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Abstract
The residual neural network (ResNet) is a popular deep network architecture which has the ability to obtain high-accuracy 
results on several image processing problems. In order to analyze the behavior and structure of ResNet, recent work has 
been on establishing connections between ResNets and continuous-time optimal control problems. In this work, we show 
that the post-activation ResNet is related to an optimal control problem with differential inclusions and provide continuous-
time stability results for the differential inclusion associated with ResNet. Motivated by the stability conditions, we show 
that alterations of either the architecture or the optimization problem can generate variants of ResNet which improves the 
theoretical stability bounds. In addition, we establish stability bounds for the full (discrete) network associated with two 
variants of ResNet, in particular, bounds on the growth of the features and a measure of the sensitivity of the features with 
respect to perturbations. These results also help to show the relationship between the depth, regularization, and stability of 
the feature space. Computational experiments on the proposed variants show that the accuracy of ResNet is preserved and 
that the accuracy seems to be monotone with respect to the depth and various corruptions.

Keywords  Deep feedforward neural networks · Residual neural networks · Stability · Differential inclusions · Optimal 
control problems

1  Introduction

Deep neural networks (DNNs) have been successful in sev-
eral challenging data processing tasks, including but not 
limited to image classification, segmentation, speech rec-
ognition, and text analysis. The first convolutional neural 
network (CNN), which was used in the recognition of digits 
and characters, was the famous LeNet [25]. The LeNet archi-
tecture included two convolution layers and two fully con-
nected layers. Part of the success of CNNs is their ability to 
capture spatially local and hierarchal features from images. 
In [22], the authors proposed a deeper CNN architecture, 
called AlexNet, which achieved record-breaking accuracy 
on the ILSVRC-2010 classification task [32]. In addition to 
the increased depth (i.e., the number of layers), AlexNet also 
used rectified linear unit (ReLU) as its activation function 

and overlapping max pooling to downsample the features 
between layers. Over the past few years, the most popular 
networks: VGG [35], GoogleNet [38], ResNet [16, 17], 
FractalNet [23], and DenseNet [18], continued to introduce 
new architectural structures and increase their depth. In 
each case, the depth of the network seems to contribute to 
the improved classification accuracy. In particular, it was 
shown in [16, 17] that deeper networks tended to improve 
classification accuracy on the common datasets (CIFAR 10, 
CIFAR 100, and ImageNet). It is not unusual for DNNs to 
have thousands of layers!

Although DNNs are widely successful in application, our 
understanding of their theoretical properties and behavior 
is limited. In this work, we develop connections between 
feedforward networks and optimal control problems. These 
connections are used to construct networks that satisfy some 
desired stability properties. To test the ideas, we will focus 
on the image classification problem. Let D be a set of images 
which are sampled from n distinct classes. The goal of the 
classification problem is to learn a function whose output 
y ∈ ℝ

n predicts the correct label associated with the input 
image x ∈ D . The jth component of y represents the prob-
ability of x being in Class j. It is worth noting that the image 
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classification problem is an example of a high-dimensional 
problem that can be better solved by DNN than other stand-
ard approaches. One possible reason for this is that the map-
ping from images to labels represented by a neural network 
may generalize well to new data [1, 24].

As the network depth increases, several issues can occur 
during the optimization (of network parameters). Take for 
example the (supervised) image classification problem, 
where one learns a network by optimizing a cost function 
over a set of parameters. Since the parameters are high-
dimensional and the problem is non-convex, one is limited 
in their choice of optimization algorithms [4]. In addition, 
the size of the training set can affect the quality and stability 
of the learned network [4]. The nonconvexity of the opti-
mization problem may yield many local minimizers, and 
in [21] it was argued that sharp local minimizer could pro-
duce networks that are not as generalizable as the networks 
learned from flatter local minimizers. In [26], the authors 
showed that (visually) the energy landscape of ResNet and 
DenseNet is well-behaved and may be flatter than CNNs 
without shortcuts. Another potential issue with training 
parameters of deep networks involves exploding or vanish-
ing gradients, which has been observed in various network 
architectures [2]. Some partial solutions have been given by 
using ReLU as the activation function [32] and by adding 
identity shortcuts [16, 17]. In addition, networks can be sen-
sitive to the inputs in the sense that small changes may lead 
to misclassification [3, 13, 39]. This is one of the motiva-
tions for providing a quantitive measure of input-sensitivity 
in this work.

Recently, there have been several works addressing the 
architecture of neural networks as the forward flow of a 
dynamical system. By viewing a neural network as a dynam-
ical system, one may be able to address issues of depth, 
scale, and stability by leveraging previous work and theory 
in differential equations. In [45], the connection between 
continuous dynamical systems and DNNs was discussed. 
In [14], the authors proposed several architectures for deep 
learning by imposing conditions on the weights in residual 
layers. The motivation for the architectures in [14] directly 
came from the ordinary differential equation (ODE) for-
mulation of ResNets (when there is only one activation per 
residual layer). For example, they proposed using a Ham-
iltonian system, which should make the forward and back 
propagation stable in the sense that the norms of the fea-
tures do not change. There could be more efficient ways to 
compute the back propagation of DNNs based on Hamilto-
nian dynamics, since the dynamics are time-reversible [5]. 
Reversible networks have several computationally beneficial 
properties [12]; however, layers such as batch normalization 
[19] may limit their use. The main idea of batch normali-
zation is to normalize each training mini-batch by reduc-
ing its internal covariate shift, which does not preserve the 

Hamiltonian structure (at least directly). In a similar direc-
tion, ResNet-based architectures can be viewed as a control 
problem with the transport equation [27]. In [33], the authors 
designed networks using a symmetric residual layer which is 
related to parabolic and hyperbolic time-dependent partial 
differential equations, which produced similar results to the 
standard ResNet architecture. In [44], the authors formulated 
the population risk minimization problem in deep learning 
as a mean-field optimal control problem and proved opti-
mality conditions of the Hamilton–Jacobi–Bellman type and 
the Pontryagin type. It is worth noting that some theoretical 
arguments connecting a ResNet with one convolution and 
one activation per residual layer to a first-order ODE are 
provided in [40].

In image classification, the last operation is typically an 
application of the softmax function so that the output of 
the network is a vector that represents the probability of 
an image being in each class; however, in [43] a harmonic 
extension is used. The idea in [43] is to learn an appropriate 
interpolant as the last layer, which may help to generalize 
the network to new data. In [30], the authors proposed a 
Lipschitz regularization term to the optimization problem 
and showed (theoretically) that the output of the regularized 
network converges to the correct classifier when the data sat-
isfies certain conditions. In addition, there are several recent 
works that have made connections between optimization in 
deep learning and numerical methods for partial differential 
equations, in particular, the entropy-based stochastic gradi-
ent descent [6] and a Hamilton–Jacobi relaxation [7]. For 
a review of some other recent mathematical approaches to 
DNN, see [42] and the citations within.

1.1 � Contributions of this Work

In this work, we connect the post-activation ResNet (Form 
(a) in [17]) to an optimal control problem with differential 
inclusions. We show that the differential system is well-
posed and provide explicit stability bounds for the optimal 
control problem in terms of learnable parameters (i.e., the 
weights and biases). In particular, we provide a growth 
bound on the norm of the features and a bound on the sen-
sitivity of the features with respect to perturbations in the 
inputs. These results hold in the continuous-time limit (i.e., 
when the depth of the network goes to infinity) and in the 
discrete setting where one includes all other operations such 
as batch normalization and pooling.

Since the stability results measure how sensitive the 
feature space is to perturbations on the input image, these 
results likely relate to the output accuracy. Based on the the-
ory, we investigate two variants of ResNet that are developed 
in order to improve the two stability bounds. The variants are 
constructed by altering the architecture of the post-activation 
ResNet and the associated optimization problem used in the 
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training phase. We show in the continuous-time limit and 
in the discrete network that the variants reduce the growth 
rate bounds by decreasing the constants in the stability con-
ditions. In some cases, the constants become invariant to 
depth. Computational experiments on the proposed variants 
show that the accuracy of ResNet is preserved. It is also 
observed that for the image classification problem, ResNet 
and its variants monotonically improve accuracy by increas-
ing depth, which is likely related to the well-posedness of 
the optimal control problem.

1.2 � Overview

This paper is organized as follows. In Sect. 2, we analyze 
the forward stability of ResNet and its two variants in con-
tinuous-time by relating them to optimal control problems 
with differential inclusions. In Sect. 3, we prove the for-
ward stability of the variants in the discrete setting, which 
includes the full network structure. In Sect. 4, experimental 
results are presented and show that the variants preserve 
the same accuracy as ResNet, with stronger stability bounds 
theoretically.

2 � Continuous‑Time ResNet System

The standard (post-activation) form of a residual layer can 
be written as an iterative update defined by:

where xn ∈ ℝ
d is a vector representing the features in Layer 

n, An
i
∈ ℝ

d×d (for i = 1, 2 ) are the weight matrices, bn
i
∈ ℝ

d 
(for i = 1, 2 ) are the biases, and � is the rectified linear unit 
(ReLU). The parameter 𝜏 > 0 can be absorbed into the 
weight matrix An

2
 ; however, when scaled in this way, the 

iterative system resembles a forward Euler update applied 
to some differential equation. The connection between the 
residual layers (for a single activation function) and differ-
ential equations has been observed in [33].

By setting the (outer) activation in Eq. (1) to ReLU, one 
is imposing the “obstacle” x ≥ 0 to the system; see for exam-
ple [28, 34, 41] and the citations within. Letting � → 0+ in 
Eq. (1) leads to a differential inclusion:

where I
ℝ

d
+
 is the indicator function of the set ℝd

+
 [see 

Eq. (38)]. It is possible to show that Eq. (1) is a consist-
ent discretization of Eq.  (2). Equation (1) is essentially 
the forward-backward splitting [11, 36], where the pro-
jection onto the “obstacle” is implicit and the force 
A2(t) �(A1(t)x(t) + b1(t)) + b2(t)) is explicit.

(1)xn+1 = �(xn − � An
2
�(An

1
xn + bn

1
) + � bn

2
),

(2)−
d

dt
x(t) − A2(t) �(A1(t)x(t) + b1(t)) + b2(t) ∈ �I

ℝ
d
+
(x),

2.1 � Connection of Neural Networks to Optimal 
Control Problems

Let D be a dataset with C classes of images. Given an input 
image x0 ∈ D to a nerual network, let y ∈ ℝ

C be the one-hot 
encoding label vector associated with x0 , and let xN ∈ ℝ

C be 
the output of the network. The label vector y can be consid-
ered as the true distribution of x0 over the C possible classes. 
To obtain a predicted distribution of x0 from the network and 
compare it with y, typically one applies the softmax normali-
zation function to the output xN of the network, so that the 
loss to be minimized for each input x0 ∈ D is H(y, S(xN)) , 
where H and S denote the cross entropy and softmax func-
tions, respectively.

