in [33].

By setting the (outer) activation in Eq. (1) to ReLLU, one
is imposing the “obstacle” x > 0 to the system; see for exam-
ple [28, 34, 41] and the citations within. Letting 7 — 0, in
Eq. (1) leads to a differential inclusion:

- d%x(t) — Ay (1) 6(A(DX(1) + by (1) + Dy (1) € Ola (%), (2)

where Igq is the indicator function of the set [Rd [see
Eq. (38)]. It is possible to show that Eq. (1) is a con51st-
ent discretization of Eq. (2). Equation (1) is essentially
the forward-backward splitting [11, 36], where the pro-
jection onto the “obstacle” is implicit and the force
Ay (1) o(A;(Dx(1) + b, (1)) + by(1)) is explicit.

@ Springer

2.1 Connection of Neural Networks to Optimal
Control Problems

Let D be a dataset with C classes of images. Given an input
image x° € D to a nerual network, let y € R be the one-hot
encoding label vector associated with x, and let x¥ € R¢ be
the output of the network. The label vector y can be consid-
ered as the true distribution of x° over the C possible classes.
To obtain a predicted distribution of x° from the network and
compare it with y, typically one applies the softmax normali-
zation function to the output xV of the network, so that the
loss to be minimized for each input PeDis H(y, SGN)),
where H and S denote the cross entropy and softmax func-
tions, respectively.

Let Z be the index set for the layers in the network. Given
anindex n € Z, let A” and b" be the weight and bias in Layer
n, respectively (when applicable). To minimize the classifi-
cation error of the network, one usually solves the following
optimization problem:

min H(y, S6™M) + ) R, (AM),
A" b xgb ;Z} 3
forne”

where x" satisfying Eq. (1) and R" represents the regularizer
for A™.

The time parameter, ¢ > 0, in Eq. (2) refers to the con-
tinuous analog of the depth of a neural network (without
pooling layers). In the limit, as the depth of a neural network
increases, one could argue that the behavior of the network
(if scaled properly by 7) should mimic that of a continuous
dynamical system. Thus, the training of the network, i.e.,
learning A" and b" given x° and xV, is an optimal control
problem. Therefore, questions on the stability of the forward
propagation, in particular, do the features remain bounded
and how sensitive are they to small changes in the input
image, are also questions about the well-posedness of the
continuous control problem.

2.2 Stability of Continuous-time ResNet

In this section, we will show that the continuous-time
ResNet system is well-posed and that the forward propaga-
tion of the features is stable in the continuous-time. First,
note that the function I is convex, and thus, its subdiffer-
ential ()IRd (x)is monotone and is characterized by a normal
cone:

9l (x) {EeR?:

=NR§(X):= (f,y—x)SOforallyelRi}.

By Remark 4, we have prox ;  (x) = o(x). Therefore, Eq. (1)

2%
is indeed a discretization of Eq. (2), where the
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subdifferential of the indicator function is made implicit by
the proximal operator (projection onto Ri). We will use both
the subdifferential and normal cone interpretation to make
the arguments more direct.

Consider differential inclusions of the form:

— S(0) € Nag (6(0) + F(t, ¥ @

which have been studied within the context of optimal con-
trol and sweeping processes. The existence of solutions are
given by Theorem 1 in [10] (see “Appendix C”). The con-
tinuous-time ResNet, characterized by Eq. (2), is a particular
case of Eq. (4) with the forcing function F set to:

F(t,X(0)) 1= Ay (1) 0(A (0X(1) + b, (1)) = by ().
Thus, Eq.(2) is equivalent to:

- ditx(t) € Nis (2() + Aq(1) 6(A, (0x(1) + by (1)) — by(0).
Q)]

The following result shows that under certain conditions,
Eq. (5) has a unique absolutely continuous solution in [Ri.

Theorem 1 (Continuous-time ResNet, existence of
solutions) Let ¢>0, x: R, > RY, A, : R, - R,
b, . R, — R4 (fori=1,2), and o be the rectified linear
unit. Assume that

1A, DIl 2y 1A Ol 2y < €

forallt > 0. Then for any x, € R‘i, the following dynamic
process:

- %x(t) € Nm(x(t)) +A,(O oA (Ox+ b () —by(H) ae.t>0
x(0) = x,
Q)

has one and only one absolutely continuous solution x € [R{‘i.

Theorem 1 shows that in the continuous-time case, there
exists only one path in the feature space. Thus, as the number
of residual layers increases in a network, we should expect
the residual layers to approximate one consistent path from
the input to the output. The requirement is that the matrices
A, and A, are bounded in #2, which is often imposed in the
training phase via the optimization problem (e.g., choos-
ing a proper form of R, in Eq. (3)). The stability bounds in
the following theorems are derived from the subdifferential
interpretation.

Theorem 2 (Continuous-time ResNet, stability bounds)
With the same assumptions as in Theorem 1, the unique

absolutely continuous solution x to Eq. (2) is stable in the
following sense:

x@lly < [IX(O)], exp </0 1A ()l [[A2()2 dS)
+/0 (1Al 1611l

+llaby()l,) exp </ 1A (M)l 14, dr> ds
(N

forallt > 0. In addition, if y is the unique absolutely con-
tinuous solution to Eq. (2) with input y(0), then for allt > 0,

llx(®) = y®ll»

< 18(0) = Ol exp ( /0 ||A1<s>||2||A2<s>||2ds>- ©

Equation (7) provides an upper-bound to the growth rate
of the features in the continuous-time network, and Eq. (8)
shows that the sensitivity of the network to perturbations
depends on the size of the weight matrices. Without any
additional assumptions on the weights A; and/or biases b,
(for i = 1,2) (except for uniform-in-time boundness), the
solution to Eq. (2) and the perturbations can grow exponen-
tially with respect to the depth. By testing a standard ResNet
code,! we observed that without batch normalization, the
norms of the features increase by a factor of 10 after about
every 3—4 residual layers. Thus, in very deep networks there
could be features with large values, which are typically not
well-conditioned. It is interesting to note that with batch nor-
malization, experiments show that the norms of the features
grow but not as dramatically.

In practice, regularization is added to the optimization
problem (often by penalizing the norms of the weight matri-
ces) so that the trained network does not overfit the training
data. In addition, Theorem 2 shows that for a deep network,
the stability of the continuous-time dynamics depends on
the norms of the weight matrices A;. Thus, with sufficient
regularization on the weights, the growth rate can be con-
trolled to some extent.

2.3 Continuous-Time Stability of Variants of ResNet

There are multiple ways to control the feature-norms in
deep ResNets. The results in Sect. 2.2 indicate that for a

! We used the open-sourced code from the TFLearn library on
GitHub.
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general residual layer, the regularization will control the
growth rates. Alternatively, by changing the structure of
the residual layer through constraints on A;, the dynamics
will emit solutions that satisfy smaller growth bound. In
Sect. 4, computational experiments show that the variants
produce similar accuracy results to the original ResNet
[16] with provably tighter bounds.

We propose two variants on the residual layer, which
improve the stability estimates from Sect. 2.2. The first
form improves the feature-norm bound by imposing that
Ay (1) € R4

= Sx() = 440 (A, (DX + b, @) o
+by(1) € 0lps () with A,(1) € RY.

The network associated with residual layers characterized
by Eq. (9) will be called ResNet-D. This is in reference to
the decay of the system when the biases are identically zero
for all time. When the biases are nonzero, one can show the
following improved bound (as compared to Theorem 2).

Theorem 3 With the same assumptions as in Theorem 1, the
unique absolutely continuous solution x to Eq. (9) is stable
in the following sense:

ROl < 5O, + A 16 (5a(5)) I ds (10)

forallt > 0.

