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The	task	of	design	feature	transcription,	or	encoding	the	functional	requirements	and	design	parameters	of	a	design,	requires	representing	design	data	
such	that	a	machine	can	comprehend.	Natural	language	processing,	powered	by	deep	neural	networks	trained	on	massive	corpora	of	textual	data,	can	map	
language	into	distributed	vector	representation	space	that	machines	can	understand	and	retrieve.	This	work	outlines	how	language	models	can	be	used	to	
enhance	early-stage	design	by	separating	the	functional	and	physical	domains,	abstracting	key	functional	requirements,	and	analysing	systems	to	provide	
metrics	for	good	design	decision	making,	to	facilitate	a	framework	for	hybrid	intelligence.	
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1.	Introduction	

A	key	part	in	any	rigorous	design	process	involves	the	steps	of	
taking	a	list	of	system	needs,	translating	these	to	a	distilled	set	of	
key	 functional	 requirements,	 producing	 a	 design	 with	 physical	
parameters	that	satisfy	each	key	requirement,	and	passing	a	form	
of	 analytic	 judgement	 to	 determine	 how	 “good”	 the	 design	 is,	
possibly	in	comparison	to	a	baseline.	Although	this	part	of	design	
is	 relatively	 well-defined,	 the	 complexity	 of	 these	 steps	 can	
increase	 greatly	 when	 the	 initial	 list	 of	 needs	 for	 a	 system	 is	
incomplete,	 contains	 extraneous	 information,	 or	 is	 otherwise	
noisy.	 Even	 given	 a	 successful	 distillation	 to	 key	 functional	
requirements	 (FRs),	 challenges	 remain.	 For	 the	 case	 of	 systems	
with	multiple	 parent	 (higher	 level)	 FRs,	 each	with	 child	 (lower	
level)	 FRs	 defining	 the	 detailed	 requirements	 of	 a	 system,	
understanding	 the	 effect	 of	 various	design	parameters	 (DPs)	 on	
each	FR,	and	maintaining	functional	independence	in	a	proposed	
concept	becomes	challenging	as	the	system’s	complexity	increases.	
The	 concept	 of	 functional	 coupling	 is	 postulated	 in	 Axiomatic	
Design	 Theory	 as	 a	 metric	 for	 good	 design	 [1],	 with	 lack	 of	
functional	 independence	 being	 the	 cause	 of	 inferior	 designs	 or	
design	failures	[2,3].	

Given	the	aforementioned	challenges	regarding	distilling	a	set	
of	 FRs	 and	 matching	 DPs,	 and	 identifying	 functional	 coupling	
among	them,	the	task	of	defining	or	describing	them	to	be	mutually	
exclusive	 and	 collectively	 inclusive	 is	 very	 difficult	 for	 even	 the	
most	experienced	human	designers,	resulting	in	many	iterations	of	
this	process.	Our	proposed	solution	is	the	use	of	hybrid	intelligence	
in	which	human	intelligence	co-evolves	with	machine	intelligence.	
We	are	developing	a	deep	learning-based	design	assistant	which	
can	 extract	 succinct	 FRs	 and	DPs	 from	 the	design	 specifications	
and	learn	from	past	successes	and	failures	to	form	a	vast	database	
to	train	machine	intelligence	for	design	itself	[4].		

Applying	 conventional	 Machine	 Learning	 (ML)	 methods	 to	
design	and	manufacturing	is	by	no	means	a	novelty;	CIRP	members	
have	been	using	computational	methods	for	decades,	for	example	
in	the	areas	of	process	monitoring	and	parameter	optimization	[5],	
but	quickly	neural	network	computing	became	 too	 intensive	 for	
hardware	at	the	time,	in	the	1990s,	to	handle.	The	availability	of	
cost-effective	 yet	 high	 performance	 Graphic	 Processing	 Units	
(GPUs)	combined	with	massive	amounts	of	image	and	textual	data,	
as	 well	 as	 advances	 in	 the	 field	 of	 deep	 neural	 networks	 has	
resulted	in	powerful	tools	in	Machine	Learning,	particularly	in	the	

