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Abstract. One way to understand time-series data is to identify the underlying dynamical
system which generates it. This task can be done by selecting an appropriate model and a set of
parameters which best fits the dynamics while providing the simplest representation (i.e., the smallest
amount of terms). One such approach is the sparse identification of nonlinear dynamics framework
[6], which uses a sparsity-promoting algorithm that iterates between a partial least-squares fit and
a thresholding (sparsity-promoting) step. In this work, we provide some theoretical results on the
behavior and convergence of the algorithm proposed in [S. L. Brunton, J. L. Proctor, and J. N. Kutz,
Proc. Nat. Acad. Sci. USA, 113 (2016), pp. 3932--3937]. In particular, we prove that the algorithm
approximates local minimizers of an unconstrained \ell 0-penalized least-squares problem. From this,
we provide sufficient conditions for general convergence, rate of convergence, conditions for one-step
recovery, and a recovery result with respect to the condition number and noise. Examples illustrate
that the rates of convergence are sharp. In addition, our results extend to other algorithms related
to the algorithm in [S. L. Brunton, J. L. Proctor, and J. N. Kutz, Proc. Nat. Acad. Sci. USA, 113
(2016), pp. 3932--3937], and provide theoretical verification of several observed phenomena.
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1. Introduction. Dynamic model identification arises in a variety of fields where
one would like to learn the underlying equations governing the evolution of some given
time-series data u(t). This is often done by learning a first-order differential equation
\.u = f(u) which provides a reasonable model for the dynamics. The function f is
unknown and must be learned from the data. Some applications including weather
modeling and prediction, development and design of aircraft, modeling the spread of
disease over time, trend predictions, etc.

Several analytical and numerical approaches have been developed to solve various
model identification problems. One important contribution to model identification is
[4, 26], where the authors introduced a symbolic regression algorithm to determine
underlying physical equations, like equations of motion or energies, from data. The
key idea is to learn the governing equation directly from the data by fitting the de-
rivatives with candidate functions while balancing between accuracy and parsimony.
In [6], the authors proposed the sparse identification of nonlinear dynamics (SINDy)
algorithm, which computes sparse solutions to linear systems related to model identi-
fication and parameter estimation. The main idea is to convert the (nonlinear) model
identification problem to a linear system,

Ax = b,(1.1)

where the matrix A \in Rm\times n is a data-driven dictionary whose columns are (nonlinear)
candidate functions of the given data u, the unknown vector x \in Rn represents the

\ast Received by the editors May 24, 2018; accepted for publication (in revised form) May 1, 2019;
published electronically July 25, 2019.

https://doi.org/10.1137/18M1189828
Funding: The authors were supported by AFOSR grant FA9550-17-1-0125 and NSF CAREER

grant 1752116.
\dagger Department of Mathematical Sciences, Carnegie Mellon University, Pittsburgh, PA 15213

(linanz@andrew.cmu.edu, schaeffer@cmu.edu).

948

D
ow

nl
oa

de
d 

12
/1

2/
19

 to
 1

28
.2

37
.1

43
.6

. R
ed

is
tri

bu
tio

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.si

am
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

https://doi.org/10.1137/18M1189828
mailto:linanz@andrew.cmu.edu
mailto:schaeffer@cmu.edu


 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

ON THE CONVERGENCE OF THE SINDy ALGORITHM 949

coefficients of the selected terms in the governing equation f , and the vector b \in Rm

is an approximation to the first-order time derivative \.u. In this method, the number
of candidate functions are fixed, and thus one assumes that the set of candidate
functions is sufficiently large to capture the nonlinear dynamics present in the data.
In practice, (1.1) defines an overdetermined linear system, i.e., m \geq n. In order to
select an accurate model (from the set of candidate functions) which does not overfit
the data, the authors of [6] proposed a sparsity-promoting algorithm. In particular, a
sparse vector x which approximately solves (1.1) is generated by the following iterative
scheme:

Sk = \{ 1 \leq j \leq n : | xk
j | \geq \lambda \} ,(1.2a)

xk+1 = argmin
x\in Rn: \mathrm{s}\mathrm{u}\mathrm{p}\mathrm{p}(x)\subseteq Sk

\| Ax - b\| 2,(1.2b)

where \lambda > 0 is a thresholding parameter, and supp(x) is the support set of x. In
practice, it was observed that the algorithm converged within a few steps and produced
an appropriate sparse approximation to (1.1). These observations are quantified in
our work.

There are several approaches which leverage sparse approximations for model
identification. In [10], the authors combined the SINDy framework with model pre-
dictive control to solve model identification problems given noisy data. The resulting
algorithm is able to control nonlinear systems and identify models in real-time. In
[15], the authors introduced information criteria to the SINDy framework, where they
selected the optimal model (with respect to the chosen information criteria) over var-
ious values of the thresholding parameter. Other approaches have been developed
based on the SINDy framework, including SINDy for rational governing equations
[14], SINDy with control [7], and SINDy for abrupt changes [18].

In [22], a sparse regression approach for identifying dynamical systems via the
weak form was proposed. The authors used the following constrained minimization
problem:

min
x

\| x\| 0 subject to \| Ax - b\| 2 \leq \sigma ,

where the dictionary matrix A is formulated using an integrated set of candidate
functions. In [23], several sampling strategies were developed for learning dynamical
equations from high-dimensional data. It was proven analytically and verified nu-
merically that, under certain conditions, the underlying equation can be recovered
exactly from the following constrained minimization problem, even when the data is
undersampled:

min
x

\| x\| 1 subject to \| Ax - b\| 2 \leq \sigma ,

where the dictionary matrix A consists of second-order Legendre polynomials applied
to the data. In [24], the authors developed an algorithm for learning dynamics from
multiple time-series data whose governing equations have the same form but differ-
ent (unknown) parameters. The authors provided convergence guarantees for their
group-sparse hard thresholding pursuit algorithm; in particular, one can recover the
dynamics when the data-drive dictionary is coercive. The linear system considered
in [30] is AX = B, where X \in Rn\times d is unknown, and is associated with the first-
order differential equation \.u = f(u) in Rd. To separate the corrupted data from the
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950 LINAN ZHANG AND HAYDEN SCHAEFFER

uncorrupt points, the authors solved the minimization problem1

min
x,\eta 

\| \eta \| 2,1 subject to AX + \eta = B and x is sparse,

where the residual \eta := B - AX is the variable representing the (unknown) corrupted
locations. It was shown in [30, 9] that the linear system is well conditioned (when
n is large enough) if the data is sampled from a chaotic process, even when the
measurements are dependent. Therefore, these learning approaches are appropriate
for multiscale and chaotic dynamics. When the data is a function of both time and
space, i.e., u = u(t, y) for some spatial variable y, the dictionary can incorporate
spatial derivatives [21, 20]. In [21], an unconstrained \ell 1-regularized least-squares
problem (LASSO [29]) with a dictionary built from nonlinear functions of the data and
its spatial partial derivatives was used to discover partial differential equations (PDEs)
from data. In [20], the authors proposed an adaptive SINDy algorithm for discovering
PDEs, which iteratively applies ridge regression with hard thresholding. Additional
approaches for model identification can be found in [27, 5, 8, 12, 16, 11, 19, 25].

The sparse model identification approaches include a sparsity-promoting substep,
typically through various thresholding operations. In particular, the SINDy algorithm,
i.e., (1.2), alternates between a reduced least-squares problem and a thresholding step.
This is related to, but differs from, the iterative thresholding methods widely used in
compressive sensing. To find a sparse representation of x in (1.1), it is natural to solve
the \ell 0-minimization problems, where the \ell 0-penalty of a vector measures the number
of its nonzero elements. In [3, 1, 2], the authors provided iterative schemes to solve
the unconstrained and constrained \ell 0-regularized problems:

min
x

\| Ax - b\| 22 + \lambda 2\| x\| 0,(1.3)

min
x

\| Ax - b\| 22 subject to \| x\| 0 \leq s,(1.4)

respectively, where \| A\| 2 = 1. To solve (1.3), one iterates

xk+1 = H\lambda (x
k +AT (b - Axk)),(1.5)

where H\lambda is the hard thresholding operator defined componentwise by

H\lambda (x)j := sgn(xj)max(| xj | , \lambda ).