Theorem 3 shows that the continuous-time feature vec-
tor does not grow as quickly as the depth of the network
increases. In order to improve Eq. (8), which measures
the sensitivity of the features to changes in the inputs, we
impose a symmetric structure to the weights:

- %x(r) — A" 6(AWX() + by (1) + by(1) € Alga (). (1)

We refer to the network associated with residual layers char-
acterized by Eq. (11) as ResNet-S. The forcing function:

F(t,x) = =AD" o(A(DxX(1) + by (1)

in Eq. (11) was proposed in [5, 33] and is motivated by
parabolic differential equations. Similarly, Eq. (11) is the
nonlinear parabolic differential equation which (under cer-
tain conditions) arises from an obstacle problem using the
Dirichlet energy [28, 34, 41]. The following result shows
that Eq. (11) improves the bounds in Theorem 2.

Theorem 4 With the same assumptions as in Theorem 1, the

unique absolutely continuous solution x to Eq. (11) is stable
in the following sense:

@ Springer

Image size: h; X wi X dp

Layer 0: Convolution layer
¢ Feature size: h; X wi X d
Layers 1 tom: A stack of m residual layers
¢ Feature size: hj X w; X d,

Layer m+1: 2D Pooling layer

<«

Feature size: hy X wy X do
A stack of m-1 residual layers

Layers m+2 to 2m:

(_

Feature size: hy X wy X db

Layer 2m+1: 2D Pooling layer

(_

Feature size: h3 X w3z X d3
A stack of m-1 residual layers

Layers 2m+2 to 3m: [

Feature size: iz X w3 X d3

Layer 3m+1: [ Global pooling layer

Feature size: d3 X 1
Fully connected layer

Layer 3m+2: [

Logits size: C X 1

Fig. 1 Architecture of ResNet-D and ResNet-S for the image classi-
fication problem. The input image is of size h; X w; X d,, and is con-
tained in a dataset with C classes. The dimension of the features is
changed through the network, where A, = [h;/2], w;, = [w;/2],
and d;,, = 2d; (fori =1,2)

0l < O, + [ Jo(=A60(b 0D+ 6,09) as
0

12)
for all t > 0. In addition, if y is the unique absolutely con-
tinuous solution to Eq. (11) with input y(0), then for all t > 0,

[lx(®) = y@ Il < [IX(0) = y(O)l;. (13)

Equation (13) shows that the features are controlled by
perturbations in the inputs, regardless of the depth.

The proofs of Theorems 1-4 are provided in
“Appendix B.”

3 Discrete Stability of ResNet-D
and ResNet-S

Since DNNss are discrete, in this section we provide discrete
stability bounds on the features, similar to those in Sect. 2.

3.1 Architecture of ResNet-D and ResNet-S

We will discuss the architecture used for the problem of
image classification and the associated architecture of
ResNet-D and ResNet-S. The base structure of the net-
works is shown in Fig. 1, which is a variant of the standard
architecture for ResNets [16]. The input to a network is
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Batch normalization
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| Convolution with K

v

[ Bias

v
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v

( ReLU

v

[ Convolution with K7

( Bias

v

r=1p=0)

R

| Convolution with K |

v

[ Bias ]

v

[ Batch normalization ]

v

( ReLU |

v

[ Convolution with K3 ]

v

( Bias ]
v

‘ Batch normalization ’

[ Batch normalization

Subtraction

A 2N

(a) ResNet-D (Eq. (14))

Fig.2 The residual layers

(b) ResNet-S (Eq. (15))

(¢)Original [18]

Fig.3 The linear layers l
Y
[ Convolution ] [ Multiplication ]
v v
[ Bias ] [ Bias ]
l A\ 4
(a) Convolution (Eq. (16)) (b) Fully Connected (Eq. (17))

an image in R4 _and the first layer in the network is
a convolution layer (shown in Fig. 3a), which increases
the depth of the input image to d,. The convolution layer
is followed by a stack of m residual layers, which take
one of the two forms detailed in Fig. 2a, b. For compari-
son, we provide the original form of the residual layer
in [16] in Fig. 2c. The residual block is followed by a
2D pooling layer (shown in Fig. 4a), which halves the
resolution and doubles the depth of the incoming feature
(i.e., hy = [h /2], w, = [w;/2], and d, = 2d,). The result-
ing feature is then processed by a stack of m — 1 residual
layers, a 2D pooling layer (i.e., hy = [hy /2], w3 = [w, /2],
and d; = 2d,), and another stack of m — 1 residual lay-
ers. Finally, we reduce the dimension of the resulting

feature by adding a global average pooling layer (shown
in Fig. 4b) and a fully connected layer (shown in Fig. 3b).

For simplicity of the subsequent analysis, we will use the
vector form of the operations. Definitions are provided in
“Appendix A.” Let x° be the vector representing the input to
the network, i.e., xX° € R"1"1%, The equations that characterize
the layers in Figs. 2, 3 and 4 are defined as follows:

the ResNet-D layer:  x"™! := o(x" — Al o(A7X" + b))
+ b)) with A7 > 0,
(14)

the ResNet-S layer:  x"*! := o(@" — (A")T o(A"x"

+ b)) + by), (1%
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v

v [ Increasing depth by convolution ]

[ 2D average pooling ]

v [

Batch normalization

)

[Increasing depth by padding] ¢

( ReLU

] Y

|
v
[ Subtraction ]

v

( ReLU J

l

(a) 2D Pooling (Eq. (18))

Fig.4 The pooling layers

the convolution layer:  x"*! 1= A"X" + b", (16)

the fully connected layer: x"*! := W"x" 4+ 1", (17)

the 2D pooling layer: ~ x"*! := o (E(P,(x")) s
=6 ((A") o X" + ")), (18)
the global pooling layer: ~ x"*! := P,(c(x")), (19)

where x" is the input to Layer n, A" is the matrix associated
with the 2D convolution operation with K" in Layer n (when
applicable), »" is the bias in Layer n, and W" is the weight
matrix in the fully connected layer.

The forward propagation of the network is shown in
Figs. 5 and 6, which display (channel-wise) the output fea-
ture of the indicated layer/block of ResNet-D and ResNet-S,
respectively. As an example, the input image is a hand-writ-
ten digit “2” from the MNIST dataset. The first convolu-
tion layer (Layer 1) returns low-level features of the digit
(Figs. 5a, 6a). The low-level features are then processed
by a stack of residual layers (Layers 1 to m), which yields
mid-level features of the digit (Figs. 5b, 6b). The mid-level
features are then downsampled by a 2D pooling layer (Layer
m + 1) and processed by a stack of residual layers (Layers
m + 2 to 2m), which yields high-level features of the digit
(Figs. 5c, 6¢). Similarly, after a 2D pooling layer (Layer
2m + 1) and a stack of ResNet layers (Layers 2m + 2 to 3m),
the high-level features become linearly separable classifiers
(Figs 5d, 6d). The global pooling layer (Layer 3m + 1) and
the fully connected layer (Layer 3m + 2) convert the linearly
separable classifiers to a vector that can be used to extract a
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[ Batch normalization ]

v

( ReLU )

v

[ Global average pooling ]

\4

(b) Global Pooling (Eq. (19))

predicted probability distribution of the input. For example,
the predicted probability distributions in Figs. Se and 6e are
obtained by applying the softmax normalization function to
the output of the fully connected layer, where the value of
the ith bar represents the predicted probability that the input
digitis i (fori =0,1,...,9).

Note that the mid-level features resemble images fil-
tered by edge detectors, similar to CNNs and the standard
ResNet. Experimentally, we see that a ResNet-D layer pro-
duces a kernel K; which looks like a gradient stencil and
a kernel K, which acts as a rescaled averaging filter. Thus,
the first block in ResNet-D resembles a nonlinear (possibly
non-local) transport system. The non-locality comes from
the smoothing process determined by K,. In ResNet-S,
since the kernels K from the first residual block are gradi-
ent-like stencils, the first block in ResNet-S resembles a
nonlinear diffusive system.