domain	 of	 Natural	 Language	 Processing	 (NLP)	 and	 pattern	
recognition.	Deep	learning	has	allowed	NLP	to	move	away	from	a	
focus	 on	 syntax,	 grammar	 codes,	 and	 rule-based	 systems,	 and	
towards	 powerful	 models	 based	 on	 distributed	 vector	
representation	 methods.	 One	 of	 the	 primary	 tasks	 of	 deep	
learning-based	 NLP	 is	 representing	 language	 in	 a	 manner	 that	
machines	 can	 understand.	 Strings	 of	 alphabetic	 characters	 that	
make	up	language	are	quantitatively	meaningless	when	presented,	
unprocessed,	to	a	machine.	However	distributed	vector	language	
models	 [6-9]	 can	 convert	 words,	 sentences,	 and	 even	 entire	
documents	 into	vectors	 in	multidimensional	space	which	can	be	
understood	by	machines.	Massive	corpora	of	 texts	collected	and	
curated	 from	 online	 archives	 of	 journalism	 and	 other	 readily	
available	online	knowledge	bases	are	used	to	train	these	models.	
State-of-the-art	 models	 have	 demonstrated	 that	 geometric	
position	of	vector	embeddings	of	language	is	a	direct	measure	of	
their	semantic	meaning,	 learned	from	the	context	of	the	training	
dataset	[10].	At	a	high	level,	these	models	at	first	naively	convert	
language	elements	 into	a	one-hot-encoding	where	each	vector	 is	
simply	the	length	of	the	number	of	words	or	sentences	in	the	text,	
all	full	of	0s,	except	for	a	single	1	at	the	position	of	interest.	Deep	
neural	 networks	 can	 then	 be	 trained	 on	 a	 variety	 of	 different	
prediction	tasks	using	one	of	many	different	network	architectures	
(both	dependent	on	the	model	type),	on	a	corpus	of	text	which	can	
include	billions	of	words.	

This	 paper	 proposes	 a	 process	 for	 facilitating	 hybrid	
intelligence	 by	 using	 deep	 language	 models	 to	 take	 an	
unstructured,	 “noisy”	 input	 of	 design	 statements	 from	 a	 novice	
designer,	and	output	a	design	recommendation,	according	to	the	
principles	of	Axiomatic	Design,	and	powered	by	state	of	the	art	pre-
trained	 language	 models	 [8,11,12].	 In	 early-stage	 concept	
generation,	 a	 common	 challenge	 among	 novice	 designers	 is	 to	
remain	“solution-neutral”	and	not	leap	to	conclusions	(DPs)	before	
careful	 consideration	of	 the	 functional	 domain	 (FRs).	Therefore,	
when	requesting	a	 set	of	 functional	 requirements	 from	a	novice	
designer,	we	can	expect	to	be	returned	a	mix	of	unstructured	FRs	
and	DPs.	This	work	demonstrates	how	a	classification	model	can	
be	 trained	 on	 synthetic,	 generatively	 produced	 examples	 of	 FRs	
and	 DPs	 to	 reliably	 identify	 and	 categorize	 unlabeled	 design	
statements	passed	as	an	input.	Once	a	set	of	functions	have	been	
extracted	from	the	user’s	original	input,	the	top,	or	“grandparent”	
FR(s)	must	be	identified,	in	accordance	with	the	top-down	design	
thinking	approach	put	forward	by	Axiomatic	Design.	This	involves	
taking	 a	 paragraph-level	 sequence	 of	 unstructured	 FRs	 and	
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abstracting	the	key	FRs	from	this	description	of	a	design	problem.	
This	 work	 demonstrates	 how	 a	 pre-trained	 abstractive	 text	
summarization	model	[12]	can	be	applied	to	abstracting	key	FRs.		