To solve (1.4), one iterates

xk+1 = Ls(x
k +AT (b - Axk)),(1.6)

where Ls is a nonlinear operator that only retains s elements of x with the largest
magnitude and sets the remaining n - s elements to zero.

The authors of [3, 1, 2] also proved that the iterative algorithms defined by (1.5)
and (1.6) converge to the local minimizers of (1.3) and (1.4), respectively, and derived
theoretically the error bounds and convergence rates for the solutions obtained via
(1.5). In this work, we will show that the SINDy algorithm also finds local minimizers
of (1.3) and has similar theoretical guarantees.

1The \ell 2,1 norm of a matrix M \in Rn\times m is defined by \| M\| 2,1 :=
\sum n

i=1 \| Mi,:\| 2.

D
ow

nl
oa

de
d 

12
/1

2/
19

 to
 1

28
.2

37
.1

43
.6

. R
ed

is
tri

bu
tio

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.si

am
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

ON THE CONVERGENCE OF THE SINDy ALGORITHM 951

1.1. Contribution. In this work, we show (in section 2) that the SINDy algo-
rithm proposed in [6] approximates the local minimizers of (1.3), an unconstrained
and nonconvex objective function. We provide sufficient conditions for convergence
and bounds on rate of convergence. We also prove that the algorithm typically con-
verges to a local minimizer rapidly (in a finite number of steps). Based on several
examples, the rate of convergence is sharp. We also show that the convergence results
can be adapted to other SINDy-based algorithms. In section 3, we highlight some
of the theoretical results by applying the algorithm from [6] to identify dynamical
systems from noisy measurements.

2. Convergence analysis. Before detailing the results, we briefly introduce
some notations and conventions. For an integer n \in N, let [n] \subset N be the set defined
by [n] := \{ 1, 2, . . . , n\} . Let A be a matrix in Rm\times n, where m \geq n. If A is injective
(or equivalently if A is full column rank, i.e., rank(A) = n), then its pseudo-inverse
A\dagger \in Rn\times m is defined as A\dagger := (ATA) - 1AT . Let x \in Rn, and define the support set
of x as the set of indices corresponding to its nonzero elements, i.e.,

supp(x) := \{ j \in [n] : xj \not = 0\} .

The \ell 0 penalty of x measures the number of nonzero elements in the vector and is
defined as

\| x\| 0 := card(supp(x)).

The vector x is called s-sparse if it has at most s nonzero elements; thus \| x\| 0 \leq s.
Given a set S \subseteq [n], where n \in N is known from the context, define \=S := [n]\setminus S.

For a matrix A \in Rm\times n and a set S \subseteq [n], we denote by AS the submatrix of A
in Rm\times s which consists of the columns of A with indices j \in S, where s = card(S).

Similarly, for a vector x =
\bigl( 
x1, x2, . . . , xn

\bigr) T
, let xS be the subvector of x in Rs

consisting of the elements of x with indices j \in S, or the vector in Rn which coincides
with x on S and is zero outside S:

(xS)j =

\Biggl\{ 
xj if j \in S,

0 if j \in \=S.

The representation of xS should be clear within the context.

2.1. Algorithmic convergence. Let A \in Rm\times n be a matrix with m \geq n, let
rank(A) = n, x \in Rn be the unknown signal, and let b \in Rm be the observed data.
The results presented here work for general A satisfying these assumptions, but the
specific application of interest is detailed in section 3. The SINDy algorithm from [6]
is

x0 = A\dagger b,(2.1a)

Sk = \{ j \in [n] : | xk
j | \geq \lambda \} , k \geq 0,(2.1b)

xk+1 = argmin
x\in Rn:\mathrm{s}\mathrm{u}\mathrm{p}\mathrm{p}(x)\subseteq Sk

\| Ax - b\| 2, k \geq 0,(2.1c)

which is used to find a sparse approximation to the solution of Ax = b, where \lambda >
0 is the free parameter. The following theorem shows that the SINDy algorithm
terminates in finite steps.

Theorem 2.1. The iterative scheme defined by (2.1) converges in at most n steps.
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952 LINAN ZHANG AND HAYDEN SCHAEFFER

Proof. Let xk be the sequence generated by (2.1). By (2.1c) we have supp(xk+1) \subseteq 
Sk, and from (2.1b) we have Sk+1 \subseteq supp(xk+1). Therefore, the sets Sk are nested:

Sk+1 \subseteq supp(xk+1) \subseteq Sk.(2.2)

Consider the following two cases. If there exists an integer M \in N such that SM+1 =
SM , then

xM+2 = argmin
\mathrm{s}\mathrm{u}\mathrm{p}\mathrm{p}(x)\subseteq SM+1

\| Ax - b\| 2 = argmin
\mathrm{s}\mathrm{u}\mathrm{p}\mathrm{p}(x)\subseteq SM

\| Ax - b\| 2 = xM+1.(2.3)

Thus, xk = xM+1 for all k \geq M +1, and Sk = SM for all k \geq M . Since card(Sk) \leq n
for all k \in N, we conclude that M \leq n, so that the scheme converges in at most n
steps.

On the other hand, if there does not exist an integer M such that SM+1 = SM

and SM \not = \emptyset , then we have a sequence of strictly nested sets, i.e.,

Sk+1 ( Sk for all k such that Sk \not = \emptyset .

Since card(Sk) \leq n for all k \in N, we must have Sk = \emptyset for all k > n. Therefore, the
scheme converges to the trivial solution within n steps.

Remark 2.2. Equation (2.3) suggests that an appropriate stopping criterion for
the scheme is that the sets are stationary, i.e., Sk = Sk - 1.

Note that, since the support sets are nested, the scheme will converge in at most
card(S0) steps. The following is an immediate consequence of Theorem 2.1.

Corollary 2.3. The iterative scheme defined by (2.1) converges to an s-sparse
solution in at most card(S0) - s steps.

2.2. Convergence to the local minimizers. In this section, we will show
that the iterative scheme defined by (2.1) produces a minimizing sequence for a non-
convex objective associated with sparse approximations. This will lead to a clearer
characterization of the fixed-points of the iterative scheme.

Without loss of generality, assume in addition that \| A\| 2 = 1. We first show
that the scheme converges to a local minimizer of the following (nonconvex) objective
function:

F (x) := \| Ax - b\| 22 + \lambda 2\| x\| 0, x \in Rn.(2.4)

Theorem 2.4. The iterates xk generated by (2.1) strictly decrease the objective
function unless the iterates are stationary.

Proof. Define the auxiliary variable:

yk := xk
Sk , k \in N,(2.5)

which plays the role of an intermediate approximation. In particular, we will relate
xk+1 and yk.

Observe that (2.1) emits several useful properties. First, we have shown in (2.2)
that Sk+1 \subseteq supp(xk+1) \subseteq Sk. Next, by (2.1c), xk+1 is the least-squares solution
over the set Sk. By considering the derivative of \| Ax  - b\| 22 with respect to x, we
obtain that \bigl( 

AT (Axk+1  - b)
\bigr) 
Sk = 0,(2.6)
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and the solution xk+1 to the above equation satisfies xk+1
Sk = (ASk)\dagger b. To relate xk+1

and yk, note that (2.2) and (2.5) imply that

supp(xk+1) \subseteq supp(yk) = Sk \subseteq supp(xk).(2.7)

By (2.1c) and (2.7), we have

\| Axk+1  - b\| 2 \leq \| Ayk  - b\| 2 and \| xk+1\| 0 \leq \| yk\| 0,(2.8)

respectively.
To show that the objective function decreases, we use the optimization transfer

technique as in [3]. Define the surrogate function G for F :

G(x, y) := \| Ax - b\| 22  - \| A(x - y)\| 22 + \| x - y\| 22 + \lambda 2\| x\| 0, x \in Rn.(2.9)

Since \| A\| 2 = 1, the term  - \| A(x - y)\| 22 + \| x - y\| 22 is nonnegative:

 - \| A(x - y)\| 22 + \| x - y\| 22 \geq  - \| A\| 22\| x - y\| 22 + \| x - y\| 22 = 0,

and thus we have G(x, y) \geq F (x) and G(x, x) = F (x) for all x, y \in Rn.
Define the matrix B := I  - ATA. Since A is injective (which is implied by

rank(A) = n) and \| A\| 2 = 1, we have that the eigenvalues of B are in the interval
[0, 1]. Fixing the index k \in N, from (2.4) and (2.8)--(2.9), we have

F (xk+1) = \| Axk+1  - b\| 22 + \lambda 2\| xk+1\| 0
\leq \| Axk+1  - b\| 22 + \lambda 2\| xk+1\| 0 + \| xk  - yk\| 2B
\leq \| Ayk  - b\| 22 + \lambda 2\| yk\| 0 + \| xk  - yk\| 2B = G(yk, xk).

