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The task of design feature transcription, or encoding the functional requirements and design parameters of a design, requires representing design data
such that a machine can comprehend. Natural language processing, powered by deep neural networks trained on massive corpora of textual data, can map
language into distributed vector representation space that machines can understand and retrieve. This work outlines how language models can be used to
enhance early-stage design by separating the functional and physical domains, abstracting key functional requirements, and analysing systems to provide
metrics for good design decision making, to facilitate a framework for hybrid intelligence.
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1. Introduction

A key partin any rigorous design process involves the steps of
taking a list of system needs, translating these to a distilled set of
key functional requirements, producing a design with physical
parameters that satisfy each key requirement, and passing a form
of analytic judgement to determine how “good” the design is,
possibly in comparison to a baseline. Although this part of design
is relatively well-defined, the complexity of these steps can
increase greatly when the initial list of needs for a system is
incomplete, contains extraneous information, or is otherwise
noisy. Even given a successful distillation to key functional
requirements (FRs), challenges remain. For the case of systems
with multiple parent (higher level) FRs, each with child (lower
level) FRs defining the detailed requirements of a system,
understanding the effect of various design parameters (DPs) on
each FR, and maintaining functional independence in a proposed
concept becomes challenging as the system’s complexity increases.
The concept of functional coupling is postulated in Axiomatic
Design Theory as a metric for good design [1], with lack of
functional independence being the cause of inferior designs or
design failures [2,3].

Given the aforementioned challenges regarding distilling a set
of FRs and matching DPs, and identifying functional coupling
among them, the task of defining or describing them to be mutually
exclusive and collectively inclusive is very difficult for even the
most experienced human designers, resulting in many iterations of
this process. Our proposed solution is the use of hybrid intelligence
in which human intelligence co-evolves with machine intelligence.
We are developing a deep learning-based design assistant which
can extract succinct FRs and DPs from the design specifications
and learn from past successes and failures to form a vast database
to train machine intelligence for design itself [4].

Applying conventional Machine Learning (ML) methods to
design and manufacturing is by no means a novelty; CIRP members
have been using computational methods for decades, for example
in the areas of process monitoring and parameter optimization [5],
but quickly neural network computing became too intensive for
hardware at the time, in the 1990s, to handle. The availability of
cost-effective yet high performance Graphic Processing Units
(GPUs) combined with massive amounts of image and textual data,
as well as advances in the field of deep neural networks has
resulted in powerful tools in Machine Learning, particularly in the

domain of Natural Language Processing (NLP) and pattern
recognition. Deep learning has allowed NLP to move away from a
focus on syntax, grammar codes, and rule-based systems, and
towards powerful models based on distributed vector
representation methods. One of the primary tasks of deep
learning-based NLP is representing language in a manner that
machines can understand. Strings of alphabetic characters that
make up language are quantitatively meaningless when presented,
unprocessed, to a machine. However distributed vector language
models [6-9] can convert words, sentences, and even entire
documents into vectors in multidimensional space which can be
understood by machines. Massive corpora of texts collected and
curated from online archives of journalism and other readily
available online knowledge bases are used to train these models.
State-of-the-art models have demonstrated that geometric
position of vector embeddings of language is a direct measure of
their semantic meaning, learned from the context of the training
dataset [10]. At a high level, these models at first naively convert
language elements into a one-hot-encoding where each vector is
simply the length of the number of words or sentences in the text,
all full of Os, except for a single 1 at the position of interest. Deep
neural networks can then be trained on a variety of different
prediction tasks using one of many different network architectures
(both dependent on the model type), on a corpus of text which can
include billions of words.