Finally,	given	a	design	defined	by	a	set	of	FR	and	DP	(what	and	
how)	pairs,	a	judgement	must	be	made	on	how	well	the	set	of	DPs	
satisfy	 the	given	FRs.	Metrics	of	 functional	coupling,	 the	bane	of	
good	system	design	practice,	are	defined	in	Axiomatic	Design	[13].	
We	have	previously	shown	how	semantic	similarity	can	be	used	to	
approximate	 functional	 coupling	 [14].	 This	 work	 further	
demonstrates	how	coupling	can	be	quantified	using	deep	language	
representations	 from	pre-trained	models	 such	as	Google’s	BERT	
[8].		

2.	Design	Statement	Classification	

One	of	the	most	critical	initial	steps	of	the	design	process	is	
distilling	a	design	problem	 into	a	set	of	 functional	 requirements	
(FRs).	This	is	not	a	simple	task	for	novice	designers,	who	often	find	
it	challenging	to	remain	solution-neutral	at	this	stage	and	refrain	
from	prematurely	proposing	design	parameters	(DPs).	Therefore,	
there	is	a	need	to	be	able	to	reliably	classify	a	sequence	of	design	
statements	based	on	whether	they	are	a	true	FR	(what)	or	rather	a	
DP	 (how).	 This	 problem	 falls	 into	 the	 domain	 of	 binary	
classification,	visualized	in	the	first	step	of	Figure	1.	

	
Figure	1.	Process	Flow	for	Design	Transcription:	determining	metrics	of	
functional	independence	given	a	design	case	

Binary	classification	is	a	well-defined	Machine	Learning	task:	
a	 model	 can	 be	 trained	 on	 prior	 examples	 in	 order	 to	 make	 a	
determination	of	 class,	 in	 this	 case	FR	or	DP,	 for	 future	unseen,	
unlabeled,	examples.	For	this	specific	task,	the	key	challenge	was	
constructing	 a	 dataset	 of	 FRs	 and	 DPs,	 on	 the	 scale	 of	
approximately	 105	 labeled	 examples,	 to	 use	 for	 training	 and	
testing.	Given	the	impracticality	of	manually	creating,	or	scraping	
design	 documents	 for	 this	 magnitude	 of	 statements,	 a	 different	
approach	was	taken.	A	synthetic	dataset	of	a	balanced	quantity	of	
FRs	 and	 DPs	 was	 created	 using	 a	 pre-trained	 generative	 text	
prediction	model,	 OpenAI’s	 Generative	 Pre-trained	 Transformer	
GPT-2	[11]	 to	auto-complete	“seed	phrases”	which	we	provided.	
The	design-oriented	nature	of	the	provided	seed	phrases	guided	
the	model	to	return	a	complete	sentence,	characteristic	of	an	FR	or	
DP	depending	on	the	seed.		

Table	1.	FR	/	DP	Seed	Syntactic	Structure	
 Segment 1  Segment 2 Segment 

3 
Segment 4 Segment 5 

FR 
Syntax 

[subject] [imperative] [verb] [object] [action] 

FR 
Example 

The system needs to allow a user to control 

DP 
Syntax 

[adjective] [subject] [modal] [verb] [action] 

DP 
Example 

One potential solution could be applied to support 

In	 order	 to	 supply	 approx.	 105	 seed	 phrases,	 a	 syntactic	
structure	 for	 the	 characteristic	 FR	 and	 DP	 was	 developed,	 as	
shown	in	Table	1.	For	each	segment	of	each	seed	phrase,	9	different	
synonymous	examples	were	collected	manually.	For	example,	the	
different	forms	Segment	1	of	each	FR	seed	could	take	included	the	
list:	[The	design,	device,	product,	system,	structure,	architecture,	
apparatus,	 appliance,	 contraption].	 Given	 9	 examples	 and	 5	
segments,	 a	 total	 of	 95	+	 95	 or	 118,098	 unique	 FR	 and	DP	 seed	
phrase	combinations	could	be	produced.		