It remains to show that G(yk, xk) \leq G(xk, xk). By (2.5), we have

xk  - yk = xk  - xk
Sk = xk

\mathrm{s}\mathrm{u}\mathrm{p}\mathrm{p}(xk)  - xk
Sk\cap \mathrm{s}\mathrm{u}\mathrm{p}\mathrm{p}(xk) = xk

\=Sk\cap \mathrm{s}\mathrm{u}\mathrm{p}\mathrm{p}(xk),

where we included the intersection with supp(xk) to emphasize that the difference
is zero outside of the support set of xk. Thus, the difference with respect to the
surrogate function simplifies to

G(yk, xk) - G(xk, xk)

(2.10)

= \| Ayk  - b\| 22  - \| A(yk  - xk)\| 22 + \| yk  - xk\| 22 + \lambda 2\| yk\| 0  - \| Axk  - b\| 22  - \lambda 2\| xk\| 0
=  - 2\langle b, Ayk\rangle + 2\langle Ayk, Axk\rangle  - 2\| Axk\| 22 + 2\langle b, Axk\rangle + \| xk  - yk\| 22
+ \lambda 2

\bigl( 
\| yk\| 0  - \| xk\| 0

\bigr) 
=  - 2\langle yk  - xk, AT (b - Axk)\rangle + \| xk  - yk\| 22 + \lambda 2

\bigl( 
\| yk\| 0  - \| xk\| 0

\bigr) 
=  - 2\langle xk

\=Sk\cap \mathrm{s}\mathrm{u}\mathrm{p}\mathrm{p}(xk), A
T (Axk  - b)\rangle + \| xk

\=Sk\cap \mathrm{s}\mathrm{u}\mathrm{p}\mathrm{p}(xk)\| 
2
2 + \lambda 2

\bigl( 
\| yk\| 0  - \| xk\| 0

\bigr) 
.

By (2.2) and (2.6), we can observe that

supp(xk
\=Sk\cap \mathrm{s}\mathrm{u}\mathrm{p}\mathrm{p}(xk)) \subseteq supp(xk) \subseteq Sk - 1 and (AT (Axk  - b))Sk - 1 = 0,
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954 LINAN ZHANG AND HAYDEN SCHAEFFER

respectively, which together imply that

\langle xk
\=Sk\cap \mathrm{s}\mathrm{u}\mathrm{p}\mathrm{p}(xk), A

T (Axk  - b)\rangle = 0.(2.11)

In addition, by (2.7), we have

card(Sk) - card(supp(xk)) =  - card(supp(xk)\setminus Sk) =  - card( \=Sk \cap supp(xk)).(2.12)

Consider the following two cases. If \=Sk\cap supp(xk) = \emptyset , then by (2.2), we must have
supp(xk) = Sk, i.e., xk = xk+1. Therefore, xk is a fixed point, and F (x\ell ) is stationary
for all \ell \geq k. If \=Sk \cap supp(xk) \not = \emptyset , then there exists an integer j \in \=Sk \cap supp(xk)
such that | xk

j | < \lambda , and thus

\| xk
\=Sk\cap \mathrm{s}\mathrm{u}\mathrm{p}\mathrm{p}(xk)\| 

2
2 < \lambda 2 card( \=Sk \cap supp(xk)).(2.13)

Thus, by (2.12) and (2.13), provided that the iterates are not stationary, we have

\| xk
\=Sk\cap \mathrm{s}\mathrm{u}\mathrm{p}\mathrm{p}(xk)\| 

2
2 + \lambda 2

\bigl( 
\| yk\| 0  - \| xk\| 0

\bigr) 
= \| xk

\=Sk\cap \mathrm{s}\mathrm{u}\mathrm{p}\mathrm{p}(xk)\| 
2
2 + \lambda 2

\bigl( 
card(Sk) - card(supp(xk))

\bigr) 
< \lambda 2card( \=Sk \cap supp(xk)) + \lambda 2

\bigl( 
card(Sk) - card(supp(xk))

\bigr) 
= 0.(2.14)

Combining (2), (2.11), and (2.14) yields

G(yk, xk) - G(xk, xk) < 0.

Therefore, for k \in N such that the k-iteration is not stationary, we have

F (xk+1) \leq G(yk, xk) < G(xk, xk) = F (xk),

which completes the proof.

In the following theorem, we show that the scheme converges to a fixed point
which is a local minimizer of the objective function F .

Theorem 2.5. The iterates xk generated by (2.1) converge to a fixed point of the
iterative scheme defined by (2.1). A fixed point of the scheme is also a local minimizer
of the objective function defined by (2.4).

Proof. We first observe that

\| Axk  - b\| 2 \leq \| b\| 2(2.15)

for all k \in N. This is an immediate consequence of (2.1c),

\| Axk  - b\| 2 = min
x\in Rn:\mathrm{s}\mathrm{u}\mathrm{p}\mathrm{p}(x)\subseteq Sk - 1

\| Ax - b\| 2 \leq \| b\| 2,

since the zero vector is in the feasible set. Next, we show that

\infty \sum 
k=1

\| xk+1  - xk\| 22 < \infty .(2.16)

Denote the smallest eigenvalue of ATA by \lambda 0. The assumption that A has full column
rank implies that \lambda 0 > 0. Thus, by the coercivity of ATA,

\| xk+1  - xk\| 22 \leq 1

\lambda 0
\| A(xk+1  - xk)\| 22(2.17)
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for all k \in N. For k \in N, define subsets W k, V k \subseteq Rm by

W k := \{ Ax : x \in Rn, supp(x) \subseteq Sk\} ,
V k := \{ r \in Rm : \langle r, y\rangle = 0 \forall y \in W k\} = (W k)\bot .

Fixing M \in N and k \in [M ] and setting r := b - Axk, we have (AT r)Sk - 1 = 0 by (2.6).
For x \in Rn with supp(x) \subseteq Sk - 1, we have \langle r,Ax\rangle = \langle AT r, x\rangle = 0, which implies that
r \in V k - 1. In addition, A(x - xk) \in W k - 1 for all x \in Rn with supp(x) \subseteq Sk - 1. Thus,

\| Ax - b\| 22 = \| A(x - xk)\| 22  - 2\langle A(x - xk), r\rangle + \| Axk  - b\| 22
= \| A(x - xk)\| 22 + \| Axk  - b\| 22(2.18)

for all x \in Rn with supp(x) \subseteq Sk - 1. By (2.2) and (2.18),

\| A(xk+1  - xk)\| 22 = \| Axk+1  - b\| 22  - \| Axk  - b\| 22(2.19)

for all k \in [M ]. Combining (2.15), (2.17), and (2.19) yields

M\sum 
k=1

\| xk+1  - xk\| 22 \leq 1

\lambda 0

M\sum 
k=1

\| A(xk+1  - xk)\| 22

=
1

\lambda 0

M\sum 
k=1

\bigl( 
\| Axk+1  - b\| 22  - \| Axk  - b\| 22

\bigr) 
\leq 1

\lambda 0
\| AxM+1  - b\| 22 \leq 1

\lambda 0
\| b\| 22,

and (2.16) follows by sending M \rightarrow \infty .
We now show that the iterates xk converge to a fixed point of the scheme. Since

\| xk+1  - xk\| 2 \rightarrow 0 as k \rightarrow \infty , for any \epsilon > 0, there exists an integer N \in N such that
\| xk+1  - xk\| < \epsilon for all k \geq N . Assume to the contrary that the scheme does not
converge. Then there exists an integer K \geq N such that SK\setminus SK+1 \not = \emptyset . Thus, we
can find an index j \in SK\setminus SK+1. By (2.1), we must have | xK

j | \geq \lambda , | xK+1
j | < \lambda , and

xK+2
j = 0. Thus,

\lambda  - | xK+1
j | \leq | xK

j  - xK+1
j | \leq \| xK+1  - xK\| 2 < \epsilon 

and

| xK+1
j | = | xK+1

j  - xK+2
j | \leq \| xK+2  - xK+1\| 2 < \epsilon .