This paper proposes a process for facilitating hybrid
intelligence by using deep language models to take an
unstructured, “noisy” input of design statements from a novice
designer, and output a design recommendation, according to the
principles of Axiomatic Design, and powered by state of the art pre-
trained language models [8,11,12]. In early-stage concept
generation, a common challenge among novice designers is to
remain “solution-neutral” and not leap to conclusions (DPs) before
careful consideration of the functional domain (FRs). Therefore,
when requesting a set of functional requirements from a novice
designer, we can expect to be returned a mix of unstructured FRs
and DPs. This work demonstrates how a classification model can
be trained on synthetic, generatively produced examples of FRs
and DPs to reliably identify and categorize unlabeled design
statements passed as an input. Once a set of functions have been
extracted from the user’s original input, the top, or “grandparent”
FR(s) must be identified, in accordance with the top-down design
thinking approach put forward by Axiomatic Design. This involves
taking a paragraph-level sequence of unstructured FRs and



abstracting the key FRs from this description of a design problem.
This work demonstrates how a pre-trained abstractive text
summarization model [12] can be applied to abstracting key FRs.

Finally, given a design defined by a set of FR and DP (what and
how) pairs, a judgement must be made on how well the set of DPs
satisfy the given FRs. Metrics of functional coupling, the bane of
good system design practice, are defined in Axiomatic Design [13].
We have previously shown how semantic similarity can be used to
approximate functional coupling [14]. This work further
demonstrates how coupling can be quantified using deep language
representations from pre-trained models such as Google’s BERT

(8]-
2. Design Statement Classification

One of the most critical initial steps of the design process is
distilling a design problem into a set of functional requirements
(FRs). This is not a simple task for novice designers, who often find
it challenging to remain solution-neutral at this stage and refrain
from prematurely proposing design parameters (DPs). Therefore,
there is a need to be able to reliably classify a sequence of design
statements based on whether they are a true FR (what) or rather a
DP (how). This problem falls into the domain of binary
classification, visualized in the first step of Figure 1.
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Figure 1. Process Flow for Design Transcription: determining metrics of
functional independence given a design case

Binary classification is a well-defined Machine Learning task:
a model can be trained on prior examples in order to make a
determination of class, in this case FR or DP, for future unseen,
unlabeled, examples. For this specific task, the key challenge was
constructing a dataset of FRs and DPs, on the scale of
approximately 105 labeled examples, to use for training and
testing. Given the impracticality of manually creating, or scraping
design documents for this magnitude of statements, a different
approach was taken. A synthetic dataset of a balanced quantity of
FRs and DPs was created using a pre-trained generative text
prediction model, OpenAl's Generative Pre-trained Transformer
GPT-2 [11] to auto-complete “seed phrases” which we provided.
The design-oriented nature of the provided seed phrases guided
the model to return a complete sentence, characteristic of an FR or
DP depending on the seed.

Table 1. FR / DP Seed Syntactic Structure

Segment 1 Segment 2 Segment Segment 4 Segment 5
3

FR [subject] [imperative] [verb] [object] [action]
Syntax
FR The system needs to allow a user to control
Example
DP [adjective] [subject] [modal] [verb] [action]
Syntax
DP One potential solution could be applied to support
Example

In order to supply approx. 105 seed phrases, a syntactic
structure for the characteristic FR and DP was developed, as
shown in Table 1. For each segment of each seed phrase, 9 different
synonymous examples were collected manually. For example, the
different forms Segment 1 of each FR seed could take included the
list: [The design, device, product, system, structure, architecture,
apparatus, appliance, contraption]. Given 9 examples and 5
segments, a total of 95 + 95 or 118,098 unique FR and DP seed
phrase combinations could be produced.

Next, each seed phrase was passed into a pre-trained GPT2
model, using the implementation released by the Hugging Face

Transformer Library [15]. A maximum statement length of 25
words was set for each generation, and each of the 118,098 seed
phrases were passed iteratively for auto-completion. Of these
phrases, 91,259 were able to be generatively completed without
issue. Arandom selection of these generated design statements are
shown in Table 2.

Table 2. Selection of generated design statements

Design Statement (X)

Bold: seed phrase Italic: generatively completed statement
The product is obligated to help an individual to optimize their FR
own health and wellness.
The contraption is required to make it easy for somebody to FR
ensure that the device is not tampered with.
A supportive design could perhaps be made to adjust the size DP
of the body to accommodate the increased weight of the body.
An appropriate strategy may be modelled to support the DP
development of a new, more efficient, and more efficient energy
source.