3.2 Forward Stability of ResNet-D and ResNet-S

The stability of forward propagation through ResNet-D
and ResNet-S can determine both the sensitivity of the
network to changes in the inputs and the level of consist-
ency in various computations. If the norms of the weight
matrices are small enough, then both the output of the
network and changes in the features can be controlled by
the inputs. In particular, we have the following (discrete)
stability results for ResNet-D and ResNet-S.

Theorem 5 (Forward Stability, ResNet-D) Consider a net-
work defined in Fig. 1, where the ResNet layers are defined
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(a) Input.

(A
L7 Ay

(b) Output of the convolution layer.

(a) Input.

(e) Output of the third ResNet block.
1

0.5+

0o 1 2 3 4 5 6 7 8 9
(f) Predicted probability distrubution.

Fig.5 Forward propagation of ResNet-D

in Fig. 2a. Let x° be the vectorization of the input to the
network, i.e., x° € R""1%, and for each filter K" in Layer n
(when applicable), let A" be the matrix associated with the
2D convolution operation with K". Assume that

]A° | ,2@rimido)s2@imay < 1, (20a)

Il win+2 ||f2(Rd3 y=£2RC) S 1. (20b)

(e) Output of the third ResNet block.

0.5

o 1 2 3 4 5 6 7 8 9
(f) Predicted probability distribution.

Fig.6 Forward propagation of ResNet-S

Let x" be the input to Layer n and x" be the output of the
network, where N = 3m + 3. Then the network is £*-stable
in the sense that:

16 2 ey < X0 gimany + @0, 6", .. BN, @1

where c(b°,b', ..., bN"Y) is a constant depending on the
£? norms of the biases in the network; see Eq. (45). if
Y0 € RM¥i jg the vectorization of another input, then:
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[l — YN”fZ(RC) 22)
<a(@A% A", WY I = 0l ooy

where a(A°, A', ..., WN"YY is a constant depending on the £*

norms of the filters and weights in the network; see Eq. (51).

Note that the bounds on the growth of the features,
Eq. (21), do not directly depend on the filters and weights,
since the system (without the biases) decays. The sensi-
tive bound, Eq. (22), depends on the £ 2 horms of the filters
and weights, which are controlled by the regularizer [see
Eq. (3)]. For ResNet-S, we can improve the constant in the
sensitivity bound as follows.

Theorem 6 (Forward Stability, ResNet-S) Consider a net-
work defined in Fig. 1, where the residual layers are defined
in Fig. 2b. Let x° be the vectorization of the input to the
network, i.e., x° € R""1%, and for each filter K" in Layer n
(when applicable), let A" be the associated matrix. Assume
that

”AO|Ifz(IRhl“’ldO)afz(Rhl”’l‘il) <1 (23a)
||W3m+2”f2(|Rd3)—>f2([RC) <1 (23b)
and that for each filter K" in a residual layer:

A"l < V2, 24)
where || - || ,2 denotes the induced (matrix) norm. Let x" be

the input of Layer n and x¥ be the output of the network,
where N := 3m + 3. Then the network is £*-stable in the
sense that:

”xN”t’Z(RC) < ”xollﬂ(Rthldo) + C(b07 bl? ,bN_])a (25)

where c¢(b°,b', ..., bN"Y) is a constant depending on the
£?* norms of the biases in the network; see Eq. (55). If
Y0 € Rm¥id js the vectorization of another input, then:

0 1 -1 0 0
I = YVl p2ey < a(A® AN, WYY = 30l o oy

(26)
where a(A%, AL, ..., WN=1Y) is a constant independent of the
depth of the residual block; see Eq. (57).

Equation (26) is useful since it implies that, as long as one
constrains the norms of the filters such that ||A"|| ,» < \/5
the network will be stable for arbitrarily many residual
layers.

The proofs of Theorems 5 and 6 are provided in
“Appendix B.”
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Remark 1 The conclusions in Theorems 5 and 6 are still
valid if the #% norm in Eqs. (20) and (23) are replaced
by the Frobenius norm, since given a matrix A, we have
Al < Al

Remark 2 By Eq. (29), given an input feature x, the output y
of the following concatenation of operations:

2D convolution — batch normalization

is obtained by:

‘Ax —
yzzy(x Mo
(o

I8 @7

where the constants ¢ and o depend on the mini-batch con-
taining x. For the forward propogation, if we set A := yA/o
and b := —yu/c + f, then Eq. (27) can be rewritten as:

y :=Ax +b.

To make sure that A satisfies the constraints of A, for exam-
ple the correct sign in Eq. (15), we fix the parameters y and
p in the second batch normalization in the residual layers
(y =1 and g =0 for the second batch normalization in
Fig. 2b).

4 Computational Experiments

We test the two proposed networks on the CIFAR-10 and
CIFAR-100 datasets. The data are preprocessed and aug-
mented as in [16].

All filters in the network are of size 3 X 3, and we assume
that the input feature to each layer satisfies the periodic
boundary condition. The width of each residual block (i.e.,
d;in Fig. 1) is 16, 32, and 64, respectively. For the first con-
volution layer, the filters are initialized using the uniform
scaling algorithm [37]; for the residual layers and the 2D
pooling layers, the filters are initialized using the variance
scaling algorithm [15]. The weight in the fully connected
layer is initialized with values drawn from a normal distri-
bution MO0, 6%), where 6 = (d;C)™!, except that values with
magnitude more than 2¢ are discarded and redrawn (i.e.,
the truncated normal distribution). Note that in [9] and the
citations within, it was shown that under certain conditions
on a neural network, randomly initialized gradient descent
applied to the associated optimization problem converges
to a globally optimal solution at a linear convergence rate.

The biases in the network are initialized to be zero. The
batch normalization parameters y and f, if trained, are ini-
tialized to be 1 and O, respectively. The regularizer R, in
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Tab.le 1 Regularizers in the Layer(s) ResNet-D ResNet-S
optimization problem defined
in Eq. (3) a a
The ResNet layers Rn — 7’! Z?:] ||VBC(K7)||§2 +1K'Z’ZO Rn — 7" Z?:l ||VCC(K;1)||iZ
The convolution/pooling layer R, = a,llvec(K")%, R, = % lIvec(K™)I2,
The fully connected layer R, = a,[lvec(WM)I2, R, = % lIvee(W™)2,

Definitions of the layers are provided in Eqs. (14)—(19). The indicator function IK';zO represents the con-
straint K7 > 0, and a,, are some nonnegative constants. The regularization parameter a,, is set to be 10~ for

all n

Eq. (3) is listed in Table 1. To impose the constraints in
Theorems 5 and 6, we regularize the Frobenius norms of the
filters and weights (see Remark 1). The element-wise con-
straints A7 > 0 in Eq. (14) are imposed directly by adding
the indicator function /, 150 1O the regularizer; that is, in each
gradient descent step, K’z’ is projected onto the positive set.

The network is trained using the mini-batch gradient
descent algorithm, with mini-batch size equal to 128 (i.e.,
391 steps/epoch). The initial learning rate is 0.1, and is
divided by 10 after every 32,000 training steps. The train-
ing process is terminated after 93,500 training steps. The
network is validated on the test images after every 500
training steps.

Remark 3 Our focus in the experiments is to examine the
stability of the variants of ResNet. We would like to dem-
onstrate that the variants achieve similar accuracy. Thus, we
fix the hyperparameters (including: depth of the network,
learning rate and batch size in the optimization, etc.) and
do not tune them to the data. Better results can be achieved
with tuning and the inclusion of additional steps, e.g., bot-
tleneck layers.