The two conditions on | xK+1
j | above imply that \lambda  - \epsilon < | xK+1

j | < \epsilon , which fails when,

for example, \epsilon = \lambda /3. Therefore, the iterates xk converge. In particular, the preceding
argument indicates that there exists an integer N \in N such that Sk\setminus Sk+1 = \emptyset for all
k \geq N . Since the sets Sk are nested, we conclude that Sk+1 = Sk for all k \geq N .
Therefore, the iterates xk converge to a fixed point of the scheme defined by (2.1).

We now show that a fixed point of the scheme is a local minimizer of the objective
function defined by (2.4). Let x\ast be a fixed point of the scheme. Then x\ast and the set
S\ast := supp(x\ast ) satisfy

S\ast = \{ j \in [n] : | x\ast 
j | \geq \lambda \} and x\ast = argmin

\mathrm{s}\mathrm{u}\mathrm{p}\mathrm{p}(x)\subseteq S\ast 
\| Ax - b\| 2.(2.20)
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956 LINAN ZHANG AND HAYDEN SCHAEFFER

From (2.20), we observe that

(AT (Ax\ast  - b))S\ast = 0(2.21)

and

x\ast 
j \not = 0 \Leftarrow \Rightarrow | x\ast 

j | \geq \lambda .(2.22)

To show that x\ast is a local minimizer of F , we will find a positive real number \epsilon > 0
such that

F (x\ast + z) \geq F (x) for all z \in Rn with \| z\| \infty < \epsilon .(2.23)

Let U \subseteq [n] be the complement of the support set of x\ast :

U := \{ j \in [n] : x\ast 
j = 0\} .

Then by (2.22),

\=U = supp(x\ast ) = \{ j \in [n] : x\ast 
j \not = 0\} = \{ j \in [n] : | x\ast 

j | \geq \lambda \} = S\ast .(2.24)

Fixing z \in Rn, from (2.9), we have

G(x\ast + z, x\ast ) - G(x\ast , x\ast ) = 2\langle Az,Ax\ast  - b\rangle + \lambda 2 (\| x\ast + z\| 0  - \| x\ast \| 0) + \| z\| 22.

Let aj be the jth column of A. Then

2\langle Az,Ax\ast  - b\rangle + \lambda 2 (\| x\ast + z\| 0  - \| x\ast \| 0)(2.25)

=
\sum 
j\in U

\bigl( 
2aTj (Ax

\ast  - b) zj + \lambda 2| zj | 0
\bigr) 

+
\sum 
j\in \=U

\bigl( 
2aTj (Ax

\ast  - b) zj + \lambda 2(| x\ast 
j + zj | 0  - | x\ast 

j | 0)
\bigr) 

=
\sum 
j\in U

\bigl( 
2aTj (Ax

\ast  - b) zj + \lambda 2| zj | 0
\bigr) 
+

\sum 
j\in \=U

\lambda 2(| x\ast 
j + zj | 0  - | x\ast 

j | 0),

where the last step follows from (2.21). To find an \epsilon > 0 such that (2.23) holds, we
will show that (3) is nonnegative (so that the difference in G is bounded below by
\| z\| 22).

For j \in \=U , we have | x\ast 
j | \geq \lambda by (2.24). If | zj | < \lambda for j \in \=U , then x\ast 

j + zj \not = 0,

and thus | x\ast 
j + zj | 0  - | x\ast 

j | 0 = 0. Therefore, provided that | zj | < \lambda for all j \in \=U ,

2\langle Az,Ax\ast  - b\rangle + \lambda 2 (\| x\ast + z\| 0  - \| x\ast \| 0) =
\sum 
j\in U

\bigl( 
2aTj (Ax\ast  - b)zj + \lambda 2| zj | 0

\bigr) 
.

For j \in U , consider the following two cases. If zj = 0, then the term in the sum is
zero:

2aTj (Ax
\ast  - b)zj + \lambda 2| zj | 0 = 0.

If | zj | > 0 and \lambda 2 \geq 2| aTj (Ax\ast  - b)zj | , then

2aTj (Ax
\ast  - b)zj + \lambda 2| zj | 0 = 2aTj (Ax\ast  - b)zj + \lambda 2 \geq 0.
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Combining these results, if \epsilon satisfies

0 < \epsilon \leq \lambda 2 min

\Biggl\{ 
min
j\in [n]

1

2| aTj (Ax\ast  - b)| 
, 1

\Biggr\} 
,

then for any z \in Rn with \| z\| \infty < \epsilon , we have

G(x\ast + z, x\ast ) - G(x\ast , x\ast ) \geq \| z\| 22,

which then implies that

F (x\ast + z) = G(x\ast + z, x\ast ) + \| Az\| 22  - \| z\| 22 \geq G(x\ast + z, x\ast ) - \| z\| 22 \geq G(x\ast , x\ast )

= F (x\ast ),

and the proof is complete.

We state a sufficient condition for global minimizers of the objective function in
the following theorem.

Theorem 2.6 (see Theorem 12 from [31]). Let xg be a global minimizer of the
objective function. Define Ug := \{ j \in [n] : xg

j = 0\} . Then,

| aTj (Axg  - b)| \leq \lambda for all j \in Ug,(2.26a)

| xg
j | \geq \lambda and aTj (Ax

g  - b) = 0 for all j \in \=Ug,(2.26b)

where aj is the jth column of A.

Theorems 2.5 and 2.6 immediately imply the following result.

Corollary 2.7. A global minimizer of the objective function defined by (2.4) is
a fixed point of the iterative scheme defined by (2.1).

Theorem 2.5 shows that the iterative scheme converges to a local minimizer of
the objective function, but it does not imply that the iterative scheme can obtain all
local minima. However, by Corollary 2.7, the global minimizer is indeed obtainable.
The following proposition provides a necessary and sufficient condition by which the
scheme terminates in one step, which is a consequence of Corollary 2.7.

Proposition 2.8. Let x\ast \in Rn be a vector which satisfies Ax\ast = b and | x\ast 
j | \geq \lambda 

on S := supp(x\ast ). A necessary and sufficient condition by which x\ast can be recovered
using the iterative scheme defined by (2.1) in one step is

min
j\in S

| (A\dagger b)j | \geq \lambda > max
j\in \=S

| (A\dagger b)j | .(2.27)

Proof. First, observe from the definitions of x0 and S0 that

S0 = S \Leftarrow \Rightarrow \{ j \in [n] : | (A\dagger b)j | \geq \lambda \} = S \Leftarrow \Rightarrow min
j\in S

| (A\dagger b)j | \geq \lambda > max
j\in \=S

| (A\dagger b)j | .

Assume that x\ast can be recovered via the scheme in one step, i.e., x1 = x\ast . By
the definition of S1, it follows that

S1 := \{ j \in [n] : | x1
j | \geq \lambda \} = \{ j \in [n] : | x\ast 

j | \geq \lambda \} = S.