Label (Y)

Each design statement was then embedded as a feature vector
of 1024 dimensions in semantic space, using a pretrained model of
BERT [8] implemented by the Hugging Face Transformer Library
[15] to produce these representations. A balanced selection of
72,000 statement examples were used to train a Support Vector
Machine (SVM), using the Scikit-Learn Library implementation
[16], using a v-value of 0.5, and the Radial Basis Function (RBF)
kernel to lift the data into a separable feature space. For testing and
evaluation purposes, 9,000 of the withheld statement examples
(yet unseen by the trained SVM) were passed into the trained
classification model, which misclassified only 8 examples,
resulting in a test accuracy of 99.91%. Given the test data subset
came from the same distribution as the training set, the high value
of accuracy is expected. This trained model capable of identifying
FRs from a mix of FRs and DPs allows the system to take in an
unlabeled sequence of both statements and return just the
functional requirements provided.

3. Abstraction of Key Functional Requirements

Once a design problem has been distilled to a set of its
functional requirements (FRs) or rather the needs that a set of
design parameters (DPs) must address, the top FRs must be
abstracted so that the design can be developed with a top-down
methodology. This task can be framed as taking a paragraph or
document-level set of FRs and abstractively summarizing the text
to return just the key FRs. Unlike binary classification, abstractive
text summarization remains an ongoing challenge in the field of
Natural Language Processing (NLP).

Table 3. Functional Abstraction using PreSumm-BERT [12]

Long-form user needs [17] Abstracted Key FRs

The thermostat must be easy to install. This involves working with
my existing heating or cooling system and being an easy project for
a novice. The thermostat must be easily purchased. Another
requirement is that the thermostat lasts a long time. It should be
safe to bump into, resist dirt and dust, and have colors that don't
fade over time, and when it's at its end of life, the thermostat should
be recyclable. The controls of the thermostat must be precise. They
must maintain temperature accurately within a small range of
variability. It is important that the thermostat is easy to use. This
means the user interaction is easy to understand and doesn't place
significant demands on user memory. The thermostat should be
able to be programmed from a comfortable position for the user,
and it should be controlled remotely without requiring a special
device. Also, it should work well right out of the box, with no set up
needed. The thermostat should be easy to control manually, even
for users with limited dexterity. The thermostat should be smart. It
must adjust temperature during the day according to user
preferences and adjust automatically during different seasons. The
thermostat should be energy efficient and be a good investment
and work normally even if electric power is suspended.

thermostat must be easy to
install. the thermostat
should be able to be
programmed from a
comfortable position for the
user. it should be easier to
control manually, even for
users with limited dexterity

Using deep neural networks, this task can be modeled as a
sequence-to-sequence problem. If the vectorized inputs are
considered to be the sequence x = [x; ..x,,] then the target
summary can be determined based on the conditional probability

p(YV1 - Yn| X1 ..xp) , resulting in the summary y = [y; ... Y]
where n << m. To generate the sequences x and y, an encoder and




decoder are required respectively. Previously referenced models
for encoding text to vectors exist [6-9]. Yang proposes using BERT
as an encoding model, and a 6-layer Transformer neural network
[12], trained on labelled datasets of news articles and
corresponding summaries, as the decoder. Using the Hugging Face
Library implementation of the encoder-decoder model [15], we
can demonstrate how the top FRs can be abstracted from a longer
sequence. Table 3 demonstrates how the decomposed user needs
for a smart thermostat [17] can be functionally abstracted to a few
key FRs. In the abstracted summary, less important FRs such as
“colors that don’t fade over time” are left out, and the key FRs focus
on easy usability and control. Using this pre-trained abstractive
text summarization model, key FRs can be functionally abstracted
from a sequence of unstructured FRs, to find the root requirements
of a design.