Let I  be the index set for the layers in the network. Given 
an index n ∈ I  , let An and bn be the weight and bias in Layer 
n, respectively (when applicable). To minimize the classifi-
cation error of the network, one usually solves the following 
optimization problem:

where xn satisfying Eq. (1) and Rn represents the regularizer 
for An.

The time parameter, t > 0 , in Eq. (2) refers to the con-
tinuous analog of the depth of a neural network (without 
pooling layers). In the limit, as the depth of a neural network 
increases, one could argue that the behavior of the network 
(if scaled properly by � ) should mimic that of a continuous 
dynamical system. Thus, the training of the network, i.e., 
learning An and bn given x0 and xN , is an optimal control 
problem. Therefore, questions on the stability of the forward 
propagation, in particular, do the features remain bounded 
and how sensitive are they to small changes in the input 
image, are also questions about the well-posedness of the 
continuous control problem.

2.2 � Stability of Continuous‑time ResNet

In this section, we will show that the continuous-time 
ResNet system is well-posed and that the forward propaga-
tion of the features is stable in the continuous-time. First, 
note that the function I

ℝ
d
+
 is convex, and thus, its subdiffer-

ential �I
ℝ

d
+
(x) is monotone and is characterized by a normal 

cone:

By Remark 4, we have prox�I
ℝ
d
+

(x) = �(x) . Therefore, Eq. (1) 

is indeed a discretization of Eq.  (2), where the 

(3)
min
An, bn

for n ∈ I

∑
x0∈D

H(y, S(xN)) +
∑
n∈I

Rn(A
n),

�I
ℝ

d
+
(x) = N

ℝ
d
+
(x) ∶= {� ∈ ℝ

d ∶ ⟨�, y − x⟩ ≤ 0 for all y ∈ ℝ
d
+
}.
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subdifferential of the indicator function is made implicit by 
the proximal operator (projection onto ℝd

+
 ). We will use both 

the subdifferential and normal cone interpretation to make 
the arguments more direct.

Consider differential inclusions of the form:

which have been studied within the context of optimal con-
trol and sweeping processes. The existence of solutions are 
given by Theorem 1 in [10] (see “Appendix  C”). The con-
tinuous-time ResNet, characterized by Eq. (2), is a particular 
case of Eq. (4) with the forcing function F set to:

Thus, Eq.(2) is equivalent to:

The following result shows that under certain conditions, 
Eq. (5) has a unique absolutely continuous solution in ℝd

+
.

Theorem  1  (Continuous-time ResNet, existence of 
solutions) Let c > 0 , x ∶ ℝ+ → ℝ

d  , Ai ∶ ℝ+ → ℝ
d×d  , 

bi ∶ ℝ+ → ℝ
d (for i = 1, 2 ), and � be the rectified linear 

unit. Assume that

 for all t > 0 . Then for any x0 ∈ ℝ
d
+
 , the following dynamic 

process:

 has one and only one absolutely continuous solution x ∈ ℝ
d
+
.

Theorem 1 shows that in the continuous-time case, there 
exists only one path in the feature space. Thus, as the number 
of residual layers increases in a network, we should expect 
the residual layers to approximate one consistent path from 
the input to the output. The requirement is that the matrices 
A1 and A2 are bounded in �2 , which is often imposed in the 
training phase via the optimization problem (e.g., choos-
ing a proper form of Rn in Eq. (3)). The stability bounds in 
the following theorems are derived from the subdifferential 
interpretation.

Theorem 2  (Continuous-time ResNet, stability bounds) 
With the same assumptions as in Theorem 1, the unique 

(4)−
d

dt
x(t) ∈ N

ℝ
d
+
(x(t)) + F(t, x(t)),

F(t, x(t)) ∶= A2(t) �(A1(t)x(t) + b1(t)) − b2(t).

(5)

−
d

dt
x(t) ∈ N

ℝ
d
+
(x(t)) + A2(t) �(A1(t)x(t) + b1(t)) − b2(t).

‖A1(t)‖�2(ℝd) ‖A2(t)‖�2(ℝd) ≤ c

(6)

{
−

d

dt
x(t) ∈ N

ℝ
d
+
(x(t)) + A2(t) 𝜎(A1(t)x + b1(t)) − b2(t) a.e. t > 0

x(0) = x0

absolutely continuous solution x to Eq. (2) is stable in the 
following sense:

  for all t > 0 . In addition, if y   is the unique absolutely con-
tinuous solution to Eq.  (2)  with input y(0), then for all t > 0,

Equation (7) provides an upper-bound to the growth rate 
of the features in the continuous-time network, and Eq. (8) 
shows that the sensitivity of the network to perturbations 
depends on the size of the weight matrices. Without any 
additional assumptions on the weights Ai and/or biases bi 
(for i = 1, 2 ) (except for uniform-in-time boundness), the 
solution to Eq. (2) and the perturbations can grow exponen-
tially with respect to the depth. By testing a standard ResNet 
code,1 we observed that without batch normalization, the 
norms of the features increase by a factor of 10 after about 
every 3–4 residual layers. Thus, in very deep networks there 
could be features with large values, which are typically not 
well-conditioned. It is interesting to note that with batch nor-
malization, experiments show that the norms of the features 
grow but not as dramatically.

In practice, regularization is added to the optimization 
problem (often by penalizing the norms of the weight matri-
ces) so that the trained network does not overfit the training 
data. In addition, Theorem 2 shows that for a deep network, 
the stability of the continuous-time dynamics depends on 
the norms of the weight matrices Ai . Thus, with sufficient 
regularization on the weights, the growth rate can be con-
trolled to some extent.

2.3 � Continuous‑Time Stability of Variants of ResNet

There are multiple ways to control the feature-norms in 
deep ResNets. The results in Sect. 2.2 indicate that for a 

(7)

‖x(t)‖2 ≤ ‖x(0)‖2 exp

�
�

t

0

‖A1(s)‖2 ‖A2(s)‖2 ds
�

+ �
t

0

�‖A2(s)‖2 ‖b1(s)‖2

+ ‖�(b2(s))‖2
�
exp

�
�

t

s

‖A1(r)‖2 ‖A2(r)‖2 dr
�
ds

(8)

‖x(t) − y(t)‖2
≤ ‖x(0) − y(0)‖2 exp

�
�

t

0

‖A1(s)‖2‖A2(s)‖2 ds
�
.

1  We used the open-sourced code from the TFLearn library on 
GitHub.
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general residual layer, the regularization will control the 
growth rates. Alternatively, by changing the structure of 
the residual layer through constraints on Ai , the dynamics 
will emit solutions that satisfy smaller growth bound. In 
Sect. 4, computational experiments show that the variants 
produce similar accuracy results to the original ResNet 
[16] with provably tighter bounds.

We propose two variants on the residual layer, which 
improve the stability estimates from Sect. 2.2. The first 
form improves the feature-norm bound by imposing that 
A2(t) ∈ ℝ

d×d
+

:

The network associated with residual layers characterized 
by Eq. (9) will be called ResNet-D. This is in reference to 
the decay of the system when the biases are identically zero 
for all time. When the biases are nonzero, one can show the 
following improved bound (as compared to Theorem 2).

Theorem 3  With the same assumptions as in Theorem 1, the 
unique absolutely continuous solution x to Eq. (9) is stable 
in the following sense:

 for all t > 0.

Theorem 3 shows that the continuous-time feature vec-
tor does not grow as quickly as the depth of the network 
increases. In order to improve Eq. (8), which measures 
the sensitivity of the features to changes in the inputs, we 
impose a symmetric structure to the weights:

We refer to the network associated with residual layers char-
acterized by Eq. (11) as ResNet-S. The forcing function:

in Eq. (11) was proposed in [5, 33] and is motivated by 
parabolic differential equations. Similarly, Eq. (11) is the 
nonlinear parabolic differential equation which (under cer-
tain conditions) arises from an obstacle problem using the 
Dirichlet energy [28, 34, 41]. The following result shows 
that Eq. (11) improves the bounds in Theorem 2.

Theorem 4  With the same assumptions as in Theorem 1, the 
unique absolutely continuous solution x to Eq. (11) is stable 
in the following sense:

(9)
−

d

dt
x(t) − A2(t) �(A1(t)x(t) + b1(t))

+ b2(t) ∈ �I
ℝ

d
+
(x) with A2(t) ∈ ℝ

d×d
+

.

(10)‖x(t)‖2 ≤ ‖x(0)‖2 + �
t

0

‖��b2(s)
�‖2 ds

(11)−
d

dt
x(t) − A(t)T �(A(t)x(t) + b1(t)) + b2(t) ∈ �I

ℝ
d
+
(x).

F(t, x) = −A(t)T �(A(t)x(t) + b1(t))

for all t > 0 . In addition, if y is the unique absolutely con-
tinuous solution to Eq. (11) with input y(0), then for all t > 0,

Equation (13) shows that the features are controlled by 
perturbations in the inputs, regardless of the depth.

The proofs of Theorems 1–4 are provided in 
“Appendix  B.”

3 � Discrete Stability of ResNet‑D 
and ResNet‑S

Since DNNs are discrete, in this section we provide discrete 
stability bounds on the features, similar to those in Sect. 2.

3.1 � Architecture of ResNet‑D and ResNet‑S

We will discuss the architecture used for the problem of 
image classification and the associated architecture of 
ResNet-D and ResNet-S. The base structure of the net-
works is shown in Fig. 1, which is a variant of the standard 
architecture for ResNets [16]. The input to a network is 

(12)

‖x(t)‖2 ≤ ‖x(0)‖2 + �
t

0

����
�
−A(s)T�(b1(s)) + b2(s)

����2 ds

(13)‖x(t) − y(t)‖2 ≤ ‖x(0) − y(0)‖2.