By the stopping criterion (see Remark 2.2), we have S1 = S0. Thus, S0 = S, which
implies (2.27).
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Assume that (2.27) holds, i.e., S0 = S. The assumption that Ax\ast = b implies
that

\| Ax\ast  - b\| 2 = min
x\in Rn:\mathrm{s}\mathrm{u}\mathrm{p}\mathrm{p}(x)\subseteq S

\| Ax - b\| 2

since supp(x\ast ) \in S and the norm is zero. Since A is injective, we have uniqueness
and

x\ast = argmin
x\in Rn:\mathrm{s}\mathrm{u}\mathrm{p}\mathrm{p}(x)\subseteq S

\| Ax - b\| 2 = argmin
x\in Rn:\mathrm{s}\mathrm{u}\mathrm{p}\mathrm{p}(x)\subseteq S0

\| Ax - b\| 2 = x1,

i.e., x\ast can be recovered via the scheme in one step.

In practice, the matrix A and vector b may contain (additive) noise and other
artifacts. The following corollary shows that under certain conditions, the support
set of x can be recovered by the SINDy algorithm in one step.

Corollary 2.9. Let x be a vector with supp(x) = S, let A \in Rm\times n with m \geq n,
and let b := Ax. Let B \in Rm\times n and \eta \in Rm be the perturbations for A and b,
respectively, and consider the perturbed problem

(A+B)y = b+ \eta .(2.28)

If we set

r :=
mini\in S | xi| 
maxi\in S | xi| 

and \gamma :=
\| \eta \| \infty 
\| x\| \infty 

and assume that A satisfies

\| U - 1\| \infty <
r

2(\| B\| \infty + \gamma )
,(2.29)

where U is an upper triangular matrix satisfying ATA = UTU , then there is a \lambda such
that the solution x1 constructed by (2.1) for the perturbed problem has the correct
support, i.e., supp(x1) = S.

Proof. Let x0 := (A + B)\dagger (b + \eta ), i.e., x0 is the least-squares solution to (2.28).
Then, by [28], we have

\| x0  - x\| \infty \leq cond(U)
\| B\| \infty 
\| A\| \infty 

\| x\| \infty + cond(U)
\| \eta \| \infty 
\| A\| \infty 

.

Using (2.29), we have

\| x0  - x\| \infty \leq cond(U)
\| B\| \infty 
\| A\| \infty 

\| x\| \infty + cond(U)
\| \eta \| \infty 
\| A\| \infty 

= \| U - 1\| \infty (\| B\| \infty \| x\| \infty + \| \eta \| \infty ) <
mini\in S | xi| 

2
,

where the condition number is with respect to \ell \infty . Next, we want to show that the
support set of x1 is equal to S. Consider the indices outside of S, i.e., for each j \in \=S
we have

| (x0)j | = | (x0)j  - xj | \leq \| x0  - x\| \infty <
mini\in S | xi| 

2
.
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Algorithm 2.1 The SINDy algorithm [6] for Ax = b.

Input: m \geq n; A \in Rm\times n with rank(A) = n; b \in Rm.
1: Set k = 0; Initialize x0 = A\dagger b and S - 1 = \emptyset ;
2: Set Sk = \{ j \in [n] : | xk

j | \geq \lambda \} ; Choose \lambda > 0 such that S0 \not = \emptyset ;
3: while Sk \not = Sk - 1 do
4: xk+1 = argmin\| Ax - b\| 2 such that supp(x) \subseteq Sk;
5: Sk+1 = \{ j \in [n] : | xk+1

j | \geq \lambda \} ;
6: k = k + 1;
7: end while
8: Output: xk.

Thus, if we set \lambda = mini\in S | xi| /2, then x1| \=S = 0. If j \in S, then

| (x0)j | \geq | xj |  - | (x0)j  - xj | \geq min
i\in S

| xi|  - \| x0  - x\| \infty >
mini\in S | xi| 

2

and thus supp(x1) = S.

We summarize all of the convergence results in the following theorem. The algo-
rithm proposed in [6] is summarized in Algorithm 2.1.

Theorem 2.10. Assume that m \geq n. Let A \in Rm\times n with \| A\| 2 = 1, b \in Rm,
and \lambda > 0. Let xk be the sequence generated by (2.1). Define the objective function
F by (2.4). We have
(i) xk converges to a fixed point of the iterative scheme defined by (2.1) in at most

n steps;
(ii) a fixed point of the scheme is a local minimizer of F ;
(iii) a global minimizer of F is a fixed point of the scheme;
(iv) xk strictly decreases F unless the iterates are stationary.

The preceding convergence analysis for Algorithm 2.1 can be readily adapted to
a variety of SINDy-based algorithms. For example, in [20], the authors proposed the
Sequential Threshold Ridge regression (STRidge) algorithm to find a sparse approxi-
mation of the solution of Ax = b. Instead of minimizing the function F , the STRidge
algorithm minimizes the objective function

F1(x) := \| Ax - b\| 22 + \gamma \| x\| 22 + \lambda 2\| x\| 0, x \in Rn,(2.30)

by iterating

x0 = A\dagger b,(2.31a)

Sk = \{ j \in [n] : | xk
j | \geq \lambda \} , k \geq 0(2.31b)

xk+1 = argmin
x\in Rn:\mathrm{s}\mathrm{u}\mathrm{p}\mathrm{p}(x)\subseteq Sk

\| Ax - b\| 22 + \gamma \| x\| 22.(2.31c)

We assume that the parameter \gamma > 0 is fixed. By defining

\~A :=

\biggl( 
A
\gamma I

\biggr) 
\in R(m+n)\times n, \~b :=

\biggl( 
b
0

\biggr) 
\in Rm+n,(2.32)

then F1(x) = \| \~Ax - \~b\| 22+\lambda 2\| x\| 0 is equivalent to the objective function of Algorithm
2.1 with \~A and \~b. We then obtain the following corollary.
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Corollary 2.11. Let A \in Rm\times n, b \in Rm, and \gamma , \lambda > 0. Assume that \| \~A\| 2 = 1,
where \~A is defined by (2.32). Let xk be the sequence generated by (2.31). Define the
objective function F1 by (2.30). We have
(i) the iterates xk converge to a fixed point of the iterative scheme defined by (2.31);
(ii) a fixed point of the scheme is a local minimizer of F1;
(iii) a global minimizer of F1 is a fixed point of the scheme;
(iv) the iterates xk strictly decrease F1 unless the iterates are stationary.

Note that we no longer require A to be injective, since concatenation with the
identity matrix makes \~A injective.

2.3. Examples and sharpness. We construct a few examples to highlight the
effects of different choices of \lambda > 0. In particular, we show that the scheme obtains
nontrivial sparse approximations, give an example where the minimizer is obtained in
one step, and provide an example in which the maximum number of steps (i.e., n - 1
steps) is required.2 In all examples, A is injective.

Example 2.12. Consider a lower-triangular matrix A \in R5\times 5 given by

A :=

\left(      
1 0 0 0 0

 - 0.1 0.9 0 0 0
 - 0.1  - 0.1 0.8 0 0
 - 0.1  - 0.1  - 0.1 0.7 0
 - 0.1  - 0.1  - 0.1  - 0.1 0.6

\right)      .

Let x, b \in R5 be such that

x :=
\bigl( 
10, 0.95, 0.9, 0.85, 0.8

\bigr) T
,

b := Ax =
\bigl( 
10, - 0.145, - 0.375, - 0.59, - 0.79

\bigr) T
.