In Table 2, we list the depth of the network and the
number of trainable parameters in the optimization prob-
lem with a few different values of m (where m is the size
of the first residual block). Here, the depth of a network is
considered to be the number of (unique) filters and weights
in the network; for example, each ResNet-D layer (Fig. 2a)
contains two filters, and each ResNet-S layer (Fig. 2b) con-
tains only one filter.

4.1 Effect of Depth on Test Accuracy

We train the network with different depths and analyze
the effect of the depth on test accuracy. The resulting test
accuracies over the training steps are shown in Fig. 7.
In particular, we calculate the average of the test accu-
racy in the last 5000 training steps and list the results in

Table 3. It can be seen from Fig. 7 and Table 7 that the
test accuracy of both ResNet-D and ResNet-S increases as
the network goes deeper (without any hyperparameter tun-
ing). This result is consistent with the observation in [16]
that a deeper ResNet tends to have higher test accuracy.
The monotone improvement of accuracy in depth is likely
related to the well-posedness of the optimal control prob-
lem [Eq. (6)]. The classification accuracy of the original
ResNet can be found in “Appendix D.”

4.2 Effect of Perturbation on Test Accuracy

We evaluate the trained networks on images with different
types of perturbation. Given a test image x, its corrupted
image is obtained via x — x + 7, where two types of the
additive noise # are considered:

Unstructured: 5 ~ MO, 62), (28a)

Structured: 7 = ex,,

(28b)
where x, is a fixed image chosen from the test images.

Table 2 Depth of the network and number of trainable parameters in
the optimization problem

m Depth Trainable
parameters
(a) ResNet-D on CIFAR-10
3 18 0.223M
6 36 0.514M
9 54 0.805M
12 72 1.100M
(b) ResNet-S on CIFAR-10
3 11 0.124M
6 20 0.270M
9 29 0.416M
12 38 0.561M

The depth counts the number of filters and weights in the network.
The trainable parameters in Eq. (3) include all elements in the filters,
weights, and biases, and the parameters in all batch normalization (if
trained). The same network has 5760 more parameters on CIFAR-100
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Fig.7 Test accuracy of ResNet-D and ResNet-S on CIFAR-10. The test accuracy of both ResNet-D and ResNet-S tends to increase as the depth

of the network increases

Table 3 Average of the test accuracy in the last 5000 training steps of
ResNet-D and ResNet-S

Depth Test accuracy (%)
CIFAR-10 CIFAR-100
(a) ResNet-D
18 88.81 60.23
36 91.23 65.72
54 92.13 67.63
72 92.50 69.18
(b) ResNet-S
11 87.78 58.17
20 88.16 61.79
29 88.18 62.14
38 89.09 63.17

In Table 4, we list the test accuracy of ResNet-D and
ResNet-S on perturbed test images, which are evaluated
using the learned parameters of the network from the last
training step. Note that the networks are trained on the
uncorrupted training set. The structured noise x, used in
the experiments is shown in Fig. 8 and is added to the
test images. Different values of ¢ and € are used to vary
the noise level of . One can observe from Table 4a that
when the noise level increases, the test accuracy of ResNet-
D decreases. For low levels of perturbation, the accuracy
remains high. We observe that deeper networks tend to have
higher test accuracies after corruption of the test images.
Similar conclusion can be drawn from Table 4b, in particu-
lar, that a deeper ResNet-S seems to be more robust to cor-
rupted test data.

We illustrate the results in Figs. 9 and 10 using the trained
36-layer ResNet-D and 20-layer ResNet-S on three test

@ Springer

images in CIFAR-10. The test images are labeled as “bird,”
“dog,” and “horse,” respectively. In Figs. 9 and 10, three test
images and the corresponding corrupted images are shown,
including the corresponding probability distributions pre-
dicted by the trained networks. One observation is that the
probability of predicting the true label correctly tends to
decrease as the corruption level increases. For example,
consider the case where ResNet-S is applied to the “horse”
image (the last two columns in Fig. 10). Figure 10a shows
that the probability that the noise-free image x is a “horse”
is 0.9985. When random noise # is added to x, i.e., x = x + 7
with # ~ M0, 6%), the probability of correctly predicting
x + nto be a “horse” drops to 0.8750 and 0.7940 (for ¢ equal
to 0.02 and 0.05, respectively). This is illustrated in Fig. 10b.

When the corruption level increases, the label with the
second highest predicted probability may change. Take for
example ResNet-S on the “dog” image (the middle two col-
umns in Fig. 10). Let x be the original “dog” image. When
random noise # is added to x, the second prediction made by
the network changes from a “cat” (with probability 0.1410)
to a “frog” (with probability 0.1717) (as ¢ increases from
0.02 to 0.05). This is within the stability bounds from
Sect. 3. When we perturb a test image by another image
(Fig. 8a), we observe similar stability results under this
structured form of corruption. This is illustrated on the
“bird” image in the first two columns of Fig. 9.

Equations (22) and (26) show that perturbation in the out-
put depends on the perturbation in the input and the weight
matrices in the network. In theory, if the norm of the additive
noise to the input increases, perturbation in the output may
be less controllable. Table 4 and Figs. 9 and 10 indicate that
changes in the output may affect test accuracy.
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Table 4 Test accuracy (%)

. . Dataset Depth ‘With no noise With unstructured noise With structure noise
with corrupted test images of
ResNet-D and ResNet-S c=¢e¢=0 o =0.02 o =0.05 e =025 e =0.75
(a) ResNet-D

CIFAR-10 18 88.02 83.52 50.55 83.40 41.24

36 90.74 85.48 56.70 84.54 35.18

54 91.16 86.78 63.77 85.78 32.07

72 91.79 86.95 61.73 86.95 40.25

CIFAR-100 18 59.04 46.15 16.01 55.68 29.92

36 64.27 51.36 24.08 60.53 32.93

54 66.78 52.82 23.08 62.55 33.17

72 68.70 55.42 26.38 64.02 34.84

(b) ResNet-S

CIFAR-10 11 87.73 82.43 52.44 82.24 33.66

20 88.29 83.22 56.51 82.94 34.93

29 88.05 83.68 55.82 83.50 36.80

38 89.00 85.67 59.86 83.58 34.13

CIFAR-100 11 57.81 45.65 21.57 54.90 34.78

20 61.01 47.18 21.09 57.93 37.17

29 61.20 54.72 31.66 58.15 35.63

38 65.05 53.56 22.99 61.02 36.66

Each network is trained on the uncorrupted training images of the dataset, and is evaluated using the
learned parameters from the last training step on corrupted test images which are obtained via Eq. (28)

(b) CIFAR-100.

(a) CIFAR-10.

Fig.8 The structured noise x, used in the experiments in Table 4.
The use of x, is defined in Eq. (28b). a A test image in CIFAR-10
with label “ship.” b A test image in CIFAR-100 with label “forest”

5 Discussion

We have provided a relationship between ResNet (or other
networks with skip-connections) to an optimal control prob-
lem with differential inclusions and used this connection
to gain some insights into the behavior of the network. We
have shown that the system is well-posed and have provided
growth bounds on the features. The continuous-time analysis
is helpful in interpreting the success of networks with skip
connections. For example, since the forward flow of well-
posed dynamical systems will have regular paths between
inputs and outputs, we should expect a similar result for

very deep networks. This is likely a reason why DNNs with
skip-connections generalize well, since similar inputs should
follow similar paths and the skip-connections make the paths
more regular.

In practice, ResNet and other DNNs have additional lay-
ers which are not currently captured by the optimal control
formulation (for example, normalization and pooling). In
this setting, we provided stability bounds for the entire net-
work as a function of each of the layers’ learnable param-
eters. In some cases, the network is stable regardless of its
depth due to structural constraints or regularization. The
constraints may also smooth the energy landscape so that
the minimizers are flatter, which will be considered in future
work.