Next,	each	seed	phrase	was	passed	 into	a	pre-trained	GPT2	
model,	 using	 the	 implementation	 released	 by	 the	 Hugging	 Face	

Transformer	 Library	 [15].	 A	 maximum	 statement	 length	 of	 25	
words	was	set	for	each	generation,	and	each	of	the	118,098	seed	
phrases	 were	 passed	 iteratively	 for	 auto-completion.	 Of	 these	
phrases,	91,259	were	able	to	be	generatively	completed	without	
issue.	A	random	selection	of	these	generated	design	statements	are	
shown	in	Table	2.	

Table	2.	Selection	of	generated	design	statements		
Design Statement (X) 
Bold: seed phrase        Italic: generatively completed statement 

Label (Y) 

The product is obligated to help an individual to optimize their 
own health and wellness. 

FR 

The contraption is required to make it easy for somebody to 
ensure that the device is not tampered with. 

FR 

A supportive design could perhaps be made to adjust the size 
of the body to accommodate the increased weight of the body. 

DP 

An appropriate strategy may be modelled to support the 
development of a new, more efficient, and more efficient energy 
source. 

DP 

Each	design	statement	was	then	embedded	as	a	feature	vector	
of	1024	dimensions	in	semantic	space,	using	a	pretrained	model	of	
BERT	[8]	implemented	by	the	Hugging	Face	Transformer	Library	
[15]	 to	 produce	 these	 representations.	 A	 balanced	 selection	 of	
72,000	statement	examples	were	used	to	 train	a	Support	Vector	
Machine	 (SVM),	 using	 the	 Scikit-Learn	 Library	 implementation	
[16],	using	a	n-value	of	0.5,	and	the	Radial	Basis	Function	(RBF)	
kernel	to	lift	the	data	into	a	separable	feature	space.	For	testing	and	
evaluation	 purposes,	 9,000	 of	 the	withheld	 statement	 examples	
(yet	 unseen	 by	 the	 trained	 SVM)	 were	 passed	 into	 the	 trained	
classification	 model,	 which	 misclassified	 only	 8	 examples,	
resulting	in	a	test	accuracy	of	99.91%.	Given	the	test	data	subset	
came	from	the	same	distribution	as	the	training	set,	the	high	value	
of	accuracy	is	expected.	This	trained	model	capable	of	identifying	
FRs	 from	a	mix	of	 FRs	 and	DPs	 allows	 the	 system	 to	 take	 in	 an	
unlabeled	 sequence	 of	 both	 statements	 and	 return	 just	 the	
functional	requirements	provided.				

3.	Abstraction	of	Key	Functional	Requirements	

Once	 a	 design	 problem	 has	 been	 distilled	 to	 a	 set	 of	 its	
functional	 requirements	 (FRs)	 or	 rather	 the	 needs	 that	 a	 set	 of	
design	 parameters	 (DPs)	 must	 address,	 the	 top	 FRs	 must	 be	
abstracted	so	that	the	design	can	be	developed	with	a	top-down	
methodology.	 This	 task	 can	be	 framed	 as	 taking	 a	 paragraph	or	
document-level	set	of	FRs	and	abstractively	summarizing	the	text	
to	return	just	the	key	FRs.	Unlike	binary	classification,	abstractive	
text	 summarization	remains	an	ongoing	challenge	 in	 the	 field	of	
Natural	Language	Processing	(NLP).		

Table	3.	Functional	Abstraction	using	PreSumm-BERT	[12]		
Long-form user needs [17]  Abstracted Key FRs 
The thermostat must be easy to install. This involves working with 
my existing heating or cooling system and being an easy project for 
a novice. The thermostat must be easily purchased. Another 
requirement is that the thermostat lasts a long time. It should be 
safe to bump into, resist dirt and dust, and have colors that don't 
fade over time, and when it's at its end of life, the thermostat should 
be recyclable. The controls of the thermostat must be precise. They 
must maintain temperature accurately within a small range of 
variability. It is important that the thermostat is easy to use. This 
means the user interaction is easy to understand and doesn't place 
significant demands on user memory. The thermostat should be 
able to be programmed from a comfortable position for the user, 
and it should be controlled remotely without requiring a special 
device. Also, it should work well right out of the box, with no set up 
needed. The thermostat should be easy to control manually, even 
for users with limited dexterity. The thermostat should be smart. It 
must adjust temperature during the day according to user 
preferences and adjust automatically during different seasons. The 
thermostat should be energy efficient and be a good investment 
and work normally even if electric power is suspended. 