Input: image

Convolution layer

A stack of m residual layers 

2D Pooling layer

Image size: 

Feature size: 

Output: logits

A stack of m-1 residual layers 

2D Pooling layer

A stack of m-1 residual layers 

Global pooling layer

Fully connected layer

Logits size: 

Layer 0: 

Layers 2m+2 to 3m: 

Layer m+1: 

Layers m+2 to 2m: 

Layer 2m+1: 

Layers 1 to m: 

Layer 3m+1: 

Layer 3m+2: 

Feature size: 

Feature size: 

Feature size: 

Feature size: 

Feature size: 

Feature size: 

Fig. 1   Architecture of ResNet-D and ResNet-S for the image classi-
fication problem. The input image is of size h1 × w1 × d0 , and is con-
tained in a dataset with C classes. The dimension of the features is 
changed through the network, where h

i+1 = ⌈h
i
∕2⌉ , w

i+1 = ⌈w
i
∕2⌉ , 

and d
i+1 = 2d

i
 (for i = 1, 2)
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an image in ℝh1×w1×d0 , and the first layer in the network is 
a convolution layer (shown in Fig. 3a), which increases 
the depth of the input image to d1 . The convolution layer 
is followed by a stack of m residual layers, which take 
one of the two forms detailed in Fig. 2a, b. For compari-
son, we provide the original form of the residual layer 
in [16] in Fig. 2c. The residual block is followed by a 
2D pooling layer (shown in Fig. 4a), which halves the 
resolution and doubles the depth of the incoming feature 
(i.e., h2 = ⌈h1∕2⌉ , w2 = ⌈w1∕2⌉ , and d2 = 2d1 ). The result-
ing feature is then processed by a stack of m − 1 residual 
layers, a 2D pooling layer (i.e., h3 = ⌈h2∕2⌉ , w3 = ⌈w2∕2⌉ , 
and d3 = 2d2 ), and another stack of m − 1 residual lay-
ers. Finally, we reduce the dimension of the resulting 

feature by adding a global average pooling layer (shown 
in Fig. 4b) and a fully connected layer (shown in Fig. 3b).

For simplicity of the subsequent analysis, we will use the 
vector form of the operations. Definitions are provided in 
“Appendix  A.” Let x0 be the vector representing the input to 
the network, i.e., x0 ∈ ℝ

h1w1d0 . The equations that characterize 
the layers in Figs. 2, 3 and 4 are defined as follows:

(14)

the ResNet-D layer: xn+1 ∶= �(xn − An
2
�(An

1
xn + bn

1
)

+ bn
2
) with An

2
≥ 0,

(15)
the ResNet-S layer: xn+1 ∶= �(xn − (An)T �(Anxn

+ bn
1
) + bn

2
),

Convolution with 

Batch normalization

ReLU

Convolution with 

Batch normalization
( , )

Subtraction

ReLU

Bias

Bias

ResNet-D (Eq. (14))

Convolution with 

Batch normalization

ReLU

Convolution with 

Batch normalization
( , )

Subtraction

ReLU

Bias

Bias

ResNet-S (Eq. (15))

Convolution with 

Batch normalization

ReLU

Convolution with 

Batch normalization

Subtraction

ReLU

Bias

Bias

Original [18](a) (b) (c)

Fig. 2   The residual layers

Fig. 3   The linear layers

Convolution

Bias

Convolution (Eq. (16))

Multiplication

Bias

Fully Connected (Eq. (17))(a) (b)
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where xn is the input to Layer n, An is the matrix associated 
with the 2D convolution operation with Kn in Layer n (when 
applicable), bn is the bias in Layer n, and Wn is the weight 
matrix in the fully connected layer.

The forward propagation of the network is shown in 
Figs. 5 and 6, which display (channel-wise) the output fea-
ture of the indicated layer/block of ResNet-D and ResNet-S, 
respectively. As an example, the input image is a hand-writ-
ten digit “2” from the MNIST dataset. The first convolu-
tion layer (Layer 1) returns low-level features of the digit 
(Figs. 5a, 6a). The low-level features are then processed 
by a stack of residual layers (Layers 1 to m), which yields 
mid-level features of the digit (Figs. 5b, 6b). The mid-level 
features are then downsampled by a 2D pooling layer (Layer 
m + 1 ) and processed by a stack of residual layers (Layers 
m + 2 to 2m), which yields high-level features of the digit 
(Figs. 5c, 6c). Similarly, after a 2D pooling layer (Layer 
2m + 1 ) and a stack of ResNet layers (Layers 2m + 2 to 3m), 
the high-level features become linearly separable classifiers 
(Figs 5d, 6d). The global pooling layer (Layer 3m + 1 ) and 
the fully connected layer (Layer 3m + 2 ) convert the linearly 
separable classifiers to a vector that can be used to extract a 

(16)the convolution layer: xn+1 ∶= Anxn + bn,

(17)the fully connected layer: xn+1 ∶= Wnxn + bn,

(18)
the 2D pooling layer: xn+1 ∶= �

(
E(P2(x

n))

−�
(
(An)|s=2 xn + bn

))
,

(19)the global pooling layer: xn+1 ∶= Pg(�(x
n)),

predicted probability distribution of the input. For example, 
the predicted probability distributions in Figs. 5e and 6e are 
obtained by applying the softmax normalization function to 
the output of the fully connected layer, where the value of 
the ith bar represents the predicted probability that the input 
digit is i (for i = 0, 1,… , 9).

Note that the mid-level features resemble images fil-
tered by edge detectors, similar to CNNs and the standard 
ResNet. Experimentally, we see that a ResNet-D layer pro-
duces a kernel K1 which looks like a gradient stencil and 
a kernel K2 which acts as a rescaled averaging filter. Thus, 
the first block in ResNet-D resembles a nonlinear (possibly 
non-local) transport system. The non-locality comes from 
the smoothing process determined by K2 . In ResNet-S, 
since the kernels K from the first residual block are gradi-
ent-like stencils, the first block in ResNet-S resembles a 
nonlinear diffusive system.

3.2 � Forward Stability of ResNet‑D and ResNet‑S

The stability of forward propagation through ResNet-D 
and ResNet-S can determine both the sensitivity of the 
network to changes in the inputs and the level of consist-
ency in various computations. If the norms of the weight 
matrices are small enough, then both the output of the 
network and changes in the features can be controlled by 
the inputs. In particular, we have the following (discrete) 
stability results for ResNet-D and ResNet-S.

Theorem 5  (Forward Stability, ResNet-D) Consider a net-
work defined in Fig. 1, where the ResNet layers are defined 

Increasing depth by convolution

2D average pooling

Batch normalization

ReLU

Increasing depth by padding

Subtraction

ReLU

2D Pooling (Eq. (18))

Batch normalization

ReLU

Global average pooling

Global Pooling (Eq. (19))(a) (b)

Fig. 4   The pooling layers
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in Fig. 2a. Let x0 be the vectorization of the input to the 
network, i.e., x0 ∈ ℝ

h1w1d0, and for each filter Kn in Layer n 
(when applicable), let An be the matrix associated with the 
2D convolution operation with Kn. Assume that 

(20a)‖A0‖�2(ℝh1w1d0 )→�2(ℝh1w1d1 ) ≤ 1,

(20b)‖W3m+2‖�2(ℝd3 )→�2(ℝC) ≤ 1.

 Let xn be the input to Layer n and xN be the output of the 
network, where N ∶= 3m + 3. Then the network is �2-stable 
in the sense that:

where c(b0, b1,… , bN−1) is a constant depending on the 
�2 norms of the biases in the network; see Eq.  (45). if 
y0 ∈ ℝ

h1w1d0 is the vectorization of another input, then:

(21)‖xN‖�2(ℝC) ≤ ‖x0‖�2(ℝh1w1d0 ) + c(b0, b1,… , bN−1),

Input.

Output of the convolution layer.

Output of the first ResNet block.

Output of the second ResNet block.

Output of the third ResNet block.

Predicted probability distrubution.

(a)

(b)

(c)

(d)

(e)

(f)

Fig. 5   Forward propagation of ResNet-D

(a) Input.

(b) Output of the convolution layer.

(c) Output of the first ResNet block.

(d) Output of the second ResNet block.

(e) Output of the third ResNet block.

(a) Input.

(b) Output of the convolution layer.

(c) Output of the first ResNet block.

(d) Output of the second ResNet block.

(f) Predicted probability distribution.

Fig. 6   Forward propagation of ResNet-S
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 where a(A0,A1,… ,WN−1) is a constant depending on the �2 
norms of the filters and weights in the network; see Eq. (51).

Note that the bounds on the growth of the features, 
Eq. (21), do not directly depend on the filters and weights, 
since the system (without the biases) decays. The sensi-
tive bound, Eq. (22), depends on the �2 norms of the filters 
and weights, which are controlled by the regularizer [see 
Eq. (3)]. For ResNet-S, we can improve the constant in the 
sensitivity bound as follows.

Theorem 6  (Forward Stability, ResNet-S) Consider a net-
work defined in Fig. 1, where the residual layers are defined 
in Fig. 2b. Let x0 be the vectorization of the input to the 
network, i.e., x0 ∈ ℝ

h1w1d0, and for each filter Kn in Layer n 
(when applicable), let An be the associated matrix. Assume 
that 

 and that for each filter Kn in a residual layer:

where ‖ ⋅ ‖𝓁2 denotes the induced (matrix) norm. Let xn be 
the input of Layer n and xN be the output of the network, 
where N ∶= 3m + 3. Then the network is �2-stable in the 
sense that:

where c(b0, b1,… , bN−1) is a constant depending on the 
�2 norms of the biases in the network; see Eq.  (55). If 
y0 ∈ ℝ

h1w1d0 is the vectorization of another input, then:

where a(A0,A1,… ,WN−1) is a constant independent of the 
depth of the residual block; see Eq. (57).

Equation (26) is useful since it implies that, as long as one 
constrains the norms of the filters such that ‖An‖�2 ≤ √

2 , 
the network will be stable for arbitrarily many residual 
layers.

The proofs of Theorems 5 and 6 are provided in 
“Appendix  B.”

(22)
‖xN − yN‖�2(ℝC)

≤ a(A0,A1,… ,WN−1) ‖x0 − y0‖�2(ℝh1w1d0 ),

(23a)‖A0‖�2(ℝh1w1d0 )→�2(ℝh1w1d1 ) ≤ 1,

(23b)‖W3m+2‖�2(ℝd3 )→�2(ℝC) ≤ 1,

(24)‖An‖�2 ≤ √
2,

(25)‖xN‖�2(ℝC) ≤ ‖x0‖�2(ℝh1w1d0 ) + c(b0, b1,… , bN−1),

(26)
‖xN − yN‖�2(ℝC) ≤ a(A0,A1,… ,WN−1)‖x0 − y0‖�2(ℝh1w1d0 ),

Remark 1  The conclusions in Theorems 5 and 6 are still 
valid if the �2 norm in Eqs.   (20) and (23) are replaced 
by the Frobenius norm, since given a matrix A, we have 
‖A‖�2 ≤ ‖A‖F.

Remark 2  By Eq. (29), given an input feature x, the output y 
of the following concatenation of operations:

is obtained by:

where the constants � and � depend on the mini-batch con-
taining x. For the forward propogation, if we set Ã ∶= 𝛾A∕𝜎 
and b̃ ∶= − 𝛾𝜇∕𝜎 + 𝛽 , then Eq. (27) can be rewritten as:

To make sure that A satisfies the constraints of Ã , for exam-
ple the correct sign in Eq. (15), we fix the parameters � and 
� in the second batch normalization in the residual layers 
( � = 1 and � = 0 for the second batch normalization in 
Fig. 2b).