It is also worth noting that ResNet and other DNNs are
often “stabilized” by other operations. From experiments,
one can observe that batch normalization has the additional
benefit of controlling the norms of the features during for-
ward propagation. Without batch normalization and with-
out strong enough regularization, the features will grow
unboundedly in the residual blocks. It would be interesting
to analyze the role of different stabilizers in the network on
the network’s ability to generalize to new data.

Acknowledgements The authors acknowledge the support of AFOSR,
FA9550-17-1-0125 and the support of NSF CAREER grant #1752116.
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(c) = with structured noise (first

Fig.9 The trained 36-layer ResNet-D on corrupted test images from
CIFAR-10. a Three noise-free test images x and the predicted prob-
ability distributions, b x with unstructured noise (i.e., x +# with

A DNN Operations in Vector Form

In this section, we provide definitions of a few DNN opera-
tions in vector form, as well as some basic properties.

Notations

Given a feature x € R4 et x; denote the ith channel of
x, 1.e.,

x= (xl,xz,...,xd) ,  withy; € R™ foralli=1,2,....d,

and let x; ik denote the (i, j, k)th element in x. Given a feature
K € Rmxdixdy et K, ; denote the (i, j)th subfilter of K, i.e.,
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row: € = 0.25; second row: € = 0.75).

n ~ MO,6?)) and the predicted probability distributions, ¢ x with
structured noise (i.e., x + ex, with x, shown in Fig. 8a) and the pre-
dicted probability distributions

Kl,l K1,2 Klsdz
k= | Ko Kop o K,
Ky Kg o o Ky,

withKl-J- e R™foralli=1,2,...,djand j=1,2,...,d,.

Definition 1 Vectorization. Let x be a feature in R4,
The vectorization of x, denoted by X := vec(x), is a vector
in R™4 such that

X(k—l)hw+(i—1)w+j = Xijko

foralli=1,2,...,h,j

,2,...,w,andk=1,2,....,d.
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Fig. 10 The trained 20-layer ResNet-S on corrupted test images from
CIFAR-10. a Three noise-free test images x and the predicted prob-
ability distributions, b x with unstructured noise (i.e., x +# with

Definition 2 2D Convolution. Let x be a feature in R"™>Wxd\,
K be a filter in R™™4*%_and y := K * x be a feature in
RP>wxd; With X = vec(x) and Y = vec(y), one can derive a
linear system Y = AX which describes the forward operation
of the 2D convolution y = K * x. The general form of A is:

A App Apg,
A Ayr Ay Ay,
Ag1 Ao A d,

where each A;; € R™ " is a block-wise circulant matrix
associated with subfilter KJ, (for all i =1,2,...,d, and

7 ~ MO0, 0?)) and the predicted probability distributions, ¢ x with
structured noise (i.e., x 4 ex; with x, shown in Fig. 8a) and the pre-
dicted probability distributions

j=12,...,d,). The expression ¥ = Als:aX denotes that
the stride in the convolution y = K * x is a.

Definition 3 Adjoint of 2D Convolution. Let x be a feature
in R»>"*% and K be a filter in R™>™4*%The adjoint of
the 2D convolution of x and K, denoted by z := KT % x, is
a feature in R"*¢ such that Z = ATX, where X = vec(x),
Z = vec(z), A is the matrix associated with the 2D convolu-
tion operation with K defined in Definition 2, and A” is the
transpose of A in the matrix sense. The adjoint filter K7 is
defined to be the filter whose matrix form is A”.
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Definition 4 Batch Normalization [19]. Let
B = {x1,xP ... xt} be a batch of features. Batch nor-
malization of B is defined as:

i=1,2,...,m, 29)

B(xsy, p) 1=

X I/l
7/( ) ﬁ,

where y := X" x?/mando? 1= Y7 (D — ) /m.

Definition 5 Padding. Let x be a feature in R™"*%_ The
padding operator with parameter d, > d;, denoted by

E : Rd 5 R4, g defined as:
E(vec(x)d,) 1= vec(y), (30)

where y is a feature in R™"*% such that each channel
y; € R™ of y is defined as:

X:_ s
Vi :={Ol ¢

fori=1,2,...,d,

ifd+1<i<d+d, whered := |(d, —d,)/2],
otherwise,

€29

Proposition 1 The padding operator E has the following
norm preserving property: if x € R4 and d, > d,, then

|E(vec(x)sdo) || gomary = lIvecEOl gogmary (32)

forall p €[1, ]

Definition 6 Pooling. Let x be a feature in R>**¢, The 2D
average pooling operator with filter size 2 X 2 and stride size
2, denoted by P, : Riwd _, RI1/21Tw/2d] g defined as:
P,(vec(x)) := vec(y),

[h/2]x[w/2]xd

where y is a feature in R such that each channel

y; € RIM2IXIW/21ig defined as:

1 11 . . .
v = Z((l 1> *xi> withstride2, i=1,2,...,d,

(33)
where zero padding is used to perform the convolution. The
global average pooling operator, P, : R"™ — R, is defined
as:

P (vec()) 1=,

where y is a vector in R such that each component y, of y
is defined as:

h w
= ﬁzz X k=12,...d

i=1 j=1
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Proposition 2 The pooling operators P, and P, are non-
expansive in 2 in the sense that if x € R4, then

1Py (vecC) | 2 mrmiay < [IvecO)|| 2 (minays (34)

1P, (vecC) | 2 ray < [IVecE)|| p2(mimay- (35)

Definition 7 Rectified Linear Unit. The Rectified Linear

Unit (ReLU) o is an operation which is applied component-
wise to any multi-dimensional feature x:

o(x) = max(x, 0).

Proposition3 Letn € Nand1 < p < . The rectified lin-
ear unit is non-expansive and 1-Lipschitz in £P(R") in the
sense that:

||0'(x)||fn(Rn) < “x“fﬁ(R'l) (36)

lo(x) — U(y)”f/)([R") <lx- y”fl)([R") (37)

forall x,y € R".

Remark 4 Using ReLU as the activation function can be
viewed as applying a proximal step in the dynamical system
that defines the forward propagation. Let Ia be the indicator
function of the set R‘i, which is defined as:

0, ifx e RY,
Ips (x) = { o, ifx¢gRY
b +'

The proximal operator associated with Iga is in fact ReLU,
ie.,

(38)

. 1 5
prOXyIRi (-x) = al;)gefé{dln }/IRi(X) + E ”x - y”f?.([Rd)

= projs (x) = 6(x).

and is independent of y > 0.

B Proofs of the Main Results
We provide the proofs of the results presented in this work.

Proof of Theorem 1 Take (H.|-|) = (R% |- ll,2ma)-
I =0, ),

F(t,x(1)) 1= Ay (1) 6(A(0)x(1) + by (1)) — by (), (39)

and C be the multi-valued mapping such that C(¢) = R‘fr for
allz € [0, 7. We will prove that conditions (i)-(iv) in Theo-
rem 7 are satisfied. Without ambiguity, we write || - ||, for

” * ”fZ(Rd).
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(i) Foreachr € [0, T], it is clear that C(¢) is a nonempty
closed subset of H, and by [31], C(¢) is r-prox-regu-
lar.

(i) Setting v(¢) = 0 for all € [0, T yields Eq. (58).