thermostat must be easy to 
install. the thermostat 
should be able to be 
programmed from a 
comfortable position for the 
user. it should be easier to 
control manually, even for 
users with limited dexterity 

Using	 deep	 neural	 networks,	 this	 task	 can	 be	 modeled	 as	 a	
sequence-to-sequence	 problem.	 If	 the	 vectorized	 inputs	 are	
considered	 to	 be	 the	 sequence	 𝑥 = [𝑥!…𝑥"] 	then	 the	 target	
summary	can	be	determined	based	on	the	conditional	probability	
𝑝(𝑦!…𝑦#	|	𝑥!…𝑥") ,	 resulting	 in	 the	 summary	 𝑦 = [𝑦!…𝑦#]	
where	n	<<	m.	To	generate	the	sequences	x	and	y,	an	encoder	and	



decoder	are	required	respectively.	Previously	referenced	models	
for	encoding	text	to	vectors	exist	[6-9].	Yang	proposes	using	BERT	
as	an	encoding	model,	and	a	6-layer	Transformer	neural	network	
[12],	 trained	 on	 labelled	 datasets	 of	 news	 articles	 and	
corresponding	summaries,	as	the	decoder.	Using	the	Hugging	Face	
Library	 implementation	 of	 the	 encoder-decoder	model	 [15],	 we	
can	demonstrate	how	the	top	FRs	can	be	abstracted	from	a	longer	
sequence.	Table	3	demonstrates	how	the	decomposed	user	needs	
for	a	smart	thermostat	[17]	can	be	functionally	abstracted	to	a	few	
key	FRs.	 In	 the	abstracted	summary,	 less	 important	FRs	such	as	
“colors	that	don’t	fade	over	time”	are	left	out,	and	the	key	FRs	focus	
on	 easy	usability	 and	 control.	Using	 this	 pre-trained	 abstractive	
text	summarization	model,	key	FRs	can	be	functionally	abstracted	
from	a	sequence	of	unstructured	FRs,	to	find	the	root	requirements	
of	a	design.	

4.	Quantifying	Functional	Independence	in	Systems	Design	

As	 introduced	 previously,	 lack	 of	 functional	 independence	
(coupling)	is	the	bane	of	good	systems	design.	When	considering	a	
system	with	n-number	of	FRs	and	associated	DPs	addressing	each	
requirement,	Axiomatic	Design	thinking	uses	the	“Design	Matrix”	
[1]	of	equation	1	to	describe	the	relative	effect	of	each	DP	on	each	
FR	in	the	system.	

!
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For	the	case	of	an	uncoupled	design,	the	design	matrix	[A]	would	
be	diagonal,	meaning	Aij	=	0	when	i	¹	j.	In	this	case,	each	DP	satisfies	
a	single	FR	in	an	ideal	design.	For	the	case	of	coupled	design,	any	
change	 in	 an	 FR	 cannot	 be	 addressed	 by	 an	 adjustment	 of	 any	
combination	 of	 DPs	 without	 also	 affecting	 other	 FRs.	 	 Simple	
designs	may	be	classified	as	coupled,	uncoupled,	or	de-coupled	(as	
is	the	case	when	the	design	matrix	is	triangular).	However,	in	more	
complex	 cases,	designs	may	not	be	easily	 categorized	 into	 these	
discrete	 buckets.	 For	 such	 cases,	 metrics	 of	 functional	
independence	 have	 been	 developed	 to	 quantify	 coupling	 on	 a	
continuum	[13,18].		