4 � Computational Experiments

We test the two proposed networks on the CIFAR-10 and 
CIFAR-100 datasets. The data are preprocessed and aug-
mented as in [16].

All filters in the network are of size 3 × 3 , and we assume 
that the input feature to each layer satisfies the periodic 
boundary condition. The width of each residual block (i.e., 
di in Fig. 1) is 16, 32, and 64, respectively. For the first con-
volution layer, the filters are initialized using the uniform 
scaling algorithm [37]; for the residual layers and the 2D 
pooling layers, the filters are initialized using the variance 
scaling algorithm [15]. The weight in the fully connected 
layer is initialized with values drawn from a normal distri-
bution N(0, �2) , where � = (d3C)

−1 , except that values with 
magnitude more than 2� are discarded and redrawn (i.e., 
the truncated normal distribution). Note that in [9] and the 
citations within, it was shown that under certain conditions 
on a neural network, randomly initialized gradient descent 
applied to the associated optimization problem converges 
to a globally optimal solution at a linear convergence rate.

The biases in the network are initialized to be zero. The 
batch normalization parameters � and � , if trained, are ini-
tialized to be 1 and 0, respectively. The regularizer Rn in 

2D convolution → batch normalization

(27)y ∶=
�(Ax − �)

�
+ �,

y ∶= Ãx + b̃.
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Eq. (3) is listed in Table 1. To impose the constraints in 
Theorems 5 and 6, we regularize the Frobenius norms of the 
filters and weights (see Remark 1). The element-wise con-
straints An

2
≥ 0 in Eq. (14) are imposed directly by adding 

the indicator function IKn
2
≥0 to the regularizer; that is, in each 

gradient descent step, Kn
2
 is projected onto the positive set.

The network is trained using the mini-batch gradient 
descent algorithm, with mini-batch size equal to 128 (i.e., 
391 steps/epoch). The initial learning rate is 0.1, and is 
divided by 10 after every 32,000 training steps. The train-
ing process is terminated after 93,500 training steps. The 
network is validated on the test images after every 500 
training steps.

Remark 3  Our focus in the experiments is to examine the 
stability of the variants of ResNet. We would like to dem-
onstrate that the variants achieve similar accuracy. Thus, we 
fix the hyperparameters (including: depth of the network, 
learning rate and batch size in the optimization, etc.) and 
do not tune them to the data. Better results can be achieved 
with tuning and the inclusion of additional steps, e.g., bot-
tleneck layers.

In Table 2, we list the depth of the network and the 
number of trainable parameters in the optimization prob-
lem with a few different values of m (where m is the size 
of the first residual block). Here, the depth of a network is 
considered to be the number of (unique) filters and weights 
in the network; for example, each ResNet-D layer (Fig. 2a) 
contains two filters, and each ResNet-S layer (Fig. 2b) con-
tains only one filter.

4.1 � Effect of Depth on Test Accuracy

We train the network with different depths and analyze 
the effect of the depth on test accuracy. The resulting test 
accuracies over the training steps are shown in Fig. 7. 
In particular, we calculate the average of the test accu-
racy in the last 5000 training steps and list the results in 

Table 3. It can be seen from Fig. 7 and Table 7 that the 
test accuracy of both ResNet-D and ResNet-S increases as 
the network goes deeper (without any hyperparameter tun-
ing). This result is consistent with the observation in [16] 
that a deeper ResNet tends to have higher test accuracy. 
The monotone improvement of accuracy in depth is likely 
related to the well-posedness of the optimal control prob-
lem [Eq. (6)]. The classification accuracy of the original 
ResNet can be found in “Appendix  D.”

4.2 � Effect of Perturbation on Test Accuracy

We evaluate the trained networks on images with different 
types of perturbation. Given a test image x, its corrupted 
image is obtained via x ↦ x + � , where two types of the 
additive noise � are considered: 

 where x0 is a fixed image chosen from the test images.

(28a)Unstructured: � ∼ N(0, �2),

(28b)Structured: � = �x0,

Table 1   Regularizers in the 
optimization problem defined 
in Eq. (3)

Definitions of the layers are provided in Eqs.  (14)–(19). The indicator function I
K

n

2
≥0 represents the con-

straint Kn

2
≥ 0 , and �

n
 are some nonnegative constants. The regularization parameter �

n
 is set to be 10−4 for 

all n

Layer(s) ResNet-D ResNet-S

The ResNet layers
R
n
=

�
n

2

∑2

i=1
‖vec(Kn

i
)‖2

�2
+ I

K
n

2
≥0 Rn

=
�
n

2

∑2

i=1
‖vec(Kn

i
)‖2

�2

The convolution/pooling layer R
n
= �

n
‖vec(Kn)‖2

�2 R
n
=

�
n

2
‖vec(Kn)‖2

�2

The fully connected layer R
n
= �

n
‖vec(Wn)‖2

�2 R
n
=

�
n

2
‖vec(Wn)‖2

�2

Table 2   Depth of the network and number of trainable parameters in 
the optimization problem

The depth counts the number of filters and weights in the network. 
The trainable parameters in Eq. (3) include all elements in the filters, 
weights, and biases, and the parameters in all batch normalization (if 
trained). The same network has 5760 more parameters on CIFAR-100

m Depth Trainable 
parameters

(a) ResNet-D on CIFAR-10
 3 18 0.223M
 6 36 0.514M
 9 54 0.805M
 12 72 1.100M

(b) ResNet-S on CIFAR-10
 3 11 0.124M
 6 20 0.270M
 9 29 0.416M
 12 38 0.561M
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In Table 4, we list the test accuracy of ResNet-D and 
ResNet-S on perturbed test images, which are evaluated 
using the learned parameters of the network from the last 
training step. Note that the networks are trained on the 
uncorrupted training set. The structured noise x0 used in 
the experiments is shown in Fig.  8 and is added to the 
test images. Different values of � and � are used to vary 
the noise level of � . One can observe from Table 4a that 
when the noise level increases, the test accuracy of ResNet-
D decreases. For low levels of perturbation, the accuracy 
remains high. We observe that deeper networks tend to have 
higher test accuracies after corruption of the test images. 
Similar conclusion can be drawn from Table 4b, in particu-
lar, that a deeper ResNet-S seems to be more robust to cor-
rupted test data.

We illustrate the results in Figs. 9 and 10 using the trained 
36-layer ResNet-D and 20-layer ResNet-S on three test 

images in CIFAR-10. The test images are labeled as “bird,” 
“dog,” and “horse,” respectively. In Figs. 9 and 10, three test 
images and the corresponding corrupted images are shown, 
including the corresponding probability distributions pre-
dicted by the trained networks. One observation is that the 
probability of predicting the true label correctly tends to 
decrease as the corruption level increases. For example, 
consider the case where ResNet-S is applied to the “horse” 
image (the last two columns in Fig. 10). Figure 10a shows 
that the probability that the noise-free image x is a “horse” 
is 0.9985. When random noise � is added to x, i.e., x ↦ x + � 
with � ∼ N(0, �2) , the probability of correctly predicting 
x + � to be a “horse” drops to 0.8750 and 0.7940 (for � equal 
to 0.02 and 0.05, respectively). This is illustrated in Fig. 10b.

When the corruption level increases, the label with the 
second highest predicted probability may change. Take for 
example ResNet-S on the “dog” image (the middle two col-
umns in Fig. 10). Let x be the original “dog” image. When 
random noise � is added to x, the second prediction made by 
the network changes from a “cat” (with probability 0.1410) 
to a “frog” (with probability 0.1717) (as � increases from 
0.02 to 0.05). This is within the stability bounds from 
Sect. 3. When we perturb a test image by another image 
(Fig. 8a), we observe similar stability results under this 
structured form of corruption. This is illustrated on the 
“bird” image in the first two columns of Fig. 9.

Equations (22) and (26) show that perturbation in the out-
put depends on the perturbation in the input and the weight 
matrices in the network. In theory, if the norm of the additive 
noise to the input increases, perturbation in the output may 
be less controllable. Table 4 and Figs. 9 and 10 indicate that 
changes in the output may affect test accuracy.

Fig. 7   Test accuracy of ResNet-D and ResNet-S on CIFAR-10. The test accuracy of both ResNet-D and ResNet-S tends to increase as the depth 
of the network increases

Table 3   Average of the test accuracy in the last 5000 training steps of 
ResNet-D and ResNet-S

 Depth Test accuracy (%)

CIFAR-10 CIFAR-100

(a) ResNet-D
 18 88.81 60.23
 36 91.23 65.72
 54 92.13 67.63
 72 92.50 69.18

(b) ResNet-S
 11 87.78 58.17
 20 88.16 61.79
 29 88.18 62.14
 38 89.09 63.17
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5 � Discussion

We have provided a relationship between ResNet (or other 
networks with skip-connections) to an optimal control prob-
lem with differential inclusions and used this connection 
to gain some insights into the behavior of the network. We 
have shown that the system is well-posed and have provided 
growth bounds on the features. The continuous-time analysis 
is helpful in interpreting the success of networks with skip 
connections. For example, since the forward flow of well-
posed dynamical systems will have regular paths between 
inputs and outputs, we should expect a similar result for 

very deep networks. This is likely a reason why DNNs with 
skip-connections generalize well, since similar inputs should 
follow similar paths and the skip-connections make the paths 
more regular.

In practice, ResNet and other DNNs have additional lay-
ers which are not currently captured by the optimal control 
formulation (for example, normalization and pooling). In 
this setting, we provided stability bounds for the entire net-
work as a function of each of the layers’ learnable param-
eters. In some cases, the network is stable regardless of its 
depth due to structural constraints or regularization. The 
constraints may also smooth the energy landscape so that 
the minimizers are flatter, which will be considered in future 
work.

It is also worth noting that ResNet and other DNNs are 
often “stabilized” by other operations. From experiments, 
one can observe that batch normalization has the additional 
benefit of controlling the norms of the features during for-
ward propagation. Without batch normalization and with-
out strong enough regularization, the features will grow 
unboundedly in the residual blocks. It would be interesting 
to analyze the role of different stabilizers in the network on 
the network’s ability to generalize to new data.

Acknowledgements  The authors acknowledge the support of AFOSR, 
FA9550-17-1-0125 and the support of NSF CAREER grant #1752116.