(iii) Letx,y : I - R% By Eq. (39) and the assumptions
that [|A; (]|, |A,(@®)]l, < ¢ for all # > 0 and that ¢ is
contractive (implied by Eq. (37)), we have:

|F(t, x(1)) = F(t, y(0)ll,
= 1Ay (@) o(A,(Dx(1) + by (1))
—Ay@) o(A (D)Y@ + by (D)l
<A@l oA (Dx(2) + b,y (1))
— oA,y + b)),
< MA@, 1A 0x(@) = A )yl
<A@l 1Al 1x(0) = YDl
< cllx@ = y®ll,.-

(iv) Letx : [0,T] — R?. A similar derivation as above
yields:

1E(, x@)l,
= |4y (1) 6 (A, (0)x(1) + by (1)) — b, (D]I,
< A Oll; lo(A,@Ox@) + by O)l; + 16, (D]l
<A@, 1A, Ox@) + b, D, + 16O,
< NAON, (1A,O @l + 16;01l,) + 16201l
< PO (1 +1Ix0l,).

where

P 2= max {c. A ()]l 16,1l + 16Ol }-
Therefore, by Theorem 7, there exists a unique absolutely
continuous solution x to Eq. (6) for almost every x, € [R{‘i.
In particular, by Remark 35, the solution x satisfies that
x(7) € RY for all 7 > 0. O
Proof of Theorem 2 Fix t > 0. Taking the inner product of
Eq. (2) with x yields:

X(OT Sx(0) + 30 A1) 014, (00) + b, (1)
— x(0)"by(1) = x(t) p,(¢)

for some p.(¢) € —aIRi (x). Note that 0 € Ri and0 € aIRi (x).
Thus, by monotonicity of the subdifferential, we have:

X0 p(1) = () = 0)" (p,(1) = 0) < 0,
which implies that:

X(OT Sx(0) + 307 A1) 014, (00) + b, (1)
—x(t)"hy(1) < 0.

Therefore, after re-arranging terms, we have:

df IO\ 4
a( ) = x(1) ax(f)

< =x(O)TAy(1) (A, ()x(t) + b, (1)) + x()T by (0).

By Theorem 1, x(¢) € Ri for a.e. t > 0, and thus, the inner
product x(t)7b,(#) is bounded above by the positive part of
b,(1); that is,

x(07hy(1) < x(1) 6 (by(1)) < XDl [lo By .

Therefore, since RelLU is contractive and o(0) = 0, we have:

a ( Ixoli3
dt\ 2

< A Ol XDl oAy (Dx@) + by ()]l
+ [l lo @)l
< 1A Ol 1@l 1A 0x(2) + by Dl
+ [x@lly llo (b, @)l
< 14,0l 1401 IxOl3
+ (14Ol 15, D1l + oG @)1 ) XDl

Applying Theorem 8 with u = [[x[[3/2, f = 2|A; I, |4l
g = V2(14, 111,11, + o ®ll,). ¢ = [IxO)2/2. 7= 0,

and a = 1/2 yields:
Ix()ll, < [Ix(0)], exp </0 1A (Dl 1A ()l dS)
+/0 (1Al 1611l

t
+llo(by(s))l,) exp (/ A1 (M2 1AMl dr) ds,
which proves Eq. (7).
Next, let x and y be the unique absolutely continuous

solutions to Eq. (2), with different initial values x(0) and
¥(0). Then:
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d d
(520 = 0 + A0 (514, x(0) + b, (@)
—6(A;()Y(1) + by (1)) = p,(2) = p, (1)
for some p,(7) € —()IRi(x) and p (1) € —aluxi()’)- By mono-

tonicity of the subdifferentials, we have:

(1) = y@) () = py() <0,
which implies that:

a0 =0l
dt 2

= 60 =) ($x0 - S50))

< (1) = YOV A300) (oA, (Ox(0) + by (1)
~o (4, 0y0) + b,0)

< 1Al 16 = YOl o (03(0) + b, (1)
~ o (OO + by )l

Therefore, since RelLU is contractive and o(0) = 0, we have:

d { 1x@) = 12
dt 2

< NA, Ol Ix(@®) = yOll; 1A, &) = yD)l,
< 14,01l A0, 1x() = y@)I3

Applying Theorem 8 with u = [[x[12/2, £ = 2[IA, Il 14, ],
g=0,c= ||x(0)||§/2, ty =0, and @ = 1yields:
llx(2) — y(®lI;
t
< [1x(0) = y(O)ll, exp </ 1A (Dl2 1Al d5>,
0

which proves Eq. (8). O

Proof of Theorem 3 Taking the inner product of Eq. (9) with
x yields:

x(z)T%xm + X7 A, (064, (OxX(1) + by (1))

—x"by(1) = x(1) (1)

for some p (f) € —0IR1 (x). Using the same argument as in
the proof of Theorem 2, we have:
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dfIx@3\ 4
a( 5 = x(1) ax(f)

< —x(DT A () (A, (Dx(E) + b, (1) + x(t) 6 (b, (1)).

By Remark 5, x € IR‘fr, and by assumption, A,(¢) > 0. Thus:

x()" Ay (1) (A (Dx(1) + b (1) > 0,

which implies that

x5
%( 2 2) <0 a(by(®) < XDl ey )],

Applying Theorem 8 with u= ||x||§/2, f=0,
g = V206(by)ll5. ¢ = 1xO)]|2/2.1, = 0.and a = 1/2 yields:

t
lx®ll, < [[x0)l, +/ lo by (), ds,
0
which proves Eq. (10). O

To prove Theorem 4, we will first show an auxiliary
result.

Lemma1 Letb € R and define the function G : R¢ - R¢
by:

G(x) :=o(x+D),

where o is ReLU. Then G is monotone in 2 i.e.,

=G - Gy) >0
forall x,y € R4,

Proof This is an immediate consequence of the fact that ¢
is monotone:

(x =G - Gy)
=(x =y (60 +b) = oy +b))
=((x+b) = =b) (c(x+b)—o(y+b)) 2 0.

O

Proof of Theorem 4 Taking the inner product of Eq. (11) with
x yields:

X(Z)T%X(t) + (A (Dx(0) Ay (1) 6(A (Dx(1) + by (1))

—x(0)" by(1) = x(0) p,(1)
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for some p,(7) € —0IR1 (x). Using the same argument as in
the proof of Theorem 2, we have:

2
%< ||x(;)“2) < OO AN

+ by (1) + x(1) by ().
Define the function G : R? — R? by:

G(x(?)) 1= o(x(?) + b, (2)).
By Lemma 1:

— (ADOxX(0)" 6 (ADX(1) + by (1))
= —(A@O)x(1) — 0)"(GAWD)X(1) — G(0))
— (A(Ox(1))" G(0)
< —(AOx(®) o (b, (1)).

Therefore,

a [ Ixoll3
dt\ 2

< ~(AW) 0, (0) + ) by(0)
< KO, [[o (=A@ 0, 0) + b,0)] -

Applying Theorem 8 with u= ||x||§/2 , =0,
g=V20(=ATo(b) +b,), c=[xO)2/2, 1,=0, and
a = 1/2 yields:

kI, < IO, + /0 [ (=A@ 016 + b5 | as,

which proves Eq. (12).

Next, let x and y be the unique absolutely continuous
solutions to Eq. (2), with different initial values x(0) and
¥(0). Using the same argument as in the proof of Theorem 2
yields:

d [ 10 =y
dt 2

= 60 =) (30 - SH0))

< —(AWMX(1) = A@YD)" (o (ADX(1) + by (1)
~a(A(Dy(1) + b (1)) <0,

where the last inequality is due to monotonicity of G. This
proves Eq. (13). O

Proof of Theorem 5, part 1 We will show that
I, < 11l + ¢,

foralln=1,2,...,3m+ 3, where ¢, > 0 is independent of
the x".
For the convolution layer (Layer 0), we show that:

”xl ”fZ(R”lWldl) < ||x0||f2(R"1“’1d0) + ”bO”fZ(Rh]Wldl) (40)

provided that [|A°| y2(gwid) g2 @irmay < 1. By Eq. (16), we
have:

1 0,0 0
[|x ||K72(Rhlwldl) < ||A%x ||fz(Rhlwld1) + b ||fz(Rh1wld1)
< ||A0”fz([R"l”‘ldﬁ)—)fz([Rhl”’I‘]I)”xO”fz([Rh]“’ldO)
+ “b()”fz(Rthldl)

0 0
<|lx ”fZ(Rh]wldo) + b ”fz(Rhlwldl).