4. Quantifying Functional Independence in Systems Design

As introduced previously, lack of functional independence
(coupling) is the bane of good systems design. When considering a
system with n-number of FRs and associated DPs addressing each
requirement, Axiomatic Design thinking uses the “Design Matrix”
[1] of equation 1 to describe the relative effect of each DP on each

FR in the system.
DP,
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For the case of an uncoupled design, the design matrix [A] would
be diagonal, meaning Aj = 0 when i #j. In this case, each DP satisfies
a single FR in an ideal design. For the case of coupled design, any
change in an FR cannot be addressed by an adjustment of any
combination of DPs without also affecting other FRs. Simple
designs may be classified as coupled, uncoupled, or de-coupled (as
is the case when the design matrix is triangular). However, in more
complex cases, designs may not be easily categorized into these
discrete buckets. For such cases, metrics of functional
independence have been developed to quantify coupling on a
continuum [13,18].
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Two metrics have been identified for functional
independence. The first is Reangularity (R), which reflects the
degree to which different DPs have the same effect on the set of
FRs [13], a measure of orthogonality between DPs. R is related to
the cosine similarity of the elements of the design matrix from
equation 1 relating each DP component to the FR vector and can
be generalize for an n-dimensional case as follows in equation 2

[13].
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DPs may be independent of each other yet may still affect multiple
FRs. The next metric, Semiangularity (S) is a measure of the degree
to which each DP affects one and only one FR of the design. S can
be expressed as the product of the absolute values of the diagonal
elements of the design matrix, normalized in equation 3 [13].

- |4 )
S= PE——Y
[ ((z;:-lAij) !

j=1

(3)
R and S values close to 0 indicate the worst case (fully coupled
design), while values close to 1 indicate the ideal, perfectly
functionally independent case. While this framework is powerful
for determining relative degrees of coupling, it has been difficult to
implement for real-world application as accurately assigning
continuous values to the design matrix 4 is challenging.

While models such as BERT have demonstrated state of the
art performance for general language tasks and have been fine-
tuned for application to specific domains such as producing clinical
embeddings [21], they have mixed results when it comes to direct
application for producing representations for design analysis. It
has been shown that for simple design cases, functional
independence can be computed using BERT embeddings of design
features expressed in natural language [14]. A demonstration of
how semantic similarity learned by deep language representation
models such as BERT translates to the functional domain is
illustrated using the examples of faucet and refrigerator design,
classic cases in Axiomatic Design of the concept of functional
independence.

Faucet A Faucet B Refrig. A Refrig. B. Refrig. C
Figure 2. From left to right: Faucet designs A(coupled) and B(uncoupled).
Refrigerator designs A and B (coupled) and modular refrigerator C
(uncoupled) [22][23]

Considering first faucet design, the two key FRs can be
understood as allowing the user to control temperature and flow
rate of water. Although both faucets A and B in Figure 1 allow
control of these parameters, faucet A is coupled because the two
valves affect both FRs when adjusted, leading to a complex fine-
tuning process if the user wants to reach a specific desired
temperature and flow rate. Faucet B, however, has two levers
controlled by adjusting the handle vertically or horizontally, such
that flow rate and water temperature can be independently
controlled, and is therefore an example of an uncoupled design.

Table 4 Descriptions detailing Faucet and Refrigerator designed used to
compute metrics illustrated in Figure 2

Faucet FRs Allow control of water temperature | Allow control of water
flow rate
Faucet A | One valve to control flow rate of cold | One valve to control flow
DPs water rate of hot water
Faucet B | One lever to control temperature of | One lever to control flow
DPs water rate of water
Refrig. FRs Provide easy access to items stored | Minimize energy loss
inside when door is opened
Refrig. A | Side wall hinged to swing outwards | Doors and walls of
DPs and uncover an entire side panel of | refrigerator enclosure made
refrigerator enclosure. While the door | from materials that
is open, cold air is easily exchanged | minimize heat transfer.
with room-temperature air through
the side of the refrigerator and
increases energy loss during access.
Refrig. B | Top face slides away to uncover the | Doors and walls of
DPs contents stored in the refrigerator for | refrigerator enclosure made
access from above. It is difficult to | from materials that
access items that are not close to the | minimize heat transfer.
top or if the refrigerator is full.
Refrig. C | Items stored in compartments, | Doors and walls of
DPs accessed by hinged doors or drawers. | refrigerator enclosure made
Items are easily accessed, and cold air | from materials that
is only lost from a small volume. minimize heat transfer.