Table 4   Test accuracy (%) 
with corrupted test images of 
ResNet-D and ResNet-S

Each network is trained on the uncorrupted training images of the dataset, and is evaluated using the 
learned parameters from the last training step on corrupted test images which are obtained via Eq. (28)

 Dataset  Depth With no noise With unstructured noise With structure noise

� = � = 0 � = 0.02 � = 0.05 � = 0.25 � = 0.75

(a) ResNet-D
 CIFAR-10 18 88.02 83.52 50.55 83.40 41.24

36 90.74 85.48 56.70 84.54 35.18
54 91.16 86.78 63.77 85.78 32.07
72 91.79 86.95 61.73 86.95 40.25

 CIFAR-100 18 59.04 46.15 16.01 55.68 29.92
36 64.27 51.36 24.08 60.53 32.93
54 66.78 52.82 23.08 62.55 33.17
72 68.70 55.42 26.38 64.02 34.84

(b) ResNet-S
 CIFAR-10 11 87.73 82.43 52.44 82.24 33.66

20 88.29 83.22 56.51 82.94 34.93
29 88.05 83.68 55.82 83.50 36.80
38 89.00 85.67 59.86 83.58 34.13

 CIFAR-100 11 57.81 45.65 21.57 54.90 34.78
20 61.01 47.18 21.09 57.93 37.17
29 61.20 54.72 31.66 58.15 35.63
38 65.05 53.56 22.99 61.02 36.66

(a) CIFAR-10. (b) CIFAR-100.

Fig. 8   The structured noise x0 used in the experiments in Table  4. 
The use of x0 is defined in Eq.  (28b). a A test image in CIFAR-10 
with label “ship.” b A test image in CIFAR-100 with label “forest”
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A DNN Operations in Vector Form

In this section, we provide definitions of a few DNN opera-
tions in vector form, as well as some basic properties.

Notations

Given a feature x ∈ ℝ
h×w×d , let xi denote the ith channel of 

x, i.e.,

and let xi,j,k denote the (i, j, k)th element in x. Given a feature 
K ∈ ℝ

n×n×d1×d2 , let Ki,j denote the (i, j)th subfilter of K, i.e.,

x =
(
x1, x2,… , xd

)
, with xi ∈ ℝ

h×w for all i = 1, 2,… , d,

with Ki,j ∈ ℝ
n×n for all i = 1, 2,… , d1 and j = 1, 2,… , d2.

Definition 1  Vectorization. Let x be a feature in ℝh×w×d . 
The vectorization of x, denoted by X ∶= vec(x) , is a vector 
in ℝhwd such that

for all i = 1, 2,… , h , j = 1, 2,… ,w , and k = 1, 2,… , d.

K ∶=

⎛
⎜⎜⎜⎜⎝

K1,1 K1,2 ⋯ K1,d2

K2,1 K2,2 ⋯ K2,d2

⋮ ⋮ ⋱ ⋮

Kd1,1
Kd1,2

⋯ Kd1,d2

⎞⎟⎟⎟⎟⎠

X(k−1)hw+(i−1)w+j = xi,j,k,

Fig. 9   The trained 36-layer ResNet-D on corrupted test images from 
CIFAR-10. a Three noise-free test images x and the predicted prob-
ability distributions, b x with unstructured noise (i.e., x + � with 

� ∼ N(0, �2) ) and the predicted probability distributions, c x with 
structured noise (i.e., x + �x0 with x0 shown in Fig. 8a) and the pre-
dicted probability distributions
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Definition 2  2D Convolution. Let x be a feature in ℝh×w×d1 , 
K be a filter in ℝn×n×d1×d2 , and y ∶= K ∗ x be a feature in 
ℝ

h×w×d2 . With X = vec(x) and Y = vec(y) , one can derive a 
linear system Y = AX which describes the forward operation 
of the 2D convolution y = K ∗ x . The general form of A is:

where each Ai,j ∈ ℝ
hw×hw is a block-wise circulant matrix 

associated with subfilter Kj,i (for all i = 1, 2,… , d1 and 

A =

⎛
⎜⎜⎜⎜⎝

A1,1 A1,2 ⋯ A1,d1

A2,1 A2,2 ⋯ A2,d1

⋮ ⋮ ⋱ ⋮

Ad2,1
Ad2,2

⋯ Ad2,d1

⎞
⎟⎟⎟⎟⎠
,

j = 1, 2,… , d2 ). The expression Y = A|s=aX denotes that 
the stride in the convolution y = K ∗ x is a.

Definition 3  Adjoint of 2D Convolution. Let x be a feature 
in ℝh×w×d2 and K be a filter in ℝn×n×d1×d2 . The adjoint of 
the 2D convolution of x and K, denoted by z ∶= KT ∗ x , is 
a feature in ℝh×w×d1 such that Z = ATX , where X = vec(x) , 
Z = vec(z) , A is the matrix associated with the 2D convolu-
tion operation with K defined in Definition 2, and AT is the 
transpose of A in the matrix sense. The adjoint filter KT is 
defined to be the filter whose matrix form is AT.

Fig. 10   The trained 20-layer ResNet-S on corrupted test images from 
CIFAR-10. a Three noise-free test images x and the predicted prob-
ability distributions, b x with unstructured noise (i.e., x + � with 

� ∼ N(0, �2) ) and the predicted probability distributions, c x with 
structured noise (i.e., x + �x0 with x0 shown in Fig. 8a) and the pre-
dicted probability distributions
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Definition 4   Batch  Nor mal iza t ion  [19] .  Let 
B ∶= {x(1), x(2),… , x(m)} be a batch of features. Batch nor-
malization of B is defined as:

where � ∶=
∑m

i=1
x(i)∕m and �2 ∶=

∑m

i=1
(x(i) − �)2∕m.

Definition 5  Padding. Let x be a feature in ℝh×w×d1 . The 
padding operator with parameter d2 > d1 , denoted by 
E ∶ ℝ

hwd1 → ℝ
hwd2 , is defined as:

where y is a feature in ℝh×w×d2 such that each channel 
yi ∈ ℝ

h×w of y is defined as:

for i = 1, 2,… , d2.

Proposition 1  The padding operator E has the following 
norm preserving property: if x ∈ ℝ

h×w×d1 and d2 > d1, then

for all p ∈ [1,∞].

Definition 6  Pooling. Let x be a feature in ℝh×w×d . The 2D 
average pooling operator with filter size 2 × 2 and stride size 
2, denoted by P2 ∶ ℝ

hwd
→ ℝ

⌈h∕2⌉⌈w∕2d⌉ , is defined as:

where y is a feature in ℝ⌈h∕2⌉×⌈w∕2⌉×d such that each channel 
yi ∈ ℝ

⌈h∕2⌉×⌈w∕2⌉ is defined as:

where zero padding is used to perform the convolution. The 
global average pooling operator, Pg ∶ ℝ

hwd
→ ℝ

d , is defined 
as:

where y is a vector in ℝd such that each component yk of y 
is defined as:

(29)B(x(i);� , �) ∶=
�(x(i) − �)

�
+ �, i = 1, 2,… ,m,

(30)E(vec(x);d2) ∶= vec(y),

(31)

yi ∶=

�
xi−d, if d + 1 ≤ i ≤ d + d1 where d ∶= ⌊(d2 − d1)∕2⌋,
0, otherwise,

(32)‖E(vec(x);d2)‖�p(ℝhwd2 ) = ‖vec(x)‖�p(ℝhwd1 )

P2(vec(x)) ∶= vec(y),

(33)

yi ∶=
1

4

((
1 1

1 1

)
∗ xi

)
with stride 2, i = 1, 2,… , d,

Pg(vec(x)) ∶= y,

yk ∶=
1

hw

h∑
i=1

w∑
j=1

xi,j,k, k = 1, 2,… , d.

Proposition 2  The pooling operators P2 and Pg are non-
expansive in �2 in the sense that if x ∈ ℝ

h×w×d, then

Definition 7  Rectified Linear Unit. The Rectified Linear 
Unit (ReLU) � is an operation which is applied component-
wise to any multi-dimensional feature x:

Proposition 3  Let n ∈ ℕ and 1 ≤ p ≤ ∞. The rectified lin-
ear unit is non-expansive and 1-Lipschitz in �p(ℝn) in the 
sense that:

for all x, y ∈ ℝ
n.

Remark 4  Using ReLU as the activation function can be 
viewed as applying a proximal step in the dynamical system 
that defines the forward propagation. Let I

ℝ
d
+
 be the indicator 

function of the set ℝd
+
 , which is defined as:

The proximal operator associated with I
ℝ

d
+
 is in fact ReLU, 

i.e.,

and is independent of 𝛾 > 0.

B Proofs of the Main Results

We provide the proofs of the results presented in this work.

Proof of  Theorem  1  Take (H, ‖ ⋅ ‖) = �
ℝ

d, ‖ ⋅ ‖𝓁2(ℝd)

�
 , 

I = [0,∞),

and C be the multi-valued mapping such that C(t) = ℝ
d
+
 for 

all t ∈ [0, T] . We will prove that conditions (i)-(iv) in Theo-
rem 7 are satisfied. Without ambiguity, we write ‖ ⋅ ‖2 for 
‖ ⋅ ‖𝓁2(ℝd).

(34)‖P2(vec(x))‖�2(ℝh1w1d) ≤ ‖vec(x)‖�2(ℝhwd),

(35)‖Pg(vec(x))‖�2(ℝd) ≤ ‖vec(x)‖�2(ℝhwd).

�(x) = max(x, 0).

(36)‖�(x)‖�p(ℝn) ≤ ‖x‖�p(ℝn)

(37)‖�(x) − �(y)‖�p(ℝn) ≤ ‖x − y‖�p(ℝn)

(38)I
ℝ

d
+
(x) ∶=

{
0, if x ∈ ℝ

d
+
,

∞, if x ∉ ℝ
d
+
.

prox�I
ℝ
d
+

(x) = argmin
y∈ℝd

�I
ℝ

d
+
(x) +

1

2
‖x − y‖2

�2(ℝd)

= proj
ℝ

d
+
(x) = �(x),

(39)F(t, x(t)) ∶= A2(t) �(A1(t)x(t) + b1(t)) − b2(t),
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	 (i)	 For each t ∈ [0, T] , it is clear that C(t) is a nonempty 
closed subset of H, and by [31], C(t) is r-prox-regu-
lar.

	 (ii)	 Setting v(t) = 0 for all t ∈ [0, T] yields Eq. (58).
	 (iii)	 Let x, y ∶ I → ℝ

d . By Eq. (39) and the assumptions 
that ‖A1(t)‖2 ‖A2(t)‖2 ≤ c for all t > 0 and that � is 
contractive (implied by Eq. (37)), we have: 

	 (iv)	 Let x ∶ [0, T] → ℝ
d . A similar derivation as above 

yields: 

 where 

Therefore, by Theorem 7, there exists a unique absolutely 
continuous solution x to Eq. (6) for almost every x0 ∈ ℝ

d
+
 . 