For the first stack of ResNet layers (Layer n with
n=1,2...,m), we show that:

||xn+1 ”fz([Rhl“’ldl) < ”x”“fz([Rhl”’]dl) + ||bg||f2(Rh1w1d1)- 41)
Fixi € [h;w,d,]. By Eq. (15), we have:

0 <X =o(x — a’ o(ATX" + b)) + (D)),

where a;.’ denotes the ith row of A7 and (b}); denotes
the ith element of bj. Consider two cases. If
xl'.‘ - aj.’ o-(A'l’x” + b’l‘) + (bg),- < 0, then xlf’“ = 0. Otherwise,
since al’f > 0 component-wise, it holds that

0 <X =X — dlo(Alx" + b)) + (), < X+ (B,

Therefore,

||xn+l ||KZ(R/’1W]‘{]) S ”fl”f’Z(Rhlwldl) + ”bg”fz(R/’lW]‘{])'

Analysis for the remaining ResNet layers, Layers m + 2 to
2m and Layers 2m + 2 to 3m, is the same.

For the first 2d pooling layer (Layer n with n = m + 1),
we show that:

1
(B ||f2([haWzdz) < ||xn||Z2(Rth1d1)' (42)

Observe from Figs. 1, 2, 3 and 4 that ¥ >0 component-
wise for all j =2,3,...,3m+ 2. Since both E(P,(x")) and
0'((A”)|x:2x" + b”) are component-wise nonnegative, by
Eq. (18), we have the following component-wise inequality:
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0 <x™! < E(P,(x")),
and thus by Eqgs. (32) and (34):

||x"+l||f2(wzwzdz) < ”E(Pz(xn))”ﬂ(hasz’z)

= ”P2()‘ﬂ)”f2([Rh2W2d1) < ”xn”fz(R/’lWldl)'
Analysis for the second 2D pooling layer, Layer 2m + 1, is
the same.

For the global pooling layer (Layer n with n = 3m + 1),
we show that:

1
||xn+ ”fZ([Rdz) < ||xn||f2(w3w'3da)- 43)

By Egs. (35) and (36), the functions P, and ReL.U are non-
expansive in 2, and thus:

||xn+l “ﬂ(Rdz) = ||Pg(0'(xn))”f2(Rd3)

< ”U(xn)”ﬂ([Rhw%%) < ”xn||f2(Rh3W3d3)'

For the fully connected layer (Layer n =N — 1 with
N = 3m + 3), we show that:

-1 N-1
¥ 2y < XYM sy + 16Vl 2ey (44)

provided that ||WN-! |l ,2@és)—2ey < 1. Analysis for the
fully connected layer is the same as the analysis for the con-
volution layer. By Eq. (17), we have:

1V 2ey < MW ooy + 188l 2y
< IVl agisyo e I8 o2y
+ 1o 2 @e)
< X 2y + 18V o2 ey

Combining Eqgs. (40)—(44) yields:
1 |2 gey < X0 2y + @0, b1, DY),

where c(b°, b, ..., b"") is a constant depending on the £
norms of the biases in the network:

3m+2

@b, . BNy = Y (1Bl e 45)
n=0

This proves Eq. (21).

Proof of Theorem 5, part 2 We will show that

1 1
X =y 2 < @, llX" =yl 2

@ Springer

foralln =1,2,...,3m + 3, where a,, > 0 is independent of
the x" and y".

For the convolution layer (Layer 0), we have, by Eqgs.
(16) and (20a), that:
”xl - yl ”ﬂ(R’llWldl)

= ”AO 0 _AOyO”t’Z(Rh]Wld])
0 0_ .0 (46)
<A ”KZ(R/”wldo)_,KZ(Rhlwldl)”x -y “fz(RhlwldO)

< ”xO - yOHﬂ(R’HW]doy

For the first stack of residual layers (Layer n with
n=1,2...,m), we have, by Eq. (14), that:

S G e

= |lo(x" — AS o(ATX" + b)) + bY)
—o(y' = Ao (A" + b)) + D)l o riman

<O = AL (A" + b))
— (" = AL (A" + D)l 2

S =3 i) + 145l 2o (AT + b7)
— (A" + Dl irnar)

<= yn||f2([R’*1wldl)
+ 145 2 mmany |ATX" = ATY" || 2 girnanr

< (1 + ”Arf”fZ(Rhlwldl)”Agllﬂ(Rhlwll’l))”xn _yn”ﬂ([R/llWldl),
“n

where we have used the fact that ReLU is 1-Lipschitz in £2
(see Eq. (37)). Analysis for the remaining residual layers,
Layers m + 2 to 2m and Layers 2m + 2 to 3m, is the same.

For the first 2d pooling layer (Layer n with n = m + 1),
we have, by Eq. (18), that:

||xn+1 - yn+1 ”ﬂ(haWzdz)
= ||o-(E(P2(x”)) — (A" ¥ + "))
—6(E(P,(y") = 6 (A" V' + "))
SEWP, (X)) = EP, D 2 gramad
+ IIO'((A")|S:2 X'+ b")
- 6<(An)|s=2 yn + bn) “fz(RI’Z”?"Z)
< ”xn _yn”ﬂ(R"zwzdz)
+ (A" sm2 X" = (A" 2 V' | 2 r2macr

S (1 + ||An ||f2([Rhlwldl )ﬁfZ(hawzdz)) ||x" - yn ”bﬂz(Rhlwld] )2
(48)

fZ(hawzdz )
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where we have used the fact that padding and 2d average
pooling are linear operators and are non-expansive in £
(see Properties 1 and 2). Analysis for the second 2D pool-
ing layer, Layer 2m + 1, is the same.

For the global pooling layer (Layer n with n = 3m + 1),
we have, by Eq. (19), that:

||)Cn+1 —yn+1||f2(ws)
= ”Pg(o'(xn)) - Pg(o'(yn))||f2(Rh3W3d3)
<lloe(x") - 5()’”)||f2(Rh3W343)

< ”xn - yn”ﬂ(Rhs“‘sds)’

(49)

where we have used the fact that global average pooling is a
linear operator and is non-expansive in 2.

For the fully connected layer (Layern =3m +2 =N — 1),
we have, by Egs. (17) and (20b), that

”-XN —)’N”ﬂ(RC)
— ”WN—lxN—l _ WN—lyN—] ”f2([RC)

_ _ _ (50)
< IWM ety ooy IV = Yl ages)
< ”ﬂ_l _yN_l ”g’Z(Rds)-
Combining Eqgs. (46)—(50) yields:
[l — YN”fZ(RC)
S a(AO9Al’ [REN] WN_I) ”xO - y0||f2(R’11“'1d0)’
where a(A°, A, ..., W¥"1)is a constant depending on the £2
norms of the filters and weights in the network:
3m
aa® Al WN Y =TT (1 + 147120450 2). (5D
n=1
This proves Eq. (22). O

To prove Theorem 6, we will first show an auxiliary
result.