We want to obtain a 1-sparse approximation of the solution x from the system Ax = b.
First, observe that:

min
j\in S

| (A\dagger b)j | = 10, max
j\in \=S

| (A\dagger b)j | = 0.95,

where S = \{ 1\} . Thus by Proposition 2.8, choosing \lambda \in (0.95, 10] will yield immediate
convergence:

x0 =
\bigl( 
10, 0.95, 0.9, 0.85, 0.8

\bigr) T
, S0 = \{ 1\} ,(2.33a)

x1 =
\bigl( 
9.7981, 0, 0, 0, 0

\bigr) T
, S1 = \{ 1\} .(2.33b)

Indeed, we obtain a 1-sparse approximation of x in one step. Now consider a parameter
outside of the optimal range, for example, \lambda = 0.802. Applying Algorithm 2.1 to the
linear system yields

x0 =
\bigl( 
10, 0.95, 0.9, 0.85, 0.8

\bigr) T
, S0 = \{ 1, 2, 3, 4\} ,(2.34a)

x1 =
\bigl( 
9.9366, 0.8725, 0.8031, 0.7255, 0

\bigr) T
, S1 = \{ 1, 2, 3\} ,(2.34b)

x2 =
\bigl( 
9.8869, 0.8117, 0.7271, 0, 0

\bigr) T
, S2 = \{ 1, 2\} ,(2.34c)

x3 =
\bigl( 
9.8417, 0.7566, 0, 0, 0

\bigr) T
, S3 = \{ 1\} ,(2.34d)

x4 =
\bigl( 
9.7981, 0, 0, 0, 0

\bigr) T
, S4 = \{ 1\} .(2.34e)

2The code is available at https://github.com/linanzhang/SINDyConvergenceExamples.
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Therefore, a 1-sparse approximation of x is obtained in four steps, which is the max-
imum number of iterations Algorithm 2.1 needs in order to obtain a 1-sparse approx-
imation (see Corollary 2.3).

The following examples shows that the iterative scheme, (2.1), obtains fixed-points
which are not obtainable via direct thresholding. In fact, if we reorder the support
sets Sk based on the magnitude of the corresponding components, we observe that
the locations of the correct indices will evolve over time. The provides evidence that,
in general, iterating the scheme is required.

Example 2.13. Consider the matrix A \in R10\times 10 given by

A =

\left(                

4 5 1 6 8 4 6 6 2 7
6 5 7 5 3 3 2 5 9 2
1 5 1 7 4 8 1 3 9 7
10 2 9 5 5 10 0 8 1 2
9 9 3 9 6 4 3 7 1 4
10 1 7 8 7 4 10 3 3 6
2 4 4 5 6 9 1 9 1 9
2 5 1 3 6 3 10 7 2 1
1 1 1 3 10 4 4 4 5 1
6 5 1 4 2 5 1 5 1 8

\right)                
.

Let x, \eta , b \in R10 be such that

x :=
\bigl( 
1, 1, 1, 0, 0, 0, 0, 0, 0, 0

\bigr) T
,

\eta :=
\bigl( 
0.23, 0.08, - 0.01, - 0.02, 0.04, - 0.28, - 0.32, 0.09, 0.30, 0.63

\bigr) T
,

b := Ax+ \eta =
\bigl( 
10.23, 18.08, 6.99, 20.98, 21.04, 17.72, 9.68, 8.09, 3.30, 12.63

\bigr) T
,

where each element of \eta is drawn independently and identically distributed (i.i.d.)
from the normal distribution \scrN (0, 0.25). We want to recover x from the noisy data
b using Algorithm 2.1. The support set to be recovered is S := \{ 1, 2, 3\} . Setting
\lambda = 0.7 in Algorithm 2.1 yields

x0 =
\bigl( 
0.88,2.83,2.04, - 1.60, 0.84, 0.63, 0.13, - 1.82, - 0.42, 0.26

\bigr) T
,

S0 = \{ 2, 3, 8, 4, 1, 5\} ,
(2.35a)

x1 =
\bigl( 
1.06,1.08,0.96, - 0.10, 0.04, 0, 0, - 0.03, 0, 0

\bigr) T
,

S1 = \{ 2, 1, 3\} ,
(2.35b)

x2 =
\bigl( 
1.04,1.01,0.94, 0, 0, 0, 0, 0, 0, 0

\bigr) T
,

S2 = \{ 1, 2, 3\} ,
(2.35c)

where each Sk is reordered such that the jth element of Sk is the jth largest (in
magnitude) element in xk. Note that we have highlighted the desired components in
bold.

Several important observations can be made from this example. First, there is no
choice of \lambda so that the method converges in one step, since the value of x0

1 is smaller
(in magnitude) than two components on \=S; however, the method still terminates at
the correct support set. Second, setting \lambda > 0.9 will remove the first component
immediately, yielding an incorrect solution. Last, the order of the indices in the
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962 LINAN ZHANG AND HAYDEN SCHAEFFER

support set changes between steps, which shows that the solution xk is not simply
generated by peeling off the smallest elements of A\dagger b. These observations lead one
to conclude that the iterative scheme is more refined than just choosing the most
important terms from A\dagger b, i.e., the iterations shuffle the components and help to
locate the correct components.

In the following example, we provide numerical support for Theorem 2.4.

Example 2.14. In Table 1, we list the values of the objective function F for the
different experiments, where F is defined by (2.4). Recall that in Theorem 2.4, we
have assumed that \| A\| 2 = 1. Thus to compute F (xk) for a given example, one may
need to rescale Ax = b by \| A\| 2. It can be seen from Table 1 that the value of F (xk)
strictly decreases in k.

Table 1
The value of the objective function F in different experiments.

Inputs A and b Parameter \lambda Outputs xk and Sk F (xk)

As defined in Example 2.12 8 As given in (2.33)
F (x0) = 320.0000
F (x1) = 65.2119

As defined in Example 2.12 0.802 As given in (2.34)

F (x0) = 3.2160
F (x1) = 2.7727
F (x2) = 2.3688
F (x3) = 2.0490
F (x4) = 1.8551

As defined in Example 2.13 0.7 As given in (2.35)
F (x0) = 4.9000
F (x1) = 2.9401
F (x2) = 1.4702

In the following example, we examine the relationship between the recovery rate,
the condition number, and the size of perturbations to the data (see Corollary 2.9).

Example 2.15. Consider the matrix A \in R5\times 5 given by

A :=
1\surd 

1 + \epsilon 2

\left(      
1 1 1 1 1
\epsilon 0 0 0 0
0 \epsilon 0 0 0
0 0 \epsilon 0 0
0 0 0 \epsilon 0

\right)      ,

whose columns have unit \ell 2-norm. The condition number scales like \epsilon  - 1. Consider
the 1-sparse vector x :=

\bigl( 
1, 0, 0, 0, 0

\bigr) T
and set b := Ax + \eta , where each element of \eta 

is drawn i.i.d. from the normal distribution \scrN (0, \sigma 2).
By varying \epsilon and \sigma 2, we examine the recovery rate for various condition numbers

and perturbations. For each pair (\epsilon , \sigma 2), we solved A\~x = b using Algorithm 2.1 for
1,000 trials and computed the probability of the exact recovery rate, i.e., P(supp(\~x) =
supp(x)).

It can be observed from Table 2 that if the matrix A is well-conditioned and the
additive noise is relatively small, it is very likely that the iterates xk generated by the
SINDy algorithm converge to a vector \^x such that supp(\^x) = supp(x). On the other
hand, when the matrix A is ill-conditioned and the additive noise is relatively large,
it is unlikely that the SINDy algorithm generates a reasonable approximation of x.
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Table 2
Example 2.15: The computed probability of exact recovery over 1, 000 trials, using Algorithm

2.1. There is a direct relationship between the conditioning of the matrix and the amount of noise
that the model can tolerate.

cond(A) = 10 cond(A) = 102 cond(A) = 104 cond(A) = 105

\sigma 2 \sim 10 - 6 1 1 1 1

\sigma 2 \sim 10 - 5 1 1 1 0.54

\sigma 2 \sim 10 - 4 1 1 0.52 0.005

\sigma 2 \sim 10 - 2 1 0.54 0 0

3. Application: Model identification of dynamical systems. Let u be an
observed dynamic process governed by a first-order system,

\.u(t) = f(u(t)),

where f is an unknown nonlinear equation. One application of the SINDy algorithm
is for the recovery (or approximation) of f directly from data. In this section, we
apply Algorithm 2.1 to this problem and show that relatively accurate solutions can
be obtained when the observed data is perturbed by a moderate amount of noise.