In particular, by Remark 5, the solution x satisfies that 
x(t) ∈ ℝ

d
+
 for all t > 0 . 	�  ◻

Proof of Theorem 2  Fix t > 0 . Taking the inner product of 
Eq. (2) with x yields:

for some px(t) ∈ −�I
ℝ

d
+
(x) . Note that 0 ∈ ℝ

d
+
 and 0 ∈ �I

ℝ
d
+
(x) . 

Thus, by monotonicity of the subdifferential, we have:

which implies that:

‖F(t, x(t)) − F(t, y(t))‖2
= ‖A2(t) �(A1(t)x(t) + b1(t))

− A2(t) �(A1(t)y(t) + b1(t))‖2
≤ ‖A2(t)‖2 ‖�(A1(t)x(t) + b1(t))

− �(A1(t)y(t) + b1(t))‖2
≤ ‖A2(t)‖2 ‖A1(t)x(t) − A1(t)y(t)‖2
≤ ‖A2(t)‖2 ‖A1(t)‖2 ‖x(t) − y(t)‖2
≤ c‖x(t) − y(t)‖2.

‖F(t, x(t))‖2
= ‖A2(t) �(A1(t)x(t) + b1(t)) − b2(t)‖2
≤ ‖A2(t)‖2 ‖�(A1(t)x(t) + b1(t))‖2 + ‖b2(t)‖2
≤ ‖A2(t)‖2 ‖A1(t)x(t) + b1(t)‖2 + ‖b2(t)‖2
≤ ‖A2(t)‖2

�‖A1(t)‖2‖x(t)‖2 + ‖b1(t)‖2
�
+ ‖b2(t)‖2

≤ �(t)
�
1 + ‖x(t)‖2

�
,

�(t) ∶= max
�
c, ‖A2(t)‖2 ‖b1(t)‖2 + ‖b2(t)‖2

�
.

x(t)T
d

dt
x(t) + x(t)TA2(t) �(A1(t)x(t) + b1(t))

− x(t)Tb2(t) = x(t)Tpx(t)

x(t)Tpx(t) = (x(t) − 0)T (px(t) − 0) ≤ 0,

Therefore, after re-arranging terms, we have:

By Theorem 1, x(t) ∈ ℝ
d
+
 for a.e. t > 0 , and thus, the inner 

product x(t)Tb2(t) is bounded above by the positive part of 
b2(t) ; that is,

Therefore, since ReLU is contractive and �(0) = 0 , we have:

Applying Theorem 8 with u = ‖x‖2
2
∕2 , f = 2‖A1‖2 ‖A2‖2 , 

g =
√
2
�‖A2‖2‖b1‖2 + ‖�(b2)‖2

�
 , c = ‖x(0)‖2

2
∕2 , t0 = 0 , 

and � = 1∕2 yields:

which proves Eq. (7).
Next, let x and y be the unique absolutely continuous 

solutions to Eq. (2), with different initial values x(0) and 
y(0). Then:

x(t)T
d

dt
x(t) + x(t)TA2(t) �(A1(t)x(t) + b1(t))

− x(t)Tb2(t) ≤ 0.

d

dt

�‖x(t)‖2
2

2

�
= x(t)T

d

dt
x(t)

≤ −x(t)TA2(t) �(A1(t)x(t) + b1(t)) + x(t)Tb2(t).

x(t)Tb2(t) ≤ x(t)T�(b2(t)) ≤ ‖x(t)‖2 ‖�(b2(t))‖2.

d

dt

�‖x(t)‖2
2

2

�

≤ ‖A2(t)‖2 ‖x(t)‖2 ‖�(A1(t)x(t) + b1(t))‖2
+ ‖x(t)‖2 ‖�(b2(t))‖2

≤ ‖A2(t)‖2 ‖x(t)‖2 ‖A1(t)x(t) + b1(t)‖2
+ ‖x(t)‖2 ‖�(b2(t))‖2

≤ ‖A1(t)‖2 ‖A2(t)‖2 ‖x(t)‖22
+
�‖A2(t)‖2‖b1(t)‖2 + ‖�(b2(t))‖2

�‖x(t)‖2.

‖x(t)‖2 ≤ ‖x(0)‖2 exp

�
�

t

0

‖A1(s)‖2 ‖A2(s)‖2 ds
�

+ �
t

0

�‖A2(s)‖2 ‖b1(s)‖2

+‖�(b2(s))‖2
�
exp

�
�

t

s

‖A1(r)‖2 ‖A2(r)‖2 dr
�
ds,
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for some px(t) ∈ −�I
ℝ

d
+
(x) and py(t) ∈ −�I

ℝ
d
+
(y) . By mono-

tonicity of the subdifferentials, we have:

which implies that:

Therefore, since ReLU is contractive and �(0) = 0 , we have:

Applying Theorem 8 with u = ‖x‖2
2
∕2 , f = 2‖A1‖2 ‖A2‖2 , 

g = 0 , c = ‖x(0)‖2
2
∕2 , t0 = 0 , and � = 1 yields:

which proves Eq. (8). 	�  ◻

Proof of Theorem 3  Taking the inner product of Eq. (9) with 
x yields:

for some px(t) ∈ −�I
ℝ

d
+
(x) . Using the same argument as in 

the proof of Theorem 2, we have:

(
d

dt
x(t) −

d

dt
y(t)

)
+ A2(t)

(
�(A1(t)x(t) + b1(t))

−�(A1(t)y(t) + b1(t))
)
= px(t) − py(t)

(x(t) − y(t))T (px(t) − py(t)) ≤ 0,

d

dt

�‖x(t) − y(t)‖2
2

2

�

= (x(t) − y(t))T
�
d

dt
x(t) −

d

dt
y(t)

�

≤ −(x(t) − y(t))TA2(t)
�
�(A1(t)x(t) + b1(t))

−�(A1(t)y(t) + b1(t))
�

≤ ‖A2(t)‖2 ‖x(t) − y(t)‖2 ‖�(A1(t)x(t) + b1(t))

− �(A1(t)y(t) + b1(t))‖2.

d

dt

�‖x(t) − y(t)‖2
2

2

�

≤ ‖A2(t)‖2 ‖x(t) − y(t)‖2 ‖A1(t)(x(t) − y(t))‖2
≤ ‖A1(t)‖2 ‖A2(t)‖2 ‖x(t) − y(t)‖2

2
.

‖x(t) − y(t)‖2
≤ ‖x(0) − y(0)‖2 exp

�
�

t

0

‖A1(s)‖2 ‖A2(s)‖2 ds
�
,

x(t)T
d

dt
x(t) + xTA2(t)�(A1(t)x(t) + b1(t))

− xTb2(t) = x(t)Tpx(t)

By Remark 5, x ∈ ℝ
d
+
 , and by assumption, A2(t) ≥ 0 . Thus:

which implies that

Applying Theorem  8 with  u = ‖x‖2
2
∕2  ,  f = 0  , 

g =
√
2‖�(b2)‖2 , c = ‖x(0)‖2

2
∕2 , t0 = 0 , and � = 1∕2 yields:

which proves Eq. (10). 	�  ◻

To prove Theorem 4, we will first show an auxiliary 
result.

Lemma 1  Let b ∈ ℝ
d and define the function G ∶ ℝ

d
→ ℝ

d 
by:

where � is ReLU. Then G is monotone in �2, i.e.,

for all x, y ∈ ℝ
d.

Proof  This is an immediate consequence of the fact that � 
is monotone:

	�  ◻

Proof of Theorem 4  Taking the inner product of Eq. (11) with 
x yields:

d

dt

�‖x(t)‖2
2

2

�
= x(t)T

d

dt
x(t)

≤ −x(t)TA2(t) �(A1(t)x(t) + b1(t)) + x(t)T�(b2(t)).

x(t)TA2(t) �(A1(t)x(t) + b1(t)) ≥ 0,

d

dt

�‖x(t)‖2
2

2

�
≤ x(t)T�(b2(t)) ≤ ‖x(t)‖2‖�(b2(t))‖2.

‖x(t)‖2 ≤ ‖x(0)‖2 + �
t

0

‖�(b2(s))‖2 ds,

G(x) ∶= �(x + b),

(x − y)T (G(x) − G(y)) ≥ 0

(x − y)T (G(x) − G(y))

= (x − y)T (�(x + b) − �(y + b))

= ((x + b) − (y − b))T (�(x + b) − �(y + b)) ≥ 0.

x(t)T
d

dt
x(t) + (A1(t)x(t))

TA2(t) �(A1(t)x(t) + b1(t))

− x(t)Tb2(t) = x(t)Tpx(t)
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for some px(t) ∈ −�I
ℝ

d
+
(x) . Using the same argument as in 

the proof of Theorem 2, we have:

Define the function G ∶ ℝ
d
→ ℝ

d by:

By Lemma 1:

Therefore,

Applying Theorem  8 with  u = ‖x‖2
2
∕2  ,  f = 0  , 

g =
√
2�

�
−AT�(b1) + b2

�
 ,  c = ‖x(0)‖2

2
∕2 ,  t0 = 0 ,  and 

� = 1∕2 yields:

which proves Eq. (12).
Next, let x and y be the unique absolutely continuous 

solutions to Eq. (2), with different initial values x(0) and 
y(0). Using the same argument as in the proof of Theorem 2 
yields:

d

dt

�‖x(t)‖2
2

2

�
≤ −(A(t)x(t))T �(A(t)x(t)

+ b1(t)) + x(t)Tb2(t).

G(x(t)) ∶= �(x(t) + b1(t)).

− (A(t)x(t))T �(A(t)x(t) + b1(t))

= −(A(t)x(t) − 0)T (G(A(t)x(t)) − G(0))

− (A(t)x(t))TG(0)

≤ −(A(t)x(t))T�(b1(t)).

d

dt

�‖x(t)‖2
2

2

�

≤ −(A(t)x(t))T�(b1(t)) + x(t)Tb2(t)

≤ ‖x(t)‖2 ����
�
−A(t)T�(b1(t)) + b2(t)

����2.

‖x(t)‖2 ≤ ‖x(0)‖2 + �
t

0

����
�
−A(s)T�(b1(s)) + b2(s)

����2 ds,

d

dt

�‖x(t) − y(t)‖2
2

2

�

= (x(t) − y(t))T
�
d

dt
x(t) −

d

dt
y(t)

�

≤ −(A(t)x(t) − A(t)y(t))T
�
�(A(t)x(t) + b1(t))

−�(A(t)y(t) + b1(t))
� ≤ 0,

where the last inequality is due to monotonicity of G. This 
proves Eq. (13). 	�  ◻

Proof of Theorem 5, part 1  We will show that

for all n = 1, 2,… , 3m + 3 , where cn ≥ 0 is independent of 
the xn.