Lemma 2 Let A € R™? gnd b € RY. Define the function
F : R? = R by:
F(x) :=x—ATo(Ax + b),

where o is ReLU. If||A]l 2 gay < \/5, then F is non-expansive
int? ie.,

IFGC) = FOll 2wy < 11 = Yl 2y
forall x,y € R,

Proof First note that the activation function s : R? — R%is
applied component-wise. The function is of bounded varia-
tion and has a derivative in the measure sense. Fix an index
i € [d]and consider the ith component F; of F:

F,:R'S> R, F) :=x,—@A"),. c(Ax+b),

where (AT), . denotes the ith row of A”. Its derivative VF; is
defined almost everywhere:

VF; : R > R™, VF,x) 1= ()" —AT Vo(Ax+ D) A, .,

where e; is the ith standard basis in R and A, . denotes the
ith row of A. For any x,y € R?, applying the fundamental
theorem of calculus yields:

1
Fi(x) = Fy(y) = / ((e)" — AT Vo(A((1 - s)y
0
+sx) +D)A; . )(x —y)ds
1
=x -y, —AT</ Vo(A((1 = s)y
0

+5x) + b)ds)A; . (x — y),

and thus:

F(x) = F(y) = (I = A"D(x,y)A) (x — y),

where D(x,y) € R% is the diagonal matrix defined as:

1
D(x,y) := / Vo(A((1 — s)y + sx) + b) ds.
0

Since ReLU is non-decreasing with derivative bounded
in magnitude by 1, we have 0 < D(x,y); <1 for all
i=1,2,...,d. Therefore, the £ norm is equivalent to:

|1 F(x) — F()’)”ﬂ([Rd)
= 11 = ATD(x, Al g2y 1 = Yl o2 gey-

It Al p2gay < \/5, then0 < A, (ATD(x,y)A) < 2, and thus:

||I—ATD(X7)’)A||§2(W) < 1’

which implies that F is non-expansive in £2. O

Proof of Theorem 6, part 1 By the proof of Theorem 5 (part
1), the following bound:
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I 2 < X2 + (52 e({"YY,) 1= 180 sy + 16 2y
holds for the convolution layer, the pooling layers, and the 3m (55)
fully connected layer, where ¢, > 0 is independent of the x". + z <\/£”brll”f2 + ”bg”ﬂ)
We will show that Eq. (52) also hold for ResNet-S layers. =l
For the first stack of residual layers (Layer n with i
This proves Eq. (25). O

n=1,2...,m), we use an alternative approach and show
that:

1
1l p2ggmans

<l 2y + V2B iy + 152 o
(53)
provided that [|A" | p2(giwary < \/5 By Egs. (15) and (37),
we have:

1
(R [P
T
< " = A G (A" + D) | g,

+ ||b;||fz(Rhlwld,).

Define F, : Rividi — Rmvidiby:

F,(x) :=x— (A" o(A"x + b7). (54)

By Lemma 2, if [|A" || p2(girary < \/E, then F, is non-expan-
sive in #2. Therefore,

TP

S NE,C 2 irmary + 1051 2 @mman

S NF, ") = F (Ol p2imany
+ IF, Ol 2@mmary + 105l 2@

<l p2menary + AN GG 2giiman)
+ ”b;”ﬂ(R‘HWV‘I)

< Xl 2 imary + \/£||b']'||f2(ww1d1)
+ ”bgHﬂ(Rhl'ﬂdl)'

Analysis for the remaining residual layers, Layers m + 2 to
2m and Layers 2m + 2 to 3m, is the same.
Combining Egs. (40), (53), and (42)—(44) yields:

1 N—1
1 2 ey < X0 2 ggimiaoy + (@0, b1, .. DY),

where c(b°, b, ..., b""") is a constant depending on the £
norms of the biases in the network:
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Proof of Theorem 6, part 2 The proof is similar to the proof
of Theorem 5 (part 2), except for the residual layers. We will
show that the following bound:

I =yl < @18 =312

also holds for the residual layers, where a,, > 0 is independ-
ent of the x" and y".

For the first stack of residual layers (Layer n with
n=1,2...,m), we have, by Eq. (15), that:
||xn+1 - y"+1 ”ﬂ(Rhlwldl)

= [lo(" — (A 6(A"X" + b)) + b})

—o(y" — (AN (A" + D)) + D)l 2 inmar
< |F,&") = Fn(yn)”ﬂ(RthM])’

where the function F, : R""i% — RMidi is defined
in Eq. (54). By Lemma 2, F, is non-expansive in #2 if
IA™ | 2y < V2. Thus,

1 1
[l =y | 2@mmary < X" = Y| 2y (56)

Analysis for the remaining residual layers, Layers m + 2 to
2m and Layers 2m + 2 to 3m, is the same.
Combining Egs. (46), (56), and (48)—(50) yields:

N
||XN =Y ”ﬂ([RC)
<aA® AL, WY = 30| 2 mioys

where a(A°,A!, ..., WN~1)is a constant depending on the £
norms of the filters and weights in the network:

a(A%, A", WV = (14 IA™ ) (1 + AP ,2).

(57)
This proves Eq. (26). O

C Auxiliary Results

To be self-contained, we include some results in differen-
tial inclusions and differential equations that we used in the
main text.
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Table 5 Classification error of the post-activation ResNet on CIFAR-
10 (Table 6 from [16])

Depth Trainable parameters Test accuracy (%)
20 0.27M 91.25
32 0.46M 92.49
44 0.66M 92.83
56 0.85M 93.03

Definition 8 (page 350, [10]) For a fixed r > 0, the set S is
said to be r-prox-regular if, for any x € S and any & € /\/{;(x)
such that ||§]| < 1, one has x = projg(x + r§), where NE
denotes the limiting normal cone (see [29]).

Theorem 7 (Theorem 1, [10]) Let H be a Hilbert space
with the associated norm || - ||. Assume that C : [0,T] - H
with T > 0 is a set-valued map which satisfies the following
two conditions:

1. foreacht € [0,T], C(t is a nonempty closed subset of )
H which is r-prox-regular;

2. there exists an absolutely continuous function
v . [0,T] - R such that foranyy € H and s,t € [0, T],

|dist(y, C(1)) — dist(y, C(s))| < |[v(2) — v(s)|. (58)
Let F : [0,T] X H — H be a separately measurable map on
[0, T] such that

3. for every n > 0 there exists a nonnegative function
kn € LI([0, T], R) such that for all t € [0, T] and for any
(x,y) € B(0,n) X B(0,n),

lF(z,x) = FE Il < k,@llx = yll.
where B(0, ) stands for the closed ball of radius n cen-
tered at0 € H;

4. there exists a nonnegative function f € L'([0, T],R)
such that for all t € [0, T]and for all x € Uiy 11C(s),

IF@ 0l < BB + [lx]]).
Then, for anyx, € C(T,), where 0 < T, < T, the following
perturbed sweeping process

{ _%x(t) € New&(@®) + F(6,x(0))  ae.t€[0,T]
x(Ty) = Xy

has a unique absolutely continuous solution x, and the solu-
tion x satisfies

” %x(t) + F(t, x(t))”

< +a)p()+

%v(t)‘ ae. te€[0,T],

IF@x)Il < (A +a)p(r) ae.r€[0,T],

where

T T
a 1= |Ixll +exp <2/ B(s) dS)/ (2B8(s)(1 + IIxo1D)
T, T,

).

Remark 5 (Remark 2.1, [20]) If x is a solution to Eq. (6)
defined on [7},, 00), then x(¥) € C(¢) for all ¢ € [T}, o).

+‘%v(s)

The following theorem states a nonlinear generalization
of Gronwall’s inequality.

Theorem 8 (Theorem 21, [8]) Let u be a nonnegative func-
tion that satisfies the integral inequality

u®) <c+ / f(®)uls) + gls)u*(s)ds,

where c > 0,a > 0, fand g are continuous nonnegative func-
tions for ¢ > ¢,

1. For0 < a < 1, we have:

u()'=% < "% exp ((1 —a) / £(s) ds)

+(1- a)/ g(s) exp <(1 - a)/ f(r)dr> ds.

2. Fora =1, we have:

u(t) < cexp <(1 - a)/ f(s) + g(s) ds).

D Classification Accuracy of ResNet
For comparison, we include the computational results of the

post-activation ResNet (see Fig. 2¢) in Table 5. Implementa-
tion details can be found in [16].
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