Two	 metrics	 have	 been	 identified	 for	 functional	
independence.	 The	 first	 is	 Reangularity	 (R),	 which	 reflects	 the	
degree	to	which	different	DPs	have	the	same	effect	on	the	set	of	
FRs	[13],	a	measure	of	orthogonality	between	DPs.	R	is	related	to	
the	 cosine	 similarity	 of	 the	 elements	 of	 the	 design	matrix	 from	
equation	1	relating	each	DP	component	to	the	FR	vector	and	can	
be	generalize	for	an	n-dimensional	case	as	follows	in	equation	2	
[13].	
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(2)	
DPs	may	be	independent	of	each	other	yet	may	still	affect	multiple	
FRs	.	The	next	metric,	Semiangularity	(S)	is	a	measure	of	the	degree	
to	which	each	DP	affects	one	and	only	one	FR	of	the	design.	S	can	
be	expressed	as	the	product	of	the	absolute	values	of	the	diagonal	
elements	of	the	design	matrix,	normalized	in	equation	3	[13].	
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	 	 (3)	
R	 and	 S	 values	 close	 to	0	 indicate	 the	worst	 case	 (fully	 coupled	
design),	 while	 values	 close	 to	 1	 indicate	 the	 ideal,	 perfectly	
functionally	independent	case.	While	this	framework	is	powerful	
for	determining	relative	degrees	of	coupling,	it	has	been	difficult	to	
implement	 for	 real-world	 application	 as	 accurately	 assigning	
continuous	values	to	the	design	matrix	A	is	challenging.		

While	models	such	as	BERT	have	demonstrated	state	of	 the	
art	 performance	 for	 general	 language	 tasks	 and	have	been	 fine-
tuned	for	application	to	specific	domains	such	as	producing	clinical	
embeddings	[21],	they	have	mixed	results	when	it	comes	to	direct	
application	 for	 producing	 representations	 for	 design	 analysis.	 It	
has	 been	 shown	 that	 for	 simple	 design	 cases,	 functional	
independence	can	be	computed	using	BERT	embeddings	of	design	
features	expressed	 in	natural	 language	 [14].	A	demonstration	of	
how	semantic	similarity	learned	by	deep	language	representation	
models	 such	 as	 BERT	 translates	 to	 the	 functional	 domain	 is	
illustrated	using	 the	 examples	 of	 faucet	 and	 refrigerator	design,	
classic	 cases	 in	 Axiomatic	 Design	 of	 the	 concept	 of	 functional	
independence.	

 
							Faucet	A																				Faucet	B																			Refrig.	A																	Refrig.	B.																Refrig.	C	
Figure	2.	From	left	to	right:	Faucet	designs	A(coupled)	and	B(uncoupled).	
Refrigerator	 designs	 A	 and	 B	 (coupled)	 and	 modular	 refrigerator	 C	
(uncoupled)	[22][23]		

Considering	 first	 faucet	 design,	 the	 two	 key	 FRs	 can	 be	
understood	as	allowing	the	user	to	control	temperature	and	flow	
rate	 of	water.	 Although	 both	 faucets	 A	 and	 B	 in	 Figure	 1	 allow	
control	of	these	parameters,	faucet	A	is	coupled	because	the	two	
valves	affect	both	FRs	when	adjusted,	 leading	to	a	complex	 fine-
tuning	 process	 if	 the	 user	 wants	 to	 reach	 a	 specific	 desired	
temperature	 and	 flow	 rate.	 Faucet	 B,	 however,	 has	 two	 levers	
controlled	by	adjusting	the	handle	vertically	or	horizontally,	such	
that	 flow	 rate	 and	 water	 temperature	 can	 be	 independently	
controlled,	and	is	therefore	an	example	of	an	uncoupled	design.	
Table	4	Descriptions	detailing	Faucet	and	Refrigerator	designed	used	to	
compute	metrics	illustrated	in	Figure	2	

Faucet	FRs	 Allow	control	of	water	temperature	 Allow	 control	 of	 water	
flow	rate	