For the convolution layer (Layer 0), we show that:

provided that ‖A0‖�2(ℝh1w1d0 )→�2(ℝh1w1d1 ) ≤ 1 . By Eq. (16), we 
have:

For the first stack of ResNet layers (Layer n with 
n = 1, 2… ,m ), we show that:

Fix i ∈ [h1w1d1] . By Eq. (15), we have:

where an
i
 denotes the ith row of An

2
 and (bn

2
)i denotes 

the ith element of bn
2
 .  Consider two cases. If 

xn
i
− an

i
𝜎(An

1
xn + bn

1
) + (bn

2
)i < 0 , then xn+1

i
= 0 . Otherwise, 

since an
i
≥ 0 component-wise, it holds that

Therefore,

Analysis for the remaining ResNet layers, Layers m + 2 to 
2m and Layers 2m + 2 to 3m, is the same.

For the first 2d pooling layer (Layer n with n = m + 1 ), 
we show that:

Observe from Figs. 1, 2, 3 and 4 that xj ≥ 0 component-
wise for all j = 2, 3,… , 3m + 2 . Since both E(P2(x

n)) and 
�
(
(An)|s=2 xn + bn

)
 are component-wise nonnegative, by 

Eq. (18), we have the following component-wise inequality:

‖xn+1‖2 ≤ ‖xn‖2 + cn

(40)‖x1‖�2(ℝh1w1d1 ) ≤ ‖x0‖�2(ℝh1w1d0 ) + ‖b0‖�2(ℝh1w1d1 )

‖x1‖�2(ℝh1w1d1 ) ≤ ‖A0x0‖�2(ℝh1w1d1 ) + ‖b0‖�2(ℝh1w1d1 )

≤ ‖A0‖�2(ℝh1w1d0 )→�2(ℝh1w1d1 )‖x0‖�2(ℝh1w1d0 )

+ ‖b0‖�2(ℝh1w1d1 )

≤ ‖x0‖�2(ℝh1w1d0 ) + ‖b0‖�2(ℝh1w1d1 ).

(41)‖xn+1‖�2(ℝh1w1d1 ) ≤ ‖xn‖�2(ℝh1w1d1 ) + ‖bn
2
‖�2(ℝh1w1d1 ).

0 ≤ xn+1
i

= �(xn
i
− an

i
�(An

1
xn + bn

1
) + (bn

2
)i),

0 ≤ xn+1
i

= xn
i
− an

i
�(An

1
xn + bn

1
) + (bn

2
)i ≤ xn

i
+ (bn

2
)i.

‖xn+1‖�2(ℝh1w1d1 ) ≤ ‖xn‖�2(ℝh1w1d1 ) + ‖bn
2
‖�2(ℝh1w1d1 ).

(42)‖xn+1‖�2(ℝh2w2d2 ) ≤ ‖xn‖�2(ℝh1w1d1 ).
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and thus by Eqs. (32) and (34):

Analysis for the second 2D pooling layer, Layer 2m + 1 , is 
the same.

For the global pooling layer (Layer n with n = 3m + 1 ), 
we show that:

By Eqs. (35) and (36), the functions Pg and ReLU are non-
expansive in �2 , and thus:

For the fully connected layer (Layer n = N − 1 with 
N = 3m + 3 ), we show that:

provided that ‖WN−1‖�2(ℝd3 )→�2(ℝC) ≤ 1 . Analysis for the 
fully connected layer is the same as the analysis for the con-
volution layer. By Eq. (17), we have:

Combining Eqs. (40)–(44) yields:

where c(b0, b1,… , bN−1) is a constant depending on the �2 
norms of the biases in the network:

This proves Eq. (21). 	�  ◻

Proof of Theorem 5, part 2  We will show that

0 ≤ xn+1 ≤ E(P2(x
n)),

‖xn+1‖�2(ℝh2w2d2 ) ≤ ‖E(P2(x
n))‖�2(ℝh2w2d2 )

= ‖P2(x
n)‖�2(ℝh2w2d1 ) ≤ ‖xn‖�2(ℝh1w1d1 ).

(43)‖xn+1‖�2(ℝd3 ) ≤ ‖xn‖�2(ℝh3w3d3 ).

‖xn+1‖�2(ℝd3 ) = ‖Pg(�(x
n))‖�2(ℝd3 )

≤ ‖�(xn)‖�2(ℝh3w3d3 ) ≤ ‖xn‖�2(ℝh3w3d3 ).

(44)‖xN‖�2(ℝC) ≤ ‖xN−1‖�2(ℝd3 ) + ‖bN−1‖�2(ℝC)

‖xN‖�2(ℝC) ≤ ‖WN−1xN−1‖�2(ℝC) + ‖bN−1‖�2(ℝC)

≤ ‖WN−1‖�2(ℝd3 )→�2(ℝC)‖xN−1‖�2(ℝd3 )

+ ‖bN−1‖�2(ℝC)

≤ ‖xN−1‖�2(ℝd3 ) + ‖bN−1‖�2(ℝC).

‖xN‖�2(ℝC) ≤ ‖x0‖�2(ℝh1w1d0 ) + c(b0, b1,… , bN−1),

(45)c(b0, b1,… , bN−1) ∶=

3m+2�
n=0

‖bn
2
‖�2 .

‖xn+1 − yn+1‖�2 ≤ an‖xn − yn‖�2

for all n = 1, 2,… , 3m + 3 , where an ≥ 0 is independent of 
the xn and yn.

For the convolution layer (Layer 0), we have, by Eqs.  
(16) and (20a), that:

For the first stack of residual layers (Layer n with 
n = 1, 2… ,m ), we have, by Eq. (14), that:

where we have used the fact that ReLU is 1-Lipschitz in �2 
(see Eq. (37)). Analysis for the remaining residual layers, 
Layers m + 2 to 2m and Layers 2m + 2 to 3m, is the same.

For the first 2d pooling layer (Layer n with n = m + 1 ), 
we have, by Eq. (18), that:

(46)

‖x1 − y1‖�2(ℝh1w1d1 )

= ‖A0x0 − A0y0‖�2(ℝh1w1d1 )

≤ ‖A0‖�2(ℝh1w1d0 )→�2(ℝh1w1d1 )‖x0 − y0‖�2(ℝh1w1d0 )

≤ ‖x0 − y0‖�2(ℝh1w1d0 ).

(47)

‖xn+1 − yn+1‖�2(ℝh1w1d1 )

= ‖�(xn − An
2
�(An

1
xn + bn

1
) + bn

2
)

− �(yn − An
2
�(An

1
yn + bn

1
) + bn

2
)‖�2(ℝh1w1d1 )

≤ ‖(xn − An
2
�(An

1
xn + bn

1
))

− (yn − An
2
�(An

1
yn + bn

1
))‖�2(ℝh1w1d1 )

≤ ‖xn − yn‖�2(ℝh1w1d1 ) + ‖An
2
‖�2(ℝh1w1d1 )‖�(An

1
xn + bn

1
)

− �(An
1
yn + bn

1
)‖�2(ℝh1w1d1 )

≤ ‖xn − yn‖�2(ℝh1w1d1 )

+ ‖An
2
‖�2(ℝh1w1d1 )‖An

1
xn − An

1
yn‖�2(ℝh1w1d1 )

≤ �
1 + ‖An

1
‖�2(ℝh1w1d1 )‖An

2
‖�2(ℝh1w1d1 )

�‖xn − yn‖�2(ℝh1w1d1 ),

(48)

‖xn+1 − yn+1‖�2(ℝh2w2d2 )

=
����

�
E(P2(x

n)) − �
�
(An)�s=2 xn + bn

��

−�
�
E(P2(y

n)) − �
�
(An)�s=2 yn + bn

������2(ℝh2w2d2 )

≤ ‖E(P2(x
n)) − E(P2(y

n))‖�2(ℝh2w2d2 )

+ ‖��(An)�s=2 xn + bn
�

− �
�
(An)�s=2 yn + bn

�‖�2(ℝh2w2d2 )

≤ ‖xn − yn‖�2(ℝh2w2d2 )

+ ‖(An)�s=2 xn − (An)�s=2 yn‖�2(ℝh2w2d2 )

≤ �
1 + ‖An‖�2(ℝh1w1d1 )→�2(ℝh2w2d2 )

�‖xn − yn‖�2(ℝh1w1d1 ),
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where we have used the fact that padding and 2d average 
pooling are linear operators and are non-expansive in �2 
(see Properties 1 and 2). Analysis for the second 2D pool-
ing layer, Layer 2m + 1 , is the same.

For the global pooling layer (Layer n with n = 3m + 1 ), 
we have, by Eq. (19), that:

where we have used the fact that global average pooling is a 
linear operator and is non-expansive in �2.

For the fully connected layer (Layer n = 3m + 2 = N − 1 ), 
we have, by Eqs. (17) and (20b), that

Combining Eqs.  (46)–(50) yields:

where a(A0,A1,… ,WN−1) is a constant depending on the �2 
norms of the filters and weights in the network:

This proves Eq. (22). 	�  ◻

To prove Theorem 6, we will first show an auxiliary 
result.

Lemma 2  Let A ∈ ℝ
d×d and b ∈ ℝ

d. Define the function 
F ∶ ℝ

d
→ ℝ

d by:

where � is ReLU. If ‖A‖�2(ℝd) ≤
√
2 , then F is non-expansive 

in �2, i.e.,

for all x, y ∈ ℝ
d.

(49)

‖xn+1 − yn+1‖�2(ℝd3 )

= ‖Pg(�(x
n)) − Pg(�(y

n))‖�2(ℝh3w3d3 )

≤ ‖�(xn) − �(yn)‖�2(ℝh3w3d3 )

≤ ‖xn − yn‖�2(ℝh3w3d3 ),

(50)

‖xN − yN‖�2(ℝC)

= ‖WN−1xN−1 −WN−1yN−1‖�2(ℝC)

≤ ‖WN−1‖�2(ℝd3 )→�2(ℝC)‖xN−1 − yN−1‖�2(ℝd3 )

≤ ‖xN−1 − yN−1‖�2(ℝd3 ).

‖xN − yN‖�2(ℝC)

≤ a(A0,A1,… ,WN−1) ‖x0 − y0‖�2(ℝh1w1d0 ),

(51)a(A0,A1,… ,WN−1) ∶=

3m�
n=1

�
1 + ‖An

1
‖�2‖An

2
‖�2

�
.