In refrigerator design, two key FRs can be stated as allowing

the user ease of access to items within and minimizing energy loss
during access. Design A’s side doors allow easy access to items
stored inside the refrigerator, but also allow cool air to fall out
every time they are opened. Design B’s top door keeps cool air
inside but also does not allow easy access to items at the bottom,
and so is also a coupled design. Design C’s uncoupled modular
design [22] minimizes energy loss by compartmentalization while
preserving ease of access. Originally designed for shared kitchen
spaces by providing each user a small personal space, the design is
also energy efficient during use.



The coupling metrics in Figure 3 were computed by having an
expert human designer craft detailed but succinct descriptions of
the FRs and DPs comprising each design case, as shown in Table 4.
Using these sentence embeddings were produced using a pre-
trained model of BERT. Finally, the design matrix A was computed,
and the values for Reangularity and Semiangularity were solved.

Faucet Refrigerator
0.991
1 1
0.9 0.9
0.8 0.8
0.7 0.7
0.6 0.6
0.5 0.5
04 0.369 0.4
0.3 0.3
0.2 0.2
0.1 0.056 0.1
0 N\ 0
A (coupled) B (uncoupled) A (coupled) B (coupled)  C (uncoupled)
mR XS mR NS

Figure 3. Functional independence is reflected in BERT embeddings of
detailed design descriptions used to compute R and S values for faucet
(left) [14] and refrigerator (right) designs.

For these simple design cases, itis clear that there is alink between
semantic similarity and the functional domain. Intuitively, it makes
sense that the DP description of a ‘valve to control the flow rate of
hot water’ will be semantically similar to both FRs, being flow rate
and water temperature, while the DP description of a ‘lever to
control temperature of water’ shares similarity with just the
temperature FR, with no mention of flow rate.

A key limitation of this method for measuring coupling in a
design is the sensitivity of the sentence embedding model to the
description of design features, written in natural language by an
experienced designer in the cases present previously. Small
changes in phrasing which do not significantly alter the key
functional description of the FR or DP will result in different
sentence vectors produced by the language model. Depending on
the word choice and phrasing of the design statements, the
measurements for R and S will be affected.
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Figure 4. Sensitivity to word choice, faucet design case

To gauge the sensitivity of the measurements to word choice,
the descriptions of the faucet design were perturbed by making
changes in word choice and inserting extra phrases, to make 10
variants each on the original descriptions of the coupled and
uncoupled cases. From the original description in Table 4, the
words [control, water, lever, water, allow, valve] were substituted
with 2 different synonyms each, and the phrases [the user to,
someone to] were inserted into the FRs before recalculating R, S,
values, which are shown in Figure 4. For minor re-wording and re-
phrasing, each description is observed to cluster in a position
indicative of the design’s functional independence.

6. Conclusion

At the early stages of the design process, designers can benefit
from hybrid intelligence by collaborating with machines to
augment important decision making. Deep learning models in the
area of natural language processing provide an opportunity for

representing designs in a way that machines can understand, to
facilitate hybrid intelligence at this stage in design. It was
demonstrated how text generation models can be used to create
massive labeled datasets of design statements to train
classification models on separating problems (FRs) from solutions
(DPs). Abstractive text summarization encoder-decoder models
can be used to abstract key FRs, which can then be quantified by
deep language representation models to compute metrics for
functional independence for the machine to provide advice for
good design decision making. For simple, well defined design
cases, this was demonstrated to provide meaningful results
reflecting the true coupled or uncoupled nature of the designs.

These models can be sensitive to changes in wording of the
input language such that a system for filtering out noisy and
redundant design descriptions to succinct and meaningful ones is
needed for a reliable design transcription process. If these models
can be fine-tuned with more generatively created design domain
datasets, then they can be trained to filter noisy and unstructured
design descriptions to succinct and minimally transcribed design
features for effective and precise vectorization of them. This is
similar to the power of deep learning which has been very
successful in pattern recognition and speech recognition.
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