Faucet	 A	
DPs	

One	valve	 to	control	 flow	rate	of	 cold	
water	

One	 valve	 to	 control	 flow	
rate	of	hot	water	

Faucet	 B	
DPs	

One	 lever	 to	 control	 temperature	 of	
water	

One	 lever	 to	 control	 flow	
rate	of	water	

	
Refrig.	FRs	 Provide	easy	access	to	items	stored	

inside	
Minimize	 energy	 loss	
when	door	is	opened	

Refrig.	 A	
DPs	

Side	 wall	 hinged	 to	 swing	 outwards	
and	 uncover	 an	 entire	 side	 panel	 of	
refrigerator	enclosure.	While	the	door	
is	 open,	 cold	 air	 is	 easily	 exchanged	
with	 room-temperature	 air	 through	
the	 side	 of	 the	 refrigerator	 and	
increases	energy	loss	during	access.	

Doors	 and	 walls	 of	
refrigerator	enclosure	made	
from	 materials	 that	
minimize	heat	transfer.	

Refrig.	 B	
DPs	

Top	 face	 slides	 away	 to	 uncover	 the	
contents	stored	in	the	refrigerator	for	
access	 from	 above.	 It	 is	 difficult	 to	
access	 items	 that	are	not	 close	 to	 the	
top	or	if	the	refrigerator	is	full.	

Doors	 and	 walls	 of	
refrigerator	enclosure	made	
from	 materials	 that	
minimize	heat	transfer.	

Refrig.	 C	
DPs	

Items	 stored	 in	 compartments,	
accessed	by	hinged	doors	 or	drawers.	
Items	are	easily	accessed,	and	cold	air	
is	only	lost	from	a	small	volume.		

Doors	 and	 walls	 of	
refrigerator	enclosure	made	
from	 materials	 that	
minimize	heat	transfer.	

In	refrigerator	design,	two	key	FRs	can	be	stated	as	allowing	
the	user	ease	of	access	to	items	within	and	minimizing	energy	loss	
during	 access.	 Design	 A’s	 side	 doors	 allow	 easy	 access	 to	 items	
stored	 inside	 the	 refrigerator,	 but	 also	 allow	 cool	 air	 to	 fall	 out	
every	 time	 they	 are	 opened.	 Design	 B’s	 top	 door	 keeps	 cool	 air	
inside	but	also	does	not	allow	easy	access	to	items	at	the	bottom,	
and	 so	 is	 also	 a	 coupled	 design.	 Design	 C’s	 uncoupled	modular	
design	[22]	minimizes	energy	loss	by	compartmentalization	while	
preserving	ease	of	access.	Originally	designed	for	shared	kitchen	
spaces	by	providing	each	user	a	small	personal	space,	the	design	is	
also	energy	efficient	during	use.	



The	coupling	metrics	in	Figure	3	were	computed	by	having	an	
expert	human	designer	craft	detailed	but	succinct	descriptions	of	
the	FRs	and	DPs	comprising	each	design	case,	as	shown	in	Table	4.	
Using	 these	 sentence	 embeddings	 were	 produced	 using	 a	 pre-
trained	model	of	BERT.	Finally,	the	design	matrix	A	was	computed,	
and	the	values	for	Reangularity	and	Semiangularity	were	solved.			

  
Figure	 3.	 Functional	 independence	 is	 reflected	 in	 BERT	 embeddings	 of	
detailed	 design	 descriptions	 used	 to	 compute	 R	 and	 S	 values	 for	 faucet	
(left)	[14]	and	refrigerator	(right)	designs.		

For	these	simple	design	cases,	it	is	clear	that	there	is	a	link	between	
semantic	similarity	and	the	functional	domain.	Intuitively,	it	makes	
sense	that	the	DP	description	of	a	‘valve	to	control	the	flow	rate	of	
hot	water’	will	be	semantically	similar	to	both	FRs,	being	flow	rate	
and	 water	 temperature,	 while	 the	 DP	 description	 of	 a	 ‘lever	 to	
control	 temperature	 of	 water’	 shares	 similarity	 with	 just	 the	
temperature	FR,	with	no	mention	of	flow	rate.		