Before detailing the numerical experiments, we first define two relevant quantities
used in our error analysis. Let x \in Rn be the (noise-free) coefficient vector, and let
\eta \in Rn be the mean-zero noise. The signal-to-noise ratio (SNR) is defined by

SNR(x, \eta ) := 10 log10

\biggl( 
var(x)

var(\eta )

\biggr) 
= 10 log10

\biggl( 
\| x - mean(x)\| 22

\| \eta \| 22

\biggr) 
.

Given Ax = b, let x\mathrm{t}\mathrm{r}\mathrm{u}\mathrm{e} be the correct sparse solution that solves the noise-free linear
system, and let x be the approximation of x\mathrm{t}\mathrm{r}\mathrm{u}\mathrm{e} returned by Algorithm 2.1. The
relative error E of x is defined by

E(x) :=
\| x - x\mathrm{t}\mathrm{r}\mathrm{u}\mathrm{e}\| 2
\| x\mathrm{t}\mathrm{r}\mathrm{u}\mathrm{e}\| 2

.

3.1. The Lorenz system. Consider the Lorenz system

(3.1)

\left\{     
\.u1 = 10(u2  - u1),

\.u2 = u1(28 - u3) - u2,

\.u3 = u1u2  - 8
3u3,

which produces chaotic solutions. To generate the synthetic data for this experiment,

we set the initial data u(0) =
\bigl( 
 - 5, 10, 30

\bigr) T
and evolve the system using the Runge--

Kutta method of order 4 up to time-stamp T = 10 with time step h = 0.025. The
simulated data is defined as u(t). The noisy data \~u(t) is obtained by adding Gaussian
noise directly to u(t),

\~u = u+ \eta , \eta \sim \scrN (0, \sigma 2).

Let A = A(\~u(t)) be the dictionary matrix consisting of (tensorized) polynomials in \~u
up to order p:

A =

\left(  | | | | | 
1 P (\~u(t)) P 2(\~u(t)) P 3(\~u(t)) \cdot \cdot \cdot P p(\~u(t))
| | | | | 

\right)  ,
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964 LINAN ZHANG AND HAYDEN SCHAEFFER

where

P (\~u(t)) :=

\left(  | | | 
\~u1(t) \~u2(t) \~u3(t)
| | | 

\right)  ,(3.2a)

P 2(\~u(t)) :=

\left(  | | | | | | 
\~u1(t)

2 \~u1(t)\~u2(t) \~u1(t)\~u3(t) \~u2(t)
2 \~u2(t)\~u3(t) \~u3(t)

2

| | | | | | 

\right)  ,(3.2b)

P 3(\~u(t)) :=

\left(  | | | | | 
\~u1(t)

3 \~u1(t)
2\~u2(t) \~u1(t)

2\~u3(t) \~u1(t)\~u2(t)
2 \cdot \cdot \cdot \~u3(t)

3

| | | | | 

\right)  ,(3.2c)

and so on. Each column of the matrices in (3.2) is a particular polynomial (candidate
function) and each row is a fixed time-stamp. Let b be the numerical approximation
of \.u:

bi(kh) :=

\left\{                 

\~ui(h) - \~ui(0)

h
if kh = 0,

\~ui((k + 1)h) - \~ui((k  - 1)h)

2h
if 0 < kh < T,

\~ui(T ) - \~ui(T  - h)

h
if kh = T

(3.3)

for i = 1, 2, 3. Note that b is approximated directly from the noisy data, so it will be
inaccurate (and likely unstable). We want to recover the governing equation for the
Lorenz system (i.e., the right-hand side of (3.1)) by finding a sparse approximation
to solution of the linear system Ax = b using Algorithm 2.1.

With p = 5 and \lambda = 0.8, we apply Algorithm 2.1 on data with different noise
levels. The resulting approximations for x (the coefficients) are listed in Table 3. The
identified systems are
(i) \sigma 2 = 0.1 (where SNR(u, \eta ) = 41.1508):\left\{     

\.u1 =  - 9.8122u1 + 9.8163u2,

\.u2 = 27.1441u1  - 0.8893u2  - 0.9733u1 u3,

\.u3 =  - 2.6238u3 + 0.9841u1 u2

(3.4)

with E(x) = 0.0278;
(ii) \sigma 2 = 0.5 (where SNR(u, \eta ) = 27.0682):\left\{     

\.u1 =  - 9.7012u1 + 9.6980u2,

\.u2 = 27.0504u1  - 0.8485u2  - 0.9717u1 u3,

\.u3 =  - 2.6197u3 + 0.9834u1 u2

(3.5)

with E(x) = 0.0334.
To compare between the identified and true systems in the presence of additive

noise on the observed data, we simulate the systems up to time-stamps t = 20 and
t = 100. The resulting trajectories are shown in Figures 1 and 2.

Figure 1a shows that for a relatively small amount of noise (\sigma 2 = 0.1) the tra-
jectory of the identified system almost coincides with the Lorenz attractor for a short
time, specifically from t = 0 to about t = 5. On the other hand, Figure 1b shows
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Table 3
Lorenz system: The recovered coefficients for two noise levels.

A \sigma 2 = 0.1 \sigma 2 = 0.5
\.u1 \.u2 \.u3 \.u1 \.u2 \.u3

1 0 0 0 0 0 0

u1  - 9.8122 27.1441 0  - 9.7012 27.0504 0

u2 9.8163  - 0.8893 0 9.6980  - 0.8485 0

u3 0 0  - 2.6238 0 0  - 2.6197

u2
1 0 0 0 0 0 0

u1u2 0 0 0.9841 0 0 0.9834

u1u3 0  - 0.9733 0 0  - 0.9717 0

u2
2 0 0 0 0 0 0

u2u3 0 0 0 0 0 0

u2
3 0 0 0 0 0 0

u3
1 0 0 0 0 0 0

...
...

...
...

...
...

...

u5
3 0 0 0 0 0 0

that for a larger amount of noise (\sigma 2 = 0.5) the error between the trajectories of the
identified system and the Lorenz attractor remains small for a shorter time (up to
about t = 4). As expected, increasing the amount of noise will cause larger errors
on the estimated parameters, and thus on the predicted trajectories. In both cases,
the algorithm picks out the correct terms in the model. Increasing the noise will
eventually lead to incorrect solutions.

3.2. The Thomas system. Consider the Thomas system:

(3.6)

\left\{     
\.u1 =  - 0.18u1 + sin(u2),

\.u2 =  - 0.18u2 + sin(u3),

\.u3 =  - 0.18u3 + sin(u1),

which is a nonpolynomial system whose trajectories form a chaotic attractor. We

simulate u(t) using the initial condition u(0) =
\bigl( 
1, 1, 0

\bigr) T
and by evolving the system

using the Runge--Kutta method of order 4 up to time-stamp t = 100 with time step
h = 0.025. We then add Gaussian noise to u and obtain the observed noisy data \~u(t):

\~u = u+ \eta , \eta \sim \scrN (0, \sigma 2).