F(x) ∶= x − AT�(Ax + b),

‖F(x) − F(y)‖�2(ℝd) ≤ ‖x − y‖�2(ℝd)

Proof  First note that the activation function � ∶ ℝ
d
→ ℝ

d is 
applied component-wise. The function is of bounded varia-
tion and has a derivative in the measure sense. Fix an index 
i ∈ [d] and consider the ith component Fi of F:

where (AT )i,∶ denotes the ith row of AT . Its derivative ∇Fi is 
defined almost everywhere:

where ei is the ith standard basis in ℝd and Ai,∶ denotes the 
ith row of A. For any x, y ∈ ℝ

d , applying the fundamental 
theorem of calculus yields:

and thus:

where D(x, y) ∈ ℝ
d×d is the diagonal matrix defined as:

Since ReLU is non-decreasing with derivative bounded 
in magnitude by 1, we have 0 ≤ D(x, y)ii ≤ 1 for all 
i = 1, 2,… , d . Therefore, the �2 norm is equivalent to:

If ‖A‖�2(ℝd) ≤
√
2 , then 0 ≤ �max(A

TD(x, y)A) ≤ 2 , and thus:

which implies that F is non-expansive in �2 . 	�  ◻

Proof of Theorem 6, part 1  By the proof of Theorem 5 (part 
1), the following bound:

Fi ∶ ℝ
d
→ ℝ, Fi(x) ∶= xi − (AT )i,∶ �(Ax + b)i,

∇Fi ∶ ℝ
d
→ ℝ

1×d, ∇Fi(x) ∶= (ei)
T − AT ∇�(Ax + b)Ai,∶,

Fi(x) − Fi(y) = ∫
1

0

(
(ei)

T − AT ∇�(A((1 − s)y

+sx) + b)Ai,∶

)
(x − y) ds

= xi − yi − AT

(
∫

1

0

∇�(A((1 − s)y

+sx) + b) ds)Ai,∶(x − y),

F(x) − F(y) =
(
I − ATD(x, y)A

)
(x − y),

D(x, y) ∶= ∫
1

0

∇�(A((1 − s)y + sx) + b) ds.

‖F(x) − F(y)‖�2(ℝd)

= ‖I − ATD(x, y)A‖�2(ℝd) ‖x − y‖�2(ℝd).

‖I − ATD(x, y)A‖2
�2(ℝd)

≤ 1,
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holds for the convolution layer, the pooling layers, and the 
fully connected layer, where cn ≥ 0 is independent of the xn . 
We will show that Eq. (52) also hold for ResNet-S layers.

For the first stack of residual layers (Layer n with 
n = 1, 2… ,m ), we use an alternative approach and show 
that:

provided that ‖An‖�2(ℝh1w1d1 ) ≤
√
2 . By Eqs. (15) and (37), 

we have:

Define Fn ∶ ℝ
h1w1d1 → ℝ

h1w1d1 by:

By Lemma 2, if ‖An‖�2(ℝh1w1d1 ) ≤
√
2 , then Fn is non-expan-

sive in �2 . Therefore,

Analysis for the remaining residual layers, Layers m + 2 to 
2m and Layers 2m + 2 to 3m, is the same.

Combining Eqs. (40), (53), and (42)–(44) yields:

where c(b0, b1,… , bN−1) is a constant depending on the �2 
norms of the biases in the network:

(52)‖xn+1‖�2 ≤ ‖xn‖�2 + cn

(53)

‖xn+1‖�2(ℝh1w1d1 )

≤ ‖xn‖�2(ℝh1w1d1 ) +
√
2‖bn

1
‖�2(ℝh1w1d1 ) + ‖bn

2
‖�2(ℝh1w1d1 )

‖xn+1‖�2(ℝh1w1d1 )

≤ ‖xn − (An)T�(Anxn + bn
1
)‖�2(ℝh1w1d1 )

+ ‖bn
2
‖�2(ℝh1w1d1 ).

(54)Fn(x) ∶= x − (An)T�(Anx + bn
1
).

‖xn+1‖�2(ℝh1w1d1 )

≤ ‖Fn(x
n)‖�2(ℝh1w1d1 ) + ‖bn

2
‖�2(ℝh1w1d1 )

≤ ‖Fn(x
n) − Fn(0)‖�2(ℝh1w1d1 )

+ ‖Fn(0)‖�2(ℝh1w1d1 ) + ‖bn
2
‖�2(ℝh1w1d1 )

≤ ‖xn‖�2(ℝh1w1d1 ) + ‖(An)T�(bn
1
)‖�2(ℝh1w1d1 )

+ ‖bn
2
‖�2(ℝh1w1d1 )

≤ ‖xn‖�2(ℝh1w1d1 ) +
√
2‖bn

1
‖�2(ℝh1w1d1 )

+ ‖bn
2
‖�2(ℝh1w1d1 ).

‖xN‖�2(ℝC) ≤ ‖x0‖�2(ℝh1w1d0 ) + c(b0, b1,… , bN−1),

This proves Eq. (25). 	�  ◻

Proof of Theorem 6, part 2  The proof is similar to the proof 
of Theorem 5 (part 2), except for the residual layers. We will 
show that the following bound:

also holds for the residual layers, where an ≥ 0 is independ-
ent of the xn and yn.

For the first stack of residual layers (Layer n with 
n = 1, 2… ,m ), we have, by Eq. (15), that:

where the function Fn ∶ ℝ
h1w1d1 → ℝ

h1w1d1 is defined 
in Eq.  (54). By Lemma 2, Fn is non-expansive in �2 if 
‖An‖�2(ℝh1w1d1 ) ≤

√
2 . Thus,

Analysis for the remaining residual layers, Layers m + 2 to 
2m and Layers 2m + 2 to 3m, is the same.

Combining Eqs. (46), (56), and (48)–(50) yields:

where a(A0,A1,… ,WN−1) is a constant depending on the �2 
norms of the filters and weights in the network:

This proves Eq. (26). 	�  ◻

C Auxiliary Results

To be self-contained, we include some results in differen-
tial inclusions and differential equations that we used in the 
main text.

(55)

c
�
{bn}N

n=0

�
∶= ‖b0‖�2(ℝh1w1d1 ) + ‖bN−1‖�2(ℝC)

+

3m�
i=1

�√
2‖bn

1
‖�2 + ‖bn

2
‖�2

�
.

‖xn+1 − yn+1‖�2 ≤ an‖xn − yn‖�2

‖xn+1 − yn+1‖�2(ℝh1w1d1 )

= ‖�(xn − (An)T�(Anxn + bn
1
) + bn

2
)

− �(yn − (An)T�(Anyn + bn
1
) + bn

2
)‖�2(ℝh1w1d1 )

≤ ‖Fn(x
n) − Fn(y

n)‖�2(ℝh1w1d1 ),

(56)‖xn+1 − yn+1‖�2(ℝh1w1d1 ) ≤ ‖xn − yn‖�2(ℝh1w1d1 ),

‖xN − yN‖�2(ℝC)

≤ a(A0,A1,… ,WN−1)‖x0 − y0‖�2(ℝh1w1d0 ),

(57)
a(A0,A1,… ,WN−1) ∶=

�
1 + ‖Am+1‖�2

��
1 + ‖A2m+1‖�2

�
.
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Definition 8  (page 350, [10]) For a fixed r > 0 , the set S is 
said to be r-prox-regular if, for any x ∈ S and any � ∈ N

L
S
(x) 

such that ‖𝜉‖ < 1 , one has x = projS(x + r�) , where NL 
denotes the limiting normal cone (see [29]).

Theorem 7  (Theorem 1, [10]) Let H be a Hilbert space 
with the associated norm ‖ ⋅ ‖. Assume that C ∶ [0, T] → H 
with T > 0 is a set-valued map which satisfies the following 
two conditions:

1.	 for each t ∈ [0, T] , C(t is a nonempty closed subset of )
H which is r-prox-regular;

2.	 there exists an absolutely continuous function 
v ∶ [0, T] → ℝ such that for any y ∈ H and s, t ∈ [0, T] , 

Let F ∶ [0, T] × H → H be a separately measurable map on 
[0, T] such that

3.	 for every 𝜂 > 0 there exists a nonnegative function 
k� ∈ L1([0, T],ℝ) such that for all t ∈ [0, T] and for any 
(x, y) ∈ B(0, �) × B(0, �) , 

where B(0, �) stands for the closed ball of radius � cen-
tered at 0 ∈ H;

4.	 there exists a nonnegative function � ∈ L1([0, T],ℝ) 
such that for all t ∈ [0, T] and for all x ∈ ∪s∈[0,T]C(s) , 

Then, for anyx0 ∈ C(T0) , where 0 ≤ T0 < T , the following 
perturbed sweeping process

has a unique absolutely continuous solution x, and the solu-
tion x satisfies

(58)|dist(y,C(t)) − dist(y,C(s))| ≤ |v(t) − v(s)|.

‖F(t, x) − F(t, y)‖ ≤ k�(t)‖x − y‖,

‖F(t, x)‖ ≤ �(t)(1 + ‖x‖).

{
−
d

dt
x(t) ∈ NC(t)(x(t)) + F(t, x(t)) a.e. t ∈ [0, T]

x(T0) = x0

where

Remark 5  (Remark 2.1, [20]) If x is a solution to Eq. (6) 
defined on [T0,∞) , then x(t) ∈ C(t) for all t ∈ [T0,∞).

The following theorem states a nonlinear generalization 
of Gronwall’s inequality.

Theorem 8  (Theorem 21, [8]) Let u be a nonnegative func-
tion that satisfies the integral inequality

where c ≥ 0 , � ≥ 0 , f and g are continuous nonnegative func-
tions for t ≥ t0.

1.	 For 0 ≤ 𝛼 < 1 , we have: 

2.	 For � = 1 , we have: 

D Classification Accuracy of ResNet

For comparison, we include the computational results of the 
post-activation ResNet (see Fig. 2c) in Table 5. Implementa-
tion details can be found in [16].

����
d

dt
x(t) + F(t, x(t))

����
≤ (1 + a)�(t) +

����
d

dt
v(t)

���� a.e. t ∈ [0, T],

‖F(t, x(t))‖ ≤ (1 + a)�(t) a.e. t ∈ [0, T],

a ∶= ‖x0‖ + exp

�
2∫

T

T0

�(s) ds

�
∫

T

T0

�
2�(s)(1 + ‖x0‖)

+
����
d

dt
v(s)

����
�
ds.

u(t) ≤ c + �
t

t0

f (s)u(s) + g(s)u�(s) ds,

u(t)1−� ≤ c1−� exp

(
(1 − �)�

t

t0

f (s) ds

)

+ (1 − �)�
t

t0

g(s) exp

(
(1 − �)�

t

s

f (r) dr

)
ds.

u(t) ≤ c exp

(
(1 − �)�

t

t0

f (s) + g(s) ds

)
.

Table 5   Classification error of the post-activation ResNet on CIFAR-
10 (Table 6 from [16])

Depth Trainable parameters Test accuracy (%)

20 0.27M 91.25
32 0.46M 92.49
44 0.66M 92.83
56 0.85M 93.03
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