A	key	 limitation	of	 this	method	 for	measuring	coupling	 in	a	
design	is	the	sensitivity	of	the	sentence	embedding	model	to	the	
description	of	design	features,	written	in	natural	 language	by	an	
experienced	 designer	 in	 the	 cases	 present	 previously.	 Small	
changes	 in	 phrasing	 which	 do	 not	 significantly	 alter	 the	 key	
functional	 description	 of	 the	 FR	 or	 DP	 will	 result	 in	 different	
sentence	vectors	produced	by	the	language	model.	Depending	on	
the	 word	 choice	 and	 phrasing	 of	 the	 design	 statements,	 the	
measurements	for	R	and	S	will	be	affected.		

	
Figure	4.	Sensitivity	to	word	choice,	faucet	design	case	

To	gauge	the	sensitivity	of	the	measurements	to	word	choice,	
the	descriptions	of	 the	 faucet	design	were	perturbed	by	making	
changes	 in	word	choice	and	 inserting	extra	phrases,	 to	make	10	
variants	 each	 on	 the	 original	 descriptions	 of	 the	 coupled	 and	
uncoupled	 cases.	 From	 the	 original	 description	 in	 Table	 4,	 the	
words	[control,	water,	lever,	water,	allow,	valve]	were	substituted	
with	 2	 different	 synonyms	 each,	 and	 the	 phrases	 [the	 user	 to,	
someone	to]	were	inserted	into	the	FRs	before	recalculating	R,	S,	
values,	which	are	shown	in	Figure	4.	For	minor	re-wording	and	re-
phrasing,	 each	 description	 is	 observed	 to	 cluster	 in	 a	 position	
indicative	of	the	design’s	functional	independence.		

6.	Conclusion	

At	the	early	stages	of	the	design	process,	designers	can	benefit	
from	 hybrid	 intelligence	 by	 collaborating	 with	 machines	 to	
augment	important	decision	making.	Deep	learning	models	in	the	
area	 of	 natural	 language	 processing	 provide	 an	 opportunity	 for	

representing	designs	 in	a	way	 that	machines	can	understand,	 to	
facilitate	 hybrid	 intelligence	 at	 this	 stage	 in	 design.	 It	 was	
demonstrated	how	text	generation	models	can	be	used	to	create	
massive	 labeled	 datasets	 of	 design	 statements	 to	 train	
classification	models	on	separating	problems	(FRs)	from	solutions	
(DPs).	 Abstractive	 text	 summarization	 encoder-decoder	 models	
can	be	used	to	abstract	key	FRs,	which	can	then	be	quantified	by	
deep	 language	 representation	 models	 to	 compute	 metrics	 for	
functional	 independence	 for	 the	 machine	 to	 provide	 advice	 for	
good	 design	 decision	 making.	 For	 simple,	 well	 defined	 design	
cases,	 this	 was	 demonstrated	 to	 provide	 meaningful	 results	
reflecting	the	true	coupled	or	uncoupled	nature	of	the	designs.	

These	models	can	be	sensitive	to	changes	 in	wording	of	the	
input	 language	 such	 that	 a	 system	 for	 filtering	 out	 noisy	 and	
redundant	design	descriptions	to	succinct	and	meaningful	ones	is	
needed	for	a	reliable	design	transcription	process.	If	these	models	
can	be	fine-tuned	with	more	generatively	created	design	domain	
datasets,	then	they	can	be	trained	to	filter	noisy	and	unstructured	
design	descriptions	to	succinct	and	minimally	transcribed	design	
features	 for	 effective	 and	 precise	 vectorization	 of	 them.	 This	 is	
similar	 to	 the	 power	 of	 deep	 learning	 which	 has	 been	 very	
successful	in	pattern	recognition	and	speech	recognition.	
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