Let b be the numerical approximation of \.u which is defined by (3.3). To identify the
governing equation for the data generated by the Thomas system (e.g., the right-hand
side of (3.6)), we apply the algorithm to the linear system whose dictionary matrix
A = A(\~u(t)) consists of three submatrices:

A =

\left(  | | | 
AP A\mathrm{s}\mathrm{i}\mathrm{n} A\mathrm{c}\mathrm{o}\mathrm{s}

| | | 

\right)  ,(3.7)
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966 LINAN ZHANG AND HAYDEN SCHAEFFER

(a) \sigma 2 = 0.1

(b) \sigma 2 = 0.5

Fig. 1. Lorenz system: Componentwise evolution of the trajectories. Solid line: the trajectory
of the identified systems defined by (a) (3.4) and (b) (3.5), respectively. Red dashed line: the ``true""
Lorenz attractor. (Figure in color online.)

where

AP =

\left(  | | | | | 
1 P (\~u(t)) P 2(\~u(t)) P 3(\~u(t)) \cdot \cdot \cdot P p1(\~u(t))
| | | | | 

\right)  ,

A\mathrm{s}\mathrm{i}\mathrm{n} =

\left(  | | | | 
sin (P (\~u(t))) sin

\bigl( 
P 2(\~u(t))

\bigr) 
sin

\bigl( 
P 3(\~u(t))

\bigr) 
\cdot \cdot \cdot sin (P p2(\~u(t)))

| | | | 

\right)  ,

A\mathrm{c}\mathrm{o}\mathrm{s} =

\left(  | | | | 
cos (P (\~u(t))) cos

\bigl( 
P 2(\~u(t))

\bigr) 
cos

\bigl( 
P 3(\~u(t))

\bigr) 
\cdot \cdot \cdot cos (P p3(\~u(t)))

| | | | 

\right)  .
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(a) Lorenz attractor

(b) The trajectory defined by (3.4)

(c) The trajectory defined by (3.5)

Fig. 2. Lorenz system: Trajectories of the Lorenz system from t = 0 to t = 20 (left column)
and from t = 0 to t = 100 (right column). (a) The ``true"" Lorenz attractor defined by (3.1). (b)
The trajectory defined by (3.4), which is identified from data with additive noise \sigma 2 = 0.1. (c) The
trajectory defined by (3.5), which is identified from data with additive noise \sigma 2 = 0.5.

Here, P p is defined by (3.2), which denotes the matrix consisting of polynomials in \~u
of order p. The matrices sin(P p) and cos(P p) are obtained by applying the sine and
cosine functions to each element of P p, respectively.

With p1 = 3, p2 = p3 = 1, and \lambda = 0.1, we apply the algorithm to data with
different noise levels. The resulting approximations for x are listed in Table 4. The
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Table 4
Thomas system: The recovered coefficients for two noise levels.

A \sigma 2 = 0.1 \sigma 2 = 0.5
\.u1 \.u2 \.u3 \.u1 \.u2 \.u3

1 0 0 0 0 0 0

u1  - 0.1805 0 0  - 0.1835 0 0

u2 0  - 0.1799 0 0  - 0.1848 0

u3 0 0  - 0.1803 0 0  - 0.1725

u2
1 0 0 0 0 0 0

u1u2 0 0 0 0 0 0

u1u3 0 0 0 0 0 0

u2
2 0 0 0 0 0 0

...
...

...
...

...
...

...

u3
3 0 0 0 0 0 0

sin(u1) 0 0 0.9992 0 0 0.9658

sin(u2) 1.0014 0 0 1.0304 0 0

sin(u3) 0 1.0038 0 0 0.9956 0

cos(u1) 0 0 0 0 0 0

cos(u2) 0 0 0 0 0 0

cos(u3) 0 0 0 0 0 0

identified systems are
(i) \sigma 2 = 0.1 (where SNR(u, \eta ) = 25.8469):\left\{     

\.u1 =  - 0.1805u1 + 1.0014 sin(u2),

\.u2 =  - 0.1799u2 + 1.0038 sin(u3),

\.u3 =  - 0.1803u3 + 0.9992 sin(u1)

(3.8)

with E(x) = 0.0023;
(ii) \sigma 2 = 0.5 (where SNR(u, \eta ) = 11.8738):\left\{     

\.u1 =  - 0.1835u1 + 1.0304 sin(u2),

\.u2 =  - 0.1848u2 + 0.9956 sin(u3),

\.u3 =  - 0.1725u3 + 0.9658 sin(u1)

(3.9)

with E(x) = 0.0267.
Observe that the identified system defined by (3.8) is exact up to two significant

digits. We simulate this system up to time-stamps t = 200 and t = 1000 and compare
it with the trajectories of the Thomas system. We show the short-time evolution
of the trajectories in Figure 3 and the long-time dynamics in Figure 4. It can be
observed that although the coefficients are not exact, the trajectory of the identified
system traces out a region similar to the exact trajectory in state-space.

Suppose that the dictionary matrix A defined in (3.7) does not contain the trigono-
metric terms present in the Thomas system, i.e., p2 = p3 = 0. In this example, we
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Fig. 3. Thomas system: Componentwise evolution of the trajectories. Solid line: the trajectory
of the identified system defined by (3.8). Red dashed line: the ``true"" Thomas trajectory. (Figure in
color online.)

(a) The Thomas trajectory (b) The trajectory defined by (3.8)

Fig. 4. Thomas system: Trajectories of the learned and ``true"" Thomas system from t = 0 to
t = 1000 (right column). (a) The Thomas trajectory defined by (3.6). (b) The trajectory defined by
(3.8), which is identified from data with additive noise \sigma 2 = 0.1.

consider a polynomial dictionary of order 5 which should yield the following equation:

(3.10)

\left\{               

\.u1 =  - 0.18u1 + u2  - 
u3
2

6
+

u5
2

120
,

\.u2 =  - 0.18u2 + u3  - 
u3
3

6
+

u5
3

120
,

\.u3 =  - 0.18u3 + u1  - 
u3
1

6
+

u5
1

120
.

The results for recovering the coefficients of (3.10) when the data is generated by (3.6)
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are shown in Table 5. Since 1/120 \approx 0.0083, \lambda must balance between the noise and the
coefficients. When the noise level is low (\sigma 2 = 0.01), the algorithm is able to obtain
a good approximation of the true coefficient matrix associated with (3.10) using a
relatively small \lambda . This is illustrated by the first example in Table 5. When the noise
level increases (\sigma 2 = 0.05), we observed that if \lambda is small enough such that the SINDy
algorithm produces a solution that contains elements from the correct support set, it
also picks up the noise. On the other hand, if \lambda is large enough to avoid the noise,
then the SINDy algorithm is only able to pick up a subset of the correct terms. This
is illustrated by the second example in Table 5.

Table 5
Approximating the Thomas system with polynomials; see (3.10): The recovered coefficients

with two different sets of parameters (\sigma 2, \lambda ). The coefficients that appear are related to the Taylor
approximation.

A \sigma 2 = 0.01, \lambda = 0.003 \sigma 2 = 0.05, \lambda = 0.05
\.u1 \.u2 \.u3 \.u1 \.u2 \.u3

1 0 0 0 0 0 0

u1  - 0.1839 0 0.9722  - 0.2279 0 0.7778

u2 0.9448  - 0.1815 0 0.6844  - 0.1981 0

u3 0 0.9651  - 0.1810 0 0.7332  - 0.1994

u3
1 0 0  - 0.1474 0 0  - 0.0771

u3
2  - 0.1374 0 0  - 0.0603 0 0

u3
3 0  - 0.1439 0 0  - 0.0693 0

u5
1 0 0 0.0049 0 0 0

u5
2 0.0042 0 0 0 0 0

u5
3 0 0.0046 0 0 0 0

Other terms 0 0 0 0 0 0

SNR(u, \eta ) 45.9575 32.0153

E(x) 0.0464 0.2816

4. Discussion. The SINDy algorithm proposed in [6] has been applied to var-
ious problems involving sparse model identification from complex dynamics. In this
work, we provided several theoretical results that characterized the solutions pro-
duced by the algorithm and provided the rate of convergence of the algorithm. The
results included showing that the algorithm approximates local minimizers of the \ell 0-
penalized least-squares problem, and thus can be characterized through various sparse
optimization results. In particular, the algorithm produces a minimizing sequence,
which converges to a fixed-point rapidly, thereby providing theoretical support for the
observed behavior. Several examples showed that the convergence rates are sharp. In
addition, we showed that iterating the steps is required; in particular, it is possible
to obtain solutions through iterating that cannot be obtained via thresholding of the
least-squares solution.

In future work, we would like to better characterize the effects of noise, detailed
in section 3. It would be useful to have a quantifiable relationship between the thresh-
olding parameter, the noise, and the expected recovery error. There are strategies for
tuning \lambda in the SINDy algorithm using information criteria to distinguish between
learned models; see [14, 15, 13]. Since our results show that the parameter \lambda in the
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SINDy algorithm is related to the weight in the \ell 0-minimization, one may be able to
use results from compressive sensing to tune \lambda ; see [17, 32].
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